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ABSTRACT 

 

This dissertation presents a novel approach for modeling and analyzing a geared 

rotor-bearing system including nonlinear forces in the gear set and the supporting fluid 

film journal bearings. Co-existing, steady-state, autonomous and non-autonomous 

responses are obtained in an accurate and computationally efficient manner utilizing the 

multiple shooting and continuation algorithms. The results reveal a dependence of the 

gear set contact conditions and system nonlinear response characteristics, i.e. jump, co-

existing responses, subharmonic resonances and chaos on the choice of journal bearing 

parameters.  

The Morton effect (ME) is caused by uneven viscous heating of the journal in a 

fluid film bearing, which causes thermal bending, especially in rotors with an overhung 

disc or coupling weight. This work investigates the influence of misaligned journal 

bearing effects on the thermally induced rotor instability problem. The simulation results 

indicate that the amplitude of the misalignment angle affects the instability speed range 

caused by the Morton effect under certain conditions. 

This work also treats the unconventional application of the SFD for the 

mitigation of ME-induced vibration. Installing a properly designed squeeze film damper 

may change the rotor’s critical speed location, damping and deflection shape, and 

thereby suppress the vibration caused by the ME. The effectiveness of the SFD on 

suppressing the ME is tested via linear and nonlinear simulation studies. The influence 

of SFD cage stiffness is evaluated. 
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The influence of tilting pad journal bearing’s pivot design on the severity and 

instability speed range of the ME vibration was investigated. The friction between pad 

and pivot, which only exists in the spherical pivot, is taken into account and its impact 

on the ME is also tested. Nonlinear transient simulations are carried out for a wide 

operating speed range with varying pivot design parameters. Simulation results indicate 

that the predicted ME instability is sensitive to the pivot shape, pivot flexibility, and pad-

pivot friction. 

The Morton effect test rig was built, and its vibration test results are presented. 

The vibration increases of the rotor at constant operating speed reveals that the existence 

of the Morton effect in the designed rotor-bearing test rig. 
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1. INTRODUCTION  

 

1.1. Nonlinear vibration induced by gear nonlinearities 

Gearing system speeds and operating torques continue to increase in high-

performance machinery. This amplifies the effects of nonlinearities in the gears 

including tooth backlash and time-varying mesh stiffness. Backlash describes the 

intentional clearance provided between mating teeth to prevent binding and to include a 

thin lubricant film between the teeth for heat removal and reduced wear. Backlash 

causes intermittent loss of contact between the teeth creating a nonlinear force and 

torque. The mesh stiffness varies periodically with time due to the variation of the 

number of tooth pairs in contact, and the variation of the point of contact along with the 

tooth profiles. The time-varying stiffness of the meshing teeth may lead to parametric 

resonances, which are principal sources of internal excitations and vibrations in gear 

transmission systems. The backlash forces and time-varying stiffness interact yielding a 

complex nonlinear, parametrically excited system with both torsional and lateral 

vibration. Accurate and computationally efficient gear dynamic models, including 

nonlinear forces and parametric excitations, are required for the effective design of gear 

sets and the machinery in which they form a critical component.  

Significant prior research has been performed on the nonlinear dynamic response 

of geared systems. Kahraman and Singh [1] analyzed the effect of backlash on a single-

degree-of-freedom gear model employing both analytical and numerical simulations. 
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They validated their model by comparison with experimental results and found that the 

nonlinear characteristics caused chaotic and subsynchronous resonance responses. 

Kahraman and Singh [2] examined interactions between gear backlash nonlinearity and 

the bearing clearances and identified chaotic and subharmonic responses. Kahraman and 

Singh [3] included time-varying stiffness and clearance nonlinearity in their numerical 

model of geared systems and identified strong coupling effects between these 

characteristics. Blankenship and Kahraman [4] presented an experimental – analytical 

correlation study of a geared system including backlash nonlinearity and parametric 

excitation. Their predictions of co-existing solutions with the harmonic balance method 

were confirmed experimentally. Kahraman and Blankenship [5] observed subharmonic 

resonances in a geared system experiment, which were demonstrated to be strongly 

dependent on damping ratio and stiffness variation of the gear mesh. Kahraman and 

Blankenship [6] experimentally observed chaotic vibration, jump phenomena, and 

subharmonic response due to parametric and backlash excitations. Ranghothama and 

Narayanan [7] employed an incremental harmonic balance method, arc-length 

continuation, Floquet theory, and Lyapunov exponents to examine the bifurcation 

characteristics of a three-degree-of-freedom geared rotor-bearing model. Theodossiades 

and Natsiavas [8] introduced a new analytical method for a gear system with time-

varying stiffness and backlash using perturbations techniques. Al-shyyab and Kahraman 

[9, 10] investigated the nonlinear response of a multi-mesh gear system using a multi-

term harmonic balance method. The effects of gear parameters on the nonlinear behavior 
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were studied for both period-one and sub-harmonic motions. Liu et al. [11] analyzed the 

effect of gear mesh damping and backlash amplitude on the states of gear meshing and 

nonlinear behaviors of a gear pair. Yang et al. [12, 13] predicted the nonlinear vibration 

of a gear system subjected to multi-frequency excitations utilizing a multiple time scales 

method. They confirmed the interaction between different harmonic excitations and the 

complex nonlinear behaviors caused by the multi-frequency excitations. Yang et al. [14] 

performed parametric studies to investigate the influence of the contact ratio, spacing 

error, transmitted load and mesh damping of a gear using a fifth-order Runge-Kutta 

method. Wang et al. [15] analyzed the effect of modulation internal excitation on the 

gear system and verified the accuracy of the prediction by comparing its results with the 

experimental measurements. 

Nonlinear vibration in different types of gears has been investigated. Motahar et 

al. [16] performed a numerical, nonlinear dynamics study of a bevel gear system. Tip 

and root modifications were introduced to study their influence on gear vibration. Yang 

and Lim [17] developed a hypoid gear model considering time varying mesh stiffness, 

backlash nonlinearity and time-varying bearing stiffness. They showed that the backlash 

nonlinearity could suppress parametric instability induced by the time-varying bearing 

stiffness, under certain operating conditions.  Wang and Lim [18] studied the effect of 

gear mesh stiffness asymmetry for the drive and coast sides of the hypoid gear system, 

and confirmed that the mesh stiffness at the drive side has more significant effect on the 

nonlinear dynamics. Ambarisha and Parker [19] investigated nonlinear dynamics of a 
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planetary gear system. They applied the profile of the time-varying mesh stiffness 

obtained from a finite element analysis to improve accuracy. Zhao and Ji [20] performed 

numerical simulations of a wind turbine gearbox having two planetary gear trains. 

Complex nonlinear responses of the gearbox were shown to result from a time-varying 

mesh stiffness, backlash nonlinearity and static transmission error. Xinghui et al. [21] 

analyzed parametric resonance of a planetary gear subjected to speed fluctuations. The 

gear model considers time-varying mesh stiffness, and the instability boundaries for the 

fundamental and combinations resonances were derived based on a perturbation 

analysis. 

Some researchers have explored approaches to suppress vibrations induced by 

gear nonlinearities. Cheon’s [22] simulation study investigated the effect of a one-way 

clutch to reduce the dynamic transmission error of a geared system. Cheon [23] 

employed a phasing approach to reduce time-varying mesh stiffness and the resulting 

vibration, especially at the fundamental resonance. 

Stochastic methods have been applied to study the effects of uncertainty in gear 

parameters. Bonori and Pellicano [24] utilized a stochastic model to analyze the effect of 

manufacturing error on nonlinear gear dynamics and showed that this could induce 

chaotic vibrations in the gear system. Wei et al. [25] included modeling uncertainties of 

a gear system, such as mesh stiffness and damping, and determined the resulting 

response levels using an interval harmonic balance method. 
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Various analytical and modeling methods have been applied to gear dynamics 

simulation. Kim et al. [26] investigated the effect of smoothing functions on clearance 

nonlinearity of an oscillator and showed how the adjustment of a regulating factor 

associated with the smoothing functions yielded more reliable predictions. Farshidianfar 

and Saghafi [27] applied a Melnikov type analysis to investigate homoclinic bifurcations 

and chaotic responses in a geared system. Gou et al. [28] employed a cell mapping 

theory to analyze the multi-parameter coupling characteristics of gear parameters. Li et 

al. [29] used an incremental harmonic balance method to analyze gear systems with 

internal and external periodic excitations.  

Hydrodynamic journal bearings are widely employed in geared systems with 

high speed and load requirements due to their relatively high stiffness and damping. 

Theodossiades and Natsiavas [30] investigated the effect of gear and journal bearing 

parameters on bifurcation, chaos and oil whirl. They represented the journal bearing 

force with a finite-length impedance method. Baguet and Jacquenot [31] developed a 

finite element shaft model to study the interactions between a helical gear and a finite-

length bearing and showed that a linearized bearing coefficient model does not provide 

accurate predictions of gear vibrations, especially at high speed and load conditions. 

Fargère and Velex [32] investigated the effects of the bearing oil inlet location and 

thermal response on the gear system dynamics. These effects change the journal static 

equilibrium position, which in turn alters the dynamic response of the system. Liu et al. 

[33] studied the interactions between tooth wedging effect and journal bearing clearance 
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using the approximate short journal bearing theory. Simulation results showed that 

varying the operating speed or applied torque may cause the occurrence of oil whirl 

response of the rotordynamic systems. The effect of tooth wedging on the vibration level 

of the geared-rotor system is also presented. 

Kim and Palazzolo [34, 35] employed shooting with deflation to study the 

nonlinear response of a Jeffcott rotor supported by floating ring bearings. The effects of 

changing parameters such as bearing length-to-diameter ( L/D ) ratio and including the 

thermal effect of the lubricant were presented. Kim and Palazzolo [36] studied the 

bifurcation of a heavily loaded rotor with five-pad tilting pad bearings. A shooting/arc-

length continuation approach was utilized to obtain quasi-periodic and chaotic motions, 

the latter being confirmed by maximum Lyapunov exponents. 

 

1.2. Thermal bow induced vibration (Morton effect) of rotor-bearing system 

Eccentric, synchronous vibrations in rotating machinery cause asymmetric 

temperature distribution around the circumference of the journal in a hydrodynamic 

bearing (HB). This produces thermal bow in the shaft, and under some conditions 

increasing vibration and inevitable shutdown of the machinery. This “Morton Effect” 

ME is becoming increasingly observed due to the higher performance requirements of 

modern machinery and the increasing use of a HB [37]. The ME is the nonlinear 

synchronous vibration induced by differential viscous shearing of the HB’s lubricant, 

which gives rise to hot and cold spots on the journal circumference. This increased bow, 
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in particular with overhung rotors, results in larger inertial force and more heating 

induced by viscous shearing. The viscous shearing, the thermal bow, and the inertial 

force may form a positive feedback loop, driving the rotor system into a limit cycle 

vibration, or rubbing between the journal and bearing bushing. 

The ME instability phenomenon is highly sensitive to operating and physical 

parameters [37]. Therefore, even minor changes in parameters and conditions may 

suppress or induce the ME in the machine. This explains why only a single machine may 

experience the ME while other “identical” machines operate free from the ME. The axial 

film thickness asymmetry due to journal misalignment is prevalent in turbomachinery 

systems due to inevitable installation/manufacturing errors and deflections /distortions 

caused by applied loads. Therefore, there is a need for the present investigation of the 

effect of bearing misalignment on the ME, given its known sensitivity to parameter 

variations. 

De Jongh and Hoeven [38] reported an experimental ME case of an overhung 

rotor showing high vibration levels due to a thermal instability caused by journal 

differential heating. The instability problem was mitigated by installing a heat barrier 

sleeve to prevent the heat input into the shaft. Keogh and Morton [39] modeled the 

journal differential heating with a short bearing theory, iso-viscous, thermo-hydro-

dynamic THD model. Lee and Palazzolo [40] developed a ME model based on a 

variable viscosity Reynolds equation, a 2D energy equation, and a heat conduction 

equation. Long time-constant, cyclically varying, large amplitude vibration caused by 
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asymmetric journal heating is predicted, using a transient simulation method. Suh and 

Palazzolo [41-44] developed the first high-fidelity ME prediction model utilizing finite 

length, 3D thermo-elasto-hydro-dynamic tilting pad journal bearing TPJB models, and 

performed parametric studies. Tong and Palazzolo [45-47] further expanded the high-

fidelity ME model to include distributed thermal bow and a double overhung type rotor 

configuration. The same authors measured journal circumferential temperature 

distributions and verified the accuracy of the high-fidelity model, compared with 

simplified prediction models in [48]. The same authors theoretically showed that the ME 

can be induced in a gas bearing supported machinery in [49].  

 

1.2.1. Journal misalignment effect on rotordynamics 

Misalignment effects on HB have been investigated in many research studies. 

Bouyer and Fillon [50] presented experimental results for a misaligned plain journal 

bearing. Their measurements at the bearing mid-plane showed the bearing performance, 

i.e., maximum pressure, temperature distribution, oil flow rate, and minimum film 

thickness was significantly affected by misalignment. Sun and Changlin [51] showed 

that shaft deformation-induced bearing misalignment had a significant effect on bearing 

performance. 

El-Butch and Ashour [52] proposed an improved fidelity, tilting pad journal 

bearing TPJB, THD model with journal misalignment and pad elastic/thermal distortion 

effects, which was solved with transient simulation. Sun and Deng [53] showed that 
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thermal and surface roughness effects play a vital role in the performance predictions for 

a misaligned journal bearing, especially for large eccentricity ratios. Xu and Geng [54] 

showed that misalignment significantly affects journal bearing performance at large 

eccentricity ratios, utilizing a THD model. Suh and Choi [55] presented a study on the 

combined effects of misalignment and tilting pad journal bearing pivot type on static 

performance. Their theoretical study showed that spherical pivots having tilting, pad yaw 

and rolling motions, compensates misalignment effects. 

 

1.2.2. Squeeze film damper suppression of rotor vibration 

Squeeze film dampers (SFD) are widely used to enhance the stability of a rotor-

bearing system and suppress vibration by providing viscous damping. Leader et al. [15] 

and Edney and Nicholas [56] examined steam turbines experiencing high synchronous 

vibration and mitigated the vibration utilizing SFD in series with TPJBs. Kanki et al. 

[57] investigated a steam turbine exhibiting subsynchronous vibration and overcame the 

instability by installing SFD at the bearing. Ferraro et al. [58] and Ertas et al. [59] 

adopted an integral squeeze film damper (ISFD) to suppress the subsynchronous 

vibration of steam turbines. The ISFD alleviated the vibration and provided stable 

operation of the rotor. 

The effects of SFD parameters such as damping properties and cage stiffness on 

the rotor vibration were presented in the literature. Gunter et al. [60] demonstrated an 

optimum damping value for rotor-bearing systems, which depends on the rotor’s 
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stiffness ratio between the bearing support and the shaft bending stiffness. Chu and 

Homes [61] examined the effect of cage stiffness and SFD damping on the location of 

the critical speed and vibration level, both theoretically and experimentally. 

The SFD is commonly equipped with a supply groove for sufficient lubricant 

flow into the film gap. The added mass induced by the groove has a substantial influence 

on the dynamic response of a grooved SFD and has been analyzed extensively [62-64]. 

The force coefficients of SFD with a central groove were experimentally verified in [65-

68]. Delgado and San Andres [69, 70] presented a linear fluid inertia bulk flow model 

for the analysis of the centrally grooved SFD. An effective clearance ratio was adopted 

based on the measured data from the test rig to replace the actual groove clearance. 

Linear analysis, which uses linearized stiffness and damping coefficients, maintains its 

accuracy when the shaft whirling motion is relatively small.  

Retrofitting of an existing bearing to install a SFD would depend on the original 

bearing support structure. Quite often, the bearing housing is cylindrical in shape and 

slides into a mating hole in the machinery casing. The hole may be split or continuous 

depending on the design of the machine. Installation of the SFD would then require 

increasing the bore diameter of the hole to provide for the oil gap of the SFD. In 

addition, modifications for sealing the SFD with O-rings or by another means or 

collecting the oil in the case of an open-ended SFD, would be required. This approach 

will minimize the need for a larger envelope for the bearing modified to include the 

SFD. 



 

 

11 

 

Simulation of a rotor-journal bearing system under a high dynamic loading 

condition requires a nonlinear simulation for accurate prediction. Bonello et al. [72] 

studied the interaction between the SFD and flexible rotor based on a harmonic balance 

method and found that the cavitation effect increases with higher static eccentricity of 

the SFD and affects the damping capability of the SFD. He [73] utilized an improved 

harmonic balance method to analyze the flexible rotor with a SFD. Cao et al. [74] 

simulated the nonlinear short SFD model in series with a fluid film bearing and applied 

this to a coupled lateral-torsional rotor system. The nonlinear time transient solutions 

were obtained via the Runge-Kutta method.  

 

1.2.3. Tilting pad pivot friction effect on Morton effect 

Suh and Choi [55] conducted a dynamic performance comparison between the 

spherical and cylindrical pivots under a misaligned journal. The tilt, pitch, and yaw 

motions of a spherical pivot type ware considered while the cylindrical type only 

allowed the tilt motion due to its pivot geometry. The spherical pivot showed the 

invariant bearing performance regardless of the level of misalignment. 

The dynamic characteristics of a TPJB are sensitive to its pivot design. The pivot 

acts as an elastic spring between the pad and housing and significantly alters the bearing 

characteristics such as lubricant film thickness, eccentricity ratio, etc. Rigid pivot 

assumption is often used for simplicity of analysis, but this assumption may result in a 

significant error in the bearing performance prediction. Prior studies [75-79] indicate the 
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importance of considering pivot flexibility for accurate prediction of the TPJB 

performance. In their analyses, the model with the flexible pivot showed significantly 

enhanced accuracy than the rigid pivot in predicting the TPJB’s static and dynamic 

characteristics. The analytical model of the TPJB’s nonlinear pivot stiffness was derived 

based on Hertzian contact theory in [80, 81], and the influence of nonlinear pivot 

stiffness on the dynamic coefficients was investigated in [82]. Shi et al. [83] tested the 

nonlinear pivot stiffness effect on the dynamic characteristics of a Jeffcott rotor. In the 

analysis, the nonlinear pivot greatly affected the orbit size of the rotor, lubricant film 

thickness, and film pressure. The level of the impact was sensitive to the amplitudes of 

static and dynamic loads applied. 

The pad-pivot friction exists in the spherical pivot type TPJB where the pad 

slides over the pivot surface depending on the journal motion. Many experimental and 

numerical studies have been carried out regarding the influence of pad-pivot friction. 

Wygant et al. [84, 85] measured the dynamic coefficients of TPJBs with spherical 

pivots. The equilibrium position of the bearing showed curved loci along with attitude 

angles, which confirms the existence of cross-coupled stiffness and damping due to the 

pad-pivot friction. Pettinato and De Choudhury [86, 87] measured the power loss, pad 

temperatures, and the equilibrium position of two TPJBs with different pivot types. The 

equilibrium positions with moderate attitude angles were identified for the spherical 

pivot TPJB while negligible attitude angles were observed in the cylindrical pivot. 

Brechting et al. [88] tested the spherical pivot TPJB, and their results showed that the 
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cross-coupled stiffness and damping are present especially at low operating speeds and 

loads, and those values reduce with increasing speeds. Kim and Kim [89] established a 

mathematical model for pad-pivot friction and then conducted numerical simulations, 

verifying that the pivot friction significantly affects the pressure distribution, film 

thickness of a lubricant, and often induces rotor instability. He [90] adopted a conformal 

contact model for the prediction of pivot-pad friction. The non-synchronous vibration of 

pads induced by the friction was observed, and the effect of the pivot radius was 

investigated. Kim and Palazzolo [91] performed a nonlinear dynamic analysis of a 

spherical pivot TPJB considering the pad-pivot friction effect. The analytical Stribeck 

friction model [92] was employed to include the pad angular velocity-dependent friction 

coefficients. Numerous nonlinear phenomena such as Hopf bifurcation, limit cycles, and 

non-synchronous vibration appeared in both autonomous and non-autonomous 

conditions. 
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2. NONLINEAR ANALYSIS OF A GEARED ROTOR SYSTEM SUPPORTED BY 

FLUID FILM JOURNAL BEARINGS* 

 

2.1. Introduction 

Prior models for coupled gearset-bearing vibration generally utilized lower 

fidelity or steady-state bearing models and presented results in less rigorous nonlinear 

dynamics formats. This may have been motivated by the high computational expense of 

employing higher fidelity bearing models and presenting results in advanced nonlinear 

dynamics formats. Bearing forces were typically represented with linear spring and 

damping constants, or were obtained using short bearing theory, with highly simplified 

oil film cavitation models. The simplified approaches may lead to significant prediction 

error especially for steady-state responses with orbits that are relatively large (>15%) 

with respect to the bearing clearance. The present approach provides a highly accurate, 

finite element-based solution of the finite-length, Reynold’s equation accounting for 

cavitation at each time step in the numerical integration. Additionally, results are 

presented in advanced nonlinear dynamics formats including bifurcation diagrams, 

maximum Lyapunov exponent plots, and Poincaré attractor plots. Computation time is 

held within practical limits utilizing multiple shooting and continuation algorithms, and 

 

* Reprinted with permission from “Nonlinear analysis of a geared rotor system supported by fluid film 

journal bearings” by Shin, D., and Palazzolo, A., 2020. Journal of sound and vibration, 475, Copyright 

[2020] by Elsevier B.V. 
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with the use of embedded C++ components in the MATLAB code, and parallel 

processing. 

The highlight and original contribution of the work is to provide a 

computationally efficient, high fidelity and rigorously presented modeling approach for 

the dynamics of the five-degree-of-freedom dual shaft-gear pair system supported on 

fluid film bearings. This approach involves finite-length bearing models, advanced 

multiple shooting and continuation methods, gear flexibility and transmission error 

effects, bifurcation and Poincaré attractor diagrams, and maximum Lyapunov exponents 

for identifying chaotic behavior. Finally, this approach is applied to parametric studies 

with varying journal bearing and gear mesh stiffness parameters.  

 

2.2. Modeling of a geared rotor system supported by fluid film journal bearings 

2.2.1. Five-degree-of-freedom gear-bearing-rotor model 

Figure 2.1 shows a centered gear pair attached to parallel rotors that are each 

supported by fluid film journal bearings. The model is composed of two rigid rotors 

having mass elements im , radii iR  and polar moments of inertia iJ . The subscript i  

denotes the driving ( 1i = ) and driven ( 2i = ) geared rotors.   
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Figure 2.1 Gear set supported by hydrodynamic journal bearings 

 

An external torque 1T  is applied to the driving gear. A nonlinear mesh coupling 

consisting of tooth backlash and time-varying stiffness is modeled to transmit torque 

between driving and driven gears. The motion coordinates for the model include ( 1 , 2 , 

1x , 2x , 1y , 2y ) as shown in Figure 2.2 

 

Figure 2.2 Spur gear pair model including hydrodynamic journal bearing 
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The dynamic transmission error (DTE), ( )t  is given by  

1 1 2 2 1 2 1 2 ( )( ) sin( ) sin( ) cos( ) cos( ) r tt R R x x y y e      = − + − + − −  (2.1) 

where ( )r te  represents the static transmission error. The analytical description of the 

time-varying mesh stiffness and the static transmission error can be expressed in the 

form of Fourier series as [3] 
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 (2.2) 

where 0k  is a mean mesh stiffness, 0e  is a mean static transmission error, and is  and jp  

are the amplitude of the Fourier series components. The phase angles of the Fourier 

series are represented by i  and j , respectively. 

 The term g  is the gear mesh frequency represented by 

i ig N  =  (2.3) 

where iN  is the number of gear teeth, i  is rotor operating frequency and 1,2i = . For 

this study 1 2  = =  is used, which follows the convention in the related literature 

[33]. The pressure angle   is assumed to remain constant during operation. Plain journal 

bearings support both rigid shafts, and their nonlinear fluid film force models are 

explained in section 2.2.  

As noted in [26], a tooth backlash model defined with a piecewise linear function 

in the governing nonlinear differential equations may result in convergence difficulties 
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when employing a Newton-Raphson method. Therefore, the following smoothening 

function presented in the same reference is also used in the present study. 

1 1
( ) {( ( ) )[1 tanh( ( ))]} {( ( ) )[1 tanh( ( ))]}

2 2
t t b (t) - b t b (t)+b      = − + + + + −  (2.4) 

where ( )t  represents relative gear mesh displacement considering backlash, b  is the 

half-length of the tooth backlash amplitude  ( 0

2

b
b = ) and   is a modulating factor which 

affects the accuracy of the backlash representation and convergence [26]. The value 

100 =  is selected for this study.   

The coupling force between the driving and driven gear mesh is given by 

m0 ( ) ( )m mF k t (t) c t = +  (2.5) 

where mc  represents mesh damping, and it is assumed to be constant in this study. (t)  

represents the dynamic transmission error in Eq. (2.1), and ( )t  is its derivative. 

The equations of motion for the six-degree-of-freedom gear-bearing rotor system 

are 
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By replacing the term 

1 1 2 2 1 2 1 2( )( ( )sin( ) sin( ) cos( ) cos( ) )m r mk t c tR R x x y y e       +− + − + − −  with m0F , 

the equations become 
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where bixF  and biyF  represents the i th bearing forces in the x  and y  directions, and 

1m g  and 2m g   terms represent gravity forces. By multiplying each of equations with 1R  

and 2R , the first two become 

2
1 1 1 1 0 1 1

2
2 1 2 2 0 1 2

m

m

J R R F R T

J R R F R T


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+ =

− = −
 (2.8) 

Divide the two equation with 1J  and 2J  respectively, and then subtracting the 

second equation from the first one, to obtain  

2 2
1 2 1 2

1 1 1 2 m0 1 2
1 2 1 2
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R R R R

R R F T T
J J J J
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Substituting  and manipulating the equation yields 
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Dividing through by 
2 2

2 1 1 2

1 2

( )
J R J R

J J

+
 yields 

1 2 1 2 1 2
m0 1 22 2 2 2

1 22 1 1 2 2 1 1 2

( ) ( )( )
J J J J R R

p F T T
J JJ R J R J R J R

+ = +
+ +

 (2.11) 

 

1 1 2 2p R R = −
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Substitute eJ  for  1 2
2 2

2 1 1 2

( )
J J

J R J R+
 to obtain  

m0e eJ p F T+ =  (2.12) 

where 1 2
1 2

1 2

( )e e

R R
T J T T

J J
= +  is an equivalent input torque term 

The term ( )t  was inserted into Eq. (2.4) to include the backlash nonlinearity 

effect. Then, from Eq. (2.4) and (2.5), the gear meshing force including the backlash 

nonlinearity effect becomes 

( ) ( )m m mF k t c t = +  (2.13) 

Finally, the equations including the backlash nonlinearity, time-varying mesh 

stiffness and the static transmission error become 

1 1 b1x

1 1 b1y 1

2 2 b2x

2 2 b2y 2

sin( )

cos( )

sin( )

cos( )

e m e

m

m

m

m

J p F T

m x F F

m y F F m g

m x F F

m y F F m g









+ =

+ =

+ = −

− =

− = −

 (2.14) 

where  is the equivalent inertia of two gears, i.e. 1 2
2 2

2 1 1 2

( )
J J

J R J R+
. The torsional natural 

frequency  of the system is defined as 0

e

k

J
. 

eJ

n
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For validation purposes, the simulation result are compared with experimental 

measurements [4] in Figure 2.3. The experiment was conducted using relatively stiff ball 

bearings so the x  and y  journal motions are assumed fixed in the simulation. The gear 

parameters for backlash, Fourier coefficients of time varying mesh stiffness and 

amplitude of static transmission error from [4] are employed in the simulation. The root 

mean square (RMS) value of the dynamic transmission error is plotted with respect to 

operating speed, showing good agreement between prediction and test results.  

