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ABSTRACT 

 

Propensity score methods (PSM) has become one of the most advanced and 

popular strategies for casual analysis in observational studies. However, there are 

substantial challenges that PSM face, such as biased estimation when lacking common 

support and model misspecification. Recently, the Bayesian Additive regression trees 

(BART) algorithms has shown its great potentials for both robust and accurate 

estimation in causal inference. The proposed Multilevel BART (M-BART) estimated the 

fixed-effect components and random-effect component using a Single-level BART (S-

BART) and Linear Mixed Effect model, respective under the Expectation-Maximization 

Framework. The M-BART could handle both continuous and dichotomous outcome and 

could be used to estimate the propensity scores (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) or to model the potential 

outcomes directly (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇).  

In the first study, the use of M-BART algorithm was demonstrated using a well-

known multilevel public dataset. A follow-up simulation study that mimics the empirical 

dataset was conducted. Results suggested, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  is a highly efficient alternative 

approach to the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and generates more accurate ATE estimation, better 

confidence interval coverage, and eliminates the complexity of PSM implementation. 

In the second study, the performance of 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 and 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 were 

investigate in a full-scale simulation study and compared with S-BART methods 

(𝐷𝐸𝑆−𝐵𝐴𝑅𝑇   and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇) and PSM using logistic regression models (𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸). 

The results suggested that M-BART methods, especially 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 generated more 
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desirable treatment effect estimation compared to S-BART methods and PSM using 

logits regression models and show great capacities in dealing with nonlinearity, cluster 

effects and treatment effect heterogeneity.  
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1. INTRODUCTION  

 

Passing the No Child Left Behind Act (NCLB) and Every Student Succeeds Act 

(ESSA), made social science researchers extensively focused on the need for policies 

and interventions grounded in “scientifically based research.” The ultimate scientific 

research for causal inferences generally comprises randomized control trials (RCTs). 

Although researchers usually consider RCTs as the “gold standard” for drawing causal 

inferences, random treatment assignment can be unfeasible or unethical (McCall & 

Green, 2004; West, 2009).  

Observational studies can contribute to social science research in meaningful 

ways. Well-designed and analyzed observational studies can yield valuable information 

about treatment effects, especially when an RCT is unfeasible (Castillo et al., 2012). 

However, the results from observational studies are, by their nature, open to dispute due 

to the risk of containing confounding biases.  

 Propensity score matching (PSM) (Rosenbaum & Rubin, 1983) is the most 

advanced and popular strategy for casual analysis in observational studies. PSM has 

been increasingly used to reduce the impact of treatment-selection bias in both social 

science (Thoemmes & Kim, 2011) and medical research (Austin, 2008a). More than 

260,000 scholarly articles have used or referenced PSM to this date1. However, there are 

 

1 Based on Google Scholar search on 4/4/2020 using the keywords “propensity score matching.” 
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still many methodological concerns about PSM in causal inference. The following are 

the four substantial challenges that PSM face. 

• PSM paradox. For data sets that are already well-balanced on measured 

covariates, pruning the data sets based on the largest propensity score distances may lead 

to increased covariates imbalance and thus increase the bias in the causal inference. PSM 

guarantees balance among the matched sets on the conditional probability of treatment, 

but the guaranteed balance is expected to be random regarding the underlying 

covariates’ balance (Iacus et al., 2012).  

• Lack of balance criteria. The credibility of PSM hinges on how well the 

treatment and control group have comparable and balanced confounders. However, there 

is still no universally agreed criterion for severe imbalance. Some researchers have 

expressed their concern about overly restrictive balance criteria that might result in 

excessively reduced sample size (Austin, 2009a).  

• Biased estimation when lacking common support. Assuming no unobserved 

confounders, researchers can adjust the ignorability assumption by matching on all 

observed confounding covariates. However, if the distribution of the covariates is too 

different across treatment groups, no amount of adjustment can create direct 

treatment/control comparisons. Researchers must either restrict inferences to the region 

of overlap or rely on the model to extrapolate outside this region. Moreover, the 

difficulty of getting common support is exacerbated when there are many covariates.  

• Model misspecification. The effectiveness of PSM heavily relies on the 

correctness of the defined treatment assignment model. The most widely used logistic 
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model in PSM usually assumes a simple relationship among predictors, and the selection 

of predictors is usually based on availability or qualitative choices.  

The Bayesian Additive Regression Trees (BART) has the potential to meet all 

four challenges above. From a data mining perspective, all causal inference strategies 

can be viewed as an attempt to predict potential unobserved outcomes. Thus, in 

principle, any model that can accurately predict potential outcomes could be used to 

estimate the causal effect. BART has been applied in multiple studies and showed 

excellent performance in causal inference (Carnegie, Harada, & Hill, 2016; Dorie, 

Harada, Carnegie, & Hill, 2016; Dorie, Hill, Shalit, Scott, & Cervone, 2017; Hill, Weiss, 

& Zhai, 2011). First, BART does not require balanced covariates, thus avoid problems of 

PSM paradox and lack of balance criteria. Second, BART yields coherent uncertainty 

intervals for all observations, therefore avoid the problem of biased estimation when 

lacking common support. Third, BART is a sum-of-trees based algorithm that requires 

less researcher-defined model fitting and can handle a large number of predictors. Thus, 

BART can meet the challenge of model misspecification. BART can also produce more 

accurate estimates compared to other data mining techniques (Chipman et al., 2010) and 

estimation methods, such as propensity score matching, propensity score-weighted 

estimator, and regression adjustment (Hill, 2011; Hill, Weiss, & Zhai, 2011). 

From text mining in qualitative interviews to social network analysis in web-

based learning, data mining technique has seen increased popularity in the study of 

Educational Big Data (i.e., data with large volume and high dimensions). Data mining 

methods in education are often different from standard data mining methods due to their 



 

4 

 

need to explicitly account for multiple levels of meaningful data hierarchy (Baker, 

2010). Ignoring the “nested” structure in the analysis can cause severe problems such as 

bias estimation of the standard error and inflated Type I error (Dedrick et al., 2009; 

O’Connell et al., 2008). BART has the potential of integrating multilevel modeling to 

incorporate the nested structure of most large-scale educational data. 

In this dissertation, I proposed to expand the BART algorithm to the multilevel 

context. The proposed multilevel BART (M-BART) algorithm decomposes a multilevel 

outcome into a fixed and a random component, which can be estimated using the BART 

and a mixed effect model, respectively. The estimated fixed and random components are 

then combined and updated iteratively under the Expectation-Maximization (EM) 

framework until it converges. Similar strategies have been applied to developing a 

multilevel tree-based algorithm for longitudinal and cluster data (Lin & Luo, 2019; Sela 

& Simonoff, 2012). The proposed M-BART algorithm could be used for both direct 

causal effect estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇)and propensity score matching (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇). 

The goal of this dissertation is twofold. In the first study, I aim to develop a new 

M-BART algorithm, which allows the inclusion of both level-one and level-two 

covariates for modeling multilevel data. I demonstrated the use of the M-BART 

algorithm in both propensity score estimation (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) and direct causal inference 

(𝐷𝐸𝑀−𝐵𝐴𝑅𝑇) using a public multilevel dataset, Early Childhood Longitudinal Study, 

Kindergarten Class of 1998-1999 (ECLS-K). A follow-up simulation study that mimics 

the empirical dataset was conducted. In the second study, I aim to examine the 
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performance of the M-BART algorithm on varied data conditions such as different ICCs, 

sample size, nonlinear relationships using a comprehensive full-scale simulation study.  
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2. A NEW MULTILEVEL BAYEISAN ADDITIVE REGRESSION TREES 

ALGORITHM FOR CAUSAL INFERENCE 

 

2.1. Introduction 

Randomized controlled trials (RCTs) are considered as the gold standard for 

evaluating causal treatment effects. However, when conducting a RCTs is unethical or 

unfeasible, high-quality observation studies can provide credible causal effect evidence, 

especially when rich data are already available. Causal inference can be challenging in 

observational studies. Since individuals are not randomly assigned to treatment groups, 

the apparent causal relationship may result from confounders that are associated with 

both treatment assignment and the outcome, which lead to bias in treatment effect 

estimation and false conclusion.   

Traditionally, researchers can estimate an average treatment effect using 

regression models to statistically adjust for the baseline difference in observational 

studies. When ignorability holds, that is, when there is no unobserved confounder, the 

coefficient of the treatment indicator can be interpreted as the average treatment effect. 

However, if the distribution of the confounders is too different across treatment groups, 

either lack of complete overlap or lack of balance, then no amount of adjustment can 

create direct treatment/control comparisons. Researchers must either restrict inferences 

to the region of overlap or rely on the model to extrapolate outside this region. 

Furthermore, to achieve ignorability, researchers tend to include as many confounders as 

possible, which exacerbated the difficulty of getting common support. Most importantly, 
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the effectiveness of the regression adjustment heavily relies on the correctness of the 

defined regression model. The general regression models usually assume a simple linear 

relationship among predictors, and the selection of predictors is usually based on 

availability or qualitative choices.  

Many causal inference methods for observational studies involve separating the 

modeling process for the treatment assignment mechanism and the potential outcomes. 

As an example, propensity score methods are increasingly used to reduce the impact of 

treatment-selection bias and confounding effects in the estimation of treatment effects in 

social science research (Thoemmes & Kim, 2011).  

Propensity score methods are based on the idea that for ignorability to hold, the 

treated and control units do not need to have the same probability of receiving treatment, 

but rather the probability should be the same, conditional on all possible confounders. 

By controlling the treatment assignment mechanism using the propensity scores, the 

potential outcomes of the treated units can be substituted using the observed outcomes 

from their matched control counterparts. However, this seeming simplicity of propensity 

score methods masks several issues that must be dealt with and ignoring them could lead 

to inaccurate treatment effect estimation. These issues include but are not limited to the 

choices of variable selection, propensity scores estimation and condition methods, and 

outcome models. As Austin (2008a) concluded in his review study, the majority of the 

research that used propensity score methods tended to be poorly implemented. 

Additionally, propensity score methods face significant challenges such as biased 

estimation when lacking common support and model misspecification. 
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Recently, a Bayesian nonparametric modeling procedure, Bayesian Additive 

Regression Trees (BART), has been proposed to use in causal inference. Motivated by 

ensembling methods and boosting algorithms, Chipman, George, and McCulloch (2007) 

first developed BART as a sum-of-trees predictive algorithm. The BART algorithm has 

shown outstanding predictive performance and can be implemented as a propensity score 

estimation method or used directly to model the potential outcomes. Previous studies 

have shown the advantages of using BART to estimate propensity scores due to its 

flexibility in modeling the treatment assignment mechanism in high-dimensional settings 

(Hill et al., 2011; Spertus & Normand, 2018). Others supported the idea of using BART 

for direct causal inference in large-scale experiments or survey research to eliminates the 

complex of propensity score methods (Carnegie et al., 2016; Green & Kern, 2010, 2012; 

Hill et al., 2011).  

BART presents great potentials for robust and accurate estimation and shows 

great advantages compared to other causal inference methods. First, BART outperforms 

other machine learning methods such as boosting, the lasso, neural networks, and 

random forest in different settings without requiring the adjustment of the 

hyperparameters (Chipman et al., 2007). Second, as a sum-of-trees model, BART can 

capture both nonlinearities and interaction without explicitly adding interaction terms or 

transformations of the predictors (Hill, 2011). Third, BART can handle a large number 

of predictors. The ability to include many potential confounders as predictors is critical 

when trying to satisfy the ignorability assumption. Lastly, instead of dropping 

participants due to lack of overlap or common support, BART can provide coherent 



 

9 

 

uncertainty intervals when fewer data points are available. More importantly, BART can 

generate individual-specific posterior distribution for each potential outcome, which 

presents great potentials for using BART in the search for treatment effect heterogeneity 

(Green & Kern, 2012).  

Despite the increasing popularity of causal inference using machine learning 

algorithms, the application to multilevel data has not been comprehensively explored. 

Multilevel data is very common in educational research. For example, students are often 

nested within classrooms and classrooms nested within schools. To fill in this research 

gap, in this study, I proposed a Multilevel BART (M-BART) algorithm, which combines 

the features of BART and the mixed effect models under an expectation-maximization 

(EM) framework. Similar strategies have been applied to develop a multilevel tree-based 

algorithm for longitudinal and clustered data (Lin & Luo, 2019; Sela & Simonoff, 2012). 

The proposed M-BART algorithm can be used as a propensity score estimation method 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) or to predict causal effect directly (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇).  

In the following sections, I first reviewed existing literature on causal inference 

in observational studies, propensity score methods, and the BART algorithm. Then I 

introduced the proposed M-BART algorithm and applied it to an empirical public 

dataset. I further compared the estimation of 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  with three 

propensity score matching (PSM) methods and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 . After that, I presented a 

follow-up simulation study based on the empirical dataset to examine the predictive 

performance of these estimation strategies. In the end, I discussed the findings, 

implications, and limitations.  
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2.2. Theoretical Framework 

2.2.1. Causal Inferences in Observational Studies 

Following Rubin (1974), causal inferences can be conceptualized as a 

comparison of potential outcomes across all possible treatment conditions. Assuming 

there is no confounder, the causal effect can be defined as a contrast between the average 

of the outcome under one treatment versus the control condition at the population level. 

Let us consider a causal effect of a treatment 𝑇, where 𝑇 = 1 indicates assignment to 

treatment, 𝑇 = 0 indicates assignment to control, 𝑌𝑖(1) denotes the potential outcome if 

the individual 𝑖 is in the treatment group, and 𝑌𝑖(0) denotes the potential outcome in the 

control group. The causal or treatment effect can be described as the difference between 

these two potential outcomes for the individual 𝑖:  

                                                           𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0)                                           (2. 1) 

However, the individual causal effect can be challenging to estimate. Since we 

can only observe one outcome under either the control or the treatment condition for 

each individual, but rarely both at a given time. This inestimable individual causal effect 

if often referred to as the fundamental problem of causal inference.  

Although individual causal effects are generally hard to estimate, other causal 

effects such as average treatment effect (ATE) and the treatment effect for the treated 

(ATT) are estimable with weaker assumptions. An ATE measures the difference in the 

outcome, on average, if all individuals received treatment versus if all were in the 

control group. The ATE can be formulated as follows, 

                     𝜏𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)]                  (2. 2) 
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An ATT measures the average difference between the observed outcome and the 

potential outcome if all treated individuals were in the control groups. Since ATT only 

consider individuals in the treatment group, it requires slightly weaker assumptions on 

how the treatment is assigned. The ATT can be formulated as follow,  

𝝉𝑨𝑻𝑻 = 𝑬[𝒀𝒊(𝟏) − 𝒀𝒊(𝟎)|𝑻𝒊 = 𝟏] = 𝑬[𝒀𝒊(𝟏)|𝑻𝒊 = 𝟏] − 𝑬[𝒀𝒊(𝟎)|𝑻𝒊 = 𝟏]               (2. 3) 

 

Without additional assumptions, the above causal quantities of interest are functions of 

potential outcomes. To connect the potential outcome to the observed data, two 

important assumptions, the Stable and the Ignorability assumptions, are necessary

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA). If SUTVA 

assumption holds, the treatment assignment of one individual does not affect the 

potential outcomes of others (non-interference), and treatments are stable. In other 

words, the connection between potential and observed outcomes does not depend on any 

other covariates. This assumption forbids any spillover effects where the treatment 

assignment of one individual affects the outcome of another.  

Assumption 2: Ignorability Assumption. The ignorability assumption requires 

the treatment assignment to be independent of the potential outcomes, conditional on a 

set of observed covariates, 𝑌(0), 𝑌(1) ⊥ 𝑇|𝑋. The ignorability assumption requires that 

we control for all confounding covariates, which are the pretreatment variables that are 

associated with both the treatment and the outcome. If the ignorability assumption holds, 

the estimation of the causal effect only requires comparing two response surfaces 

(𝐸[𝑌(1)|𝑋] and 𝐸[𝑌(0)|𝑋]) without modeling the treatment assignment process, where 

𝑋 is potentially high-dimensional. 
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2.2.2. Propensity Score Strategies in Observational Studies 

2.2.2.1. Definition of Propensity Score 

Rosenbaum and Rubin (1983) first defined the propensity score as the probability 

of treatment assignment conditional on a set of observed baseline covariates, 𝑒𝑖 =

𝑃(𝑌𝑖 = 1|𝑋𝑖). As Rosenbaum and Rubin (1983) suggested, the propensity score is a 

balancing score because conditioning on the propensity score, the distribution of 

measured baseline covariates is similar between the treated and the control subjects.  

Propensity score techniques simplify the evaluation of the potential outcomes by 

replacing the multidimensional covariates with a single summative propensity score to 

appropriately control for the treatment assignment mechanism. In an RCT experiment, 

the difference between treatment and control groups on the outcome can be used directly 

to represent the ATE without controlling for the treatment assignment mechanism, since 

treatment and control subjects have similar probabilities of receiving treatment. 

However, in an observational study, treatment and control subjects might have different 

probabilities of receiving treatment due to their different baseline characteristics. Thus, 

to avoid modeling the response surface of the outcome model, researchers first need to 

specify and control for the treatment assignment mechanism and then estimate the 

difference in outcome between treatment groups as the ATE. The propensity score is a 

balancing score, which means when specified correctly, conditioning on the propensity 

score is sufficient to remove all confounding effects related to the observed baseline 

covariates (Rosenbaum & Rubin, 1983).  
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2.2.2.2. Decision-makings in Propensity Score Methods 

There are several decisions to make involved in propensity score methods, 

including: (1) the estimation methods of the propensity scores, (2) the conditioning 

methods of the propensity scores to control for removing the confounding effects, and 

(3) the diagnostic criteria for proper propensity scores used.  

First, propensity scores represent the probability of receiving treatment. The 

propensity scores are defined by study design and generally known in RCT experiments, 

while needed to be estimated based on study data and predictive models in observational 

studies. Theoretically, any model that can accurately estimate this probability can be 

used for propensity scores estimation. Traditionally, propensity scores are estimated 

using logistic regression models, in which the treatment indicator variable regressed on 

observed pre-treatment baseline covariates, and the propensity scores are estimated as 

the predicted probability of receiving treatment.  

Recently, increasing attention has been given to propensity score estimation 

methods that required less strict parametric assumptions than traditional logistic 

regression methods (B. K. Lee et al., 2010a; Westreich et al., 2010). Researchers started 

to explore the use of machine-learning predictive algorithms in propensity score 

estimation such as random forests (Leite, 2016), generalized boosted modeling 

(McCaffrey et al., 2004, 2013), neural networks (Westreich et al., 2010), and Bayesian 

Addictive Regression Trees (BART) (Hill et al., 2011; Sparapani et al., 2019). Hill et al. 

(2011) suggested propensity scores estimated using BART outperformed logit, Bayesian 

logit, and generalized boosted models (GBM) in covariates balance for empirical QQ 
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plots balance statistics but showed mixed performances for standardized mean 

difference. Spertus & Normand (2018) suggested using propensity scores estimated 

through student-t prior and horseshoe prior with BART slightly reduced bias and mean 

square error of the treatment effect estimation but significantly improved coverage in the 

high-dimensional setting. 

Second, there are four propensity score conditioning methods: matching 

(Rosenbaum & Rubin, 1983, 1985), stratification (or subclassification) (Rosenbaum & 

Rubin, 1984), inverse probability of treatment weighting (Thoemmes & Ong, 2016), and 

covariates adjustment (Garrido, 2016). Propensity score matching (PSM) entails forming 

matched pairs of treated and control subjects who share a similar value of propensity 

score and comparing the outcomes between matched subjects. Researchers can perform 

PSM with different matching ratios (e.g., one to one matching, variable-ratio matching), 

algorithms (e.g., greedy, optimal, genetic), and with or without replacement (Leite, 

2016). Propensity score stratification, one the other hand, divides the subjects into 

subgroups according to their propensity scores, resulting in subjects with similar 

propensity scores in the same subgroup, while the treatment effect is the pooled 

difference of outcome between subgroups. Researchers can also use propensity scores as 

the inverse probability of treatment weight (IPTW) (Austin & Stuart, 2015) or as a 

covariate in regression models to control for the selection bias (Rosenbaum, 1987a). 

Several studies have demonstrated that PSM eliminates the highest proportion of the 

systematic difference in baseline characteristics between treated and control subjects 

than other propensity score methods (Austin, 2009b; Austin et al., 2007).  
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Third, a critical step in propensity score analysis is to examine whether the 

propensity score is properly estimated by checking covariate balance between groups. 

As Ho et al. (2007) stated: “we know we have a consistent estimate of the propensity 

score when matching on the propensity score balances the raw covariates.” If the model 

has been adequately specified, the distribution of measured baseline covariates should be 

similar between treatment and control subjects in the matched sample, which are often 

referenced to as balanced covariates between groups. A strength of this diagnostic is that 

it allows researchers to assess the adequacy of the PSM models without contaminating 

his/her judgment by the estimated treatment effect.  

One of the widely used methods for balance diagnose is the standardized 

difference, in which the means or prevalence of baseline covariates are compared 

between treatment and control groups in the matched sample. For a continuous 

covariate, the standardized difference is defined as  

                                            𝒅 =
𝒙̅𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕 − 𝒙̅𝒄𝒐𝒏𝒕𝒓𝒐𝒍

√𝒔𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕
𝟐 + 𝒔𝒄𝒐𝒏𝒕𝒓𝒐𝒍

𝟐

𝟐

                                        (2. 4)
 

where 𝑥̅𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and 𝑥̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 denote the sample mean of the covariate in treated and 

control subjects, and 𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2  and 𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2  denote the sample variance of the covariate 

in treated and control subjects, respectively. For dichotomous variables, the standardized 

difference is defined as  

                𝒅 =
𝒑̂𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕 − 𝒑̂𝒄𝒐𝒏𝒕𝒓𝒐𝒍

√𝒑̂𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕(𝟏 − 𝒑̂𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) + 𝒑̂𝒄𝒐𝒏𝒕𝒓𝒐𝒍(𝟏 − 𝒑̂𝒄𝒐𝒏𝒕𝒓𝒐𝒍)
𝟐
 

              (2. 5)
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where 𝑝̂𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and 𝑝̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙  are the prevalence of the dichotomous variable in treated 

and control subjects. The standardized difference is an effect size which allows for the 

comparison of the balance of variables that are measured in different units. Although 

there is still no universal agreement on the criterion of severe imbalance, a standardized 

difference that is less than 0.1 has been used to indicate negligible differences of 

baseline covariates between treatment and control groups (Normand et al., 2001). 

Meanwhile, some researchers have expressed their concern about overly restricted 

balance criteria. They argued that the balance of covariates is a large-sample property, 

and moderate imbalance were expected in a small sample. Also, the criteria for 

acceptable imbalance should depend on the importance of the covariates (Austin, 

2009a), and overly restricted balance criteria might result in reducing sample size. 

Recently, other balance diagnoses have been developed with a focus on the 

sample distribution of the covariates. These methods include comparisons of variance 

ratios; comparison of higher-order moments and interactions; five-number summaries; 

and graphical methods such as quantile-quantile plots, side-by-side boxplots, and 

nonparametric density plots for comparing the distribution of baseline covariates 

between treatment groups (Ali et al., 2015; Austin, 2008b). However, none of the 

balance diagnostic methods has consistently outperformed standardized difference 

methods in detecting baseline covariance balance (Austin, 2009a). 
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2.2.2.3. Limitations of Propensity Score Strategies 

Propensity score methods allow researchers to make causal inferences from 

observational studies by separating the design of the study (treatment assignment) from 

the analysis of the causal effect (Rubin, 2001). However, the true propensity scores were 

known in RCT studies and requires estimation through study data and predictive models 

in observational studies. Therefore, the effectiveness of propensity score methods 

heavily relies on the correctness of the defined treatment assignment model.  

In a correctly defined treatment assignment model, there should be no 

unmeasured confounders, and the relation between covariates should be correctly 

specified. However, researchers are often uncertain about unmeasured confounders or 

the correctness of the treatment assignment model in their analysis. Thus, more 

advanced machine learning algorithm such as Bayesian Additive Regression Tree 

(BART) with fewer assumptions regarding the relationship between covariates has been 

proposed in the causal inference of observational studies.  

 

2.2.3. Bayesian Additive Regression Trees (BART) 

2.2.3.1. Definitions and Notations  

Assume there is a continuous outcome 𝑌 and 𝑝 covaraites 𝑋 for 𝑛 units. The 

relationship between 𝑋 and 𝑌 can be describe as 𝑌 = 𝑓(𝑋) + 𝜀, where 𝜀~ 𝑁(0, 𝜎2) and 

𝑖 = 1,… , 𝑛. To estimate 𝑓(𝑋), a sum-of-trees model can be specified as  

                                                        𝒇(𝑿) = ∑𝒈(𝑿;𝑻𝒋,𝑴𝒋)

𝒎

𝒋=𝟏

                                               (2. 6)  
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where 𝑇𝑗 is the 𝑗𝑡ℎ  binary tree structure, which contains the information of covariates to 

split on, the cutoff value for a child node, and the child node location in the 𝑗𝑡ℎ  binary 

tree. The 𝑀𝑗 = {𝑢1𝑗 , … , 𝑢𝑏𝑗} in equation 2.6 is a vector of terminal node parameters 

associated with the 𝑗𝑡ℎ  binary tree (𝑇𝑗). The constant 𝑚 indicates the number of trees 

and usually is fixed at a large number, e.g. 200. One can also treat 𝑚 as an unknown 

parameter by putting a prior on 𝑚 for the full Bayes implementation of BART algorithm 

(Chipman et al., 2010).   

Generally, tree models explain variation in an outcome variable by repeatedly 

splitting the sample into more homogenous subgroups (Green & Kern, 2010). To 

understand the sum-of-trees model of BART, we can first consider the single regression 

tree 𝑔(𝑋; 𝑇𝑗, 𝑀𝑗) as in Figure 2.1. Assume that we have covariates 𝑋𝑖 =

(𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, 𝑋𝑖4), and the goal is to estimate 𝐸(𝑌𝑖|𝑋𝑖) for individual 𝑖. In a binary 

regression tree model, each place where there is a split is called a node (in yellow color). 

At the top (root node), there is a decision rule 𝑋𝑖1 < 50. If it is true, the individual 𝑖 will 

follow the path to the left and arrive at the terminal node (in blue color), a type of node 

at the bottom of each tree and not split upon, and the parameter 𝑢1𝑗 = 2.56 would be 

used as the predicted value for 𝑌𝑖. If 𝑋𝑖1 < 50 is false, the individual 𝑖 would follow the 

path to the right and another child node with decision rule 𝑋𝑖3 > 35 will then be 

evaluated. This process continues until we reach a terminal node and then 𝑢𝑘𝑗, which is 

the mean of the 𝑘𝑡ℎ node for the 𝑗𝑡ℎ  regression tree, will be assigned as the predicted 

value for 𝑌𝑖. For instance, the individual 𝑎 with 𝑋𝑎1=55, 𝑋𝑎2=70, 𝑋𝑎3=45 and 𝑋𝑎4=25 
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would be assigned a predicted outcome of 1.94. According to the demonstration above, 

we can view a binary regression tree as a function that assigns the parameter 𝑢𝑘𝑗 to the 

conditional mean of 𝑌𝑖, that is 𝑢𝑘𝑗 = 𝑔(𝑋𝑖; 𝑇𝑗,𝑀𝑗) → 𝐸(𝑌𝑖|𝑋𝑖).  

