

CONTENT EXTRACTION AND RECOGNITION IN SCIENTIFIC PUBLICATIONS

A Dissertation

by

ZELUN WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jyh-Charn (Steve) Liu
Committee Members, Frank M. Shipman
 Ruihong Huang
 Thomas K. Ferris
Head of Department, Scott Schaefer

December 2020

Major Subject: Computer Science

Copyright 2020 Zelun Wang

ii

 ABSTRACT

In the era of digitization, the vast volume of scientific publications has become

readily accessible to the readers. With the help of information retrieval technologies, a

reader can conveniently locate an existing publication by typing in only a few keywords

in a search engine. However, existing technologies cannot be directly applied on the

contents of many scientific publications. This is due to the limitations of the PDF format,

which is the de facto standard format for scientific publications nowadays. Being a layout-

based graphical format, PDF unfortunately does not offer easy access to its fine-grained

contents.

In this dissertation, we introduce a PDF content extraction and recognition system

to bridge the gap. The system focuses on extracting crucial elements from scientific

publications including text, math expressions, figures, and tables, which carry most of the

technical substances. The proposed system investigated four specific problems. Firstly,

we designed a set of algorithms to locate math expressions (ME) in PDF documents, which

are often blended into the body text. These algorithms include calculating the ME

likelihood of each PDF object based on the PDF font information, and reducing the

fragmented detections using a bigram regularization model. In addition to the algorithm

development, we also released a new dataset for the research community. Secondly, we

proposed a deep neural network to recognize math expressions and produce their markup

LaTeX. We used an encoder-decoder neural architecture, while the encoder takes images

as inputs, and the decoder generates LaTeX tokens as outputs. We also designed a

iii

sequence-level objective function to train the neural network in an end-to-end fashion,

which affectively enforced the grammar-level correctness of the predicted LaTeX

sequences. Thirdly, we developed the PDF2LaTeX OCR system, which recognizes entire

PDF pages of mixed text and MEs. In the backend, we implemented machine learning

algorithms to segment and label the contents, and applied the neural translators to convert

page images into their LaTeX sources. Finally, we integrated the PDF2LaTeX system with

two existing figure and table extraction tools, which enables the system to process a much

wider range of scientific documents. For demonstration, we developed a graphical user

interface for readers to conveniently interact with the contents on PDF pages.

iv

DEDICATION

To my family.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Liu for his support on this dissertation. His

insights were crucial towards the completion of this work. Dr. Liu is not only an advisor

on my Ph.D. career, but also a mentor in my life. He taught me how to face adversities in

life and never give up easily. I will be forever grateful for his guidance and patience.

I would also like to thank Dr. Shipman, Dr. Huang, and Dr. Ferris, for agreeing to

be a part of my Ph.D. committee and giving me suggestions and support throughout the

course of this research.

I want to thank my colleagues Jason Lin, Xing Wang, Guoyu Fu, Donald Beyette,

Junqi Yang, Colton Riedel, and Haidong Wang, for their help and efforts on my research.

They made my time at the RTDS lab a great experience.

Thanks also go to my friends Guanlong Zhao, Dennis Silva, Avinash Parnandi, Jin

Huang, Christopher Liberatore, Adam Hair, Jiayi Huang, Mengyuan Chao, Di Xiao, Jay

Chou, Xilong Zhou, Yuhang Wei, Stephen Brownlee, Zichao Xie, Xuan Wu, Annette

Thompson, Mike Thompson, and many others, for making my life at Texas A&M

University such a wonderful memory.

Finally, thanks to my family for their unconditional support and to my girlfriend

for her care and love.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Jyh-

Charn Liu (advisor), Professor Frank M. Shipman, and Professor Ruihong Huang of the

Department of Computer Science and Engineering and Professor Thomas K. Ferris of the

Department of Industrial and Systems Engineering.

The MOP dataset analyzed for Chapter 3 was a collaboration work with my

colleagues Donald Beyette and Jason Lin. The bigram regularization model in Chapter 3

was a collaboration work with my colleague Xing Wang.

 All other work conducted for the dissertation was completed by the student

independently.

Funding Sources

There are no funding sources related to this dissertation.

vii

NOMENCLATURE

AST Abstract Syntax Tree

BBox Bounding Box

CMML Content Mathematical Markup Language

CNN Convolutional Neural Network

CRF Conditional Random Field

DME Displayed Math Expression

FP False Positive

FN False Negative

GUI Graphical User Interface

IME Inline Math Expression

IR Information Retrieval

LSTM Long Short-Term Memory

MathML Mathematical Markup Language

ME Math Expression

MIP Mixed Integer Programming

MIR Mathematical Information Retrieval

MLE Maximum Likelihood Estimation

MOP Math Objects in PDF

MRF Markov Random Field

NLP Natural Language Processing

viii

NME Non- Mathematical Expression

OCR Optical Character Recognition

PDF Portable Document Format

PMML Presentational Mathematical Markup Language

PoS Part-of-Speech

PPC Projective Profiling Cutting

Regex Regular Expression

RL Reinforcement Learning

STEM Science, Technology, Engineering, and Mathematics

SVM Support Vector Machine

TN True Negative

TP True Positive

URL Uniform Resource Locator

XML eXtensible Markup Language

ix

TABLE OF CONTENTS

Page

ABSTRACT .. ii	

DEDICATION ... iv	

ACKNOWLEDGEMENTS ... v	

CONTRIBUTORS AND FUNDING SOURCES ... vi	

NOMENCLATURE ... vii	

TABLE OF CONTENTS ... ix	

LIST OF FIGURES .. xii	

LIST OF TABLES .. xv	

CHAPTER I INTRODUCTION ..1	

Background ..1	
Research Objectives ...3	

Task 1: Math expression extraction with feed-forward multi-stage algorithms6	
Task 2: Math2LaTeX translation with an encoder-decoder deep neural network .7	
Task 3: PDF2LaTeX conversion with OCR and machine learning algorithms7	
Task 4: Integration of figure and table extraction modules8	

Summary of Findings ...9	
Dissertation Outline ...10	

CHAPTER II LITERATURE REVIEW ...12	

Extracting Math Expressions from PDF documents ..12	
Math Expression Recognition ..14	
PDF Recognition ..16	
Extracting Figures and Tables from PDF Documents ...18	

CHAPTER III MATH EXPRESSIONS EXTRACTION FROM PDF
DOCUMENTS BASED ON MODELING OF FONTS ..21	

Overview ..22	
The Multi-Stage Algorithm ...24	

x

Stage 0: PDF Pre-processing and Feature Design ...25	
Stage 1: Symbol-level ME Detection ..29	
Stage 2: Inline ME Detection ...33	
Stage 3: Displayed ME Detection ..34	

Bigram Regularization Model for Inline ME Detection ..35	
Document Model and Problem Formulation ...37	
Why Bigram Model? ..39	
The Bigram Regularization ..40	
Regularization Solver Design ..41	
Scenario Analysis for the Bigram Regularization ...42	

Experiments and Results ..43	
The Marmot Dataset ..43	
Experiment Setup ...44	
Results and Discussions ...45	

The MOP Dataset ...47	
Summary ..49	

CHAPTER IV MI2LATEX: MATH FORMULA IMAGES TO LATEX
TRANSLATION BASED ON DEEP NEURAL NETWORKS50	

Overview ..51	
Neural Network Architecture ...54	

Problem Formulation ...55	
Encoder ..55	
Decoder ..59	
Attention ..62	

Training objectives ..63	
Token-level Objective Function ..64	
Sequence-level Objective Function ...65	

Experiments ...67	
Dataset and Preprocessing ...67	
Evaluation Criteria and Baselines ..69	
Implementation Details ..70	

Results and Discussions ...71	
General Performance ...71	
An analysis of Mathpix ..74	
Discussions ..75	

Summary ..77	

CHAPTER V PDF2LATEX: A DEEP LEARNING SYSTEM TO CONVERT
PDF DOCUMENTS TO LATEX ..79	

Overview ..80	
Segmentation and Detection ..82	

xi

Projection Profile Cutting ..83	
CNN Classifier ...87	
Conditional Random Field ...90	

Neural Translators ..94	
Math Translator ..95	
Plaintext Translator ..97	

Experiments and Results ..98	
Dataset ..98	
Baseline and Evaluation Criteria ...99	
Results ..101	

Discussions ..102	
Summary ..103	

CHAPTER VI FIGURE AND TABLE EXTRACTION IN THE PDF2LATEX
SYSTEM ..105	

Overview ..105	
Method ...108	

Figures and Tables Extraction Tools ...108	
Integration with the PDF2LaTeX System ..110	

Experiments and Dataset ...113	
Results and Discussions ...115	
A Demo Application ..116	
Summary ..118	

CHAPTER VII CONCLUSIONS ..119	

Summary of Findings ...119	
Future Work ...123	

REFERENCES ..127	

APPENDIX A VISUALIZATION OF MI2LATEX ...141	

APPENDIX B VISUALIZATION OF PDF2LATEX ...143	

APPENDIX C EXTERNAL SOURCES ...146	

xii

LIST OF FIGURES

Page

Figure 1 Trends of arXiv publications, reprinted from [2]. ...2	

Figure 2 System overview and research tasks. ..5	

Figure 3 The flow chart of the system model. The bottom line shows an example of the
 metadata of “Ω”. Glyph name and Unicode are shown in grey because

they are not always available in PDF documents. ..25	

Figure 4 Font box, glyph box, and three different types of gaps in a sequence of PDF
objects representing words and an ME. ...26	

Figure 5 A histogram of gaps between adjacent font boxes on a PDF page. X-axis
shows the gap distance in pt. The bin width is 0.1 pt.27	

Figure 6 (1) Text stream vs. font size (in pt) of a single PDF page. The black circles
mark the occurrences of different PDF elements. (2) A zoom in which
shows the phrase and its font sizes. ..28	

