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ABSTRACT 

 

 This dissertation mainly focuses on the research of direction-of-arrival (DOA) 

estimation with micro-UAV swarm-based (MUSB) arrays, including signal model 

formulation, closed-form asymptotic mean square error (AMSE) derivation, Cramer-Rao 

bound (CRB) derivation in the presence of receiving antenna gain, phase, and position 

errors, system performance analysis with the derived equations, performing numerical 

simulation and practical experiments to verify the theoretical expectations. 

 This dissertation firstly reports on the DOA estimation with MUSB arrays. This 

work presents the mathematical model of MUSB array data collection system and 

introduces the iterative multiple signal classification (iterative-MUSIC) algorithm for 

MUSB arrays. System convergence of the MUSB array is examined by simulation and 

experiment to verify that the iterative-MUSIC algorithm works for the three-dimensional 

(3D) time-varying arrays based on UAV swarm.  

Then statistical performance of iterative-MUSIC for the MUSB array is 

investigated by AMSE formulas and system limitation is examined by the derived CRB.  

This work also examines the applications of AMSE formula, such as studying the 

asymptotic efficiency and analyzing the asymptotic performance statistically. The CRB 

associated with DOAs in the presence of sensor gain and phase errors is also derived to 

reveal some direction-finding properties such as the global convergence, the impact of 

snapshots and the number of the arrays. Performance analysis with one-emitter case is also 

given to describe the CRB. A successive DOA refinement procedure with iterative-
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MUSIC algorithm is provided based on the reconstructed arrays and spectrum from 

swarming UAVs to meet the requirement of high-precision DOA estimation.  

Finally, the system performance analysis in the presence of small sensor gain, 

phase, and position errors is given. We firstly introduce the signal model with 

deterministic unknown location errors, and then extend the model to the cases when the 

location error is stochastic (Gaussian case). We also derived the joint CRB of DOAs, 

sensor gain, sensor phase, and sensor location errors for MUSB arrays, which can be 

applicable even if the number of sources exceeds the number of initial UAVs. Both 

numerical simulations and practical experiments will be given to verify the theoretical 

results.  
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NOMENCLATURE 
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1. INTRODUCTION  

 

1.1. Research Background 

Array signal processing plays a very important role in the field of modern signal 

processing area and it has been used in a very wide range of applications, including radar, 

sonar, communications, navigation, oceanography, texture surveying, biomedical, radio 

astronomy, etc. Therefore, the research on array signal processing related technology has 

important theoretical signification and significant practical value.  

One of the important research areas of array signal processing is the DOA 

estimation, which leverages the spatial information received from receiving sensor arrays 

to estimate the sources’ directions.  As we know, global positioning system (GPS) is 

widely used in modern digital system to help us locate the position due to the development 

of mobile technology, but it cannot be used reliably inside many buildings because the 

signal will be attenuated seriously. DOA estimation is one of the non-GPS positioning 

technologies. 

Statistically analyzing the performance by deriving the AMSE and CRB formula 

is also a very important area of signal processing, which is a very good tool to evaluate 

the performance of array system and algorithm. 

 

1.2. Two Important Research Topics in DOA Estimation 

At present, the research on DOA estimation area mainly includes two aspects: one 

is to investigate the antenna structure; the other is to examine the DOA algorithms.  
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For the research on antenna array structure, there are a lot of different dimensional 

antenna arrays that have been proposed, such as one-dimensional (1D), two-dimensional 

(2D), and 3D antenna arrays. There are some known arrays among them, such as uniform 

linear array (ULA), nonuniform linear array (NLA), uniform circular array (UCA), 

uniform rectangular array (URA), cubic array, and spherical array, etc. 1D antenna array 

is usually applied in 1D DOA estimation (only azimuth angle estimation), 2D and 3D 

antenna arrays can be applied in 2D DOA estimations (azimuth and elevation estimations).  

3D array system has some advantages in DOA estimation compared with 1D and 

2D arrays. Due to the symmetry of array structure, planar arrays like ULA and UCA cause 

the aliasing problem in DOA estimation when the internal spacing of array is equal and 

greater than half wavelength [2]. However, 3D arrays can overcome the aliasing problems 

when internal spacing of arrays is half wavelength. But when the internal spacing is 

increased to ten wavelengths, some 3D arrays also have aliasing problems.   Furthermore, 

when the planar array (2D array) is used for DOA estimation, the elevation estimation 

accuracy is relatively low because of the limited elevation directional aperture of the 

planar array. However, 3D antenna array has both high azimuth and elevation estimation 

accuracy because it has large apertures in both azimuth and elevation directions [3-4]. 

Moreover, random array structure can also overcome the symmetry of array structure and 

thus it can overcome the aliasing problem in DOA estimation. 

DOA estimation algorithms have been researched for decades and it is still a 

popular topic in signal processing area. Most of the algorithms are only suitable for 1D 

DOA estimation with 1D uniform linear array (ULA). Even though many algorithms have 
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been proposed to perform DOA estimations, MUSIC algorithm remains quite prevalent 

since it offers a very robust eigen-based decomposition of the signal space [1-2]. MUSIC 

algorithm is a super-resolution algorithm and can be applied for 1D and 2D DOA 

estimation with any type of antenna array. However, MUSIC algorithm requires high 

snapshots and high signal-noise-ratio (SNR) to guarantee the estimation accuracy. 

Furthermore, MUSIC algorithm has a weakness of heavy computation because it needs to 

search 2D angle space step by step. Therefore, some search-free algorithms like root-

MUSIC algorithm and Fourier-domain root-MUSIC algorithm are developed to reduce 

calculation [5-7]. Many of other algorithms based on MUSIC algorithm are also developed. 

But root-MUSIC and Fourier-domain and root-MUSIC algorithm are only used for 1-D 

DOA estimation.  

 

1.3. Summarized Contributions Made by This Dissertation 

The first contribution of this dissertation is to formulate the mathematic model of 

DOA estimation with MUSB array system. The MUSB arrays reconstructed from 

swarming UAVs are volumetric random time-varying arrays, so that they have all the 

advantages of 3D random antenna arrays presented in section 2 for DOA estimation.  

The second contribution of this dissertation is that we present an iterative-MUSIC 

algorithm which can be used to estimate the DOAs with MUSB arrays under the 

environment with very low SNR and low number of snapshots. Traditional MUSIC 

algorithm needs high snapshots to reduce the noise floor and improve the DOA estimation 

accuracy, so the traditional MUSIC algorithm cannot work in the MUSB array system. 
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But the iterative-MUSIC algorithm can be used in low snapshot or even one snapshot 

system by multiplying or summing the MUSIC spectrum at each iteration to improve the 

DOA estimation accuracy. We compare the performance of iterative-MUSIC algorithm 

and CRB. Furthermore, we performed practical 3D random time-varying antenna array 

experiment in the anechoic chamber room using “Medusa”, which is a platform with 16 

moveable and rotatable antennas. I will explain this platform in Chapter 3. 

The third contribution of this dissertation is to derive the AMSE formulas for 

iterative-MUSIC algorithm and apply the formula to evaluate the performance of iterative-

MUSIC. We proof that the iterative-MUSIC algorithm is capable for time-varying arrays 

in low snapshot and low SNR conditions, and this algorithm has the advantage to eliminate 

the impact of sensor gain, phase, and position errors. The convergence efficiency of the 

iterative-MUSIC is better than the traditional MUSIC algorithm at the extreme condition, 

such as 3-element array for 2D DOA estimation, very low SNR, and very low number of 

snapshots.  

The fourth contribution is to derive the CRB for MUSB system. Since we use 

swarming UAVs to construct the 3D random time-varying arrays and apply it into multiple 

source direction estimations, the snapshot in each sample position will be low and 

receiving array structure will be changed at each sample position. We prove that the total 

Fisher information matrix (FIM) can be summed based on each sample when the UAVs 

swarm.     

The fifth contribution of this dissertation is that we investigate the DOA estimation 

performance with MUSB arrays in the presence of sensor gain, phase, and position errors. 
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In practice, the swarming UAVs always have sensor gain, phase, and position errors. We 

derived the joint CRB with DOAs, sensor gain, phase, and location errors, and then we 

compare the DOA estimation performance using iterative-MUSIC algorithm with CRB in 

the presence of sensor gain, phase, and position errors. We also investigated the impact of 

sensor location errors for different error levels under different types of arrays. 

 

1.4. Dissertation Organization 

This dissertation firstly introduces the research background and significance of 

DOA estimation in array signal processing and the advantages of 3D random arrays 

applied in robust DOA estimation under high noise and low snapshot environment. 

MUSIC and modified MUSIC algorithms are still very popular in the modern DOA 

estimation. Chapter 2 describes the MUSB array system by constructing the mathematic 

model of the system. Chapter 3 introduces the iterative-MUSIC algorithm and applies it 

for MUSB system to analyze the DOA estimation performance by investigating the 

synthetic DOA estimation convergence. Chapter 4 derives the AMSE of iterative-MUSIC 

and the CRB for MUSB system and use one source case to analyze the DOA estimation 

performance. Chapter 5 analyzes the performance of DOA estimation with MUSB arrays 

in the presence of sensor gain, phase, and position errors. Chapter 6 concludes this 

dissertation. 

Glossary of notation is listed below: 

   = the space of  complex-valued matrices;  

       E = expectation operator;  

k pC ´ k p´



 

6 

 

      = the i, j element of a general matrix ;  

      = the transpose of ;  

      = the conjugate transpose of ;  

Re (A) = the real part of ;  

Im (A) = the image part of ;  

  tr (A) = the trace of ;  

det (A) = the determinant of ;  

= the Schur-Hadamard matrix product of , defined by                

= the Kronecker matrix product of , defined by  

 

 = the complex Gaussian distribution of the complex random vector z 

with mean  and variance , and is a real-valued parameter vector that completely and 

uniquely specifies the distribution of z (see [8]). 