To understand how a binary regression tree model takes into account main and 

interaction effects automatically, we can view it from an analysis of variance (ANOVA) 

model perspective. The following explanation of the method was slightly rephrased 

version of the work from Tan & Roy (2019). The regression tree model shown in Figure 

2.1 can be written as the following parametric model 

𝒀𝒊 = 𝒖𝟏𝒋𝑰{𝑿𝒊𝟏 < 𝟓𝟎} + 𝒖𝟐𝒋𝑰{𝑿𝒊𝟏 ≥ 𝟓𝟎}𝑰{𝑿𝒊𝟑 ≤ 𝟑𝟓}

+𝒖𝟑𝒋𝑰{𝑿𝒊𝟏 ≥ 𝟓𝟎}𝑰{𝑿𝒊𝟑 > 𝟑𝟓}𝑰{𝑿𝒊𝟐 < 𝟖𝟎} +

𝒖𝟒𝒋𝑰{𝑿𝒊𝟐 ≥ 𝟓𝟎}𝑰{𝑿𝒊𝟑 > 𝟑𝟓}𝑰{𝑿𝒊𝟐 ≥ 𝟖𝟎}𝑰{𝑿𝒊𝟒 < 𝟐𝟎} +

                   𝒖𝟓𝒋𝑰{𝑿𝒊𝟐 ≥ 𝟓𝟎}𝑰{𝑿𝒊𝟑 > 𝟑𝟓}𝑰{𝑿𝒊𝟐 ≥ 𝟖𝟎}𝑰{𝑿𝒊𝟒 ≥ 𝟐𝟎} + 𝜺𝒊                           (2. 7)

 

 

where 𝐼{. } is the indicator function and 𝜀𝑖~𝑁(0, 𝜎2). The 𝑢1𝑗𝐼{𝑋𝑖2 < 50} can be viewed 

as a main effect of 𝑋𝑖1 and 𝑢3𝑗𝐼{𝑋𝑖1 ≥ 50}𝐼{𝑋𝑖3 > 35}𝐼{𝑋𝑖2 < 80} can be viewed as the 

three-way interaction effect involving 𝑋𝑖1, 𝑋𝑖3, 𝑋𝑖2.  
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Figure 2.1 An illustration of a regression tree 𝑔(𝑋; 𝑇𝑗, 𝑀𝑗) 

 

2.2.3.2. Illustration of BART 

The BART algorithm can be viewed as a Bayesian model where the mean 

function is unknown and the uncertainty about the functional form and the parameters 

are accounted for in the posterior predictive distribution (Tan & Roy, 2019). In the 

following sections, I will first illustrate a simple sample of the BART prior distribution 

and MCMC algorithm and then provide a more comprehensive explanation of the BART 

algorithm. The following explanation of the BART method build upon a comprehensive 

tutorial from Tan & Roy (2019). 
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Assuming that we have three covariates 𝑋 = (𝑋1, 𝑋2, 𝑋3), a continuous outcome 

𝑌, and BART MCMC algorithm run with four regression trees (𝑚 = 4) for five 

iterations (𝑡 = 5)2. Figure 2.2 illustrated the MCMC steps of the BART algorithm.  

First, BART initializes the four regression trees to single root nodes with the 

mean parameters initialized for these nodes be 𝑢𝑖𝑗
(𝑡) =

𝑌̅

𝑚
=

𝑌̅

4
 . Then, in the first iteration, 

BART draw the tree structures for each regression tree. To determine Tree 1 (𝑇1,𝑀1), 

BART first calculate the residual, 𝑅1 = 𝑌 − [𝑔(𝑋, 𝑇2, 𝑀2) + 𝑔(𝑋, 𝑇3, 𝑀3) +

𝑔(𝑋, 𝑇4,𝑀4)] = 𝑌 − ∑ 𝑔(𝑋, 𝑇𝑗,𝑀𝑗) = 𝑌 − 3 ×
𝑌̅

4𝑗≠1   and then use a Metropolis–Hastings 

(MH) algorithm to generate the posterior draw of the tree structure (𝑇1). The goal of the 

MH is to propose a new tree structure (𝑇1
∗) from 𝑇1 and then calculate the probability of 

whether 𝑇1
∗ should be accepted considering the following factors:  

a. the likelihood of the residuals given the new tree structure (𝑅1|𝑇1
∗) 

b. the likelihood of the residual given the previous tree structure (𝑅1|𝑇1) 

c. the probability of observing 𝑇1
∗ 

d. the probability of observing 𝑇1 

e. the probability of moving from 𝑇1 to 𝑇1
∗ 

f. the probability of moving from 𝑇1
∗ to 𝑇1 

The details of various types of moves from 𝑇1 to 𝑇1
∗ are in the next section. If 𝑇1

∗ 

is accepted, 𝑇1 will be updated to 𝑇1
∗, otherwise 𝑇1 will remain the same for this iteration. 

 

2 i: indexes individual i; j: indexes 𝑗𝑡ℎ  tree; k: indexes: 𝑘𝑡ℎ node; t: indexes 𝑡𝑡ℎ iteration; m: indexes total 

number of trees of the BART. 
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In Figure 2.2 “Iteration 1”, the 𝑇1
∗ was not accepted in the first iteration so that the tree 

structure for Tree 1 remains as a single root node tree. The algorithm then updates 𝑀1 

based on the 𝑇1 and a single parameter 𝑢̂11
(1)

 was drawn from 𝑀1|𝑇1, 𝑅1, 𝜎.  

Then, the algorithm moves on to determine Tree 2 (𝑇2,𝑀2). To determine Tree 2 

(𝑇2,𝑀2) in the first MCMC iteration, again the algorithm calculates 𝑅2 = 𝑌 −

∑ 𝑔(𝑋, 𝑇𝑗,𝑀𝑗) = 𝑌 − (𝑢̂11
(1)

+ 2 ×
𝑌̅

4𝑗≠2 ). Similarly, MH is used to propose a new 𝑇2
∗ and 

𝑅2 is used to calculate the acceptance probability of whether 𝑇2
∗ should be accepted. In 

the Figure 2.2, 𝑇2
∗ was not accepted, thus a single parameter 𝑢̂12

(1)
 was drawn from 

𝑀2|𝑇2, 𝑅2, 𝜎.  

For Tree 3 (𝑇3,𝑀3), the newly proposed 𝑇3
∗ is accepted. Thus the residual for tree 

4 result in 𝑅4 = 𝑌 − [𝑢̂11
(1)

+ 𝑢̂12
(1)

+ 𝑢̂13
(1)

𝐼{𝑋3 < 0.48} + 𝑢̂23
(1)

𝐼{𝑋3 ≥ 0.48} +
𝑌̅

4
]. The 𝑇4

∗ 

was not accepted and a single node 𝑇4 was used as the tree structure for (𝑇4, 𝑀4).  

Once the draws of regression trees (𝑇𝑗, 𝑀𝑗) are completed, the BART then 

proceeds to draw the rest of the parameters and continue to the Iteration 2. Figure 2.2 

illustrates the full iterations process from Initiation 1 to Iteration 5 and how the four 

regression trees grow and change from one MCMC iteration to another. This iterative 

process runs for a burn-in period (typically 100 to 1000 iterations), and then run for as 

long as needed to obtain a sufficient number of draws from the posterior distribution of 

∑ 𝑔(𝑋, 𝑇𝑗,𝑀𝑗)
𝑚
𝑗=1 .  

After the full iterations in the MCMC algorithm, we can then obtain a predicted 

value of 𝑌 for any 𝑋 of interest (simply by summing the terminal node 𝑢’s) through a 
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full set of trees. By obtaining predictions across iterations, we can also obtain the 95% 

prediction intervals. Note that the regression trees are rather shallow, with a maximum 

depth of four. This is because the regression trees are heavily penalized (via the prior) to 

reduce the likelihood for any single tree to grow very deep and take over the prediction. 

This concept is borrowed from other ensembling algorithms where many weak models 

combined perform much better than utilizing a very strong model, which requires careful 

tweaking and has high probabilities of overfitting the data.  

 

Figure 2.2 Illustration of BART of the MCMC steps with 𝑚 = 4 
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Figure 2.2 Continued 

 

 

2.2.3.3. Priors and Posterior Distributions in BART 

For a more thorough explanation of the algorithm, I will start with the 

specification of the prior distributions. Follow the explanation from Tan & Roy (2019), 

the prior distribution 𝑃(𝑇1,𝑀1, … , 𝑇𝑚 ,𝑀𝑚 , 𝜎) can be simplified as 

{𝑃(𝑇1,𝑀1),… , 𝑃(𝑇𝑚 ,𝑀𝑚)} and 𝜎 are independent while 𝑃(𝑇1,𝑀1),… , 𝑃(𝑇𝑚 ,𝑀𝑚) are 

independent from each other. Thus, the prior distribution can be specified as  
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𝑷(𝑻𝟏, 𝑴𝟏, … , 𝑻𝒎, 𝑴𝒎, 𝝈) = 𝑷(𝑻𝟏,𝑴𝟏, … , 𝑻𝒎, 𝑴𝒎)𝑷(𝝈)

                                    = [∏𝑷(𝑻𝟏, 𝑴𝒋)

𝒎

𝒋

]𝑷(𝝈)

                                              = [∏𝑷(𝑴𝒋|𝑻𝒋)𝑷(𝑻𝒋)

𝒎

𝒋

]𝑷(𝝈)

                                                                          = [∏{∏𝑷(𝒖𝒌𝒋|𝑻𝒋)

𝒃𝒋

𝒌

}𝑷(𝑻𝒋)

𝒎

𝒋

]𝑷(𝝈).     (2. 8)

 

 

where 𝑀𝑗 = {𝑢1𝑗 , … , 𝑢𝑏𝑗} is the vector of terminal node mean parameters associated 

with 𝑇𝑗 and 𝑢𝑘𝑗 is assumed to be independent of each other. The prior for 𝑃(𝑢𝑘𝑗|𝑇𝑗) and 

𝑃(𝜎) are specified as 𝑃(𝑢𝑘𝑗|𝑇𝑗)~ 𝑁(𝑢𝑢 , 𝜎𝑢
2) and 𝑃(𝜎2)~𝐼𝐺 (

𝑣

2
,
𝑣𝜆

2
), where 𝐼𝐺 (

𝑣

2
,
𝑣𝜆

2
) is 

the inverse gamma distribution with shape parameter 
𝑣

2
 and rate parameter  

𝑣𝜆

2
.  

The prior 𝑃(𝑇𝑗) is more complex and can be considered as three components:  

1. The probability of a node at depth 𝑑 would split is (
𝛼

(1+𝑑)𝛽). The hyperparameter 

𝛼  controls how likely a node would split, with a large value indicating a high 

probability of a split. The by hyperparameter 𝛽 controls number of terminal 

nodes, with larger values of 𝛽 reducing the number of terminal nodes. 

2. The distribution that used to select the covariate to split upon in a child node is 

set to have a uniform distribution as default.  

3. The distribution that used to select the cutoff point in a child node is set to be a 

uniform distribution as.  
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After specifying the prior distributions, the posterior distribution can be specified as  

𝑷[(𝑻𝟏, 𝑴𝟏),… , ( 𝑻𝒎, 𝑴𝒎), 𝝈|𝒀] ∝ 𝑷(𝒀|(𝑻𝟏, 𝑴𝟏),… , (𝑻𝒎, 𝑴𝒎), 𝝈)

                                                    × 𝑷(𝑻𝟏, 𝑴𝟏, … 𝑻𝒎, 𝑴𝒎, 𝝈).                                                  (2. 9)

and Gibbs sampling is used for two sets of posterior draws. First, draw 𝒎 successive 

(𝑇𝑗,𝑀𝑗) from  

                                                            𝑷[(𝑻𝒋,𝑴𝒋)|𝑻(𝒋),𝑴(𝒋), 𝒀, 𝝈]                                       (2. 10) 

for 𝑗 = 1,… ,𝑚 where 𝑇(𝑗) and 𝑀(𝑗) consist of all tree structures and terminal nodes 

except for the 𝑗𝑡ℎ  tree structure and terminal node. Then draw  

                                                          𝑷[𝝈|(𝑻𝟏, 𝑴𝟏),… , (𝑻𝒎, 𝑴𝒎), 𝒀]                                 (2. 11) 

from 𝐼𝐺 (
𝑣+𝑛

2
,
𝑣𝜆+∑ (𝑌𝑖−∑ 𝑔(𝑋𝑖,𝑇𝑗,𝑀𝑗))

𝑚
𝑗=1

2𝑛
𝑖=1

2
 ). 

 For Equation (2.10), the distribution depends on 𝑇(𝑗), 𝑀(𝑗), 𝑌, 𝜎 through  

                                                         𝑹𝒋 = 𝒀 − ∑ 𝒈(𝑿,𝑻𝒘,𝑴𝒘)

𝒘≠𝒋

                                     (2. 12)  

which is the residual of the 𝑚 − 1 regression sum-of-trees fit, excluding the 𝑗𝑡ℎ  tree. 

Thus Equation (2.10) is equivalent to the posterior draw from a single regression tree 

𝑅𝑖𝑗 = 𝑔(𝑋𝑖, 𝑇𝑗,𝑀𝑗) + 𝜀𝑖 or 𝑃[(𝑇𝑗, 𝑀𝑗)|𝑅𝑗 , 𝜎] 

 

 We can obtain a draw from Equation (2.13) by first integrating out 𝑀𝑗 to obtain 

𝑃(𝑇𝑗|𝑅𝑗 , 𝜎). This is possible since a conjugate normal prior on 𝑢𝑘𝑗 was employed. We 

draw 𝑃(𝑇𝑗|𝑅𝑗 , 𝜎) using MH algorithm where first, we generate a candidate tree 𝑇𝑗
∗ for 

the 𝑗𝑡ℎ  tree with probability distribution 𝑞(𝑇𝑗, 𝑇𝑗
∗) and then we accept or reject 𝑇𝑗

∗ based 

on probability  
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             𝜶(𝑻𝒋, 𝑻𝒋
∗) = 𝐦𝐢𝐧 {𝟏,

𝒒(𝑻𝒋, 𝑻𝒋
∗)

𝒒(𝑻𝒋
∗, 𝑻𝒋)

×
𝑷(𝑹𝒋|𝑿, 𝑻𝒋

∗, 𝑴𝒋)

𝑷(𝑹𝒋|𝑿,𝑻𝒋, 𝑴𝒋)
×

𝑷(𝑻𝒋
∗)

𝑷(𝑻𝒋)
}                         (2. 13) 

where 
𝑞(𝑇𝑗,𝑇𝑗

∗)

𝑞(𝑇𝑗
∗,𝑇𝑗)

 is the ratio of the probability of how the previous tree moves to the new 

tree against the probability of how the new tree moves to the previous tree. 
𝑃(𝑅𝑗|𝑋,𝑇𝑗

∗,𝑀𝑗)

𝑃(𝑅𝑗|𝑋,𝑇𝑗,𝑀𝑗)
 

is the likelihood ratio of the new tree against the previous tree. 
𝑃(𝑇𝑗

∗)

𝑃(𝑇𝑗)
 is the ratio of the 

probability of the new tree against the previous tree.  

The steps for proposing a new tree 𝑇𝑗
∗ given the previous tree 𝑇𝑗 are as follow: 

1. Grow: where a terminal node is split into two new child nodes.  

2. Prune: where two terminal nodes immediately under the same non-terminal node 

are combined together such that their parent non-terminal node become a 

terminal node. 

3. Swap: the splitting criteria of two non-terminal nodes are swapped. 

4. Change: the splitting criteria of a single non-terminal node is changed.  

 

2.2.3.4. Hyperparameters for BART 

As mentioned before, the hyperparameters for BART are: 𝛼, 𝛽, 𝑢𝑢 , 𝜎𝑢 , 𝜐, and 𝜆. 

For 𝛼 and 𝛽, the default value is set to be 0.95 and 2, respectively, which provide a 

balanced penalizing effect for the probability of a node splitting (Chipman et al., 2010). 

For 𝑢𝑢 and 𝜎𝑢, they are set such that 𝐸(𝑌|𝑋)~𝑁(𝑚𝑢𝑢 ,𝑚𝜎𝑢
2)  has a high probability of 

falling in between min(𝑌) and max(𝑌), which can be achieved by defining 𝜐 such that 
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min(𝑌) = 𝑚𝑢𝑢 − 𝜐√𝑚𝜎𝑢 and max(𝑌) = 𝑚𝑢𝑢 + 𝜐√𝑚𝜎𝑢.  To simplify the calculation 

of posterior distribution, 𝑌 is transformed to 𝑌̃ =
𝑌−

min(𝑌)+max(𝑌)

2

max(𝑌)−min(𝑌)
, which results in 𝑌̃ ∈

(−0.5, 0.5). This has the effect of allowing hyperparameter 𝑢𝑢 to be set as 0 and 𝜎𝑢 to 

be determined as 
0.5

𝜐√𝑚
 where 𝜐 is to be chosen. The default value for 𝜐 is set to be 3 and 𝜆 

is set at the value that makes 𝑃(𝜎2 < 𝑠2; 𝜐, 𝜆) = 0.9, where 𝑠2 is the estimated variance 

of the residuals from the multiple linear regression with 𝑌 as the outcomes and 𝑋 as the 

covariates. 

 

2.2.3.5. Predictive Performance and Application of BART in Casual Inference 

BART has shown outstanding prediction performance in a great variety of data 

sets and simulation studies. In terms of out of sample predictive Root Mean Square Error 

(RMSE), BART compared favorably with gradient boosting (Friedman, 2001), linear 

regression with L1 regularization (the lasso) (Efron et al., 2004), neural networks with 

one layer of hidden unit and random forest (Breiman, 2001). In the simulation 

experiments, BART obtained reliable posterior mean and interval estimates of the true 

regression function as well as the marginal predictor effects (Chipman et al., 2010).  

Due to BART’s excellent prediction performance and easy application, Hill 

(2011) first proposed using BART as an alternative causal inference strategy to predict 

individuals counterfactual potential outcomes. After that multiple researchers have 

applied BART in causal inference (Hill, Weiss, & Zhai, 2011; Green & Kern, 2012; 

Dorie, Harada, Carnegie, & Hill, 2016; Dorie, Hill, Shalit, Scott, & Cervone, 2017; 
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Carnegie, Harada, & Hill, 2016). BART has also been consistently the best performing 

method in the Atlantic Causal Inference Data Analysis Challenge (Hill, 2016).  

BART can be used to estimate the average causal effect (in theory, BART could 

be used to estimate individual-level causal effects as well, but these individual-level 

causal effects would likely be far less robust). The general process of using BART in 

causal inference is as follows. First, fitting the BART algorithm to the full sample and 

get the posterior prediction for each individual at both the observed and the 

counterfactual treatment conditions. Then, creating posterior distributions for individual-

level treatment effects, that is, the differences between the predicted potential outcomes, 

based on the MCMC draws. Lastly, averaging individual-level treatment effects for the 

subpopulations of interest (e.g., averaging the individual-level treatment effects across 

treated units for ATT and across the full sample for ATE).   

By combining data mining and Bayesian techniques, BART has gain popularity 

in the causal inference literature. There are a couple of advantages of BART compared 

to other causal inference methods. First, BART outperforms other machine learning 

methods such as boosting, the lasso, neural networks, and random forest in different 

settings without requiring the adjustment of the hyperparameters (Chipman et al., 2007). 

Second, the sum-of-trees model can capture both nonlinearities and interaction without 

explicitly adding interaction terms or transformations of the predictors. Hill (2011) 

provided evidence of the superior performance of BART relative to linear regression, 

propensity score matching, and inverse probability of treatment weighted linear 

regression in the context where the relationships between covariates and outcome are 



 

30 

 

nonlinear. Third, BART can handle a great number of predictors. The ability to include a 

great amount of potential confounder as predictors is critical when trying to satisfy the 

ignorability assumption. If a variable is not critical for prediction, it simply does not get 

used (or not often). Lastly, instead of dropping participants due to lack of overlap or 

common support of the covariates, BART can provide coherent uncertainty intervals 

when fewer data points are available. BART yields individual-specific posterior 

distribution for each potential outcome. The uncertainty intervals will grow wider in the 

range where there is few observe empirical counterfactual for each data point across 

treatment groups. 

 

2.2.4. Multilevel Causal Inference Analysis in Observation Studies 

Propensity score methods were initially developed and applied in settings with 

unclustered data (individuals are independent from each other). However, educational 

data collected in education are typically clustered in ways that may be relevant to the 

analysis. For example, students typically come from families with certain characteristics 

(size, socioeconomic status, educational background) and behavior (academic 

orientation, emphasis on reading) and receive schooling in classrooms located within 

schools, within school districts. Educational activities or interventions often occur within 

hierarchical organizations, such as learning groups within classrooms, classrooms within 

schools, schools within districts, families within communities. This hierarchical structure 

gives rise to multilevel data in educational research.  
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In multilevel observational studies, researchers are more likely to violate the 

SUTVA assumption by both interactions between individuals, clusters, and treatments 

(Gitelman, 2005), and the interferences between units within a cluster (Gitelman, 2005; 

Hong & Raudenbush, 2006; Sobel, 2006; VanderWeele, 2008). Because most education 

data have a hierarchical structure, multilevel analyses are particularly important, even 

when researchers are only interested in relations among variables at the individual 

student level.  

Ignoring the “nested” structure in the analysis can cause severe problems such as 

bias in the estimation of the standard error of the fixed effects. Contextual effect 

(Greenland, 2002), aggregation bias (Robinson, 2009), and the appropriate 

representation of the nested structure in statistical analyses further complicate causal 

inferences. A more interesting set of issues arises because measured and unmeasured 

confounders may create cluster-level variation in treatment assignments and outcomes.  

The use of propensity score in a nested data structure has received increasing 

attention. The work of using a multilevel model in propensity score analysis has been 

primarily contributed by Hong and colleagues (Hong & Raudenbush, 2006; Hong & Yu, 

2007, 2008). Hong and colleagues considered the effect of retaining low-achieving 

children in kindergarten. In this case, the SUTVA assumption is questionable since 

students’ outcomes can be affected by both their retention status and the retention status 

of other students in their class. Hong & Raudenbush (2006) applied multilevel 

propensity score stratification and developed a causal model that allows school 

assignment and peer treatments to affect potential outcomes. Hong & Yu (2008) 
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proposed first to estimate propensity scores using multilevel logistic models and then 

apply the propensity scores to a hierarchical linear model to estimate the treatment 

effect. They also embedded measurement models into hieratical models to account for 

measurement error and to model dependence among observations. Hong & Yu (2007) 

further expanded on the previous method and modeled the retention effects on 

longitudinal outcomes of students nested within schools, accounting for both sample 

attrition and measurement error in the outcomes.  

Thoemmes & West (2011) proposed several modeling and conditioning choices 

to extend the propensity score analysis to clustered data. They describe four possible 

models for estimation of propensity scores: single-level model, fixed-effects model, and 

two random-effects models, with two conditioning strategies, conditioning within-

cluster, and conditioning across clusters. Simulation results suggested models that 

consider the nested nature of the data both in the estimation of the propensity score and 

conditioning on the propensity score performed best.  

Despite the increasing popularity of causal inference using machine learning 

algorithms, the application of machine learning algorithms in multilevel data is rare. The 

use of BART in longitudinal and clustered data with correlated observations within 

clusters has not yet been proposed. One approach is to decompose a continuous outcome 

into the fixed and the random components, which can be estimated using the BART and 

linear mixed model, respectively. Similar strategies have been applied in developing a 

multilevel tree-based algorithm for longitudinal and clustered data. For example, based 

on Sela & Simonoff (2012)’s method, Lin & Luo (2019) proposed a multilevel CART 
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(M-CART) algorithm, which combines the features of single-level CART (S-CART) and 

multilevel logistic models (M-logit) using the expectation-maximization (EM) 

algorithm. Specifically, the proposed M-CART algorithm decomposes a binary outcome 

into the fixed and the random components which are estimated using S-CART and M-

logit, respectively. The estimated fixed and random components are then combined and 

updated iteratively under the EM framework until convergence is reached. The 

simulation results suggested the proposed M-CART algorithm consistently outperforms 

S-CART and a single-level logistic regression model across different conditions of 

sample size, intraclass correlation, and when the relationship between predictors and 

outcomes were nonlinear and nonadditive.    

 

2.2.5. The proposed Multilevel BART Algorithm 

Built upon the work of Sela and Simonoff (2012) and Lin and Luo (2019), the 

proposed multilevel BART algorithm decomposes a continuous outcome into the fixed 

and random components. For a linear mixed effect model, 𝑌 = 𝑋𝛽 + 𝑍𝑢 + 𝜀, the 

outcome variable 𝑌 is a 𝑁 × 1 column vector; the 𝑋 (𝑋1, … , 𝑋𝑝) is a 𝑁 × 𝑝 matrix of the 

𝑝 predictors; 𝛽 (𝛽1, … , 𝛽𝑝) is a 𝑝 × 1 column vector of the fixed-effects regression 

coefficients; 𝑍 is the 𝑁 × 𝑞 design matrix for the 𝑞 random effects; 𝑢 is a 𝑞 × 1 vector of 

the random effects, and 𝜀 is a 𝑁 × 1 column vector of the residual.  

The general idea of the proposed multilevel BART algorithm is to estimate the fixed 

effect components (𝑋𝛽) and random effect component (𝑍𝑢) using the S-BART and 

linear mixed effect model, respectively. The estimated fixed and random components are 
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then combined and updated iteratively under the EM framework until convergence. The 

detail of the proposed multilevel BART algorithm is described below.  

1. Random effect component 𝑢 is initialized with a vector of values calculated as 

deviance between the grand mean (𝑌̅) and cluster mean (𝑌𝑗̅). 

2. The algorithm iterates through the following steps until the estimated random 

effects, 𝑢 converges based on the change in the likelihood or restricted likelihood 

function being less than a pre-set tolerance value.  

2a. The fixed-effect (𝑋𝛽) is estimated using the S-BART algorithm based on 

the target variable (𝑌 − 𝑍𝑢̂) and all predictors 𝑋. The S-BART algorithm can 

generate a set of indicator variable (𝐼), where I is the mean of the posterior 

distribution of BART predictive value of the outcome (𝑦̂).  

2b. The indicator variable (𝐼) is then used as the only predictor in the 

following linear mixed-effects model: 𝑌 = 𝐼𝜆 + 𝑍𝑢 + 𝜀 

2c. The random effect 𝑢 estimated in Step 2b is then used in step 2a to update 

the fixed effect (𝑋𝛽). 

 

The proposed multilevel BART algorithm can handle continuous, binary, and 

categorical outcomes. Using the BART package in R, the wbart and lbart function 

can be used in Step 2a for continuous and dichotomous outcomes, respectively 

(Sparapani et al., 2019). In the current empirical data analysis, the continuous version of 

the multilevel BART algorithm was used for direct causal inference (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇), and 

the dichotomous version of the multilevel BART algorithm was applied to propensity 
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score estimation (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇). The default setting of BART (which required no tuning) 

was used with the number of tree = 200, base (𝛼) = 0.95, and power (𝛽)= 2; for a 

detailed discussion of these parameter settings, see Chapman et al., (2010). Each BART 

run was based on 1100 draw with the first 100 discarded as burn-in.   

The linear mixed-effects model in Step 2b can be estimated using maximum 

likelihood or using restricted maximum likelihood (REML). In the current study, we 

used REML since it yields unbiased estimates for the level-1 random effect variable 

(Corbeil & Searle, 1976). The lmer function of the R nlme package is used here 

(Pinheiro et al., 2017). It fit the model using a combination of the ECME algorithm (Liu 

& Rubin, 1994), a modification of the EM algorithm designed to speed its convergence, 

and the Newton-Raphson algorithm (Lindstrom & Bates, 1988).  