Figure 7 The length of symbol sequence until a font size change.31	

Figure 8 Fragmented detection of symbols in an ME. Symbols in red/green rectangles
indicate symbols that are classified as ME/NME. ..32	

Figure 9 An example of split detections of inline MEs. The parts that are detected
successfully are marked in blue. The red lines mark the boundaries of
tokens. ..36	

Figure 10 The formulation of a PDF page. The red rectangles mark different
elements, including columns, lines, tokens, characters, and examples for
inline ME and displayed ME. ...38	

Figure 11 ME likelihood of tokens in a sentence mixed with natural language words
and MEs. We took the log of the probabilities for better scalability.39	

Figure 12 The semi-automatic pipeline used to generate the MOP dataset.48	

Figure 13 The proposed encoder-decoder architecture of the deep neural network. ...54	

Figure 14 Visualization of the positional encoding. ..58	

xiii

Figure 15 (a) The structure of the stacked bidirectional LSTM with attention layer. (b)
The structure of an LSTM cell, where 𝒊, 𝒇, 𝒐 represent input gate, forget
gate, and output gate separately. ..60	

Figure 16 Robustness analysis on token length vs. image edit distance with different
 models. The black curve shows the density distribution of token lengths in

the test set. ..72	

Figure 17 Two examples showing the recognition quality of Mathpix and MI2LaTeX.
The reconstruction errors are highlighted as red blocks.75	

Figure 18 Visualization of PPC. The bottom plot shows the vertical projection profile
of the entire page. The right plot shows the horizontal projection profile of
the right column. ..83	

Figure 19 Examples of line detection heuristics. (a) Split overlapped lines. (b) Merge
hats. (c) Merge fraction lines. (d) Merge binding variables.85	

Figure 20 Token segmentation results. The bounding boxes mark the boundary of
each token. ..87	

Figure 21 Label assignment before CRF (a) and after CRF (b). Bold bounding boxes
mark math labels. ...91	

Figure 22 CNN-LSTM Neural Architecture. ...95	

Figure 23 The PDF2LaTeX system with figure and table detection capabilities. The
main body is converted to LaTeX. The detected figures and captions are
saved as image-caption pairs. The tables are decomposed into cell data. ..108	

Figure 24 Figure and table areas are masked out by white rectangles, as indicated by
the dash lines. ...110	

Figure 25 Lattice vs. Stream method for different kind of tables. (a) Lattice is chosen.
(b) Stream is chosen. ..113	

Figure 26 The graphical user interface of the PDF2LaTeX system.117	

Figure 27 Visualization of the translation process for an input image. The image
sequences are ordered vertically. The title of each image represents the token
being produced at that certain time step. The red rectangles represent the
attention weights. Darker color indicates a larger weight. We sampled
20 out of 77 predicted LaTeX tokens for concise presentation.141	

xiv

Figure 28 Visualization of two examples from the PDF2LaTeX-102 dataset. The
reconstruction errors are marked in red. ...143	

xv

LIST OF TABLES

Page

Table 1 A summary of technical novelties in this dissertation.10	

Table 2 Pseudocode of the symbol grouping method ..30	

Table 3 Examples for the displayed ME detection. Green boxes indicate the detected
NME. Red Boxes indicate the detected inline ME. Blue boxes indicate the
detected displayed ME. ..35	

Table 4 The value of the objective function under different label assignments for
token sequence [“[”, “1”, “,”, “T]”]. ..42	

Table 5 The value of the objective function under different label assignments for
token sequence [“that”, “w”]. ...43	

Table 6 Symbol-level evaluation results ..45	

Table 7 Detailed performance statistics for ME-level detection46	

Table 8 Benchmark of the MOP dataset ..49	

Table 9 The encoder CNN configurations. #maps: the number of feature maps. k:
kernel size. p: padding size. s: stride size. BN: batch normalization. The
sizes are in order (height, width). ...56	

Table 10 Performance evaluation of different models on the IM2LATEX-100K
dataset. ..71	

Table 11 Mathpix vs. MI2LaTeX on 100 images. ...74	

Table 12 CNN Configuration. #maps: the number of feature maps. k: kernel size. p:
padding size. s: stride size. BN: batch normalization. GlobalAvgPool: global
average pooling. The sizes are in order (height, width).89	

Table 13 Confusion matrix of the CNN output. ..90	

Table 14 Full list of CRF features. ...93	

Table 15 CRF performance with 10-fold cross-validation. ...94	

Table 16 Results reported in Edit Distance (Rate). ..101	

xvi

Table 17 Performance of the PDF2LaTeX system with and without figure/table
extraction modules. ..115	

Table 18 External sources used including datasets and tools.146	

1

CHAPTER I

INTRODUCTION

Background

Researchers are experiencing an explosion of scientific publications. According to

a research done by the University of Ottawa [1], by the year of 2009 researchers have

published 50 million research papers in cumulative. This trend is fast growing. According

to the 2019 statistics report from [2], on arXiv.org alone there are around 150,000 preprints

published each year, mostly in the fields of physics, math, and computer science, as

illustrated in Figure 1 (reprinted with permission from arXiv.org). Modern search engines

have made it possible to retrieve a research paper with only a few keywords from large-

scale databases. However, retrieving fine-grained contents from research papers in PDF

format remains an unsolved problem. “PDF is evil”, as stated by the creator of PDFMiner

[3], for good reasons. PDF is the de facto standard publishing format. Despite its

popularity, PDF is essentially a collection of graphical representations. Even though

modern PDF encodes text information into PDF fonts [4], this information can be missing

or even be wrong [5]. In addition, PDF does not contain structural information or tags,

making it difficult for machines to understand contents beyond text. For example, in the

fields of science, technology, engineering, and mathematics (STEM), math expressions

are heavily used and are blended into the main body text. Unfortunately, math expressions

are not tagged and are often represented as graphics. This not only harms text-based

2

information retrieval and knowledge mining, but also misses the opportunity to explore

the rich technical information carried inside math expressions.

Figure 1 Trends of arXiv publications, reprinted from [2].

In contrast to the PDF format, LaTeX is much more informative on organizing

document contents. It explicitly marks different types of document components including

math expressions, figures, tables, etc. One existing effort to advocate LaTeX is the preprint

publisher arXiv.org, which gives authors the option to upload LaTeX source files together

with PDF files. Nevertheless, this is still a relatively small portion compared to the vast

volume of existing PDF publications. Since manual annotation is apparently infeasible,

advanced techniques are needed to process PDF contents.

3

Existing PDF parsers like PDFMiner [3] and Apache PDFBox [6] provide some

nice functions to decode PDF contents and reconstruct text and basic page layout

structures such as columns and paragraphs. However, these tools are far from ideal not

only because they rely on PDF fonts (which may not be available), but also because

contents beyond text cannot be processed. In addition, image-based PDF documents

would make PDF parser-based solutions in vain. Optical character recognition (OCR)-

based approaches can be used to overcome the limitations of PDF parsers. Modern OCR

techniques can recognize English text at very high accuracy [7], but recognizing other

components remains challenging. InftyReader [8] is the best-known commercial software

to convert mathematical documents into LaTeX source files. Yet it is costly and the

performance is still unsatisfying when being applied to scientific publications.

Research Objectives

 In this dissertation I developed a PDF content analysis system for scientific

publications. The system can extract and recognize different paper components including

plaintext, math expressions, figures, and tables. The recognition results can be used to

reconstruct the LaTeX source files of the target PDF documents. The system provides

semantic-level understanding of the PDF format, which brings at least the following

benefits to the research community:

• Recognizing the correct text encodings can improve the performance of text-based

information retrieval and knowledge mining on PDF documents.

• Math expressions in LaTeX format can be used for math information retrieval

(MIR) [9]. MIR is almost inaccessible nowadays except for a few applications with

4

very limited databases, such as NIST Digital Library of Mathematical Functions

[10] and Wolfram Functions Site [11].

• Math expressions in LaTeX format can be easily converted to other formats like

MathML [12], which can be used on web browsers, and Braille code [13], which

can be used for blind people.

• Figures and tables can be indexed and retrieved to help researchers quickly grasp

the gist of other research works.

• For historical PDF documents based on images, conversion to LaTeX is useful for

data compression and indexing purposes.

5

Figure 2 System overview and research tasks.

 The overall design of the proposed system is shown in Figure 2. In this system, a

PDF page is modeled as the main body, figures, and tables, where the main body is

composed of a mixture of plaintext and math expressions. The system processes tables

and figures separately, because they are usually placed at dedicated page areas. The

bounding boxes of inline and displayed math expressions are first extracted based on a

customized PDF parser and a feed-forward multi-stage algorithm. Next, a deep neural

6

network with CNN-LSTM architecture is trained to translate the images of math

expressions into their markup LaTeX. The system can then use OCR approaches

combined with a series of machine learning algorithms to convert entire PDF pages into

their LaTeX sources. The system is composed of four research tasks listed below:

Task 1: Math expression extraction with feed-forward multi-stage algorithms

PDF is meant for page layout design, where the structural information and

semantic tags of the document contents are not available. As a result, extracting math

expressions from PDF is not a straightforward process. In this task, I will propose a model

that can extract math expressions based on the PDF typesetting. The model is based on

the observation that math expressions follow different layout patterns as compared to

plaintext. This makes it possible to predict the tags and positions of math expressions

based on the font information given by PDF parsers. A PDF page is formulated as a

collection of symbols and tokens. Each symbol is associated with glyph name, value 𝑣%,

font 𝑓%, and bounding boxes. The likelihood of a token being a plaintext word or a segment

of a math expression is first calculated using the statistics of the font size. To reduce the

split detection errors, a bigram regularization model is proposed to increase the stability

and the smoothness of the label prediction by considering the labels of neighbors. The

complete math expressions can be constructed by merging neighboring tokens with math

tags. The contents and bounding boxes of math expressions will be extracted and

evaluated, and will be further analyzed in the following research tasks. I will also introduce

a new dataset, which was generated semi-automatically for evaluating the proposed model

and related research tasks.