 

ijA
k pA C ´Î

TA k pA C ´Î

HA k pA C ´Î

k pA C ´Î

k pA C ´Î

k kA C ´Î

k kA C ´Î
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2. SIGNAL MODEL FORMULATION FOR APERIODIC MUSB ANTENNA 

ARRAYS* 

 

2.1. Introduction 

The presented antenna arrays reconstructed from swarming UAVs are time-

varying 3D random arrays, which have the advantages of 3D arrays, random arrays, and 

time-varying arrays. There is one antenna in each UAV and one moving UAV is 

represented as a moving antenna in this dissertation. The gain and phase of the receiving 

antennas will also vary, and they are not uniform as the UAVs move. Therefore, the 

MUSB array signal model should include gain and phase errors of the receiving antennas.  

The MUSB array is not a static array, so that it will sample at different locations 

and the snapshots cannot be high at the sample position due to the high moving speed of 

the UAV. Array structure always changes randomly and there are a lot of data information 

obtained from the array reconstructing process. Therefore, the total data will be summed 

from each iteration at each sample point to reduce the noise.  

We assume the source is static in this dissertation, the source wavelength is 

comparable with the UAV speed, and we will use the moving distance at each time interval 

to represent the speed of the UAV. 

———————————————————— 
*This chapter is partially based on Z. Chen, S. Yeh, JF Chamberland, and G. H. Huff, “A sensor-
driven analysis of distributed direction-finding systems based on UAV swarms,” MDPI Sensors, 
vol. 19 (12), pp. 2659-2677. Copyright [2019] by MDPI Sensors 
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2.2. MUSB Array 

2.2.1. UAV Parameters 

Assume there are M swarming UAVs and each UAV swarms in a cylinder region 

(r = 10𝜆, h = 2r, 𝜆 is wavelength and 𝜆 = 1m). Each UAV has an initial location (x, y, z) 

in the swarming region with a vector velocity in each iteration and the initial locations of 

the M UAVs are considered as the first iteration. The swarming short distance in each 

iteration is represented as a vector . The scalar quantity can be represented as d, which 

uses the following relation: 

  (1) 

where  is a uniformly distributed random number matrix between zero and one, 

 is wavelength and  is the coefficient determining the distribution mean of swarm 

distance. Figure 1 shows the distribution of the short distance with mean 

wavelength. Here the range of d also depends on the speed of the UAV and data sampling 

interval and can be configured by the customer. We can obtain 

  (2) 

,i md
®

td b l r= ×

3M
t Rb ´Î

l r

µ = 0.25

, ,i m i md V t
® ®

= ×
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Figure 1. Distribution of distance that one UAV swarms 
 

2.2.2. Swarming UAV Synthetic Aperture 

A swarming UAV synthetic aperture was presented in our early published paper 

[9]. Figure 2 shows a graphical representation of a UAV swarm as it morphs in time 

(iteration I in this paper). Each of the M agents in the swarm has a location, orientation, 

and trajectory. Notionally, these have position , where m is the agent’s index 

and i is the index of iteration. During swarming, the agents undergo rotations and 

translations, where a dual quaternion framework provides a convenient mechanism to 

handle this behavior. This motion rotates the agents’ local (u,v,w) coordinate systems that 

describes the spatial orientation of their antenna radiation pattern with respect to the global 

coordinate system and incoming signal if interest , which is the nth source. The 

collection of these measurements over iteration creates a synthetic aperture that can be 

Pm,i r,θ ,φ( )

S θn ,φn( )
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used to calculate the parameters of interest . Notionally, K independent data is 

sampled for each agent in each iteration and K is usually called “snapshot”. Since the UAV 

moves very fast, so K is relatively small compared to the static array in the most of 

practical applications.  

 

 

Figure 2. Morphing MUSB antenna array configuration 
 

2.3. Signal Model 

Friedlander et al. presented a mutual coupling model in the presence of sensor 

mutual coupling, gain, and phase uncertainties [10]. We ignore the mutual coupling effect 

in the signal model since the spacing of aperiodic array reconstructed from swarming 

UAVs is much larger than half wavelength. Furthermore, the MUSB array does not have 

mutual coupling and shading effects so long as the number of UAVs is small.  
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Consider an arbitrary array of M elements receive N uncorrelated incident signals 

in the far-field demonstrated in part 1. Thus, the received signal at the m-th sensor from 

the n-th source of the i-th iteration can be represented as 

  (3) 

where  are the incident signals of the ith iteration,  are the additive 

noise along with the signals, and T is the observation period. are delays from  the nth 

source to the mth sensor of the ith iteration with respect to the signal propagation time. 

These parameters are the known functions of the incident angles and sensor array 

locations. In the end,  and  are the gain and the delay relative to the mth sensor of 

the ith iteration.  

It is convenient for one to use Fourier coefficients to separate the parameters. It 

can be defined by 

  (4) 

where , , and is a constant. The number of coefficients 

should be infinite to get all the signal information in theory. But the signals we are 

interested in here are narrow-band signals. Assume the spectrum is concentrated around 

, and the bandwidth is small relative to .Thus, L=1. Recall the Fourier 

coefficients of (4) on , we obtain 
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  (5) 

where  and  are the Fourier coefficients of  and , respectively. The gain 

 and phase  change with respect to element location based on orientation of UAV; 

 changes with respect to location;  is constant;  may change with respect to 

location, velocity of UAV, and environment. Equation (5) can be represented by 

  (6) 

where k is the snapshot (index of samples) of each iteration and 

 

 

 

 

;  

Then, 

  (7) 

where , , , and . Since the sources we 

consider here are in the far field from the observing array. It is easy to find that can be 

represented by 
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  (9) 

where  is the distance from origin (reference sensor) of the coordinate to the mth 

sensor in the direction of the nth source for the ith iteration, c is the propagating velocity 

in free space , are the coordinates of the mth sensor for the ith iteration,  

are the DOAs of the nth source in the sphere coordinate. Figure 3 shows the 

geometry of one UAV swarming 8 times in the Cartesian coordinate system. From 

equations (8) and (9), the matrix can be obtained by 

 (10) 

where  is the wavelength. 

 

Figure 3. Geometry of MUSB antenna array  
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3. DOA ESTIMATION WITH APERIODIC MUSB ANTENNA ARRAYS* 

 

3.1. Introduction 

As proposed in Chapter 1, 1D array only can detect 1D DOA and 2D array can 

well estimate azimuth angles but cannot well estimate elevation angles due to its small 

antenna aperture in the elevation direction. In order to improve elevation angle estimation 

accuracy, one may put more elements, or to develop 3D array structure by putting more 

elements in the elevation direction to make large elevation aperture in elevation direction 

[3-4]. However, they require very big hardware and computational cost.  

Furthermore, the linear and planar array will cause ambiguity problem (angle 

aliasing) due to the symmetry array structures [2,11,12]. Xia et al. proposed that the cubic 

arrays still have ambiguity problem and the spherical array can significantly reduce the 

angle ambiguity problem [2]. Recently, the 3D antenna array configurations have attracted 

much more research interest in array signal processing [13]-[18]. Most of those 3-D arrays 

above are constructed from regular structure (i.e. cubic, cylinder), extending the planar 

array (i.e. URA, UCA) or configuring virtual 3-D array based on the planar array. Even 

though those special 3-D arrays increase the elevation angle estimation accuracy, their 

array apertures are still small since the physical size of static arrays are restricted. 

 ————————————————————— 
*This chapter is based on “A sensor-driven analysis of distributed direction-finding systems based 
on UAV swarms,” by Zhong Chen, S. Yeh, Jean-Francois Chamberland, and Gregory H. Huff, 
2019. MDPI Sensors, vol. 19 (12), pp. 2659-2677, Copyright [2019] by MDPI Sensors; Z. Chen, 
JF Chamberland, and G. H. Huff, “Impact of UAV swarm density and heterogeneity on synthetic 
aperture DOA convergence,” IEEE APS-URSI Conf. Copyright [2017] by IEEE. 
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The conventional investigations in DOA require the number of the sensors be more 

than the number of the receiving signals, which increase the hardware cost and system 

complexity. In contrast, time-variant arrays whose element positions change over time 

have been examined to tradeoff between processing time and hardware cost by time-

divided sampling rather than simultaneously sampling as a static array. Many researchers 

have reported that using moving arrays to improve the system performance of DOA 

estimation [19]-[25]. Instead of using a set of different elements to process the incident 

signals, time-variant array can only use one or small number of elements to reconstruct 

the virtual antenna arrays by sweeping 1-D or 2-D regular arrays. Wan et al. proposed a 

method of combining the characteristics of arbitrary virtual baseline to construct virtual 

3-D array [19]. However, the number of sub-array elements is too less and do not have 

high resolution. Liu examined a rotating long baseline interferometer whose length is 

much larger than one wavelength to estimate 2-D DOA by constructing the virtual 2-D 

circular array [20]. However, the 2-D circular array has limited elevation aperture and still 

cannot well estimate the elevation angle.  

We herein propose to utilize the swarming UAVs to create the unstructured 

morphing antenna arrays that reduce ambiguity and improve convergence in sub-space 

DOA techniques. The reconstructed volumetric aperiodic array has high aperture in both 

azimuth and elevation directions, which increase the accuracy of both the azimuth and 

elevation angle estimation. Corner et al. proposed a parallel simulation of UAV swarm 

scenarios [26], and Saad et al. reported a testbed of vehicle swarm rapid prototyping [27]. 

Recently, many researchers investigated the methods and impact factors of designing the 
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robust micro-UAV-based antenna arrays for signal collection platforms [28]-[31]. 

However, those works are limited in the micro-UAV-based array constructing 

investigations including UAV positional precision, turbulence of the environment, and 

swarm-based real-time data collection. In this dissertation, 2D DOA estimation using 

UAV-swarm-based aperiodic array is firstly provided, a mathematical model of micro-

UAV swarm-based data collection system for signal processing is provided firstly and the 

impact of the associated parameters on DOA accuracy and convergence in this model are 

analyzed. The MUSB arrays have the advantages of large aperture, no shading effect, 

significantly reduced mutual coupling effect and big spatial sampling data from different 

location in the space.  