 

2.3. The Empirical Study 

To demonstrate the use of the proposed M-BART algorithm in both direct causal 

effect estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇)and propensity score matching (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇). I applied 

these two methods to the Early Childhood Longitudinal Study, Kindergarten Class of 

1998-99 (ECLS-K), and estimated the effect of pull-out ESL programs. In this empirical 

study, the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  were applied to examine the effect of pull-out ESL 

program on children’s first-grade reading performance. The estimations from these two 

methods were further compared with PSM methods using different propensity score 

estimation models and the direct estimation methods using the single-level BART 

algorithm (𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) 
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2.3.1. Methods  

2.3.1.1. Sample 

The ECLS-K released by the National Center for Education Statistics is a 

nationally representative longitudinal panel study of children that started with a cohort of 

21,260 kindergarten children in the fall of 1998. The ECLS-K collected information a 

rich array of individual-, household-, teacher-, and school-level measures (see details 

from https://nces.ed.gov/ecls/kindergarten.asp). For demonstration purposes, I focused 

on kindergarten English as a Second Language (ESL) students3 and the treatment effect 

of enrolling them in pull-out ESL programs on their first-grade reading achievement.  

For the current analysis, the listwise deletion was conducted with respect to the 

outcome variable (first-grade reading scores), treatment variable (pull-out ESL program 

enrollment), and the school identification variable. Missing data on all other variables 

were handled with multiple imputations on ten datasets using R package mice. The 

analytic sample consisted of 921 kindergarten ESL students nested within 99 schools. 

Among them, 152 (16.50%) enrolled in the pull-out ESL program. The median school 

size is 8, with a minimum of 6 students per school and a maximum of 20 students per 

school. The analytic sample included kindergarten students from diverse socioeconomic 

backgrounds. About 51.0% of the children were males, 54.1% of the children are 

 

3 English as a Second Language (ESL) students defined as students who are enrolled in either Pull-out 

English as a Second Language (ESL) program or In-class English as a Second Language (ESL) program 

or Title I English/ Language Arts program in the Spring of Kindergarten year.  

 

https://nces.ed.gov/ecls/kindergarten.asp
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Hispanic. The intraclass correlation coefficient (ICC) of the outcome for the analytic 

sample is 0.146. 

 

2.3.1.2. Variables 

Outcome. The outcome variable (𝑌) is students’ first-grade in reading scale 

scores (C2R4RSCL) calibrated by item response theory (IRT). The reading test scores of 

each student obtained from the assessment over the two academic years were equated on 

the same scale, which enables us to access the reading growth of each student over time.   

Treatment. The treatment indicator variable is the enrollment in the pull-out ESL 

program during the kindergarten year (T2PLLESL). Teacher’s report of ESL program 

participation was used to construct this variable. 

Pretreatment Covariates. Based on previous literature (Bishop, 2003; Chatterji, 

2006; Morris et al., 2003), twenty-three covariates were included in the analysis. These 

variables fall into the following seven board categories and are described in greater 

detail in Table 2:  

• Student Kindergarten Reading IRT Score 

• Student Characteristics 

• Parents Characteristics 

• Home or Neighborhood Environment  

• School Characteristics  

• Parent Assessment on social skills 
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Table 2.1 List and Definition of Variables Used in the Empirical Study 

List and Definition of Variables Used in the Empirical Study 
 Name Description Type Scale 
 Student Test Score 

Y C4R4RSCL 
Spring first-grade reading IRT 
scale score 

Outcome 0-100 

X1 C2R4RSCL 
Spring kindergarten reading IRT 

scale score 
Level 1 0-100 

 Student Characteristics 

X2 GENDER Gender Level 1 1 = Male; 0 = Female 

X3 WKRACETH Race Level 1 
1 = Hispanic; 0 = Non-
Hispanic 

Z T2PLLESL 

Pull-out English as a Second 

Language (ESL) program 
(instructional program designed 

to teach listening, speaking, 

reading, and writing English 

language skills to children with 
limited English proficiency) 

Treatme
nt 

1=Yes; 0=No 

 Parent Characteristics 

X4 

X5 

WKMOMED 

WKDADED 

Mother’s Education Level 

Father’s Education Level 
Level 1  

1=8th grade or below 
2=9th to 12th grade 

3=High school 

diploma/equivalent 

4=Voc/Tech program 
5=Some college 

6=Bachelor’s degree 

7=Graduate/professiona
l school/no degree 

8=Master’s degree 

9=Doctorate or 

professional degree 
 Home or Neighborhood Environment 

X6 WKINCOME Family annual income Level 1 Continuous 

X7 P2NUMSIB 
Number of siblings in 

household 
Level 1 Continuous 
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Table 2.1 Continued 

 Name Description Type Scale 

School Characteristics 

W1 S2KPUPRI Public or private school Level 2 
1=Public  

0=Private 

W2 S2KMINOR Percentage of minority student Level 2 Continuous 
W3 S2LEPSCH Percent of LEP students Level 2 Continuous 

W4 S2KFLNCH 
Percentage of students eligible 

for free lunch in school 
Level 2 Continuous 

W5 S2TRNWRT 

Services provided for families 

of children with limited English 

proficiency - written translation 

Level 2 1=Yes; 0=No 

W6 S2MEETSP 
conducting special meetings for 

non-English speaking families 
Level 2 1=Yes; 0=No 

 Parent Assessment 

X8 P1LEARN 
Rating of child’s social skills:  
approaches to learning 

Level 1 Continuous 

X9 P1CONTRO self-control Level 1 Continuous 

X10 P1SOCIAL social interaction Level 1 Continuous 

X11 P1SADLON sadness/loneliness Level 1 Continuous 
X12 P1IMPULS impulsiveness/overactivity Level 1 Continuous 
 Teacher Assessment 

X13 T1INTERN 

Rating of child’s problem 

behaviors - internalizing 
problem behaviors 

Level 1 Continuous 

X14 T1EXTERN externalizing problem behaviors Level 1 Continuous 

X15 T2LEARN approaches to learning Level 1 Continuous 
X16 T2CONTRO self-control Level 1 Continuous 

X17 T2INTERP interpersonal skills Level 1 Continuous 

 

2.3.1.3. Analysis Procedures 

2.3.1.3.1. Estimating the Treatment Effect Using Four Propensity Score Methods 

The four propensity score methods (𝑃𝑆𝐹𝐸 , 𝑃𝑆𝑀𝐸 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) 

used in the current empirical study only differ on how the propensity scores were 

estimated (Step 2), and share similar procedures in Step 1: covariates selection, Step 3: 

propensity score conditioning, Step 4: overfit diagnostic, Step 5: balance diagnostic, and 

Step 6: treatment effect estimation. 



 

40 

 

Step 1: covariate selection. All 23 pretreatment covariates and their first-order 

terms were included in the propensity score estimation models. The descriptive statistics 

of these covariates can be found in Appendix A. I only included main effects because 

previous review studies suggested existing propensity score studies used models with 

only main effects due to the lack of prior knowledge regarding nonlinear and interaction 

effects of the pretreatment covariates (Thoemmes & Kim, 2011).  

Step2: Propensity score estimation. When using the 𝑃𝑆𝐹𝐸  method, the propensity 

score was estimated using a fixed-effect logistic regression model with cluster affiliation 

dummy variables. The cluster affiliation dummy variables were included directly in the 

model as predictors to account for all the variability at the cluster level (McNeish & 

Kelley, 2019). The creation of the cluster-specific affiliation variables was conducted 

using absolute coding, where the model included 𝐽 = 99 cluster affiliation variables. 

Each estimated coefficient of the cluster-specific affiliation variables represents the 

intercept value for that specific cluster (school).  

𝒍𝒐𝒈𝒊𝒕(𝒑𝒊𝒋
𝑭𝑬) = 𝜷𝟎

𝑭𝑬 + 𝜷𝟏
𝑭𝑬𝑿𝟏𝒊𝒋 + 𝜷𝟐

𝑭𝑬𝑿𝟐𝒊𝒋 + 𝜷𝟑
𝑭𝑬𝑿𝟑𝒊𝒋 + ⋯+ 𝜷𝟏𝟕

𝑭𝑬𝑿𝟏𝟕𝒋 + 𝜷𝟏𝟖
𝑭𝑬𝑾𝟏

+ 𝜷𝟏𝟗
𝑭𝑬𝑾𝟐 + ⋯+ 𝜷𝟐𝟑

𝑭𝑬𝑾𝟔 + 𝑪𝒋𝜶

+ 𝒆𝒊𝒋
𝑭𝑬                                                                     (2. 14) 

where 𝐶𝑗 is an 𝑁 × 𝐽 matrix of cluster affiliation dummy codes, 𝛼 is a 𝐽 × 1 vector of 

cluster-specific intercepts, and 𝐽 = 99 and 𝑁 = 921.  

When using the 𝑃𝑆𝑀𝐸 method, the propensity score (𝑝𝑖𝑗) was estimated using 

the following random intercept model. 
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𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗
𝑀𝐸) = 𝛽0𝑗

𝑀𝐸 + 𝛽1𝑗
𝑀𝐸𝑋1𝑖𝑗 + 𝛽2𝑗

𝑀𝐸𝑋2𝑖𝑗 + ⋯+ 𝛽17𝑗
𝑀𝐸𝑋17𝑖𝑗  

𝛽0𝑗
𝑀𝐸 = 𝛾00

𝑀𝐸 + 𝛾10
𝑀𝐸𝑊1𝑗 + ⋯ + 𝛾60

𝑀𝐸𝑊6𝑗 + 𝑢0𝑗
𝑀𝐸  

𝛽1𝑗
𝑀𝐸 = 𝛾10

𝑀𝐸  

𝛽2𝑗
𝑀𝐸 = 𝛾20

𝑀𝐸  

𝛽3𝑗
𝑀𝐸 = 𝛾30

𝑀𝐸  

𝛽4𝑗
𝑀𝐸 = 𝛾20

𝑀𝐸  

𝛽5𝑗
𝑀𝐸 = 𝛾20

𝑀𝐸  

𝛽6𝑗
𝑀𝐸 = 𝛾20

𝑀𝐸  

When using the 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  method, the propensity score (𝑝𝑖𝑗
𝑆−𝐵𝐴𝑅𝑇) was 

estimated using the logit BART algorithm for the dichotomous outcome. The default 

setting of lbart function in R package BART with 200 trees, 1000 MCMC iterations after 

skipping 100 burn-in iterations were used to estimate the propensity score. When using 

the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  method, the propensity score (𝑝𝑖𝑗
𝑀−𝐵𝐴𝑅𝑇) was estimated using the 

dichotomous version of the proposed M-BART algorithm. 

Step 4: Diagnostic for Propensity Score Estimation Model Overfit. The problem 

of overfitting propensity score model is that it has the potential to make units from the 

treatment and control groups appear to be quite different from each other even if they are 

quite comparable with respect to predicting the outcome. When the propensity score 

estimation model has the overfitting problem, it is possible that even if the treatment 

variable were completely unassociated with the covariates, the empirical distribution of 

these pseudo propensity scores of the treated units might look different from the 

controls. Based on this idea, Hill and her colleagues (2011) proposed a visual inspection 

method to assess the level of overfitting of the propensity score estimation model. First, 

a dataset was constructed with all the observed covariates and a pseudo(fake) treatment 
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variable simulated with the same marginal rate of success of the observed treatment 

variable but completely independent from the observed covariate.  

Specifically, a treatment variable was created by simulating data from the 

binomial distribution with the probability of receiving treatment equal to the marginal 

probability in the data (in this empirical example, the rate was about 0.16). If the 

propensity score estimation model does not have the problem of overfitting, then we 

could expect that the empirical distributions of the pseudo propensity scores from the 

treatment and control group should be highly overlapped, since the treatment variable is 

unassociated with the observed covariates. However, a sufficient lack of overlap 

indicates that the model may have an overfitting issue and may not be the best model to 

use for propensity score estimation.  

Step 5: Diagnostic for Balance Covariates after Matching. A standardized 

difference that is less than 0.10 was used as an indication of a negligible difference in the 

mean or prevalence of a covariate between treatment and control groups. A standardized 

difference that is larger than 0.20 was used as an indication of a severely unbalanced 

covariate. 

Step 6: Treatment Effect Estimate. Using the MatchPW function, the ATE was 

estimated using a single-level linear model with treatment as the predictor that ran in the 

matched data set with a robust estimator (for details regarding the estimator see Cameron 

et al., 2011). Similar approaches had been applied in previous research using the 

MatchPW function in R package (Arpino & Cannas, 2016; Cannas & Arpino, 2019). 
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2.3.1.3.2. Using BART Algorithms for Direct Treatment Effect Estimation 

For each kindergarten student, we used the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  to make 

predictions of their first-grade reading achievement as if they were enrolled in the pull-

out ESL program (𝑍 = 1) and not in the pull-out ESL program (𝑍 = 0). As shown in 

Figure 3, to obtain a desirable BART tree structure, 80% of the sample was used for 

training purposes (training set) and 20% of the sample (test set) was used for validation 

purposes. A combined dataset was created using an original dataset with observed 

treatment status and observed covariates and a flipped dataset with counterfactual 

treatment status (treated units recoded as control and control unit recoded as treated) and 

the observed covariates. The BART tree structure developed using the training set was 

applied to the combined dataset for out-of-sample prediction.  

When estimating treatment effect in BART using the combined data set, we can 

define the treatment effect for individual 𝑖 as 𝑐(𝑥𝑖, 𝑓) ≡ 𝑓(𝑍𝑖 = 1,𝑋𝑖) − 𝑓(𝑍𝑖 = 0,𝑋𝑖), 

where 𝑓(𝑍𝑖 = 1, 𝑋𝑖) and 𝑓(𝑍𝑖𝑗 = 0, 𝑋𝑖) are the estimated outcomes for individual 𝑖 

when he/she is in the treatment and control group respectively. Recall that each iteration 

of the BART Markov chain generates a new draw of 𝑓 from the posterior distribution. 

Let 𝑓𝑙 denote the 𝑙th of the total 𝐾 draws of 𝑓, which is a draw from a joint posterior of 

each individual treatment effect for individual 𝑖, 𝑐(𝑥𝑖, 𝑓
𝑙) = 𝑓𝑙(𝑍𝑖 = 1, 𝑋𝑖) −

𝑓𝑙(𝑍𝑖 = 0,𝑋𝑖). The average treatment effect (ATE) can be obtained by averaging across 

𝐾 draws and 𝑛 individuals. The formula for ATE is specified as follows,  
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Average Treatment Effect (ATE): 

𝟏

𝒏
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=
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𝒍 )
𝒏

𝒊=𝟏

𝑲

𝒍=𝟏

=
𝟏

𝑲
∑

𝟏

𝒏
∑ 𝒇𝑩𝑨𝑹𝑻

𝒍 (𝟏, 𝑿𝒊)
𝒏

𝒊=𝟏

𝑲

𝒍=𝟏

− 𝒇𝑩𝑨𝑹𝑻
𝒍 (𝟎,𝑿𝒊)                                      (2. 15) 

Although different on a philosophical basis, Bayesian posterior credible intervals 

are analogous to the frequentist confidence interval. To be comparable with the 

frequentist confidence interval, the 95% posterior interval of the estimated treatment 

effect was formed as the mean plus or minus 1.96 times the standard deviation of the 

posterior draws 𝑐(𝑥, 𝑓). Similar approaches had been applied in previous studies.4 

 

 

4 Hill (2011) suggested the 95% posterior intervals for BART were formed as the posterior mean plus or 

minus 1.96 times the posterior standard deviation. An alternative would be to use draws from the BART 

posterior distribution to form an empirical interval. The two strategies yielded extremely similar intervals.  
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Figure 2.3 Illustration of using BART in treatment effect estimation 

 

2.3.2. Empirical Study Results 

2.3.2.1. Estimated Propensity Scores 

The means of the propensity scores are almost identical between the four PSM 

models, while the standard deviation of the propensity scores was smallest when using 

𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  (𝑠𝑑 = 0.10). The correlations between estimated propensity scores were 

computed using Pearson product-moment correlation coefficients. The results showed 

significant and positive relationships between the propensity scores estimated from the 
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four PSM models. The correlation coefficients ranging from 0.53 to 0.99, with 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  showed the smallest correlation coefficient (𝑟 = 0.53), and 

𝑃𝑆𝑀𝐸  and 𝑃𝑆𝐹𝐸  showed an almost perfect correlation (𝑟 = 0.99). Table 2.2 displayed 

the means, standard deviations, and correlations of the estimated propensity scores 

across estimation methods.  

Table 2.2 Means, standard deviations, and correlations of the estimated PSs 

Means, standard deviations, and correlations of the estimated PSs 

Estimation Methods M SD 1 2 3 

      

1. 𝑃𝑆𝐹𝐸  0.16 0.30    

      

2. 𝑃𝑆𝑀𝐸  0.16 0.28 .99**   

      

3. 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  0.15 0.10 .55** .57**  

      

4. 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  0.16 0.28 .97** .98** .53** 

      
 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets 

indicate the 95% confidence interval for each correlation; * indicates p < .05. ** indicates p < .01; PSFE: 

Propensity score matching using fixed-effect logistic regression model with cluster affiliation dummy 

variables for propensity score estimation. PSME: Propensity score matching using mixed-effect logistic 

regression model for propensity score estimation. PSS−BART: Propensity score matching using single-level 

BART algorithm for propensity score estimation. PSM−BART: Propensity score matching using multilevel 

BART algorithm for propensity score estimation.  

 

2.3.2.2. Diagnostics of Overfit for the PSM Methods 

Figure 2.4 depicted the results of the overfit diagnostic, and each plot displayed 

the overlaid density plot of the propensity scores from the pseudo treated units (in red) 

and pseudo control units (in green). These density plots suggested all of the PSM models 

showed some degree of overfitting problem since the density plots of the treatment 

groups appear to exhibit some degrees of lack of overlap. However, among four PSM 

models, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 appeared to reflect the most overlap, and the majority of the 
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propensity scores are close to the true probability (𝜋 = 0.16), suggesting 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  

might be the best choice among all four PSM models, at least with regard to overfitting.  

 

 

Figure 2.4 Diagnostics histograms to assess the extent of overfitting in the PSM 

methods 

 

2.3.2.3. Diagnostics of Unbalanced Covariates after Matching for the PSM Methods  

Figure 2.5 depicted the standardized mean difference (∆𝑋) of all 23 covariates 

after matching using four PSM models. The 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  showed the best covariates 

balance, with all twenty-three ∆𝑋 smaller than 0.2 and only three ∆𝑋 larger than 0.1. The 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  showed acceptable covariates balance, with all estimated ∆𝑋 smaller than 0.2 

and fifteen ∆𝑋 larger than 0.10. In general, BART-based PSM methods (𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  and 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) outperformed the propensity score estimation model using logistics models 

(𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸). 
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Figure 2.5 Number of unbalanced covariates after propensity score matching 
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2.3.2.4. Average Treatment Effect Estimation (ATE) 

Consistent estimated average treatment effects (ATE) were observed using six 

estimation methods. The estimated ATEs were all nonsignificant with 𝑃𝑆𝐹𝐸  (𝜏̂ =

−0.90, 95% 𝐶𝐼 = [−3.24,1.43]), 𝑃𝑆𝑀𝐸(𝜏̂ = −0.60, 95% 𝐶𝐼 = [−1.98, 3.19]), 

𝑃𝑆𝑆−𝐵𝐴𝑅𝑇(𝜏̂ = −1.43, 95% 𝐶𝐼 = [−6.34, 3.48]), 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇(𝜏̂ = −0.17, 95% 𝐶𝐼 =

[−2.25, 1.91]), 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇(𝜏̂ = −0.51, 95% 𝐶𝐼 = [−3.01,2.00]), and 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇(𝜏̂ =

−0.22, 95% 𝐶𝐼 = [−2.43,2.00]). Figure 2.6 displayed the treatment effect estimated 

and corresponding 95% confidence interval. 

 

 

Figure 2.6 Estimated ATE and corresponding 95% confidence intervals on the pull-out 

ESL program 

 

2.4. Simulations Based on Real Data 

I further conducted a follow-up simulation study to confirm the performance of 

the estimation methods. Simulations studies sometimes face the criticizes of having too 
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little connection to “real-world” data analysis. To fully mimic the features of the current 

empirical dataset, a simulation method based on the observed covariates and treatment 

assignment indicator from the empirical dataset were applied. A similar simulation 

method had been used in the previous study to investigate the predictive performance of 

BART and PSM methods (Hill, 2011). Different from Hill (2011), the current simulation 

study also incorporated the cluster effect of the outcome by generating the random effect 

that is similar to the observed outcome. Since the generated outcome was only 

conditioning on the observed covariates and treatment assignment indicator, the 

ignorability was automatically satisfied, and the true treatment effect was known. 

 

2.4.1. Methods 

The continuous outcome variable (𝑌𝑖𝑗) was generated from a random intercept 

model with the observed treatment assignment indicator (𝑍𝑖𝑗), seventeen level-1 

observed covariates, and six level-2 observed covariates.  

The true outcome model was specified as followed:  

 𝑌𝑖𝑗 = 𝛽0𝑗
𝑌 + 𝛿𝑍𝑖𝑗 + 𝛽1𝑗

𝑌 𝑋1𝑖𝑗 + 𝛽2𝑗
𝑌 𝑋2𝑖𝑗 + 𝛽3𝑗

𝑌 𝑋3𝑖𝑗 + ⋯𝛽17𝑗
𝑌 𝑋17𝑖𝑗 + 𝑒𝑖𝑗

𝑌  

𝛽0𝑗
𝑌 = 𝛾00

𝑌 + 𝛾01
𝑌 𝑊1𝑗 + 𝛾02

𝑌 𝑊2𝑗 + ⋯+ 𝛾06
𝑌 𝑊6𝑗 + 𝑢0𝑗

𝑌  

𝛽1𝑗
𝑌 = 𝛾10

𝑌  

𝛽2𝑗
𝑌 = 𝛾20

𝑌  

… 

𝛽17𝑗
𝑌 = 𝛾170

𝑌  

𝑢0𝑗
𝑌 ~𝑁(0,𝜎𝑢𝑌0

2 ) 

𝑒𝑖𝑗
𝑌~𝑁(0, 𝜎𝑌

2) 
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For model parameters, the grand mean of intercept 𝛾00
𝑌  was fixed to 0 for 

simplicity purposes. The coefficients in the outcome models are randomly sampled 

values (0, 0.2, 0.5, 0.8, 1.4) with probabilities of (0.4, 0.3, 0.2, 0.15, 0.1), which make 

smaller coefficients more likely and large coefficients less likely. The population 

treatment effect (𝛿) was set to be 2. The level-1 random effect (𝑒𝑖𝑗
𝑌) was generated from 

a standard normal distribution. To mimic the cluster effect in the empirical 

study(𝐼𝐶𝐶 = 0.146), the level-2 random effect 𝑢0𝑗
𝑌  was generated from a normal 

distribution with mean equal zero and variance equal to 0.171. The outcome variable 

was generated using a variance components covariance structure where all covariance 

parameters in the random effect matric were fixed to 0. In total, 500 datasets were 

generated.  

Using similar setting from the empirical study, four PMS methods and two 

BART methods were applied to the 500 simulated data sets. Outcome measures 

associated with the estimated treatment effect included relative bias (RBs), root mean 

squared error (RMSE), and coverage rate of the 95% confidence interval.  

The relative bias (RB) was defined as 𝑅𝐵 =
∑ (

𝛿̂−𝛿

𝛿
500
𝑛=1 ) 

500
 . The root mean squared 

error (RMSE) was taken as the square root of the mean squared differences between the 

true and estimated parameter values. 

𝑅𝑀𝑆𝐸 = √∑ (𝛿̂ − 𝛿)
2500

𝑛=1

500
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The confidence interval coverage rate was defined as the proportion of the 95% 

confidence intervals that included the true treatment effect across all 500 replications.  

 

2.4.2. Simulation Study Results 

First of all, regarding the consistency of the ATE point estimation, the RBs were 

compared among six estimation methods. 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 displayed the smallest RBs 

(𝑅𝐵 = −0.002), followed by 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  (𝑅𝐵 = 0.020), 𝑃𝑆𝑠−𝐵𝐴𝑅𝑇  (𝑅𝐵 = 0.022), and 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  (𝑅𝐵 = 0.072). All BART-based methods 

(𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 ) showed relatively small RBs than the 

PSM methods using logistic models (𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸). These results suggested that 

direct estimation using BART algorithms produced less bias than the PSM methods 

using both BART algorithms and logistic regressions. Moreover, the S-BART algorithm 

produced less bias than the M-BART algorithm when used in both direct estimation and 

PSM methods.  

Second, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 produced similar and smallest RMSEs, 

followed by 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  (𝑅𝑀𝑆𝐸 = 0.320) and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  (𝑅𝑀𝑆𝐸 = 0.465). Similar to 

the RBs, the BART-based methods produced more accurate estimation than the PSM 

methods using logistic models. These results suggested that direct estimation using 

BART produced more accurate ATE estimation than the PSM methods using both 

BART and logistic regressions. Moreover, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 showed similar 

performance in the estimation accuracy while 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  outperformed 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 . 
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Finally, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  displayed a confidence interval coverage rate that was close 

to the nominal level (95%). Regardless of the excellent performance in RBs and RMSE, 

𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 showed the worse coverage rate (88.1%). All the BART-based methods 

showed some degrees of under coverage, while PSM using logistic regression show 

some degrees of over coverage. Table 2.3 displayed the outcome measures of the 

treatment effect estimate using six estimation methods.  

 

Table 2.3 Relative Bias, RMSE and 95% Confidence Interval Coverage Rate 

Relative Bias, RMSE and 95% Confidence Interval Coverage Rate 

 
Estimation Methods Relative Bias (RBs) RMSE 

95% Confidence Interval 

Coverage Rate 

1 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  0.020 0.136 93.8% 

2 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 -0.002 0.132 88.1% 

3 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  0.072 0.320 91.9% 

4 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  0.022 0.465 93.1% 

5 𝑃𝑆𝑀𝐸  0.293 1.504 97.5% 

6 𝑃𝑆𝐹𝐸  -0.356 1.734 98.8% 

Note: RMSE: root mean square error; The results were over 500 replications. 

 
 

2.5. Discussion 

This study contributes to the existing literature of causal inference in 

observational studies by proposing a new multilevel BART (M-BART) algorithm. 

Extending the BART algorithm to multilevel will benefit social science research in 

significant ways since most of the data in social science research have meaningful 

hierarchical structures.  
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Using a well-known multilevel public dataset (ECLS-K), I demonstrated the use 

of the proposed M-BART algorithm in both propensity score matching (PSM) 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) and direct treatment effect estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇). I compared the 

performances of 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  with PSM methods using logistic models 

(𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸) and single-level BART (𝑃𝑆𝑆−𝐵𝐴𝑅𝑇), and direct treatment effect 

estimation using the single-level BART algorithm (𝐷𝐸𝑆−𝐵𝐴𝑅𝑇).  

Results from the empirical study suggested that when using the M-BART 

algorithm in PSM, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 showed the least concern in model overfit and acceptable 

performance in balancing covariates. 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  displayed the best performance in 

balancing the covariates; however, showed some tendency of overfitting. 𝑃𝑆𝐹𝐸  and 

𝑃𝑆𝑀𝐸 , on the other hand, showed significant concerns in model overfit and balancing 

covariates. Similar results had been found in Hill et al. (2011), where 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 

outperformed other estimates for a give matching method in balancing covariates and 

showed the least tendency of overfitting.  