7

Task 2: Math2LaTeX translation with an encoder-decoder deep neural network

Math expressions carry the most significant technical substances in STEM papers,

but they cannot be easily understood by machines because they are represented as

graphical elements in PDF documents. In this task I will propose a model that recognizes

math expressions based on image inputs. The recognition results will be saved as LaTeX

format. This not only involves segmenting and recognizing individual symbols, but also

the size and layout relationship between different symbols, and a language model to guide

correct LaTeX grammar. This problem is an intersection of image processing and

sequence prediction. As a result, I propose to use a deep neural network with encoder-

decoder (CNN-LSTM) architecture, where the encoder is used to process the input images,

and the decoder is used to generated the LaTeX sequences that mark up the input MEs.

Relative position is important for analyzing the structure and relationship between

different math symbols. To preserve this information, I propose to tailor the sinusoidal

positional encoding method proposed in the Transformer model [9] into 2D to preserve

the spatial locality information of math expressions. I will also introduce a sequence-level

training objective function, which can enforce the correctness of the entire LaTeX

sequence during training and improve the performance of the model. I will also introduce

the policy gradient algorithm that made sequence-level training possible.

Task 3: PDF2LaTeX conversion with OCR and machine learning algorithms

The task of PDF2LaTeX conversion aims to reconstruct the LaTeX source code

for entire PDF pages, which are composed of a mixture of text and math expressions. This

is different from task 2 in that previously the model only translates individual math

8

expressions that are assumed to be extracted already. This task processes entire

mathematical documents. This can be done by simply combining task 1 and task 2, but it

will not overcome the limitations of PDF parsers such as missing fonts. Instead, I will

introduce a new system based on OCR, which extracts math expressions and text in both

postscript and image-based PDF files and translates them into markup LaTeX. The input

becomes a grayscale image of a page. Assuming that tables and figures are already

detected and removed from PDF pages, the proposed system need to first recognize the

page layout and segment it into plaintext words and math expressions, and then translate

them to LaTeX individually. The boundary between plaintext words and math expressions

will also need to be determined. This is done by first using the profile projection cutting

(PPC) to split the images of pages into column, lines, and tokens. To determine if a token

is a plaintext word or a math segment, we used a CNN as a binary classifier that captures

visual features and classify the labels of each token. To determine the boundary of math

and text, I propose to post-process the CNN classification results with a conditional

random field (CRF). After math classification, complete math expressions can be

constructed by merging neighboring math segments. Their contents are finally recognized

using the CNN-LSTM neural network.

Task 4: Integration of figure and table extraction modules

The presence of figures and tables in a page can disrupt the parsing process of the

PDF2LaTeX system. In addition, figures and tables themselves contain important

information. As a result, it becomes necessary to add figure and table extraction modules

into the proposed system. Figure images can be very diverse and difficult to recognize,

9

while their caption text can be detected and utilized. For tables, one can extract not only

their caption text, but also their rich cell data because table structure can be reconstructed

relatively easily. Commercial software and research tools that extract figures and tables

are readily available, but a comprehensive system to parse various components in

scientific papers still does not exist. In this task, I will integrate figure and table extraction

modules into the PDF2LaTeX system as a further step to the semantical understanding of

paper contents. The positions of figures and tables are detected using the PDFFigures [10]

software. The extraction results are given as the bounding boxes of these objects and the

text of the captions. In addition, I will use the Camelot software [11] to extract the cell

data from tables. Finally, figures and tables are masked out from the page by overlapping

the detected area with white pixels. The rest of the contents are converted to LaTeX using

the existing PDF2LaTeX system. The final system is able to extract text, math expressions,

figures, tables, and their captions all together and index the recognized contents for

information retrieval purposes.

Summary of Findings

In summary, the proposed PDF content extraction and recognition system can

semantically parse different components in scientific publications, including plaintext,

math expressions, figures, and tables. The main body including plaintext and math

expressions can be recognized and converted to LaTeX format. Figures and tables can be

extracted and saved together with their captions for indexing purposes. The system serves

as the foundation to understand semantical contents and retrieve information from

10

scientific publications in PDF format. The technical novelties in the proposed work are

summarized below:

Table 1 A summary of technical novelties in this dissertation.
 Existing Works This Work

Math
Extraction
from PDF

Rule-based and global
training-based methods at
lower accuracy, lack of
training and test data

Font-based algorithms for math
extraction, bigram regularization to
incorporate neighboring information,
MOP dataset for evaluation

Math-to-
LaTeX
Translation

Empirical math structural
analysis, token-level training
objective function, lack of
position information

Positional encoding for math layout
structure, elimination of exposure bias
problem, policy gradient for
sequence-level objective function

PDF-to-
LaTeX
Conversion

Open-source plaintext
recognition tools, commercial
math document analysis tools
at lower accuracy and high cost

PPC for PDF image segmentation,
CNN and CRF for math/plaintext
labeling, deep neural networks for
LaTeX translation

Figure/Table
Extraction

Rule-based and machine
learning-based algorithms that
only detect figures/tables

An integrated system that extracts
plaintext, math expressions, figures,
and tables simultaneously

Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter II we discuss the

related works, including extracting MEs from PDF documents, recognition of MEs,

conversion of MEs from images to LaTeX, conversion from PDF documents to LaTeX,

and figure and extraction from PDF documents. In Chapter III, we introduce a feed-

forward multi-stage algorithm which is used to locate the bounding boxes of MEs in PDF

documents, and a bigram regularization model that can stabilize the predicted labels and

reduce split detection errors. We also introduce the MOP dataset in this chapter. In Chapter

11

III, we introduce an encoder-decoder neural network which is used to take images of math

formulas as inputs, and converts the recognized contents into their markup LaTeX strings

in an end-to-end fashion. We also introduce the 2-dimensional positional encoding and a

sequence-level objective function used in this model. In Chapter IV, we introduce a

comprehensive OCR system called PDF2LaTeX, which can convert entire mathematical

documents in PDF format into their LaTeX source files. We will discuss the details of the

machine learning algorithms in the system including deep neural networks and a

conditional random field. In Chapter V, we enhance the PDF2LaTeX system with figure

and table extraction modules. We will briefly discuss the mechanisms of two external tools

and explain how they are embedded into the existing system. Finally, in Chapter VI we

conclude this dissertation and discuss future works.

12

CHAPTER II

LITERATURE REVIEW

Extracting Math Expressions from PDF documents

PDF is a layout-based format designed for printing and exchanging documents [4].

Modern works on ME extraction from PDF documents are mainly based on OCR or PDF

parser [12-14]. In the OCR-based approaches, a PDF document is first rendered into an

image, and MEs are detected based on shape analysis. For example, in [15], the OCR

technique was used to recognize MEs from Japanese documents, where non-Japanese

characters are classified as ME characters. A follow up work [8] further utilized the

position and size information to improve the performance. An image segmentation method

based on fuzzy logic was proposed in [16] to isolate MEs area from plaintext area. A deep

learning technique based on the combination of convolutional neural network and

recurrent neural network was employed to detect MEs based on image analysis in

conjunction with PDF metadata analysis [13].

Since PDF does not contain tagged information about its contents, external

processing tools are required to extract and understand its elements. Some popular text-

based open source PDF parsers include Apache PDFBox [6], Apache Tika [17], Poppler

[18], PDFMiner [3], etc. These tools can not only extract text from PDF documents, but

also the metadata associated with the text, such as font, glyph name, Unicode, bounding

box, etc. As a result, PDF parser provides richer and more accurate information over OCR-

based PDF processing methods [13, 19, 20].

13

ME extraction based on PDF parsers has been extensively studied recently [12, 21-

23]. The general features used to differentiate ME from Non-ME (NME) include the

following aspects: math elements, fonts, linguistics, and spatial layouts. Math elements

include operations, relations, Greek symbols, delimiters, functions, integrals, fractions,

and squares. In [24] the authors also used the special font name to extract MEs. Linguistic

features include the purity of words [12], letters ratio [22], and matching with plaintext

word [21]. Spatial layout features include line height, above/below space, left/right indent

[24], line centeredness, variation of line width [23], sparsity of characters, variance of

baseline, variance of bounding box size [12]. There is a trend of using adaptive features

[21, 22] besides the general features. For example, to accommodate the writing habits of

each user, [21, 22] proposed to use the local features based on the identified displayed

mathematical expression. Past methods mostly model the ME extraction problem as a

classification problem and train a discriminant model. [22] is the only work that

systematically models the neighboring information for the decision-making processes.

The work proposed to use the Conditional Random Field (CRF) as a sequential model for

the inline ME detection.

Different attributes of PDF objects have been used as features in machine learning

models. In [12], the support vector machine (SVM) was used to identify inline MEs based

on geometric layout and content features. Nine different machine learning algorithms,

combined with heuristic rules were used to extract both inline and displayed MEs [23]. In

a recent work [21], a weakly-supervised Font Setting based Bayesian model (FSB) was

proposed for ME extraction. Without using any ground truth data for training, the

14

algorithm first employed heuristic rules for displayed ME detection, and then used a

Bayesian predictor based on the font and glyph name value of the displayed ME characters

to detect inline MEs.