Table 2.1 provides a second validation case through comparison of the five-degree-of-

freedom gear-bearing dynamic model’s predicted natural frequencies with those 

provided in [15]. Since natural frequencies are characteristics of a linear model, the 

backlash and time varying stiffness were omitted and the bearing forces were 

represented by the stiffness and damping provided in the reference. The correlation is 

shown in the table and confirms excellent agreement.  
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Figure 2.3 Comparison of dynamic transmission error with experimental 

measurements in [4] (reprinted from [34]) 

 

 

 Calculated natural frequencies in [93] 

Natural frequencies  

based on current model 

1st mode 0 Hz 0 Hz 

2nd mode 1,149 Hz 1,149.3 Hz 

3rd mode 1,293 Hz 1,293.6 Hz 

4th mode 1,604 Hz 1,604.3 Hz 

5th mode 1,799 Hz 1,799.1 Hz 

6th mode 5,043 Hz 5,043.7 Hz 

Table 2.1 Comparison of calculated natural frequencies with [93] (adapted from 

[93]) 
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2.2.2. Finite element model of plain journal bearing 

The Reynolds equation [34] for an incompressible lubricant combines the fluid 

continuity and momentum equations into a partial differential equation for film pressure, 

and is given by  

3 3

12 12 2

J JRh p h p h h

z z t



    

        
+ = +                

(2.15) 

where J  is the rotating speed of the journal, and JR  and   represent the radius of the 

journal and the viscosity of the lubricant, respectively. The centers of the bearing and the 

journal are BO  and JO  in Figure 2.4, respectively. 

 

 

Figure 2.4 Axial mid-plane section of a journal bearing 
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The displacements of the journal center relative to the bearing center in the x  and 

y  directions are Jx  and Jy , respectively, and p  is the pressure in the lubricant film. 

Expressions for fluid film thickness and its derivative 
( )h

t




 at   are given by 

( ) cos sinB J Jh C x y  = − −  

( )
cos sinJ J

h
x y

t


 


= − −


 

(2.16) 

where BC  represents the bearing radial clearance. 

The mathematical model assumes rigid shafts and rigid attachments between the 

bearings and ground. Therefore, the journal motions Jx  and Jy  are identical to their 

respective gear centerline motions. Thus 1x , 1y  are identical to J1x  and J1y  , and 2x , 2y

are identical to J2x  and J2y .  

The finite element mesh of a fluid film is illustrated in Figure 2.5. The coordinate 

  corresponds to the circumferential direction of the film and the direction of rotation is 

from the left ( B ) to the right ( E ). The axial coordinate is represented with z  and only 

a half-length (
2

L
) of the film is modeled due to its symmetry.  The pressure on the 

bottom ( 0z = ) side of the mesh are set to ambient pressure ambientP . Continuous pressure 

and flow condition are imposed on the left and right sides of the mesh. The zero-flow 

condition at the symmetric side (
2

L
z = ) and the continuous pressure and pressure 

gradient conditions at left/right sides are applied as follows 

h
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z=L/2 0v = , θ=π θ=-πP P= , 
θ=π θ=-π

p p

 

 
=

 
  (2.17) 

 

 

Figure 2.5 Mesh and boundary conditions for finite element journal bearing film 

model 

 

The Reynolds equation is solved with a mesh of triangular simplex finite 

elements, which interpolate the two-dimensional pressure distribution in the film 

domain.  The instantaneous reaction force on a journal is obtained by integrating the 

pressure distribution. Considering that symmetry condition the journal reaction force 

becomes   

/2bix
bi 0

biy

cos
2

sin

LF
F p d dz

F








−

    
= =   
    

   (2.18) 
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2.3. Nonlinear steady-state solution methods 

2.3.1. Multiple shooting method 

The shooting method (SM) is a numerical procedure that utilizes an iterative 

algorithm and numerical integration of the nonlinear differential equations to locate co-

existing, periodic equilibrium states. The SM provides a guided iterative search to locate 

the state vectors that repeat after a specified, or unknown in the case of autonomous 

systems, period. The single shooting method (SSM) is widely used in nonlinear 

dynamics research because of its simplicity. However, SSM may experience 

convergence problems, especially at saddle-node points. Multiple shooting methods 

(MSM) improves the numerical stability of the SSM by dividing time intervals into 

smaller ones. Compared to SSM, the MSM shows more robust convergence to periodic 

states and is less sensitive to the selection of initial state guesses. In addition, MSM is 

more suitable for parallel computing, thus making it desirable for systems with a large 

number of degrees of freedom.  

The MSM algorithm is explained in this section. The non-autonomous nonlinear 

equations of motion can be represented by the first order form as 

( , , )
d

p
d




= =x x h x     ( 1)n  (2.19) 

where x  is a state vector,   is an explicit time variable in the forcing term and p  

represents the physical parameters of a system. The period of the steady-state harmonic 
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response defined by a user is represented by the minimum period FP  and a rational 

number R  in the non-autonomous case 

R FP RP=  (2.20) 

The solution at the end of the period RP  is represented  

( , (0) )RP= = =
R

T 0x x x x  (2.21) 

where 0x  is the initial condition state vector. If 0x  is a solution on an orbital equilibrium 

state of the period RP , it will result that 

( , (0) )RP= = = =
R

T 0 0x x x x x  

= +0x g e  

(2.22) 

where g  is a user-defined guess of initial conditions, and e  is an error term. 

Unlike SSM which requires the single end-point constraint ( 0
R

T =x x ) as 

explained above, MSM divides RP  into smaller intervals and generates multiple 

constraints as follows: 

1
1 0 1( , (0) )P P= = = =x x x x x  

2
2 1 2( , (0) )P P= = = =x x x x x  

 

1
1 2 1( , (0) )

m
P m m mP

−
− − −= = = =x x x x x  

1 0( , (0) )
m

P m m mP −= = = = =x x x x x x  

(2.23) 
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where divided time intervals are 0 10 m RP P P P=    = . Note that m  is the number of 

time intervals defined by a user. A multi-dimensional Newton-Raphson method is 

applied to update 0x . 

For an autonomous system, the additional phase condition should be defined 

since the point of the periodic solution at a specific time is not unique. In this study, a 

phase condition that sets the DTE from Eq. (2.1) as zero is used [94].     

0 0 0( , ) ( , ) 0A AP P= − =H x g x x  

0( ) 0=c x  
(2.24) 

where AP  is a period of an autonomous system orbit to be identified along with an initial 

condition 0x . 

2.3.2. Arc-length continuation 

The shooting method may take considerable computation time, especially when 

plotting co-existing solution loci versus system parameters. “Continuation algorithms” 

have been developed to generate the loci (branch plots) with significantly increased 

efficiency relative to conducting independent SM searches for each parameter value. The 

Arc-length Continuation (AC) method [94] is applied in this research. AC provides 

robust solution searches even in high curvature regions by utilizing the trajectory of the 

solution curves along an arc-length as shown in Figure 2.6.  
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Figure 2.6 Pseudo arc-length continuation method 

 

An additional unknown  is involved in the iteration search. The next solution is  

1

1

( , )

( , , )

T

i i
gi i i i

n n n n
i i

i i ii n n
n n nn s

 

 


+

+

 
           
      
          

 

−
= +

  −
 

J J
g g f g

k k q g
x

 (2.25) 

where   and s  are operating parameters and arc-length of the solution curve, 

respectively, n  is a current step number, J  is Jacobian matrix with regard to  , and k  

is the constraint imposed on the solution procedures as 

2
2 2

1 1
2

( , , ) ( ) ( )i i
n n n ns s   + += − + − − k x g g  (2.26) 

where   is a relaxation factor, and s  is an arc-length. 

Then Newton-Raphson iteration is performed until the convergence criteria are 

satisfied. A continuation of periodic solution searches is carried out to plot a frequency 

response in the excitation frequency range of interest, including bifurcation points. The 


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phase condition in Eq. (2.24) is added to Eq. (2.25) for the autonomous system 

continuation algorithm. 

2.3.3. Stability identification based on the shooting method 

The Jacobian matrix of the shooting method is calculated to determine the local 

stability of periodic solutions. More specifically, the eigenvalues of the Jacobian matrix 

at a steady-state solution identifies the solution’s stability and its bifurcation type. 

Perturbed solutions are computed to generate the Jacobian matrix entries. The system is 

considered unstable if the maximum magnitude of the eigenvalues is larger than unity. 

2.3.4. Lyapunov exponents for identifying chaos 

Various approaches are used to identify the presence of chaos in the response of 

a nonlinear dynamical system. The most widely used approach is to calculate Maximum 

Lyapunov exponent (MLE, max ). Lyapunov exponents indicate the rate of separation of 

two infinitesimally close trajectories in the local phase space [94]. A total of n  initial 

separation vectors with different directions are used for a system with n  states, to obtain 

a spectrum of n  Lyapunov exponents (LE, ( 1,2,..., )i i n = ) for calculating the rates of 

separation. The simultaneous numerical integrations of nonlinear differential equations 

and linearized form of them are required for the MLE calculation. 

Nonlinear differential equations :  ( )=x g x  

Linearized form of Eq. (2.27) : ( )=β L β                                    

(2.27) 

(2.28) 
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The actual and linearized trajectories with perturbed initial conditions are 

calculated from Eq. (2.27) and Eq. (2.28), respectively, at various times along the 

nonlinear system trajectory.  Deviation distances are obtained from the difference 

between the nonlinear trajectory and linearized trajectories.    

2 2 2
1 1( ) nt   = + + +Δ x x x  (2.29) 

An appropriate time interval ft  is selected for the numerical integrations to avoid 

a numerical error. Sets of orthonormalized perturbed vectors are obtained from a Gram-

Schmidt procedure as 

1

1

1
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f

t

t
=
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β
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2 2 1 1
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2 2 1 1
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t t
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−
=

−
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β
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1
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1

( ) ( ( ) )
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i
m m

m f m f i i

i
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−

=

−

=

−

=
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


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β
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 (2.30) 

After conducting the integrations of  of Eq. (2.28), (2.29), and (2.30) for r  times, 

the Lyapunov exponents are obtained as 

1

1
ln( ( ))

r
k

i i k
f k

t
rt


=

=   (2.31) 

where ( )k
i kt  is the denominator of the orthonormal vector k

iβ , k  denotes the thk  time 

step and i  represents i th vector element. 

The MLE is used as a quantitative measure to determine the chaotic response of a 

nonlinear dynamical system as follows.  
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• max 0  : System is chaotic (necessary but not a sufficient condition 

for chaos) 

• max 0  : System attracts to a fixed point or a stable periodic orbit 

(asymptotically stable) 

• max 0 = : The orbit is quasi-periodic. 

(2.32) 

 

2.4. Numerical example 

The five-degree-of-freedom geared rotor-bearing model of Figure 2.2 and Eq. 

(2.14) is utilized to demonstrate various nonlinear phenomena induced by gear and 

journal bearing nonlinearities. The multiple shooting/continuation method and Lyapunov 

exponents discussed in section 3 are utilized along with direct numerical integration. 

MATLAB ODE15s was used with a relative tolerance of 10−9 for computing the 

Jacobian matrix in the shooting/continuation procedure. Embedded C++ coding and 

parallel processing are utilized in the MATLAB program to accelerate the execution. 

The results are divided into 3 sections (1) parametric resonances/jump phenomena and 

the effect of journal bearing parameter variations on those phenomena, and (2) chaotic 

responses due to gear nonlinearity and the effect of journal bearing parameters on the 

responses, and (3) the effect of gear mesh stiffness on the hydrodynamic stability of the 

gear system supported by journal bearings. Solid and dashed lines indicate stable and 

unstable responses, respectively in all figures. Table 2.2 summarizes the parameters of 

the spur gear pair and journal bearings used in this study.       
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Gear parameters 

Mass 1 2 9.3276m m= =  kg 

Moment of inertia 1 2 0.03187J J= = kg · m2 

Radius of gears 1 2 0.0982R R= = m 

Pressure angle 20 = ° 

Backlash amplitude 0b =100 μm 

Mean mesh (tooth) stiffness 0k = 1e8 N/m 

Mesh damping ratio 0.01~ 0.025m =  

Number of gear teeth N1 = N2 = 28 

Applied torque (T1) 100~3,000 N m 

Journal bearing parameters 

Bearing diameter 0.092BD = m 

Bearing clearance 74 ~184BC = μm 

Bearing /L D  ratio 0.3~2 

Lubricant viscosity 10 ~ 90 =  mPa s 

Table 2.2 Parameters of the spur gear pair and journal bearings 

 

2.4.1. Parametric resonances and jump phenomenon 

This section presents results for parametric instability, including fundamental and 

subharmonic resoanances induced by time varying mesh stiffness. Both the fundamental 

and subharmonic resonances are parametric resonances since they are removed when the 

time varying component of the gear mesh stiffness is removed.  Parametric resonance 

and jump phenomena of a spur gear system with backlash nonlinearity and time-varying 

mesh stiffness were treated in [1-8] and more recently in [15, 9-14]. However, the effects 
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of journal bearing parameters on the nonlinear response of the geared system needs 

further investigation. Parametric instability of the fundamental and double-period 

subharmonic frequencies is presented below including journal bearing effects. Applied 

torque input is considered as an excitation source, and time-varying mesh stiffness with 

the frequency corresponding to gear mesh frequency g  in Eq. (2.3) is included. No 

imbalance excitation and static transmission error ( )re t  in Eq. (2.2) are applied in this 

section. The non-autonomous, multiple shooting/continuation methods in section 3 are  

applied to the system equations to analyze the influence of journal bearing parameters on 

nonlinear responses.  Only the first Fourier coefficient of the time-varying mesh stiffness 

1s  in Eq. (2.2) was included, and it was set equal to 0.2, since values from 0.1 to 0.3 are 

employed in the literatures [1-15]. The bearing L/D  ratio is 1, the radial clearance is 105 

μm, the lubricant viscosity is 30 mPa s, and a applied torque of 1,250 N m is used for the 

nominal values of the simulation. Each parameter is varied to investigate its effect on the 

softening effect due to gear nonlinearities. Direct numerical integrations with initial 

conditions determined from the shooting/continuation procedure are performed to obtain 

peak-to-peak displacement amplitude vs. rotor operating speed plots. At the same time, 

the stability of the periodic solutions is presented and obtained from the shooting 

method’s Jacobian matrix eigenvalues.   
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Fundamental resonance 

Figure 2.7 shows the response amplitude regarding operating speed for the non-

dimensional peak-to-peak displacements of DTE (
0b


) where   is defined from Eq. 

(2.1). The applied torque is 1,100 N m in this case. The linear system resonance will 

occur when the gear mesh frequency 0
g n

e

k
N

J
  = = =  . This occurs at around 2500 

rpm in this case.  

  

(a) (b) 

Figure 2.7 Effect of backlash (a) peak-peak displacement of DTE (b) time response 

at 2,000 rpm 

 

Including backlash causes a softening effect related left-leaning backbone curve 

with an unstable branch occurring between 1,800 and 2,300 rpm in Figure 2.7 (a). 

Multiple co-existing solutions are seen to occur when the rotor speed is in the vicinity of 

n

N


 where N  represents the number of gear teeth. The presence of co-existing solutions 
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is clearly seen to result from including backlash, and the peak DTE severity is seen to 

nearly double when backlash is included. Note that the time-varying stiffness effect is 

included in both the with and without backlash cases. The increased DTE caused by the 

gear nonlinearity is also confirmed by the time response of both cases at 2,000 rpm in 

Figure 2.7 (b). 

  

(a) (b) 

Figure 2.8 Effect of (a) applied torque and (b) bearing L/D ratio on the peak-peak 

displacement of DTE through the fundamental resonance (solid line: stable, dotted 

line: unstable) 

 

The results in Figure 2.8 are obtained for three different applied torques 1T , i.e., 

1,000, 1,250 and 1,500 N m ( 2 0T = ), where 1T  is for driving gear and 2T  is for driven 

gear. All three cases exhibit a fundamental parametric resonance caused by the time-

varying mesh stiffness, with a softening effect starting from near 2,300 rpm. The 

amplitudes of the forced steady-state harmonic response increase with increased torque 

inputs. In all cases of Figure 2.8 (a), the unstable responses emerge through saddle-node 

bifurcations around 2,300 rpm. Three or five multiple, co-existing steady-state responses 
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occur between 1700 – 2300 rpm depending on the applied torque values. The critical 

rpm (2300 rpm) for jump-up behavior is nearly independent of applied torque variation, 

but in contrast, the critical rpm for jump-down behavior is more sensitive to applied 

torque variation. The critical rpm of jump-down behavior tends to increase with 

increasing drive torque. The separation between the jump-up and jump-down rpm is 

reduced with increasing applied torque. The emergence of the right-leaning portion of 

the response curves, which observed at the highest applied torque 1,500 N m may be 

explained in terms of the backlash forces. Three different meshing states can exist 

depending on the maximum DTE; no impact, single-sided impact, and double-sided 

impact.  In Figure 2.8 (a), the system shows only a single-sided contact with the 1,000 N 

m applied torque, which is the source of the primary softening effect. Increasing the 

applied input torque gives rise to a hardening effect, which introduces additional co-

existing responses and jump-up/down frequencies. The peak-peak response at 1,500 N m 

shows a clear hardening effect along with the softening effect. The number of multiple 

co-existing responses increased from three to five with the applied torque increased from 

1,000 to 1,500 N m. The figure also shows a tendency of the response curve to move 

rightwards towards the zero-backlash response as the DTE increases. This is consistent 

with a greater engagement of teeth as the amplitude increases.  These results are 

consistent with the experimental and numerical results in [4], which used a single-

degree-of-freedom gear model considering only torsional motion. Prior research utilized 

a simple rigid or linear stiffness and damping bearing model, or analytical short bearing 
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theory, or finite-length impedance method, which precluded the accurate investigation of 

nonlinear bearing parameter effects on the response. In this study, utilizing the finite 

element method for the nonlinear fluid film force of the finite-length bearing, the bearing 

L/D  ratio is varied from 0.3 to 2 in Figure 2.8 (b). The peak-peak DTE displacements in 

the frequency range away from the resonance region are not significantly affected by the 

bearing L/D  ratio variation. However, similar to the applied torque input case, the jump-

down frequency is influenced by the L/D  ratio variation, since the jump-down event 

occurs at a relatively lower frequency range with higher L/D  ratio. The jump down 

speed is lowered by about 100 rpm for L/D  = 2 compared with L/D  = 0.3. Figure 2.9 

presents the bifurcation diagrams corresponding to the input torques 1,000 and 1,500 N 

m in Figure 2.8 (a), in a manner that highlights the jump phenomena and multiple co-

existing solutions. 

  

(a) (b) 

Figure 2.9 Bifurcation diagrams of (a) 1,000 Nm torque and (b) 1,500 Nm torque 

cases in Figure 2.8 (a) 
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Figure 2.10 illustrates the effect of varying bearing lubricant viscosity on steady-

state, nonlinear harmonic response. Lubricant viscosities of 10 and 90 mPa s, in addition 

to the nominal value of 30 mPa s, are simulated for two L/D  ratio ( L/D = 0.3 and 1). 

Increasing the viscosity decreases the jump-down frequencies and increases the peak 

resonant amplitude in both L/D cases.  

  

(a) (b) 

Figure 2.10 Effect of lubricant viscosity on the peak-peak response of DTE (a) 

Bearing L/D  = 0.3 and (b) Bearing L/D  = 1 (solid line: stable, dotted line: unstable) 

 

Figure 2.11 shows the frequency-amplitude diagram with radial bearing 

clearances of BC  = 184 μm and BC  = 74 μm, along with nominal BC  = 105 μm. The 

results with the smallest clearance, i.e., BC  = 74 μm, show a broader range of co-existing 

solutions region compared to other values in both the L/D  = 0.3 and the L/D  = 1 cases. 

The BC  = 74 μm and L/D  = 1 case displays a double-sided impact and resulting in 

hardening effect in Figure 2.11 (b). The L/D  = 1 case shows more reduction in jump-

down frequency as compared to the L/D  = 0.3 case. This reduction may be attributed to 
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the fact that the L/D  = 1 geometry has more fluid film area than for L/D  = 0.3, and 

hence greater force to affect the parametric resonance. 

  

(a) (b) 

Figure 2.11 Effect of bearing clearance on the peak-peak response of DTE (a) 

Bearing L/D  = 0.3 and (b) Bearing L/D  = 1 (solid line: stable, dotted line: unstable) 

 

Figure 2.12 shows five co-existing steady-state responses in the frequency and 

phase plane domain for BC =74 μm case in Figure 2.11 (b). For the phase portrait, the 

rotor spin speed equals 1850 rpm, and it is obtained via the non-autonomous MSM 

developed in section 3. The excitations include the time-varying mesh stiffness and the 

applied torque.  Periodic responses 1, 3 and 5 are stable and 2 and 4 are unstable as 

predicted by the eigenvalues of the Jacobian matrix of the MSM. Note that the unstable 

forced harmonic responses cannot be obtained by direct numerical integration, but only 

with a directed search approach such as the MSM. 
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(a) (b) 

Figure 2.12 Multiple co-existing responses using the shooting method ( L/D  = 1, 𝝁 = 

90 mPa s, 1T =1,500 N m). (a) Frequency-amplitude diagram (b) Phase portrait at 

1,850 rpm (Solid line: stable, dotted line: unstable) 

 

The mesh deformation ( )t  in Eq. (2.4) corresponding to the multiples responses 

in Figure 2.12 are shown in Figure 2.13. The mesh deformation in Figure 2.13 (a) has 

static and dynamic components and never loses contact. The response in Figure 2.13 (b) 

has zero mesh deformation for most of the period and demonstrates the effect of single-

sided contact induced by the backlash nonlinearity. Figure 2.13 (c) shows double-sided 

contact cycling between positive, zero and negative mesh deformation states. The result 

of this contact behavior is a net hardening effect as evidenced by the right-leaning 

secondary bend in the response 5 curve of Figure 2.12.  
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      (a)  (b)       (c) 

Figure 2.13 Co-existing mesh deformation ( )t  responses: (a) Response 1 (b) 

Response 4 (c) Response 5 

             

Figure 2.14 illustrates the repelling/attracting motions among stable and unstable 

forced harmonic response orbits at 1850 rpm. The unstable Response 2 is repelled 

towards the stable attractors, i.e. Response 1 (Figure 2.14 (a)) or Response 3 (Figure 

2.14 (b)). Thus, the unstable manifold (the dotted line) initiated by a saddle-node 

bifurcation in Figure 2.12 acts as a border manifold, which provides information about 

the convergence route in phase space. 
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(a) (b) 

Figure 2.14 Repelling motion of the unstable orbit (response 2) at fundamental 

resonance region (a) Response 2 → Response 1 (b) Response 2 → Response 3 (solid 

line: stable, dotted line: unstable) 

 

Subharmonic resonances 

Prior work [3, 95, 96] revealed that subharmonic resonance of geared systems is 

highly dependent on the amplitude of time-varying mesh stiffness, mesh damping ratio 

and static applied torque. The focus here is to demonstrate the effect of journal bearing 

parameters on the subharmonic vibrations occurring for a rotor speed in the vicinity of 

2 n

N


. The maximum rpm is extended from 3,100 rpm for the fundamental resonance 

case to 5,500 rpm to observe the subharmonic resonances. Figure 2.15 (a) shows that 

increasing torque increases the peak-peak DTE amplitude, the backlash nonlinearity 

generally causes a softening (left-leaning resonance) effect, but a double-sided contact is 

evidenced by the right-leaning, hardening peak at 750 N m torque, similar with the 

fundamental resonance in Figure 2.8. 
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(a) (b) 

Figure 2.15 Effect of (a) applied torque and (b) bearing L/D  ratio on the peak-peak 

response of DTE of subharmonic resonance (solid line: stable, dotted line: unstable) 

 

Figure 2.16 provides waterfall diagrams corresponding to the 750 N m torque 

case in Figure 2.15 (a) and the bearing L/D  = 0.6 case in Figure 2.15 (b). Figure 2.16 (a) 

and (b) correspond to run-up and run-down in speed for the 750 N m torque case with 

L/D  = 1.  Figure 2.16 (c) and (d) correspond to run-up and run-down in speed for the 

bearing L/D  = 0.6 case with 625 N m torque input. The figures show jump-up and jump-

down bifurcations near 2,500 rpm, and the presence of a sub-harmonic resonance and a 

0.5x gear mesh frequency response. 
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(a) (b) 

 

 

(c) (d) 

Figure 2.16 Waterfall diagrams (a) 750 N m Torque, run-up, (b) 750 N m Torque, 

run-down, (c) L/D  = 0.6, run-up, (d) L/D  = 0.6, run-down 

 

In Figure 2.15, unstable branches appear as a period-doubling bifurcation 

emerges near 5,000 rpm, which corresponds to twice the fundamental resonance 

frequency rotor speed (
2 n

N


). A saddle-node bifurcation occurs as the period-doubled 

unstable branches reach their peak amplitude, yielding a stable branch. As a result, one 

stable solution with the gear mesh frequency ( g ) and two unstable/stable solutions with 

half gear mesh frequency ( 0.5 g ) coexist in the operating speed range between 3,000 

and 5,000 rpm.   
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(a) (b) 

Figure 2.17 Effect of (a) lubricant viscosity and (b) bearing clearance on the peak-

peak response of DTE for subharmonic resonance (solid line: stable, dotted line: 

unstable) 

 

Variation of the journal bearing parameters significantly affects the subharmonic 

resonance as shown in Figure 2.15 (b) and Figure 2.17. The sub-harmonic resonance is 

seen to vanish when considering a drop in L/D  from 0.8 to 0.6. Physically this may 

result from the more significant force of the larger L/D  bearing inducing the 

subharmonic vibrations. Figure 2.17 (a) shows that increasing the lubricant viscosity 

extends the frequency overlap range by decreasing the jump-down frequency. Similar 

trends are also observed in the case of bearing clearance in Figure 2.17 (b). The 

subharmonic is seen to disappear for the low viscosity (10 mPa s) case and the low 

clearance (105 μm) case. Figure 2.18 shows multiple co-existing DTE versus time plots 

for the 30 mPa s case in Figure 2.17 (a): 3575 rpm, L/D  = 1, an applied torque of 625 N 

m, a lubricant viscosity of 30 mPa s and a bearing clearance of 36.8 μm. The nt  in 

Figure 2.18 is the non-dimensional time variable where the time t  is multiplied by the 

torsional natural frequency n . Note that the Response 1 in Figure 2.18 (a) has the 
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frequency equal to g , while the Response 2 and 3 in Figure 2.18 (b) and (c) have the 

half frequency of g . 

 
                       (a)                                  (b)                                     (c) 

Figure 2.18 Time response of multiple co-existing response of DTE (a) Response 1, 

(b) Response 2, (c) Response 3 

 

2.4.2. Chaotic response 

The effect of linearized bearing model stiffness and damping coefficients, static 

transmission error, tooth friction, etc. on the chaotic response of geared systems was 

investigated in [16, 18, 19, 24, 97, 98], and chaotic behavior was observed 

experimentally in [6]. The effects of varying journal bearing parameters using a 

nonlinear bearing model, on the geared system’s chaotic response are discussed below. 

The model parameter values include a low torque load of 200 N m, a light mesh 

damping ratio of 0.01, L/D  = 0.3, and the mean static transmission error 0e  is set to 0b , 

the coefficient of static transmission error jp  in Eq. (2.2) is set to 0.15 . Unbalance force 

is not included in this simulation. The nonlinear equations are solved using MATLAB’s 

ODE 15s with a relative tolerance of 10−5. The time response corresponding to the first 
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1500 gear mesh periods of the system was discarded from the sampled data to ensure 

that the responses reached steady-state conditions. The steady-state responses during the 

last 500 gear mesh periods were employed for the plots shown below. The MLEs of the 

spur gear system were plotted to identify the onset of chaotic motion. The MLEs 

converged after 600-time intervals with 0.25 gear mesh periods per interval.  

 

(a) 

(b) 

(c) 

Figure 2.19 Bifurcation diagrams vs. operating speed for varying parameter values 

(a) applied torque (100 , 1,000 and 2,000 N m) (b) lubricant viscosity (10, 40 and 70 

mPa s) , and (c) Bearing clearance (74, 105 and 184 μm) 
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Figure 2.19 shows DTE bifurcation diagrams versus rotor rpm while varying 

torque, bearing lubricant viscosity and radial clearance. The viscosity and clearance are 

held fixed at 40 mPa s and 105 μm, respectively, while varying torque in Figure 2.19 (a). 

The torque and clearance are held fixed at 1100 N m and 105 μm respectively while 

varying viscosity in Figure 2.19 (b). The torque and viscosity are held fixed at 1100 N m 

and 40 mPa s respectively while varying radial clearance in Figure 2.19 (c). The 

Poincaré dots are sampled at the gear mesh frequency period (
2

g

t



 = ). 