In terms of the treatment effect estimation, the point estimate of the ATE 

produced by 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 lies near the center of the estimates from the 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 . Similar results have been found in Hill et al., (2011), where 

the point estimate of the ATT by 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  lies the center of the estimates 

corresponding to the subset of propensity score approaches that achieved the best 

balances.  

In the follow-up simulation study, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  produced accurate ATE point 

estimations and confidence intervals coverage rates. Comparing to 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 



 

55 

 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  showed less consistent and accurate ATE point estimation. Although, 

𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  produced the least bias and most accurate ATE estimation, the confidence 

intervals produced by 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  failed to reach the nominal level, indicating potential 

inflation of Type I error rate. 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸  displayed noticeable higher RBs and 

RMSE than all BART-based methods. Similar results have been found in Hill (2011), 

where 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  showed the smallest RMSE compared to propensity score matching 

with logistic regressions.  

The proposed M-BART algorithm combined the advantages of the BART 

algorithm and the mixed-effect models. First, compared to the single-level BART 

algorithm, the multilevel BART algorithm takes into account the clustering effect in 

multilevel data, which resulted in more accurate confidence interval coverage rates. 

Second, it can handle a large number of covariates, which is desirable in large-scale 

observational studies where rich information of the covariates are available and needed 

to be included to satisfy the ignorability. Third, it can automatically handle nonlinearity 

and nonaddictive relationships between the covariates. Finally, compared to other data 

mining algorithm, BART is based in a probabilistic framework which permits 

assessment of uncertainty using the empirical posterior distribution. Moreover, the 

default priors and hyperparameters generally give good predictive performances without 

a requirement for a significant amount of tuning (Chipman et al., 2010).  

The M-BART algorithm can be used in PSM as a propensity score estimation 

method (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇)or used directly for treatment effect estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇). Results 

from the current studies suggest that the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 is a highly efficient alternative 
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approach to the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and generates more accurate ATE estimation and eliminates 

the complexity of PSM implementation. The effective propensity score methods require 

making choices in almost all steps of the analysis, which creates great complexity to the 

propensity score methods implementation. Moreover, the treatment effect estimates can 

be quite sensitive to those choices (Zhao, 2008). The decision-makings of propensity 

score methods included but not limited to a) what model to use for propensity score 

estimation; b) what type of matching and weighting methods to use and how to estimate 

the standard error; c) which balance diagnostic to use and how to determine when the 

balance issue sufficient, d) choice of analysis model; e) how to defined acceptable 

common support. Nevertheless, the multilevel context adds a further layer of complexity 

to the propensity score methods implementation. 

Finally, a note about standard error calculation for the ATE estimates using the 

PSM methods. The estimation of standard errors for the PSM is an active field of 

research, and there is no perfect solution to date (Cannas & Arpino, 2019; Hill, 2008). 

The treatment effect estimates presented in the current study are from approaches that 

used one-to-one matching with replacement, which has been shown to reduce greater 

bias than matching without replacement (Dehejia & Wahba, 2002). However, matching 

with replacement complicated the variance estimation since the matching process likely 

induced dependencies across the treatment and control groups. The current literature is 

divided on the best approach to address these issues from the extreme of Ho et al. (2007) 

suggested ignoring the issues to more model-based solutions (Hill & Reiter, 2006). In 

the current study, I avoided these debates by using the model-based clustered standard 



 

57 

 

errors embedded in the CMatching package to take into account the within-cluster 

dependency in the outcome (Arpino & Cannas, 2016).  

The M-BART algorithm would benefit from further investigation in other 

multilevel scenarios to determine whether M-BART will work as effectively as a causal 

inference strategy in a broader range of settings. In the second study of my dissertation, I 

conducted a full-scale simulation study to investigate the performance of 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  

compared to 𝑃𝑆𝑆−𝑙𝑜𝑔𝑖𝑡 , 𝑃𝑆𝑀−𝑙𝑜𝑔𝑖𝑡 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇   in treatment 

effect estimation under conditions such as intra-class correlations (ICCs), sample sizes, 

and degrees of nonlinearity and interactions between treatment and predictors. 
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3. CAUSAL INFERENCES USING MULTILEVEL BART 

3.1. Introduction 

In many fields of the social sciences, there is a growing interest in using causal 

inference strategies in evaluating the effectiveness of intervention programs and public 

policies (Arpino & Mealli, 2011). Following the seminal work by Rosenbaum and Rubin 

(1983), recent program evaluation literature on estimating average treatment effects 

under the ignorability assumption has become widespread (Adelson, 2013; Stone & 

Tang, 2013). Specifically, propensity score methods have become one of the most 

popular methods in economics (Lechner, 2002), medical (Weitzen et al., 2004), social 

epidemiology (Oakes & Johnson, 2006), and education research (Thoemmes & Kim, 

2011).  

The benefits of propensity score methods in causal inference have been explored 

in many studies (for reviews see, e.g., Gelman & Hill, 2006; Stuart, 2010; Thoemmes & 

Kim, 2011); however, the challenges are less frequently discussed. The effectiveness of 

propensity score methods heavily relies on the quality of the defined treatment 

assignment model. Nevertheless, researchers are often uncertain about the existence of 

any unmeasured confounder or the correctness of the treatment assignment model. In the 

meantime, the multilevel data structure in most of the social science research adds 

another layer of difficulty.  

In social science research, data are typically hierarchically structured, in the 

sense that individuals are clustered in a way that is meaningful to the causal inference. 

For example, the effect of an intervention program on students might be systematically 
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varied among schools due to the differences in families within neighborhoods and 

education resources that are available within schools. Traditionally, propensity score 

methods were developed and have been widely applied in setting with single-level data. 

Ignoring the “nested” structure in the analysis can cause severe problems such as biased 

estimation of the fixed effect standard errors and failure to see cross-level interaction 

effects.  

Nowadays, increasing attention has been drawn to the application of propensity 

score methods in data with multilevel structures (Arpino & Mealli, 2011). The multilevel 

propensity score methods in the existing literature generally modeling the multilevel data 

through the inclusion of fixed and random effects in the estimation of the propensity 

score and/or the implementation of the propensity score conditioning (through multi-

stage matching or weighting algorithms). For example, Kim and Seltzer (2007) first 

estimated propensity scores using multilevel models and then implemented the matching 

algorithms within each cluster. Similarly, Hong & Yu (2008) applied the propensity 

scores estimated through multilevel logistic regression models to a hierarchical linear 

model. Meanwhile, Aprpino (2016) proposed a “preferential” within-cluster matching 

algorithms which combine the advantages of both within‐cluster and between‐cluster 

matching. However, the focal point of these methods has always been the efficiency of 

the propensity score estimation but not the efficiency of the causal effect estimation. 

Furthermore, large-scale surveys and cohort-studies are generally characterized as small 

cluster size, large cluster numbers, and high dimensional confounders, which creates 

significant obstacles in the implementation of the propensity score method. 
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Recently, a Bayesian nonparametric data mining algorithm, Bayesian Additive 

Regression Trees (BART), has been proposed to use in causal inference with fewer 

assumptions and restrictions. Motivated by ensembling methods and boosting 

algorithms, Chipman, George, and McCulloch (2007) first developed BART as a sum-

of-trees predictive algorithm. By combining data mining and the Bayesian technique, 

BART has gain popularity in recent causal inference literature (Carnegie et al., 2016; 

Carnegie, 2019; Dorie et al., 2016; Green & Kern, 2012; Hill, 2011, 2016; Hill & Su, 

2013).  

BART is well suited for observational studies, especially large-scale surveys and 

longitudinal cohort studies that characterized by large samples size and great number of 

covariates. BART has advantages over both parametric regression models and most data 

mining techniques such as random forests, boosting, and neural networks (Green & 

Kern, 2010). Different from parametric regression models, BART can automatically 

detect the nonlinear relationship and interactions and handle large numbers of covariates. 

Moreover, compared to other data mining techniques, BART is less sensitive to tuning 

parameters, which reduces subjective judgment from researchers when conducting the 

analysis. 

The BART algorithm can be embedded in propensity score strategies as a 

propensity score estimation method or used directly to estimate treatment effects by 

modeling the potential outcomes. In propensity scores estimation, several studies have 

shown the advantages of using the BART to flexibly model the treatment assignment 

mechanism in high-dimensional settings (Hill et al., 2011; Spertus & Normand, 2018). 
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For example, Spertus & Normand (2018) suggested that the propensity scores estimated 

through BART with student-t prior and horseshoe prior reduced bias and mean square 

error of the estimation and significantly improved coverage in the high-dimensional 

setting. Meanwhile, other researchers supported the idea of using BART for direct causal 

inference to eliminates the complex implementation of propensity score methods 

(Carnegie et al., 2016; Hill et al., 2011). Recently, more advanced methods that 

combined both approaches such as Hahn et al. (2017) have been proposed. Hahn et al. 

(2017) used a BART outcome model for causal inference while including a fixed 

estimate of the propensity scores for additional adjustment. 

There is a growing literature on extending data mining algorithms to incorporate 

the multilevel settings. The classification and regression tree (CART; Breiman et al., 

1984), as one of the most fundamental and commonly used data mining techniques, has 

been extended to use in longitudinal data nested within individuals (Lee, 2005) and 

individuals nested within groups (Lin & Luo, 2019; Sela & Simonoff, 2012). Namely, 

Lin & Luo (2019) proposed a multilevel CART algorithm for a binary outcome that 

combines a multilevel logistic regression model and the single-level CART within the 

expectation-maximization framework. Moreover, CART has been suggested as a 

promising alternative to logistic regression for the estimation of the propensity score 

(Lee et al., 2010). However, the overfitting problem and the complexity of CART 

algorithms, such as parameter tuning, create barriers for its application in applied social 

science research. 
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In this study, I aim to compare the performance of the M-BART algorithm in 

both PSM (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇)and Direct Estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇) with the S-BART algorithm 

(𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) and PSM using the fixed-effect and mixed-effect models 

(𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸) in a full-scale simulation study. Specifically, the following two 

research questions were addressed, 

RQ1: Do the M-BART methods (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) produce more 

accurate and desirable ATE estimation compare to the S-BART methods (𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and 

𝑃𝑆𝑆−𝐵𝐴𝑅𝑇) and the PSM methods using fixed effect and mixed-effect model in clustered 

data settings? 

RQ2: How do different sample characteristics such as sample size (𝑁𝑐  and 𝑁𝑠), 

degrees of nonlinearity, the variability of the treatment effect (𝑅𝐸𝑡𝑟𝑒𝑎𝑡), ICCs of the 

treatment (𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡), and ICCs of the outcome (𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒) impact the predictive 

performance of the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝐹𝐸 , 𝑃𝑆𝑀𝐸 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇? 

 

3.2. Theoretical Framework 

3.2.1. Potential Outcomes Framework 

Following Rubin (1974), causal inferences can be conceptualized as a 

comparison of potential outcomes across all possible treatment conditions. Assuming 

there is no confounder, the causal effect can be defined as a contrast between the average 

of the outcome under one treatment versus the control condition at the population level. 

Let us consider a causal effect of a treatment 𝑇, where 𝑇 = 1 indicates assignment to 

treatment, 𝑇 = 0 indicates assignment to control, 𝑌𝑖(1) denotes the potential outcome if 
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the individual 𝑖 is in the treatment group, and 𝑌𝑖(0) denotes the potential outcome in the 

control group. The causal or treatment effect can be described as the difference between 

these two potential outcomes for the individual 𝑖:  

                                                                  𝝉𝒊 = 𝒀𝒊(𝟏) − 𝒀𝒊(𝟎)                                                 (3. 1) 

However, the individual causal effect can be challenging to estimate. Since we 

can only observe one outcome under either the control or the treatment condition for 

each individual, but rarely both at a given time. This inestimable individual causal effect 

if often referred to as the fundamental problem of causal inference.  

Although individual causal effects are generally hard to estimate, other causal 

effects such as average treatment effect (ATE) and the treatment effect for the treated 

(ATT) are estimable with weaker assumptions. An ATE measures the difference in the 

outcome, on average, if all individuals received treatment versus if all were in the 

control group. The ATE can be formulated as follows, 

                            𝜏𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)]                                   (3. 2) 

The ATT measures the average difference between the observed outcome and the 

potential outcome if all treated individuals were in the control groups. Since ATT only 

consider individuals in the treatment group, it requires slightly weaker assumptions on 

how the treatment is assigned. The ATT can be formulated as follow,  

            𝝉𝑨𝑻𝑻 = 𝑬[𝒀𝒊(𝟏) − 𝒀𝒊(𝟎)|𝑻𝒊 = 𝟏]

= 𝑬[𝒀𝒊(𝟏)|𝑻𝒊 = 𝟏] − 𝑬[𝒀𝒊(𝟎)|𝑻𝒊 = 𝟏]          (3. 3) 

In Equation 3.3 and Equation 3.2, the ATE and ATT are functions of potential 

outcomes, without additional assumptions. To connect the potential outcomes to the 
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observed data, two important assumptions, Stable and Ignorability assumptions, are 

necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

Stable Unit Treatment Value Assumption (SUTVA). If SUTVA assumption holds, 

the treatment assignment of one individual does not affect the potential outcomes of 

others and treatments are stable, which sometime also refer to as non-interference. The 

SUTVA assumption suggested the relationship between potential and observed 

outcomes does not depend on any other covariates. This assumption forbids any 

spillover effects where the treatment assignment of one individual affects the outcome of 

another (Blackwell, 2014).  

Ignorability Assumption. The ignorability assumption requires treatment 

assignment to be independent from the potential outcomes, conditional on observed 

covariates, 𝑌(0), 𝑌(1) ⊥ 𝑇|𝑋. The ignorability assumption indicates that we control for 

all confounding covariates, which are the pre-treatment baseline covariates that are 

associated with both the treatment and the outcome. If the ignorability assumption hold, 

the estimation of the causal effect only requires comparing two response surfaces 

(𝐸[𝑌(1)|𝑋] and 𝐸[𝑌(0)|𝑋]) without modeling the treatment assignment process, where 

𝑋 is potentially high-dimensional. 

 

3.2.2. Propensity Score Methods 

3.2.2.1. Definition of Propensity Scores  

Rosenbaum and Rubin (1983) first defined the propensity score as the probability 

of treatment assignment conditional on a set of observed baseline covariates, 𝑒𝑖 =
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𝑃(𝑌𝑖 = 1|𝑋𝑖). As Rosenbaum and Rubin (1983) suggested, the propensity score is a 

balancing score because conditioning on the propensity score, the distribution of 

measured baseline covariates is similar between the treated and the control subjects.  

Propensity score techniques simplify the evaluation of the potential outcomes by 

replacing the multidimensional covariates with a single summative propensity score to 

appropriately control for the treatment assignment mechanism. In an RCT experiment, 

the difference between treatment and control groups on the outcome can be used directly 

to represent the ATE without controlling for the treatment assignment mechanism, since 

treatment and control subjects have similar probabilities of receiving treatment. 

However, in an observational study, treatment and control subjects might have different 

probabilities of receiving treatment due to their different baseline characteristics. Thus, 

to avoid modeling the response surface of the outcome model, researchers first need to 

specify and control for the treatment assignment mechanism and then estimate the 

difference in outcome between treatment groups as the ATE. The propensity score is a 

balancing score, which means when specified correctly, conditioning on the propensity 

score is sufficient to remove all confounding effects related to the observed baseline 

covariates (Rosenbaum & Rubin, 1983).  

 

3.2.2.2. Decision-makings in Propensity Score Methods 

Propensity score estimation. In observational studies, the propensity score can be 

estimated using the study data and predictive models. Since the propensity score 

represent the probability of receiving treatment, any model that can accurately estimate 
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this probability can be used to estimate the propensity score. In practice, logistic 

regression models are often used due to the dichotomous nature of the treatment 

indicator variable, in which treatment indicator variable is regressed on observed pre-

treatment covariates, and the propensity score is estimated as the predicted probability of 

receiving treatment. More recently, researchers start exploring the estimation methods of 

propensity score with a variety of machine-learning predictive algorithms such as 

random forests (Leite, 2016), generalized boosted modeling (McCaffrey et al., 2004, 

2013), and neural networks (Westreich et al., 2010).  

Propensity score conditioning. Four propensity score conditioning methods are 

commonly used for removing the confounding when estimating the causal effect: 

matching (Rosenbaum & Rubin, 1983, 1985), stratification (or subclassification) 

(Rosenbaum & Rubin, 1984), inverse probability of treatment weighting (Thoemmes & 

Ong, 2016), and covariates adjustment (Garrido, 2016). Propensity score matching 

requires treated and control subjects who share a similar value of the propensity score 

forming matched pairs and then compares the outcome between these matched subjects. 

Researchers can perform propensity score matching with different algorithms (e.g., 

greedy, optimal, genetic), matching ratios (e.g., one to one matching, variable-ratio 

matching), and with or without replacement (Leite, 2016). Propensity score 

stratification, one the other hand, divides the subjects into subgroups according to their 

propensity scores, resulting in subjects with similar propensity scores in the same 

subgroup, while the treatment effect is the pooled difference of outcome for between 

subgroups. Researchers can also use propensity scores as the inverse probability of 
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treatment weight (IPTW) (Austin & Stuart, 2015) or as a covariate in regression models 

to control for the selection bias (Rosenbaum, 1987a). Among all the conditioning 

methods, studies have demonstrated that matching eliminates the highest amount of the 

systematic difference in pretreatment covariates than other propensity score methods 

(Austin, 2009b; Austin et al., 2007).  

Balance Diagnostics. A critical step before using the propensity score is to 

examine whether the propensity score is properly estimated by checking covariance 

balance between groups. If a propensity score estimation model is correctly specified, 

the distribution of pretreatment covariates should be similar between treatment and 

control subjects in the matched sample, which often referenced to as balanced covariates 

between groups. One significant aspect of this diagnostic method is it can be used to 

choose a propensity score model before the treatment effect estimation, which allows the 

researchers to assess the adequacy of the propensity score matching models without 

contaminating his/her judgment by the estimated treatment effect (Hill et al., 2011). 

However, if there are remaining differences in baseline covariates after conditioning on 

the propensity scores, for example, when there are unobserved confounders, the 

propensity score model has not been adequately specified.  

One of the widely used methods for balance diagnose is the standardized mean 

difference. The standardized mean difference is generally used to comparing the mean or 

prevalence of baseline covariates between treatment and control groups in the matched 

sample. The standardized difference compares the difference in means in units of the 
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pooled standard deviation(Chipman et al., 2010). For a continuous covariate, the 

standardized difference is defined as  

                                                       𝒅 =
𝒙̅𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕 − 𝒙̅𝒄𝒐𝒏𝒕𝒓𝒐𝒍

√𝒔𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕
𝟐 + 𝒔𝒄𝒐𝒏𝒕𝒓𝒐𝒍

𝟐

𝟐

                                            (3. 4)
 

where 𝑥̅𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and 𝑥̅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 represent the sample mean of the covariates in treated and 

control subjects, and 𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2  and 𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2  represent the sample variance of the 

covariate in treated and control subjects, respectively. For dichotomous variables, the 

standardized difference is defined as  

                       𝒅 =
𝒑̂𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕 − 𝒑̂𝒄𝒐𝒏𝒕𝒓𝒐𝒍

√𝒑̂𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕(𝟏 − 𝒑̂𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) + 𝒑̂𝒄𝒐𝒏𝒕𝒓𝒐𝒍(𝟏 − 𝒑̂𝒄𝒐𝒏𝒕𝒓𝒐𝒍)
𝟐
 

                   (3. 5)
 

where 𝑝̂𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and 𝑝̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙  are the prevalence of the dichotomous variable in treated 

and control subjects. The standardized difference is an effect size which allows for the 

comparison of the balance of variables that are measured in different units. Although 

there is still no universal agreement on the criterion of severe imbalance, a standardized 

difference that is less than 0.1 has been used to indicate negligible differences of 

baseline covariates between treatment and control groups (Normand et al., 2001). 

Meanwhile, some researchers have expressed their concern about overly restricted 

balance criteria. They argued that the balance of covariates is a large-sample property, 

and moderate imbalance were expected in a small sample. Also, the criteria for 

acceptable imbalance should depend on the importance of the covariates (Austin, 

2009a), and overly restricted balance criteria might result in reducing sample size. 
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3.2.3. Bayesian Additive Regression Tree as an Alternative to Estimating Causal 

Effects 

Motivated by ensembling learning, BART is a sum-of-trees model where each 

tree is constrained by a prior to be a weak learner, and fitting and inference are 

accomplished via an iterative Bayesians MCMC algorithm (Chipman et al., 2010). 

BART has shown outstanding prediction performance to a great variety of data sets and 

simulation studies. In terms of out of sample predictive RMSE, BART outperformed 

gradient boosting (Friedman, 2001), linear regression with L1 regularization (the lasso) 

(Efron et al., 2004), neural networks with one layer of hidden unit and random forest 

(Breiman, 2001). In simulation studies, BART obtained reliable posterior mean and 

interval estimates of the true regression function as well as the marginal predictor effects 

(Chipman et al., 2010).  

Due to BART’s excellent prediction performance and easy application, Hill 

(2011) first proposed using BART as an alternative causal inference strategy to predict 

individuals counterfactual potential outcomes. After that multiple researchers have 

applied BART in causal inference (Hill, Weiss, & Zhai, 2011; Green & Kern, 2012; 

Dorie, Harada, Carnegie, & Hill, 2016; Dorie, Hill, Shalit, Scott, & Cervone, 2017; 

Carnegie, Harada, & Hill, 2016). BART has also been consistently the best performing 

methods in the Atlantic Causal Inference Data Analysis Challenge (Hill, 2016).  

BART can be used to estimate the average causal effect and theoretically, 

individual-level causal effects could be estimated using BART but less robust. The 

general process of using BART in causal inference is as follow. First, fit the BART 
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algorithm to the full sample and get the posterior prediction for each individual at the 

observed treatment condition and the counterfactual treatment conditions. Then, the 

difference between these predictions could form posterior distributions for individual-

level treatment effects. Lastly, we can average over these to get posterior distribution for 

subpopulations of interest (e.g., average across treatment for the ATT; average across 

full sample for the ATE). For example, each iteration of BART Markov Chain generates 

a new draw of 𝑓(𝑋) from the posterior distribution. Let 𝑑𝑖
𝑚 = 𝑓𝑚(1, 𝑥𝑖) − 𝑓𝑚(0, 𝑥𝑖), 

then average the 𝑑𝑖
𝑚 values over 𝑖 with 𝑚 fixed, where 𝑚 is the number of trees, the 

resulting value would be a Monte Carlo approximation to the posterior distribution of the 

ATE.  

By combining data mining and Bayesian technique, BART has gain popularity in 

the causal inference literature. There are a couple of advantages of BART compared to 

other causal inference methods. First, BART outperforms other machine learning 

methods such as boosting, the lasso, neural networks and random forest in different 

settings without requiring the adjustment of the hyperparameters (Chipman et al., 2007). 

Second, the sum-of-trees model can capture both nonlinearities and interaction without 

explicitly adding interaction terms or transformations of the predictors. Hill (2011) 

provided evidence of the superior performance of BART relative to linear regression, 

propensity score matching, and inverse probability of treatment weighted linear 

regression in the context where the relationships between covariates and outcome are 

nonlinear. Third, BART can handle a large number of predictors simultaneously. The 

ability of including many potential confounder as predictors are critical when trying to 
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satisfy the ignorability assumption. Consequently, if a variable is not critical for 

prediction, it simply does not get used often. Lastly, instead of dropping participants due 

to lack of overlap or common support of the covariates, BART can provide coherent 

uncertainty intervals when fewer data points are available. BART yields individual-

specific posterior distribution for each potential outcome. The uncertainty intervals will 

grow wider where we do not have much observed data point. 

 

3.2.3.1. Definitions and Notations of BART 

The formal definition and notion for BART are as follow, assuming there is a 

continuous outcome 𝑌 and 𝑝 covaraites 𝑋 for 𝑛 units. The goal of the BART model is to 

capture the complex relationship between 𝑋 and 𝑌, that is 𝑓(𝑋) from 𝑌 = 𝑓(𝑋) + 𝜀, 

where 𝜀~ 𝑁(0, 𝜎2) and 𝑖 = 1,… , 𝑛, with the aim of prediction. To estimate 𝑓(𝑋), a 

sum-of-trees model is specified as  

                                                       𝒇(𝑿) = ∑𝒈(𝑿;𝑻𝒋, 𝑴𝒋)

𝒎

𝒋=𝟏

                                                   (3. 6) 

where 𝑇𝑗 is the 𝑗𝑡ℎ  binary tree structure and 𝑀𝑗 = {𝑢1𝑗 , … , 𝑢𝑏𝑗} is the vector of terminal 

node parameters associated with 𝑇𝑗. Note that 𝑇𝑗 contains the information of which 

covariate to split on, the cutoff value in a child node, and where the child node is located 

in the binary tree. The constant 𝑚 indicates the number of trees and usually is fixed at a 

large number, e.g. 200. One can also treat 𝑚 as an unknown parameter, putting a prior 

on 𝑚 and processing with full Bayes implementation of BART (Chipman et al., 2010).   
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3.2.3.2. Priors and Posterior Distributions in BART 

Follow the explanation from Tan & Roy (2019), the prior distribution for 

Equation (6) is 𝑃(𝑇1,𝑀1, … , 𝑇𝑚 , 𝑀𝑚 , 𝜎). The specification of the prior is simplified as 

{(𝑇1, 𝑀1),… , (𝑇𝑚 , 𝑀𝑚)} where 𝜎 and (𝑇1,𝑀1),… , (𝑇𝑚 ,𝑀𝑚) are independent of each 

other. The prior distribution can be written as  

𝑷(𝑻𝟏,𝑴𝟏, … , 𝑻𝒎,𝑴𝒎, 𝝈) = 𝑷(𝑻𝟏,𝑴𝟏,… , 𝑻𝒎,𝑴𝒎)𝑷(𝝈)

                         = [∏𝑷(𝑻𝟏,𝑴𝒋)

𝒎

𝒋

]𝑷(𝝈)

                                  = [∏𝑷(𝑴𝒋|𝑻𝒋)𝑷(𝑻𝒋)

𝒎

𝒋

]𝑷(𝝈)

                                                                              = [∏{∏𝑷(𝒖𝒌𝒋|𝑻𝒋)

𝒃𝒋

𝒌

}𝑷(𝑻𝒋)

𝒎

𝒋

]𝑷(𝝈).                  (3. 7)

 

Note that for the third and fourth line in Equation (3.7), recall that 𝑀𝑗 =

{𝑢1𝑗 , … , 𝑢𝑏𝑗} is the vector of terminal node mean parameters associated with 𝑇𝑗 and each 

𝑢𝑘𝑗 is assumed to be independent of each other. Equation (3.7) implies that we need to 

set distributions for the prior 𝑃(𝑢𝑘𝑗|𝑇𝑗), 𝑃(𝜎), and 𝑃(𝑇𝑗). The prior for 𝑃(𝑢𝑘𝑗|𝑇𝑗) and 

𝑃(𝜎) are given as 𝑃(𝑢𝑘𝑗|𝑇𝑗)~ 𝑁(𝑢𝑢 , 𝜎𝑢
2) and 𝑃(𝜎2)~𝐼𝐺 (

𝑣

2
,
𝑣𝜆

2
) respectively, where 

𝐼𝐺 (
𝑣

2
,
𝑣𝜆

2
) is the inverse gamma distribution with shape parameter 

𝑣

2
 and rate parameter 

 
𝑣𝜆

2
.  