Math Expression Recognition

Automatic recognition of math formulas in digital publications has long been

recognized as a challenging task [25]. The task first requires to locate math formulas in

digital documents, then analyze the structure of math formulas, and finally translate them

into math markup languages. In [20], Garain et al. proposed to use a commercial OCR

tool as a text classifier, where patterns that cannot be recognized by the OCR were further

analyzed to detect math formulas. In [5], Wang et al. developed a PDF parser to detect

math formulas based on the font statistics with a feed-forward algorithm. In [26], they

further proposed a bigram label regularization method to reduce the over-segmentation

problem during formula detections. In [13], Gao et al. proposed to combine the PDF font

information with vision features, and manually labeled a large dataset to train a deep neural

network for math formula detection. Once math formulas are detected, the next step is to

analyze their 2-dimensional layout structure. Twaaliyondo el al. in [27] proposed a method

that first divided the formulas into subexpressions based on larger symbols and blank

spaces in a recursive manner, and then represented the structure of the formulas as a tree.

In [8], Suziki et al. used a similar approach as [20] to first locate the math formulas, and

then represented the structure of math formulas as trees, and used a minimum-cost

spanning-tree algorithm for the structure analysis. This proposed work was made into the

commercial software -- InftyReader.

15

Recently, convolutional neural networks have achieved new performance levels

for OCR tasks [28], which gives new solutions to translate math formulas from images in

a data-driven manner, yet requiring to resolve the following additional problems: 1) the

input image is not segmented, 2) the output is a sequence of tokens of arbitrary length, and

3) structural information needs to be understood. Techniques such as Connectionist

Temporal Classification (CTC) [29] models the inter-label dependencies implicitly,

making it possible to train a neural network directly with unsegmented data. Existing

solutions to predict sequence from image inputs can be found in text recognition and image

captioning tasks [29-34], which usually combines CNN with a sequential model to

construct an encoder-decoder (seq2seq) architecture. Jaderberg et al. in [30] showed that

combining CNN with NLP techniques like Conditional Random Field (CRF) was very

effective in recognizing text in images. Another common approach is to use RNN as the

sequence predictor. This was referred to as a CRNN model in [34], which was end-to-end

trainable for image-based sequence recognition tasks. The attention mechanism [35] has

been proposed to emulate the human vision system, which allows the model to attend the

salient parts of an image while generating the target sequence. Xu et al. in [32] combined

the attention mechanism with the CRNN model which achieved further performance gain

in image captioning task. With minor modifications, this architecture can be tailored to

translate images of math formulas into their LaTeX markup sequences.

In [36], Zhang et al. proposed a gated recurrent unit (GRU) based encoder-decoder

model combined with attention mechanism to translate handwritten math to LaTeX. The

model takes the stroke information as inputs, and shows capability to recognize both

16

symbols and their structures simultaneously. In [37], they replaced the GRU encoder with

a CNN encoder, enabling the model to take images as inputs instead of strokes. In [38],

Deng et al. proposed another seq2seq model that targets on machine-rendered real-world

math formula images. The model is composed of a CNN and a multi-row RNN as the

encoder, and an attention-based LSTM as the decoder. The model was tested on the

IM2LATEX-100K dataset and outperformed the INFTY system [8]. The model was found

to achieve good performance for recognizing handwritten math formulas as well [39]. In

[40], Wang et al. improved the model in [38] by replacing the CNN encoder with a

DenseNet [41], and enhanced the attention mechanism with a joint attention mechanism

[42], which combines the channel-wise attention with spatial-wise attention. In [43],

Zhang et al. increased the source image size by two times and applied double-attention

mechanism, and improved the performance over [38]. All the above-mentioned works

used the token-level maximum likelihood estimation as the training objective.

PDF Recognition

Similar to ME extraction, techniques for PDF document analysis can also be

categorized into two types: PDF parser-based and OCR-based techniques. PDF parsers are

tools used to decode PDF source files [4] into font objects which contain information such

as text, bounding boxes, sizes, etc. On the other hand, OCR-based approaches process

PDF documents as images. In either type, it is crucial to recover the structure of the pages

and differentiate between math and text.

In PDF parser-based approaches, statistics of font information can be used to

analyze the structure of PDF pages and detect math expressions. For example, in [21]

17

Wang et al. developed a PDF parser based on PDFBox to extract font objects from PDF

documents, and used statistics of font positions and sizes to separate math expressions

from plaintext. In [26], they further developed a bigram regularization model to

incorporate the neighboring information to enhance the boundary detection between math

and plaintext. Similarly, Iwatsuki et al. in [22] trained a conditional random field (CRF)

which incorporated neighboring information and linguistic features, and achieved

performance gain on detecting inline math expressions. Once math expressions are

located, additional techniques are required to recognize the contents. For example, Baker

et al. in [24] used a linear grammar approach to parse math expressions in PDF documents,

and went further in [14] to interpret the semantical meaning of math expressions using

spacing and font information. A major limitation of this type of technique is that they rely

on the text information in fonts, which are not always available.

OCR-based approaches are not subject to the missing font problem but can involve

more in-depth techniques. This is because information available in PDF parsers will

instead need to be inferred from pixel values. Fortunately, modern OCR techniques,

especially deep learning techniques, have made it possible to effectively extract such

information from images. For example, Gao et al. demonstrated using CNN to detect math

expressions [13] from PDF documents, and showed that combining pixel information with

PDF parser output can further enhance the recognition accuracy. Deng et al. [38, 39]

demonstrated that by using the CNN-LSTM neural network architecture with attention

mechanism, it is possible to translate an image of a math formula into its markup LaTeX

18

source in an end-to-end fashion. In [44], the performance is further enhanced with

positional encoding and sequence-level training.

We have reviewed the literature on math extraction and recognition. Still,

recognizing an entire PDF page is a more complicated task and there are very few tools

available for this. Tesseract OCR [45], originally developed in Hewlett-Packard lab and

now maintained by Google, is an excellent open-source OCR tool that recognizes not only

text in different languages at high accuracy, but also the basic structure of pages. However,

it does not handle math expressions thus cannot be used to process mathematical

documents. InftyReader [8] is the only known system by far that recognizes PDF pages

with math expressions. It is a commercial software based on the Infty system [8] developed

by Suzuki et al, which can not only convert math expressions to LaTeX and MathML, but

can also process entire PDF pages and recover the markup LaTeX sources.

Extracting Figures and Tables from PDF Documents

In the 2017 international conference on document analysis and recognition

(ICDAR), a research competition [46] was held on page object detection algorithms for

document images. The target objects include figures, tables, and displayed math formulas.

Almost all submitted works used deep learning models to detect page objects. Among

these works, Faster-RCNN [47] is the most popular choice because it is the state-of-the-

art object detection model that has been widely used on natural scene images. Saha et al.

in [48] used this model to detect page objects. Due to the lack of training data, they used

transfer learning based on a pre-trained model trained on ImageNet [49]. The model

achieves excellent accuracy on table detection, but on figure and math expression

19

detection the accuracy becomes lower. A similar approach was proposed by Schreiber et

al. earlier in [50]. In this work, the authors also used Faster-RCNN but focused on table

detection and went further to use another neural network to detect table rows and columns.

A common shortcoming of deep learning-based approaches is the lack of data and the

drifting of the predicted bounding boxes, which are not effectively captured by the

evaluation criterion--intersection over union (IOU) rate of 80%. In contrast, PDF parser-

based methods can behave more robust since text information can be utilized. In addition,

captions can be detected easily based on string matching and position heuristics. In [51],

Perez-Arriaga et al. developed a TAble Organization (TAO) system based on PDFMiner

[3]. TAO generates table candidates by applying heuristic rules based on structural

alignments on the XML output of PDFMiner. It then extracts the text contents of each cell

in the candidate tables and saves them into JSON format. This system is purely based on

structural information without using text information, thus does not detect captions. In

[52], Clark et al. developed a figure and table detection system called PDFFigures. The

system uses a unified framework to detect both figures and tables based on the observation

that a region with no body text that is adjacent to a caption must contain either tables or

figures. The first step is to extract the text with a PDF parser, and then detect captions

based on keywords matching and a few heuristic rules. Body text and figure text (text

inside figures/tables) are differentiated by page margins. Once the captions are located,

their adjacent regions of space are scored based on their size, number of figure text, etc.

Finally, the captions are assigned to the proposed regions with the highest scores. Figures

and tables are differentiated by the caption keywords. In [10], the authors added more

20

heuristic rules to the software and released PDFFigures 2.0, which is applicable to

publications in a wider range of topics.

21

CHAPTER III

MATH EXPRESSIONS EXTRACTION FROM PDF DOCUMENTS BASED ON

MODELING OF FONTS*

This chapter proposes a multi-stage architecture to extract math expressions (ME)

from PDF documents based on font analysis. The feed-forward algorithm starts from

symbol-level analysis based on metadata of PDF objects, including font size, font name,

and glyph name. Two subsequent stages utilize a group of spatial and semantic heuristics

to merge multiple ME symbols into both inline ME and displayed ME. For inline ME,

they are blended into plaintext sentences in scientific papers. Detecting inline MEs is a

non-trivial problem due to the unrestricted usage of font styles and blurred boundaries

with plaintext in scientific publications. For instance, many inline MEs detected by

existing algorithms are split into multiple parts incorrectly due to the misidentification of

a few characters. As such, we propose a bigram regularization model to resolve the split

detection problem in inline ME detection. The model incorporates neighboring constraints

*Reprinted with permission from “Extraction of Math Expressions from PDF Documents
based on Unsupervised Modeling of Fonts” by Wang, Z., Beyette, D., Lin, J., & Liu, J. C.
in 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp.
381-386), Copyright 2019 IEEE, “Bigram Label Regularization to Reduce Over-
Segmentation on Inline Math Expression Detection” by Wang, X., Wang, Z., & Liu, J. C.
in 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp.
387-392), Copyright 2019 IEEE, and “Semi-Automatic LaTeX-Based Labeling of
Mathematical Objects in PDF Documents: MOP Data Set” by Beyette, D., Wang, Z., Lin,
J., & Liu, J. C. in the Proceedings of the ACM Symposium on Document Engineering 2019
(DocEng’19) (pp. 1-4), Copyright 2019 ACM.