With a relatively low applied torque (100 N m), the system performs 1x 

synchronous motions at the gear mesh frequency until the operating speed reaches about 

1,800 rpm. Then chaotic responses emerge and are maintained at higher speeds.  Note 

that with increasing applied torque from 1,000 to 2,000 N m, the operating speeds where 

jump occurs are slightly increased from 2,050 to 2,150 rpm, which implies that the 

variation of applied torque has an impact on the natural frequencies of the geared system 

supported by journal bearings, via a torsional-lateral coupling. Comparison of three 

cases reveals that the increasing torques tend to mitigate the chaotic responses. 

Figure 2.19 (b) shows that the chaos in DTE response starts at lower speed and ranges 

over a larger set of values as the bearing lubricant viscosity increase from 10 to 70 mPa 

s.  In all three diagrams of Figure 2.19 (b), with higher operating speeds over 2,500 rpm, 

the chaotic responses turn into period four and two motions, and eventually into period 

one motion. Figure 2.19 (c) shows how the chaotic behavior in DTE occurs with the 
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radial bearing clearance values from 74 to 184 μm. Period-doubling bifurcations occur 

with decreasing speeds from 4,500 rpm to lower speeds in the 74 and 105 μm cases, as 

exemplified by the period one motion turning into period two motion around 3,800 rpm, 

followed by additional period doubling into chaos. In Figure 2.19 (b) and (c), the lower 

viscosity and high bearing radial clearance tend to suppress the chaotic behaviors and 

show relatively stable motions. 

 

Figure 2.20 Bifurcation diagrams and Poincaré attractors at different speeds, for a 

lubricant viscosity 40 mPa s case in Fig. 19 (b) 

 

Figure 2.20 is included to more clearly illustrate the occurrence of chaotic and 

period-doubling bifurcations corresponding to the 40 mPa s case in Figure 2.19 (b). 

Attractors are presented for the four different operating speeds (2,300 rpm, 2,900 rpm, 

3,500 rpm and 4,100 rpm). The strange attractor and corresponding positive MLE value 
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of 0.056 both confirm chaotic behavior at 2300 rpm. The number of attractors (4→2→1) 

confirms the occurrence of period-doubling bifurcations as the speed decreases from 

4,100 to 3,500 to 2,900 rpm. 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 2.21 Bifurcation and MLE diagrams vs. (a) applied torque (0~2,400 N m), 

(b) bearing clearance (60 ~185 μm) and (c) lubricant viscosity (5 ~90 mPa s) 
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Figure 2.21 shows DTE bifurcation and MLE diagrams versus applied torque, 

journal bearing radial clearance and viscosity, at the fixed operating speed 1,540 rpm. 

The viscosity is held fixed at 30 mPa s, and the clearance is held fixed at 100 μm while 

varying torque in Figure 2.21 (a). The Fourier coefficient of the static transmission error 

in Eq. (2.2) is set to 0.15  and applied to the system. The sampling frequency of Poincaré 

dots is the gear mesh frequency g .  

The MLEs quantitatively confirm the existence of chaotic behavior. Figure 2.21 

(a) presents the bifurcation diagram and MLE plot with applied torque ranging from 0 to 

2,400 N m. Increasing the applied torque is seen to eliminate chaotic motion, and 

synchronous 1x motion appears at applied torques above 400 N m. The MLEs show 

positive values, indicating chaos, with low applied torque (< 400 N m). For instance, at 

200 N m, the corresponding MLE has the positive value of +0.07. 

The radial bearing clearance is varied from 60 to 185 μm in Figure 2.21 (b) with 

the rotor speed at 1,540 rpm and the lubricant viscosity of 30 mPa s. Chaotic motion 

occurs in three separate clearance ranges (i.e., 60~70 μm, 95~105 μm, 175~185 μm), and 

period-doubling routes to chaos with decreasing and increasing parameter values are 

observed in the ranges 60~80 μm and 130~180 μm, respectively. In Figure 2.21 (c), the 

applied torque is held fixed at 100 N m, and the clearance is held fixed at 100 μm while 

varying viscosity. The figure shows chaos appearing in two ranges of lubricant viscosity: 

over the ranges of 0~7 mPa s and 55~85 mPa s. All bifurcation diagrams in Figure 2.21 
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display the period-doubling route to chaos, which indicates that the system goes into 

chaotic states by doubling its period with increasing or decreasing control parameters. 

 

       (a) 

 

       (b) 

 

       (c) 

Figure 2.22 Frequency spectra, phase portraits and Poincaré attractors of dynamic 

transmission error (DTE) for different bearing clearances (a) 80 μm (b) 74 μm (c) 

61 μm in Figure 2.21 (b) 

 

The periodic, period-doubling and chaotic DTE behaviors implied in Figure 2.21 

(b) for bearing clearance variation, are further confirmed in the frequency spectrum, 
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phase portrait, and Poincaré attractor plots in Figure 2.22. Three radial bearing clearance 

values, i.e., 80, 74 and 61 μm, are examined. As can be seen by comparing Figure 2.21 

(b) and Figure 2.22 (a) and (b), the geared system with MLE = −0.005  (80 μm case)  

and −0.002 (74 μm case) has period two and period four DTE responses, respectively, 

confirmed by the Poincaré attractors. The 61 μm bearing clearance case in Figure 2.22 

(c) was selected to illustrate chaotic DTE response based on an MLE (+0.06), from 

Figure 2.21 (b).  The phase portrait orbit has a clear aperiodic response, the frequency 

spectrum has a broadband character, and the corresponding Poincaré dots form a strange 

attractor. These results show that the system experiences period-doubling bifurcation 

with decreasing bearing clearance as the system transitions into chaotic responses. 

 

2.4.3. Effect of gear mesh stiffness on oil whirl 

Oil whirl is a rotor dynamics term describing a self-excited, shaft vibration 

anomaly common to rotating machinery supported by oil film, fixed pad, journal 

bearings. The dominant symptom of oil whirl is a sub-synchronous limit cycle vibration 

that is sustained by the journal bearing forces, as opposed to the external excitation such 

as rotor mass imbalance. In this section, the effect of gear mesh stiffness on the oil whirl 

instability is investigated. The bearing supported geared rotor pair is modeled as an 

autonomous (unforced) system with perfectly balanced rotors, and as such is analyzed 

utilizing the autonomous shooting method. The multiple shooting/continuation method 

for autonomous cases developed in section 3 is used for identifying periodic solutions. 
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This approach for drawing the bifurcation diagrams was incapable of finding the 

solutions near saddle-node bifurcations without manual assistance. The continuation 

algorithm was restarted near the saddle-node bifurcation points and the step size was 

reduced to help the solutions converge. This typically requires two or three restarts to 

plot one complete bifurcation diagram.   

  

   (a)   (b) 

Figure 2.23 Run-up and run-down simulations using direct numerical integration 

(a) mesh stiffness 1e7 N/m (b) mesh stiffness 1e9 N/m 

 

Figure 2.23 shows a bifurcation diagram of the non-dimensional maximum and 

minimum vertical position of the rotor center in the load direction versus operating 

speed. Results are shown for two mesh stiffness values, i.e., 1e7 N/m and 1e9 N/m. 

The input torque applied to the gear pair is 1,000 N m.  Run-up/run-down simulations 

are conducted separately, using direct numerical integration, and the two results are 

combined to generate the figure. In Figure 2.23 (a), as the operating speed increases, the 

jump-up phenomenon is observed at 37,500 rpm, which corresponds to the onset speed 

of oil whirl. Jump-down frequency is also predicted at 34,500 rpm with run-down 

0k =
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simulation, and consequently, the amplitude of vertical rotor response has been abruptly 

reduced at the same speed. The result with high mesh stiffness value, i.e., 1e9 N/m in 

Figure 2.23 (b), shows a delayed onset speed of oil whirl compared with 1e7 N/m case, 

such that the jump-up and jump-down frequencies are predicted at 39,500 and 37,000 

rpm, respectively. From this result, it is verified that mesh stiffness variation not only 

affects the high frequency vibration in a geared system but also may change the 

characteristics of hydrodynamic stability of a geared system supported by journal 

bearings. 

  

         (a)         (b) 
 

  
        (c)     (d) 

Figure 2.24 Bifurcation diagram using shooting/continuation method with mesh 

stiffness 1e7 N/m and applied torque 1,000 N m: (a) Bifurcation diagram using 

continuation algorithm, (b) result from continuation algorithm compared with 

numerical integration, (c) revolution speed versus response frequency and (d) zoom 

of (c) 
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It should be noted that the result with direct numerical integration is incapable of 

identifying co-existing solutions and the stability of responses. The bifurcation diagram 

is obtained with the continuation algorithm and the result is presented in Figure 2.24. In 

the case of mesh stiffness 1e7 N/m, in Figure 2.24 (a), the stable equilibrium position EP 

which is maintained over low operating speeds switches to unstable motion after 

crossing Hopf bifurcation point at 37,210 rpm. The transition from stable to unstable 

response is verified with the continuation algorithm, which provides the eigenvalues of 

the Jacobian matrix moving out of the unit circle in the complex plane. The point ① 

corresponds to a Hopf bifurcation, where an unstable subsynchronous response PS 1 

emerges and approaches the saddle bifurcation point ②. The amplitudes of the 

maximum and minimum responses of PS 1 quickly grow as the speed decreases until the 

saddle point is reached. After the saddle bifurcation, the subsynchronous branch 

becomes the stable response PS 2 and its maximum and minimum amplitudes slowly 

approach the bearing clearance limit. The results using the continuation algorithm are 

drawn in the same figure with the direct numerical integration results in Figure 2.24 (b). 

Two results agree well throughout the all speed ranges, except the unstable 

subsynchronous response PS 1 is only predicted with the continuation algorithm. The 

vibration frequencies of the branches are shown in Figure 2.24 (c) and its zoomed 

version in (d). The frequency range where subsynchronous vibration was observed is 

located between 17,000 and 23,000 rpm, which corresponds to the 45~50% of operating 

speed. 
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Figure 2.25 Bifurcation diagrams with various mesh stiffness values (1e7, 1e8 and 

1e9 N/m) and with an applied torque of 1,000 N m 

 

Bifurcation diagrams with three different mesh stiffness (1e7, 1e8 and 1e9 N/m) 

at 1,000 N m torque are drawn using the continuation algorithm in Figure 2.25. The 

onset speed of oil whirl is increased from 37,210 to 39,310 rpm as the mesh stiffness 

increases from 1e7 to 1e8 N/m. In contrast, the onset speed shift is relatively 

insignificant (110 rpm) between higher mesh stiffness cases, i.e., 1e8 and 1e9 N/m. This 

result shows that the gear and the journal bearing parameters are coupled and the 

variation of gear parameter may affect the hydrodynamic stability characteristics of fluid 

film bearings. 
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Applied torque   1e7 N/m 1e8 N/m  1e9 N/m 

Onset speed 

difference 

50 N m 10,450 rpm 10,480 rpm 10,490 rpm  40 rpm 

200 N m 18,760 rpm 18,890 rpm 18,910 rpm 150 rpm 

400 N m 25,360 rpm 25,780 rpm 25,800 rpm 440 rpm 

600 N m 30,750 rpm 31,390 rpm 31,410 rpm 660 rpm 

800 N m 34,780 rpm 36,070 rpm 36,130 rpm 1,350 rpm 

1,000 N m 37,210 rpm 39,310 rpm 39,420 rpm 2,210 rpm 

Table 2.3 Oil whirl onset speed with different torque and mesh stiffness 

(Identified utilizing Continuation algorithm) 

 

The effect of applied torque on oil whirl onset speed was presented in [30, 33], 

and the results showed that higher applied torque on the geared system delayed the oil 

whirl onset speed. This aspect of applied torque effect on oil whirl onset speed may be 

affected by the amplitude of gear mesh stiffness. The interaction between the applied 

torque and gear mesh stiffness is investigated with various torque and mesh stiffness 

values in Table 2.3. Six applied torque amplitudes from 50 to 1,000 N m were applied as 

mesh stiffness varies from 1e7 to 1e9 N/m. The onset speed of oil whirl is identified by 

employing the continuation algorithm to find the speed where the jump-up phenomenon 

occurs. As observed in the reference [30, 33], the onset speed generally increases with 

higher applied torques for all three stiffness cases. From the table, it is also evident that 

the effect of mesh stiffness magnitude on the onset speed is closely related to the 
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amplitude of torque values. When the lowest applied torque (50 N m) is applied, the 

onset speed delay caused by the mesh stiffness variation from 1e7 to 1e9 N/m is only 40 

rpm. Meanwhile, the speed delay increases up to 2,210 rpm with the application of the 

highest torque value (1,000 N m). This result confirms that the transition of oil whirl 

onset speed with different mesh stiffness is less significant at lower applied torques.  
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3. TILTING PAD JOURNAL BEARING MISALIGNMENT EFFECT ON 

THERMALLY INDUCED SYNCHRONOUS INSTABILITY (MORTON EFFECT)* 

 

3.1. Introduction 

The present study reveals a marked dependence of the ME on tilting pad journal 

bearing misalignment. This is established utilizing a high-fidelity model described with 

three-dimensional (3D) THD models of the fluid film, and 3D solid FEM bearing, and 

shaft structure models discussed in section 2. The journal misalignment model is 

included in the high fidelity bearing model, and the influence of its asymmetric fluid 

film distribution on the ME occurrence is investigated. The impact of pad-pivot type on 

the ME, with journal misalignment, is also considered. 

 

3.2. Modeling and ME prediction algorithms 

3.2.1. Tilting pad journal bearings 

The Reynolds equation for an incompressible Newtonian fluid with variable fluid 

viscosity and negligible fluid inertia/shaft curvature is  

1 2( ) / 0C P D U h t  +  +  =  (3.1) 

where 
1C  and 

2C  are constants related to variable viscosity  .  

1 2
0 0 0

( / ) ( / )
h z h

C d dz C d     = −   , 2
0 0 0

(1/ ) / (1/ )
h z h

C d dz d   =     

 

* Reprinted with permission from “Tilting pad journal bearing misalignment effect on thermally induced 

synchronous instability (Morton effect)” by Shin, D., and Palazzolo, A., 2020. Journal of tribology, 

143(3), 031802, Copyright [2020] by ASME 
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where z  is the axial coordinate of the fluid film bearing 

This form assumes laminar flow, uniform pressure distribution in the direction of 

film thickness, constant fluid density, and temperature-dependent variable viscosity. The 

viscosity-temperature relation is  

0( )

0

T T
e

  − −
=  (3.2) 

where  is the coefficient of viscosity, and 
0  and 

0T  are the reference viscosity and 

temperature, respectively. The fluid film temperature T  is solved for with the energy 

equation which is coupled with the Reynolds equation through the viscosity and velocity 

terms. The pressure distribution obtained from the Reynolds equation is utilized to 

obtain the fluid velocity from the relation 

0 0

0 0

0 0

(1/ ) (1/ )
( / ) ( / )

(1/ ) (1/ )

h z

z h

h h

d d
u d d p U

d d

   
     

   

 
 = −  +
  
 

 
 

 
 (3.3) 

The p  term is calculated in both the circumferential and axial directions for a 

full 3D thermo-hydro-dynamic analysis. The Reynolds cavitation model, which imposes 

a zero-pressure gradient at the cavitation boundary is utilized in the Morton effect 

simulations. This approach is widely utilized in the literature about journal misalignment 

[55,99,100]. Moreover, significant thermal expansion of the shaft and bearing pad 

accompanies the Morton effect. This decreases the film thickness significantly, which 

tends to suppress cavitation, as evidenced in the simulation results. Of course, more 

sophisticated, and more computationally intensive, cavitation models can be applied. 

This will be done in future work. 
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The two types of pad-pivots studied are cylindrical and spherical. The cylindrical 

pivot has angular pad tilting (pitch), and translational pivot motion (deformation), and 

the spherical pivot has rolling and yawing motions in addition to those of the cylindrical 

pivot. The model for journal and pad dynamics is illustrated in Figure 3.1 (a).  

 

  

(a) (b) 

Figure 3.1 (a) Model for journal dynamics and (b) Thermal expansion of pad/shaft 

 

The film thickness formula for the spherical- type pivot TPJB is  

. .

ˆ ˆ( , ) cos( ) sin( ) ( )cos( )

sin( ) ( , ) ( , )

P x y P b P

tilt P shaft TE pad TE

h z C e e C C

R h z h h z

    

   

= − − − − −

− − − −
 (3.4) 

where  

ˆ cos cos cos( / 2)x x pvt p roll p yaw pe e y z z     = − − − + ,

ˆ sin sin sin( / 2)y y pvt p roll p yaw pe e y z z     = − − − + . 

and  
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-  PC  and b
C  represent pad and bearing radial clearances. 

-  pvty , 
tilt , 

roll , yaw  are the pad-pivot deformation, and tilting, rolling and 

yawing pad angular displacements, respectively. 

-  z  and R  are the axial position and the journal radius, respectively. 

-    and p  are the circumferential coordinate of the bearing and pivot 

circumferential positions, respectively as shown in Figure 3.1 (a). 

 

Equation (3.4) considers the journal/bearing pad’s asymmetric thermal 

expansion, the variation of axial and circumferential motions of pads and deformation 

due to pivot compliance. The terms .shaft TEh  and .pad TEh  in Eq. (3.4) are the thermal 

expansions of the shaft and pads as illustrated in Figure 3.1 (b). For the cylindrical pivot-

type model, the terms related to roll 
roll  and yaw yaw  motions are removed from the 

equation.  

Journal misalignment is an imposed shift in angular position of the bearing or 

shaft. The misalignment term is incorporated into Eq. (3.4) by adding the terms 
x  and 

y  which represent the journal angular displacements in the x z−  and y z−  planes, 

respectively, as illustrated for y in Figure 3.2. 
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Figure 3.2 Permanent misalignment angle y  

 

The misalignment ratio, misalignment angle, and misalignment phase are defined 

as 

1

,

2 2
,

tan

y

B B

y

y

x

x
y x

y x x

AA
r r

C C

A A
L L

r

 





−

= =

= =

=

 (3.5) 

where yA  is the journal/bearing relative, end displacement due to y , and 
BC  L  are the 

bearing radial clearance and length. The misalignment ratio and angle x in the  𝑥 − 𝑧 

plane have similar definitions. For characteristically small misalignment angles 

sin y y =  applies. Then the updated equations for ˆ
xe  and ˆ

ye  with the misalignment 

terms become 

 

ˆ cos cos cos( / 2)x x pvt p pitch p yaw p xe e y z z z      = − − − + +  (3.6) 
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ˆ sin sin sin( / 2)y y pvt p pitch p yaw p ye e y z z z      = − − − + +  

 

 
 

(a) (b) 

Figure 3.3 Configuration of journal misalignment phase directions (a) 90r =   and 

(b) 270r =   

 

Two configurations of misalignment, i.e. 90r =   and 270  are illustrated in 

Figure 3.3 to explain the misalignment phase. Note that the right side of the shaft in the 

figure is the non-drive end (NDE) side while the other side is the drive end (DE). For 

both configurations, the misalignment ratio in the 𝑥 direction is zero (
xr = 0). If the yr  

value is non-zero and positive, the misalignment angle will be 90° from Eq. (3.5), and it 

corresponds to the case in Figure 3.3 (a).  

The 270° misalignment angle case in Figure 3.3 (b) has the same magnitude of 

misalignment ratio as the 90° case but with opposite sign, and this makes the 

misalignment phase of this case equal to −90° (=270°) based on Eq. (3.5).  
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Figure 3.4 Spherical pad-pivot type tilting pad dynamic model 

 

The equations for the tilting pad journal bearing with spherical pivot-type pads in 

Figure 3.4 with small motions are [55] 

_ _pad i pvt P pvt pad iM y K y F= − +  

_tilt i tiltI  = _tilt iMO  

_roll i rollI  = _roll iMO  

_Yaw i yawI  = _yaw iMO  

(3.7) 

where i represent the number of pads, _pad iM , _tilt iI , _roll iI  and _Yaw iI  are the mass and 

the tilting/rolling /yawing inertias of each pad, respectively, and _pad iF , _tilt iMO , 

_pitch iMO  and _yaw iMO  represent the fluid film force and the tilting/rolling /yawing 

moments applied to a pad, respectively. The equations can be applied to a cylindrical 

pivot-type tilting pad journal bearing by removing the rolling and yawing motions from 

Eq. (3.7). 
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3.2.2. Thermal model – 3D energy equation 

The energy equation  

2 2 2
2 2

2 2 2
( ) ( ) ( ) ( )

T T T T T u w
c u w k

x z x y z y y
 

       
+ = + + + + 

       
 (3.8) 

is solved utilizing eight-node isoparametric finite elements to obtain the 3D temperature 

distribution T  across the fluid film. The quantities in (8) are the film temperature T , 

density  , specific heat capacity c , thermal conductivity k , circumferential velocity u , 

and axial velocity v . The convection term in the film thickness direction is not 

considered due to the assumed thin film (bearing radial clearance 68 μm, bearing radius 

40 mm) while the conduction term is considered in all x , y  and z  directions. This 

approach is commonly used in the literature [102-104]. The fluid film temperature T is 

obtained during each journal orbit by solving Eq. (3.8) employing the variable viscosity 

  relation in Eq. (3.2), as discussed in section 3. The pad inlet boundary temperature is 

obtained from the mixing theory in [41]. An up-winding scheme [105] is employed in 

the finite element solution of Eq. (3.8) to avoid spatial oscillations due to the convective 

term. The film temperature is modeled as a quasi-steady state problem. 

Shaft and pad temperatures are predicted with the Laplace equation  

2 2 2

2 2 2

T T T c T

x y z k t

   
+ + =

   
 (3.9) 

assuming constant thermal conductivity.  Utilizing 3D eight-node isoparametric FEM, 

the discrete form of (9), i.e.   

     0C T K T  + =   (3.10) 
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The transient solution of Eq. (3.10) is obtained via numerical integration. The 

solid finite element, thermal model extends 7 times the journal length, either side of the 

journal, in the present model. This is based on simulations that showed little change in 

temperatures incurred by larger extensions. Of course, the extension lengths could be 

varied in actual applications. Convection to ambient atmosphere is assumed to occur 

outside of the journal. 

 

3.2.3. Thermal deformation of the shaft and bearing 

The hybrid beam and solid element, structural finite element model HFEM 

shown in Figure 3.5 is employed to determine deformations resulting from the 

asymmetric temperatures in the journal and adjacent rotor segments while exploiting the 

computational efficiency of beam finite elements.  

 

 

 

 

Figure 3.5 Diagram illustrating the HFEM rotor structural model 

 

The solid finite element model extends 7 times the journal length in the present 

model based on simulations that showed little change incurred by larger extensions. Of 
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course, the extension lengths could be varied in actual applications. Thermal 

deformations of the shaft and bearing are obtained from discrete FE equation of the form 

    T T TK D F  =  (3.11) 

where 
TD

 is the nodal displacement vector in 𝑥, 𝑦 and 𝑧 directions induced by the 

thermal load vector 
TF

 which is obtained from the temperature fields determined from 

Eq.(3.10). Details of the thermal bow calculation utilizing the HFEM are provided in 

[46]. The thermal bow is calculated in the rotating reference frame and becomes a 

dynamic force in the stationary frame equations of motion. 

 

3.2.4. Thermal boundary conditions on the shaft and pads 

Thermal boundary conditions are applied at interfaces between the fluid 

(lubricant) and structures (bearing pad and journal), and between the shaft and 

atmosphere as shown in Figure 3.6. 

 

 

Figure 3.6 Thermal boundary conditions on rotor and bearing surfaces 
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Heat flux and temperature boundary conditions are imposed at the interface 

between the lubricant and pad 

L B
L B

r R H r R H

T T
k k

r r= + = +

 
=

 
           

L Br R H r R H
T T

= + = +
=  

(3.12) 

The heat flux and temperature boundary conditions at the lubricant-journal 

interface are  

0, ,

L
L J

J

r R t r R

TT
k k

r r  = = =− =


=

 
 

0, ,L Jr R t r R
T T

  = = =− =
=  

(3.13) 

These conditions must be applied in the rotating frame for the journal mesh 

which is continuously re-oriented during the time transient simulation. Thermal 

boundary conditions are applied at the following surfaces in Figure 3.6; two bearing pad 

side surfaces, one bearing pad surface, two shaft side surfaces, and two journal surfaces.  

 

3.2.5. Rotor dynamic model 

Lateral dynamics utilizes Euler beam elements, and modal reduction is employed 

for computational efficiency. The system equations of motion are  

    U D U F  = +   (3.14) 

 

where  
Z

U
Z

 
=  
 

,  
1 1

1 0

ro ro ro roM C M K
D

− − − −
=  
 

,  
1

0

ro roM F
F

− 
=  
 

.  U , 
roM , 

roC  and 
roK    
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are the state vector and mass, damping and stiffness matrices of the rotor, 
roF  is the force 

vector including the nonlinear fluidic forces from the bearings, imbalance forces, forces 

induced by thermal bow and gravity, etc. 

Equation (14) is diagonalized utilizing biorthogonality with the right eigenvector 

R  and left eigenvector 
L of the matrix  D .  Equation (14) becomes  

    [ ]T

LY A Y F  = +   (3.15) 

where     RY U= , [ ] [ ][ ][ ]
0

iT

Lm RmA D


 


= = 


if

if

m n

m n

=


.  is the 

thi  eigenvalue of the 

system. Modes five times larger than spin speed are ignored to reduce the computational 

complexity. Equations (7) and (15) are solved simultaneously with numerical 

integration.  
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3.3. Morton effect computation algorithm 

 

 

Figure 3.7 Algorithm for Morton effect transient simulation 

 

The diagram describing the ME transient simulation algorithm is presented in 

Figure 3.7. The initial conditions of the rotor-bearing state variables, 

lubricant/shaft/bearing pad temperature distribution, and thermal expansion and bow 

states are specified at the start of the simulation. To perform 1) the transient rotor and 

TPJB dynamics are solved by numerical integration, until the rotor orbits converge to 

steady-state, utilizing the rotor-bearing dynamic equations in Eq. (3.7) and (3.15) with 

the film thickness and journal misalignment formulae in Eq. (3.4), (3.5) and (3.6), the 

Reynolds equation in Eq. (3.1) and the energy equation in Eq. (3.8). The fluid velocities 

from Eq. (3.3) are obtained from the Reynolds equation and are employed in the energy 

equation solution. Each journal orbit is both temporally and spatially divided into 𝑁 
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steps as illustrated in Figure 3.7. The energy equation is solved at the end of each of the 

𝑁 steps, in order to 1) obtain the orbit-averaged lubricant temperature and the flux 

boundary conditions of fluid-structure interfaces (lubricant/bearing and 

lubricant/journal), and to 2) update the variable viscosity in Eq. (3.2). Then the Reynolds 

equation, combined with the dynamic equations, are also solved at every orbit segment 

with the updated variable viscosity from the previous step. Once the orbit of journal 

converges to its steady-state the 2) transient thermal state predictions for the shaft and 

bearing pads are completed based on the lubricant temperature distribution and flux 

boundary conditions obtained in the previous step 1). The prescribed convective thermal 

boundary conditions on the shaft and bearing pad outer surfaces, and the lubricant’s 

thermal states obtained at the journal/lubricant and lubricant/bearing pad interfaces in 

Eq. (3.12) and (3.13), provide the thermal boundary conditions for solving the 

shaft/bearing pad conduction problems Eq. (3.9). 

The thermal expansions of shaft/bearing pads and the thermal bow amplitudes of 

the shaft are calculated based on Eq. (3.11) in step 3).  All steps in 1) – 3) will be 

repeated until the ME instability criteria discussed in Section 4 are met, or until the limit 

time is reached. Updated variables are utilized in this process, including the fluid and 

structural temperature distributions, the new film thickness reflecting the calculated 

thermal expansion of the shaft and pads, the thermal bow of the shaft, the lubricant 

viscosity, and the thermal boundary conditions on shaft/pads.  

The rotordynamic structural states change with extremely short time constants 

compared with the thermal variable time constants. Thus, integrating both problems with 
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the same numerical integration time step is computationally impractical and 

unnecessary, and the staggered–time-integration technique in Figure 3.7 is applied. In 

the 1𝑠𝑡 stagger cycle, the rotordynamic equations including the rotor and bearing 

structures are numerically integrated with the time step of 𝑇𝑠𝑝𝑎𝑛1_𝑉 , with invariant rotor 

and bearing temperatures/deformations/bow during the one orbit period.  Next, the 

temperature distributions of the structures are calculated with the larger time constant of 

𝑇𝑠𝑝𝑎𝑛2_𝑉 , while the rotor/bearing motion states are held invariant. The use of different 

time steps in 𝑇𝑠𝑝𝑎𝑛1_𝑉 and 𝑇𝑠𝑝𝑎𝑛2_𝑉  is justified due to the much slower heat transfer 

process compared with the rotordynamic motions. A quicker simulation is achieved 

without overly sacrificing accuracy. Heat flux and temperature continuity at the film–

solid interfaces are explicitly enforced at all simulation times in our model. In particular, 

this is performed in the staggered time approach, where the shaft orbit is constant during 

the thermal solution update. 