The prior 𝑃(𝑇𝑗) is more complex and can be specified using three components:  

1. The probability that a node at depth 𝑑 would split is (
𝛼

(1+𝑑)𝛽
). The 

hyperparameter 𝛼 ∈ {0,1} controls how likely a node would split, with a large 



 

87 

 

value indicating high probability of a split. The number of terminal nodes is 

controlled by hyperparameter 𝛽, with large value of 𝛽 reducing the number of 

terminal nodes. 

2. The distribution used to select the covariate to split upon in a child node is set to 

be a uniform distribution as default.  

3. The distribution used to select the cutoff point in a child node once the covariate 

is select is suggested to be a uniform distribution as default.  

After specifying the prior distributions, the posterior distribution can be induced as  

𝑃[(𝑇1,𝑀1), … , ( 𝑇𝑚 ,𝑀𝑚), 𝜎|𝑌] ∝ 𝑃(𝑌|(𝑇1,𝑀1), … , (𝑇𝑚 ,𝑀𝑚), 𝜎)

                                                                            × 𝑃(𝑇1,𝑀1, … 𝑇𝑚 ,𝑀𝑚 , 𝜎).                           (3. 8)

and simplified into two major posterior draws using Gibbs sampling. First, draw 𝑚 

successive (𝑇𝑗, 𝑀𝑗) from  

                                            𝑷[(𝑻𝒋,𝑴𝒋)|𝑻(𝒋),𝑴(𝒋), 𝒀, 𝝈]                                                           (3. 9) 

for 𝑗 = 1,… ,𝑚 where 𝑇(𝑗) and 𝑀(𝑗) consist of all tree structures and terminal nodes 

except for the 𝑗𝑡ℎ  tree structure and terminal node, then draw  

𝑷[𝝈|(𝑻𝟏,𝑴𝟏), … , (𝑻𝒎, 𝑴𝒎), 𝒀] (3. 10) 

from 𝐼𝐺 (
𝑣+𝑛

2
,
𝑣𝜆+∑ (𝑌𝑖−∑ 𝑔(𝑋𝑖,𝑇𝑗,𝑀𝑗))

𝑚
𝑗=1

2𝑛
𝑖=1

2
 ). 

For Equation (9), the distribution depends on 𝑇(𝑗),𝑀(𝑗), 𝑌, 𝜎 through  

                                                       𝑹𝒋 = 𝒀 − ∑ 𝒈(𝑿,𝑻𝒘, 𝑴𝒘)

𝒘≠𝒋

                                          (3. 11) 
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the residual of the 𝑚 − 1 regression sum-of-trees fit excluding the 𝑗𝑡ℎ , thus Equation 

(3.9) is equivalent to the posterior draw from a single regression tree 𝑅𝑖𝑗 =

𝑔(𝑋𝑖 , 𝑇𝑗, 𝑀𝑗) + 𝜀𝑖 or  

𝑷[(𝑻𝒋,𝑴𝒋)|𝑹𝒋, 𝝈] (3. 12) 

We can obtain a draw from Equation (3.12) by first integrating out 𝑀𝑗 to obtain 

𝑃(𝑇𝑗|𝑅𝑗 , 𝜎). This is possible since a conjugate Normal priors on 𝑢𝑘𝑗 was employed. We 

draw 𝑃(𝑇𝑗|𝑅𝑗 , 𝜎) using MH algorithm where first, we generate a candidate tree 𝑇𝑗
∗ for 

the 𝑗𝑡ℎ  tree with probability distribution 𝑞(𝑇𝑗, 𝑇𝑗
∗) and then we accept or reject 𝑇𝑗

∗ based 

on probability  

           𝜶(𝑻𝒋, 𝑻𝒋
∗) = 𝐦𝐢𝐧 {𝟏,

𝒒(𝑻𝒋, 𝑻𝒋
∗)

𝒒(𝑻𝒋
∗, 𝑻𝒋)

×
𝑷(𝑹𝒋|𝑿, 𝑻𝒋

∗, 𝑴𝒋)

𝑷(𝑹𝒋|𝑿,𝑻𝒋, 𝑴𝒋)
×

𝑷(𝑻𝒋
∗)

𝑷(𝑻𝒋)
}                             (3. 13) 

where 
𝑞(𝑇𝑗 ,𝑇𝑗

∗)

𝑞(𝑇𝑗
∗,𝑇𝑗)

 is the ratio of the probability of how the previous tree moves to the new 

tree again the probability of how the new tree moves to the previous tree. 
𝑃(𝑅𝑗|𝑋,𝑇𝑗

∗,𝑀𝑗)

𝑃(𝑅𝑗|𝑋,𝑇𝑗 ,𝑀𝑗)
 is 

the likelihood ratio of the new tree against the previous tree. 
𝑃(𝑇𝑗

∗)

𝑃(𝑇𝑗)
 is the ratio of the 

probability of the new tree against the previous tree.  

A new tree 𝑇𝑗
∗ can be proposed given the previous tree 𝑇𝑗 using four local steps:  

1. Grow: where a terminal node is split into two new child nodes.  

2. Prune: where two terminal nodes immediately under the same non-terminal node 

are combined together such that their parent non-terminal node become a 

terminal node. 
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3. Swap: the splitting criteria of two non-terminal nodes are swapped. 

4. Change: the splitting criteria of a single non-terminal node is changed.  

 

3.2.3.3. Hyperparameters for BART 

As mentioned before, the hyperparameters for BART are: 𝛼, 𝛽, 𝑢𝑢 , 𝜎𝑢 , 𝜐, and 𝜆. 

For 𝛼 and 𝛽, the default value is set to be 0.95 and 2, respectively, which provide a 

balanced penalizing effect for the probability of a node splitting (Chipman et al., 2010). 

For 𝑢𝑢 and 𝜎𝑢, they are set such that 𝐸(𝑌|𝑋)~𝑁(𝑚𝑢𝑢 ,𝑚𝜎𝑢
2)  has a high probability of 

falling in between min(𝑌) and max(𝑌), which can be achieved by defining 𝜐 such that 

min(𝑌) = 𝑚𝑢𝑢 − 𝜐√𝑚𝜎𝑢 and max(𝑌) = 𝑚𝑢𝑢 + 𝜐√𝑚𝜎𝑢.  To simplify the calculation 

of posterior distribution, 𝑌 is transformed to 𝑌̃ =
𝑌−

min(𝑌)+max(𝑌)

2

max(𝑌)−min(𝑌)
, which results in 𝑌̃ ∈

(−0.5, 0.5). This has the effect of allowing hyperparameter 𝑢𝑢 to be set as 0 and 𝜎𝑢 to 

be determined as 
0.5

𝜐√𝑚
 where 𝜐 is to be chosen. The default value for 𝜐 is set to be 3 and 𝜆 

is set at the value that makes 𝑃(𝜎2 < 𝑠2; 𝜐, 𝜆) = 0.9, where 𝑠2 is the estimated variance 

of the residuals from the multiple linear regression with 𝑌 as the outcomes and 𝑋 as the 

covariates. 

 

3.2.4. The Proposed M-BART algorithms 

Build upon the work of Sela and Simonoff (2012) and Lin and Luo (2019), the 

proposed M-BART algorithm decomposes a multilevel continuous outcome into the 

fixed and random components. For a general Linear Mixed Model, 𝑌 = 𝑋𝛽 + 𝑍𝑢 + 𝜀, 
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the outcome variable 𝑌 is a 𝑁 × 1 column vector; the 𝑋 (𝑋1, … , 𝑋𝑝) is a 𝑁 × 𝑝 matrix of 

the 𝑝 predictors; 𝛽 (𝛽1, … , 𝛽𝑝) is a 𝑝 × 1 column vector of the fixed-effects regression 

coefficients; 𝑍 is the 𝑁 × 𝑞 design matrix for the 𝑞 random effects; 𝑢 is a 𝑞 × 1 vector of 

the random effects; and 𝜀 is a 𝑁 × 1 column vector of the residual.  

The general idea of the proposed M-BART algorithm is to estimate the fixed 

effect components (𝑋𝛽) and random effect component (𝑍𝑢) using the S-BART and 

linear mixed effect model, respectively. The estimated fixed and random components are 

then combined and updated iteratively under the EM framework until convergence. The 

detail of the proposed M-BART algorithm is described below.  

1. Random effect component 𝑢 is initialized with a vector of values calculated as 

deviance between the grand mean (𝑌̅) and cluster mean (𝑌𝑗̅). 

2. The algorithm iterates through the following steps until the estimated random 

effects (𝑢) converged based on the change in the likelihood or restricted 

likelihood function being less than a pre-set tolerance value.  

2a. The fixed-effect (𝑋𝛽) is estimated using S-BART algorithm based on the 

target variable (𝑌 − 𝑍𝑢̂)and all predictors 𝑋. The S-BART algorithm can 

generate a set of indicator variable (𝐼), where I is the mean of the posterior 

distribution of BART predictive value of the outcome (𝑦̂).  

2b. The indicator variable (𝐼) then used as the only predictor in the Linear Mixed 

Model using the following equation: 𝑌 = 𝐼𝜆 + 𝑍𝑢 + 𝜀 

2c. The random effect 𝑢 estimated in Step 2b is then used in step 2a to update the 

fixed effect (𝑋𝛽). 
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This proposed M-BART algorithm can handle continuous and binary outcomes. 

Using the BART package in R, the wbart and lbart function can be used in Step 2a 

for continuous and dichotomous outcomes respectively (Sparapani et al., 2019). In the 

current empirical data analysis, the continuous version of the M-BART was used for 

direct causal inference (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇) and the dichotomous version of the M-BART was 

used to estimate propensity score when utilized the propensity score matching method 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇). The default setting of BART (which required no tuning) was used with the 

number of trees = 200, base (𝛼) = 0.95 and power (𝛽)= 2; for a detailed discussion of 

these parameter settings, see Chapman et al., (2010). Each BART run was based on 1100 

draw with the first 100 discarded as burn-in.   

The liner mixed effect model in Step 2b can be estimated using maximum 

likelihood or using restricted maximum likelihood (REML). In current study, we used 

REML since it yields unbiased estimates for the level-1 random effect variable (Corbeil 

& Searle, 1976). The lmer function of the R nlme package is used here (Pinheiro et al., 

2017). It fit the model using a combination of the ECME algorithm (Liu & Rubin, 1994), 

a modification of the EM algorithm designed to speed its convergence, and the Newton-

Raphson algorithm (Lindstrom & Bates, 1988).  

 

3.3. Simulation Study 

The purpose of this simulation study was to examine the performance of M-

BART algorithm in a broad range of multilevel settings. Specifically, The M-BART 

algorithm was used in both direct treatment effect estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇) and the PSM 
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(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇). The performance of 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  were compared with direct 

treatment effect estimation using single-level BART (𝐷𝐸𝑆−𝐵𝐴𝑅𝑇), and the PSM methods 

using the fixed-effect model (𝑃𝑆𝐹𝐸), mixed effect model (𝑃𝑆𝑀𝐸), and single-level 

BART (𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  ).  

Data sets were generated based on six design factors, 216 data conditions (see 

Table 3.1) with 500 replications in each data condition. For each generated dataset, the 

six estimation methods mentioned above were employed, resulting in a total of 1296 

conditions.  

Table 3.1 A List of Design Factors and Conditions 
A List of Design Factors and Conditions 

 Design factors Conditions 

1 
Number of 

clusters 

a. small (𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 30) 

b. moderate (𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 50) 

c. large (𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 100) 

2 Cluster size 

a. small (𝑁𝑠𝑖𝑧𝑒 = 20) 

b. moderate (𝑁𝑠𝑖𝑧𝑒 = 50) 

c. large (𝑁𝑠𝑖𝑧𝑒 = 100) 

3 

Degree of 

nonlinearity and 

interaction 

a. main effect only (𝛽𝑙𝑒𝑣𝑒𝑙1 = 𝛽𝑙𝑒𝑣𝑒𝑙2 = 𝛽𝑐𝑟𝑜𝑠𝑠𝑙𝑒𝑣𝑒𝑙 = 0) 

b. mild (𝛽𝑙𝑒𝑣𝑒𝑙1 = 0.20, 𝛽𝑙𝑒𝑣𝑒𝑙2 = 0.40, 𝛽𝑐𝑟𝑜𝑠𝑠𝑙𝑒𝑣𝑒𝑙 = 0.40) 

c. moderate (𝛽𝑙𝑒𝑣𝑒𝑙1 = 0.40, 𝛽𝑙𝑒𝑣𝑒𝑙2 = 0.80, 𝛽𝑐𝑟𝑜𝑠𝑠𝑙𝑒𝑣𝑒𝑙 = 0.80) 

4 

Between cluster 

variability of 

treatment effect 

(random effect of 

the treatment) 

a. small (𝜎𝑢𝑌𝛿
2 = 0.25)  

b. moderate (𝜎𝑢𝑌𝛿
2 = 1.00) 

5 

Conditional intra-

class correlation 

(ICC) of the 

treatment model  

a. small (𝐼𝐶𝐶𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  =  0.10) 

b. moderate (𝐼𝐶𝐶𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  =  0.30) 

6 

Conditional intra-

class correlation 

(ICC) of the 

outcome model 

a. small (𝐼𝐶𝐶𝑂𝑢𝑡𝑐𝑜𝑚𝑒  =  0.10) 

b. moderate (𝐼𝐶𝐶𝑂𝑢𝑡𝑐𝑜𝑚𝑒  =  0.30) 
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3.3.1. Data Generation  

Data generation included generating the propensity score of treatment assignment 

(p), treatment assignment indicator (Z), outcome variable (Y), ten level-1 pretreatment 

covariates (𝑋1,.., 𝑋10), and five level-2 pretreatment covariates (𝑊1,…, 𝑊5). Parameters 

settings used in the current data generation followed previous simulation studies in 

educational settings (Lin & Luo, 2019; Bellara, 2013; Lee et al., 2010; Setoguchi et al., 

2008). All data were generated and analyzed in RStudio. 

 

3.3.1.1. Covariates 

Ten level-1 predictors (𝑋1, … , 𝑋10), and five level-2 predictors (𝑊1, … ,𝑊5) were 

first generated. Among the ten level-1 predictors, six covariates (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6) 

were associated with both treatment assignment and outcome, four covariates 

(𝑋7, 𝑋8, 𝑋9, 𝑋10) were associated only with the outcome. One covariate (𝑋6) was 

specified as a dichotomous variable generated from a Bernoulli distribution with the 

expected probability of 0.5. All other level-1 covariates were generated from standard 

normal distributions. Among the five level-2 predictors, four covariates 

(𝑊1, 𝑊2, 𝑊3, 𝑊4) were associated with both treatment assignment and outcome, and one 

covariate (𝑊5) associated only with the outcome. One covariate (𝑊4) was a 

dichotomous variable generated from a Bernoulli distribution with the expected 

probability equal to 0.5. All other level-2 predictors were generated from standard 

normal distributions. The correlations among the predictors at each level were held 

constant at 0.2. A list of generated covariates was depicted in Table 3.2. 
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Table 3.2 A List of Generated Variables 

A List of Generated Variables 

Variable Distribution 

Variable 

Level Relationship  

𝑍 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝 ≈ 0.5) Level 1  Treatment Variable 

𝑌 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Outcome Variable 

𝑋1 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated with both treatment and 

outcome 

𝑋2 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated with both treatment and 

outcome 

𝑋3 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated with both treatment and 

outcome 

𝑋4 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated with both treatment and 

outcome 

𝑋5 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated with both treatment and 

outcome 

𝑋6 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝 = 0.5) Level 1 Associated with both treatment and 

outcome  

𝑋7 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated outcome only 

𝑋8 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated outcome only 

𝑋9 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated outcome only 

𝑋10 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 1 Associated outcome only 

𝑊1 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 2 Associated with both treatment and 

outcome 

𝑊2 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 2 Associated with both treatment and 

outcome 

𝑊3 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 2 Associated with both treatment and 

outcome 

𝑊4 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝 = 0.5) Level 2 Associated with both treatment and 

outcome 

𝑊5 𝑁 (𝑀 = 0, 𝑆𝐷 = 1) Level 2 Associated outcome only 

Note: Level 1: Individual level; Level 2: Cluster level 

 

3.3.1.2. Treatment Assignment Model  

The treatment assignment is designed as a realization of a dichotomous variable 

conditional on six level-1 predictors, four level-2 predictors, and 25 higher-order and 

interaction terms. For each simulation, the true probability of individual 𝑖 in cluster 𝑗 
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receiving treatment or the true propensity score (𝑝𝑖𝑗) was generated based on a two-level 

random intercept and random slope model. The dichotomous treatment indicator (𝑍𝑖𝑗) 

was then generated from a Bernoulli distribution with the expected probability of 𝑝𝑖𝑗 . 

Since all level-1 and level-2 covariates were generated from a standardized normal 

distribution or a Bernoulli distribution with the expected probability of 0.5, the average 

probability of receiving the treatment was approximately equal to 0.5.  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛽0𝑗
𝑧 + 𝛽1𝑗

𝑧 𝑋1𝑖𝑗 + 𝛽2𝑗
𝑧 𝑋2𝑖𝑗 + 𝛽3𝑗

𝑧 𝑋3𝑖𝑗 + 𝛽4𝑗
𝑧 𝑋4𝑖𝑗 + 𝛽5𝑗

𝑧 𝑋5𝑖𝑗 + 𝛽6𝑗
𝑧 𝑋6𝑖𝑗 + 𝛽7𝑗

𝑧 𝑋1𝑖𝑗
2

+ 𝛽8𝑗
𝑧 𝑋2𝑖𝑗

2 + 𝛽9𝑗
𝑧 𝑋3𝑖𝑗

2 + 𝛽10𝑗
𝑧 𝑋1𝑖𝑗𝑋2𝑖𝑗 + 𝛽11

𝑧 𝑋1𝑖𝑗𝑋3𝑖𝑗 + 𝛽12𝑗
𝑧 𝑋2𝑖𝑗𝑋3𝑖𝑗

+ 𝛽13𝑗
𝑧 𝑋1𝑖𝑗𝑋2𝑖𝑗𝑋3𝑖𝑗 

 𝛽0𝑗
𝑧 = 𝛾00

𝑧 + 𝛾01
𝑧 𝑊1𝑗 + 𝛾02

𝑧 𝑊2𝑗 + 𝛾03
𝑧 𝑊3𝑗 + 𝛾04

𝑧 𝑊4𝑗 + 𝛾05
𝑧 𝑊1𝑗

2 + 𝛾06
𝑧 𝑊2𝑗

2 + 𝛾07
𝑧 𝑊1𝑗𝑊2𝑗 + 𝑢0𝑗

𝑧  

𝛽1𝑗
𝑧 = 𝛾10

𝑧 + 𝛾11
𝑧 𝑊1𝑗 + 𝛾12

𝑧 𝑊2𝑗 + 𝛾13
𝑧 𝑊3𝑗 + 𝛾14

𝑧 𝑊4𝑗 + 𝛾15
𝑧 𝑊1𝑗

2 + 𝛾16
𝑧 𝑊2𝑗

2 + 𝛾17
𝑧 𝑊1𝑗𝑊2𝑗 + 𝑢1𝑗

𝑧  

𝛽2𝑗
𝑧 = 𝛾20

𝑧 + 𝛾21
𝑧 𝑊1𝑗 + 𝛾22

𝑧 𝑊2𝑗 + 𝛾23
𝑧 𝑊3𝑗 + 𝛾24

𝑧 𝑊4𝑗 + 𝑢2𝑗
𝑧  

𝛽3𝑗
𝑧 = 𝛾30

𝑧 + 𝛾31
𝑧 𝑊1𝑗 + 𝛾32

𝑧 𝑊2𝑗 + 𝛾33
𝑧 𝑊3𝑗 + 𝛾34

𝑧 𝑊4𝑗 + 𝑢3𝑗
𝑧  

𝛽4𝑗
𝑧 = 𝛾40

𝑧 + 𝑢4𝑗
𝑧  

𝛽5𝑗
𝑧 = 𝛾50

𝑧 + 𝑢5𝑗
𝑧  

𝛽6𝑗
𝑧 = 𝛾60

𝑧 + 𝑢6𝑗
𝑧  

𝛽7𝑗
𝑧 = 𝛾70

𝑧  

… 

𝛽13𝑗
𝑧 = 𝛾130

𝑧  

𝑍𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗) 

[
 
 
 
 
 
 
 
 
𝑢0𝑗

𝑧

𝑢1𝑗
𝑧

𝑢2𝑗
𝑧

𝑢3𝑗
𝑧

𝑢4𝑗
𝑧

𝑢5𝑗
𝑧

𝑢6𝑗
𝑧

]
 
 
 
 
 
 
 
 

= 𝑁

[
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
0
0
0
0
0
0
0]
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
𝜎𝑢𝑍0

2 = 0.37𝑜𝑟 1.14 0 0 0 0 0 0

0 𝜎𝑢𝑍1

2 = 1 0 0 0 0 0

0 0 𝜎𝑢𝑍2

2 = 1 0 0 0 0

0 0 0 𝜎𝑢𝑍3

2 = 1 0 0 0

0 0 0 0 𝜎𝑢𝑍4

2 = 1 0 0

0 0 0 0 0 𝜎𝑢𝑍5

2 = 1 0

0 0 0 0 0 0 𝜎𝑢𝑍6

2 = 1]
 
 
 
 
 
 
 
 

 

]
 
 
 
 
 
 
 
 

(3. 14)  

 



 

96 

 

In terms of model parameters, the intercepts (𝛾00
𝑍 ) was fixed to 0 for simplicity 

purpose. Regression coefficients of the level-1 covariates (𝛾10
𝑍 , 𝛾20

𝑍 , 𝛾30
𝑍 , 𝛾40

𝑍 , 𝛾50
𝑍 , 𝛾60

𝑍 ) 

were set to be 0.2 to reflect a moderate relationship between level-1 predictors and the 

treatment assignment. Regression coefficients of the level-2 covariates(𝛾01
𝑍 , 𝛾02

𝑍 , 𝛾03
𝑍 , 𝛾04

𝑍 ) 

were set to be 0.4 to reflect a moderate relationship between level-2 predictors and the 

treatment assignment. To reflect varied degrees of nonlinearity and interaction, the 

regression coefficients for level-1 higher-order terms and interaction terms were set to be 

0, 0.2, or 0.4, and the regression coefficients for level-2 and cross-level higher-order 

terms and interaction terms set to be 0, 0.4, or 0.8.  

For random effects, the variance of level-2 random effect 𝜎𝑢𝑍0𝑗
2  was set to be 0.37 

or 1.41 to reflect varied conditional ICCs of the treatment model. The conditional ICC of 

the treatment model can be computed using 𝐼𝐶𝐶 =
𝜎𝑢𝑍0𝑗

2

𝜎𝑢𝑍0𝑗
2 +𝜎𝑍

2 , where 𝜎𝑍
2 =

𝜋2

3
 was 

generally applied for simulations using multilevel logistic models (Snijders & Bosker, 

2012). The level-2 random effects were generated from the multivariate normal 

distribution with 𝜎𝑢𝑍0𝑗
2  equal to 0.37 or 1.41 and 𝜎𝑢𝑍1𝑗

2 = 𝜎𝑢𝑍2𝑗
2 = 𝜎𝑢𝑍3𝑗

2 = 𝜎𝑢𝑍4𝑗
2 =

𝜎𝑢𝑍5𝑗
2 = 𝜎𝑢𝑍6𝑗

2 = 1. The covariances of the random effects were set to be zero for 

simplicity. 

3.3.1.3. Outcome Model  

The continuous outcome variable (𝑌𝑖𝑗) was generated from a random intercept 

and slope model with treatment assignment indicator (𝑍𝑖𝑗), true propensity score(𝑝𝑖𝑗), 
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four level-1 and one level-2 pretreatment covariates that are only related to the outcome. 

The true outcome model was specified as follows:  

𝑌𝑖𝑗 = 𝛽0𝑗
𝑌 + 𝛿𝑗𝑍𝑖𝑗 + 𝛽𝑝𝑗

𝑌 𝑝𝑖𝑗 + 𝛽1𝑗
𝑌 𝑋7𝑖𝑗 + 𝛽2𝑗

𝑌 𝑋8𝑖𝑗 + 𝛽3𝑗
𝑌 𝑋9𝑖𝑗 + 𝛽4𝑗

𝑌 𝑋10𝑖𝑗 + 𝑒𝑖𝑗
𝑌  

𝛽0𝑗
𝑌 = 𝛾00

𝑌 + 𝛾01
𝑌 𝑊5𝑗 + 𝑢0𝑗

𝑌  

𝛿𝑗 = 𝛾𝛿0
𝑌 𝑊5𝑗 + 𝑢𝛿𝑗

𝑌  

𝛽𝑝𝑗
𝑌 = 𝛾𝑝0

𝑌  

𝛽1𝑗
𝑌 = 𝛾10

𝑌 + 𝛾11
𝑌 𝑊5𝑗 + 𝑢1𝑗

𝑌  

𝛽2𝑗
𝑌 = 𝛾20

𝑌 + 𝑢2𝑗
𝑌  

𝛽3𝑗
𝑌 = 𝛾30

𝑌 + 𝑢3𝑗
𝑌  

𝛽4𝑗
𝑌 = 𝛾40

𝑌  

[
 
 
 
 
 
 
𝑢0𝑗

𝑌

𝑢𝛿𝑗
𝑌

𝑢1𝑗
𝑌

𝑢2𝑗
𝑌

𝑢3𝑗
𝑌

]
 
 
 
 
 
 

= 𝑁

[
 
 
 
 
 
 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

,

[
 
 
 
 
 
𝜎𝑢𝑌0

2 = 0.11 𝑜𝑟 0.43 0 0 0 0

0 𝜎𝑢𝑌𝛿
2 = 0.25 𝑜𝑟 1 0 0 0

0 0 𝜎𝑢𝑌1
2 = 0.25 0 0

0 0 0 𝜎𝑢𝑌2
2 = 0.25 0

0 0 0 0 𝜎𝑢𝑌3
2 = 0.25]

 
 
 
 
 

]
 
 
 
 
 
 

(3. 15) 

𝑒𝑖𝑗
𝑌~𝑁(0, 𝜎𝑌

2) 

 

For model parameters, the intercept 𝛾00
𝑌  was fixed to 0 for simplicity purpose. 

The coefficients for level-1 pretreatment covariates (𝛾10
𝑌 , 𝛾20

𝑌 , 𝛾30
𝑌 , 𝛾40

𝑌 ) were set to be 0.2 

and the coefficient for level-2 pretreatment covariates (𝛾01
𝑌 , 𝛾11

𝑌 ) were set to be 0.4 to 

reflect moderate associations. The impact of true propensity score on the outcome 

(𝛾𝑝0
𝑌 ) was fixed to be 0.5. The population treatment effect (𝛿) was set to be 0.5 to reflect 

moderate treatment effect. The level-1 random effect (𝑒𝑖𝑗
𝑌) was generated from a 
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standard normal distribution. To reflect different degrees of clustering effect in the 

outcome model, the level-2 random effects (𝑢0𝑗
𝑌 ) was generated from a normal 

distribution with mean equal to 0 and variance equal to 0.11 or 0.43, so that the 

conditional ICCs (𝐼𝐶𝐶 =
𝜎𝑢𝑌0𝑗

2

𝜎𝑢𝑌0𝑗
2 +𝜎𝑌

2) equals to 0.10 or 0.30. To reflect the variability of 

treatment effect across clusters, the random effect of treatment 𝑢𝛿𝑗
𝑌  was generated from 

normal distribution with mean equal to 0 and variance equal to 0.25 or 1.00. The 

variances of the random slopes for 𝑢1𝑗
𝑌 , 𝑢2𝑗

𝑌  and 𝑢3𝑗
𝑌  were set to be 0.25. Similar to 

Thoemmes (2009), the outcome variable was generated using a variance components 

covariance structure where all covariance parameters in the random effect matric were 

fixed to 0.  