22

during labeling of ME vs. plaintext. The algorithm is tested on the Marmot dataset

(amended with missing cases). For displayed ME, the proposed method achieved 93.6%

precision, 99.4% recall, and 96.4% F1-score. For inline ME, the method achieved 92.2%

precision, 91.9% recall, and 92.1% F1-score. In addition, the algorithm only takes an

average of 1.09s to process a page, which is faster than other existing methods. Finally,

we will introduce the MOP (Mathematical Objects in PDF Documents) dataset and the

semi-automatic ME labeling system used to generate the dataset. A total of 1,802 PDF

pages from arXiv high energy physics (hep-th) were labelled, and a benchmark was

generated with the proposed algorithm.

Overview

Natural language processing (NLP) techniques have been widely used to extract

knowledge from scientific publications and facilitate the process for information retrieval

[53]. However, NLP techniques are specifically designed for standard natural languages,

which makes it difficult to be directly used in lots of scientific publications because a

sentence is often mixed with non-textual elements such as math expressions (ME). Thus,

identifying the non-textual parts of a sentence becomes a critical issue. This is especially

important for Portable Document Format (PDF) documents, because the PDF format does

not contain tagged information about its content. PDF is the de facto standard format for

modern electronic publications. Although the PDF format is a versatile format for

document sharing and printing, it is difficult to retrieve non-plaintext information from

PDF documents. While research has been done on recognizing basic components from

PDF documents, such as headings, tables, paragraphs, etc. [54-56], extraction of

23

mathematical expressions remains an unsolved problem. Human readers can effortlessly

distinguish MEs from natural language words, based on reserved words, names, and

symbols, it can be highly challenging for a computer to achieve perfect accuracy in ME

extraction, especially when plaintexts are used for ME representations. In addition,

complex math notations/symbols may be composed of smaller pieces of graphic

primitives. For instance, a square root “ 			” could be composed of graphic elements “√”

and “−” in PDF. MEs can be loosely classified as displayed MEs and inline MEs.

Displayed MEs are isolated from plaintext and occupy one or more lines. They are

relatively easier to detect because of their special spatial patterns. Inline MEs are blended

into natural language sentences and are generally harder to detect.

Being able to detect MEs automatically would greatly benefit the sentence

understanding by machines such as Part-Of-Speech Tagging [57]. In addition, the MEs

themselves contain important information because they are concise representations of

scientific contents in publications, especially in the Science, Technology, Engineering,

and Mathematics (STEM) fields. As such, being able to extract MEs automatically is the

foundation to scientific contents analysis. Different approaches have been proposed to

extract ME from PDF documents. One category of existing works used the optical

character recognition (OCR) techniques by first converting the PDF documents into

images. However, special math symbols and spatial relationship could be incorrectly

recognized by OCR tools. OCR techniques do not utilize the rich information encoded in

PDF format. Another category of solutions used PDF parsers to extract PDF objects first,

and then apply rule-based methods or machine learning algorithms to predict MEs. The

24

key is to utilize the encoded features with discriminant power in order to achieve good

extraction performance at low computation cost.

In this chapter, we propose a multi-stage algorithm to extract ME, based on the

hierarchical relationship between math elements. In the first stage, we introduce a

likelihood ratio test model based on font size variation feature, and matching of font name

and glyph name to detect individual ME symbols. In the following stages we propose a

group of heuristic rules to merge ME symbols into inline MEs and displayed MEs. Finally,

we will introduce a bigram regularization model that utilizes the neighboring information

in bigram tokens to fix the misidentified ME labels and reduce the split ratio. The model

penalizes the label change thus increases the stability of the prediction. While our model

is simple, fast, and accurate, it does not recover the semantics (the math symbolic notation)

of ME symbols when they are encoded by multiple PDF objects. Thus, we will use

“symbol” and “PDF object” interchangeably in the following sections.

The Multi-Stage Algorithm

In our model, a PDF document is formulated as a set of encoded PDF objects. The

metadata of an object describes its attributes, such as Unicode, bounding boxes, font,

glyphs (shape in vector graphics), glyph names, etc. A math symbol can be represented by

a set of PDF objects. A set of closely spaced math symbols forms a math token which

represents a multi-variable/operator math notation. An ME may be composed of multiple

tokens. The overall hierarchy, starting from PDF objects, math symbols, math tokens, to

inline and displayed MEs is illustrated in Figure 3.

25

Figure 3 The flow chart of the system model. The bottom line shows an example of
the metadata of “Ω”. Glyph name and Unicode are shown in grey because they are

not always available in PDF documents.

The preprocessing step, stage 0, performs the PDF parsing in order to extract

features needed for symbol extraction. At stage 1, symbols are classified into ME vs.

plaintext using a likelihood ratio test model based on font size features, and matching of

font name and glyph name. At stage 2, symbols are merged into tokens, which are further

merged to produce inline ME vs. plaintext words based on a few different heuristic rules.

At stage 3, displayed MEs are identified based on a group of spatial rules.

Stage 0: PDF Pre-processing and Feature Design

PDF Pre-processing

Several open source PDF libraries are available for PDF parsing, e.g., Apache

PDFBox [6], Apache Tika [17], PDFMiner [3], etc. We developed a customized PDF

26

parser on top of the PDFBox library to extract PDF objects and their metadata including

font name, glyph name, Unicode, and two types of bounding boxes (BBox). There are two

types of BBoxes: font box and glyph box. The PDF specification states that a font box is

“the smallest rectangle enclosing the shape that would result if all of the glyphs of the font were

placed with their origins coincident and then filled” [4]. A font box (marked as red boxes in

Figure 4) usually has some white space between the box edges and the symbol itself. These

boxes are identical to the highlighted boxes when marking text on PDF files. The glyph

box is a box in contact with the glyph shape [4] (shown as the green boxes in Figure 4).

Effective methods to calculate gylph boxes can be found in [24, 58].

Figure 4 Font box, glyph box, and three different types of gaps in a sequence of
PDF objects representing words and an ME.

Using the top left coordinates of each glyph box as the reference position of each

PDF object, we first sort these PDF objects in the left to right, and top to down sequence.

Glyph boxes are not used in the subsequent ME extraction steps, but they are still

important for future ME layout analysis (e.g., subscript, superscript). We also adopt the

projection profiling cutting (PPC) method to separate text into different columns [21]. The

PPC technique is based on calculating the total count of black pixels for each column line.

27

The blank space between adjacent columns has zero (black pixel) counts, and is used as a

delimiter to direct the order of row-by-row PDF objects.

In addition to the column spacing, three other types of spacing gaps among PDF

objects are analyzed: the symbol gap, token gap, and line gap, which are illustrated in

Figure 4. The physical gap sizes may vary among documents, but their relative

relationship on the histogram holds. Figure 5 shows an example of the histogram for gap

values of a PDF page. Based on the observation on histograms, we set the first highest

peak of the histogram as the symbol gap: the gap between adjacent symbols in a token.

We set the second highest peak to be the token gap. Adjacent symbols whose gaps that are

smaller than the token gap are grouped as tokens. In plaintext, a token usually corresponds

to a natural language word. In MEs, a token could be only part of an ME because the gaps

inside MEs are less uniform and can be larger than the token gap value. Thus, the gap-

based analysis is necessary for detecting tokens of PDF objects, but additional attributes

are needed to recover the structure of MEs.

Figure 5 A histogram of gaps between adjacent font boxes on a PDF page. X-axis
shows the gap distance in pt. The bin width is 0.1 pt.

28

Font size as a feature

In our system design, the height of a font box is defined as its font size. Similarly,

the height of a glyph box is defined as its glyph size. In most documents, the font size for

plaintext remains unchanged, except for headings, special layouts, e.g., highlights, tables,

etc. On the other hand, we observed that the font size of symbols in most MEs changes

frequently.

Figure 6 (1) Text stream vs. font size (in pt) of a single PDF page. The black circles
mark the occurrences of different PDF elements. (2) A zoom in which shows the

phrase and its font sizes.

An example of the font size distribution for a PDF page, which contains the phrase

illustrated in Figure 4, is given in Figure 6 (1). The font size for the main body text is

around 13pt. However, the font size changes with other components: figure/table captions,

headings, inline/displayed MEs, etc. In this particular example, the font sizes in MEs range

from 5pt to 21pt, where the very large font sizes correspond to large operators, and the

very small ones correspond to sub- or superscripts. Figure 6 (2) gives a zoom in view of

font sizes corresponding to the sentence in Figure 4, with the actual symbols plotted on

top of the trace line, clearly suggesting the font size fluctuates in MEs. This patterns were

consistently observed in numerous examples, except when plaintexts were directly used

29

as MEs. This observation leads to the design of an unsupervised algorithm for symbol-

level ME detection, where the font size is used as the detection feature. Details of this

algorithm are discussed next.

Stage 1: Symbol-level ME Detection

This stage is consisted of two parts: (1) font size based likelihood ratio test, and

(2) font/glyph name based matching.

Font Size-based Likelihood Ratio Test

Although MEs usually have variations in font size, the font size change alone is

not sufficient to detect MEs because 1) font size also changes during transitions from the

main body text to other elements such as headings, captions, etc.; 2) neighboring symbols

inside an ME may have the same font size. Thus, a statistical model is necessary to

incorporate the font size information systematically. Here we propose to use a likelihood

ratio test model for symbol level classification of ME vs. non-ME (NME). That is, let c

be an unknown symbol/character on a PDF page, 𝐹𝑆 be its font size, and 𝐿 ∈ 𝑀𝐸,𝑁𝑀𝐸

be its label. The likelihood ratio 𝐿2 test is based on the font size information, formulated

as follows:

𝐿2 𝑐 =
𝑃(𝐿 = 𝑀𝐸|𝐹𝑆 = 𝑓𝑠%)
𝑃(𝐿 = 𝑁𝑀𝐸|𝐹𝑆 = 𝑓𝑠%)

The decision rule for any character 𝑐 is that: if 𝐿2 𝑐 > 1, 𝐿 𝑐 = 𝑀𝐸, otherwise

𝐿 𝑐 = 𝑁𝑀𝐸. The key questions is how to estimate the likelihood on the right-hand-side

in the equation. One obvious solution is to use ground truth data with human-labeled MEs,

and model the likelihood 𝑃(𝐿 = 𝑀𝐸|𝐹𝑆 = 𝑓𝑠%) with a supervised training model.