For the steady-state transient simulation, the transient simulation explained above 

starts from the lowest speed of interest and simulates the rotor-bearing system response 

until either steady-state or an unacceptable vibration level (caused by the ME) occurs. 

Then the process stops and repeats the simulation at the next higher speed. Steady-state 

occurs if the errors between the temperature and dynamics states of the entire rotor-

bearing system at the previous time step, and at the current time step, are less than the 

specified error criteria. The final temperature/dynamic states of the previous speed are 

transferred to the initial conditions for the next speed to improve the computational 

efficiency of the process. When the unstable rotor response is detected, the initial states 
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of the next speed is determined by the average of the final state of the previous step, and 

the initial states of the highest operating speed just below the instability onset speed. 

The linear method [46] provides an alternative approach and estimates stiffness and 

damping coefficients of the bearings and combines them into the rotor matrix to 

formulate the system matrix. The rotor-bearing dynamic response is calculated at 

different operating speeds instead of calculating the bearing hydrodynamic forces at each 

time step as in the nonlinear transient method. The linear method calculates the lubricant 

temperature and variable viscosity at each orbit segment. However, this method is 

inherently inaccurate compared with the nonlinear transient method because; 1) the 

responses determined utilizing the dynamic coefficients calculated  at the journal 

equilibrium position become inaccurate when the orbit size becomes large, and 2) the 

linear method neglects the inertial forces resulting from the thermal bow caused by the 

viscous heating. 

 

3.4. Simulation results 

 

Figure 3.8 Example rotor-bearing configuration 
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Figure 3.8 shows a single overhung, example rotor with a linear bearing (node 4) 

at the drive end DE side and a nonlinear bearing (node 13) at the non-drive end NDE 

side. A mass imbalance is located at node 16 along with the NDE overhung mass of 

40𝑘𝑔. The TPJB at the NDE side has five tilting pads with a load-on-pad configuration 

as shown in Figure 3.8. The parameters of the example rotor-bearing configuration are 

listed in Table 3.1. The thermal boundary conditions illustrated in Figure 3.6 are applied 

on the rotor and the bearing pad surfaces with a convection coefficient of 50 𝑊/𝑚2𝐾 

and the ambient temperature of 30°𝐶. These parameter values are utilized for all 

simulations except for the Rotor 2 case in section 4, which has an increased bearing 

radial clearance, compared with that of the original rotor. A case was run with the rotor 

convection coefficient equal to 250 𝑊/𝑚2𝐾 outside the bearing, and the results showed 

no influence on the predicted response with the Morton effect. Therefore, all cases 

utilized 50 𝑊/𝑚2𝐾 .  The Rotor 1 case is defined with the original parameter values as 

shown in Table 3.1. The mesh sizes of the FEM are 40x7x17 (circumferential, radial and 

axial directions) for both the thermal and temperature predictions, 15x7x7 for the 

lubricant film and 15x8x8 for the energy equation solvers, and the numerical tolerances 

of the Matlab ODE are selected as 1𝑒−5 for absolute and  1𝑒−4 for relative, respectively. 

A convergence test was performed with three times the current mesh size, and with 

tolerances of  1𝑒−7 and 1𝑒−6, and the results showed quite similar results with the 

presented predictions. 
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Lubricant parameters Bearing parameters 

Viscosity at 50 ℃ [𝑁𝑠/𝑚2] 0.0203 Pad type Load on pad 

Viscosity coefficients [1/°𝐶] 0.031 No. pads 5 

Supply temperature [°𝐶] 50 Radius of shaft [𝑚] 0.04 

Inlet pressure [𝑃𝑎] 1.32×105 Bearing clearance (
b

C ) [𝑚] 6.8×10−5 

Reference temperature [°𝐶] 50 Preload 0.25 

Rotor Parameters Bearing length [𝑚] 0.06 

Heat capacity [J/𝑘𝑔 °𝐶] 453.6 Thermal expansion coefficient [1/°𝐶] 1.1×10−5 

Heat conductivity [W/mK] 50 Reference Temperature [°𝐶] 30 

Thermal expansion coefficient [1/°𝐶] 1.22×10−5 Pad pivot stiffness [𝑁/𝑚] 4e8 

Reference temperature [°𝐶] 25 Pivot offset 0.5 

Rotor length [𝑚] 1.214 Linear Bearing 

Rotor inner diameter [𝑚] 0.0254 Kxx, Kyy [𝑁/𝑚] 1.7×108 

Rotor outer diameter [𝑚] 0.08   Cxx, Cyy [𝑁𝑠/𝑚] 1.0×105 

Mass of wheel 1 [𝑘𝑔] 6.43 Thermal boundary conditions 

Mass of wheel 2 [𝑘𝑔] 90 Temperature on shaft surface [°𝐶] 30 

Mass of overhung wheel [𝑘𝑔] 40 Temperature on bearing surface [°𝐶] 30 

Initial(mechanical) imbalance [𝑘𝑔. 𝑚] 6.5e-5 Convection coefficient [𝑊/𝑚2𝐾] 50 

  Thermal rotor length [𝑚] 0.18 

Table 3.1 Parameter values for the example system 

 

The ME is a fully nonlinear phenomenon producing a synchronous 1x instability, 

as compared with typical linear instability resulting from positive real part eigenvalues. 

A ME instability is defined here as when the rotor vibration and journal 𝛥𝑇 increases 

abruptly, and the minimum film thickness drops below 10% of 
b

C  at constant operating 

speed, while the corresponding system without ME has acceptable vibration and 

minimum film thickness levels. A linear analysis is conducted to identify the critical 

speeds, mode shapes, damped unbalance response and damping ratio of the system as 

shown in Figure 3.9. The linear analysis result is included solely for comparison with the 

ME response, and is obtained from conventional rotodynamic analysis. The linearized 

bearing coefficients are obtained from a THD model which includes solutions for 

temperature and viscosity distributions by solving the energy equations in the film and 
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bearings. The ME thermal bow effect is not included. This utilizes the Rotor 1 bearing’s 

linearized damping and stiffness coefficients as explained in section 3, neglects bearing 

misalignment, and utilizes a constant imbalance for all speeds. Figure 3.9 (a) shows a 

large vibration level near the rotor’s third critical speed of 6,343 rpm, with 

corresponding damping ratio 0.05 detected at both the NDE bearing and rotor end 

locations. Figure 3.9 (b) shows that overhung disc modal displacement are significantly 

larger than the corresponding bearing components, in the bending (critical speed) mode 

at 6,343 rpm.  

 
(a) 

 
(b) 

Figure 3.9 Rotor 1 (a) imbalance response amplitude and phase lag, and (b) mode 

shape of the third critical speed at 6,343 rpm 

 

Case histories of the ME [38, 47] showed ME instability near the bending critical 

speeds of the rotor. The journal 𝛥T (temperature differential across a journal diameter) is 
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the root cause of the thermal bow and is induced by synchronous rotor vibration, which 

is typically peaks at a critical speed. Prior ME studies [47] revealed that larger imbalance 

force induces larger orbit size, and journal 𝛥T. Machines operating near the bending 

critical speed typically amplify synchronous vibration of the rotor, which could lead to 

increased journal 𝛥T, and resultant thermal bow. Then the thermal deflection will more 

dramatically increase with an overhung bending mode shape, compared with other mode 

shapes, even with identical values of journal 𝛥T [47]. 

 Figure 3.10 shows the effect of bearing misalignment on linear unbalance 

response amplitude.  The applied misalignment ratios are 
xr = 0 and yr = 0.3, 

respectively, which correspond to a misalignment phase of 90° from Eq. (3.5). Based on 

Eq. (3.5), and the bearing parameters in Table 3.1, the 2 2
m x yr r r= + = 0.3 misalignment 

ratio results in a misalignment angle of y =  0.00086 𝑟𝑎𝑑 and resultant misalignment 

displacement yA = 0.0258𝑚𝑚. Figure 3.10 shows the vibration amplitudes at the NDE 

bearing location and the rotor end increase slightly with bearing misalignment. The 

critical speeds are almost identical with 6,343rpm for the aligned journal and 6,346rpm 

for the misaligned journal. The increments of vibration level between the aligned and 

misaligned cases at 6,343 rpm are 0.000146mm at the NDE bearing, and 0.0183𝑚𝑚 at 

the rotor end, respectively. The damping ratios of the aligned and misaligned cases are 

quite similar with 0.05 and 0.0466, respectively. With the slightly smaller damping ratio 

for with-misalignment, the misaligned rotor’s vibration amplitude shows a slightly 

increased vibration amplitude. 
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Figure 3.10 Rotor 1’s damped unbalance responses for aligned and misaligned 

cases 

 

Both bearing clearance and misalignment were varied to investigate their 

influences on the ME utilizing the nonlinear transient model. The rotor with parameters 

in Table 3.1 is referred to as Rotor 1, and an identical rotor with increased bearing radial 

clearance is referred to as Rotor 2. 

Steady-state simulations, using the nonlinear transient model explained in section 

3, were conducted with aligned and misaligned journals at various speeds. The operating 

speed is varied from 6,000 rpm to 6,700 rpm with speed increment of 10 rpm.  

Steady-state transient simulation results for the Rotor 1 case (original 

parameters) are presented in Figure 3.11 and 12.  Figure 3.11 (a) shows the NDE bearing 

location pk-pk vibration amplitude. For the misaligned journal case, the misalignment 

ratios are 
xr = 0 and yr = 0.3, corresponding to 90° of misalignment phase as shown in 

Figure 3.3. ME instability speed ranges for the aligned and misaligned cases are shown. 

The simulation terminates if the journal motion reduces the minimum film thickness 

below 10% of the bearing clearance, since this clearly establishes the occurrence of a 

severe Morton effect event, with vibration levels far exceeding API recommended 
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shutdown levels. This high vibration is indicative of a near rub condition, however the 

simulation is terminated before rub actually occurs. The instability onset speed (IOS) is 

identified as the operating speed where vibration level abruptly increases. The 

misaligned journal exhibits the IOS at 6,150rpm which is 90 rpm lower than the aligned 

case (6,240rpm). 

 

  

(a) (b) 

Figure 3.11 Comparison of Rotor 1 (a) pk-pk vibration at the NDE bearing position 

and (b) minimum film thickness ratio 

 

The pk-pk vibration of the misaligned journal shows an acceptable level above 

6,580rpm. The instability speed range (ISR) of the misaligned case is 430rpm 

(6,150rpm~6,580rpm) over the operating speed range (6,000rpm~6,7000rpm) while the 

ISR of the aligned journal is 310rpm (from 6,240 rpm to 6,530 rpm). This shows that the 

machine with the misaligned journal may experience ME instability at lower speeds, and 

that the unstable vibration is sustained over a wider speed range compared with the 

aligned case. The misaligned case also shows a speed range where ME instability occurs 

but not converge or lead to an unacceptable vibration level, as illustrated between 6,100 
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to 6,150 rpm in Figure 3.11. Comparison of Figure 3.10 and 11 show that although 

misalignment has a significant influence on the ME IOS, it has little influence on the 

critical speed. This stands in contrast to changing other parameters such as lubricant 

viscosity/temperature, bearing clearance, and overhung mass, which shift the IOS and 

significantly change the critical speed [47]. 

Figure 3.11 (b) shows the minimum film thickness ratio for the aligned and 

misaligned cases. The ISR which corresponds to where the minimum film thickness ratio 

is 10% of 
b

C  is seen to be identical to the range of large pk-pk vibration in Figure 3.11 

(a). It is notable that the minimum film thickness ratios of the misaligned case are less 

than those of the aligned case in all speed ranges. The decreased minimum film 

thickness ratio is attributed to the displacements of the journal in the journal 

misalignment direction. In the linear analysis in Figure 3.10, the damped unbalance 

response and damping ratio of the aligned and misaligned cases showed quite similar 

results, indicating no significant vibration level change in the presence of the 

misalignment. Unlike the linear analysis of Figure 3.10, the nonlinear transient 

simulation revealed significant ME related vibration is only present in the misaligned 

journal case at specific speed ranges. This is explained by the induced hot/cold spots and 

thermal bow effect caused by the decreased minimum film thickness, which can be only 

captured in the nonlinear transient simulation. 

Figure 3.12 (a) shows the peak journal 𝛥𝑇 across the journal diameter vs. the 

rotor axial position and the rpm. Only rotor axial positions ranging from 0.6488m to 

1.068𝑚 are presented, since only seven times the bearing length (0.06m) is designated 
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for the thermal shaft, in order to improve computational efficiency, as mentioned in 

section 3.  

 

Aligned Journal Misaligned 
mr = 0.3, r = 90° 

  
(a) 

  
(b) 

Figure 3.12 Comparison of (a) peak journal 𝜟𝑻 and (b) pk-pk vibration amplitude 

vs. rpm and axial position for the Rotor 1 case 

 

Compared with the aligned case, the journal high 𝛥𝑇 region is wider with respect 

to rpm for the misaligned case. The highest journal 𝛥𝑇 of the misaligned case reaches 

9.88°C. The high journal 𝛥𝑇 region occurs mainly in the rotor axial length from 

0.8288𝑚 to 0.8888𝑚 which corresponds to the location of the fluid film bearing. 

Outside of this region shows relatively small journal 𝛥𝑇 values from 0° to 4° which 

justifies the thermal shaft length assumption. 

The high journal 𝛥𝑇 induces increased thermal bow, decreased minimum film 

thickness ratio, and large vibrations as shown in Figure 3.12 (b). Large vibration levels 
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are found at the rotor center (from 0.1𝑚𝑚 to 0.2𝑚𝑚 peak to peak), and the overhung 

end side (from 0.4𝑚𝑚 to 0.6𝑚𝑚 peak to peak). This distribution of the pk-pk vibration 

along the rotor axial direction is consistent with the mode shape in Figure 3.9 which 

confirms the resonance of this bending mode.  

Figure 3.13 and 14 show simulation results for the Rotor 2 case. A comparison of 

Figure 3.11 and 13 show that the ME instability for the Rotor 1 aligned case is 

eliminated by increasing the bearing clearance from 68𝜇𝑚 for Rotor 1, to 84𝜇𝑚 for 

Rotor 2. 

  
(a) (b) 

Figure 3.13 Comparison of (a) pk-pk vibration at NDE bearing position and (b) 

minimum film thickness ratio for Rotor 2 case 

 

The amount of the bearing radial clearance change is realistic considering the 

manufacturing tolerances of the bearing and shaft. Assuming the IT7 standard [107] for 

the shaft and bearing pad thickness, the manufacturing tolerances of the pad thickness 

and shaft diameter is +-0.018𝑚𝑚 and +-0.035𝑚𝑚 for pad thickness of 12𝑚𝑚 and the 

shaft diameter of 80𝑚𝑚, respectively. Then the maximum error in the bearing clearance 

can be up to +-0.0178𝑚𝑚. The Rotor 2 linear model revealed that the third (bending) 
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critical speed occurs at 6,290 rpm which is about 50rpm lower than that of the Rotor 1 

case.   

Figure 3.13 (a) shows the no ME condition for the Rotor 2 aligned case becomes 

a severe ME condition for the misaligned bearing case. The ME synchronous instability 

leading to an unacceptable vibration level is observed from 6,200 rpm to 6,360 rpm. The 

160 rpm ISR for the misaligned Rotor 2 case is less than the 430 rpm ISR for the 

misaligned Rotor 1 case. The increase in ISR between the aligned and misaligned states 

is nearly the same for Rotor 1 (140 rpm) and Rotor 2 (160 rpm). 

 

Aligned Journal Misaligned 
mr = 0.3, r = 90° 

  

(a) 

  

(b) 

Figure 3.14 Comparison of (a) peak journal 𝜟𝑻 and (b) pk-pk vibration amplitude 

vs. rpm and axial position for the Rotor 2 case 
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Figure 3.14 shows a comparison of the pk-pk vibration and journal 𝛥𝑇 vs. rpm 

and axial position, for the aligned and misaligned journal cases. The highest journal 𝛥𝑇, 

8.5°C, and the highest vibration, up to twice 𝐶𝐵 , are seen to occur near the third bending 

critical speeds of 6,290rpm. Similar to the Rotor 1 case, the vibration distribution level is 

most significant at the overhung end side, indicating the increased thermal bow at the 

overhung side, and the resultant ME instability. 

Rotor 1 transient simulations were performed at 6,120rpm and 6,570rpm, as 

shown in Figure 3.15 and 16. All parameter inputs of the rotor-bearing system are 

identical to the aforementioned steady-state simulation results. The misalignment ratio of 

0.3 and the phase of 90° are again utilized for the misaligned journal case.  

 
 

(a)  (b) 

  
(c) (d) 

Figure 3.15 Effects of misalignment on (a) 1x polar plot, (b) pk-pk vibration at 

NDE bearing position, (b) Film thickness ratio and (d) journal 𝜟𝑻 of Rotor 1 case 

at 6,120rpm 
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Figure 3.15 (a) shows the 1x filtered polar plot at the NDE bearing location at 

6,120rpm. The texts on the plot indicate the time (in minutes) when the vibration 

amplitude and the phase are measured. The misaligned journal produces a relatively 

large thermal spiral with time-varying pk-pk vibration amplitude. The phase angle with 

respect to the initial imbalance of the aligned case converges quickly, while that of the 

misaligned journal keeps varying from 0° to 360° during the entire simulation time. This 

result agrees with the steady-state results in Figure 3.11 where the vibration of the 

misaligned does not converge with time, and the aligned case shows less vibration level. 

Figure 3.15 (b) shows that the misalignment effect increases the vibration level 

since the pk-pk vibration amplitudes of the misaligned case oscillate between 28.13𝜇𝑚 

and 13.28𝜇𝑚, while the response of the aligned journal decays to its steady-state 

vibration level of 8𝜇𝑚. The misalignment gives rise to more asymmetric viscous heating 

in the journal caused by its decreased minimum film thickness. 

Figure 3.15 (c) shows that the misaligned journal has reduced the minimum film 

thickness ratio compared with the aligned case, although the area average (decreased) 

film thickness ratio of both cases is almost identical. The decreased mean film thickness 

was calculated by subtracting the thermal expansion of the shaft and pads from the 

nominal film thickness.  

The minimum film thickness ratio of the misaligned journal fluctuates from 0.2 

to 0.25 while the ratio of the aligned one is observed between 0.42 and 0.5. The impact 

of the pad-pivot stiffness and bearing radial clearance on the ME was investigated in 

[47], which showed that a softer pivot and increased bearing clearance tended to 
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suppress ME. These parameter changes increased the minimum film thickness ratio, 

causing less viscous heating. Similarly, the decreased minimum film thickness due to the 

misaligned journal will produce more viscous heating in the journal surface area, 

especially where the journal is tilted. This may result in an increased shaft/bearing 

thermal expansion ratio and increased journal 𝛥𝑇, exacerbating the ME.  

 
 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.16 Effect of misalignment on (a) 1x polar plot, (b) pk-pk vibration at NDE 

bearing position, (b) Film thickness ratio and (d) journal 𝜟𝑻, and (e)&(f) FFT of 

pk-pk vibration at NDE bearing position of Rotor 1 case at 6,570rpm 
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The shape of the pk-pk journal surface temperature 𝛥𝑇 at the axial center of the 

bearing, as shown in Figure 3.15 (d) is similar to the vibration level in Figure 3.15 (a), 

which demonstrates the coupling between journal temperature and journal motions. The 

ME unstable vibration in the rotor system is governed by the journal 𝛥𝑇 and its resultant 

thermal bow amplitude, which is a unique feature of the ME.  

Figure 3.16 shows the transient simulation results at the higher speed 6,570 rpm. 

Figure 3.16 (a) shows a diverging spiral shaped 1X polar plot for the misaligned case 

leading to the unacceptable vibration level at 6min 11s, while the spiral of the aligned 

journal converges to its steady-state value. Figure 3.16 (b) shows that the corresponding 

vibration amplitude, with an increasing trend up to 49𝜇𝑚. The unacceptable vibration 

level occurs at that time and the journal 𝛥𝑇 of the misaligned case reaches 11°𝐶, which 

could cause a significant thermal bow. The aligned case results show acceptable levels of 

vibration, journal 𝛥𝑇, and minimum film thickness ratio. The FFT of NDE bearing pk-pk 

vibration at 6,570 rpm is shown in Figure 3.16 (e) and (f), which confirms that the ME 

vibration is synchronous. 

Figure 3.17 (a) illustrates how the high spot leads the hot spot for the misaligned 

journal case at 6,570 rpm, and time equal to 6 minutes. The hot and high spots are seen 

to gradually move around the journal circumference as time increases. 
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(a) (b) 

   

(c) 

Figure 3.17 Responses at 6,750 rpm: (a) High and hot spot phase angles, (b) Phase 

lag angle of hot spot behind high spot, (c) Journal surface temperature distribution 

at three different times 

 

Figure 3.17 (b) shows that the phase lag of the hot spot behind the high spot is 

approximately 20° during most of the simulation time except the times where the phase 

lag drops then returns. These times correspond to the troughs in vibration amplitude in 

Figure 3.16 (f). In these instances, the synchronous vibration amplitude gets small so 

that the temperature asymmetry decreases. Figure 3.17 (c) shows the corresponding 

journal surface temperature distribution at three different simulation times, including 

1min 1s, 1min 51s, and 4min 57s. A major indicator of the ME is the spiral movement of 

the 1x phasor in the polar plot domain as shown in Figure 3.16 (a). Figure 3.17 (b) 

shows that the hot spot lags the high spot, but the rotordynamics causes the high spot to 

1min 1s 1min 51s 4min 57s Hot Spot 
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follow the heavy spot (imbalance) that is caused by the thermal bow in the plane of the 

hot spot. Thus, the high spot follows the hot spot which is always lagging the high spot. 

This feedback mechanism causes the spiral motion of the high spot 1x phasor in the 

polar plot. 

The temperature distribution at the bearing mid-plane, the induced thermal bow, 

and the shaft thermal expansion ratio are shown in Figure 3.18, for 6,570 rpm, and 

aligned (left) and misaligned (right) cases. These results are measured at the end of each 

simulation time (15min for the aligned, 6min 17s for the misaligned case). Figure 3.18 

(a) shows a maximum journal 𝛥𝑇 of 13°𝐶 in the misaligned case, while the isotherms of 

the aligned journal show a relatively concentric distribution. For the misaligned case, the 

hot spot is located at 22.7°, which lags about 10° behind the high spot location (32.8°). 

The corresponding thermal bow due to the journal 𝛥𝑇 is shown in Figure 3.18 

(b). The phase of the thermal bow at the rotor end is 247.7° for the aligned case, which is 

185° away from the corresponding hot spot location (62.5°) while that of the misaligned 

journal is seen at 206.3°, and it is 183.6° away from its hot spot location. The amplitude 

of the thermal bow at the overhung end is 0.0344𝑚𝑚 with misalignment, which is about 

six times larger than that of the aligned case (0.0054𝑚𝑚). This increases the 

synchronous excitation in the system. The thermal expansion of the shaft due to the 

viscous shearing is presented in Figure 3.18 (c).  
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Aligned Journal Misaligned 
mr = 0.3, r = 90° 

  
(a) 

  

(b) 

  
(c) 

Figure 3.18 Comparison of (a) temperature distribution at bearing mid-plane, (b) 

thermal bow and (c) shaft thermal expansion ratio, at 6,570rpm, for the aligned 

(left) and misaligned (right) cases 

 

A relatively high expansion ratio   (=0.22) is observed for the misaligned case at 

circumferential positions ranging from 0° to 90°, which corresponds to the high-

temperature region and hot spot location in Figure 3.18 (a). Figure 3.18 shows the 

thermal expansion only in the rotor axial length matching the bearing location (from 

0.8288𝑚 to 0.8888𝑚). The steady-state approach (Figure 3.11) was validated by its 
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good agreement with the transient approach for the Rotor 1 case at 6,120 rpm and 

6,570rpm, with and without the misalignment effect. 

Figure 3.19 shows the film thickness ratio for the five pads at the end of the 

simulation time. The misaligned case shows an asymmetric distribution along the 

bearing axial direction while the aligned journal exhibits near symmetry. Figure 3.19 (b) 

corresponds to the misaligned case with the   90° misalignment phase shown in Figure 

3.3 (a), and the pad arrangement in Figure 3.8. A large region has decreased film 

thickness at the NDE side in pads 1, 2, and 5, while the opposite trend is seen in the 

same pads at the DE side (a large region with increased film thickness). The damped 

unbalance response and damping ratio from the linear analysis showed only marginal 

impact due to misalignment. Therefore, the cause of the film thickness asymmetry along 

with the decreased minimum film thickness is attributed to the ME induced by the 

misaligned journal. 

 
(a) 

 
(b) 

Figure 3.19 Pad film thickness distribution at 6,570rpm (a) aligned journal and                                            

(b) misaligned 
mr = 𝟎. 𝟑, r = 𝟗𝟎° 



 

95 

 

3.4.1. Effect of misalignment ratio 

The effect of the misalignment ratio ( y

B

y

A
r

C
= in Figure 3.2) on the instability 

speed range ISR is investigated for both Rotor 1 and Rotor 2 cases, and the steady-state 

transient simulation results are presented in Figure 3.20. The ratio of the misalignment 

ratio varied from 0 to 0.3 with an increment of 0.1, and the misalignment phase (

1tan
y

x

r




−=  in Figure 3.2) stays constant at 90° for all cases. All other parameter settings 

are identical with the aforementioned simulation results. The ISR due to the ME 

increases for both rotor cases as the misalignment ratio increases. The detailed ISR 

results are listed for different misalignment ratios in Table 3.2. In both rotor cases, the 

misalignment showed no significant effect when the misalignment ratio = 0.1, as the 

increase of the ISR is only 10 rpm for Rotor 1, and no ME is induced in Rotor 2. The 

misalignment effect on the ME becomes more evident when the misalignment ratio 

increases above 0.2. Table 3.2 shows an increase in ISR by 100rpm and 140rpm 

compared with that of the aligned journal for Rotor 1, when 𝑟𝑚=0.2 and 0.3. For Rotor 2, 

the ME is first seen to occur with 𝑟𝑚=0.2, and its ISR is small at 80 rpm. The maximum 

ISR of the Rotor 2 is 160rpm when the misaligned ratio is further increased to 𝑟𝑚=0.3. 

Increases of the ISR for Rotor 2 case are 80rpm for 𝑟𝑚=0.2 and 160rpm for 𝑟𝑚=0.1, 

respectively. The increased ISR with 𝑟𝑚=0.2 and 0.3 for both Rotor 1 (100rpm and 

140rpm) and Rotor 2 (80rpm and 160rpm) cases are similar, indicating the bearing radial 

clearance doesn’t have a significant impact on the misalignment-induced ME. These 
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results demonstrate that the misaligned journal induces more severe ME when its 

misalignment ratio exceeds a certain level (𝑟𝑚>0.2 in this case). 

  

(a) (b) 

  
(c) (d) 

Figure 3.20 Comparison of (a) pk-pk vibration at NDE bearing position of Rotor 1, 

(b) minimum film thickness ratio of Rotor 1 (c) pk-pk vibration at NDE bearing 

position of Rotor 2, (d) minimum film thickness ratio of Rotor 2 with different 

misalignment ratio 

 

 

Aligned 
0.1mr = ,  

90r =   

0.2mr = ,  

90r =   

0.3mr = ,  

90r =   

Rotor 1 
6240~6530rpm 

(290rpm) 

6260~6560rpm 

(300rpm) 

6180~6570rpm 

(390rpm) 

6150~6580rpm 

(430rpm) 

Rotor 2 
No Morton 

(0rpm) 

No Morton 

(0rpm) 

6270~6350rpm 

(80rpm) 

6200~6360rpm 

(160rpm) 

Table 3.2 Instability speed range (ISR) with different misalignment ratio (
2 2

m x yr r r= + in Figure 3.2) 

 

The corresponding pk-pk vibration amplitude and the pk-pk shaft temperature 

distribution along the rotor axial direction for Rotor 2 is illustrated in Figure 3.21. As 
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expected, high pk-pk temperature and vibration are observed in the wider ISR as the 

misalignment ratio increases. 