In the real-world application, the swarming UAV system for DOA estimation 

requires low snapshots and might be applied in low SNR scenarios, however the subspace-

based techniques require adequate SNR and snapshots to guarantee good performance. 

We utilize the iterative method to lower the noise floor by multiply the MUSIC spectrum 

for each iteration, the details of the algorithm will be presented in section 4. 

 

3.2. The Algorithm 

3.2.1. Data Processing and Algorithm 

When the UAV swarms, there will be a lot of data information due to the number 

of swarming UAVs and the number of iterations. Herein each location of each UAV is 

considered as one data point. Thus, when M UAVs morph I times, we have data 

points. Then we use those data points to reconstruct the virtually 3D aperiodic array to 

M I*
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calculate the MUSIC spectrum and estimate the DOAs. The number of data points 

(represented by ) we use to estimate the DOAs is equivalent to the number of elements 

for a static array.   

One problem is how many data points should be used to compute the MUSIC 

spectrum at each signal processing iteration (Represented by p-iteration). Ten, hundred, 

or even more data points can be used to calculate the MUSIC spectrum at each p-iteration. 

We would like to use larger data in each p-iteration since more data points for MUSIC 

spectrum calculation each time means more array elements are used for data processing 

in a static antenna array, and more accurate for DOA estimation. However, more data 

processing points cause higher calculation cost. Thus, it is necessary to compromise the 

number of data points at each MUSIC spectrum calculation and computational 

complexity.  

Another problem is the data collecting and processing methods. When the UAVs 

swarm, the data collected in the current processing period is called current data, and the 

date sampled and stored in the past is called previous data. There are several ways to 

process the data:  

1) Only use the current data to compute the MUSIC spectrum. 

2) Use the current and all previous data to compute the MUSIC spectrum. 

3) Use the current and some previous data to compute the MUSIC spectrum 

Type 1 requires high number of initial UAVs, type 2 requires heavy computation, 

so we choose type 3 to analyze the problems we are interested in. We will talk about the 

impact of different number of data sets at each p-iteration in section 6. Herein we take 3 

dN
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data points for each group to examine the impact of other parameters but show the 

procedure of data processing using 6 data points in Figure 4.  

Figure 4 shows the data processing schematic for 6 data points each set in the 

MUSB system. When UAV swarms to a certain location, we will sample 5 times (5 

snapshots) and each snapshot takes the time . After taking 5 snapshots, the program sets 

up a data point. After the number of data points  (i.e. number of elements of the 

new reconstructed aperiodic array is 6), the program computes the traditional MUSIC 

spectrum using the 6 data points and stores the result. Then UAV swarms again, we 

accumulate current data and 5 previous data points to calculate the MUSIC spectrum. Then 

we multiply the current MUSIC spectrum and previous MUSIC spectrum at each p-

iteration where we obtain the iterative-MUSIC spectrum to reduce the noise level and 

improve the DOA performance. Note that if the p-iteration is too big, the value of the 

spectral points will be very small and might be taken as zero. If so, the correct DOA cannot 

be obtained. We may use dB instead of a number at that situation. 

 

 

Figure 4. Data processing schematic for MUSB system 

td
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Consider the two problems above, the steps of the algorithm are: 

Step 1: UAV swarms until the number of data points , then compute the MUSIC 

spectrum; 

Step 2: UAV swarms again, and use current and some previous data points to calculate the 

MUSIC spectrum at each p-iteration;                        

Step 3: Multiply the current MUSIC spectrum and previous spectrum; 

Step 4: Repeat step 2-3 until the MUSB system converges. 

The algorithm flow chart is shown in Figure 5. 

 

 

Figure 5. Flow chart of the algorithm 
 

 

 

 

3dN =
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3.2.2. Iterative-MUSIC Algorithm 

As already stated in part 2 of this section, the number of the reconstructed MUSB 

arrays is . Here we rewrite the covariance of the signals listed in part 2 of Section 3 

and give the first p-iteration (slightly different from the UAV swarming iteration) of the 

iterative-MUSIC algorithm.  

Rewrite the data model (6), we obtain 

  (11) 

where  are the vectors of sampled data,  are the source 

signals,  are the gain and phase of the sensors and  are the regular 

steering vectors. Thus, the covariance of  is 

  (12) 

Define 

  (13) 

 is the matrix with rank N. Therefore, it has the repeated 

eigenvectors corresponding to the minimum eigenvalues . Let  be such an 

eigenvector so that  or , thus, the  eigenvectors  corresponding 

to the minimal eigenvalues are orthogonal to each of the N signal columns of , 

proved in [1].  dimensional subspace spanned by the noise eigenvectors is defined 

as noise subspace and N dimensional subspace spanned by the incident signal mode 

vectors is defined as signal subspace. 
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Let  be the  matrix of the noise eigenvectors, then the MUSIC 

spatial spectrum function is given by 

  (14) 

Then, search the spectrum peaks in the range of  and , and the peak spectrum points 

we obtain are the estimation of the arrival angles of the incident waves. 

 

3.3. Convergence Check 

The algorithm performs the calculation until the system converges. The 

convergence can be guaranteed since the estimated DOA is a convergent series.  

When the signal is covered by a high noise level, the estimated DOA might be far 

from the ground truth and cannot be judged for the convergence. But as the iteration 

increases, the noise level is reduced and the estimated DOA is converged gradually. 

Avoiding the misjudgment, the equation for judging the convergence is given by 

  (15) 

where  is the number of p-iteration and  is the preset threshold. 

 

3.4. Simulation and Results 

In this section, several groups of simulations will be carried out to demonstrate the 

performance of the presented distributed directional finding system in this paper. As the 

framework of the system established in this paper is mentioned for the first time, we focus 
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mainly on analyzing the impact of various factors on the feasibility of the MUSB 

distributed directional finding system.  

The wavelength of the signal is fixed at 1 meter (m) and the simulation in each 

scenario is repeated for 500 times. The elevation angle of the source emitter is 85° and the 

azimuth angle is 270°. As one UAV swarms till the number of data points is , the 

iterative-MUSIC algorithm begins to sample the [0° 179°] space for elevation angle and 

[0° 359°] space for azimuth angle with 1° interval to form the overcomplete MUSIC 

spectrum for each p-iteration. The UAV keeps swarming and the iterative-MUSIC 

algorithm keeps computing the MUSIC spectrum before the precision of DOA estimation 

is satisfied. When the preset threshold is satisfied, the UAV stops flying, and the 

reconstructed process of the phased arrays based on swarming UAVs is terminated. The 

refined DOA estimations are obtained by scanning the reconstructed signal peaks from the 

iterative-MUSIC algorithm with 0.1° step during the refinement procedure for 10 times.  

Moreover, the speed of the UAV will influence the snapshot at each location where 

the system samples the source emitter. The snapshot at each location should be very low 

if the UAV swarms very fast and the snapshot can be high when the swarming rate of the 

UAV is pretty low. The speed of UAV in this paper will be represented by the distance 

between two iterations of the swarming UAVs. Assume we take three data points (one 

UAV swarms two times) to compute the MUSIC spectrum, the distribution of the sum of 

two short distances between two iterations will be given in part 2.   

dN
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Firstly, the system convergence is studied in a typical scenario. Secondly, the DOA 

estimation performance using iterative-MUSIC algorithm will be compared with CRB in 

various scenarios.  

The average root-mean-square error (RMSE) of the incident signals is used for 

statistical DOA estimation precision evaluation, which is defined as 

  (16) 

where W is the number of Monte Carlo simulations,  represent the true DOAs of 

the nth signal,  and represent the estimated DOAs of the nth signal in the wth 

simulation.  

 

3.4.1. System Convergence 

In order to prove the system convergence presented in part 4 of section 5, assume 

one UAV swarms and the number of data points is 3, snapshot is 1, and SNR is 0 dB for 

500 trails. Figure 6 shows the MUSB distributed directional finding system gradually 

converges to the ground truth.  
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Figure 6. DOA estimation convergence for the MUSB system 
 

3.4.2. DOA Estimation with Iterative-MUSIC via MUSB Arrays 

In simulations, we set a DOA with an azimuth of and elevation of , SNR 

to be -15 dB. Then we compare the spectrum with spectrum for one and twenty iterations 

to check iterative-MUSIC spectrum intuitively. Figure 7 shows the simulated spectrum 

intuitively and the iterative-MUSIC can well estimate the DOAs under a low SNR and 

low snapshot condition.  

 

300° 60°
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(a)                                                             (b) 

Figure 7. Simulated MUSIC spectrum: an incident signal with a SNR = -15 dB, and 
a direction of arrival with an azimuth of  and elevation of . (a) number of 
iteration t = 1, (b) number of iteration t = 20. 

 

3.5. Experiment 

3.5.1. Experiment Platform 

Figure 8 shows a 16-channel movable and rotatable antenna system named after 

Medusa. We use this system to simulate the MUSB array system. The position of each 

element can be automatically obtained from spatial recognition system.  A block diagram 

of MUSB system is shown in Figure 9. 

300° 60°
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Figure 8.  MUSB array experiment system - Medusa 
 

 

Figure 9. Diagram of the Medusa system (Reprinted from [57]) 
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3.5.1.1. Antenna 

Figure 10 shows the microstrip patch antenna with LED, microcontroller, voltage 

regulation, etc. Figure 11 shows the measured VSWR of the patch antenna and Figure 12 

shows the measured radiation pattern. The 9DOF IMU on the patch antenna board is 

programmable to monitor and log motion, transmit Euler angles over a serial port or even 

act as a step-counting pedometer. Four RGB (red, green, and blue) LEDs are placed around 

the patch antenna and they are used to locate the antenna position. 

 

 

(a)                                                              (b) 

Figure 10. Microstrip patch antenna. (a) PCB of patch antenna; (b) Components on 
the PCB board of patch antenna. (Reprinted from [57]) 
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Figure 11. Measured VSWR and Smith chart of the patch antenna. (Reprinted from 
[57]) 
 

 

Figure 12. Measured radiation pattern of the patch antenna (dB) (Reprinted from 
[57]) 
 

3.5.1.2. Vector Modulator 

This analog vector modulator shown in Figure 13 has both continuous 360°

phases and 40 dB gain controls. 
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Figure 13. PCB layout of vector modulator for Medusa (Reprinted from [57]) 
 

3.5.1.3. Voltage Controller Board 

The voltage control board for Medusa is shown in Figure 14.  