 

3.3.2. Sample Characteristics 

3.3.2.1. Sample Size  

Sample size was manipulated through varied number of clusters (𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟) and 

cluster sizes (𝑁𝑠𝑖𝑧𝑒). Aligned with the applications of multilevel modeling in other 

educational studies, 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟  was set to be 30, 50, or 100 to reflect small, moderate or 

large number of clusters (Dedrick et al., 2009; Kwok et al., 2010; Lai & Kwok, 2015; 

Maas & Hox, 2005). 𝑁𝑠𝑖𝑧𝑒 was set to be 20, 50 or 100 to reflect small, moderate or large 

cluster size. Combining all nine sample size conditions, the total sample size 𝑁 range 

from 600 (20 ∗ 30 = 600) to 10000 (100 ∗ 100 = 10000).   
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3.3.2.2. Degree of Nonlinearity and Interaction  

One of the criticisms for using logistic regression models in PSM is their 

sensitivity when dealing with nonlinear relationships between the covariates and the 

treatment assignment. In contrast, BART algorithm is known to automatically consider 

and account for nonlinear terms (Hill, 2011). Thus, in the current simulation study, the 

performance of different estimation methods in conditions of varied degrees of 

nonlinearity and interaction for the treatment assignment model were investigated. Three 

scenarios that differ in degrees of linearity and additivity in the true treatment 

assignment model were considered.  

Scenarios 1: additive and linear (main effects only) 

Scenarios 2: mildly nonlinear and non-addictive (coefficients for level-1 and level-2 

higher-order terms and interaction terms in the true treatment effect model were set to be 

0.2 and 0.4, respectively) 

Scenarios 3: moderately non-linear and non-addictive (coefficients for level-1 and level-

2 higher-order terms and interaction terms in the true treatment effect model were set to 

be 0.4 and 0.8, respectively) 

 

3.3.2.3. Between Cluster Variability of Treatment Effect (Random Effect of the 

Treatment) 

To mimic the variability of the treatment effect across clusters, different random 

effect of the treatment in the outcome model were specified. The variance of the treatment 
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random effect (𝜎𝑢𝑌𝛿
2 ) was set to be 0.25 or 1.00 to reflect small or moderate variation of 

the treatment effect between clusters.  

 

3.3.2.4. Conditional Intra-class Correlations of the Treatment Assignment Model  

In multilevel context, individuals within the same cluster tend to have more 

similarities compared to individuals in other clusters. Intraclass correlations (ICC) is 

used to determine the degree of within-cluster dependence and plays an important role in 

estimating sample size for multilevel observational studies. In the current simulation 

study, small and large between cluster variability of treatment assignment after 

controlling for the predictors were consider.  

The conditional ICC of the treatment assignment model was set to be 0.1 and 0.3 

to represent small and large clustering effects in most educational settings (Thoemmes & 

Kim, 2011). The level-2 variance 𝜎𝑢𝑍0𝑗
2  was computed using the equation 

𝐼𝐶𝐶𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =
𝜎𝑢𝑍0𝑗

2

𝜎𝑢𝑍0𝑗
2 +𝜎𝑍

2 , where 𝜎𝑍
2 =

𝜋2

3
 was generally used for multilevel logistic 

model (Snijders & Bosker, 2012). Therefore, the level-2 random effects were generated 

from the multivariate normal distribution indicated in Equation 3.14. The 𝜎𝑢𝑍0𝑗
2  was set 

to be 0.37 and 1.41 to reflect 𝐼𝐶𝐶𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  of 0.1 and 0.3, respectively.  

 

3.3.2.5. Conditional Intra-class Correlations of the Outcome Model  

In the current simulation study, small and large between cluster variability of the 

outcome after controlling for the predictors were consider. Align with the conditional 
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ICCs of the treatment assignment model (𝐼𝐶𝐶𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡), the conditional ICCs of the 

outcome model (𝐼𝐶𝐶𝑂𝑢𝑡𝑐𝑜𝑚𝑒) was also set to be 0.1 and 0.3 to represent small and large 

clustering effects in the outcome. The level-2 variance 𝜎𝑢𝑌0𝑗
2  was computed using the 

equation 𝐼𝐶𝐶𝑂𝑢𝑡𝑐𝑜𝑚𝑒 =
𝜎𝑢𝑌0𝑗

2

𝜎𝑢𝑌0𝑗
2 +𝜎𝑌

2, where 𝜎𝑌
2 was set to be 1. Therefore, the level-2 

random effects were generated from the multivariate normal distribution indicated in 

Equation 3.15. The 𝜎𝑢𝑌0𝑗
2  was set to be 0.11 and 0.43 for 𝐼𝐶𝐶𝑂𝑢𝑡𝑐𝑜𝑚𝑒 of 0.1 and 0.3, 

respectively.  

3.3.2.6. Main effects of Covariates on Treatment Assignment and Outcome 

Previous simulation studies suggested varied main effects of covariates on 

treatment and outcome do not make a significant impact on the treatment effect 

estimation (Bellara, 2013). Thus, in the current simulation study, only one condition of 

the main effects was considered. The coefficient value of 0.2 was used to represent 

moderate relationships between level-1 covariates on treatment assignment and the 

outcome, and coefficient value of 0.4 was used to represent moderate relationships 

between level-2 covariate on treatment assignment and the outcome.  

3.3.2.7. Population Treatment Effect 

Following the reference values for moderate effect size (Cohen, 2013), moderate 

effect of the treatment on the outcome was considered, that is 𝛿𝐴𝑇𝐸 = 0.5.  
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3.3.3. Analysis Procedure 

3.3.3.1. Estimating Treatment Effect Using Four Propensity Score Methods 

The four propensity score methods (𝑃𝑆𝐹𝐸 , 𝑃𝑆𝑀𝐸 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) 

used in the current simulation study are only difference on how the propensity score was 

estimated (Step 2), and share similar procedures in Step 1: covariates selection, Step 3: 

propensity score conditioning, Step 4: balance diagnose and Step 5: treatment effect 

estimation. 

Step 1: Covariates Selection. All covariates that are associated with both the 

treatment assignment and the outcome were included in the propensity score estimation 

models, that is 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7,𝑊1, 𝑊2, 𝑊3, and 𝑊4.  Covariates that were only 

associated with the outcome were used for bias adjustment in the treatment effect 

estimation step after matching. Previous review study suggested that most of the existing 

PS studies use models with only main effects due to the lack of prior knowledge 

regarding nonlinear and interaction effects of the covariates (Thoemmes & Kim, 2011). 

Thus, only first-order terms of these covariates were used when estimating the 

propensity score and treatment effect.  

Step 2: Propensity Score Estimation. Four estimation methods were used to 

estimate the propensity scores: the fixed-effect logistic regression (𝑃𝑆𝐹𝐸), the mixed-

effect logistic regression (𝑃𝑆𝑀𝐸), the S-BART (𝑃𝑆𝑆−𝐵𝐴𝑅𝑇), and the M-BART 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇).  

When using the 𝑃𝑆𝐹𝐸 method, the propensity scores were estimated using a 

fixed-effect logistic regression model with cluster affiliation dummy variables. The 
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cluster affiliation dummy variables were included directly in the model as predictors to 

account for all the variability at the cluster level (McNeish & Kelley, 2019). The 

creation of the cluster-specific affiliation variables was conducted using absolute coding, 

where the model included 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟  cluster affiliation variables. Then each estimated 

coefficient of the cluster-specific affiliation variables represents the intercept value for 

that specific cluster. In terms of the 𝑃𝑆𝑆−𝑙𝑜𝑔𝑖𝑡  method, the propensity score (𝑝𝑖𝑗) was 

estimated using the following model, 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗
𝐹𝐸−𝑃𝑆) = 𝛽0

𝐹𝐸−𝑃𝑆 + 𝛽1
𝐹𝐸−𝑃𝑆𝑋1𝑖𝑗 + 𝛽2

𝐹𝐸−𝑃𝑆𝑋2𝑖𝑗 + 𝛽3
𝐹𝐸−𝑃𝑆𝑋3𝑖𝑗 +

𝛽4
𝐹𝐸−𝑃𝑆𝑋4𝑖𝑗 + 𝛽5

𝐹𝐸−𝑃𝑆𝑋5𝑖𝑗 + 𝛽6
𝐹𝐸−𝑃𝑆𝑋6𝑖𝑗 + 𝛽7

𝐹𝐸−𝑃𝑆𝑊1𝑗 + 𝛽8
𝐹𝐸−𝑃𝑆𝑊2𝑗 + 𝛽9

𝐹𝐸−𝑃𝑆𝑊3𝑗 +

𝛽10
𝐹𝐸−𝑃𝑆𝑊4𝑗 + 𝐶𝑗𝛼 + 𝑒𝑖𝑗

𝐹𝐸−𝑃𝑆   

where 𝐶𝑗 is an 𝑁 × 𝐽 matrix of cluster affiliation dummy codes, and 𝛼 is a 𝐽 × 1 vector 

of cluster-specific intercepts.  

When using the 𝑃𝑆𝑀𝐸 method, the propensity score (𝑝𝑖𝑗) was estimated using 

the following random intercept model, 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗
𝑀𝐸−𝑃𝑆) = 𝛽0𝑗

𝑀𝐸−𝑃𝑆 + 𝛽1𝑗
𝑀𝐸−𝑃𝑆𝑋1𝑖𝑗 + 𝛽2𝑗

𝑀𝐸−𝑃𝑆𝑋2𝑖𝑗 + ⋯+ 𝛽6𝑗
𝑀𝐸−𝑃𝑆𝑋6𝑖𝑗                      (3. 16) 

𝛽0𝑗
𝑀𝐸−𝑃𝑆 = 𝛾00

𝑀𝐸−𝑃𝑆 + 𝛾10
𝑀𝐸−𝑃𝑆𝑊1𝑗 + 𝛾20

𝑀𝐸−𝑃𝑆𝑊2𝑗 + 𝛾30
𝑀𝐸−𝑃𝑆𝑊3𝑗 + 𝛾40

𝑀𝐸−𝑃𝑆𝑊4𝑗

+ 𝑢0𝑗
𝑀𝐸−𝑃𝑆  

𝛽1𝑗
𝑀𝐸−𝑃𝑆 = 𝛾10

𝑀𝐸−𝑃𝑆 

𝛽2𝑗
𝑀𝐸−𝑃𝑆 = 𝛾20

𝑀𝐸−𝑃𝑆 

𝛽3𝑗
𝑀𝐸−𝑃𝑆 = 𝛾30

𝑀𝐸−𝑃𝑆 

𝛽4𝑗
𝑀𝐸−𝑃𝑆 = 𝛾20

𝑀𝐸−𝑃𝑆 

𝛽5𝑗
𝑀𝐸−𝑃𝑆 = 𝛾20

𝑀𝐸−𝑃𝑆 

𝛽6𝑗
𝑀𝐸−𝑃𝑆 = 𝛾20

𝑀𝐸−𝑃𝑆 
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When using the 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  method, the propensity score (𝑝𝑖𝑗) was estimated 

using the logit BART algorithm for the dichotomous outcome. The default setting of 

lbart function in R package BART with 200 trees, 1000 MCMC iterations after 

skipping 100 burn-in iterations were used to estimate the propensity score. When using 

the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  method, the propensity score (𝑝𝑖𝑗) was estimated using the proposed M-

BART algorithm. 

Step 3: Propensity Score Conditioning. One-to-one nearest neighbor matching 

within a maximum distance (caliper) of 0.25 standard deviations of the estimated 

propensity score was used. Matching with replacement, where the same control unit can 

be matched with different treated unit was allowed. Matching with replacement is 

expected to improve the quality of matches and, therefore, to reduce bias (Stuart, 2010). 

Additionally, unlike matching without replacement, the order in which the treated 

individuals are matched does not matter when matching with replacement. However, one 

of the concerns for matching with replacement is that the matched controls are no longer 

independent since some are used for matching more than once. This was being 

accounted for by using frequency weights in the treatment effect estimation step.  

To account for the clustered data structure, Arpino’s “preferential” within-cluster 

matching was applied. In the current simulation study, some conditions are characterized 

with small cluster size (e.g. 𝑁𝑆𝑖𝑧𝑒 = 20). Using pure within-cluster matching, in this 

case, might results in discarding many unmatched units, which can lead to biased 

estimation. The Arpino’s preferential within-cluster matching method (2016) carries the 

benefit of pure within-cluster matching in terms of bias reduction and matching on the 
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pooled dataset in terms of maximizing the number of matching units. For each treated 

unit, the preferential matching method first searches for the closest control units in terms 

of propensity score within the same cluster, then among the other clusters. If no qualified 

control unit is available, the treated units will be discarded. The MatchPW function in R 

package CMatching was used.  

Step 4: Balance Diagnoses. The standardized difference computed based on equation 

(4) and (5) was used as the balance diagnosis before and after matching. A standardized 

difference that is less than 0.1 was used as an indication of a negligible difference in the 

mean or prevalence of a covariate between treatment and control groups. 

Step 5: Treatment Effect Estimation. Using the MatchPW function, the ATE was 

estimated based on the matched data set using a single-level linear model with treatment 

as the predictor and covariates that were only associated the outcome as control 

variables. The robust estimator was used to account for clustering effect. Similar 

approach has been applied in previous research using the MatchPW function in R 

package (Arpino & Cannas, 2016; Cannas & Arpino, 2019). 

 

3.3.3.2. Using BART algorithm for Direct Treatment Effect Estimation 

As shown in Figure 3.1, to obtain a desirable BART tree structure, 80% of the 

sample is typically used for training purposes (training set), and 20% of the sample (test 

set) is typically used for validation purposes. As most of the data mining algorithms, the 

training set was usually used to determine tuning parameters. Since the default 

hyperparameters of BART were used in the current study, no validation procedure was 
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conducted using the training set. A combined dataset was created using the original 

dataset with observed treatment status and observed covariates and a flipped dataset with 

counterfactual treatment status (treated units recoded as control and control unit recoded 

as treated) and the observed covariates. The BART tree structure developed using the 

training set was applied to the combined dataset for out-of-sample prediction.  

 

Figure 3.1 Illustration of using BART in treatment effect estimation 
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When estimating treatment effect in BART using the combined data set, we can 

define the treatment effect for individual 𝑖 as 𝑐(𝑥𝑖, 𝑓) ≡ 𝑓(𝑍𝑖 = 1,𝑋𝑖) − 𝑓(𝑍𝑖 = 0,𝑋𝑖), 

where 𝑓(𝑍𝑖 = 1, 𝑋𝑖) and 𝑓(𝑍𝑖𝑗 = 0, 𝑋𝑖) are the estimated outcomes for individual 𝑖 

when he/she is in the treatment and control group respectively. Recall that each iteration 

of the BART Markov chain generates a new draw of 𝑓 from the posterior distribution. 

Let 𝑓𝑙 denote the 𝑙th of the total 𝐾 draws of 𝑓, which is a draw from a joint posterior of 

each individual treatment effect for individual 𝑖, 𝑐(𝑥𝑖, 𝑓
𝑙) = 𝑓𝑙(𝑍𝑖 = 1, 𝑋𝑖) −

𝑓𝑙(𝑍𝑖 = 0,𝑋𝑖). The average treatment effect (ATE) can be obtained by averaging across 

𝐾 draws and 𝑛 individuals. The formula for ATE is specified as follows,  

1

𝑛
∑𝐸(𝑌𝑖(1)|𝑋𝑖) − 𝐸(𝑌𝑖(0)|𝑋𝑖)

𝑛

𝑖=1

=
1

𝐾
∑

1

𝑛
∑ 𝑐(𝑋𝑖 , 𝑓𝐵𝐴𝑅𝑇

𝑙 )
𝑛

𝑖=1

𝐾

𝑙=1

=
1

𝐾
∑

1

𝑛
∑ 𝑓𝐵𝐴𝑅𝑇

𝑙 (1, 𝑋𝑖) − 𝑓𝐵𝐴𝑅𝑇
𝑙 (0, 𝑋𝑖)

𝑛

𝑖=1

𝐾

𝑙=1

                                                   (3. 17) 

Although different on a philosophical basis, Bayesian posterior credible intervals 

are analogous to frequentist confidence interval. To be more comparable with the 

frequentist confidence interval, the 95% posterior interval of the estimated treatment 

effect was formed as the mean plus or minus 1.96 times the standard deviation of the 

posterior draws 𝑐(𝑥, 𝑓). Similar approach had been applied in previous studies.5 

 

5 Hill (2011) suggested the 95% posterior interval for BART were formed as the posterior mean plus or 

minus 1.96 times the posterior standard deviation. An alternative would be to use draws from the BART 

posterior distribution to form an empirical interval. The two strategies yielded extremely similar intervals.  
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Similar to other simulation studies using BART, S-BART and each MCMC 

iteration of the M-BART used 1100 draws with the first 100 discarded as burn-in. The 

default setting of wbart function in R package BART was used for developing the 

BART tree structure and predict function in R package BART was used for out-of-

sample prediction. 

 

3.3.3.3. Outcome Measures 

Outcome measures that are associated with the treatment effect estimates 

included relative bias (RB), root mean squared error (RMSEA), and 95% confidence 

interval coverage. The relative bias (RB) was defined as 𝑅𝐵 =
𝛿̂−𝛿

𝛿
 . The average RB 

was calculated across all simulated data sets for each condition. The root mean squared 

error (RMSE) was calculated by  

𝑅𝑀𝑆𝐸 = √
∑ (𝛿̂ − 𝛿)

2500
𝑛=1

500
 

The rate of coverage of the 95% confidence interval coverage was computed as the 

proportion of the 95% confidence intervals that included the true treatment effect.  

To investigate the impact of the design factors, a factorial ANOVA was 

conducted. The estimation methods were considered as the within-subject factor and the 

sample characteristics as between-subject factors. The dependent variables were relative 

bias (RB), RMSE, and 95% confidence interval coverage rate. The effect size eta-

squared (𝜂2) were computed to investigate the impact of the design factors. The eta-

squared (𝜂2) values of 0.01, 0.06, and 0.14 were used to indicate small, moderate, and 
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large effect sizes, respectively (Cohen, 2013). The Bonferroni correction was used on all 

pair-wise post-hoc t-tests to adjust p values due to the increased risk of a type I error 

when making multiple statistical tests. The Greenhouse-Geisser correction was 

automatically applied to the ANOVA analysis if the sphericity assumption was not meet 

for within-subject design (Mauchly’s test was significant). 

As a set of supplementary analyses, the accuracy of the estimated variances was 

examined through empirical standard error (𝑆𝐸𝑒𝑚𝑝), estimated standard error (𝑆𝐸𝑒𝑠𝑡), 

and the ratio of these two quantities. The empirical sample variability of the estimated 

ATE (referred to as 𝑆𝐸𝑒𝑚𝑝) was estimated as the standard deviation of the estimated 

treatment effect across 500 simulated datasets for each condition. The descriptive 

statistics of the 𝑆𝐸𝑒𝑚𝑝 were displayed in Table 3. B1. The 𝑆𝐸𝑒𝑠𝑡  was the average of 

estimated treatment effect standard errors for each condition. The descriptive statistics of 

the 𝑆𝐸𝑒𝑠𝑡were displayed in Table 3.B2. Lastly, the ratio of the 𝑆𝐸𝑒𝑚𝑝 to the 𝑆𝐸𝑒𝑠𝑡was 

calculated. A ratio equals one suggests the 𝑆𝐸𝑒𝑠𝑡  correctly estimated the sampling 

variability of the ATE. However, a ratio that is larger or smaller than one indicates the 

𝑆𝐸𝑒𝑠𝑡  underestimated or overestimated the sampling variability, respectively. The 

descriptive statistics were displayed in Table 3.B3. 

 

3.3.4. Results 

3.3.4.1. Relative Bias (RBs) 

Repeated ANOVA results were displayed in Table 3.3 with all main effects and 

the interaction effect between design factors and estimation methods. The summary 
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statistics of the estimated RBs by six design factors across six estimation methods were 

listed in Table 3.4. 

Table 3.3 Repeated ANOVA results for Relative Bias (RBs) of the Treatment Effect Estimation 

Repeated ANOVA results for Relative Bias (RBs) of the Treatment Effect Estimation 

Predictor dfNum dfDen Epsilon F p η2
g 

𝑁𝑐 2.00 206.00  5.99 .003 .04 

𝑁𝑠 2.00 206.00  75.07 .000 .33 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 2.00 206.00  526.86 .000 .78 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡  1.00 206.00  1.42 .235 .01 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  1.00 206.00  0.39 .536 .00 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  1.00 206.00  3.11 .079 .01 

𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.60 330.63 0.32 1208.42 .000 .65 

𝑁𝑐  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 3.21 330.63 0.32 10.80 .000 .03 

𝑁𝑠  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 3.21 330.63 0.32 228.19 .000 .41 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 3.21 330.63 0.32 177.49 .000 .35 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.60 330.63 0.32 0.38 .637 .00 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.60 330.63 0.32 3.56 .039 .01 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.60 330.63 0.32 17.37 .000 .03 

 

Note. dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom 

denominator. Epsilon indicates Greenhouse-Geisser multiplier for degrees of freedom, p-

values and degrees of freedom in the table incorporate this correction. η2
g indicates 

generalized eta-squared. Methods indicates estimation methods. 

 

3.3.4.1.1. Estimation Methods  

A significant main effect of estimation methods on the RBs of the ATE 

estimation was observed, 𝐹(1.61, 331.09) = 1208.42,𝑝 < 0.001, 𝜂𝑔
2 = 0.65. Post-hoc 

comparisons suggested 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
(𝑀 = 0.390) <  𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

(𝑀 = 0.394) <

𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
(𝑀 = 0.452) = 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

(𝑀 = 0.455) < 𝑅𝐵𝑃𝑆𝐹𝐸
(𝑀 = 0.467) <

𝑅𝐵𝑃𝑆𝑀𝐸
(𝑀 = 0.473).  

These results indicated that first, M-BART methods, including both direct 

estimation and PSM, produced less biased estimates compared to S-BART and PSM 
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using regression models. Second, among the M-BART methods, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  generated 

the smallest overall RBs, followed by 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝐹𝐸 and 𝑃𝑆𝑀𝐸 . 

3.3.4.1.2. Number of Clusters (𝑵𝒄) 

The number of clusters (𝑁𝑐) had a significant impact on the RBs, 𝐹(2, 206) =

5.99, 𝑝 = 0.003, 𝜂𝑔
2 = 0.04. The post-hoc analysis suggested 𝑅𝐵𝑁𝑐=30(𝑀 = 0.445) >

𝑅𝐵𝑁𝑐=50(𝑀 = 0.434) = 𝑅𝐵𝑁𝑐=100(𝑀 = 0.436). There was a significant interaction 

effect between 𝑁𝑐  and estimation methods, 𝐹(3.21, 331.09) = 10.80,𝑝 < 0.001, 𝜂𝑔
2 =

0.03. The pairwise analysis suggested when 𝑁𝑐 = 30 or 𝑁𝑐 = 50, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
=

𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

= 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝐹𝐸

< 𝑅𝐵𝑃𝑆𝑀𝐸
 and when 𝑁𝑐 = 100, 

𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

= 𝑅𝐵𝑃𝑆𝐹𝐸
< 𝑅𝐵𝑃𝑆𝑀𝐸

.  

These results suggested that first, larger 𝑁𝑐 resulted in smaller RBs across 

estimation methods. Second, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 produced the smallest RBs across different 𝑁𝑐 

and showed similar performance to 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  when 𝑁𝑐 = 30 or 𝑁𝑐 = 50. The 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  produced smaller RBs compared to PSM logistic models (𝑃𝑆𝐹𝐸 and 𝑃𝑆𝑀𝐸) 

and had similar performance with 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  across different 𝑁𝑐. 

 

3.3.4.1.3. Cluster Size (𝑵𝒔) 

The cluster size (𝑁𝑠) had a significant impact on the RBs, 𝐹(2, 206) =

75.07, 𝑝 < 0.001, 𝜂𝑔
2 = 0.33. The post-hoc analysis suggest 𝑅𝐵𝑁𝑠=20(𝑀 = 0.459) >

𝑅𝐵𝑁𝑠=50(𝑀 = 0.441) > 𝑅𝐵𝑁𝑠=100(𝑀 = 0.416). Thus, on average, a larger 𝑁𝑠 resulted 

in smaller RBs across estimation methods. There was a significant interaction effect 
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between 𝑁𝑠 and estimation methods, 𝐹(3.21, 331.09) = 228.19,𝑝 < 0.001, 𝜂𝑔
2 = 0.41, 

such that the performance of estimation methods varied by 𝑁𝑠. Further pairwise 

comparisons showed that when 𝑁𝑠 = 20, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

= 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
=

𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝐹𝐸

< 𝑅𝐵𝑃𝑆𝑀𝐸
, when 𝑁𝑠 = 50, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
<

𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝑃𝑆𝐹𝐸
< 𝑅𝐵𝑃𝑆𝑀𝐸

, and when 𝑁𝑠 = 100, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
=

𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝐹𝐸

< 𝑅𝐵𝑃𝑆𝑀𝐸
. These results 

suggested that 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced the smallest RBs across different 𝑁𝑠 and showed 

similar performance to 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  when 𝑁𝑠 = 20 or 𝑁𝑠 = 100. When cluster size was 

small (𝑁𝑠 = 20), BART algorithms (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇, and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) 

yielded similar RBs and outperformed PSM using logistic regression models (𝑃𝑆𝐹𝐸  and 

𝑃𝑆𝑀𝐸).  

 

3.3.4.1.4. Degrees of nonlinearity and interactions  

There was a significant main effect of the degrees of nonlinearity and interaction 

on the RBs with an extremely large effect size (𝜂𝑔
2 = 0.78), 𝐹(2, 206) = 526.86, 𝑝 <

0.001. The post-hoc analysis suggested 𝑅𝐵𝑚𝑎𝑖𝑛(𝑀 = 0.385) < 𝑅𝐵𝑚𝑖𝑙𝑑(𝑀 = 0.432) <

𝑅𝐵𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒(𝑀 = 0.499). Thus, on average, increasing degrees of nonlinearity and 

interactions resulted in larger RBs across estimate methods.  

There was a significant interaction effect between the degrees of nonlinearity and 

estimation methods, 𝐹(3.21,331.09) = 177.49,𝑝 < 0.001, 𝜂𝑔
2 = 0.35. Further pair-

wise comparison suggested when there was only main effect, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
<
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𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝐹𝐸

= 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝑀𝐸 = 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

, when there was mild 

nonlinearity and interactions, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
<

𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝐹𝐸

= 𝑅𝐵𝑃𝑆𝑀𝐸
, and when there is moderate nonlinearity and 

interactions, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝑃𝐹𝐸 <

𝑅𝐵𝑃𝑆𝑀𝐸
. These results suggested that BART algorithms show superior performance in 

dealing with nonlinearity compared to regression methods. 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced the 

smallest RBs across different degrees of nonlinearity and interactions and showed 

similar performance to 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  when there were mild or moderate nonlinearity and 

interactions. 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  produced similar RBs compare to 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸  

when there was only main effect and outperformed 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸  in dealing with mild 

and moderate nonlinearity and interactions. 