 

mr = 0.1, r = 90° 
mr = 0.2, r = 90° 

mr = 0.3, r = 90° 

   
(a) 

   
(b) 

Figure 3.21 Comparison of (a) peak journal 𝜟𝑻 and (b) minimum film thickness 

ratio across rotor axial positions for Rotor case 2 with different misalignment ratios 

 

Transient simulations of Rotor 1 were conducted at 6,570rpm to validate the 

steady-state simulation results, as shown in Figure 3.22. The unacceptable vibration 

level occurs only with 𝑟𝑚 = 0.2 and 0.3 in Figure 3.22 (a), which agrees with the steady-

state results in Figure 3.20. The unacceptable vibration level occurs about 4min faster 

with 𝑟𝑚=0.3, compared with 𝑟𝑚=0.2. High vibration levels at the NDE bearing location 

are observed for the two misaligned cases (𝑟𝑚 = 0.2 and 0.3) in Figure 3.22 (b). 

Although an unacceptable vibration level is not observed with 𝑟𝑚 =0.1, oscillating 

vibration with varying phase exists while the aligned case shows converging response to 
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its steady-state position. The corresponding thermal bow amplitude and the phase of the 

rotor measured from the bearing node to the rotor end node are presented in Figure 3.22 

(c). The thermal bow of the aligned case is 0.0056m in magnitude and 247.7° in phase at 

the rotor end, while 0.0083m and 211.2° for 𝑟𝑚=0.1, 0.031m and 289.4° for 𝑟𝑚=0.2, and 

0.0313m and 206.57° for 𝑟𝑚=0.3, at the rotor end.  

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.22 Comparison of (a) film thickness ratio of Rotor 1, (b) pk-pk vibration 

at NDE bearing position of Rotor 1,  (c) thermal bow of Rotor 1, (d) 1x polar plot 

with 
mr = 𝟎. 𝟏, r = 𝟗𝟎°,  (e) 1x polar plot with 

mr = 𝟎. 𝟐, r = 𝟗𝟎°,  (f) 1x polar plot 

with 
mr = 𝟎. 𝟑, r = 𝟗𝟎° at 6,570 rpm 

 

The 1x polar plots for 𝑟𝑚=0.1~0.3 are shown in Figure 3.22 (d), (e) and (f). The 

spiral with 𝑟𝑚=0.1, which is marginally stable with non-diverging vibration response, 

changes to diverging shapes with increased misalignment ratios of 0.2 and 0.3. The time 
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to reach 10% of 
b

C  is 9min 16s for 𝑟𝑚=0.2 and 6min 10s for 𝑟𝑚=0.3. This indicates 

increased ME severity with increased misalignment ratio. 

 

3.4.2. Effect of different pad-pivot types 

The previously presented models and simulations utilized a cylindrical pad-pivot 

type which has only pad-tilting motions. The following results compare the effect of 

including a spherical pad pivot with rolling, yawing and tilting motions. All other rotor 

and bearing parameters and operating conditions are the same as for the previous models 

and simulations. Figure 3.23 shows steady-state vibration level and journal 𝛥𝑇 results 

for the spherical pad-pivot model, performed with different misalignment ratios 

including 
mr = 0  (Aligned journal) and 

mr = 0.3, r = 90° (Misaligned journal). The 

speed ranges of the high vibration and temperature of the aligned case are found from 

6,250rpm to 6,550rpm, which is almost identical to the aligned case for the cylindrical-

pivot type. The instability speed range ISR for the misaligned case (
mr = 0.3, r = 90°) 

does not change from the aligned case. The increase of ISR with the same misalignment 

ratio was 160 rpm for the cylindrical pad-pivot type. This indicates that the additional 

pad motions (rolling) of the spherical pad-pivot compensates the misalignment effect on 

the rotor-bearing system.  
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Spherical pivot, Aligned Journal 
Spherical pivot, Misaligned  

mr = 0.3, r = 90° 

  

(a) 

  

(b) 

Figure 3.23 Comparison of (a) peak journal 𝜟𝑻 and (b) pk-pk vibration amplitude 

for aligned and misaligned journals, for Rotor 1 with spherical pad-pivot model 

 

The transient simulation was conducted at 6,570 rpm for both pad-pivot types 

with different misalignment ratios including 
mr = 0 (Aligned journal) and 

mr = 0.3, r =

90° (Misaligned journal). The journal 𝛥𝑇 and the 1x vibration polar plot results are 

shown in Figure 3.24 for both pivot types. Note that in the cylindrical pad-pivot case, the 

misaligned ratio of 
mr = 0.3, r = 90° induces a severe ME leading to the unacceptable 

vibration level as shown in the journal 𝛥𝑇 and polar plots. In comparison, the spherical 

pivot model results show almost identical stable journal 𝛥𝑇 and vibration 

amplitude/phase levels, regardless of the misalignment ratio. 
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Cylindrical pivot Spherical pivot 

  

(a) 

  

(b) 

Figure 3.24 Comparison of cylindrical and spherical pivot model (a) peak journal 

𝜟𝑻 and (b) pk-pk 1x vibration polar plot of Rotor 1 case, at 6,570 rpm 

 

Figure 3.25 (a) and (b) show the rolling motions of the spherical pad-pivot at 

6,570rpm for different misalignment ratios. The steady-state angular displacements of 

the five pad motions are relatively small for the perfectly aligned journal model. 

However, with the misalignment ratio (
mr = 0.3, r = 90°), the steady-state positions of 

all five pads have been significantly displaced as shown in Figure 3.25 (b). The 

increased rolling movements are more evident in pad 1, 3 and 4 than other pads, where 

the pad locations are shown in Figure 3.3 and Figure 3.8. The tilted journal (with 

misalignment phase of 90°) affects the minimum film thickness significantly. The 
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corresponding film thickness ratio of pads with the misalignment effect is shown in 

Figure 3.25 (c). Compared with the misaligned case equipped with the cylindrical pivot 

in Figure 3.19 (c), no film thickness asymmetry is seen to occur in the figure, indicating 

the compensated misalignment effect from the spherical pivot motions. This result 

verifies that the misalignment-induced ME can be avoided by suppressing the film 

asymmetry with the spherical pivot and also demonstrates that the film asymmetry is the 

one potential root cause of the misalignment-induced ME. 

 

  

                                            (a)    (b) 

 

      (c) 

Figure 3.25 Comparison of pad rolling motions of spherical pivot-type model for (a) 

aligned journal, (b) misaligned journal (
mr = 𝟎. 𝟑, r = 𝟗𝟎°), and  (c) film thickness 

distribution of misaligned journal 
mr = 𝟎. 𝟑, r = 𝟗𝟎° of Rotor 1 case at 6,570 rpm 
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4. SQUEEZE FILM DAMPER SUPPRESSION OF THERMAL BOW – MORTON 

EFFECT INSTABILITY* 

 

4.1. Introduction 

Measures to suppress the ME vibration have been limited to changing rotor-

bearing parameters such as bearing radial clearance, bearing length, overhung mass, etc. 

To the best of the authors’ knowledge, there has not been any published study regarding 

the potential of SFD for suppressing the ME. This section presents a computational 

study of the ME instability and its suppression by including the SFD in series with a 

tilting pad journal bearing TPJB. A linear response study was conducted in order to 

provide conventional rotordynamic response as part of a complete description of the 

example rotor system. Simulated results demonstrate that installing a properly designed 

squeeze film damper shifts the critical speed and alters the deflection shape of a rotor, 

which may help attenuate the ME vibration. The present work employs a finite element 

based SFD model including the inertia effect from a central groove [71], which is similar 

to the linear bulk-flow model in [69, 70]. The multi-physics ME simulation model 

includes three-dimensional (3D) THD models of the fluid film, and 3D solid FEM 

bearing and journal thermal and structural models and flexible shaft dynamics models. 

Both linear and nonlinear transient simulations are performed to compare the rotor 

 

* Reprinted with permission from “Squeeze film damper suppression of thermal bow-Morton effect 

instability” by Shin, D., and Palazzolo, A. and Tong, X., 2020. Journal of engineering for gas turbines and 

power, Copyright [2020] by ASME 
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dynamic performances and journal temperature differential with and without the SFD. 

The linear analysis confirms the shift of critical speed, damping ratio, and the modified 

mode shape due to the SFD. Optimal parameters of SFD are developed that substantially 

attenuate the ME vibration in nonlinear simulations. 

 

4.2. Modeling and ME prediction algorithms 

4.2.1. Centrally grooved squeeze film damper 

 

 

Figure 4.1 Axial mid-plane of SFD 

 

The Reynolds equation (RE) for an incompressible lubricant is employed to 

obtain the fluid pressure distribution in the SFD film. The RE combines the momentum 

and fluid continuity equations into the partial differential equation 

3 3

12 12

2

D D

D D D D D

J J D D

D
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z z

R h h
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   





      
+   

      

 
= +

 

 (4.1) 
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where JR  and D  denote the radius of the SFD journal and the viscosity of the 

lubricant, respectively. The term 
2

J J DR h






 is set to zero for the force calculation of the 

SFD since its bearing housing is normally fixed in the circumferential direction with an 

anti-rotation pin or a cage to prevent the bearing housing rotation. In Figure 4.1, Jx  and 

Jy  are the bearing housing center displacement with respect to the SFD center DO . 

The film thickness of the fluid and its derivative are expressed as  

( ) cos sinD D D J D J Dh C x y  = − −  

( )
cos sinD D

J D J D

h
x y

t


 


= − −


 

(4.2) 

where DC  represents the SFD radial clearance and D  denotes the circumferential 

coordinate of the SFD lubricant. 

The finite element level form of the Reynolds equation is represented as 

E E E EK P S I= +  (4.3) 

where 
3

( ) ( ) ( )
12

i k i kDE
E ik

N N N Nh
K dxdy

x x y y


   
= +

     and , 1,2,3i k = . The damping source 

term is ( ) ( )DE
E i i

h
S N dxdy

t


=
  , and the fluid inertia term is

2 2

2
( ) ( )

12

D DE DE
E i E i

h h
I N dxdy

t







=

  . 

Triangular simplex finite elements interpolate the two-dimensional film pressure 

distribution and are expressed with shape functions and node pressure vectors as  
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( , ) T
Ep x y N P=  

1 2 3( , , )TN N N N=  

1 2 3( , , )T
E E E EP P P P=  

(4.4) 

 

  

(a) (b) 

Figure 4.2 Comparison of (a) damping and (b) added mass coefficient with 

reference [69] (adapted from [69]) 

 

Values obtained from the current model are compared in Figure 4.2 with results 

from [69], which are based on a linear bulk flow model. The schematic showing the 

series combination of the journal, tilting pads, TPJB housing, SFD film and outer SFD 

housing is shown in Figure 4.3. The groove geometry of the SFD including the inlet 

groove depth ( Id ) and film clearance ( DC ) used in Figure 4.2 is also illustrated in the 

figure. The The SFD parameter values, including the pressure boundary conditions, 

inlet/outlet groove length, and effective groove/film clearance from [69] are applied to 

the current model. The compared result shows good agreement between the two models. 
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Figure 4.3 Schematics of series combination of TPJB and SFD and SFD groove 

geometry (not to scale) 

 

The instantaneous reaction force applied to the bearing housing is obtained by 

integrating the pressure distribution. Considering the half symmetry of the lubricant, the 

bearing housing reaction force becomes   

/2

0

cos
2

sin

LDx D

D D D
Dy D

F
F p d dz

F








−

    
= =   
    

   (4.5) 

Note that the lubricant temperature variation of the SFD is assumed negligible in 

the example rotor system because the SFD is prevented from rotation with a cage. In 

addition, the initial SFD lubricant temperature is assumed to be the same as the TPJB 

supply oil temperature, and therefore temperature change in the SFD lubricant caused by 

the supply oil and thermal structures of SFD/TPJB housings are not considered in this 

study. 
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4.2.2. Tilting pad journal bearing model 

Accurate prediction of the ME phenomenon requires a high-fidelity THD TPJB 

model. The generalized Reynolds equation for an incompressible fluid with variable 

lubricant viscosity and negligible fluid inertia/shaft curvature is employed [41, 42]. The 

temperature-dependent variable viscosity is obtained from the calculated film 

temperature distribution and the viscosity-temperature relation 

0( )
0

T T
e

  − −
=  (4.6) 

where 0  , 0T  and   are the reference viscosity, film temperature, and the viscosity 

coefficient, respectively, and the film temperature T  is obtained by solving the energy 

equation.  

A cylindrical pivot with angular pad tilting and pivot translational motions are 

included in the current analysis. The film thickness formula for the cylindrical pivot is  

. .

ˆ ˆ( , ) cos( ) sin( )

( )cos( ) sin( )

( , ) ( , )

P x y

P b P tilt P

shaft TE pad TE

h z C e e

C C R

h z h z

  

    

 

= − −

− − − − −

− −

 (4.7) 

where  

ˆ cosx x pvt pe e y = − ,  ˆ siny y pvt pe e y = − . 

and PC , bC  , z , R ,   and P  represent pad and bearing radial clearance, film’s axial 

coordinate, journal radius, bearing circumferential coordinate and pad pivot position, 

respectively. Note that the film thickness formula considers the asymmetric thermal 

expansion of the journal ( .shaft TEh ) and pad ( .pad TEh ) and pivot deformation caused by the 

load on pads. 
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The dynamic equations of the cylindrical pivot TPJB pads are 

i i
pad pvt p pvt padM y K y F= − +  

i i
tilt tilt tiltI N =  

(4.8) 

where i  denotes the pad number, and 
i

padM , i
tiltI , 

i
padF  and i

tiltN  are the mass and the 

tilting inertia of a pad, the fluid film force and the tilting moments applied to a pad, 

respectively. 

 

4.2.3. Thermal models 

The energy equation to calculate the 3D temperature distribution  across the 

fluid film is  

2 2 2

2 2 2

2 2

( ) ( )

( ) ( )

T T T T T
c u w k

x z x y z

u w

y y





    
+ = + +

    

  
+ + 

  

 (4.9) 

where  , c , k , u , w  are density, specific heat capacity, thermal conductivity, 

circumferential and axial velocities, respectively. Eq. (4.9) is solved using 3D, eight-

node isoparametric finite elements along with an up-winding scheme [43, 44] to prevent 

spatial oscillations from the convective term. 

The Laplace equation is solved using 3D eight-node isoparametric finite 

elements to predict the temperature distributions of the journal and pads, and its discrete 

form is 

      C T K T F  + =   (4.10) 

T
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where F is time-varying thermal load updated with the thermal solutions of the rotor-

bearing system. The time-transient solution of Eq. (4.10) is obtained via numerical 

integration [43, 44]. The heat conduction of the tilting pads and shaft are considered to 

calculate the pad and shaft temperature distributions. The transient simulation is 

conducted with the FE model of the pads and shaft including their thermal masses, and 

with convection boundary conditions applied as explained in Figure 4.4. 

Accurate prediction of the thermal bow amplitude and its phase is critical to 

accurately determine ME occurrences. The hybrid beam-solid method used in [45] is 

adopted to determine the deformations resulting from the differential heating in the 

journal while using the computational efficiency of beam finite elements. The calculated 

thermal bow in the rotating reference frame is converted into the dynamic excitation in 

the inertial frame equations of motion. 

 

 

Figure 4.4 Thermal boundary conditions on TPJB pads and shaft outer surfaces 

 

Thermal boundary conditions are imposed on the two interfaces (fluid-pad and 

journal-fluid), pad surfaces, and four outer surfaces of the shaft exposed to atmosphere, 

as shown in Figure 4.4. Temperature boundary conditions are applied to the two 
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interfaces. Note that the thermal conditions need to be applied in the rotating frame for 

the journal surface mesh, and it is continuously re-oriented in the transient simulation. 

Table 4.1 indicates the thermal boundary conditions applied to the surfaces of TPJB pad 

and shaft. The convection coefficient of 50 2/W m K  is used for all the surfaces 

contacting supply oil (supply oil temperature of 50 C ) and 30 2/W m K  is used for all 

the surfaces in contact with air (room temperature of 30 C ). Note that a convective 

boundary condition with supply oil temperature of 50 C  is applied to the back of the 

tilting pads. The model for the pad inlet boundary temperature is adopted from mixing 

theory in [41, 42]. The axial length of the solid and thermal finite element models is 

seven times the journal length.  This specific length is determined from the simulation 

that induces a negligible change in temperature calculated by the much longer length of 

the finite element model.  

Region Surface Description  BC types 

Pad 

 

S1, S4 Lateral ends 
Convection with oil  

at supply oil temperature 

S2 Pad-Film interface 
Prescribed temperature  

and heat flux from film surface 

S3, S5 Axial ends 
Convection with oil  

at supply oil temperature 

S6 Radial out 
Convection with oil  

at supply oil temperature 

Shaft 

S7, S11 Axial ends 
Prescribed temperature  

at room temperature 

S8, S10 Radial surfaces 
Convection with air  

at room temperature 

S9 
Journal-Film 

interface 

Prescribed temperature  

and heat flux from film surface 

Table 4.1 Thermal boundary conditions on pad and shaft 
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4.2.4. Flexible rotor with SFD in series with a TPJB 

The rotor configuration with a single overhung mass at the non-drive side (NDE) 

is shown in Figure 4.5. 

 

Figure 4.5 Example rotor-bearing-SFD configuration 

 

The flexible, lateral rotordynamics, Euler beam based model of the rotating 

assembly is represented as 

    U D U F  = +   (4.11) 

 

where  
Z

U
Z

 
=  
 

,  
1 1

1 0

ro ro ro roM C M K
D

− − − −
=  
 

 ,  
1

0

ro roM F
F

− 
=  
 

. U , roM , roC  and roK   

are the state variable vector and mass/damping/stiffness matrices of the system, roF  is 

the force vector including gravity, fluidic forces , ,B x yF  from the TPJB, imbalance 

excitation, and dynamic forces induced by thermal bow. This equation is diagonalized 

using the right and left eigenvectors and modal reduction. For computational economy, 
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only the modes having frequencies below five times the running speed were employed in 

the simulation. 

The SFD dynamic model including the TPJB housing mass, cage spring stiffness, 

and nonlinear SFD force is included as 

00

00

DxD D D

DyD D D

Dx Dx Bx

Dy Dy By

KM x x

KM y y

F M F

F M F

      
= −      

      

+ − 
+  

+ − 

 (4.12) 

where  and  denotes the  and  displacements of the TPJB housing. DM , DxK , 

DyK ,  , ,D x yF , , ,B x yF , DxM  and DM  represent the TPJB housing mass, cage stiffness in  

and  directions, and the transient SFD damping/added mass force and transient TPJB 

force in the x  and y  directions. Note that the TPJB force , ,B x yF  is the sum of each pad 

force 
i

padF  in Eq. (4.8) 

The coupling between the TPJB and SFD models was achieved by subtracting 

the TPJB housing displacement  and  from the journal displacement of the TPJB in 

Eq. (4.11), and incorporating the TPJB force , ,B x yF  into Eq. (4.12). The whole rotor-

bearing-SFD model consists of the TPJB dynamic equation Eq. (4.8), flexible rotor 

dynamic equation  Eq. (4.11) and the SFD dynamic equation Eq. (4.12). The lowest 

twenty modes of the rotor are retained and used for numerical integration. The three 

dynamic equations are coupled with each other and solved simultaneously to investigate 

the SFD effect on the ME suppression. 

Dx Dy x y

x

y

Dx Dy
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4.2.5. Morton effect prediction algorithm 

 

 

Figure 4.6 Morton effect prediction algorithm 

 

The flow diagram representing the ME prediction algorithm is in Figure 4.6. The 

initial conditions for the rotor-bearing-SFD dynamic states, the temperature distribution 

of fluid film/shaft-bearing structures, and the initial thermal bow amplitude are specified 

at the first step. Then the time-transient solution of the rotor-bearing-SFD system is 

obtained via numerical integration based on Eq. (4.1), (4.2), (4.5), (4.6), (4.7), (4.8), 

(4.11), and (4.12) until all the rotor orbits decay to steady-state conditions. Convergence 

is considered to have occurred only after the orbits at all rotor nodes in the model have 

converged. The energy equation is solved 40 times per each orbit cycle for 

computational efficiency, and the lubricant viscosity obtained from the previous step is 
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updated at the next step (updated 40 times per one orbit cycle). The number 40 is based 

on many simulation results, which showed a negligible difference by using a larger 

number of steps. Transient thermal states of the bearing-shaft structures are calculated 

based on Eq. (4.9) and (4.10), after the orbit convergence is ensured. A staggered–time-

integration technique is employed [43, 44] for faster simulation, without deteriorating 

accuracy, since the thermal and vibration related time constants are greatly different in 

the rotordynamic model.  

The steady-state simulation results presented in the following section are also 

obtained from the transient simulation method explained above. The simulation initiates 

from the lowest speed of interest and continues until either dynamic/thermal steady state 

or rubbing (induced by the ME) occurs. Then the process starts again at the next higher 

speed. The linear method estimates linearized stiffness and damping coefficients of the 

bearings and incorporates them into the matrix of the Euler beam rotor to formulate the 

system matrix, and the linear method is used for the calculation of critical speed and 

unbalance response of the system. 

 

4.3. Simulation results 

The rotor configuration with a single overhung mass at the non-drive side (NDE) 

was shown in Figure 4.5 of section 1.4.  The imbalance mass has a magnitude of 135 

.g mm  and is located at node 18 in the figure. The ball bearing at node 4 has linear 

stiffness and damping values of 81.7 10  /N m  and 51 10 /N s m , respectively, and 
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these values are assumed invariant with operating speed. The parameters of the TPJB 

with five pads with a load-on-pad and the SFD at node 12 are given in Table 4.2.  

 

Lubricant parameters Bearing parameters 

Viscosity at 50 ℃ [Ns/m2] 0.0203 Pad type Load on pad 

Viscosity coefficients [1/℃] 0.031 No. pads 5 

Supply temperature [℃] 50 Radius of shaft [m] 0.0508 

Inlet pressure [Pa] 1.32×105 Bearing clearance [μm] 74.9 

Reference temperature [℃] 50 Preload 0.5 

Shaft Parameters Bearing length[m] 0.0508 

Heat capacity [J/kg ℃] 453.6 Thermal expansion coefficient [1/℃] 1.3×10-5 

Heat conductivity [W/mK] 50 Reference Temperature [℃] 25 

Thermal expansion coefficient [1/℃] 1.22×10-5 Linear Ball Bearing 

Reference temperature [℃] 25 Kxx, Kyy [ /N m ] 1.7×108 

Thermal rotor length [m] 0.3508 Cxx, Cyy [ /N s m ] 1.0×105 

SFD parameters 

TPJB housing mass [𝑘𝑔] 4 Length [𝑚] 0.0508 

Diameter [𝑚] 0.15 Clearance [μm] 100 

Viscosity [𝑃𝑎. 𝑠] 0.03 Fluid density [𝑘𝑔/𝑚3] 865 

Cage spring stiffness [𝑁/𝑚] 81 10 ~ 88 10  Effective groove clearance ratio 20 

Inlet groove length [𝑚] 0.0063 Outlet groove length [𝑚] 0.0041 

Table 4.2 Parameter values for the example system 

 

The thermal boundary conditions on the pad and shaft surfaces are also listed in 

the table. The mesh size of the FEM for the thermal and temperature prediction is 

selected as 40x7x17 (circumferential, radial, and axial directions) for shaft, and 

15x10x10 (per one pad) for the Reynolds equation lubricant film and 15x10x10 (per one 
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pad) for the energy equation solver (pad and film). A convergence test with the current 

mesh size was conducted with three times the current mesh size, and the results showed 

good agreement with the presented predictions. The mesh size of the squeeze film is 

40x15 (circumferential and axial directions). This size is chosen by gradually increasing 

the mesh size until the SFD force converges. For the numerical integration of the rotor-

bearing-SFD system, the Newmark-beta method is employed with 1,000-time steps per 

one shaft rotation. 

 

4.3.1. Linear analysis 

 

Figure 4.7 Campbell diagram of rotors with SFD and without SFD (No SFD 

indicates rigidly mounted TPJB) 

 

A linear analysis has been conducted for a more complete description of the 

example rotor system prior to the nonlinear ME simulation. Note that the method used 

for the linear analysis is not a linear ME analysis, but a conventional method using 

linearized dynamic coefficients to calculate the critical speed and unbalance response. 

Figure 4.7 shows the Campbell diagram of the rotor-bearing system with and without the 
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SFD using 81 10  /N m  cage stiffness and nominal parameters in Table 4.2. The damped 

first forward critical speed of both cases is found at 7,644 rpm for no SFD case and 

8,708 rpm for with SFD case. It is sometimes noted that the ME occurs mainly when the 

rotor speed is near the rotor’s first bending mode [37, 38]. This is not always the case, so 

care must be exercised to search a far wider speed range when designing to prevent the 

ME. The ME does occur near the critical speed in the example presented, and an 

increase in the critical speed may help expand the operating speed range being free from 

the ME vibration. 

 

Figure 4.8 Bending mode of the example rotor at 7,644 rpm 

 

The bending mode corresponding to the first forward critical speed without SFD 

in Figure 4.7 is illustrated in Figure 4.8. 
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Figure 4.9 Distribution of unbalance response amplitudes along the length of the 

rotor for with and without SFD cases (No SFD indicates rigidly mounted TPJB) 

 

Figure 4.9 illustrates the deflection shape based on unbalance response of both 

cases at each critical speed. With the SFD included, the vibration amplitudes at the 

bearing and the NDE rotor-end nodes have been reduced compared with no SFD case.  

 

Figure 4.10 Linear analysis: Damped first forward critical speed and TPJB housing 

eccentricity ratio 

 

In Figure 4.10, the SFD cage stiffness values are varied from 81x10  /N m  to 

88x10  /N m  while other SFD parameters are fixed. The figure illustrates the damped 

first forward critical speed and TPJB housing eccentricities of the SFD with different 

cage stiffness. The model of the SFD including the cage stiffness assumes that the TPJB 
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bearing housing is centered in the SFD when the bearing load is zero. The bearing load 

causes the TPJB bearing housing to become slightly eccentric in the SFD when the 

actual static bearing load is applied. The eccentricity remains very small (<0.2) for all 

cage stiffness values examined. The SFD damping and inertia coefficients remain nearly 

constant for this eccentricity range; therefore, the effects of the small eccentricity can be 

ignored. In the figure, the first forward critical speed shows decreased values with 

increasing stiffness as opposed to the common conception that high stiffness value leads 

to an increase in the system’s natural frequency.  

The trend of decreasing critical speed with higher stiffness is consistent with the 

observation in [73]. Note that an increase in the cage stiffness shifts the rotor’s critical 

speed near the critical speed without SFD (7,644 rpm) in Figure 4.7. 

 

Figure 4.11 Linear analysis: damping ratio and damping coefficient change with 

different SFD cage stiffness 
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Figure 4.11 shows the damping ratio and damping coefficient variation with 

different cage stiffness. The damping ratio increases from the lowest value of 81 10  

/N m  to 84 10  /N m  and slightly decreases with a further increase to 88 10  /N m .  

 
(a) 

 
(b) 

Figure 4.12 Linear analysis: Unbalance response (a) pk-pk vibration amplitude at 

Rotor end node (b) pk-pk vibration amplitude at bearing node 

 

Figure 4.12 depicts the unbalance responses at the bearing and rotor-end via 

linear analysis. While the higher vibration level at the NDE rotor-end appears with the 

lower stiffness in Figure 4.12 (a), the vibration at the bearing location increases with the 

stiffer cage in Figure 4.12 (b).  
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Figure 4.13 Nonlinear transient simulation result of journal surface T at steady 

state condition with different cage stiffness (without thermal bow effect) 

 

In Figure 4.13, the journal surface T of the rotor with different cage stiffness is 

presented based on nonlinear transient simulation, which calculates the instantaneous 

TPJB bearing and SFD forces at each time step. The thermal bow effect is not included 

in all cases for comparison purposes. In the figure, an increase in cage stiffness induces 

more journal T  (The journal T  is calculated by subtracting the minimum temperature 

value on the journal surface from the maximum value at the bearing mid-plane). The 

results in Figure 4.12 (b) and 13 imply that for this example, increasing cage stiffness 

increases the vibration amplitude at the journal, which in turn increases journal T .  