 

Figure 14. PCB layout of voltage control board for Medusa ([57]) 
 

3.5.1.4. Visual Spatial Recognition System 

Figure 15 shows that a camera is set up in the front of Medusa to capture the 

positions of LEDs on the patch antenna board to locate the antenna position (x, y, z). 

Figure 16 shows the image processing of LEDs and the theory of positioning the antenna. 
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Figure 15. Medusa with camera 
 

 

                           (a)                                                  (b) 

Figure 16. Visual spatial recognition system. (a) PCB layout of patch antenna; (b) 
Image processing of antenna position. (Reprinted from [57]) 
 

3.5.2. Experiment Results 

Figure 17 shows the test diagram where we use two ports of vector network 

analyzer (VNA) to test the phase difference between the receiving antenna and source.  



 

31 

 

Figure 18 shows the relative position of the source and receiving antennas in practical 

measurements, (a) and (b) have the source 1 and source 2 separately. Source 2 is relatively 

farther from the receiving antenna array center than source 1 to make sure the source is in 

the far-field.  

We firstly test the DOA of the source 1 and source 2 when the receiving antennas 

are identical (all the receiving antennas are in the same direction without any rotation). 

We move one antenna 60 times to simulate a UAV flying and measure the phase difference 

between the receiving antenna and the source at each moving point. Then we rotate the 

antenna to make it be not identical (rotate 0 ~ 45 degrees around x, y, z axis randomly) to 

simulate the MUSB array in practice.  

Figure 19 shows the measured spectrum for a 16-element MUSB array with 

element rotating randomly. Since it is not easy to measure 6 elements in our lab, the result 

has slight position error, so the spectrum has a noise floor from the system measurement 

error. Figure 20 and 21 show the results for one element moving multiple times to simulate 

the UAV swarm. Compared with Figure 18, these two figures have much lower noise 

floor. From Figure 20, we can find that the UAV rotation does not cause high noise, even 

though the measured DOA errors are a little higher shown from Table 1 and Table 2. From 

Figure 21, we can find that the iterative method can reduce the noise and gradually close 

to the ground truth.  
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Figure 17. Test diagram 
 

                             

(a)                                                                     (b) 

Figure 18. Practical measurement schematic diagram. (a) Source 1; (b) Source 2.  
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(a)                                                           (b) 

Figure 19. Measured spectrum for the 16-element MUSB array. (a) 2D spectrum; 
(b) 3D spectrum. 

 

(a) 

 

(b) 

Figure 20. 2D spectrum. (a) 3-element array; (b) 16-element array; (c) 60-element 
array. (left figure is for identical array, right figure is for non-identical array) 
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(c) 

Figure 20 Continued. 
 

Table 1. Measured DOAs of 3, 16, 60-element array reconstructed from one UAV 
swarm without element rotation  

 3 elements 16 elements 60 elements 
Measured Azimuth 348 353 359 

Measured Elevation 23 21 19 
Theoretical Azimuth 356.3 

Theoretical Elevation 18 
 

Table 2. Measured DOAs of 3, 16, 60-element array reconstructed from one UAV 
swarm with element rotation 

  3 elements 16 elements 60 elements 
Measured Azimuth 6 346 351 
Measured Elevation 18 21 21 
Theoretical Azimuth 357 
Theoretical Elevation 18 
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(a)                                                                   (b) 

Figure 21. Measured DOA errors as iterations. (a) Identical MUSB array; (b) 
MUSB array with elements rotation randomly. 
 

3.6. Chapter Summary 

This chapter introduces the iterative-MUSIC algorithm for MUSB array and use 

numerical simulation and lab experiment to verify the DOA estimation convergence 

performance. Theoretical results are given to reveal the performance of the MUSB phased 

array system used for 2D DOA estimation, which supports the feasibility of the system. 

Iterative-MUSIC algorithm is applied for the framework and it can estimate the DOAs 

efficiently only with 1 snapshot in each iteration when the UAV swarms very fast. The 

UAV speed controls the structure of the reconstructed phased arrays from the MUSB 

system. Our results will benefit to future research on performance analysis and optimal 

design of time-varying antenna arrays based on UAV swarm. 
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4. STATISTICAL PERFORMANCE ANALYSIS OF MUSB ARRAYS* 

 

4.1. Introduction 

Statistical performance analysis is still one of the most important area among array 

signal processing. Stoica et al. analyzed the performance of traditional MUSIC and 

MUSIC-related algorithms statistically by deriving the closed-form AMSE formulas, 

analyzing their statistical efficiency, and giving general joint CRB of DOA, noise 

variance, and signal power in [33-36]. However, it cannot be applied for time-varying 

antenna arrays. Rieken et al. presented general MUSIC for multiple noncoherent arrays in 

[53], and Wen et al. addressed the improved MUSIC algorithm for noncoherent subarrays 

by deriving the CRB formulas [54]. They utilized the summation of the MUSIC spectrums 

calculated from multiple subarrays to estimate DOAs, but the number of subarrays is 

limited. Furthermore, it requires large snapshots in each subarray so that it cannot be 

applied in low snapshot scenario.  

In this chapter, we consider the statistical performance of MUSB arrays by 

deriving the CRB of the MUSB system and the AMSE formula of the iterative-MUSIC 

algorithm. We first derive the closed-form asymptotic MSE expression for the iterative-

MUSIC algorithm and investigate their properties. We then derive the joint CRB of DOA,  

 ————————————————————— 
*This chapter is partially based on Z. Chen, S. Yeh, JF Chamberland, and G. H. Huff, “A sensor-
driven analysis of distributed direction-finding systems based on UAV swarms,” MDPI Sensors, 
vol. 19 (12), pp. 2659-2677. Copyright [2019] by MDPI Sensors. 
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sensor gain, and sensor phase for MUSB arrays. We analyze the performance of one-

emitter case for MUSB array and simplify the CRB formula.  

 

4.2. Asymptotic MSE of Iterative-MUSIC  

4.2.1. Asymptotic DOA Estimation Errors  

In practice, we use limited number of sampling to estimate with  

, such that we have DOA estimation errors from limited sampling 

data. Therefore, we derive the DOA estimation error expression as iteration goes to 

infinity to analyze the performance of iterative-MUSIC for MUSB arrays.  

Theorem 1: Let  denote the estimated values of the n-th DOAs by 

iterative-MUSIC algorithm and . Then the estimation error of iterative-

MUSIC can be represented by  

  (17) 

where denotes asymptotic equality, and 
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  (22) 

Proof: Appendix A. 

It is easy to proof that for . ensures that exist 

and equation 17 is well-defined, while ensures that equation depends on and 

cannot be trivially zero [51]. 

Theorem 1 gives a unified analysis of DOA estimation errors for the iterative-

MUSIC algorithm applied in the MUSB arrays, so we can then obtain the AMSE formula 

in Theorem 2 in subsection 4.2.2. 

 

4.2.2. Asymptotic MSE  

Theorem 2: Based on the same assumptions of Theorem 1, we can have the 

AMSE formula: 

  (23) 

Proof: Appendix B. 

Thus, we can obtain the unified AMSE expression of iterative-MUSIC for 

MUSB arrays 

  (24) 

Therefore, we can observe that the AMSE expression only depends on the physical array 

geometry at each iteration.  

 

, ,
H

i n i n iA Q Q^ =

, ,, 0i n i nn x ¹ 1,2, ,n N= ! , 0i nn ¹ 1
nr
-

, 0i nx ¹ rD

( )( ) ( ) ( ) ( )( )1 1
1 1 2 2 1 1 2 2 , 1 , 2

1

1ˆ ˆ Re
I

H T
n n n n n n n n i n i i i n

i i

E s s R R
K

a a a a r r x x- -

=

- - = Äé ùë û å

( ) ( ) ( )( )2
, ,

1

1 Re
I

H T
n n n i n i i i n

i i

s R R
K

e a r x x-

=

= Äå



 

39 

 

4.3. The CRB 

4.3.1. Previous Results of CRB for the Static Array 

In theory, for the static array, the steering vector  is considered invariant over 

different snapshot since the array geometry is invariant. Assume   

   (25) 

where  is a real-valued parameter vector that completely and uniquely specifies the 

distribution of z. Then, the m,n-th general formula of FIM on the covariance matrix of any 

unbiased estimate of is: 

  (26) 

where  denotes the m-th component of . The general formula has been presented in 

[34] and proved in [35]. Petre et al. presented the deterministic and stochastic CRB in [35].  

For deterministic CRB, the parameters, mean, and variance of the complex 

distribution are given by , ,

. Then, the m,n-th FIM is 

  (27) 

For stochastic CRB, the parameters, mean and variance of the complex distribution is 

given by , , , Then, the 

m,nth FIM is 
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  (28) 

Since the signals estimated cannot be known completely and the signals in practice are 

stochastic, this paper considers the stochastic CRB. 

 

4.3.2. The CRB for MUSB Arrays 

Before we derive the CRB, we assume that the signals are stationary and ergodic 

complex Gaussian random process with zero mean and nonsingular covariance matrix, 

uncorrelated with noise. It is also assumed that the noise is stationary and ergodic complex 

Gaussian random process with zero mean and covariance, uncorrelated with each other. 

The columns of are linearly independent. An additional assumption is that the number of 

array elements reconstructed from swarming UAVs is greater than the number of sources. 

Therefore, the matrix of steering vector has full column rank. 

The covariance matrices of the signal, noise and observation vectors for ith 

iteration are given by 

   (29) 

  (30) 

 

where  is the steering vector for ith iteration and . It is useful to observe that if 
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The log-likelihood function of K independent samples in the ith iteration of a zero-

mean complex Gaussian random process  whose statistics depend on a parameter 

vector  is given by 

  (31) 

where const denotes the constant term of the log-likelihood function, det(R) represents the 

determinant of the matrix R, and  is the time-varying covariance matrix with respect to 

the iteration. Thus, the log-likelihood function of  is: 

 

  (32) 

 

Therefore, the m,n-th elements of the FIM for the i-th iteration are given by 
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It follows that the FIM’s submatrix for the UAV swarming data collecting 

system can be obtained by summing the single-iteration  of FIM over the iterations. 