 

3.3.4.1.5. Between cluster variability of treatment effect (random effect of the 

treatment 𝑹𝑬𝒕𝒓𝒆𝒂𝒕) 

There was no significant main effect [𝐹(1.00, 206.00) = 1.42,𝑝 = 0.235, 𝜂𝑔
2 =

0.005] nor interaction effect [𝐹(1.61, 331.09) = 0.382, 𝑝 = 0.637, 𝜂𝑔
2 < 0.001] of the 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡 on the RBs.  
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3.3.4.1.6. Conditional intra-class correlation (ICC) of the treatment model 

(𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

There was no significant main effect of 𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 on the RBs, 

𝐹(1.00, 206.00) = 0.39, 𝑝 = 0.536, 𝜂𝑔
2 = 0.001. Although there was a significant 

interaction effect between 𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and estimation methods, the effect size was too 

small to interpreate (𝜂𝑔
2 = 0.005 < 0.01). Thus, no further interpretation or analysis 

was conducted, 𝐹(1.61,331.09) = 3.559, 𝑝 = 0.039.  

 

3.3.4.1.7. Conditional intra-class correlation (ICC) of the outcome model 

(𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

There was no significant main effect of 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  on the RBs, 𝐹(1, 206) =

3.11, 𝑝 = 0.790, 𝜂𝑔
2 = 0.01. However, there was a significant interaction effect between 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  and estimation methods on the RBs, 𝐹(1.61, 331.09) = 17.37, 𝑝 <

0.001, 𝜂𝑔
2 = 0.03. Further pair-wise comparison suggested when 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.1, 

𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

= 𝑅𝐵𝑃𝑆𝐹𝐸
< 𝑅𝐵𝑃𝑆𝑀𝐸

 and 

when 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.3, 𝑅𝐵𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝐵𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝐵𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
< 𝑅𝐵𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

<

𝑅𝐵𝑃𝑆𝐹𝐸
< 𝑅𝐵𝑃𝑆𝑀𝐸

. These results suggested that 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced the smallest RBs 

across different 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  and showed similar performance to 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  when 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.3. Moreover, when 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.3, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  yielded smaller RBs 

compared to 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and PSM logistic models (𝑃𝑆𝑆𝑙𝑜𝑔𝑖𝑡 and 𝑃𝑆𝑀𝑙𝑜𝑔𝑖𝑡). 
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Table 3.4 The Relative Bias (RBs) of Treatment Estimate from Six Estimation Methods by Simulated Conditions 

The Relative Bias (RBs) of Treatment Estimate from Six Estimation Methods by 

Simulated Conditions 
 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐵𝐴𝑅𝑇 𝑃𝑆𝑆𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐸 𝑃𝑆𝐹𝐸 
 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Average 0.452 0.058 0.455 0.058 0.390 0.063 0.394 0.062 0.473 0.070 0.467 0.068 

Number of Cluster (𝑵𝒄) 

30 0.451 0.057 0.456 0.056 0.402 0.064 0.404 0.063 0.483 0.068 0.476 0.066 

50 0.446 0.065 0.447 0.063 0.387 0.072 0.390 0.070 0.468 0.075 0.463 0.073 

100 0.458 0.051 0.461 0.052 0.380 0.050 0.388 0.052 0.468 0.066 0.463 0.064 

Cluster Size (𝑵𝒔) 

20 0.454 0.066 0.455 0.067 0.446 0.064 0.450 0.061 0.478 0.080 0.469 0.075 

50 0.457 0.048 0.459 0.048 0.392 0.024 0.397 0.023 0.473 0.058 0.468 0.058 

100 0.445 0.058 0.450 0.057 0.331 0.027 0.335 0.027 0.468 0.070 0.466 0.070 

Nonlinearity and Interactions 

main effect 0.395 0.024 0.394 0.020 0.363 0.034 0.370 0.034 0.395 0.021 0.390 0.016 

mild 0.439 0.025 0.445 0.018 0.386 0.050 0.390 0.052 0.467 0.022 0.464 0.017 

moderate 0.521 0.024 0.525 0.020 0.420 0.082 0.421 0.080 0.556 0.026 0.548 0.023 

Random Effect of Treatment 

small 0.450 0.056 0.454 0.057 0.388 0.061 0.391 0.058 0.471 0.069 0.466 0.067 

large 0.454 0.059 0.455 0.059 0.392 0.065 0.397 0.065 0.475 0.071 0.469 0.069 

ICCs of the Treatment (𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

0.1 0.450 0.056 0.452 0.056 0.389 0.063 0.391 0.061 0.475 0.069 0.468 0.065 

0.3 0.454 0.059 0.458 0.059 0.391 0.064 0.397 0.063 0.471 0.071 0.466 0.070 

ICCs of the Outcome (𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

0.1 0.463 0.057 0.456 0.058 0.391 0.065 0.395 0.063 0.473 0.070 0.467 0.068 

0.3 0.440 0.056 0.453 0.058 0.389 0.062 0.393 0.062 0.473 0.070 0.468 0.067 

 

3.3.4.2. RMSE 

The summary statistics of the estimated RMSE by six design factors across six 

estimation methods were listed in Table 3.5. Repeated ANOVA results were displayed 

in Table 3.6 with all main effects and the interaction effect between design factors and 

estimation methods. 
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Table 3.5 Repeated ANOVA results for RMSE of the Treatment Effect Estimation 

Repeated ANOVA results for RMSE of the Treatment Effect Estimation 

Predictor dfNum dfDen Epsilon F p η2
g 

𝑁𝑐 2.00 206.00  141.44 .000 .49 

𝑁𝑠 2.00 206.00  228.75 .000 .61 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 2.00 206.00  684.87 .000 .82 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡  1.00 206.00  60.12 .000 .17 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  1.00 206.00  0.94 .334 .00 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  1.00 206.00  0.01 .925 .00 

𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.83 376.98 0.37 593.18 .000 .45 

𝑁𝑐  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 3.66 376.98 0.37 37.89 .000 .10 

𝑁𝑠  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 3.66 376.98 0.37 261.74 .000 .42 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 3.66 376.98 0.37 84.90 .000 .19 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.83 376.98 0.37 1.84 .164 .00 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.83 376.98 0.37 3.48 .036 .01 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 1.83 376.98 0.37 36.18 .000 .05 

 

Note. dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom 

denominator. Epsilon indicates Greenhouse-Geisser multiplier for degrees of freedom, p-

values and degrees of freedom in the table incorporate this correction. η2
g indicates 

generalized eta-squared. 

 

3.3.4.2.1. Estimation Method  

There was a significant main effect of estimation methods on the Root Mean 

Square Error (RMSE) of ATE estimation, 𝐹(1.83, 376.5) = 593.176,𝑝 < 0.001, 𝜂𝑔
2 =

0.45. Among all estimation methods, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 generated the smallest overall RMSE, 

followed by 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸 . Post-hoc comparison 

suggested 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
(𝑀 = 0.232) <  𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

(𝑀 = 0.233) <

𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
(𝑀 = 0.244) = 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

(𝑀 = 0.245) < 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸
(𝑀 =

0.257) < 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
(𝑀 = 0.259). 
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3.3.4.2.2. Number of Clusters (𝑵𝒄) 

The number of clusters (𝑁𝑐) had a significant impact on the RMSE, 𝐹(2, 206) =

141.441, 𝑝 < 0.001, 𝜂𝑔
2 = 0.49. The post-hoc analysis suggested 𝑅𝑀𝑆𝐸𝑁𝑐=100 <

𝑅𝑀𝑆𝐸𝑁𝑐=50 < 𝑅𝑀𝑆𝐸𝑁𝑐=30, indicating that in general, a larger 𝑁𝑐 resulted in a smaller 

RMSE across estimation methods. 

There was a significant interaction effect between 𝑁𝑐  and estimation methods, 

𝐹(3.66, 376.5) = 37.89, 𝑝 < 0.001, 𝜂𝑔
2 = 0.10, such that the performance of estimation 

methods varied by 𝑁𝑐. The pair-wise comparisons showed that when 𝑁𝑐 = 30, 

𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

= 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸
=

𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
, when 𝑁𝑐 = 50,𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

= 𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

=

𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
, and when 𝑁𝑐 = 100, 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐵𝐴𝑅𝑇

<

𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

= 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

< 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
. These 

results indicated that when 𝑁𝑐 = 30 or 𝑁𝑐 = 50, all BART methods showed similar 

performance and outperformed PSM using logistic regression models 

(𝑃𝑆𝐹𝐸  𝑎𝑛𝑑 𝑃𝑆𝑀𝐸).When 𝑁𝑐 = 100, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  outperformed all estimation methods and 

produced the smallest RMSE. The 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  showed similar accuracy 

across different 𝑁𝑐. 
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3.3.4.2.3. Cluster Size (𝑵𝒔) 

The cluster size (𝑁𝑠) had a significant impact on the RMSE, 𝐹(2, 206) =

228.75,𝑝 < 0.001, 𝜂𝑔
2 = 0.61. The post-hoc t-tests suggested 𝑅𝑀𝑆𝐸𝑁𝑠=100(𝑀 =

0.228) < 𝑅𝑀𝑆𝐸𝑁𝑠=50(𝑀 = 0.244) < 𝑅𝑀𝑆𝐸𝑁𝑠=20(𝑀 = 0.263), indicating that with 𝑁𝑠 

increased, RMSE decreased.  

There was a significant interaction effect between 𝑁𝑠 and estimation methods, 

𝐹(3.66, 376.5) = 261.74,𝑝 < 0.001, 𝜂𝑔
2 = 0.42, which suggested the effect of 

estimation methods on RMSE varied by the levels of 𝑁𝑠. Further pair-wise comparisons 

showed that when 𝑁𝑠 = 20, 𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

< 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
=

𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  = 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸
< 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸

, when 𝑁𝑠 = 50, 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
=

𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

= 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
 and 

when 𝑁𝑠 = 100,  𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
<

𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
. These results suggested that when cluster 

size was small (𝑁𝑠 = 20), S-BART produced the smallest RMSE and show similar 

performance with M-BART. When 𝑁𝑠 = 50 or 𝑁𝑠 = 100, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced the 

smallest RMSE followed by 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 . 

 

3.3.4.2.4. Degrees of nonlinearity and interaction  

There was a significant main effect of degrees of nonlinearity and interaction on 

the RMSE with an extremely large effect size (𝜂𝑔
2 = 0.83), 𝐹(2, 206) = 684,87, 𝑝 <

0.001. The post-hoc t-tests suggested 𝑅𝑀𝑆𝐸𝑚𝑎𝑖𝑛(𝑀 = 0.216) < 𝑅𝑀𝑆𝐸𝑚𝑖𝑙𝑑(𝑀 =



 

119 

 

0.242) < 𝑅𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒(0.277), suggesting the increasing degrees of nonlinearity and 

interactions enlarged the RMSE across six estimate methods.  

There was a significant interaction effect between the degrees of nonlinearity and 

interactions and estimation methods, 𝐹(3.66, 376.5) = 84.90,𝑝 < 0.001, 𝜂𝑔
2 = 0.19. 

Further pair-wise analysis suggested when there was only main effect, 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
<

𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

= 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

< 𝑅𝑀𝑆𝐸𝑀𝐸 , when 

there was mild nonlinearity and interaction, 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

=

𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸
= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸

 and when there is 

moderate nonlinearity and interaction, 𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

<

𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇

< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸
< 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸

. These results suggested 

the BART algorithms (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) outperformed 

PSM using logistic regressions (𝑃𝑆𝑀𝐸  𝑎𝑛𝑑 𝑃𝑆𝐹𝐸) in dealing with varying degrees of 

nonlinearity and interaction. When there was mild nonlinearity and interactions, all 

BART methods showed comparable performance. When there are moderate nonlinearity 

and interaction, 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 outperformed 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and showed similar 

performance with 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 . 

 

3.3.4.2.5. Between cluster variability of treatment effect (random effect of the 

treatment 𝑹𝑬𝒕𝒓𝒆𝒂𝒕) 

There was a significant main effect [𝐹(1, 206) = 60.12, 𝑝 < 0.001, 𝜂𝑔
2 = 0.172] 

of the 𝑅𝐸𝑡𝑟𝑒𝑎𝑡  on RMSE. Further post-hoc analysis suggested 𝑅𝑀𝑆𝐸𝑅𝐸𝑡𝑟𝑒𝑎𝑡=𝑠𝑚𝑎𝑙𝑙(𝑀 =
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0.24) < 𝑅𝑀𝑆𝐸𝑅𝐸𝑡𝑟𝑒𝑎𝑡=𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒(𝑀 = 0.25) . There was no significant interaction effect 

between 𝑅𝐸𝑡𝑟𝑒𝑎𝑡 and estimation methods, 𝐹(1.83, 376.5) = 1.836,𝑝 = 0.164, 𝜂𝑔
2 =

0.003. 

 

3.3.4.2.6. Conditional intra-class correlation (ICC) of the treatment model 

(𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

There was no significant main effect of 𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 on RMSE, 𝐹(1, 206) =

206, 𝑝 = 0.939, 𝜂𝑔
2 = 0.003. Although there was a significant interaction effect between 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and estimation methods, the effect size was too small to have meaningful 

interpretation (𝜂𝑔
2 = 0.005 < 0.01). Thus, no further interpretation or analysis was 

conducted, 𝐹(1.83, 376.5) = 3.477, 𝑝 = 0.034.  

 

3.3.4.2.7. Conditional intra-class correlation (ICC) of the outcome model 

(𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

No significant main effect of 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  on RMSE was observed, 𝐹(1, 206) =

0.009, 𝑝 = 0.925, 𝜂𝑔
2 < 0.001. However, there was a significant interaction effect 

between 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  and estimation methods, 𝐹(1.83,376.5) = 36.18, 𝑝 < 0.001, 𝜂𝑔
2 =

0.05. Further pair-wise analysis suggested when 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.1, 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
=

𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

< 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

< 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
 and 

when 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.3, 𝑅𝑀𝑆𝐸𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝑅𝑀𝑆𝐸𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

= 𝑅𝑀𝑆𝐸𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
<

𝑅𝑀𝑆𝐸𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
< 𝑅𝑀𝑆𝐸𝑃𝑆𝐹𝐸

< 𝑅𝑀𝑆𝐸𝑃𝑆𝑀𝐸
. These results suggested that 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 
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produced the smallest RMSE and showed similar performance with 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  across 

different 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 . When 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.3, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 showed comparable 

performance with 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  and outperformed 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇, 𝑃𝑆𝐹𝐸  and 

𝑃𝑆𝑀𝐸 . 

 

Table 3.6 The RMSE of Treatment Estimate from Six Estimation Methods by Simulated Cns 

The RMSE of Treatment Estimate from Six Estimation Methods by Simulated 

Conditions 

 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐵𝐴𝑅𝑇 𝑃𝑆𝑆𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐸 𝑃𝑆𝐹𝐸 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Average 0.244 0.029 0.245 0.029 0.232 0.042 0.233 0.040 0.259 0.037 0.257 0.036 

Number of Cluster (𝑵𝒄) 

30 0.254 0.028 0.255 0.028 0.252 0.040 0.251 0.039 0.275 0.034 0.273 0.034 

50 0.240 0.031 0.240 0.030 0.230 0.043 0.231 0.042 0.256 0.039 0.254 0.037 

100 0.238 0.025 0.240 0.025 0.213 0.031 0.217 0.030 0.246 0.033 0.243 0.032 

Cluster Size (𝑵𝒔) 

20 0.253 0.032 0.251 0.032 0.268 0.039 0.268 0.037 0.272 0.041 0.269 0.040 

50 0.244 0.024 0.245 0.024 0.230 0.023 0.232 0.022 0.256 0.031 0.254 0.030 

100 0.236 0.029 0.238 0.028 0.197 0.025 0.200 0.023 0.249 0.036 0.248 0.036 

Nonlinearity and Interactions 

main effect 0.218 0.017 0.216 0.015 0.210 0.027 0.212 0.025 0.221 0.019 0.219 0.018 

mild 0.239 0.013 0.241 0.011 0.230 0.036 0.231 0.035 0.257 0.017 0.256 0.016 

moderate 0.277 0.017 0.277 0.015 0.256 0.047 0.256 0.044 0.300 0.021 0.296 0.020 

Random Effect of Treatment 

small 0.239 0.028 0.240 0.028 0.226 0.040 0.227 0.037 0.255 0.036 0.252 0.036 

large 0.250 0.030 0.249 0.029 0.238 0.042 0.239 0.041 0.264 0.038 0.262 0.037 

ICCs of the Treatment (𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

0.100 0.243 0.028 0.243 0.028 0.231 0.041 0.232 0.039 0.260 0.037 0.257 0.035 

0.300 0.245 0.030 0.246 0.029 0.232 0.043 0.235 0.040 0.259 0.038 0.257 0.038 

ICCs of the Outcome (𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

0.100 0.250 0.029 0.245 0.029 0.230 0.041 0.231 0.039 0.258 0.037 0.256 0.036 

0.300 0.239 0.028 0.244 0.029 0.234 0.042 0.236 0.040 0.260 0.038 0.258 0.037 
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3.3.4.3. Coverage 

The summary statistics of the estimated coverage rate by the six design factors 

across the six estimation methods were listed in Table 3.7. Repeated ANOVA results 

were displayed in Table 3.8 with all main effects and the interaction effect between 

design factors and estimation methods. 

Table 3.7 Repeated ANOVA results for the 95% Confidence Interval Coverage (Coverage) of the Treatment Effect 

Estimation 
 Repeated ANOVA results for the 95% Confidence Interval Coverage (Coverage) of the 

Treatment Effect Estimation 

Predictor dfNum dfDen Epsilon F p η2
g 

𝑁𝑐 2.00 206.00  207.58 .000 .44 

𝑁𝑠 2.00 206.00  54.50 .000 .17 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 2.00 206.00  67.83 .000 .21 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡 1.00 206.00  111.33 .000 .18 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  1.00 206.00  6.32 .013 .01 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  1.00 206.00  22.62 .000 .04 

𝑀𝑒𝑡ℎ𝑜𝑑𝑠 2.55 525.30 0.51 3446.70 .000 .91 

𝑁𝑐  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 5.10 525.30 0.51 90.65 .000 .35 

𝑁𝑠  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 5.10 525.30 0.51 389.34 .000 .69 

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 5.10 525.30 0.51 242.03 .000 .59 

𝑅𝐸𝑡𝑟𝑒𝑎𝑡  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 2.55 525.30 0.51 88.27 .000 .21 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 2.55 525.30 0.51 2.21 .097 .01 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  ×  𝑀𝑒𝑡ℎ𝑜𝑑𝑠 2.55 525.30 0.51 3.98 .012 .01 

Note. dfNum indicates degrees of freedom numerator. dfDen indicates degrees of freedom 
denominator. Epsilon indicates Greenhouse-Geisser multiplier for degrees of freedom, p-values 

and degrees of freedom in the table incorporate this correction. η2
g indicates generalized eta-

squared. 

 

3.3.4.3.1. Estimation Method  

There was a significant main effect of estimation methods with an extremely 

large effect size (𝜂𝑔
2 = 0.91) on the 95% Confidence Internal Coverage Rate (referred to 

as Coverage in the following sections), 𝐹(2.55, 525.09) = 3446.700,𝑝 < 0.001. 

Specifically, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  produced the best coverage, followed by 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , 
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and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 . Further post-hoc comparison suggested 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
 (𝑀 =

0.951) >  𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
(𝑀 = 0.743) > 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

(𝑀 = 0.575) =

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
(𝑀 = 0.550) > 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

(𝑀 = 0.261)  =

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
(𝑀 = 0.248). 

 

3.3.4.3.2. Number of Clusters (𝑵𝒄) 

The number of clusters (𝑁𝑐) had a significant impact on the Coverage of the 

ATE estimation, 𝐹(2, 206) = 139.06, 𝑝 < 0.001, 𝜂𝑔
2 = 0.44. The post-hoc comparison 

suggested 𝐶𝑜𝑣𝑒𝑟𝑒𝑎𝑔𝑒𝑁𝑐=30(𝑀 = 0.627) > 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑐=50(𝑀 = 0.578) >

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑐=100(𝑀 = 0.460). Thus, on average, with 𝑁𝑐 increased, the Coverage 

dropped across estimation methods.  

 There was a significant interaction effect between 𝑁𝑐  and estimation methods, 

𝐹(5.10, 525.09) = 90.65,𝑝 < 0.001, 𝜂𝑔
2 = 0.35, such that the impact of estimation 

methods on the Coverage varied by 𝑁𝑐. The pair-wise comparisons showed when 𝑁𝑐 =

30, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
, when 𝑁𝑐 = 50, 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
, and when 𝑁𝑐 = 100, 

 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
. These results suggested that 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  consistently have a better Coverage compared to all propensity score 
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methods. When cluster size is large (𝑁𝑐 = 100), 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  showed 

similar coverage. Among the propensity score methods, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced better 

Coverage compared to 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸  across different 𝑁𝑐. 

 

3.3.4.3.3. Cluster Size (𝑵𝒔) 

The cluster size (𝑁𝑠) had a significant impact on the Coverage, 𝐹(2, 206) =

54.497,𝑝 < 0.001, 𝜂𝑔
2 = 0.17. The post-hoc comparison suggested 

𝐶𝑜𝑣𝑒𝑟𝑒𝑎𝑔𝑒𝑁𝑆=30 (𝑀 = 0.605) >  𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑆=50 (𝑀 = 0.534) >

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑆=100  (𝑀 = 0.525). Thus, on average, with 𝑁𝑠 increased the Coverage 

dropped across estimation methods.  

There was a significant interaction effect between 𝑁𝑠 and estimation methods on 

the Coverage, 𝐹(5.10,525.09) = 389.343, 𝑝 < 0.001, 𝜂𝑔
2 = 0.70, such that the 

performance of estimation methods varied by 𝑁𝑠. The pair-wise comparisons showed 

when 𝑁𝑠 = 20, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
=

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

< 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
, when 𝑁𝑠 = 50, 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
 and when 𝑁𝑠 = 100, 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
=

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
. These results suggested the 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  consistently have a better Coverage compared to all PSM and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  

across different levels of 𝑁𝑠. Moreover, when cluster size was small (𝑁𝑠 = 20), the 
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advantages of M-BART methods was apparent, with 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  

outperformed 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑆𝑙𝑜𝑔𝑖𝑡 and 𝑃𝑆𝑆𝑙𝑜𝑔𝑖𝑡. When the cluster size was 

large, the advantages of using M-BART methods in PSM diminished because the 

Coverage between 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  became quite similar.  

 

3.3.4.3.4. Degrees of nonlinearity and interaction  

There was a significant main effect of degrees of nonlinearity and interaction on 

the Coverage of treatment effect estimation, 𝐹(2, 206) = 76.83, 𝑝 < 0.001, 𝜂𝑔
2 = 0.21. 

Post-hoc t-tests with Bonferroni correction suggested 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑎𝑖𝑛(𝑀 = 0.504) <

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑖𝑙𝑑(𝑀 = 0.558) < 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒(𝑀 = 0.602), suggesting the 

increasing degrees of nonlinearity and interactions resulted in increased Coverage.  

There was a significant interaction effect between the degrees of nonlinearity and 

interactions and estimation methods, 𝐹(5.10,525.09) = 242.03,𝑝 < 0.001, 𝜂𝑔
2 = 0.59. 

Further pair-wise analysis suggested when there was only main effect, 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
=

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
, when there was mild 

nonlinearity and interaction, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸

 and 

when there is moderate nonlinearity and interaction, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸

>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
. These results suggested 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 showed superior coverage across 
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varying degrees of nonlinearity and interactions. The BART methods 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) outperformed logistic regressions 

(𝑃𝑆𝑀𝐸  and  𝑃𝑆𝐹𝐸) in dealing with mild and moderate nonlinearity and interaction. 

 

3.3.4.3.5. Between cluster variability of treatment effect (random effect of the 

treatment 𝑹𝑬𝒕𝒓𝒆𝒂𝒕) 

There was a significant main effect of the 𝑅𝐸𝑡𝑟𝑒𝑎𝑡 on the Coverage, 𝐹(1, 206) =

111.33,𝑝 < 0.001, 𝜂𝑔
2 = 0.18. Further pair-wise analysis suggested increased 𝑅𝐸𝑡𝑟𝑒𝑎𝑡 

resulted in better Coverage, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝐸𝑡𝑟𝑒𝑎𝑡=𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒
(𝑀 = 0.591) >

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝐸𝑡𝑟𝑒𝑎𝑡=𝑆𝑎𝑚𝑙𝑙
(𝑀 = 0.518).  

There was a significant interaction effect between 𝑅𝐸𝑡𝑟𝑒𝑎𝑡  and estimation 

methods, 𝐹(2.55, 525.09) = 88.27, 𝑝 < 0.001, 𝜂𝑔
2 = 0.21. Further post-hoc comparison 

suggested, when there was small 𝑅𝐸𝑡𝑟𝑒𝑎𝑡 , 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

=

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸

 and 

when there was moderate 𝑅𝐸𝑡𝑟𝑒𝑎𝑡, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

>

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐹𝐸
= 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸

. These 

results suggested that the advantage of M-BART algorithm in PSM was more obvious 

when there was moderate random effect of the treatment. Moreover, regardless of the 

levels of 𝑅𝐸𝑡𝑟𝑒𝑎𝑡, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  consistently outperformed 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and other PSM 

methods in the Coverage and PSM logistic models continued to show the worse 

performance.  
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3.3.4.3.6. Conditional intra-class correlation (ICC) of the treatment model 

(𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

There was a significant main effect of 𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 , with a small effect size 

(𝜂𝑔
2 = 0.012), 𝐹(1, 206) = 6.32,𝑝 = 0.013. Further pair-wise analysis suggested 

increased 𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 resulted in better Coverage, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡=0.3(𝑀 =

0.563) > 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒=0.1(𝑀 = 0.546). No significant interaction of 

𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  on the Coverage was observed, 𝐹(2.55, 525.09) = 2.21, 𝑝 = 0.097, 𝜂𝑔
2 =

0.006. 

 

3.3.4.3.7. Conditional intra-class correlation (ICC) of the outcome model 

(𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

There was a significant main effect of 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  on the Coverage, 𝐹(1, 206) =

22.625,𝑝 < 0.001, 𝜂𝑔
2 = 0.042. The post-hoc comparison suggested 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒=0.3(𝑀 = 0.571) > 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒=0.1(𝑀 = 0.538), 

suggesting increasing 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  resulted in a better Coverage across estimation 

methods.  

There was a significant interaction effect between 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  and estimation 

methods with a small effect size (𝜂𝑔
2 = 0.012), 𝐹(2.55, 525.09) = 3.984, 𝑝 = 0.012. 

Further post-hoc t-tests suggested, when 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.1 𝑜𝑟 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =

0.3, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑀−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝐸𝑆−𝐵𝐴𝑅𝑇

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀−𝐵𝐴𝑅𝑇
=

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑆−𝐵𝐴𝑅𝑇
> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝐸𝐹

> 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑆𝑀𝐸
. These results suggested that 
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regardless of the levels of 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  consistently outperformed 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  

and other PSM methods in the Coverage and PSM logistic models showed the worst 

performance continued to show the worse performance. 