This part presents the linear analysis with varying radial clearance and lubricant 

viscosity of the SFD and investigates the optimal parameters of the SFD in terms of 

vibration suppression. The nominal parameters in Table 4.2 and 81 10  /N m  cage 

stiffness is used for simulation.  
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(a) (b) 

  

(c) (d) 

Figure 4.14 Linear analysis with SFD parameter variation (radial clearance and 

lubricant viscosity) (a) damping ratio of rotor, (b) damping coefficient of SFD, (c) 

Damped first forward critical speed, (d) added mass coefficient of SFD 

 

The map in Figure 4.14 (a) shows a high damping ratio region where the SFD 

radial clearance ranges from 100μm to 150μm. Figure 4.14 (b) shows the corresponding 

damping coefficient map obtained via identical parameter variation. Note that the 

highest damping coefficient of 57.56 10 /N s m  with 100 m  radial clearance and 0.03 

Pa s  lubricant viscosity leads to the lowest damping ratio of 0.11 in Figure 4.14 (a). The 

damping coefficient values corresponding to the high damping ratio range from 52 10  

/N s m  to 52.5 10  /N s m  in Figure 4.14 (b). Figure 4.14 (c) illustrates the first 

forward critical speed map with varying parameters. The critical speed shifts up with 
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larger radial clearance, and the highest critical speed reaches up to 13,000 rpm with 

300μm radial clearance. Note that the critical speed is inversely proportional to the 

damping coefficients as higher critical speeds appear with lower damping coefficients, 

as indicated in Figure 4.14 (b) and (c). Figure 4.14 (d) shows that SFD radial clearance 

has a dominant effect on the added mass coefficient variation. 

Two parameter sets with high damping ratio (Set 1: 0.3 mm  radial clearance and 

0.015 Pa s  lubricant viscosity and Set 2: 0.1 mm  radial clearance and 0.01 Pa s   

lubricant viscosity) are chosen from the map in Figure 4.14 (a), and their distribution of 

unbalance response are drawn in Figure 4.15. Both cases show the reduced deflection at 

the bearing and rotor-end locations than no SFD case. In addition, a significant reduction 

in the rotor-end deflection is identified compared with the nominal parameter set (0.3 

mm  radial clearance and 0.01 Pa s  lubricant viscosity).  

 

 

Figure 4.15 Distribution of unbalance response amplitudes along the length of the 

rotor for different SFD parameters (No SFD indicates rigidly mounted TPJB) 

 

Nonlinear transient simulation is also performed with two selected sets and the 

nominal set from 7,000 rpm to 10,000 rpm in Figure 4.16. Note that the thermal bow 



 

125 

 

effect is not included in all cases for comparison purposes. The two selected cases show 

decreased vibration level at the TPJB from 7,500 rpm to 9,500 rpm compared with the 

nominal set. 

 

Figure 4.16 Nonlinear steady-state simulation: pk-pk vibration amplitude vs. rpm 

at the bearing node with different SFD parameter sets 

 

4.3.2. Morton effect benchmark simulation 

 

Figure 4.17 Nonlinear steady-state simulation: pk-pk vibration amplitude vs. rpm 

at bearing node 

 



 

126 

 

Morton effect simulations are performed to benchmark the experimentally 

observed ME case in [38]. Note that the SFD model is not included in the current 

analysis, and the parameters of the rotor-bearing configuration are from Table 4.2. The 

ME instability phenomenon is identified by observing a substantial increase in vibration 

caused by including the thermal bow (TB) effect, while the vibration amplitudes remain 

low if the TB effect is not included. More detailed descriptions of the ME instability 

determination are in [45]. Note that the exclusion of the TB is achieved by setting the 

induced thermal bow amplitude to be zero when the dynamic equations of the rotor are 

solved. Figure 4.17 illustrates the vibration level of the TPJB at different speeds with 

and without TB. This result is obtained via the nonlinear steady- state simulation 

explained in section 1.5. The no TB results in the figure are included to show that the 

large 1x vibration is caused solely by the ME. The result with TB exhibits much larger 

vibration amplitude from 8,000 rpm to 9,000 rpm as compared with the no TB model 

results. Ref. [38] shows high vibrations over a similar speed range. It is notable that the 

test results in [38] indicate high vibration as low as 7300 rpm, which is not apparent in 

the simulation model. This may be due to the effects of pedestal flexibility, lack of 

precise values of pad-pivot parameters or other un-modeled effects. 
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(a) (b) 

Figure 4.18 Nonlinear steady-state simulation: Comparison of (a) journal surface 

T  and (b) pk-pk vibration amplitude vs. rpm and rotor axial position (with 

thermal bow effect) 

 

Figure 4.18 (a) presents the journal temperature differential T  across the rotor 

axial length at different speeds. The journal T  is calculated by subtracting the minimum 

temperature value on the journal surface from the maximum value at the bearing mid-

plane. Note that only the rotor’s axial length from 0.6522 m  to 1.0078 m  is presented 

in the figure since the thermal shaft length is designated to be only seven times the 

bearing length (0.0508 m ), as explained in [43, 44]. The region where large T  appears 

coincides with the bearing’s axial location from 0.8022 m  to 0.853 m . The largest T  

of 28 C  is observed at the bearing mid-plane near 0.827 m  at 8,700 rpm, where a rub 

between the journal and pad surfaces occurs, due to the ME. The large T  induces 

thermal bows with large amplitudes, displacing the overhung disk away from its 

equilibrium centerline. This causes significant imbalance excitation, which in turn 

causes high vibration of the rotor. The speed range with large T  corresponds to that 

with high vibration in Figure 4.18 (b). The high vibration with amplitudes up to 0.15 
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mm  is observed at the rotor axial position from 0.2 m  to 0.6 m  and the rotor’s NDE 

overhung side (axial length over 1 m ). Note that the bending mode of the rotor showed 

large deflection on the NDE side at 7,644 rpm in Figure 4.18, which is consistent with 

the location of the large vibration in the nonlinear simulation results in Figure 4.18 (b). 

These results indicate that the ME vibration of the example rotor was closely related to 

its bending mode at 7,644 rpm. The speed range of large vibration is seen to occur above 

the critical speed and appears from 7,800 rpm to 9,000 rpm. 

 

 

Figure 4.19 Nonlinear transient simulation: 1X filtered polar plot at 8,000 and 

8,500 rpm (with thermal bow effect) 

 

Nonlinear transient simulations are performed both at 8,000 and 8,500 rpm, and 

the results are presented in Figure 4.19 and Figure 4.20. All parameter inputs of the 

system are identical to the aforementioned nonlinear steady-state simulation, and the 

SFD is not included. Figure 4.19 displays a 1X filtered polar plot based on the vibration 

amplitude and phase at the bearing for both speeds. Note that the texts in the plot denote 
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the simulation time at the instance when the vibration amplitude and phase are plotted. 

At 8,000 rpm, the rotor initially shows a large thermal spiral with time-varying vibration 

amplitude and phase, which is caused by the large T  in Figure 4.18 (a) and its resultant 

thermal bow. The vibration amplitude reached its maximum value of 20 m  and then 

dropped to 2.36 m  at 25 minutes, and the phase of the vibration keeps changing from 

0° to 360° during the process. This thermal spiral vibration is the main characteristic of 

the ME and was experimentally observed in [38]. At 8,500 rpm, a larger thermal spiral 

with the maximum amplitude of 25 m  appears and does not converge with time. 

Although the high vibration level accompanied by time-varying phase, without 

rub between the journal and pads, is consistent with observations in the experiment in 

[38], the predicted vibration levels are lower than the observed ones in [38]. This may be 

due to uncertainties in the simulation parameters, including unbalance distribution or 

other un-modeled effects.  

Figure 4.19 demonstrates that the phase angle migration is more severe at 8,500 

rpm compared with 8,000 rpm. This occurs even though 8,500 rpm is displaced further 

from the linear system model’s critical speed at 7,644 rpm. This shows that the ME is 

not strictly a resonance problem. The increase in thermal bow (imbalance) due to the ME 

at the higher speed dominates over the effect of proximity to the critical speed. This is 

also reflected in the greater migration of the phase angle at 8,500 rpm seen in Figure 

4.19. Having said this, the disappearance of the ME below 6,000 rpm and above 10,000 

rpm demonstrates a clear dependency of the ME on proximity to a critical speed. 
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Figure 4.20 Nonlinear transient simulation: journal surface peak-peak T  at 8,000 

and 8,500 rpm (with and without thermal bow effect) 

 

Figure 4.20 illustrates the corresponding journal T  at the bearing mid-plane for 

the rotors with and without TB at two operating speeds. The journal T  at 8,000 rpm 

shows a smaller value compared with that of 8,500 rpm in most of the simulation, 

indicating a smaller thermal bow amplitude and less severe vibration at the speed. Note 

that the temperature oscillations at a fixed location will depend on the proximity of 

running speed to the critical speed. If running were well below the critical speed in a 

region of non-resonant forced response, the hot spot would remain fixed 

circumferentially. The result without the TB shows stable T converging to around 1 C  

with time at both speeds. This comparison confirms that the violent vibration in Figure 

4.19 was induced by the ME. The oscillating amplitude of the T  also is consistent with 

the varying vibration amplitude, as observed in Figure 4.19. 
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Figure 4.21 Nonlinear transient simulation: temperature distribution at bearing 

mid-plane of the with thermal bow case at 8,500 rpm after 25 minutes 

 

Figure 4.21 illustrates the corresponding temperature distribution at the bearing 

mid-plane of the with TB case at 8,500 rpm after 25 minutes. The high journal T  of 

15.2 C  occurs at the hot spot (188.8°) on the journal surface. The high spot denoted 

with the black rectangular leads the hot spot (192.8°) with 4°. The cold spot is seen at 

352.6°, which is 159.8° away from the hot spot. 

 

4.3.3. Effects of SFD at different cage stiffness 

To mitigate the vibration induced by the ME, the SFD model developed in 

section 1.1 is incorporated into the rotor’s bearing location, as explained in section 1.4. 

The conventional SFD consists of the cage stiffness and lubricant film at the gap 

between the TPJB housing and the SFD housing. Reference [62] shows that the proper 

selection of cage stiffness is crucial for maximizing the damping capability of the SFD.  
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Figure 4.22 Nonlinear steady-state simulation: pk-pk vibration amplitude vs. rpm 

at bearing node with different cage stiffness 

 

Figure 4.22 compares the vibration level at the bearing with different cage 

stiffness of the SFD. Nonlinear steady-state simulation is carried out from 7,000 rpm to 

10,000 rpm. Although all stiffness cases display relatively reduced vibration amplitudes 

compared with the rotor “with TB and without SFD case”, they still have higher 

vibration than when not considering the TB effect. In the figure, the vibration level 

increases with the stiffer cage, and the 88x10 /N m  shows the largest pk-pk vibration 

amplitude of 28.21 m  at 8200 rpm.  
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Figure 4.23 Nonlinear transient simulation: 1X polar plot at critical speed with 

different cage stiffness 

 

Figure 4.23 displays the 1X filtered polar plot with different cage stiffness where 

the results are obtained at each critical speed. The critical speed is defined here as the 

speed where the maximum pk-pk vibration occurs. In Figure 4.22, the maximum pk-pk 

vibration appears at 8,600 rpm for the 81 10 /N m  cage stiffness, 8,100 rpm for 84 10

/N m , and 8,200rpm for 88 10 /N m , indicating the shift in critical speed depending on 

the cage stiffness. Figure 4.23 shows increasing vibration amplitudes for all three cases, 

while the operating speed and conditions are kept constant. The amount of vibration 

increase is more significant with higher stiffness values. The phase angles of the 

vibration also keep changing during the 15min, but they are not as evident as the rotor 

without the SFD case in Figure 4.19. 
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Figure 4.24 Nonlinear transient simulation: 3D orbit shapes at critical speed after 

25 minutes with different cage stiffness 

 

Figure 4.24 shows 3D orbit shapes of the rotor with different cage stiffness 

obtained via nonlinear simulation. The orbits are drawn at each critical speed after 25 

minutes. In the figure, the orbit sizes of the rotor keep growing and approach the size of 

the no SFD case with increasing cage stiffness. Note that the orbits with relativity low 

cage stiffness ( 81 10  /N m ) are shifted downward in y direction due to the larger static 

deflection of the cage. 

 

Figure 4.25 Nonlinear transient simulation: thermal bow of shaft at critical speed 

after 25 minutes with different cage stiffness 
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Figure 4.25 shows the amplitude of the induced thermal bow corresponding to 

the result in Figure 4.24. In the no SFD case, a large thermal bow amplitude of 27.5 m  

appears at the rotor end, and its corresponding phase angle is 331°, which is 143° away 

from the hot spot in Figure 4.21. With the SFD, the thermal bow amplitudes are 

substantially reduced, as shown in Figure 4.25. When the SFD is considered, the most 

significant thermal bow occurs with the cage stiffness of 88 10 /N m , and its value is 

18.5 m . Relatively small thermal bow amplitudes are induced with low cage stiffness 

values. This result confirms that high cage stiffness of the SFD causes increased ME-

induced vibration in the example presented. Note that in the linear and nonlinear analysis 

results in Figure 4.12 and Figure 4.13, the vibration amplitudes at journal location have 

been reduced with stiffness cage and thus resulting in less journal T . 

 

  

(a) (b) 

Figure 4.26 Nonlinear transient simulation: (a) pk-pk vibration amplitude vs. rpm 

at bearing node at critical speed after 25 minutes (b) zoom of (a) 
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The higher vibration level with stiffer cage may be due to the decreased effective 

damping with increasing cage stiffness of bearing support as demonstrated in [108]. 

Based on the nonlinear simulations, the cage stiffness value of 81 10  /N m , ensures a 

low journal eccentricity (<0.2) and small vibration amplitudes. This value is selected for 

the SFD design and will be used for the simulations in the following discussion. 

Simulations are performed with varying levels of SFD force, from 0 % to 100 % of the 

nominal value, to demonstrate that the full SFD force is not required to suppress the ME. 

The cage stiffness of 81 10  /N m  and the rotor-bearing-SFD parameters in Table 4.2 are 

employed for simulation. Figure 4.26 depicts the nonlinear steady-state result from 3,000 

rpm to 10,000 rpm. When no SFD force (0 % of SFD force) and only cage stiffness are 

included in the simulation, a much larger vibration amplitude (42.39 μm)) than the no 

TB case occurs at 5,000 rpm, indicating ME occurrence. By increasing the SFD force 

from 10 % up to 100 % of the nominal value, the high vibration level is mitigated 

compared with 0 % case. Note that the most stable vibration with the smallest pk-pk 

vibration at its resonance speed occurs with 50 % of SFD force, which confirms the 

existence of optimal damping in terms of vibration suppression [61]. The linear analysis 

in Figure 4.14-16 also indicated the existence of optimal SFD parameters, which showed 

more improved stability of the rotor. The relocation of the critical speed is also observed 

with the SFD force variation. With the 0 % SFD force and with the cage stiffness, the 

critical speed at the low speed of 5,000 rpm appears while the counterpart of no SFD 

case is around 7,600 rpm. By increasing the ratio of the SFD force, the critical speed 

shifts up to its maximum value of 8,500 rpm with 100 % of the nominal force. The result 
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confirms that the cage stiffness alone is not effective in controlling the ME vibration, 

and the damping force from the SFD is needed to suppress the ME. 

 

4.3.4. Comparison between with and without SFD 

 

(a) 

 

(b) 

Figure 4.27 Nonlinear transient simulation: (a) pk-pk vibration amplitude (b) SFD 

damping and added inertia force from Case 3 at critical speed 

 

Figure 4.27 (a) depicts the pk-pk vibration of the bearing with time at the speed 

where maximum vibration level appears in nonlinear simulation. Three different cases 

are considered, i.e., Case 1: no thermal bow and no SFD (TPJB rigidly mounted), Case 

2: with thermal bow and no SFD, Case 3: with thermal bow and SFD (cage stiffness of 

81 10  /N m ). In Case 3, the high vibration induced by the ME is suppressed to an 
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acceptable level, but the vibration level is still higher than Case 1. In Figure 4.27 (b), the 

magnitude of the SFD damping and inertia forces from Case 2 increase with time and 

converge to 1,076 N  and 68 N , respectively. 

 

 
7500 rpm 8000 rpm 8500 rpm 9000 rpm 9500 rpm 

Case 1 6.93 ° 8.49 ° 9.39 ° 6.998 ° 3.633 ° 

Case 2 6.66 ° 8.23 ° NC 7.173 ° 3.641 ° 

Case 3 12.32 ° 11.83 ° 11.23 ° 11.72 ° 10.8 ° 

                                                                *NC: non-converging 

Table 4.3 Phase lag between high and hot spots (Case 1: no thermal bow and no 

SFD, Case 2: with thermal bow and no SFD, Case 3: with thermal bow and with 

SFD) 

 

The migration of the hot spot on the journal surface causes the phase-varying 

thermal bow and thus the varying phase in the induced ME vibration. In the process, the 

hot spot typically lags the high spot (minimum film thickness) on the journal due to the 

convection effect in the lubricant film. Therefore, the occurrence of the ME is closely 

related to the stability of the hot spot. It is known that when the ME occurs, the hot spot 

moves around the journal circumference, and the phase lag between hot and high spots 

changes accordingly [37, 38]. In this regard, the phase lag between high and hot spots at 

various operating speeds are investigated. The phase lag values are measured after 25 

minutes via nonlinear simulation in Table 4.3. The comparison between Case 1 and 2 

reveals that phase lags are similar regardless of the thermal bow inclusion at the speeds 

where the ME induced vibration is not evident, as shown in Figure 4.27 (7500, 9000 and 
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9500 rpm). At 8,000 rpm, the ME starts to influence the rotor vibration in Figure 4.27, 

and the phase lag changes from 0° to 360° during most of the simulation, and eventually 

converges to 8.23°, which is similar to that of Case 1. 

 

Figure 4.28 Nonlinear transient simulation: hot spot location change with time at 

critical speed (No SFD indicates rigidly mounted TPJB) 

 

At 8,500rpm, the thermal spiral is non-converging type, and the rotor exhibits the 

high vibration with varying phase until 25 minutes. The corresponding hot spot location 

with time is shown in Figure 4.28. The angle shown in the figure provides the angular 

position of the hot spot relative to the angular position of the original imbalance, which 

is fixed at 0°, and this is shown in Figure 4.21. 

The hot spot angle of Case 2 keeps varying in a wide range and does not 

converge to a steady-state value, while those of Case 1 and 3 show stable and 

converging angles with time. Note that Case 3 shows relatively increased and stable 

phase lags ranging from 10.8° to 12.32° compared with two other cases without the 

SFD. The stable hot spot angles and increased phase lag may explain the enhanced 

stability and the ME suppression in the rotor-bearing due to the SFD. 
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Figure 4.29 Nonlinear transient simulation: temperature distribution at bearing 

mid-plane at 25 minutes with SFD 

 

Figure 4.29 illustrates the temperature distribution at the bearing mid-plane of 

Case 3 after 25 minutes of simulation at its critical speed (8,600 rpm), where the high 

spot leads the hot spot with 11.72°. Comparing with that of Case 2 at the same instance 

in Figure 4.21 reveals that the induced high T  is suppressed in Case 3 as displayed by 

the concentric distribution of the journal temperature. This may be attributed to the 

addition of the SFD, which reduced the vibration amplitudes at the journal location as 

demonstrated from the linear unbalance analysis in Figure 4.12. The reduced 

synchronous orbits within the journal may result in less asymmetric heating of the 

journal as evidenced in Figure 4.13. 
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5. TILTING PAD PIVOT FRICTION AND DESIGN EFFECTS ON THERMALLY 

INDUCED VIBRATION (MORTON EFFECT) 

 

5.1. Introduction 

The effect of pivot designs on the ME instability has not been fully investigated 

yet. Though the effect of different pivot geometries was considered in [44, 45], their 

analysis was limited to the TPJB’s static performance under the misaligned journal 

condition [45], and the ME vibration using linear pivot stiffness at the single operating 

speed [44]. The impact of the pad-pivot friction under dynamic loading conditions was 

investigated in [89-91]. However, a simple rigid rotor model (Jeffcott rotor) was 

employed in their analysis, and the only friction moment concerning the tilting motion is 

considered while the spherical pivot allows both tilting and rolling motions. The present 

study analyzes the influence of the pad-pivot design effects on the ME vibration with 

more detailed models of pivots including nonlinear pivot stiffness, spherical pivot’s 

rolling motion, and pad-pivot friction. The improved cooling effect of a spherical pivot 

compared with the cylindrical pivot will be verified. The nonlinear time-varying pivot 

stiffness based on Hertzian contact theory is employed, and its effect on the ME will be 

carried out in a wide operating speed range.  
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5.2. Rotor-bearing modeling 

5.2.1. Pad-pivot design 

 

 
 

(a) 

 
 

(b) 

Figure 5.1 (a) Schematic of cylindrical type pad-pivot (b) Schematic of spherical 

type pad-pivot 

 

The two most commonly used pivot types of TPJBs are cylindrical and spherical 

pivots as illustrated in Figure 5.1. The former has a cylinder-shaped pivot on the 

backside of a pad. Since the diameter of the pivot in an axial direction (pad rolling 

direction) is usually much larger than the one in a radial direction, the cylindrical type 

only allows a tilting motion. Meanwhile, since the spherical pivot has identical pivot 
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diameters in the both axial and radial directions, the pivot type enables both rolling and 

yawing motions as well as the tilting.  

In the current analysis, nonlinear pivot stiffness based on the Hertzian contact 

theory is employed for each pivot case. From [80, 81], the nonlinear pivot stiffness of 

the cylindrical type is expressed as 

2 2
2(1 )( ln(0.87 ( ))

3
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CYL

PIV H P
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EL D D





=

− + −
 (5.1) 

where E  and   represent Young’s modulus of pad and housing, and Poisson’s ratio 

respectively. PIVL , 
HD  and 

PD  denote the cylindrical pivot’s axial length, housing 

diameter, and pivot diameter, respectively. 

The nonlinear pivot stiffness of the spherical pivot [80, 81] also is expressed as  
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where PF  is load applied on a pivot. D ,  , and E  represent the diameter of pads and 

housing, Young’s modulus, and Poisson’s ratio, respectively. The subscripts P  and H  

represent the pivot and housing, respectively. 
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Figure 5.2 Friction mechanism between pad and pivot 

 

In the spherical pivot, the friction between pad and pivot is present since the pad 

slides on the pivot as shown in Figure 5.2. The mathematical model of pad-pivot friction 

developed in [89] is employed in the current analysis. The force induced by the friction,

FRF , can be determined by the product of normal load applied on the pivot and the 

friction coefficient between two contact surfaces. Then the friction moment, FRM ,  

which is the product of pivot radius and friction force, is applied to each pad and deters 

the pad motions. As shown in Eq. (5.3), the friction moment applied to pads are 

separated into two categories, i.e., 1) pad in sliding motion and 2) pad in stuck, and its 

equations are as follows 
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FR FR P padM R W





= −     if 0   

 

(5.3) 

where   is the angular velocity of tilting or rolling motion of pads. FR , PR  and padW  

denote the friction coefficient, pivot radius, and load applied on the pad, respectively. 

PM  is an applied load on the pad by lubricant film pressure. If the pad is in motion, the 

friction moment is determined by multiplying the friction force ( FR FR padF W= ) and 

pivot radius ( PR ), and its direction is opposite to the pad motion. If the pad is stuck, the 

friction exerts the moment with the same magnitude applied on the pad by the lubricant (

PM ) or the moment with the magnitude of 
FR P padR W . The direction is also in the 

opposite of the external moment on the pad. The angular velocity   can be either tilting 

or rolling motion of the pad. Unlike the previous works which only accounted for the 

friction applied to the pad tilting motion, this study considers the friction moment in both 

tilting and roll motions while the friction due to yawing motion is assumed negligible. 

For this, the magnitudes of the pad angular velocities of both motions are determined by 

the projection of the resultant moment along the pitch and roll axes. Note that the 

nonlinear stiffness calculation in Eq. (5.1) and (5.2) assumes the frictionless contact 

between pad and pivot. Therefore, care should be taken when applying the pad-pivot 

friction along with the nonlinear pivot stiffness model based on the Hertzian contact 
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theory. This may be somewhat unrealistic to use both models together. However, in the 

following analysis, since the aim of this study is to analyze the friction effect on the ME 

vibration, both models are used together to investigate the trend of friction effect 

depending on different pivot flexibility. 

 

5.2.2. Reynolds and energy equations 

 

Figure 5.3 Schematics of journal and pad dynamics 

 

The schematic of journal and pad are shown in Figure 5.3. 
JO  and 

BO  are centers 

of journal and bearing, respectively.   and 
P  denotes the circumferential coordinate 

and angular position of the pivot, respectively. The equation for lubricant film thickness 

in the case of the spherical pivot TPJB is 

. .

ˆ ˆ( , ) cos( ) sin( ) ( )cos( )

sin( ) ( , ) ( , )

P x y P b P

tilt P shaft TE pad TE

h z C e e C C

R h z h h z

    

   

= − − − − −

− − − −
 (5.4) 

where  
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ˆ cos cos cos( / 2)x x pvt p pitch p yaw pe e y z z     = − − − + ,

ˆ sin sin sin( / 2)y y pvt p pitch p yaw pe e y z z     = − − − + . 

and 
PC  and 

bC  represent the pad and bearing clearances, respectively. pvty , 
tilt , pitch  

and yaw  denote the pivot displacement and tilting/rolling and pitching motions, 

respectively. R , .shaft TEh  and .pad TEh  are journal radius, thermal expansion of shaft and 

pads, respectively. The thermal expansion is obtained from the 3D FEM which is 

detailed in [43-45]. In the case of the cylindrical pivot, the terms related to rolling and 

yawing motions ( pitch  and yaw ) in Eq. (5.4) are set to be zero. For the rigid pivot case, 

the pivot displacement pvty  is also removed from the equation. 

The generalized Reynolds equation and 3D energy equation are used to obtain 

the lubricant film force. 

The Reynolds equation for an incompressible, Newtonian fluid and negligible fluid 

inertia is 

1 2( ) / 0C P D U h t  +  +  =  

1 2
0 0 0

( / ) ( / )
h z h

C d dz C d     = −    

2
0 0 0

(1/ ) / (1/ )
h z h

C d dz d   =     

(5.5) 

where h  is lubricant film thickness,   is a variable viscosity term dependent on 

lubricant temperature. 

The viscosity-temperature relation is applied by 
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0( )

0 exp
T T  − −

=  (5.6) 

where 
0 , 

0T  and   are reference viscosity/temperature and viscosity coefficient, 

respectively. T  is lubricant film temperatures obtained from 3D energy equation 

The energy equation is solved with 

2 2 2
2 2

2 2 2
( ) ( ) ( ) ( )

T T T T T u w
c u w k

x z x y z y y
 

       
+ = + + + + 

       
 (5.7) 

where  , c , k  and   are density, heat capacity, thermal conductivity and viscosity of 

lubricant film. Note that lubricant velocities in the circumferential direction (u ) and axial 

direction ( w ) are obtained from the Reynolds equation in Eq. (5.5). The Reynolds 

equation and energy equations are solved with the FEM using the 2D triangle elements 

for the former and the 3D isoparametric hexahedron element for the latter. Quadratic up-

winding scheme [105] is applied for the FEM calculation of the energy equation to 

prevent the spatial oscillation problem from the convection term in Eq. (5.7). 

 

5.2.3. TPJB and flexible rotor dynamic equations 

The dynamic equations of the spherical pivot TPJB considering the nonlinear 

pivot stiffness and pad-pivot friction are 

Pi PVi SPHi PVi Pim y K y F=− +  

,Ti Ti Ti FRi TI M M = +  

,Ri Ri Ri FRi RI M M = +  

,Yi Yi Yi FRi YI M M = +  

(5.8) 
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where  i  represents the pad number. 
Pim , 

TiI , 
RiI  and 

YiI  are pad mass and pad inertia 

of tilting/rolling/yawing degree of freedom. The corresponding coordinates related to 

pad mass and inertia (
PViy , 

Ti ,  
Ri  and 

Yi ) are illustrated in Figure 5.1. 
SPHiK  is the 

nonlinear pivot stiffness of the spherical pivot calculated from Eq. (5.2). Note that the 

stiffness value is time-varying since the equation is a function of lubricant force applied 

on each pad (
PiF ). The pad-pivot friction moments,

FRiM , are applied to the relevant 

motions and axes. The friction moment on the yawing motion is assumed negligible and 

set to zero in the simulation. For the cylindrical pivot type, the degree of freedoms 

corresponding to rolling and yawing motions are removed and the nonlinear pivot 

stiffness,
SPHiK , is replaced with 

CYLiK  in Eq. (5.1). This equation is then combined with 

the flexible rotor model based on the Euler beam theory. The beam model is reduced 

with modal reduction, and it is systematically connected to the tilting pad journal bearing 

equations in Eq. (5.8). Detailed explanations of this procedure are presented in [43, 46]. 