Furthermore, the FIM’s submatrix  can be obtained by multiplying the single-

snapshot  and the number of snapshots. Thus, we only need to know the single-

snapshot FIM  for the i-th iteration. The problem of the major interest is the estimation 

of the incident angles of the sources. Expression of CRB for 1D DOA of each iteration for 

the present problem is listed in [35]. CRB of 2D DOA with arbitrary array for the ith 

iteration, which can be considered as an arbitrary static array, presented in this paper is 

given in Appendix C. The detailed derivation of the CRB with joint gain g, phase , 

DOAs  and is given in Appendix D.  

 

4.4. Analysis of Single-Emitter Case 

In this section, we investigate in more details of the MUSB data collecting system 

using single-emitter cases. The unknown parameters we consider here are the 2D DOAs 

. Assume the source variance is P, the noise variance is , the snapshot for each 

iteration is , and the iteration is I. From the Appendix A, we have the formula of CRB 

with respect to the 2D DOAs in the ith iteration of the MUSB system. 
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  (35) 

where  is the gain and phase parameters, which can be represented as 

  (36) 

Taking the derivative of  for the i-th iteration, we obtain 
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  (43) 

Using the same derivative procedure,   
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 (49) 

Assume 

  (50) 

  (51) 
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  (53) 

where . Thus, summing over iteration, we obtain 

  (54) 

  (55) 

Therefore, the CRB is given by 

  (56) 

If we ignore the sensor orientation (i.e. ) and let snapshot K=1, then and 
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  (57) 

where  and , which coincides with the result in [45]. 

 

4.5. Numerical Simulation  

In this section, we numerically analyze the performance of MUSB arrays based on 

the iterative-MUSIC algorithm. We first investigate the DOA estimation performance, 

then we use the derived closed-form AMSE formula to check the application of this 

formula.  

 

4.5.1. DOA Estimation Performance  

The performance of the DOA estimation depends on the factors such as SNR, 

snapshot number K, the number of data processing points  and the velocity of UAV. 

Furthermore, the performance also depends on the diversity of the observation models 

associated with different iterations. Such diversity can be reflected by the distinctness of 

the array geometries at different time instants.  

 In this section, we only consider the single-emitter case. When a single emitter is 

present, a typical scenario is set in which the UAV swarm short distance mean , the 

Monte-Carlo simulation number and angles of the source are the same as before. The fixed 

and changed settings are listed below. Scenario 1: vary the SNR of one signal from -20 to 

20 dB; snapshot K = 1, = 3; Scenario 2: vary the snapshot number, i.e., K is from 1 to 
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99; SNR = 0 dB,  = 3; Scenario 3: vary the speed of UAV; K = 1,  = 3, SNR = 0 

dB; Scenario 4: Set  = 10 to compare with scenario 1. The RMSE of the elevation and 

azimuth angles estimated from the iterative-MUSIC algorithm are shown in Figure 22, 

compared with CRB calculated from the derived CRB formula in subsection 4.3. 

 These groups of simulations demonstrate the performance of the MUSB system. 

From Figure 22(a), the RMSE of iterative-MUSIC is smaller than 1° when the SNR 

exceeds -7 dB; (b) shows that the system can estimate the DOAs even when snapshot K = 

1; (c) shows that when the distance between two locations increases, the precision of DOA 

estimation increases; (d) compares with (a), and shows that the data processing number 

 significantly increases the DOA estimation precision (RMSE of iterative-MUSIC is 

smaller than 1° when the SNR exceeds -13 dB). 

 

   

(a)                                                                  (b) 

Figure 22. DOA estimation RMSE of iterative-MUSIC and CRB in different 
scenarios. (a) Varying SNR ( = 3). (b) Varying snapshot number. (c) Vary the 
speed of UAV. (d) Varying SNR (  = 10). 
 

dN dN
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                                  (c)                                                                    (d) 

Figure 22 Continued. 

4.5.2. Asymptotic Efficiency Study 

In this section, we will use formula (24) to investigate the asymptotic statistical 

efficiency of the iterative-MUSIC algorithm for MUSB arrays with different apertures 

and parameters. We define the average efficiency as  

  (58) 

We expect for efficient estimators and for inefficient estimators.  

 We first compare the average efficiency varying SNR for different number of data 

processing points. We consider three cases: n = 1, n = 3, and n = 5. All sources have the 

same power. As shown in Figure 23, we can see that when n = 1 and n = 5, is complicated 

as SNR increases, while the curve is smoother when n = 3. However, the results here are 

not converged to zero like the results in traditional MUSIC [1], [35]. 

 Next, we analyze the impact of angular separation to . Two sources are located 

at and , then vary . In this section, the number of snapshots 
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at each iteration is 10, the number of iterations is 30, and the number of Monte Carlo 

simulation is 1000. The overall average efficiency of iterative-MUSIC decreases as SNR 

increases from -10 to 20. We also can find that the relation between and is very 

complex, opposed to traditional MUSIC algorithm [1], [35]. Figures 23 and 24 show that 

the statistical efficiency of the iterative-MUSIC depends on the array geometry and 

angular separation.   

 

Figure 23.  vs. SNR for MUSB array with different number of elements under 
different number of incident angles cases.  = 10, I = 30. 
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Figure 24.  vs. angular separation for MUSB array with different SNR under 
different number of incident angles cases.  = 10, I =30. 
 

4.5.3. AMSE vs. Number of Data Points (Elements) 

We examine how the number of data processing affects the MSE in this section. 

We consider two cases: vary number of data point, K = 1000, I = 1; vary number of data 

points at each iteration, K = 10, I = 30. We set SNR to be 0 dB, number of trails to be 

1000. For both cases, we compare three different arrays with different interelement 

spacing (2 wavelength, 3 wavelength and 4 wavelength).  

In Figure 25 and 26, we observe that MSE decreases as number of elements 

increases, but the curves are not as smooth as traditional MUSIC in [1], [35]. When the 

k
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number of data points is very small, especially for the extreme case ( = 3), iterative-

MUSIC for MUSB arrays has better performance than traditional MUSIC for static array. 

 

Figure 25.  RMSE vs. Number of data points for MUSB array with different 
interelement spacing.  = 1000, I = 1. 

 

Figure 26. RMSE vs. Number of data points for MUSB array with different 
interelement spacing.  = 10, I =30. 
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4.6. Experiment  

In this section, we will analyze the performance by experiment in the Chamber 

room of our research lab. One 2.45 GHz monopole antenna is randomly located in the 

platform with 32 random positions. Then we move one monopole antenna to simulate one 

UAV swarming in a cylinder region. We repeatedly measure the phase differences to 

estimate the DOAs to simulate the Monte Carlo simulations by rotating the holder of the 

anechoic chamber room under the antenna platform. Figures 28 and 29 show that the 

system can converge well and estimate correct DOAs. Figure 30 shows that the DOA 

estimation errors gradually decrease to around 4 degrees as the number of iterations 

increases. However, as the number of iterations increases, it cannot converge to less than 

4 degrees because we have a system errors from measurement of sensor positions by hand.  

 

 

Figure 27. Test platform 
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Figure 28.  2D spectrum for MUSB array with an incident angle of azimuth 3.6 and 
elevation 14.86 degrees. 
  

 

Figure 29. 3D spectrum for MUSB array with an incident angle of azimuth 3.6 and 
elevation 14.86 degrees. 
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Figure 30. RMSE vs. number of iterations. Average errors of 30 good measured 
data for one UAV swarming 32 times.  
 

4.7. Summary  

This chapter derives the closed-form AMSE formula of iterative-MUSIC and the 

CRB formula of MUSB array. We apply the AMSE formula to study the asymptotic 

efficiency. We analyze the CRB with one-emitter case in detail and it coincides with the 

results of other paper. We also do the experiment with one monopole antenna moving 

around 32 locations randomly located in a platform in the Anechoic Chamber room. 

Simulation and experiment results verify our analytical results. 
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5. STATISTICAL PERFORMANCE ANALYSIS OF MUSB ARRAYS IN THE

PRESENCE OF SENSOR GAIN, PHASE, AND POSITION ERRORS*

5.1. Introduction 

The purpose of this section is to analyze the performance of DOA estimation based 

on MUSB arrays in the presence of sensor gain, phase, and location errors. In paper [55], 

the MUSB array does not have any errors, however, there are a variety of array 

imperfections, such as sensor gain and phase errors [43], and position errors [44] in 

practice, which degrades the estimation performance [42], [37-38], [45-50].  Various work 

has been done in analyzing the sensitivity of DOA estimation algorithms, asymptotic MSE 

of MUSIC-based algorithms and CRB in the presence of array imperfections [39-41]. In 

[39], the authors derived the asymptotic MSE of MUSIC using second order Taylor series 

to capture the performance in the presence of large sensor location errors, but they only 

derive the expression for 1D DOA with static 1D uniform linear array (ULA). 

Furthermore, they only consider the impact of sensor location errors. In [45], the authors 

derived the AMSE of MUSIC and CRB formulas in the presence of general model errors 

including sensor gain, phase, mutual coupling, sensor location errors, etc. However, they 

only consider 1D DOA with ULA.  

_________________________________ 
* This chapter is partially based on Z. Chen, S. Yeh, JF Chamberland, and G. H. Huff, “A sensor-
driven analysis of distributed direction-finding systems based on UAV swarms,” MDPI Sensors,
vol. 19 (12), pp. 2659-2677. Copyright [2019] by MDPI Sensors; Z. Chen, S. Yeh, JF
Chamberland, and G. H. Huff, “Impact of position errors on synthetic aperture DOA convergence
based on swarming UAVs,” IEEE APS-URSI Conf. Copyright [2020] by IEEE.
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We will mainly analyze the performance of MUSB array system with the iterative-

MUSIC algorithm in the presence of small sensor gain, phase, and location errors in this 

chapter. It is more difficult for us to analyze the performance due to the non-linearity of 

location errors compared with sensor gain and phase errors. 