 

Table 3.8 The 95% Confidence Interval Coverage of Treatment Estimate from Six Estimation Methods by Simulated 

Conditions 

The 95% Confidence Interval Coverage of Treatment Estimate from Six Estimation 

Methods by Simulated Conditions in Percentage 

 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐵𝐴𝑅𝑇 𝑃𝑆𝑆𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐸 𝑃𝑆𝐹𝐸 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Average 95.1 7.7 74.3 22.5 57.5 23.5 55.0 23.2 24.8 21.4 26.1 22.4 

Number of Cluster (𝑵𝒄) 

30 92.3 8.7 72.3 22.1 68.6 16.1 65.1 15.5 38.4 20.9 39.3 21.4 

50 95.8 7.3 77.6 20.6 61.3 19.1 58.0 18.6 26.0 20.0 28.0 21.4 

100 97.1 6.0 72.9 24.7 42.7 26.1 42.1 27.6 9.9 11.8 11.1 13.6 

Cluster Size (𝑵𝒔) 

20 89.3 9.6 52.2 15.4 66.1 15.6 58.9 16.0 46.7 18.5 50.0 17.6 

50 96.6 5.4 77.7 19.3 54.0 25.4 52.2 24.5 19.7 13.5 20.2 13.9 

100 99.3 1.6 93.0 8.0 52.5 25.8 54.0 27.4 7.9 7.8 8.2 8.3 

Nonlinearity and Interactions 

main 96.0 6.8 79.2 19.4 36.4 21.9 34.0 21.6 27.7 22.1 29.2 22.9 

mild 95.5 6.6 75.0 21.5 58.0 16.2 54.8 13.5 25.4 22.3 25.9 22.6 

moderate 93.7 9.2 68.7 25.4 78.1 6.8 76.3 8.5 21.2 19.5 23.3 21.5 

Random Effect of Treatment 

small 90.9 8.9 62.2 20.7 56.4 24.9 54.8 24.8 22.6 21.6 24.2 23.0 

large 99.3 1.9 86.4 17.2 58.6 22.1 55.3 21.6 27.0 21.1 28.1 21.7 

ICCs of the Treatment (𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

0.1 94.9 7.9 74.0 22.8 56.6 23.7 54.6 23.5 23.0 20.2 24.6 22.2 

0.3 95.2 7.4 74.6 22.4 58.5 23.3 55.5 23.0 26.6 22.5 27.7 22.5 

ICCs of the Outcome (𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

0.1 95.2 7.5 73.0 23.7 55.4 23.0 52.6 23.1 22.8 20.3 24.2 21.1 

0.3 95.0 7.8 75.6 21.3 59.7 23.9 57.5 23.1 26.8 22.4 28.1 23.5 



 

 

3.4. Discussion 

This study was the very first study to examine the performance of the M-BART 

algorithm in a large-scale Monte-Carlo simulation study. I compared the performance of 

the M-BART algorithm in PSM (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) and Direct Estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇) with 

the S-BART algorithm (𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) and PSM methods using the fixed-

effect and mixed-effect models (𝑃𝑆𝐹𝐸 and 𝑃𝑆𝑀𝐸). In total, six estimation methods were 

compared regarding the consistency (RBs) and accuracy (RMSE) of the ATE point 

estimation and the coverage of the estimated 95% ATE confidence interval (Coverage).  

 

RQ1: Do the M-BART methods (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) produced more accurate 

and desirable ATE estimation compared to the S-BART methods (𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and 

𝑃𝑆𝑆−𝐵𝐴𝑅𝑇) and the PSM methods using fixed effect and mixed-effect model in clustered 

data settings? 

Overall, the M-BART methods (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) generated more 

accurate estimates and more desirable coverage compared to the S-BART methods 

(𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇) and PSM using logistic regression models (𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸). 

First, among the two M-BART methods, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced the most accurate and 

consistent estimates indicated by the smallest RBs and RMSE. 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , on the other 

hand, produced more accurate estimates compared to 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and PSM methods using 

logistic regression models. These results were consistent with previous research that 

found the BART algorithms produced more accurate treatment effects estimates 

compared to the propensity score methods using parametric models (Hill, 2016; Hill, 
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2011). Second, the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 consistently yielded the best Coverage with an average 

coverage rate closed to the nominal level. Despite the good performance in RBs and 

RMSE, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , on the other hand, showed inadequate performances regarding the 

Coverage with an overall coverage rate equal to 57.5%.  

 

RQ2: How do different sample characteristics such as sample size (𝑁𝑐  and 𝑁𝑠), degrees 

of nonlinearity, the variability of the treatment effect(𝑅𝐸𝑡𝑟𝑒𝑎𝑡), ICCs of the treatment 

(𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡), and ICCs of the outcome (𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒) impact the predictive performance of 

the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝐹𝐸 , 𝑃𝑆𝑀𝐸, 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇? 

Across six methods, more accurate and consistent ATE point estimations were 

observed in large sample size data conditions. Yet, the effect of sample size on the 

Coverage was not consistent across estimation methods. When the sample size was small 

(𝑁𝑠 = 20 or 𝑁𝐶 = 30), 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  yielded one of the most accurate and consistent 

estimations, and when the sample size became large, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  yielded better 

performance. However, the effect of sample size diverged when it comes to the 

Coverage. With an increased sample size, the Coverage improved for the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 

𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  but decreased for all the PSM methods. Further supplementary analysis on the 

estimated standard errors suggested with sample size increased, the estimated standard 

errors (𝑆𝐸𝑒𝑠𝑡) decreased in PSM methods but increased in 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 , 

which explained the different patterns observed in the Coverage (see Table 3.B1 for 

descriptive statistics of 𝑆𝐸𝑒𝑠𝑡).  
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Both the M-BART methods and S-BART methods showed high capacities when 

dealing with nonlinearity and interactions. In general, nonlinearity and interactions 

resulted in less consistent and accurate estimation. The BART-based methods 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇 , 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 , and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) outperformed 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸  in 

dealing with mild and moderate nonlinearity and interactions. Compared to direct 

estimation methods, PSM methods using BART algorithms showed slightly better 

performance regarding RB and RMSE when there was moderate nonlinearity and 

interactions. However, direct estimation methods displayed better performance than the 

PSM methods regarding Coverage across different degrees of nonlinearity and 

interaction. Yet, the Coverage of 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  were greatly improved as the 

degree of the nonlinearity and interactions increased. Previous studies had demonstrated 

that when the true relationships between treatment assignment and covariates were 

nonlinear, 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  yielded less prediction error than the PSM methods using the linear 

regression models (Hill, 2011). Similar patterns had also shown in studies using other 

machine learning algorithms such as CART in both single-level (Lee et al., 2010) and 

multilevel settings ( Lin, 2018; Sela & Simonoff, 2012). 

The treatment effect heterogeneity is an important topic in medical research but 

rarely explore in observational studies (Carvalho et al., 2019; Wager & Athey, 2018). 

The results from the current study suggested the variability of the treatment effect had a 

significant impact on the ATE estimation. In general, less accurate estimates and better 

Coverage were observed when 𝑅𝐸𝑡𝑟𝑒𝑎𝑡  increased. It is not surprising that the BART-

based methods outperformed logistic regressions (𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸) in producing more 
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precise estimation and better Coverage across different 𝑅𝐸𝑡𝑟𝑒𝑎𝑡 because the BART sum-

of-trees structure allows for greater flexibility in identifying variability of treatment 

effects (Hill, 2011). It is important to highlight that the usefulness of the ATE as a 

summary of the treatment effects depends on the extend and form of treatment effect 

heterogeneity. When there is a considerable variation of the treatment effect among the 

clusters, the ATE only provides a partial answer to the treatment effect since the effect 

varied across groups. Previous studies had demonstrated the outstanding performance of 

using BART algorithms in the search for treatment effect heterogeneity (Green & Kern, 

2010, 2012; Hill, 2011). 

Compared to the S-BART, the M-BART methods account for the cluster effects 

in multilevel data and generated more accurate ATE estimation. Overlooking the cluster 

effect when modeling multilevel data might cause substantial bias in the estimation 

(Gelman & Hill, 2006; Hox, 2002). The results from the current study suggested the 

𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  had a significant impact on the ATE point estimation and the confidence 

interval coverage. When there was a moderate cluster effect of the 

outcome (𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.3), 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  outperformed 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  in both RBs, RMSE 

and the Coverage. However, when there was mild cluster effect of the outcome 

(𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 0.1), 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  showed slightly better RBs and RMSE compared to 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 . On the other hand, BART-based PSM methods were less sensitive to the 

cluster effect of the outcome. In particular, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  showed similar 

performance across different levels of 𝐼𝐶𝐶𝑜𝑢𝑡𝑐𝑜𝑚𝑒  with regard to RB and RMSE, which 

might due to the effect of preferential matching when dealing with the clustering effects. 
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With regard to the cluster effect of the treatment, different from the previous study 

(Bellara, 2013; Lin, 2018), no impact of  𝐼𝐶𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  were observed on the ATE point 

estimation or the Coverage.  

To sum up, the M-BART methods combine the advantages of the BART and the 

mixed-effect models and yield more accurate ATE estimations. First, compared to the S-

BART methods, the M-BART methods take into account the clustering effect in 

multilevel data and result in more accurate ATE point estimation and better Coverage. 

Second, compared to the PSM method with logistic models, M-BART can automatically 

handle a large number of covariates and nonlinearity and non-addictive relationships 

between those covariates. This is an extremely desirable property in large-scale 

observational studies where rich information of the covariates are available and needed 

to be included to satisfy the ignorability. Finally, compared to other data mining 

algorithm, M-BART is based in a probabilistic framework which permits assessment of 

uncertainty using the empirical posterior distribution. In addition, the default priors and 

hyperparameters generally show good predictive performances without intense tuning 

(Chipman et al., 2010).  

The M-BART algorithm can be used in PSM as a propensity score estimation 

method (𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) or used directly for treatment effect estimation (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇). 

Results from the current studies demonstrated that the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 is a highly efficient 

alternative approach to the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 , especially when the clusters were small. The 

small cluster size is a common phenomenon in large-scale social science surveys and 

cohort studies due to the complex sampling procedures. When the clusters were small, 
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the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  yielded a comparable accurate ATE point estimation than the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  

since small clusters created greater difficulties in finding qualified matching pairs in the 

PSM methods. The 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 can eliminate the complexity of PSM implementation by 

directly predicting the potential outcomes. Recently, a technique called Bayesian Causal 

Forest (BCF) model where a linear combination of two BART models was used to 

predict potential outcomes were proposed (Hahn et al., 2017). In the BCF model, the 

propensity score estimated from the logit BART model was treated as a covariate in the 

second BART model to reduce the bias in the treatment effect estimation. Future 

research could explore the use of M-BART algorithms in the BCF model in the 

multilevel context.  

Other than ATE estimation, the 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  also has great potentials in other 

perspectives of causal inferences. The ATE is a summary statistic of the treatment effect 

distribution, and the usefulness of the ATE mostly depends on the extend and form of 

the treatment effect heterogeneity. For instance, assessing treatment effect heterogeneity 

is crucial when applying the results of an experiment to target population whose 

observed baseline characteristics differ from the experimental sample. Studying 

treatment effects as a function of observable characteristics allows us to go beyond 

simple mean impact. Previous studies suggested the use of 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  in the estimation 

of conditional average treatment effects (CATEs) to guide the search for heterogeneous 

treatment effects in both large-scale experiments and survey research (Green & Kern, 

2010, 2012; Hill, 2011). Future research could explore the potentials of using 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 

in the estimation of CATEs.  
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In the discussion of PSM methods, one controversial issue has been the standard 

error estimation where no perfect solution has been provided to date (Cannas & Arpino, 

2019; Hill, 2008). Accurate variance estimation permits the construction of confidence 

intervals that have the advertised coverage rate and correct Type-I error. The existing 

estimation methods of standard errors in the PSM methods are usually calculated 

without acknowledging the uncertainty in the estimated propensity scores (Austin & 

Mamdani, 2006), which results in falsely narrow confidence intervals.  

As Austin (2009) stated, different matching algorithms and different approaches 

to variance estimation cannot be considered interchangeable. The current study used 

one-to-one matching with replacement, which has been shown to reduce greater bias 

than matching without replacement (Dehejia & Wahba, 2002). However, matching with 

replacement complicated the variance estimation since the matching process likely 

induced dependencies across the treatment and control groups. Current literatures are 

divided on the best approach to address these issues from the extreme of Ho et al. (2007) 

suggested ignoring the issues to model-based solutions (Hill & Reiter, 2006) and 

resampling techniques (Austin & Small, 2014).  

In the current study, I tried to avoid these debates by using the model-based 

clustered standard errors embedded in the CMatching package to control for the 

within-cluster dependency in the outcome (Arpino & Cannas, 2016). Nevertheless, the 

ratios of the 𝑆𝐸𝑒𝑚𝑝 to the 𝑆𝐸𝑒𝑠𝑡  were still substantially larger than 1 for PSM methods, 

which suggested the estimator still tended to underestimate the uncertainty associated 

with both propensity score estimation and matching procedure (See Table 3. B3). 
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However, embedding BART algorithms, especially M-BART in the PSM methods 

tended to yield more accurate standard error estimation indicated by smaller ratios 

compared to 𝑃𝑆𝐹𝐸  and 𝑃𝑆𝑀𝐸 . Future research should explore the possibility of 

embedding the BART algorithm into the Bayesian joint model procedure (An, 2010; 

McCandless et al., 2009), where the Bayesian approach was used to jointly model both 

the propensity score and outcome for more accurate standard error estimation.  

The findings in the current study have practical implications for applied 

researchers. Overall, I demonstrated the outstanding performance of both 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  in the multilevel context. I recommend using these methods when the 

number of potential confounding variables is large, or the relationships among the 

confounders, treatment, and outcome are complex, and lack of strong theoretical support. 

Furthermore, when cluster size is small and matching is cumbersome, 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  is 

more efficient compared to 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 . 

There are certain limitations to the current study. First, the RBs in the current 

simulation study is considerably large across estimation methods and data conditions. 

One possible explanation could be the great complexity of the current data generation 

model, where twelve random slopes were included. Similar magnitude of the RBs has 

been showed in previous studies with similar simulation design. For example, in Lin’s 

study (2018), she used a similar data generation process but with only four random 

slopes and fewer covariates, the averaged RBs around 0.22 across estimation methods. 

Another possible explanation for the considerable large RBs could be the use of the 

single-level outcome model with the clustered model-based estimator for the PSM 
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methods. Future validation analysis should be conducted to confirm the sources of bias 

that were observed in the current study. However, since the magnitudes of RBs were 

quite comparable across estimation methods, the result of RBs could still be useful in 

comparing predictive performance between six estimation methods.   

Second, only the default prior was used for all BART-based methods. Previous 

studies had demonstrated excellent performance of BART with default priors in 

prediction and treatment effect estimation (Chipman et al., 2010, 2007; Hill, 2011). 

However, the small ratios of the 𝑆𝐸𝑒𝑚𝑝  to the 𝑆𝐸𝑒𝑠𝑡  in 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 

𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  indicated that the estimated standard error and generated confidence interval 

could be falsely large. This might due to the noninformative prior embedded in the 

default setting of BART to avoid overfitting. Some researchers had started to explore 

other options of priors. For example, Spertus & Normand (2018) demonstrated the use of 

student-t prior or horseshoe prior in BART to reduce bias and mean square error and 

improve Coverage in the high-dimensional setting. Future studies were needed to 

examine the utilities of different priors in M-BART in the multilevel data setting.  

Lastly, the treated and controlled groups in the current study were balanced on 

sample size. The performance using M-BART when having an unbalanced group design 

should be further examined. Furthermore, only one propensity score matching method 

was investigated. Other commonly used conditioning approaches such as stratification, 

inverse probability of weighting, and covariate adjustment have not been tested in the 

current simulation study.  
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4. CONCLUSION 

Although randomized control trials (RCTs) experiment is widely considered as 

the gold standard for determining causal inference, it is not always feasible and ethical. 

Alternatively, standard observational approaches are limited by the possibility of 

confounding. In this dissertation, I proposed a new M-BART algorithm for causal 

inference in observational studies. The new multilevel BART algorithm combines a mixed-

effect model and the single-level BART under the expectation-maximization (EM) 

framework. The M-BART algorithm can be used directly for causal inference (𝐷𝐸𝑀−𝐵𝐴𝑅𝑇) 

or used as a propensity score estimation method in the propensity score matching methods 

(𝑃𝑆𝑀−𝐵𝐴𝑅𝑇).  

In the first study, I demonstrated the use of the M-BART algorithm in both 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  using a well-known multilevel public dataset (ECLS-K) and 

compared their performance with the S-BART algorithm (𝑃𝑆𝑆−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇) and 

PSM methods using fixed-effect and mixed-effect logistic models (𝑃𝑆𝐹𝐸  and 

𝑃𝑆𝑀𝐸). Results suggested that among the PSM methods, the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 showed the least 

concern in model overfitting and produced adequate covariate balance. In terms of the 

average treatment effect (ATE) estimation, a follow-up simulation study based on the 

ECLS-K dataset was conducted. The results suggested 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  outperformed 

𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and produced accurate ATE point estimations and 95% confidence intervals 

coverage rates. 

In the second study, I investigate the performance of 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  and 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  in 

a full-scale simulation study. The results suggested that the M-BART methods 
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(𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇) generated more accurate estimates and more desirable 

Coverage compared to the S-BART methods (𝐷𝐸𝑆−𝐵𝐴𝑅𝑇  and 𝑃𝑆𝑆−𝐵𝐴𝑅𝑇) and PSM using 

logistic regression models (𝑃𝑆𝐹𝐸 and 𝑃𝑆𝑀𝐸). Specifically, 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇  produced the most 

accurate and consistent estimates indicated by the smallest RBs and RMSE. 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇, 

on the other hand, yielded the best Coverage with an average coverage rate closed to the 

nominal level. The M-BART methods also showed high capacities when dealing with 

nonlinearity and interactions, cluster effects, and treatment effect heterogeneity.  

To concludes, the M-BART algorithm showed outstanding performance and 

great potential in causal inference, especially in large-scale observational studies, and 

𝐷𝐸𝑀−𝐵𝐴𝑅𝑇  could be a highly efficient alternative approach to the 𝑃𝑆𝑀−𝐵𝐴𝑅𝑇 . The 

findings of this dissertation can contribute to the existing literature of causal inference in 

observational studies in meaningful ways. 
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APPENDIX A 

 

Table A.1 Descriptive Statistics of the Variables Used in the Empirical Study 

Descriptive Statistics of the Variables Used in the Empirical Study 

 Participated in Pull-out ESL program 

 No Yes 

Variables N Mean SD N Mean SD 

C2R4RSCL 769 40.95 10.71 152 39.83 8.21 

GENDER 769 0.51 0.50 152 0.50 0.50 

P1CONTRO 769 2.86 0.54 152 2.94 0.50 

P1IMPULS 769 2.00 0.72 152 1.91 0.69 

P1LEARN 769 2.95 0.52 152 2.91 0.49 

P1SADLON 769 1.52 0.43 152 1.59 0.41 

P1SOCIAL 769 3.10 0.61 152 3.00 0.61 

P2NUMSIB 769 1.87 1.47 152 2.48 2.00 

S2KFLNCH 769 63.78 26.85 152 53.06 29.47 

S2KMINOR 769 4.45 1.10 152 4.22 1.03 

S2KPUPRI 769 0.98 0.15 152 1.00 0.00 

S2LEPSCH 769 37.21 27.19 152 31.63 19.05 

S2MEETSP 769 0.65 0.48 152 0.72 0.45 

S2TRNWRT 769 0.89 0.31 152 0.84 0.37 

T1EXTERN 769 1.60 0.62 152 1.57 0.52 

T1INTERN 769 1.55 0.55 152 1.56 0.52 

T2CONTRO 769 3.09 0.61 152 3.21 0.59 

T2INTERP 769 3.01 0.65 152 3.09 0.58 

T2LEARN 769 3.02 0.71 152 3.14 0.66 

WKDADED 769 2.90 1.59 152 3.45 1.91 

WKINCOME 769 24.64 19.11 152 30.69 35.09 

WKMOMED 769 2.93 1.54 152 3.16 1.64 

WKRACETH 769 0.57 0.50 152 0.41 0.49 

 

 

 

 



 

155 

 

APPENDIX B 

Table 3. B1 

Empirical Standard Errors from Six Estimation Methods by Simulated 

Conditions 
 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐵𝐴𝑅𝑇 𝑃𝑆𝑆𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐸 𝑃𝑆𝐹𝐸 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Average 0.177 0.058 0.174 0.054 0.247 0.075 0.246 0.071 0.205 0.065 0.206 0.068 

Number of Cluster (𝑵𝒄) 

30 0.231 0.051 0.223 0.046 0.305 0.061 0.298 0.059 0.26 0.055 0.264 0.059 

50 0.172 0.038 0.169 0.036 0.246 0.06 0.247 0.06 0.204 0.049 0.206 0.046 

100 0.129 0.029 0.129 0.029 0.19 0.053 0.192 0.05 0.15 0.038 0.147 0.036 

Cluster Size (𝑵𝒔) 

20 0.215 0.056 0.208 0.049 0.295 0.067 0.289 0.064 0.256 0.058 0.257 0.065 

50 0.167 0.049 0.166 0.048 0.235 0.067 0.234 0.067 0.192 0.053 0.193 0.052 

100 0.149 0.048 0.148 0.047 0.211 0.065 0.215 0.062 0.167 0.05 0.167 0.052 

Nonlinearity and Interactions 

main 0.176 0.055 0.173 0.052 0.203 0.068 0.203 0.065 0.192 0.061 0.192 0.062 

mild 0.179 0.059 0.176 0.055 0.247 0.069 0.244 0.064 0.206 0.067 0.208 0.069 

moderate 0.177 0.06 0.173 0.055 0.291 0.061 0.291 0.056 0.217 0.067 0.216 0.07 

Random Effect of Treatment 

small 0.153 0.049 0.15 0.045 0.229 0.072 0.226 0.068 0.184 0.061 0.185 0.064 

large 0.202 0.056 0.198 0.051 0.266 0.073 0.265 0.069 0.225 0.063 0.226 0.065 

ICCs of the Treatment (𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

0.1 0.176 0.059 0.173 0.056 0.247 0.074 0.244 0.071 0.203 0.066 0.203 0.069 

0.3 0.179 0.057 0.175 0.052 0.248 0.076 0.248 0.072 0.207 0.065 0.208 0.067 

ICCs of the Outcome (𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

0.1 0.176 0.059 0.173 0.056 0.247 0.074 0.244 0.071 0.203 0.066 0.203 0.069 

0.3 0.179 0.057 0.175 0.052 0.248 0.076 0.248 0.072 0.207 0.065 0.208 0.067 
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Table 3. B2 

Estimated Standard Errors from Six Estimation Methods by Simulated 

Conditions 
 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐵𝐴𝑅𝑇 𝑃𝑆𝑆𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐸 𝑃𝑆𝐹𝐸 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Average 0.333 0.111 0.205 0.095 0.124 0.052 0.118 0.045 0.083 0.037 0.085 0.039 

Number of Cluster (𝑵𝒄) 

30 0.32 0.105 0.206 0.098 0.151 0.048 0.14 0.041 0.107 0.038 0.109 0.04 

50 0.332 0.11 0.213 0.096 0.127 0.047 0.119 0.041 0.084 0.031 0.085 0.033 

100 0.347 0.117 0.197 0.093 0.094 0.044 0.094 0.042 0.058 0.023 0.059 0.025 

Cluster Size (𝑵𝒔) 

20 0.292 0.093 0.129 0.027 0.154 0.046 0.137 0.038 0.121 0.032 0.125 0.033 

50 0.336 0.11 0.207 0.072 0.119 0.047 0.114 0.042 0.076 0.021 0.076 0.021 

100 0.371 0.115 0.281 0.099 0.099 0.047 0.102 0.048 0.053 0.015 0.053 0.015 

Nonlinearity and Interactions 

main 0.327 0.111 0.205 0.097 0.08 0.034 0.077 0.032 0.073 0.032 0.075 0.034 

mild 0.332 0.111 0.204 0.095 0.118 0.037 0.111 0.029 0.083 0.037 0.083 0.038 

moderate 0.341 0.112 0.207 0.096 0.174 0.033 0.164 0.019 0.094 0.039 0.096 0.042 

Random Effect of Treatment 

small 0.23 0.026 0.141 0.035 0.122 0.051 0.116 0.045 0.082 0.036 0.083 0.038 

large 0.437 0.049 0.27 0.093 0.126 0.052 0.12 0.045 0.085 0.037 0.086 0.039 

ICCs of the Treatment (𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

0.1 0.333 0.111 0.205 0.097 0.122 0.051 0.116 0.045 0.081 0.036 0.083 0.038 

0.3 0.333 0.111 0.205 0.095 0.126 0.053 0.119 0.045 0.085 0.038 0.087 0.04 

ICCs of the Outcome (𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

0.1 0.342 0.112 0.202 0.096 0.119 0.049 0.112 0.042 0.08 0.035 0.081 0.037 

0.3 0.324 0.109 0.209 0.095 0.129 0.054 0.123 0.047 0.087 0.039 0.088 0.041 
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Table 3. B3 

Ratio of the Standard Errors from Six Estimation Methods by Simulated 

Conditions 
 𝐷𝐸𝑀−𝐵𝐴𝑅𝑇 𝐷𝐸𝑆−𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐵𝐴𝑅𝑇 𝑃𝑆𝑆𝐵𝐴𝑅𝑇 𝑃𝑆𝑀𝐸 𝑃𝑆𝐹𝐸 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Average 0.584 0.257 1.027 0.564 2.166 0.579 2.247 0.573 2.635 0.619 2.62 0.637 

Number of Cluster (𝑵𝒄) 

30 0.777 0.251 1.332 0.665 2.16 0.528 2.24 0.489 2.587 0.619 2.587 0.617 

50 0.567 0.207 0.957 0.462 2.076 0.452 2.186 0.441 2.566 0.527 2.59 0.584 

100 0.409 0.157 0.794 0.394 2.262 0.718 2.314 0.744 2.752 0.69 2.684 0.707 

Cluster Size (𝑵𝒔) 

20 0.798 0.273 1.669 0.451 1.988 0.411 2.168 0.371 2.149 0.287 2.077 0.282 

50 0.534 0.182 0.859 0.259 2.117 0.474 2.179 0.486 2.556 0.361 2.578 0.354 

100 0.421 0.127 0.555 0.148 2.394 0.731 2.393 0.767 3.199 0.615 3.205 0.613 

Nonlinearity and Interactions 

main 0.591 0.25 1.02 0.531 2.682 0.581 2.77 0.571 2.818 0.706 2.783 0.718 

mild 0.592 0.268 1.043 0.588 2.142 0.38 2.212 0.325 2.661 0.618 2.69 0.632 

moderate 0.57 0.256 1.019 0.581 1.675 0.137 1.757 0.199 2.426 0.447 2.387 0.476 

Random Effect of Treatment 

small 0.69 0.277 1.172 0.571 2.019 0.454 2.088 0.468 2.38 0.399 2.36 0.409 

large 0.478 0.181 0.883 0.522 2.314 0.651 2.405 0.625 2.889 0.692 2.881 0.715 

ICCs of the Treatment (𝑰𝑪𝑪𝒕𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕) 

0.1 0.579 0.255 1.025 0.574 2.196 0.582 2.251 0.58 2.666 0.628 2.643 0.642 

0.3 0.59 0.26 1.03 0.558 2.136 0.578 2.242 0.569 2.603 0.61 2.597 0.634 

ICCs of the Outcome (𝑰𝑪𝑪𝒐𝒖𝒕𝒄𝒐𝒎𝒆) 

0.1 0.568 0.245 1.052 0.591 2.186 0.59 2.248 0.588 2.69 0.642 2.684 0.656 

0.3 0.601 0.268 1.003 0.538 2.147 0.571 2.245 0.56 2.579 0.592 2.557 0.613 

 