30

However, ground truth data can be expensive to label and contains human errors. An even

more important issue is that the font size feature may not be generalized across different

PDF pages. For example, a certain font size may be used intensively for plaintext in one

document, but used mainly for MEs in a different document. Here, we instead propose an

unsupervised grouping algorithm to generate ME/NME training samples automatically

based on the font size variations. We build this model for each page we process

independently.

First we observe that the font size changes in MEs occur rapidly within short

distances. On the other hand, the font size of plaintext contents, including headings,

figure/table captions, etc., changes at much longer distances. Based on this property, we

propose a grouping algorithm to classify unknown symbols into two groups: 𝐺=>?2@ and

𝐺A?BC based on their distances to font size change, and use the groups as samples to

estimate the likelihood of ME vs. NME. The pseudocode of this method is shown below:

Table 2 Pseudocode of the symbol grouping method
Symbol grouping method

procedure GROUP(P)
/* P is the sorted collection of all symbols on a page */
1 current_size = first_symbol.size
2 G = []
3 for char in P:
4 if char.size != current_size:
5 if length(G) <= threshold:
6 add all symbols in G to Gshort
7 else:
8 add all symbols in G to Glong
9 G = []
10 current_size = char.size
11 add char to G
12 return Gshort and Glong
end GROUP

31

We set the threshold in the above grouping algorithm as 3. To explain this choice,

we inspected 562 inline and displayed MEs from the Marmot dataset [59] and visualized

the pattern of font size change inside MEs. The result is shown in Figure 7. We observe

that the font size in MEs changes within 3 symbols in 95.2% of the cases. Thus, 3 is a

reasonable choice for the threshold.

Figure 7 The length of symbol sequence until a font size change.

To derive the decision rule, we hypothesize that symbols in 	GEFGHI are ME

samples, and symbols in GJGKL are NME samples on an unknown PDF page. Let

Count(c|FS = fsW) be the total number of symbols with font size	fsW on a page. We can

estimate the likelihood as:

P L = ME FS = fsW =
Count(c|FS = fsW, c ∈ GEFGHI)

Count(c|FS = fsW)

32

P L = NME FS = fsW =
Count(c|FS = fsW, c ∈ GJGKL)

Count(c|FS = fsW)

Merge the above equations, we have:

LH c =
Count(c|FS = fsW, c ∈ GEFGHI)
Count(c|FS = fsW, c ∈ GJGKL)

Font Name and Glyph Name Matching

In addition to the font size feature, font name and glyph name of ME symbols also

provide very useful information for identifying MEs. Knowing that numerous custom

fonts are available in PDF documents, a systematic enumeration is required to complete

the matching approach. As a demonstration, we explored a limited number of PDF

documents, and identified that font names containing the following substrings are meant

for ME symbols: (“GreekwithMathPi”, “Math”, “+MSBM”, “+CMSY”, “+CMMI”).

Glyph names such as operators (“plus”, “equal”, “element”, “summationdisplay”), Greek

symbols (“delta”, “gamma”), etc., also indicate ME symbols. Symbols with the above font

and glyph names are identified as ME symbols.

Figure 8 Fragmented detection of symbols in an ME. Symbols in red/green
rectangles indicate symbols that are classified as ME/NME.

As it will become clear in Section IV, Stage 1 alone already yields good

performance at the symbol level. That being said, most MEs are composed of a sequence

of multiple symbols, which should be aggregated into one single entity, rather than as

separate ones. Figure 8 illustrates an example which should be labelled as one single ME,

33

rather than a number of split ME symbols (marked in red) and false negatives (marked in

green). In this case, the “min” and the parentheses are not recognized as ME because they

have the same font size as plaintext (marked in green). The stage 2 algorithm aims to

address this issue based on a number of heuristic rules.

Stage 2: Inline ME Detection

As mentioned earlier, symbols are grouped into a token when their gaps are smaller

than the token gap threshold. That being said, additional steps are required to decide if

adjacent ME tokens need to be further merged into one ME.

First, a token is designated as an ME token when any of its symbols is a known

math symbol, and all symbols in the same token are also labeled as ME symbols. For the

example in Figure 8, the word “min” in “minu∈[0,1]” will be labeled as ME because it is

within the same token as "c∈[d,e]", which are known math symbols from the previous stage.

Based on this rule, we get the token-level ME detection.

Next, adjacent ME tokens are merged into one ME as an inline ME candidate.

Three additional rules are employed in this step: 1) plaintext commas, periods, and

semicolons located at the end of the token are excluded from the merging process; 2) when

a math operator (“=”, “+”, “∈”, etc.) is at the beginning or end of a token, its neighbor

token is also merged; 3) if unmatched parentheses are detected inside a token, we extend

the token until parentheses become valid. After the merging process, the ME in Figure 8

becomes complete.

 34

Stage 3: Displayed ME Detection

A line is identified as a displayed ME if it satisfies one of the two rules: 1) the line

contains ME symbols and starts or ends with an equation number in the following format:

“(x)” where “x” is an integer, and a gap exist between the equation number and the rest

symbols; 2) the line contains only ME tokens or white-listed math words such as (“max”,

“exp”, “mean”, “sin”, etc.), without other common natural language words. For

implementation, we used Pattern [60] and Wordnet lemmatizer [61] to normalize the

words into their root form, and then match them with the natural language corpus from the

Natural Language Toolkit (NLTK) [62].

A lengthy displayed ME may take more than one line. To merge these equations

across lines, we check if the beginning or the ending symbol of a displayed ME is a math

operator. If so, we merge this line with its neighbor line into one displayed ME. An

example is shown on the first row in Table 3. Fraction line, which is often encoded as

graphic elements, can cause false split of an equation, as the second example in Table 3.

In this case, the displayed ME was falsely labeled into 3 different MEs. This issue can be

readily solved by merging lines whenever they are overlapped (line gap<0). A drawback

of this rule is that false merging can occur when a displayed ME overlaps with a plaintext

line, but these cases are rare. Another scenario is that very often the binding variables of

large math operators are falsely detected as separate MEs, as shown on the third row in

Table 3. To identify these binding variables, we evaluate the neighbor lines of every

displayed ME. The rules for a neighbor line to be binding variables is empirically derived

as follows: 1) this line is bounded by the displayed ME on the horizontal-axis, and 2) the

 35

height of this line is smaller than the average line height or the line gap between this line

and the displayed ME is less than the average line gap. If such a line were detected, we

merge it with the displayed ME line.

Table 3 Examples for the displayed ME detection. Green boxes indicate the
detected NME. Red Boxes indicate the detected inline ME. Blue boxes indicate the
detected displayed ME.
Steps Before After

Multi-line

ME

Fraction

Line

Binding

Variables

Bigram Regularization Model for Inline ME Detection

Displayed MEs are easier to detect because of their unique spatial layout with

respect to other plaintext and inline MEs. Inline MEs are more difficult to detect because

of their unrestricted usage of fonts and blurred boundaries with plaintext. Figure 9

describes an inline ME scenario, which is the focus of this paper. The false and miss rate

for state-of-the-art inline ME detection is about 10% [21], which is still unsatisfactory. A

major issue is that many inline MEs are detected as multiple parts, as shown by the blue

highlights in Figure 9.

 36

Figure 9 An example of split detections of inline MEs. The parts that are detected
successfully are marked in blue. The red lines mark the boundaries of tokens.

Inline MEs are usually identified on the word level, or more precisely, token level.

A token refers to a group of neighboring characters that are spatially close to each other

(boundaries of tokens are marked by red lines in Figure 9). A token typically corresponds

to either a natural language word, or a part of an ME. Unfortunately, existing works on

ME extraction [12, 21, 59] are mainly pointwise solutions, which means these works only

treated tokens as independent units without systematically incorporating their neighboring

information. The issue of the pointwise strategies is that the extracted MEs are prone to

high split ratios, as MEs could be composed of multiple tokens, but the misidentification

of a single token would result in a split detection. This problem is especially common

when plaintext is used inside the ME. We observed two facts indicating that neighboring

information could be useful to reduce the high split detection ratios: 1) misclassified

tokens often have blurred classification boundaries, i.e., similar posterior probability for

being an ME or Non-ME (NME); 2) the neighboring tokens of a misclassified token are

often detected correctly.

Inspired by the pairwise potentials concept commonly used in the Markov Random

Field (MRF) algorithm, this paper proposes a bigram regularization model that utilizes the

neighboring information in bigram tokens to fix the misidentified ME labels and reduce

the split ratio. Next, we first present the formulation of the inline ME detection. Second,

 37

we illustrate some observations on the split cases and show the necessity for bigram

modeling. Third, we present the formulation of an objective function that incorporates

both unigram and bigram terms. Fourth, we transformed the objective function into a

Mixed Integer Programming (MIP) problem. Finally, we explain an implementation with

the Bayesian model to derive the ME likelihood for unigram tokens and show a detailed

case study of the bigram regularization.