 

5.2. Problem Formulation 

5.2.1. Swarming UAV Synthetic Aperture in the Presence of Position Errors 

A swarming UAV synthetic aperture with position errors was presented in our 

early published paper [56]. Compared with Figure 2, we add the stochastic position errors 

in Figure 31. The actual agent positions shown by filled symbols are ideal without any 

error and the measured agent locations embrace with stochastic location errors around the 

local coordination (u,v,w) which are represented by unfilled symbols.  

 

 

Figure 31. Morphing MUSB array configuration with location errors. 
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5.2.2. Signal Model 

We consider that an arbitrary array of M elements receives N uncorrelated incident 

signals in the far-field demonstrated in subsection 5.2.1. Thus, the K-th snapshot received 

by the array at the i-th iteration can be represented as 

  (59) 

  (60) 

where K is the snapshot (index of samples) of each iteration,  denotes source 

signals at i-th iteration,  denotes the  array steering vectors at the i-th iteration, 

 denotes the sensor gain and phase,  denotes additional noise at the i-th 

iteration and , , , . 

Herein, we denote the nominal sensor location for the i-th iteration as 

. Without sensor location errors,  at 

sensor M at the i-th iteration can be expressed as 

  (61) 

Where includes the gain and phase errors of the sensor M at the i-th iteration. 

 In this dissertation, we make the following assumptions that both incident signals 

and noise are stationary, the ergodic complex Gaussian random process with zero mean 

and nonsingular covariance matrix is uncorrelated with each other. An additional 

assumption is that the number of array elements reconstructed from swarming UAVs is 

xi(t) = Ai α ,β( )si(t)+ wi(t), t = 1,2,!,Ki; i = 1,2,!, I

Ai α ,β( ) = Γ i α( )Ai β( )

( )is t

( ),iA a b

( )i aG ( )iw t

TT Ta q fé ù= ë û
TT Tgb yé ù= ë û ,1 ,, ,

T
i i i Mg g gé ù= ë û! ,1 ,, ,

T
i i i My y yé ù= ë û!

,1 ,1 ,1 , , ,{( , , ), , ( , , )}i i i i i M i M i Mx y z x y zV = ! ( ),i N Na q f

ai,M θN ,φN( ) = γ i,M ⋅exp( j 2π
λ
(xi,M sinθN cosφN

+ yi,M sinθN sinφN + zi,M cosθN ))

γ i,M
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greater than the number of sources n. Therefore, the matrix of the steering vector has a full 

column rank.  

 In the signal model of chapter 2, we assume that no sensor error at each sensor 

exists, while there are sensor gain, phase, and location errors in our MUSB array system 

in practice.   

 We will introduce the position errors firstly in this chapter and the sensor gain and 

phase errors can be analyzed using the same way. In order to obtain a more general 

perturbation model, we assume array position errors are along x-axis, y-axis, and z-axis. 

We use  ,  ,  to denote the 

position errors along the x-axis, y-axis, and z-axis separately. The perturbed sensor 

locations are then given by 

, 

when the array position errors are large, the MUSB array will be destroyed, which leads 

to large DOA estimation errors that are tough to characterize. Therefore, we will mainly 

focus on the performance analysis of relatively small sensor position errors of MUSB 

array in this dissertation. 

Let denote the parameters of array position errors, so we can obtain 

the expression of the K snapshots of the perturbed array in the i-th iteration:  

  (62) 

1 2[ , , , ]TMu u u u= ! 1 2[ , , , ]TMv v v v= ! 1 2[ , , , ]TMw w w w= !

1 1 1 1 1 1{( , , ) ( , , )}M M M M M Mx u y v z w x u y v z wV = + + + + + +!

[ ]T T T Tu v wd =

!xi(t) = !Ai α ,β ,δ( )si(t)+ wi(t), t = 1,2,",K; i = 1,2,", I
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where  is the perturbed steering matrix. Refer to paper [51], we also name 

this as deterministic error model where sensor position errors do not change for different 

K snapshots in different iterations.  

 Then, we name the case that sensor array errors are time-dependent as the 

stochastic error model, which is shown below 

  (63) 

 

5.3. The Deterministic Error Model 

Based on the definition in section 5.2, we can obtain the perturbed covariance 

matrix for the deterministic error model as 

  (64) 

In this subsection, we will omit subscript i of iteration to derive the formulas. In 

paper [56], the authors give the fundamental derivation of AMSE formula for coarrays, 

we will follow their procedure for the AMSE derivation of iterative-MUSIC of our MUSB 

array system. Firstly, we link the DOA estimation errors to the MUSB array perturbations 

by the perturbed steering matrix  introduced above. Then, because  is analytical 

around , we can linearize it using the first-order Taylor expansion under the 

assumption that location errors are small compared with the exact positions: 

  (65) 

where we omit the subscript i and  

  (66) 

( ), ,iA a b d!

!x(t) = !Ai α ,β(t),δ (t)( )si(t)+ wi(t), t = 1,2,",K; i = 1,2,", I

!Ri = !Ai(α ,βi ,δ i )P !Ai
H (α ,βi ,δ i )+σ

2I0

!A !A

0d =

!A = A+U !Au +V !Av +W !Aw +G !Au +Ψ !Au +ο δ( )

1 2( , , , )MU diag u u u= !
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  (67) 

  (68) 

  (69) 

  (70) 

  (71) 

  (72) 

  (73) 

  (74) 

  (75) 

  (76) 

  (77) 

  (78) 

and  is the higher order terms w.r.t. . We can write the perturbed covariance 

matrix  as  

 (79) 

1 2( , , , )MV diag v v v= !

1 2( , , , )MW diag w w w= !

G = diag(g1,g2 ,!,gM )

Ψ = diag(ψ 1,ψ 2 ,!,ψ M )

2
u xA j AQp

l
=!

2
v yA j AQp

l
=!

2
w zA j AQp

l
=!

!Ag = A / g

!Aψ = jA

( )1 1 2 2sin cos ,sin cos , ,sin cosx n nQ diag q f q f q f= !

( )1 1 2 2sin sin ,sin sin , ,sin siny n nQ diag q f q f q f= !

( )1 2cos ,cos , ,cosz nQ diag q q q= !

( )o d d

R!

!R = R +U !AuPA
H + AP !Au

HU +V !AvPA
H + AP !Av

HV +W !AwPA
H + AP !Aw

HW

G !AgPA
H + AP !Ag

HG +Ψ !Aψ PA
H + AP !Aψ

HΨ +ο δ( )
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In practice, we can only obtain the estimate of by samping the data in each snapshot at 

each iteration, and so . Therefore, the covariance matrix 

errors could be decomposed into two parts and given by 

  (80) 

where E is the estimation errors resulting from finite number of snapshot and iterations, 

and G is the estimation errors resulting from sensor gain, phase, and position errors. In 

order to derive the AMSE expression of iterative-MUSIC in the presence of sensor errors, 

we derive the AMSE expression of iterative-MUSIC without sensor errors first.  

In order to derive the AMSE of iterative-MUSIC, we need to recall the equation 

(17). Then, we will add sensor location errors into the AMSE formulas. From (17) and 

(80), it is straight to obtain the DOA estimation errors 

   (81) 

where , and . Thus, when there is a large snapshot or iteration, 

the AMSE can be represented by 

   (82) 

Because , we can obtain the numerator in (82) 
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 (83) 

Because E[e] = 0, we have 

  (84) 

  (85) 

  (86) 

Based on the derivation of asymptotic MSE in chapter 4, we can obtain  

  (87) 

The first three terms are expressed as , which is same as the 

formula in Chapter 4. The latter three terms can be expressed as 
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Then, we need to expand in terms of . Let be a diagonal matrix. 

Then  and  for any matrix X with a proper 

shape [52].  

Therefore, we can rewrite g as , where and 

  (88) 

  (89) 

  (90) 

  (91) 

  (92) 

Substituting the expression of g back into (78), we can get the AMSE formula as follow: 

  (93) 

From this formula, we can find that the first term is from sampling error, the second term 

is for sensor gain, phase, and position errors. However, the first term is also affected by 

sensor perturbations since  depends on sensor gain and phase errors , and sensor 

position errors . When iteration I is very small, and a sufficient small number of 

snapshots  at each iteration will make the effect negligible. The second term cannot be 
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vanished when goes to infinity if I is small, but it will be vanished as I goes to infinity 

since in denominator. 

 

5.4. The Stochastic Error Model 

We assume the sensor gain, phase, and position errors vary with each snapshot at 

each iteration for the stochastic error model, therefore the k-th snapshot at each iteration 

is represented by 

  (94) 

where and follow a certain stochastic model. We make an additional 

assumption for the stochastic error model as: the array gain, phase, and location errors are 

i.i.d. and uncorrelated with source signals and additive noise. 

   Different from the deterministic error model, does not follow the complex 

circularly-symmetric Gaussian distribution because  is nonlinear. It is 

pretty tough to derive the distribution of  in a finite number of snapshots or iterations 

for the stochastic error model. Furthermore, the impact of sensor gain, phase, and location 

errors for DOA estimation performance dominates mainly at a sufficiently large snapshot 

or iteration. Hence, we mainly analyze the impact of sensor gain, phase, and position errors 

when the snapshot or iteration goes to infinity.  