The algorithms to solve the nonlinear ME simulations are also detailed in [43, 

46] where the Reynolds and Energy equations and thermal/dynamic structures of the 

rotor and the TPJB are systematically coupled, and time-staggering integration is used 

for the transient simulations of the ME phenomenon. 
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5.3. Simulation results 

 

 

 

(a) (b) 

Figure 5.4 Schematics of rotor and bearing configurations 

 

Figure 5.4 represents the rotor and bearing configurations used for ME 

simulations. In Figure 5.4 (a), the linear and nonlinear TPJB bearings are located at node 

4 and 12, respectively. The initial mechanical imbalance is at the NDE overhung mass of 

node 18. The stiffness and damping values of the linear ball bearing at node 4 and the 

amplitude of mechanical imbalance are shown in table 5.1. The TPJB with five pads and 

load-on-pad configuration are also illustrated in Figure 5.4 (b). The parameters of the 

rotor-bearing such as shaft diameter, lubricant properties, and TPJB design parameters 

are listed in Table 5.1. Design parameters of the two different pivot types, i.e., 

cylindrical (CYL) and spherical pivot (SPH), used for simulations are also shown in the 

same table. 
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Lubricant parameters Bearing parameters 

Viscosity at 50 ℃ [Ns/m2] 0.0203 Pad type Load on pad 

Viscosity coefficients [1/℃] 0.031 No. pads 5 

Supply temperature [℃] 50 Radius of shaft [m] 0.0508 

Inlet pressure [Pa] 1.32×105 Bearing clearance [μm] 74.9 

Reference temperature [℃] 50 Preload 0.5 

Shaft Parameters Bearing length[m] 0.0508 

Heat capacity [J/kg ℃] 453.6 Thermal expansion coefficient [1/℃] 1.3×10-5 

Heat conductivity [W/mK] 50 Reference temperature [℃] 25 

Thermal expansion coefficient [1/℃] 1.22×10-5 Pivot radius [mm] 15 

Reference temperature [℃] 25 Pivot friction coefficient 0.1~0.4 

Thermal rotor length [m] 0.3508 Linear Ball Bearing 

  Kxx, Kyy [N/m] 1.7×108 

  Cxx, Cyy [Ns/m] 1.0×105 

Cylindrical pivot parameters Spherical pivot parameters 

Pivot radius [mm] 62 Pivot radius [mm] 19.98 

Pivot housing radius [mm]  55 Pivot housing radius [mm] 20 

Length of cylindrical pivot [mm] 40 Elastic modulus of spherical pivot [Pa] 2.1e11 

Elastic modulus of pivot [Pa] 2.1e11 Poisson’s ratio of spherical pivot 0.3 

Poisson’s ratio of pivot/pivot housing 0.3   

Table 5.1 Parameter values for the example system 
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5.3.1. Linear analysis 

  

(a) (b) 

  

(c) (d) 

Figure 5.5 Linear unbalance responses and pivot stiffness of cylindrical and 

spherical pivots 

 

Prior to nonlinear ME simulations, linear unbalance responses and pivot stiffness 

are predicted based on convectional Rotor dynamic analysis using the linearized bearing 

stiffness and damping coefficients at equilibrium positions. In Figure 5.5, the 

simulations are conducted from 6,000rpm to 9,500rpm, and the journal equilibrium 

states are calculated at each speed. The linear unbalance responses at the journal (node 
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12) and overhung location (node 18) are presented in Figure 5.5 (a) and (b), and the 

pivot stiffness of five pads predicted at the journal’s equilibrium states are shown in 

Figure 5.5 (c) and (d). Linear unbalance indicates that both pivot cases show almost 

identical responses when the NL is not considered. With decreasing pivot stiffness of the 

SPH with nonlinear pivot, the unbalance response at the journal location in Figure 5.5 

(a) has increased compared with the rigid pivot, while the vibration amplitude at the 

overhung location in Figure 5.5 (b) has significantly decreased compared to other cases. 

When the flexible pivot is considered, the critical speed of both pivots has shifted to a 

lower speed range. The level of shift is more evident for the SPH case than the CYL. 

This may be explained by the predicted pivot stiffness in Figure 5.5 (c) and (d). The 

pivot stiffness of spherical pivots (Figure 5.5 (c)) shows relatively low values ranging 

from 83.25 10 /N m  N/m to 84.5 10 /N m  across the speed range while the CYL 

(Figure 5.5 (d)) indicates higher pivot stiffness up to 91.7 10 /N m.  This result is 

consistent with the results in [75] where the rigid pivot assumption significantly 

overpredicts the bearing’s direct stiffness values and critical speed. Also, note that the 

large discrepancy between stiffness values of two pivots is similar to the predicted 

results in [76]. 
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5.3.2. Effect of pivot geometry 

  
(a) (b) 

Figure 5.6 Steady-state ME simulations with rigid pivot from 7,500 rpm to 9,500 

rpm (a) Minimum film thickness ratio (b) pk-pk vibration amplitude at rotor end 

(node 19) 

 

In Figure 5.6, both CYL and SPH types are employed to examine the pivot 

geometry influence on the ME based on nonlinear steady-state simulations with the 

assumption of rigid pivots. Note that “no thermal bow (TB)” cases are included in the 

figure to show that the induced large vibration level is solely caused by the ME, and this 

has been performed by setting the induced thermal bow amplitudes to be zero during the 

simulation. In the figure, two “with TB” cases display much thinner minimum film 

thickness ratios in Figure 5.6 (a) and high vibration level at the rotor end (node 19) in 

Figure 5.6 (b) from 8,000 rpm to 9,100 rpm compared with the no TB cases, confirming 

that the induced thermal bow and resultant large vibration are due to the ME. In the 

speed range where vibration levels are relatively small (7500~7,900 rpm and 

9,200~9500 rpm), both pivot types with the TB show marginal differences in the film 

thickness ratio and vibration level. The difference becomes more evident when severe 

ME vibration appears from 8,300 to 8,900 rpm. The CYL shows a film thickness ratio of 
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0.05 and thus rubbing from 8,500 to 8,900 rpm, which is not apparent in the SPH at the 

same operating speeds. Note that the rubbing between pads and shaft is defined by the 

minimum film thickness ratio being below 0.05. This assumption is employed to avoid 

the excessive computation time and consideration of mixed lubrication theory when the 

minimum film thickness becomes very small. Note that the high vibration level without 

rubbing has been seen to occur with the SPH while the CYL encounters rubbing from 

8,500 to 8,900 rpm.  

 

  
(a) (b) 

  
(c) (d) 

Figure 5.7 Transient ME simulation at 8,600rpm (a) 1X polar plot at journal 

location (b) minimum film thickness ratio of TPJB (c) pad pitching angular 

displacement (d) pk-pk Journal T  
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Transient simulation results at 8,600 rpm corresponding to Figure 5.6 are 

presented in Figure 5.7. In Figure 5.7 (a), for both pivots, spiral vibrations are seen to 

occur in the 1X polar plot with varying phase angle and amplitude at journal location, 

and this “spiral vibration” is known to be the main characteristic of the ME. Note that 

the phase angle is an angle with respect to the initial mechanical imbalance. The phase 

angle of the SPH keeps changing from 0° to 360° during 30 minutes in Figure 5.7 (a) 

while the CYL encounters rubbing at 4 minutes 32 seconds, which is confirmed by the 

minimum film thickness ratio less than 0.05 in Figure 5.7 (b). Journal T  defined by 

the subtraction between the maximum and minimum temperatures across journal 

circumference is shown in Figure 5.7 (c). High T  oscillating between 13 C  and 23 C  

confirms that the violent vibration in Figure 5.7 (a) is attributed to the journal 

asymmetric heating and its resultant thermal bow excitation.  

Note that, though two pivot types have the same bearing stiffness and damping 

values and unbalance responses in Figure 5.5, the rubbing phenomenon is only observed 

with the CYL. This is because the pad pitching motion of the SPH provides a better 

cooling effect to the bearing compared with the CYL. The occurrence of the thermal 

bow would produce an asymmetric film distribution in the axial direction, and the film 

near the NDE side will be smaller than the DE side film due to the presence of thermal 

bow at the NDE. The SPH’s pitching motions in Figure 5.7 (d) are assumed to 

compensate this asymmetric film distribution, and thus resulting in the rotor being free-

from the rubbing. In the figure, negative angular displacements are induced for all five 

pads due to the asymmetric pressure loading applied on the pads, which in turn produces 
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symmetric film thickness in the axial direction. The fluctuations of pitching 

displacements follow the trend of the vibration, film thickness and journal T  

trajectories as represented in Figure 5.7 (a), (b), and (c). Note that the times where peak 

angular displacements occur coincides with the time where high journal  T  is 

observed in Figure 5.7 (c), which demonstrates the compensation effect of the pitching 

motion is more dominant when the larger thermal bow and its excitation is induced in 

the rotor.  

 

  

(a) (b) 

Figure 5.8 Journal temperature at 8,600 rpm (4 minute 32 seconds) (a) spherical 

pivot (b) cylindrical pivot 

 

Journal temperature distributions of both pivots at 4 minutes and 32 seconds are 

compared in Figure 5.8. Note that the y  axis in the figure corresponds to the axial 

location of the journal in the shaft (from 0.8276 m to 0.8776 m). The temperature of the 

SPH in Figure 5.8 (a) shows symmetrical temperature distribution along the axial 

direction due to its pitching motion, while the asymmetry distribution appears for the 

NDE side NDE side 
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CYL in Figure 5.8 (b) as the temperature of the NDE side is higher than the DE side 

temperature. The asymmetric heating in Figure 5.8 (b) is caused by the induced thermal 

bow effect which decreases the film thickness at the NDE side than the DE one, and this 

renders the CYL to be more prone to the rubbing than the SPH. 

 

5.3.3. Effect of pivot stiffness 

  

(a) (b) 

Figure 5.9 Steady-state ME simulations with rigid and flexible pivots from 7,000 

rpm to 9,500 rpm (a) Minimum film thickness ratio (b) pk-pk vibration amplitude 

at journal 

 

The influences of pivot stiffness on the ME are investigated, and the results are 

presented in Figure 5.9. Simulations are carried out for both rigid and flexible pivots 

from 7,000 rpm to 9,500 rpm. Similar to the linear unbalance results in Figure 5.5, the 

nonlinear pivot of the CYL shifts the ME instability speed range to a lower speed range 

in Figure 5.9. For the CYL-rigid pivot case, high vibration starts to appear from 8,000 

rpm and lasts until 9,100 rpm while for the CYL-flexible pivot case, severe vibration is 

present from 7,800 rpm to 8,600 rpm. Note that the unstable speed range due to the ME 
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has been reduced with the nonlinear pivot stiffness, i.e., instability speed rage of 1,100 

rpm for rigid pivot and 800 rpm for the nonlinear pivot. It is also noteworthy that 

rubbing occurs for both rigid and flexible pivots of the CYL at its maximum vibration 

speed (8,600rpm for both cases in Figure 5.9 (b)). The amplitude of vibration where 

rubbing occurs is higher with the nonlinear pivot, indicating the increased pivot 

deformation due to the pivot flexibility. 

Investigation of the SPH cases suggests that the shift of the ME speed range due 

to the pivot flexibility is more apparent in the SPH than the CYL. The SPH-nonlinear 

pivot exhibits a high vibration level around 7,700 rpm, which is about 1,000 rpm lower 

than that of the SPH-rigid case. This observation is consistent with the critical speed 

changes presented in the linear unbalance response in Figure 5.5, where the critical 

speed shift is more significant with the SPH compared with the CYL due to its lower 

pivot stiffness. The ME is not a strict resonance problem as demonstrated by 1) many 

reported ME cases occurred far away from the rotor’s critical speed, and 2) ME vibration 

level at the speed closer to the critical speed is not necessarily more severe than the 

speed farther from the critical speed. For example, in Figure 5.6 (b), the vibration level 

at 8,600 rpm is higher than that of the 7,700 rpm, which is very close to the critical speed 

(7,820 rpm) of the example rotor in the CYL-rigid pivot case. However, the 

investigation of the pivot stiffness effect in this section also implies that when the ME 

occurs near rotor’s critical speed, the ME instability speed range is largely affected by 

the critical speed changes of the rotor, confirmed by the dependency of the ME 

instability speed change with different pivot stiffness and resultant critical speed change. 
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(a) (b) 

Figure 5.10 Steady-state ME simulations of pk-pk journal T  from 7,000 rpm to 

9,500 rpm (a) spherical type with rigid pivot (b) spherical type with flexible pivot 

 

Journal temperature differential ( T ) with different speeds and rotor axial 

locations are presented in Figure 5.10. For comparison purpose, the SPH with rigid 

(Figure 5.10 (a)) and flexible (Figure 5.10 (b)) pivots are shown in the figure. High 

journal T s are shown from 8,000rpm to 9,000 rpm for the rigid case, and 7,600rpm to 

7,800rpm for the nonlinear pivot, and these ranges coincide with the high vibration range 

in Figure 5.9 (b). This coupled phenomena between the T  and vibration indicate that 

the thermal bow of the shaft induced by T  produces additional excitations in the 

system and causes large vibration. Also note that relatively small pk-pk journal T  (up 

to 18.2 C ) is predicted for the nonlinear pivot compared with that of the rigid pivot (up 

to 23.5 C ), indicating that rigid pivot assumption may over-predict the journal T  and 

vibration level in ME analysis. 
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(a) (b) 

 
 

(c) (d) 

Figure 5.11 Transient ME simulation at 7,700 rpm and 8,600 rpm (a) 1X polar plot 

at 7,700 rpm (b) k-pk Journal T  at 7,700 rpm (c) 1X polar plot at 8,600 rpm  (d) 

pk-pk Journal T  at 8,600 rpm 

 

Transient simulations are conducted for different pivot cases in Figure 5.11. At 

7,700 rpm, the most severe vibration level appears with the SPH-nonlinear pivot case 

with non-converging spiral vibration in Figure 5.11 (a). In Figure 5.11 (b), the high 

journal T  is also seen to occur with fluctuating amplitudes for the same case. The 

CYL and SPH cases with rigid pivot show relatively small vibration and T  at 7,700 
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rpm compared with the flexible cases. Meanwhile, at 8,600rpm, the rigid pivot cases 

exhibit more violent vibration and higher T  as shown in Figure 5.11 (c) and (d). 

These results are consistent with the steady-state results in Figure 5.9 and confirms that 

the shift of the ME instability speed range with different pivot types. 

  

(a) (b) 

Figure 5.12 Pivot stiffness at 7,700 rpm with time (a) cylindrical pivot (b) spherical 

pivot 

 

Pivot stiffness variation of both pivot types corresponding to 7,700 rpm in Figure 

5.11 (a) and (b) are illustrated in Figure 5.12. Only three pads are presented as pad 4 and 

5 represents the similar responses with the Pad 2 and 3, respectively. During the 

simulation, the stiffness values of the SPH range from 91.55 10 /N m to 91.67 10 /N m 

, which is much larger than the SPH case ranging from 83 10 /N m to 84.5 10 /N m in 

Figure 5.12 (b). The average stiffnesses of both pivots are similar to the linear analysis in 

Figure 5.5. Note that the pivot stiffness varies in accordance with the vibration and T  

changes in Figure 5.11 (a) and (b). As the high vibration occurs after 15 minutes in the 
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SPH-nonlinear case in Figure 5.11 (b), larger dynamic loads are applied on pads, and the 

pad-pivot tends to be stiffened due to its nonlinear characteristics in Figure 5.12. 

 

Spherical shape with rigid pivot Spherical shape with flexible pivot 

  
(a) 

  
(b) 

Figure 5.13 Transient ME simulation at 7,700 rpm (a) pk-pk vibration amplitude 

across rotor axial direction for 30 minute (b) temperature distribution of bearing 

mid-plane at 30 min 

 

Figure 5.13 shows transient simulation results of the SPH with both rigid and 

flexible pivots at 7,700rpm. In Figure 5.13 (a), for the SPH-rigid pivot, the vibration 

level is relatively small for all rotor axial locations and converges after 5 min. 

Meanwhile, the SPH-nonlinear pivot displays non-converging vibration after 10 minutes, 
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and especially severe vibration at the rotor axial location over 0.8 m. The amplified 

vibration level at the NDE overhung compared to other axial locations of the rotor 

implies that the vibration is induced by the thermal bow at the NDE side. Bearing mid-

plane temperature distributions for both cases are shown in Figure 5.13 (b). The shaft of 

the SPH-rigid pivot shows relatively concentric distribution of temperatures in Figure 

5.13 (a) while the SPH-flexible pivot resents the asymmetric temperature distribution in 

Figure 5.13 (b), which generates the thermal bow in the shaft. 

 

5.3.4. Effect of pivot friction 

  
(a) (b) 

Figure 5.14 Steady-state ME simulations of pk-pk vibration amplitude at journal 

with different pivot friction coefficients (a) spherical type with rigid pivot (b) 

spherical type with flexible pivot 

 

Although there have been many experimental results [44,84-87] that the presence 

of pad-pivot friction affects the static and dynamic performances of the spherical pivot 

type TPJBs, the friction effect is often neglected in the transient simulation of the TPJBs 

for simplicity. To examine the friction effect on the ME, parametric studies are 

performed with varying friction coefficients (FC) utilizing the rotor model in Figure 5.4. 
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Since the pivot friction is present only in the spherical pivot type, simulation results 

employing only the spherical pivot will be presented in the following. Coulomb friction 

model will be used for simulations, and the friction coefficients of the Coulomb model 

vary between 0.1 and 0.4. Stribeck friction model used in [91] are also tested and 

compared with the results based on the Coulomb friction model, and the comparison 

showed negligible difference between two models. Therefore, only the Coulomb friction 

model will be used in the following analysis. Figure 5.14 illustrates nonlinear steady-

state vibration responses of both rigid and flexible pivots considering the pivot friction. 

In the rigid pivot case shown in Figure 5.14 (a), the cases considering the friction effect 

significantly reduces the vibration amplitude and instability speed range of the ME.  

With FC 0.1, the rotor vibration amplitude at 8,600 rpm is suppressed to 0.04193 mm 

compared with 0.08052 mm for the no friction case. Further increase of friction 

coefficient until FC 0.3 reduces the vibration level to 0.0244 mm at the identical 

operating speed. The rotor vibration amplitude with FC 0.4 slightly increases at 

8,700rpm compared with FC 0.2 and 0.3 while the other operating speeds show similar 

vibration levels regardless of the FCs. For the flexible pivot case in Figure 5.14 (b), the 

pivot friction also suppresses the rotor vibration in general, but its effect on the ME 

vibration is not as evident as the rigid pivot as shown in the figure. For the rigid pivot, 

vibration suppression due to the friction is apparent both above and below the operating 

speed where maximum vibration level appears (8,600 rpm with no friction). However, 

for the flexible pivot, the friction effect suppresses the rotor vibration only below the 

maximum vibration speed (7,700 rpm with no friction) and even increase the vibration 
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level above that speed. With FC 0.1, the vibration level is most significantly mitigated 

compared with other friction coefficients (0.2~0.4). Above the maximum vibration speed 

(7,700 rpm with no friction), the vibration level starts to regrow with increasing friction 

coefficients (from 0.1 to 0.4). The maximum vibration speed also increases with 

increasing friction coefficients, i.e., from 7,800 rpm (for FC 0.2 and 0.3) to 7,900rpm 

(for FC 0.4). This result indicates that the rigid pivot assumption may overpredict the 

pivot friction’s vibration suppression effect on the ME vibration. Also, the optimal 

friction coefficients exist for the pad-pivot friction which best suppresses the rotor 

vibration, as demonstrated in the nonlinear pivot case in Figure 5.14 (b).  

 
 

(a) (b) 

Figure 5.15 Transient ME simulation of rigid pivot at 8,600 rpm (a) 1X polar plot 

(b) pk-pk Journal T  

 

Transient ME analysis of the rigid pivot corresponding to Figure 5.14 (a) at 8,600 

rpm is performed and its results are shown in Figure 5.15. With FC 0.1, the spiral shape 

and journal circumferential T  become smaller compared with the no friction but is 

still non-converging. Note that, in Figure 5.15 (b), the pivot friction has shortened the 
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period of T  fluctuation of FC 0.1 compared with the no friction. With FC 0.2 and 0.3, 

the spiral shapes are further reduced, and they converge to equilibrium points in 1X 

polar plot, indicating that the stability of the rotor is enhanced with increasing pivot 

friction. The journal T  also shows much reduced amplitudes and converging 

responses with FC 0.2 and 0.3 as shown in Figure 5.15 (b). If the friction is further 

increased to 0.4, the trajectory of spiral and T  show higher fluctuations while it 

eventually converges to a similar vibration and T  levels with FC 0.2 and 0.3 at the 

end of the simulation. These results indicate that there exists an optimal level of pivot-

friction which effectively suppresses the ME vibration. 

  
(a) (b) 

Figure 5.16 Steady-state ME simulations of flexible pivot: pk-pk journal T  

across rotor axial direction (a) no friction (b) friction coefficient 0.4 

 

Journal differential heating of two cases, i.e., 1) no friction, 2) FC 0.4, is 

compared in Figure 5.16. Similar to the vibration reduction trend in Figure 5.14 (b), with 

the friction effect, the journal T  is also decreased, and high T  speed range has been 

shifted up as seen from Figure 5.16 (b). Without the friction, the high T  reaches up to 

18.4 C  at journal location (axial coordinates from 0.8276 m to 0.8776 m) near 7,700 
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rpm while maximum T  of 9.37 C  appears at 7,900 rpm with FC 0.4. These similar 

trends in vibration and T  indicate that the ME vibration is induced by the journal 

asymmetric heating and its resultant thermal bow. The pivot friction reduces the 

asymmetric heating in journal circumference and thus reducing the ME vibration in this 

particular rotor case. This result also implies that the prediction without considering the 

pivot friction may overpredict the journal circumferential T , which is the most critical 

value in predicting the ME vibration. 

  
(a) (b) 

  
(c) (d) 

Figure 5.17 Transient ME simulation at 7,700 rpm and 7,900 rpm (a) 1X polar plot 

at 7,700 rpm (b) pk-pk Journal T  at 7,700 rpm  (c) 1X polar plot at 7,900 rpm  

(d) pk-pk Journal T  at 7,900 rpm 
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Figure 5.17 shows the simulation results at 7,700 rpm and 7,900 rpm with the 

nonlinear pivot cases corresponding to Figure 5.14 (b). At 7,700 rpm, FC 0.1 case shows 

the smallest spiral vibration in Figure 5.14 (a) and T  converges in the shortest time 

period compared with other cases in Figure 5.17 (b). Increasing friction coefficients up 

to 0.4 amplify the spiral and more fluctuations in T  with time in Figure 5.17 (b). 

Note that T s are slightly reduced with FC 0.2 and 0.3 than FC 0.1, and it 

regrows with FC 0.4. At 7,900 rpm, the no friction case shows the most stable spiral and 

T  trajectories with time. Then they start to grow with increasing friction coefficients, 

and these results are consistent with Figure 5.14 (b). With FC 0.3 and 0.4, the T  

reaches up to 9.5 C  and 7.8 C   after 40 minutes, and they are still non-converging. 

These transient simulation results confirm that the reduction of ME below the maximum 

vibration speed and the increase of ME above that speed as demonstrated in Figure 5.14 

(b). 

Figure 5.18 illustrates the transient simulation results at 7,900 rpm, 

corresponding to the results in Figure 5.17 (c) and (d). Note that, at this operating speed, 

it has been found that the pivot friction-induced more ME vibration with increasing 

coefficients. The 3D orbits of the rotor after 40 minutes in Figure 5.18 (a) confirm that 

the rotor orbits are enlarged with increasing pad-pivot friction especially at the NDE 

overhung side (> 0.8776m) due to the increased thermal bow as shown in Figure 5.18 

(b). Note that the thermal bow amplitude (
2 2

bow bowx y+ ) in Figure 5.18 (b) is calculated 

at each node location of the rotor. Without the friction, the bow amplitude at the NDE 
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side (node 19) is 0.01135 mm while the counterpart of FC 0.4 is about two times of that, 

i.e., 0.02254 mm. 

  

(a) (b) 

  

(c) (d) 

Figure 5.18 Transient simulation results at 7,900rpm after 40 minutes (a) 3D orbits 

of rotor (b) thermal bow amplitude with different friction coefficients (c) phase lag 

between hot and high spots (d) temperature distribution at bearing mid-plane of 

FC 0.4 

 

Figure 5.18 (c) and (d) represent the phase lag between hot and high spots across 

the journal circumference and the bearing mid-plane temperature of FC 0.4 after 40 

minutes. The no fiction case with relatively small vibration corresponding to Figure 5.17 

(c) shows a stable phase lag angle response with time and converges to 8.282   at 40 

0° 
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minutes. Meanwhile, FC 0.4 case with larger vibration shows more fluctuations and 

reaches to relatively small phase lag of 1.255   at 40 minutes. The high and hot spots for 

the FC 0.4 case are shown in Figure 5.18 (d). Both spots are seen to be located around 

190   being away from the 0   location (location of the initial mechanical imbalance) in 

the figure. Asymmetric temperature distribution with a high circumferential T  of 9.5 

  is seen to occur with the friction while relatively small T  of 4    is reported for the 

no friction case. These results confirm that at 7,900 rpm the pivot friction induces more 

asymmetric heating in the journal and causes amplified vibration level in the rotor. 
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6. MORTON EFFECT EXPERIMENTAL RIG BUILDING AND TESTING 

 

6.1. Introduction 

Many researchers have worked on the experimental works to verify the Morton 

effect and find their root causes. de Jongh and Morton employed a simple rotor design 

with a tilting pad journal bearing to reproduce the Morton instability [109]. Four RTD 

sensors were used and inserted into the journal circumferential surface to measure the 

temperature differential of the journal. It has been found that the journal temperature 

differential varies in a wide range from 3℃ to 10℃ depending on the operating speed. 

Also, they verified that the phase lag between hot and high spots varies with the rotor’s 

spin speed. Kirk and Balbahadur [110] measured the vibration during the run-up/down 

testing. After the run-up of the rotor, the rotor speed was kept constant to observe any 

symptoms regarding the Morton effect. They found a hysteresis phenomenon where the 

vibration amplitude of the run-down is much higher than the one of the run-up testing. 

Panara, et al. [111] measured the journal temperature differential with 8 thermocouples 

and bearing pad temperature with additional sensors. The effect of the overhung mass on 

the Morton effect was tested by varying the overhung weight from 7.3 % of the total 

rotor weight to 12.4 %. From the testing, it has been found that the ME range was 

sensitive to the overhung mass, and the instability range was lowered with larger and 

heavier overhung masses. Tong and Palazzolo [48] conducted experimental works to 

measure the journal circumferential temperature with 20 RTD sensors. The rotor 

supported with two ball bearings and one tilting pad journal bearing were designed to 
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have an offset of 0.003 inches from the bearing centerline, thus generating a prescribed 

journal orbit in the rotor. The rotor spin speed, static eccentricities, and oil supply 

temperature were varied in the testing, and it has been verified that the journal 

temperature differential is proportional to the rotor spin speeds. 

 

6.2. Test rig building and analysis 

  

Figure 6.1 Morton effect test rig and Tilting pad journal bearing 

 

Morton effect test rig has been built as shown in Figure 6.1. The total length and 

diameter of the shaft are 1.215m and 0.08m, respectively. The large mass near bearing 

housing weighs 90kg (bearing loading wheel in the figure), and it is installed to provide 

the bearing with sufficient load for operation. The overhung mass at the non-drive end 

(NDE) has a diameter of 0.3 m and a mass of 40 kg. A slip ring is connected at the end 

of the NDE. Total of 26 RTD sensors are embedded into the journal circumferential 

surface to measure the journal temperature differential. Ten vibration sensors are 

positioned across the rotor. Two sensors at the slip ring, two at overhung mass, four at 
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bearing housing, and two at the mid-shaft between the bearing loading wheel and the 

motor are installed.  

 

 

 

 

 

 

Figure 6.2 Schematic of an axisymmetric shaft-disk model 

 

For safe operation of the test rig, the stress between the shaft and bearing loading 

wheel is analyzed using ANSYS APDL. If the contact stress at the interface between the 

shaft and wheel exceeds the yield strength of the shaft and disk materials at 0 rpm, it will 

lead to the failure of the test rig. Meanwhile, if the contact stress at the interface is below 

zero at high operating speeds, the separation between the shaft and disk will occur. 