Document Model and Problem Formulation

We formulate a PDF document as different hierarchical elements, as shown in

Figure 10. A PDF document 𝐷h is consisted of pages {𝑃h
j} , where each page 𝑃h

j is

composed of columns {𝒞h,jm }. A column 𝒞h,jm contains lines {𝐿h,j,mA }, where each line could

stand for a displayed ME or a mix of inline ME and plaintext. Each line 𝐿h,j,mA is composed

of characters which could be organized as a sequence of tokens, (𝑡h,j,m,Ae , 𝑡h,j,m,Ao , …). A token

could either be a plaintext word or part of an ME, where each character 𝑐 ∈ 𝑡 is associated

with glyph name value 𝑣%, font 𝑓%, etc.

 38

Figure 10 The formulation of a PDF page. The red rectangles mark different
elements, including columns, lines, tokens, characters, and examples for inline ME

and displayed ME.

The inline ME identification will be performed on the lines that are not identified

as displayed MEs. Given such a line 𝐿 = {𝑡e, … 𝑡qr}, the goal is to predict inline ME label

sequence 𝑦 = {𝑦e, … , 𝑦qr}, where the subscript is omitted for convenience. 𝑁t is the

number of tokens in the line. 𝑦h ∈ {0,1} is the ME label, where 0 stands for NME and 1

stands for ME. The inline ME identification is performed on each line separately. MEs

across multiple lines are left separate because the goal is only to find the ME bounding

boxes.

 39

Why Bigram Model?

Figure 11 ME likelihood of tokens in a sentence mixed with natural language words
and MEs. We took the log of the probabilities for better scalability.

Here we use a case study to demonstrate the necessity for bigram modeling. Figure

11 shows a detailed analysis of the sentence in Figure 9. The x-axis shows the sequence

of tokens, while the y-axis shows the log of ME/NME likelihood for each token 𝑡h. The

likelihood is derived from the Bayesian model [21]. We observe that the plaintext words

(“for”, “so”, “that”) have a large log probability for NME as compared to ME. On the

contrary, most ME parts have a large log probability for ME as compared to NME. There

are less determinant zones such as “t”, “.”, “,”, “1”. The over split issue happens because

the tokens “t”, “1”, and “,” in the less determinant zone are misclassified as NME. We

further observe that the labels of their direct neighbors are classified correctly. This

indicates that a bigram model that utilizes the neighboring information would help correct

these misclassifications and hence reduce split detections.

 40

The Bigram Regularization

In this section, we will first brief the unigram (single token) decision model, and

then show how neighboring information is incorporated as the bigram regularization term

to improve the inline ME decision process.

From the view of a unigram decision process, the goal is to assign the most likely

labels 𝑦h to each of the observed tokens 𝑡h , i.e., maximizing the posterior probability

𝑃(𝑦h|𝑡h)h∈[e,qr] . This is equivalent to minimizing the negation of summation of log

probability − log	(𝑃(𝑦h|th))h∈[e,qr] , which can be further formulated as:

𝑈 𝑦 = − 𝑦h 𝑙𝑜𝑔 𝑃{| 𝑡h + 1 − 𝑦h 𝑙𝑜𝑔(𝑃q{|(𝑡h))
h

	

where 𝑃[q]{| th could be obtained from a classification model, e.g., the Bayesian model

[21] or the SVM [12]. For convenience, we write

𝑈 𝑦 ≡ − 𝑦h	𝑙𝑜𝑔	(𝐿𝑅(𝑡h))
h

	

where

𝐿𝑅 𝑡h = 𝑃{|(𝑡h)/𝑃q{|(𝑡h)	
𝑈 𝑦 represents the unary potentials. The unary term alone indicates that each

token t is treated as independent from others. However, we observed that this is not

sufficient because the neighboring tokens could contain useful information to correct the

misclassified inline ME labels. In order to incorporate the neighboring information, we

propose to add a pairwise term into the objective function. The pairwise term acts as

bigram regularization which prefers the label 𝑦h to be similar to its direct neighbors 𝑦h�e

and 𝑦h�e. Mathematically, we add a penalty 𝑃 𝑦 	to account for label change:

 41

𝑃 𝑦 = 𝑦h − 𝑦h�e
h∈ e,qr

	

By merging the unary and pairwise terms, we have the following objective

function:

𝑓 𝑦 = 𝑈 𝑦 + 𝜆𝑃 𝑦 	
where λ > 0 is a weight parameter for the pairwise penalty.

Regularization Solver Design

Since the pairwise term in the objective function is in absolute value 𝑦h − 𝑦h�e ,

𝑖 ∈ 1, 𝑁t , the optimization problem becomes non-linear. Fortunately, we can transform

the objective function into a linear function by introducing two auxiliary variables.

Let 𝑧�h and 𝑧�h be two auxiliary variables with the following constraint set 𝒞:

𝑧�h + 𝑧�h = 𝑦h − 𝑦h�e

𝑧�h − 𝑧�h = 𝑦h − 𝑦h�e

𝑧�h , 𝑧�h ∈ {0,1}
	

This way, the objective function is transformed into the following form:

𝑓 𝑦, 𝑧 = − 𝑦h 𝑙𝑜𝑔 𝐿𝑅 𝑡h + 𝜆 (𝑧�h + 𝑧�h)
h∈[e,qr)h∈[e,qr]

	

subject to the constraint set 𝒞 and 𝑦h ∈ {0, 1}.

This is essentially a Mixed-Integer Programming (MIP) problem, which could be

solved by a linear integer solver. In our implementation, we used the Simplex algorithm

in the CyLP software package [63] to solve this function.

 42

Scenario Analysis for the Bigram Regularization

We will study two scenarios based on the example in Figure 11. We first focus on

this segment of the sentence: [“[”, “1”, “,”, “T]”]. The likelihood for these four tokens is

roughly [-14, 0, 0, -15]. The values of the objective function under different predicted

labels are enumerated in Table 4.

Table 4 The value of the objective function under different label assignments for
token sequence [“[”, “1”, “,”, “T]”].

Label	 Objective	value	 Reduced	
[1,0,0,1]	 1*-14+0*0+0*0+1*-15+2𝜆	 -29+2𝜆	
[1,0,1,1]	 1*-14+0*0+1*0+1*-15+2𝜆	 -29+2𝜆	
[1,1,1,1]	 1*-14+1*0+1*0+1*-15	 -29	

From the table, we can see that if we assign label 0 (NME) to the less determinant

tokens (“1” and “,”), which are between two highly determinant ME (“[” and “T]”), a

penalty of 2𝜆 will be introduced. As long as 𝜆 > 0, the objective function would be

minimized when labels [1,1,1,1] are chosen, which means the bigram regularization

successfully solves the over split issue in this scenario.

On the other hand, we should not set 𝜆 too high, as it would blur the boundaries

between ME and NME. To explain this, we look into the bigram [“that”, “w”] in Figure

11. The log likelihood for these two tokens are roughly [13, -12]. Again, we enumerate

the objective function value under different labeling situation in Table 5 below:

 43

Table 5 The value of the objective function under different label assignments for
token sequence [“that”, “w”].

Label	 Objective	value	 Reduced	
[0,0]	 0*13+0*-12	 0	
[0,1]	 0*13+1*-12+𝜆	 -12+𝜆	
[1,0]	 1*13+0*-12+𝜆	 13+𝜆	
[1,1]	 1*13+1*-12	 1	

This time the ground truth label is [0,1], which corresponds to an objective

function value of -12+𝜆. In this case, if 𝜆 is set to larger than 12, the best prediction

becomes [0,0], which would introduce false negatives into the results. Thus, we need to

select the value of 𝜆 carefully during the decision process. We will present a more detailed

analysis in the experiment section on the effect of the parameter 𝜆.

Experiments and Results

The Marmot Dataset

We used the Marmot dataset [59] to evaluate our algorithms. The dataset contains

400 single PDF pages collected from the CiteSeerX digital library. Each page has human-

labeled ground truth BBoxes for each MEs. The original dataset contains 1575 displayed

MEs and 7907 inline MEs. We also included the 1888 additional MEs annotated in [64]

as they are missing from the original ground truth (e.g., in page “10.1.1.161.9629_10”

alone, 23 inline MEs are missing from the ground truth data.). MEs inside the figure areas

are excluded from the evaluation process because they are not labeled in the ground truth

data.

 44

Experiment Setup

We will first report the performance on the symbol-level ME detection (Stage 0),

and then the detailed evaluation on the ME-level detection. For comparison purposes, we

implemented the FSB model [21] and compared it with our method.

The evaluation is based on the overlapping of BBoxes. Let 𝑀C@	be the set of ground

truth BBox, 𝑀%	be the set of predicted ME symbol BBox, and 𝑀��	be the set of predicted

ME BBox. The relationship between two BBoxes could either be fully overlapped (OL),

fully separated (SP), contained (CT), or partially overlapped (OS). The OL relationship

required two BBoxes to have a common area larger than 95%. The OS relationship

indicates a common area smaller than 95%.

For symbol-level detection, we report the performance using the three metrics

defined below:

• Correct: ∃𝑚C@ ∈ 𝑀C@, 𝑟𝑒𝑙(𝑚%	, 𝑚C@) = 𝐶𝑇

• False: ∀𝑚C@ ∈ 𝑀C@, 𝑟𝑒𝑙(𝑚%	, 𝑚C@) = 𝑆𝑃

• Miss: a symbol is in 𝑀C@ but not in 𝑀%

For ME-level detection, we report the evaluation metrics defined in [21]. The

detailed metrics include correct (Cor), miss (Mis), false (Fal), partial (Par), expanded

(Exp), partial and expanded (Pae), merged (Mer), and split (Spl). The general metrics

include precision, recall, and F1-score. We report the ME-level performance on inline ME

and displayed ME separately, and then the two combined.