 Under the conditions listed in Chapter 3, the perturbed covariance matrix can be 

represented as 
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 (95) 

where the cross terms are vanished because signal and noise have zero mean and 

uncorrelated. J can be expressed as  

  (96) 

whose (x,y)-th element is given by  

  (97) 

Herein,  only if , and otherwise 0, if . Thus, we only 

consider the terms where . We can obtain 

 (98) 

where is the characteristic function of , , 

and is an X-dimensional vector with only the y-th element being one and other 

elements being zero. Therefore, we can express the covariance matrix as 

  (99) 

!Ri = E !xi
H t( )xi t( )⎡⎣ ⎤⎦ = E

!Ai βi t( ),δ i t( )( )si t( )siH t( ) !AiH βi t( ),δ i t( )( )⎡
⎣

⎤
⎦

J
" #$$$$$$$$ %$$$$$$$$

+σ 2I0

Ji = E !ai α j ,βi t( ),δ i t( )( )si, j t( )si,lH t( )!aiH α l ,βi t( ),δ i t( )( )⎡
⎣

⎤
⎦

l=1

N

∑
j=1

N

∑

Ji,xy = E !ai,x α j ,βi t( ),δ i t( )( )!ai,yH α l ,βi t( ),δ i t( )( )si, j t( )si,lH t( )⎡
⎣

⎤
⎦

l=1

N

∑
j=1

N

∑

E si, j t( )si,lH t( )⎡⎣ ⎤⎦ = pl j l= j l¹

j l=

Ji,xy = pi,nE !ai,x α n ,βi t( ),δ i t( )( )!ai,yH α n ,βi t( ),δ i t( )( )⎡
⎣

⎤
⎦

n=1

N

∑

= pi,nai,x α n( )ai,yH α n( )E exp j ti,n,x − ti,n,y( )T δ i⎡
⎣⎢

⎤
⎦⎥{ }

n=1

N

∑

= pi,nai,x α n( )ai,yH α n( )ϕ i,δ ti,n,x − ti,n,y( )
n=1

N

∑

( ), , , , ,i i n x i n yt tdj - δ i t( ) , ,

sin cos
2 sin sin

cos

y
X
y

i n x X
y
X

e
t e

e

q f
p q f
l

q

é ù
ê ú

= ê ú
ê ú
ë û

eX
y

!Ri= pi,nai α n( )aiH α n( )⊙ϕ i,n +σ 2

n=1

N

∑ I



 

66 

 

where , , and we consider follows 

zero-mean Gaussian distribution with the covariance matrix C, which can be  

 

Based on the conclusion in paper [52], we know that the effect of random sensor 

position errors is DOA dependent, but the effect will be independent of DOAs if all error 

variables have the same distribution zero-mean Gaussian with the same variance. 

Let , then  

  (100) 

where . 

We observe that the effect of sensor position errors could be modeled as additive 

white noise as the number of snapshots or iterations goes to infinity. The signal subspace 

is unchanged, and we can approximate AMSE of iterative-MUSIC for the n-th DOA: 

  (101) 

with the original noise variance replaced with  which is the 

same as the result in paper [52] for static array. 
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5.5. The Joint CRBs of DOAs, Sensor Gain, Phase, and Position Errors 

In this subsection, we will derive the joint CRBs for the general MUSB array under 

the stochastic error model. Apart from the source powers, noise powers, and the DOAs, 

we also treat the gain, phase, and position errors of sensors as unknown parameters. 

Hereby we assume that the precise sensor gains, phases, and positions are known. 

Therefore, the FIM with unknown sensor gain, phase, and position errors is given by   

 (102) 

herein , and where 
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  (107) 

  (108) 

  (109) 

Here we only give part of the FIMs, all the other components of FIMs and partial 

derivative of steering vectors A w.r.t.  can be obtained by following the same 

idea. 

Proof: See Appendix E.       

        

5.6. Simulation Results 

5.6.1. Numerical Analysis of the Deterministic Error Model 

In this section, we verify the closed-form AMSE for deterministic error model first. 

We consider 1 source located in and set the SNR to 20 dB. We use a zero-mean 

Gaussian distribution with covariance matrix  to generate the sensor location errors 

and the magnitude of position errors can be tuned by .  

We investigate how the position errors affect the DOA estimation errors by varying

 with two cases: the first case is with the same number of elements array; the second 

case is with the same average interelement spacing (refer as same aperture). They are 

plotted in Figure 32 and 33 separately. We observe that the RMSE errors increase as the 

position errors increase for the first case and the interelement spacing should be not too 

big or too small. In our results, when the interelement spacing is 2.5 wavelength, the 
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RMSE is relatively smaller. For the second case, we can also find that RMSE increases as 

the position errors increase and more element has lower RMSE, which coincides with our 

analysis.  

Then, we investigate that how the position errors affect the DOA estimation errors 

as SNR increases. We consider one source is located at . We also consider two 

cases: in the first case we set snapshots at each position to be 1000 and number of iteration 

to be 1 (static array); in the second case, we set snapshots at each position to be 10 and 

number of iteration to be 30 (swarming array). In Figure 34 and Figure 35, we find that as 

SNR increases to infinity, the gap between different position errors is not changed because 

the position errors cannot be omitted by increasing SNR, which agrees with our analysis 

in section 4. Furthermore, we find that the iterative-MUSIC algorithm has more capacity 

of position errors than the traditional MUSIC when the variance of position errors over 

wavelength is above 0.08. In Figure 34, the traditional MUSIC cannot converge when 

= 0.08, while iterative-MUSIC can estimate DOAs well in Figure 35. In Figures 36 and 

37, we examine the impact of sensor gain error and find that it won’t affect the DOA 

estimation performance a lot.  

Finally, we investigate that how the sensor phase errors affect the DOA estimation 

errors as SNR increases. We consider one source is located at . We also consider 

two cases: in the first case we set snapshots at each position to be 1000 and number of 

iteration to be 1 (static array); in the second case, we set snapshots at each position to be 

10 and number of iteration to be 30 (swarming array). In Figure 38 and Figure 39, we find 
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that as SNR increases to infinity, the gap between different phase errors is not changed 

because the phase errors cannot be omitted by increasing SNR, which agrees with our 

analysis in section 4. Furthermore, we find that the iterative-MUSIC algorithm has more 

capacity of phase errors than the traditional MUSIC when the variance of phase errors is 

above 30 degrees. We observe that the trend of the impact of sensor phase errors and 

position errors has the similar effect.  

 

Figure 32. RMSE vs. sensor position error level for MUSB array with different 
number of elements: = 10, I = 30, and the empirical MSE is averaged from 1000 
trails. 
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Figure 33. RMSE vs. sensor position error level for MUSB array with different 
average inter-element spacing: = 10, I = 30, and the empirical MSE is averaged 
from 1000 trails. 
 

 

Figure 34. RMSE vs. SNR for MUSB array with sensor position error level: = 
1000, I = 1, and the empirical MSE is averaged from 1000 trails. 
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Figure 35. RMSE vs. SNR for MUSB array with sensor position error level: = 
10, I = 30, and the empirical MSE is averaged from 1000 trails. 
 

 

Figure 36. RMSE vs. SNR for MUSB array with different gain error level: = 
1000, I = 1, and the empirical MSE is averaged from 1000 trails. 
 

iK

iK



 

73 

 

 

Figure 37. RMSE vs. SNR for MUSB array with different gain error level: = 10, 
I = 30, and the empirical MSE is averaged from 1000 trails. 
 

 

Figure 38. RMSE vs. SNR for MUSB array with different gain error level: = 
1000, I = 1, and the empirical MSE is averaged from 1000 trails. 
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Figure 39. RMSE vs. SNR for MUSB array with different gain error level: = 10, 
I = 30, and the empirical MSE is averaged from 1000 trails. 
 

5.6.2. Numerical Analysis of the Stochastic Error Model 

In this subsection, we examine the impact of snapshots and iteration by varying 

number of snapshots and number of iterations for different number of element arrays under 

the stochastic error models. Therefore, we also consider two cases: in the first case we set 

the iteration to be 30 and vary the snapshots at each iteration; in the second case, we set 

the snapshots to be 10 and vary iteration. We set the position error standard deviation  

to be 0.1 and fix the SNR to be 20 dB for both of cases 

The results are plotted in Figure 40, it shows that the trend of empirical MSE agrees 

with our analytical formula and becomes closer to our theoretical results as the snapshot 

increases, because we assume the snapshots or iteration goes to infinity when we derive 

our AMSE formulas.  We also can find that as the number of iteration increases, the RMSE 
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does not decrease a lot because the iterative-MUSIC algorithm converges to the saturation 

earlier as the number of iteration increases.  

 

Figure 40. RMSE vs. number of snapshots for MUSB array with different number 
of elements: I = 30, and the empirical MSE is averaged from 1000 trails. 

 

 

Figure 41. RMSE vs. number of iterations for MUSB array with different number 
of interelement spacing corresponding to wavelength:  = 10, and the empirical 
MSE is averaged from 1000 trails. 
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5.6.3. Numerical Analysis of the CRB 

We close this subsection with the CRB results for one source case. We located the 

source at , and compare two cases: the first one is with 1000 snapshots and one 

iteration (No swarm case); the second one is with large snapshots and small iterations.  

 The results are plotted in Figures 42 and 43, we observe that the gap between free-

error CRB and fixed error CRB does not change as the SNR increases because the position 

error cannot be omitted by increasing SNR for the traditional MUSIC algorithm without 

UAV swarming, which coincides with our analysis before. However, when we add 

iteration to the CRB, the CRB with position error approaches gradually to the error-free 

CRB. That means that the position error is decreased by increasing the number of 

iterations. Furthermore, the CRB cannot be decreased more by increasing the number of 

iterations when the iteration is greater than a certain value.  From (a), (c) in Figure 42, we 

also observe that the gap is not increased a lot as increases from = 0.01 to 0.05.  

 

(a)                                                               (b) 

Figure 42. CRB vs. SNR for MUSB array:  = 1000: (a)  = 1000, I = 1, = 
0.01; (b)  = 1000, I = 10, = 0.01; (c)  = 1000, I = 1, = 0.1; (d)  = 1000, I 
= 10, = 0.1; (e)  = 10, I = 1, = 0.1; (f)  = 10, I = 10, = 0.1. 

60°

pd pd

iK iK pd

iK pd iK pd iK

pd iK pd iK pd

Increasing iteration 



 

77 

 

 

 

(c)                                                              (d) 

 

(e)                                                              (f) 

Figure 42 Continued.  
 

 

Increasing iteration 
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Figure 43. CRB vs. SNR for MUSB array with different number of iterations.  
 