Therefore, selecting the proper interference fit amplitudes satisfying both stress 

conditions at 0 rpm and high speeds is important in designing the rotor. The 

axisymmetric model of the shaft-wheel model is developed based on ANSYS APDL. 

The schematic of the contact model between the test rig shaft and wheel is shown in 

Figure 6.2. The operating speed of the rotor is applied to the axis of rotation in the 

figure. Different amplitudes of interference fit were applied at the contact surface 

Disk 
thickness 
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between the shaft and wheel. Maximum Von Mises and hoop stress values at 0 rpm are 

calculated with different interference fit amplitudes in Table 6.1. 

 

Interference fit 

Max. Von Mises stress Max. Hoop stress 

Stress Safety factor Stress Safety factor 

Case 1 0.1178 mm 375 MPa 1.94-3.1 202 MPa 3.62-5.76 

Case 2 0.254 mm 535 MPa 1.36-2.18 288 MPa 2.54-4.05 

Case 3 0.3048 mm 642 MPa 1.14-1.81 346 MPa 2.11-3.37 

Case 4 0.3556 mm 749 MPa 0.98-1.55 404 MPa 1.81-2.88 

Table 6.1 Maximum stresses and safety factor at 0 rpm 

 

The interference fit amplitudes were varied from 0.1178 mm to 0.3556 mm, and 

the corresponding maximum values of the Von Mises and Hoop stresses are calculated 

in the table. The safety factor is calculated based on the yield strength values of the 4340 

steel. Depending on the heat treatment applied to the steel, the yield strength of the steel 

varies from 731 MPa to 1,165 MPa. With increasing interference fit values in Table 6.1, 

the stress at the contact interface increases accordingly, thus lowering the safety factors 

of the shaft-wheel contact. With the smallest interference fit of 0.1178 mm, higher safety 

factors are obtained, and the safety factors above 1.94 are ensured for both Von Mises 

and hoop stresses. 
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Interference fit Max. Contact stress at the speed without disk separation 

Case 1 0.1178 mm 19 MPa (at 7,500 rpm) 

Case 2 0.254 mm 25 MPa (at 9,500 rpm) 

Case 3 0.3048 mm 43 MPa (at 10,500 rpm) 

Case 4 0.3556 mm 12 MPa (at 11,500 rpm) 

Table 6.2 Maximum speed without disk separation 

 

Next, the contact stress analysis at high operating speed is conducted to verify 

the existence of the contact between the shaft and the wheel during operation. Identical 

interference fit values in Table 6.1 were used for the analysis. The maximum speeds 

without separation are determined by gradually increasing the rotor speed until the 

contact stress at the interface between the shaft and disk becomes zero. The maximum 

speeds without the wheel separation are summarized along with its contact stress values 

in Table 6.2. At the interference fit of 0.1178 mm, the contact stress value of 19 MPa 

exists at the contact interface at 7,500 rpm. Based on the rotordynamic analysis, the first 

bending mode of the developed rotor-bearing system is predicted to be around 5,500 

rpm. The Morton effect model also predicts the Morton effect vibration range around 

5,500rpm. Therefore, the maximum speed of 7,500 rpm for 0.1178mm interference is 

sufficient for the safe operation without the wheel separation in our test rig case. As the 

interference fit increases, the maximum speed without the separation also increases. 

However, as shown in Table 6.1, with increasing interference, high-stress values occur at 
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the contact interface and therefore deteriorate the safety factor of the design. The 

calculated stresses using ANSYS APDL at 6,000 rpm are shown in Figure 6.3 

   

(a) (b) (c) 

Figure 6.3 Stress calculations at 6,000 rpm (a) Von Mises stress (b) hoop stress (c) 

radial stress 

 

 

To measure the free-free mode, the shaft was connected with two straps and hung 

from a gantry as shown in Figure 6.4 (a). The measured natural frequencies are then 

compared with the calculated natural frequencies. The natural frequencies of the shaft 

are calculated based on both ANSYS APDL software and developed MATLAB codes. 

 

  

(a) (b) 

Figure 6.4 (a) Photo of test rig shaft for free-free mode testing (b) shaft model based 

on ANSYS APDL 
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For the ANSYS analysis, three dimensional tetrahedron solid elements were used 

for the natural frequency calculation. Euler beam model is also developed based on 

MATLAB software. The comparison between the measured and simulated results are 

listed in Table 6.3.  

 

 
Measured natural 

frequencies 

Calculated with ANSYS 

APDL 

Calculated with Euler 

beam model 

1st mode 8,760 rpm 9,300 rpm 10,080 rpm 

2nd mode 23,340 rpm 23,892 rpm 24,900 rpm 

Table 6.3 Comparison of calculated free-free modes 

 

As shown in the table, calculated results based on ANSYS APDL and Euler 

beam model show close agreement with the measured natural frequencies of the shaft. 

The results from the ANSYS APDL indicates closer agreement with the measured data 

than the Euler beam model since it employs the high-fidelity three-dimensional FEM 

method. The first, second and third modes shape of the shaft are drawn with both 

ANSYS APDL and the Euler beam model, and the results are shown in Figure 6.5. 

Modes shapes based on both methods show similar shapes as shown in the figure. 
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 1st Mode 2nd Mode 3rd Mode 

Euler 

beam 

   

ANSYS 

   

Figure 6.5 Comparison of first three mode shapes between Euler beam and ANSYS 

APDL 

 

The balancing process was conducted before the Morton effect testing. The 

vibration amplitude and phase are recorded at 1,800 rpm at the initial test. Then the trial 

weight was attached at the wheel, and the vibration amplitude and phase were recorded 

again. Based on the measured vibration data from the two tests, the correction weight of 

2.31 ounces at the phase of -7° has been obtained and applied to the wheel. The second 

balancing process was completed with the new measured vibration data. As a new trial 

weight, the calculated correction weight from the previous balancing was used. The 

correction weight of 3.118 ounces was calculated at the second balancing, and it has 

been attached at the phase of -28.21°. Similar balancing process was also done at the 

higher operating speed of 3,000 rpm. Multi-plane balancing was then applied at 2,700 

rpm to further enhance the vibration levels of the rig. The vibration amplitude and phase 

of the rotor after the balancing processes are summarized in table 6.4.  
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Operating speed 

Vibration at bearing in x direction Vibration at bearing in y direction 

pk-pk amplitude Phase pk-pk amplitude Phase 

1,200 rpm 0.001778 mm -166° 0.00127 mm -134° 

2,400 rpm 0.001524 mm -72° 0.004572 mm -120° 

2,700 rpm 0.001778 mm -172° 0.004064 mm -89° 

3,000 rpm 0.00254 mm -175° 0.004064 mm -89° 

Table 6.4 Vibration amplitude and phase of test rig after balancing 

 

Next, the lift-off of the test rig has been checked. The position of the journal is 

measured with the proximity sensors. As the rotor spin speed increases, the rotor’s 

vertical position is expected to rise. To test the lift-off, the rotor speed was increased 

from 240 rpm to 3,600 rpm, and the flow rate of the supply oil was maintained at 2 

GPM. At the initial check, the rotor’s vertical position increases until 1,800 rpm, but the 

increase was negligible after the speed as shown in Figure 6.2. The root cause of this 

phenomenon was identified as the journal misalignment, and it has been corrected in the 

following test. 
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Figure 6.6 Measured shaft position from 240 rpm to 3,600 rpm 

 

Figure 6.6 shows the lift of test after aligning the shaft. To accurately measure 

the shaft lift amplitude, the thermal expansion of housing is considered. The measured 

shaft lift-off amplitudes were compared with the simulation results using Morton effect 

prediction models in the previous sections. The nominal bearing clearance was 0.08 mm, 

and the measured bearing clearance was measured as 0.068 mm. Therefore, three 

different values of the bearing clearance including the nominal, measured and average 

values (0.074 mm) were tested, and its results are presented in Figure 6.6. The results 

show that the measured shaft lift amplitudes are closely related with the case with 

nominal bearing clearance of 0.080 mm. 
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(a) (b) 

Figure 6.7 (a) Installation of RTD sensors on the shaft and (b) RTD numbering at 

journal mid-plane 

 

26 RTD sensors are inserted in the journal of the shaft in Figure 6.7 (a) to 

measure the temperature variation of the journal circumference when the ME occurs. 

The RTD holes are covered with epoxy to prevent the damage to sensors from oil. The 

lubrication system is also installed to control the flow rate and temperature of the supply 

oil to the journal bearing. A freezer is located between the lubrication system and oil 

hose to the bearing so that the oil can be cooled with the ice in the freezer. A slip ring is 

used to measure the signal from the 26 RTD sensors, and it is located at the non-drive 

end side of the rotor. The configuration and numbering of the 20 RTDs located at the 

journal mid-plane is shown in Figure 6.7 (b). 
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(a) (b) 

Figure 6.8 Measured journal temperatures at (a) 3,000 rpm and (b) 4,200 rpm 

operating speed 

 

Temperature data measured with RTD sensors are shown in Figure 6.8. The 

circumference of the journal is measured with 20 RTD sensors, and its values are drawn 

in the polar plot. The journal circumferential temperatures were measured at both 3,000 

rpm and 4,200 rpm. At each operating speed, journal temperature differential about 

1.2°C and 2°C were measured, respectively. 

 

6.3. Vibration measurement 

Five pad tilting pad journal bearing with load on pad configuration supports the 

rotor NDE side, and ball bearing is installed at the drive-end (DE) side. The oil system in 

the figure circulate the oil flow in the journal bearing. The temperature of the supply oil 

to the bearing is maintained at the room temperature (about 25℃) by cooling the 

circulating oil with the ice and water in the refrigerator. The measured bearing clearance 

of the tilting pad journal bearing is about 0.074 mm. The parameters for rotor and 

bearings are shown in Table 6.5. 

° F ° F 
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Lubricant parameters Bearing parameters 

Viscosity at 50 ℃ [𝑁𝑠/𝑚2] 0.0203 Pad type Load on pad 

Viscosity coefficients [1/°𝐶] 0.031 No. pads 5 

Supply temperature [°𝐶] 50 Radius of shaft [𝑚] 0.04 

Inlet pressure [𝑃𝑎] 1.32×105 Bearing clearance (
b

C ) [𝑚] 7.4×10−5 

Reference temperature [°𝐶] 50 Preload 0.25 

Rotor Parameters Bearing length [𝑚] 0.06 

Heat capacity [J/𝑘𝑔 °𝐶] 453.6 Thermal expansion coefficient [1/°𝐶] 1.22×10−5 

Heat conductivity [W/mK] 50 Reference Temperature [°𝐶] 30 

Thermal expansion coefficient [1/°𝐶] 1.22×10−5 Pad pivot stiffness [𝑁/𝑚] 4e8 

Reference temperature [°𝐶] 25 Pivot offset 0.5 

Rotor length [𝑚] 1.215 Linear Bearing 

Rotor inner diameter [𝑚] 0.0254 Kxx, Kyy [𝑁/𝑚] 1.7×108 

Rotor outer diameter [𝑚] 0.08 Cxx, Cyy [𝑁𝑠/𝑚] 1.0×105 

Mass of wheel near bearing [𝑘𝑔] 90 Thermal boundary conditions 

Mass of overhung wheel [𝑘𝑔] 40 Temperature on shaft surface [°𝐶] 30 

Initial(mechanical) imbalance [𝑘𝑔. 𝑚] 6.5e-5 Temperature on bearing surface [°𝐶] 30 

  Convection coefficient [𝑊/𝑚2𝐾] 50 

  Thermal rotor length [𝑚] 0.18 

Table 6.5 Parameters of Morton effect test rig 

 

Rotor run-up/down tests has been conducted, and the speed of the rotor has been 

increased from 240 rpm to 4,800 rpm for the first test and to 5,640 rpm for the second 

test. Note that the slip ring is not installed at the NDE side for these run-up/down tests. 

In the first test, the rotor speed has been increased to the highest speed of 4,800 rpm for 

about 228 seconds and stayed at the speed for about 305 seconds. Then, the rotor was 

decelerated to the 240 rpm for 83 seconds. The vibration and temperature with respect 

time and rotor speed plots for first run-up/down test are shown in Figure 6.9.  
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(a) (b) 

Figure 6.9 (a) Rotor vibration amplitude and (b) temperatures of oil for the first 

test (4,800 rpm) 

 

In Figure 6.9 (a), the vibration increases as the rotor speed reaches at 4,800 rpm 

at the rotor overhung end and bearing outboard locations. In the typical rotor run 

up/down testing, the vibration levels tend to decrease or stay at the similar levels at the 

constant operating speed because the rotor vibration converges to the steady-state with 

time. But the opposite phenomenon of increasing vibration at constant speed is normally 

observed in the rotor experiencing the Morton effect. The current test results show this 

vibration increase of the overhung end and bearing location at the constant speeds. In 

addition to the vibration change with rotor speeds, the temperatures of inlet/outlet oil 

temperatures and pad temperatures have been changed during the experiment. As the 

rotor speed increases, the temperatures of outlet oil and pads also increased due to the 

increased viscous heating in the journal. However, the inlet oil temperature has been 

maintained at the similar level during the whole testing using the oil cooling system. The 

control of inlet temperature is very important to accurately predict the Morton effect 

because the inlet oil temperature increase may induce the change in rotordynamic 
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responses. The trend of the vibration increase at the 4,800 rpm is more clearly observed 

in the bode and 1x polar plots in Figure 6.10. 

  
(a) (b) 

Figure 6.10 (a) Bode (overhung end) and (b) 1x polar (bearing outboard X) plots 

for the first test (4,800 rpm) 

 

In both figures of Figure 6.10 (a) and (b), the vibration increases until it reaches 

to the maximum operating speed of 4,800 rpm (black line). At the constant speed with 

red line, the vibration increases are seen to occur without changing operating speeds. 

The vibration level initially increases and decrease to the steady state position in the 

Figure 6.10 (a). Then the rotor speed was decreased to 240 rpm for 83 seconds, and the 

hysteresis vibration is shown during the run-down (blue line), where the vibration levels 

of the run-down are larger than those of the run-up. In the Figure 6.10 (b), the 1x polar 

plot also shows the phase changes of the bearing vibration (X direction) along with 

vibration amplitude changes at the constant speed (red line). These hysteresis 

phenomenon, vibration amplitude/phase changes at constant speed are normally 

observed in the rotor experiencing the Morton effect. Based on the vibration and 
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temperature measurement results in Figure 6.9 and 6.10, it can be concluded that weak 

Morton effect is present in the tested rotor-bearing system. 

  
(a) (b) 

Figure 6.11 (a) Rotor vibration amplitude and (b) temperatures of oil for the 

second test (5,640 rpm) 

 

Second test has been conducted, and the maximum rotor speed was set to be 

5,640 rpm in this case. The vibration and oil temperature changes during run-up/down 

and at 5,640 rpm are shown in Figure 6.11. At 5,640 rpm, the vibration amplitude of the 

overhung and bearing outboard locations changes with time, and the vibration level 

abruptly has increased to the high levels. The pk-pk vibration levels of the overhung end 

and bearing reach up to 0.3572mm and 0.1918mm, respectively. These vibration levels 

exceeded the trip level programmed in the rotor control system, and therefore the rotor 

spin speed was automatically decreased to 240rpm for about 359 seconds. The oil/pads 

temperatures at 5,640 rpm are also shown in Figure 6.11 (b). All oil and pad temperature 

values except the oil inlet increases at the speed and reaches to its maximum value at the 

timing when the rotor deceleration has started. 

 



 

188 

 

  
(a) (b) 

Figure 6.12 (a) Bode (overhung end) and (b) 1x polar (bearing outboard X) plots 

for the second test (5,640 rpm) 

 

The bode and 1x polar plots of the second test are shown in Figure 6.12. At 5,640 

rpm with the red line in Figure 6.12 (a), the rotor vibration level increases from 

0.077mm to 0.3572mm. In the rotor deceleration from 5,640 rpm to 240 rpm with blue 

line, large hysteresis phenomenon occurred at the vibration amplitudes in the run-down 

are much larger than the amplitude of the run-up. The vibration amplitude and phase 

changes are also represented in the 1x polar plot in Figure 6.12 (b). 
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Figure 6.13 1x polar (bearing outboard X) plots at 5,640 rpm 

 

To observe the changes in vibration amplitude and phase at the constant speed, 

the 1x polar plot is drawn only for the vibration measurement at 5,640rpm in Figure 

6.13. At the point 1 in the figure, the vibration amplitude and phase are 0.048mm and -

65.6°, respectively. At 756 seconds after the rotor starts (point 2), the vibration is 

measured, and its amplitude was increased from 0.048 mm to 0.143 mm. The phase also 

shifted from -65.6° to -88.2° during the testing. The vibration amplitude further 

increased to 0.194 mm after 762 seconds after the test starts, and the phase of the 

vibration also changed to -69.6° (point 3). These results clearly shows the vibration 

amplitude and phase changes at the constant speed of 5,640 rpm. The measured vibration 

at the three points are summarized in Table 6.6. 
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 Amplitude Phase 

Point 1  

(422 Sec) 
0.048 mm -65.6° 

Point 2  

(756 Sec) 
0.143 mm -88.2° 

Point 3  

(762 Sec) 
0.194 mm -69.6° 

Table 6.6 Vibration amplitude and phase changes at 5,640 rpm 

 

Simulations have been conducted using the Morton effect codes developed in the 

previous sections, and its results are compared with the experimental results at 5,640 

rpm in Figure 6.14. In the simulation, as similar to the measured data, vibration increase 

induced by the Morton effect was observed at 5,640 rpm as shown in the figure. 

However, the vibration increase was mainly observed right after when the rotor speed 

reaches to 5,640 rpm while the vibration change was observed after 3 minutes in the 

experimental measurement. The predicted maximum vibration amplitude at the rotor 

overhung end was 0.19mm, which was smaller than the measured maximum value of 

0.35mm. The simulation results without Morton effect are also presented in the same 

figure for a comparison purpose. For the “exclude Morton effect case”, the induced 

thermal bow was set to be zero to exclude the effect from the thermal bow. In the figure, 

the “exclude Morton effect case” shows no noticeable vibration change at 5,640 rpm and 

maintains almost same vibration amplitude at the speed. These results confirms that the 
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Morton effect was the sole factor to induce the vibration changes in the simulation 

results of “include Morton effect” case. 

 
 

(a) (b) 

Figure 6.14 (a) comparison between experimental measurements and simulation 

results (b) zoom of (a) 

 

The vibration amplitudes of the rotor in rotor axial nodes with time are presented 

in Figure 6.15. Note that the vibration amplitudes at overhung end are largest among all 

rotor nodes. These results indicates that the induced large and fluctuating vibration is 

caused by the thermal bow effect induced at the overhung side of the rotor. The vibration 

amplitudes are also larger from 2 minutes to 8 minutes, which corresponds to the rotor 

operating speed of 5,640rpm. 
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Figure 6.15 Simulated rotor vibration at each rotor node with time 

 

Two measured vibration and oil/pad temperature values are presented. In both 

experiments, vibration amplitude and phase changes were observed. The hysteresis 

phenomena are also observed at both 4,800 rpm and 5,640 rpm. The hysteresis and spiral 

vibrations were more clearly observed at 5,640 rpm. These changing vibration 

amplitude/phase and hysteresis are the main characteristic of the rotor suffering from the 

Morton effect. Therefore, these results confirm that the tested rotor shows the thermal 

bow induced vibration problem (Morton effect).  The simulations using the developed 

Morton effect codes have been  conducted, and its results are compared with the 

Overhung end 

5640 rpm 
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measured data. Similar Morton effect vibrations have been observed in both  cases, but 

the maximum vibration amplitude of the rotor overhung end was underpredicted 

compared to the measured vibration data. These discrepancy between the simulation and 

experiments may be caused from the unmodeled dynamics of rotor-bearing systems such 

as oil mixing coefficient, unknown unbalance amplitude/locations, inaccurate beam 

model, etc. The unknown parameters such as rotor unbalance distribution and journal 

misalignment should be also considered for better prediction results.
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7. CONCLUSIONS 

 

In Section 2, the nonlinear behavior and bifurcation of a geared rotor system 

supported by fluid film journal bearings were investigated employing a multiple 

shooting/continuation algorithm. Nonlinear effects included in the model are nonlinear 

fluid film force in journal bearing, gear backlash, and time-varying mesh stiffness. The 

present study confirms that the nonlinearities in a gear pair may induce nonlinear 

behaviors such as the jump phenomenon, co-existing responses, subharmonic resonances 

and chaotic responses in the five-degree-of-freedom, gear-journal bearing system model.  

The effect of the gear applied torque and journal bearing paramaters on the nonlinear 

phenomena were investigated. The simulation with varying gear input torque showed 

that the separation between jump-up and jump-down speed is reduced with high input 

torques. The high input torque also induced a hardening effect which is not observed in 

low torque values. It was also confirmed that as bearing L/D  ratio and bearing lubricant 

viscosity are increased, or bearing clearances are decreased, the frequency where the 

gear nonlinearity-induced jump phenomenon occurs is lowered, and the number of 

multiple responses is increased, along with the double-sided contact of meshes.  In 

addition, the influence of the input torque and journal bearing parameters on the 

subharmonic responses were investigated. The simulation results revealed that the high 

input torque gives rise to the hardening effect as well as the softening effect in the 

subharmonic resonance region. It is also shown that small bearing L/D  ratio, lubricant 

viscosity and bearing clearance suppress the subharmonic resonances. 
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The impact of journal bearing parameters on the chaotic response were 

investigated via direct numerical integration, bifurcation diagrams, spectrums, Poincaré 

attractors and maximum Lyapunov exponents. As compared to the former studies, which 

used the linearized bearing stiffness and damping coefficients, the present study utilized 

the nonlinear journal bearing modeled with the finite element method. The results 

showed that the high-applied input torques to the gear suppress the chaotic response in 

the system. Chaotic motions and period-doubling bifurcations were observed at constant 

operating speed, as the value of lubricant viscosity and bearing clearance varied.  

The effect of gear mesh stiffness on the oil whirl phenomenon of the journal bearing was 

also studied. Using the continuation algorithm, it was verified that the increased gear 

mesh stiffness delays the onset speed of oil whirl. In addition, the mesh stiffness effect 

on the oil whirl phenomenon was sensitive to the magnitude of the gear input torque, as 

the amount of the onset speed delay was found to be more significant with high input 

torques.  

Future investigations for bifurcation and nonlinear dynamics of a gear supported 

by journal bearings will include thermal effect in the bearing lubricant, other types of 

hydrodynamic journal bearings such as pressure dam or tilting pad bearings. A more 

detailed gear-rotor model including a finite element shaft and a lubricant between gear 

meshes will also be developed. Experimental verification will be conducted to obtain 

validation results for the theoretical models. 
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Section 3 presents results of a study for the effects of bearing misalignment on 

the ME, utilizing high-fidelity rotordynamics and thermodynamics models, based on the 

3D FEM. The following conclusions are made: (1) journal misalignment induces 

decreased film thickness and film thickness distribution asymmetry which increases the 

ME instability speed range ISR. Simulations for two rotor cases with different bearing 

clearances showed that the ISR was nearly invariant with respect to bearing radial 

clearance. It was also demonstrated that a rotor operating free from the ME may 

experience a ME instability if the journal becomes misaligned. (2) Severe ME instability 

was observed to occur when the misalignment ratio exceeded a certain amplitude (𝑟𝑚 >

0.2). High misalignment ratios (𝑟𝑚 = 0.2 𝑎𝑛𝑑 0.3) expanded the ME instability speed 

range and increased the ME severity. (3) Spherical pad-type pivot compensated the 

misalignment effect, as confirmed by the invariance of the ISR with misalignment ratio 

increase when spherical pivot models were included. The compensation effect was 

confirmed with the increased angular displacements of the pad rolling motions in 

accordance with the misalignment direction. 

In section 4, the mitigation of the ME-induced vibration utilizing a squeeze film 

damper with a central groove has been presented. The ME model was benchmarked with 

an experimental result, and similar trends of spiral vibration were observed. However, 

the ME speed range and predicted vibration amplitudes depart from the experimental 

case under some conditions, due to un-modeled effects. The following conclusions are 

made based on convectional linear analysis and nonlinear transient ME simulations: (1) 

Based on conventional rotordynamic linear analysis, the SFD in series with the TPJB 
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shifts the first forward critical speed of the overhung rotor. Mounting the SFD with low 

stiffness could raise the rotor’s critical speed above the original one without SFD. 

However, this positive shift of critical speed could be unfavorably reduced if an 

improper SFD with a much higher stiffness is chosen. (2) The SFD with adequately 

designed parameters suppresses the ME-induced vibration. The cage stiffness of the SFD 

significantly affects the ME suppression capability of the SFD. In the current rotor-

bearing-SFD case, a stiffer cage induces larger vibration at journal location in the linear 

unbalance response, which may cause increased viscous heating in a journal 

circumference and consequently more severe ME vibration in the nonlinear simulations. 

A cage stiffness of 81 10  /N m  was shown to be optimal for suppressing the ME, 

compared with two other cases 84 10  /N m  and 88 10  /N m , for the particular rotor 

model presented. This may of course vary between machines considered. For 

comparison, the optimal cage stiffness was 25 % of the average x and y linear bearing 

stiffness values. (3) The installation of the cage stiffness without the SFD damping force 

was unable to control the ME vibration. The damping force from the SFD, along with 

the cage, increased the critical speed and suppressed the ME. (4) There exist optimal 

parameters for the SFD that offer the best suppression of the ME, and this is verified via 

the nonlinear ME simulations. Future work will include experimental verification of the 

ME suppression using the SFD with a central groove. SFD lubricant temperature 

variation and thermal conduction effect through SFD/TPJB housings will be considered 

in future work. In addition, an advanced optimization technique will be applied for the 

optimal SFD parameter identification to suppress the ME. 
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In section 5, nonlinear ME simulations are conducted to investigate the pivot 

design influences on the ME vibration. The rotor-bearing model is developed based on 

3D FEM-based thermal and structural models, Reynolds equation, 3D Energy equation, 

and Euler beam model. The pivot design components such as the pivot type (cylindrical 

and spherical pivots), pivot flexibility, and pad-pivot friction are included in the TPJB 

models, and parametric studies have been carried out. The following conclusions are 

made based on the simulation results. 

1) Spherical pivot type increases the minimum film thickness ratio and shows a better 

cooling effect compared with the cylindrical pivot type due to its pitching motion. 

This characteristic favorably works to avoid the rubbing effect when the ME 

occurs. 

2) The pivot stiffness shifts the critical speed of the rotor as shown in the conventional 

linear rotor dynamic analysis. The critical speed change was more significant with 

the spherical pivot type compared with the cylindrical pivot due to its geometry. 

3) The shift of the critical speed also affects the ME instability speed range, and it is 

demonstrated with the nonlinear transient ME analyses. With the shifted ME 

instability speed to the lower speed range, less severe ME vibration has been 

observed in general. 

4) The pad-pivot friction in the spherical pivot shows a relatively suppressed vibration 

level compared with the case without the friction. The effect of the friction is over-

predicted with the rigid pivot assumption. With the nonlinear pivot considering the 
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friction, the speed where maximum vibration level occurs has been shifted up with 

increasing friction coefficients. 

5) The vibration reduction due to the pad-pivot friction does not occur monotonically 

with increasing friction coefficients, and there exists an optimal value of pad-pivot 

friction coefficients which effectively suppresses the ME vibration. 

Future works include a more sophisticated prediction method of the friction 

coefficients between the pad and pivot using the finite element method. The effect of the 

pad’s composite materials on the ME vibration will be also investigated. The 

experimental works to verify the numerical results will be conducted. 

In the last section, the Morton effect test rig has been constructed and tested. The 

test has been conducted by increasing the rotor spin speed from 0 rpm to 5,600 rpm and 

5,700 rpm. The vibration results show that the vibration increase at the rotor overhung 

end while the rotor operating speed is kept constant. The vibration phase also changes 

with time at the contact operating speed. Since vibration amplitude and phases changes 

at the constant operating speed are the main characteristics of the rotor experiencing 

Morton effect, the results from the test rig show the evidence of the Morton effect in the 

developed rotor-bearing test rig. Future works include the measurement of the journal 

temperature differential with a slip ring. The parameters and operating conditions such 

as unbalance, lubricant viscosity, supply oil temperature, etc. will be varied to 

investigate more obvious hysteresis effect and spiral vibrations. 
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