5.7. Experiment  

The data collection process assumes the target is stationary and narrowband in the 

far field, and that one or more of the swarming UAVs can process the information from 

the source. The conjecture assumes that the position error will degrade the DOA 

estimation performance and the system can still converge in certain number of iterations 

via iterative-MUSIC algorithm. To study this, a test-bed is constructed with thirty possible 

locations that an agent can occupy (One agent swarms). The iterative data collection 

process begins at time t = 1, when . We choose the extreme case, 3-element array 

for 2-D DOA estimation, to demonstrate the performance in this paper. The process 

iterates for t times until the convergence criteria is met or some other instruction is 

received.  

3dN =
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The position errors for each iteration can be selected using the following relation: 

  (110) 

where is the standard normally distributed random numbers for each swarming iteration 

i and std is the standard deviation of the position errors. 

 

5.7.1. Experiment Results 

In experiments, the test fixture provides a convenient platform to study this 

morphing in time and we use two different platforms to verify our expectation and 

analysis. In Figure 44, Randomly positioned monopole antennas designed for 2.45 GHz 

are used with a fixed morphing volume provided by a sphere with a 380 mm radius to 

estimate the DOAs. Thus, the wavelength is 122.45 mm for the designed frequency and 1 

mm location error with respect to wavelength will cause about 3° phase difference shift 

from source to sensor. If each agent has 1 mm location error, the maximum measured 

phase difference errors will be 6°.  

Figure 45 shows the RMSE vs. number of iterations with UAV swarms in the 

presence of stochastic location errors (std = 0, 5, 10, and 15 mm). The DOA estimation 

errors increase as the location error increases and DOA estimation errors decrease as the 

iteration increases. This system can converge with certain iterations when location errors 

exist. In Figure 46, we use Medusa platform to investigate the performance of our system 

in the presence of sensor gain and phase errors by rotating the antenna in a range of 0 to 

45 degrees. However, we cannot control the exact value for sensor gain and phase errors 

i i stda b= ×

ib
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in practice. Figure 47 shows that when UAVs rotate, the system will be more difficult to 

converge compared with no rotation case. 

 

 

(a)                                                                                   (b) 

Figure 44. Practical measurement schematic diagram: (a) One monopole antenna 
located at the test platform with 32 random positions; (b) Test diagram with one 
source in the far field. 
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Figure 45. DOA estimation RMSE of experiment vs. iterations for different sensor 
position error level 
 

     

                           (a)                                                                              (b) 

Figure 46. Practical measurement schematic diagram: (a) Medusa test platform 
with patch antenna attached to 16 rotatable arms; (b) Test diagram with one source 
in the far field. 
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        (a)                                                                    (b) 

Figure 47. DOA estimation RMSE of experiment vs. iterations: (a) without UAV 
rotation; (b) with random UAV rotation in a range of 0 to 45 degrees 

 

5.8. Chapter Summary  

This chapter statistically analyzes the performance of iterative-MUSIC algorithm 

for the MUSB array. We derive the closed-form AMSE formula of iterative-MUSIC in 

the presence of small and deterministic sensor gain, phase, and position errors, as well as 

the joint CRB formulas of sensor gain, phase, position errors, and DOAs for the MUSB 

array. We also extended the deterministic error model to stochastic error model with the 

Gaussian distribution case. Our results proof that the iterative-MUSIC algorithm has the 

advantages than the traditional MUSIC algorithm in the condition with low SNR and low 

snapshot case, as well as the iterative-MUSIC algorithm can eliminate the sensor gain, 

phase, and position errors. 
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6. CONCLUSION 

 

This work has shown that it is possible to develop a signal model for the swarming 

array that includes sensor errors to account for both directional antenna radiation behavior 

(rotational errors) and position uncertainties (translational errors), and use this model to 

derive an iterative formulation of the MUSIC algorithm to study the convergence and 

fundamental statistical limitations of the swarming DOA estimation system and inform an 

experimental campaign that been able to successfully demonstrate and validate the key 

aspects of the system’s behavior. We formulated the signal model to account for dynamic 

behavior of UAV swarm, developed framework for iterative MUSIC-based algorithm 

suitable for UAV swarm, derived closed-form asymptotic MSE and CRB expressions for 

statistical performance analysis of swarming array, and derived closed-form asymptotic 

MSE and CRB expressions with sensor gain, phase, and position errors to analyze the 

performance of swarming array theoretically (with experimental validation). Our results 

will benefit to future research on performance analysis and optimal design of time-varying 

antenna arrays based on UAV swarm. 
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APPENDIX A 

THE DOA ESTIMATION ERROR OF ITERATIVE-MUSIC  

 

The eigendecomposition of at i-th iteration is given by 

  (111) 

where and are the eigenvectors of the signal subspace and noise subspace, 

and , are the corresponding eigen values in the i-th iteration. Here we have 

. 

Let , , and be the perturbed 

versions of , , and . If the perturbation is small, we can omit the high-order terms 

and obtain [48], [49], [50] 

  (112) 

 
Since S is diagonal, we have 

  (113) 

 

where  is the n-th column of the identity matrix .  

The MUSIC spectrum in the i-th iteration is defined as  

  (114) 

 
Since the MUSIC spectrum in different iteration is independent, the total MUSIC 

spectrum is  
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  (115) 

As is a minimum point of , we must have  

  (116) 

where  

  (117) 

In order to analyze the distribution of the estimation errors , we have 

  (118) 

 
Following the conclusion in paper [47, Appendix B], we can obtain 

  (119) 
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Substituting (20) into (26) gives  

  (121) 

 
Therefore, the estimation errors are 
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  (122) 

 

Use notations in (14) and , we have 

  (123) 

where , and it completes the proof.  
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APPENDIX B 

THE AMSE OF ITERATIVE-MUSIC  

 

We will derive the asymptotic MSE of iterative-MUSIC without sensor location 

errors, sensor gain, and phase errors, which follows from (30) that 

  (124) 

The last term in (31) is derived because if [50]. 

Then, based the conclusion in [50, Appendix C], we have  

  (125) 

Therefore, substituting (32) into (31) we can obtain 

 (126) 

which completes the proof. 
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APPENDIX C 

THE CRB FOR TIME-VARYING ARRAY WRT 2D DOAS 

 

Referred to [34], the stochastic FIM’s  with respect to 1D incident angle  of 

static array is available: 

  (127) 

Where , , , and 

. 

 For each iteration, the FIM’s for the presented problem in this paper is given by 

  (128) 

where , , , and 

. 

As already stated,  

  (129) 

 Omitting to the parameters , , , gain and phase of the signals, 

only consider the estimation of the elevation and azimuth angles hereby is given 

by 

  (130) 
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 ;  (131) 

Thus, the submatrix of FIM associated with 2D DOA is   

  (132) 

where “i, s, 2” denotes the 2D stochastic bound for the ith iteration, represents 2x1 

vectors of ones and 
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APPENDIX D 

THE CRB OF 3D RANDOM ARRAY WRT JOINT SENSOR GAIN, PHASES, AND 

DOAS 

 

Referred to [35], the likelihood function of the data is given by 

  (138) 

where 𝜎 is the variance of noise. Thus, the log-likelihood function is 
 

  (139) 

First, we calculate the derivatives of (135) with respect to ,  ,  

, g,  ,  and  . We have 

  (140) 

  (141) 

  (142) 

  (143) 

which can be written more compactly as  
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  (144) 

Since  , thus, 

  (145) 
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To proceed, we need the following four results. 
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  for all k and t   (149) 
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R4: Let H be a nonsingular complex matrix and denote its inverse by  . Then 
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Those four rules are proved in [37, Appendix E] 

Turn now to the evaluation of the CRB covariance matrix, which is given by 
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  (152) 

where 

  (153) 

Using R1, we obtain 

  (154) 

Using R2, we note that   is not correlated with any of the other derivatives. 
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Note the following notations: , , , and  

          

          

Observe that since the matrix H is Hermitian, its imaginary part must be skew-

symmetric . Using the notation above, we get 

  (170) 

The expression for  is proven. Then we use the standard result on the inverse of 

a partitioned matrix, and R4 to obtain the CRB. 
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Next, observe that 
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APPENDIX E 

DERIVATION OF THE FIM WITH SENSOR GAIN, PHASE AND POSITION 

ERRORS 

We derived the FIM with respect to DOAs in Appendix A of our previously 
published paper [55]. Omitting to the parameters , and , we only 

consider incident signal angles , , sensor gain g, sensor phase and sensor location 
errors u, v, w along x-axis, y-axis and z-axis. The collection of unknown parameters we 
consider is given by  

 
  (192) 
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The system stochastic FIM associated with 2-D DOAs is given in Appendix C, 
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s i s
i

F F
=

=å

, , , , , , ,i i g i i i i u i v i wD d d d d d d dy q fé ù= ë û
! ! ! ! ! ! !!

( ) 10
H H

i i i i iA I A A A A
-^ = -! ! ! ! !

!Ui = P !Ai
H !Ri

−1 !AiP

!di,g =
d
dg
!ai α ,β ,δ( ) = !ai α ,β ,δ( ) / gi

!di,ψ = d
dψ
!ai α ,β ,δ( ) = j !ai α ,β ,δ( )

!di,u =
d
du
!ai α ,β ,δ( ) = j 2πλ !ai α ,β ,δ( )sinθ cosφ

!di,v =
d
dv
!ai α ,β ,δ( ) = j 2πλ !ai α ,β ,δ( )sinθ sinφ
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  (204) 

  (205) 

  (206) 

where 

  (207) 

  (208) 

Finally, we obtain  

  (209)  

 

!di,w =
d
dw
!ai α ,β ,δ( ) = j 2πλ !ai α ,β ,δ( )cosθ

!di,θ =
d
dθ
!ai α ,β ,δ( ) = j 2πλ

!bi !ai α ,β ,δ( )

!di,φ =
d
dφ
!ai α ,β ,δ( ) = j 2πλ !qi !ai α ,β ,δ( )

!bi = !xi cosθ cosφ+ !yi cosθ sinφ − !zi sinθ

!qi = − !xi sinθ sinφ + !yi sinθ cosφ
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