 45

Results and Discussions

Symbol-level Performance

Table 6 Symbol-level evaluation results
Correct False Miss

Stage 1.1 69,716 3,902 44,695
Stage 1.2 46,269 1,601 68,142
Stage 1.1+1.2 81,081 4,532 33,330

We first show the detailed performance of Stage 1. Stage 1 consists of two sub-

steps: Stage 1.1) font size-based likelihood ratio test and Stage 1.2) font name and glyph

name matching. Here we report the performance of Stage 1.1 and Stage 1.2 individually,

and the two combined. Table 6 shows the statistics of the evaluation data. In total, there

are 114,411 ME symbols in the dataset. Stage 1.1 alone gives us precision 94.7% and

recall 60.9%. Stage 1.2 alone gives us precision 96.7% and recall 40.4%. With Stage 1.1

and Stage 1.2 combined, we get precision 94.7% and recall 70.9%. This result shows that

most of the ME symbols are captured by the likelihood ratio test (Stage 1.1). While font

name and glyph name gives a much lower recall rate, they complement the font size

information. Still, we have a non-negligible amount of miss detections even when the two

sub-steps are combined. The main cause is the miss detections on plaintext, numbers, and

parentheses inside MEs. We will show that the following stages significantly reduce the

miss rate.

 46

ME-level Performance

Table 7 Detailed performance statistics for ME-level detection
Cor Mis Fal Par Exp Pae Mer Spl

Displayed
ME (FSB) 839 208 473 970 57 33 0 31
Displayed
ME (Ours)

1181 9 109 238 128 35 2 2

Inline ME
(FSB)

4192 829 2290 2971 1491 800 2 2

Inline ME
(Ours)

5598 810 776 2580 651 397 5 0

Table 7 summarizes the detailed performance statistics. Compared to the baseline

method, our algorithm improves the performance significantly especially on Cor, Fal, and

Pae. A large number of expanded boxes and partially detected boxes from the FSB model

becomes perfect matches (95% coverage) with our algorithm. Also, false positives are

greatly reduced. Next we compare precision, recall, and F1-score. On displayed ME, our

algorithm achieves precision 93.6%, recall 99.4%, and F1 96.4%. In comparison, the FSB

model has precision 80.3%, recall 90.3%, and F1 85.0%. On inline ME, our algorithm

gives precision 92.2%, recall 91.9%, and F1 92.1%. The FSB model has precision 80.5%,

recall 91.9%, and F1 85.8%. By combining the two types of MEs together, our algorithm

gives precision 92.4%, recall 93.0%, and F1 92.7%. The FSB model gives precision

80.5%, recall 91.7% and F1 85.7%.

Another similar study [13] based on the deep learning model reported 93.4% F1-

score on the original Marmot dataset [59]. Knowing that the original Marmot dataset

missed a number of cases [64], it would be useful to rerun the experiment with the

amended ground truth data to assess its robustness.

 47

Computation Cost

Our experiment was done on a PC with Intel Xeon 3.5Ghz CPU, 16GB RAM. On

the Marmot dataset, our algorithm takes an average of 1.09s to extract MEs from one page.

The FSB model is a weakly-supervised model, which takes an average of 4.48s to process

a page on the same machine. Supervised machine learning methods take longer to train

models and make predictions. Take [23] for example, it takes 763 seconds to train word

classifiers, and takes about 10 seconds to predict a word.

The MOP Dataset

Knowing that there are large amount of labeling errors in the Marmot dataset, we

also developed a more accurate and larger dataset MOP [65] based on a semi-automated

LaTeX-based labeling system. MOP dataset contains 1,802 PDF pages, each

corresponding to the ground truth bounding boxes of math expressions. The overall semi-

automatic pipeline used to generate the dataset is shown in Figure 12. The pages in the

MOP dataset are constructed from hep-th papers and their LaTeX sources on arXiv. PDF

pages are processed with our PDF parser to output a string of glyph names. LaTeX source

files are processed with LaTeXML [66] software to output strings and math expressions

with identifiers. The math expressions in PDF are located by matching the strings in the

two types of outputs. The bounding boxes are automatically generated and visually

inspected to guarantee correctness. The visual inspection is done by a research personnel

as a Boolean correction manner – pages with errors are discarded, while pages without

errors are kept. In total, there are 1,802 pages generated for this dataset, containing 10,486

MEs and labels of their bounding boxes. On average, there are 28.4 MEs per page. This is

 48

more math-dense than the Marmot dataset. At the same time, the MOP dataset also

contains more diverse pages, such as those with references. In comparison, pages in

Marmot are more uniform in that they are all selected as the central parts of papers.

Figure 12 The semi-automatic pipeline used to generate the MOP dataset.

We also tested our multi-stage ME extraction algorithm on this dataset. The

evaluation results serve as a benchmark of this dataset. In Table 8, we show the detailed

comparison of the performance of the algorithm on this dataset and on the Marmot dataset.

As we can see, the F1-score on the two datasets are similar, which suggests that the

algorithm performs relatively robust across different types of papers. However, we also

observe that the precision on the MOP dataset is noticeably lower. This is due to the

diversity of the MOP dataset. For example, the URL links in the references could introduce

false positives in the proposed algorithm, because they can also introduce font size

changes. On the other hand, the recall score is higher on the MOP dataset, which suggests

that the font-based features in the proposed algorithm suits better for pages generated with

the LaTeX math mode.

 49

Table 8 Benchmark of the MOP dataset
Data Set F1 Precision Recall

MOP 91.8% 86.4% 97.8%

Marmot 93.1% 93.1% 90.5%

Summary

In this chapter, we presented a multi-stage algorithm to detect math expressions

from PDF documents. We first extracted metadata from PDF objects and identified the

font size as an effective feature. Then we used a grouping method based on the font size

feature to generate labels and estimate the likelihood for being ME/NME. Symbol-level

detection is done by likelihood ratio test and font name and glyph name matching.

Subsequent steps merged ME symbols into inline/displayed MEs based on spatial and

semantic heuristics. Next, we proposed a bigram label regularization model to solve the

split detection issues during inline ME extraction from scientific publications. The model

is composed of a unary term that uses the unigram ME likelihood information, and a

pairwise term that incorporates the bigram neighbouring information. The bigram

regularization model can greatly reduce the over split issue, which is very important in the

later stages of ME parsing. The case study also showed the model’s interpretability. The

bigram regularization model also serves as a proof-of-concept to incorporate other types

of neighbouring constraints and penalties. The algorithm could serve as the foundation to

applications such as PDF tagger, structural and semantic analysis on MEs, math-based

information retrieval, etc.

 50

CHAPTER IV

MI2LATEX: MATH FORMULA IMAGES TO LATEX TRANSLATION BASED ON

DEEP NEURAL NETWORKS*

In this chapter we propose a deep neural network model with an encoder-decoder

architecture that translates images of math formulas into their LaTeX markup sequences.

The encoder is a convolutional neural network (CNN) that transforms images into a group

of feature maps. To better capture the spatial relationships of math symbols, the feature

maps are augmented with 2D positional encoding before being unfolded into a vector. The

decoder is a stacked bidirectional long short-term memory (LSTM) model integrated with

the soft attention mechanism, which works as a language model to translate the encoder

output into a sequence of LaTeX tokens. The neural network is trained in two steps. The

first step is token-level training using the Maximum-Likelihood Estimation (MLE) as the

objective function. At completion of the token-level training, the sequence-level training

objective function is employed to optimize the overall model based on the policy gradient

algorithm from reinforcement learning. Our design also overcomes the exposure bias

problem by closing the feedback loop in the decoder during sequence-level training, i.e.,

feeding in the predicted token instead of the ground truth token at every time step. The

*Reprinted with permission from “Translating Math Formula Images to LaTeX Sequences
Using Deep Neural Networks with Sequence-level Training” by Wang, Z., Liu, J. C.
in arXiv (2019): arXiv-1908, Copyright 2019 arXiv.

 51

model is trained and evaluated on the IM2LATEX-100K dataset and shows state-of-the-

art performance on both sequence-based and image-based evaluation metrics.

Overview

Math formulas often carry the most significant technical substances in many

science, technology, engineering and math (STEM) fields. Being able to extract the math

formulas from digital documents and translate them into markup languages is very useful

for a wide range of information retrieval tasks. Portable Document Format (PDF) is the

de facto standard publication format, which makes document distribution very easy and

reliable. Although math formulas can be recognized by human readers relatively easily,

computer-based math formula recognition in PDF documents remains a major challenge.

This is mainly because the PDF format does not contain tagged information about its math

contents. Recognizing math formulas from PDF documents is intrinsically difficult

because of the presence of unusual math symbols and complex layout structures. In

addition, math formulas in PDF documents could partially be represented by blocks of

graphics directly rendered from the PDF glyphs, which preserves the correct shapes but

misses the meaning of contents. These problems would be readily solved if the markup

sources of the PDF documents are available. A good example is the preprint repositories

arXiv.org which gives readers access to the LaTeX source files along with the PDF files,

but it only comprises a small fraction of the existing digital publications. For vast majority

of digital documents, advanced techniques are needed to translate the PDF math contents

into their markup sources. Being a structured math description language, LaTeX can be

 52

used to retrieve math formulas, and can be easily converted to other formats such as

MathML [67] to support high-level applications.

With the earliest effort dating back to 1967 [68], different approaches have been

developed to recover math contents with different levels of success. Recent advancement

in optical character recognition (OCR) techniques has made it possible to recognize text

in digital documents at high accuracy. However, recognizing math formulas is difficult,

because on top of recognition of individual math symbols, it is also necessary to recognize

the structural relationship among symbols, such as sub/sup-scripts, nested fractions,

matrix, etc. Researchers have developed rule-based structural analysis methods and

syntactic parsers to convert math formulas to their markup languages. One successful

example is the INFTY system [8], which was designed to convert documents into

structured formats like LaTeX, and was later made into a commercial software called

InftyReader for digital document processing. With the rise of deep learning technology, it

has been demonstrated that hand-crafted features and rules can now be replaced by

learnable feature representations.

Translating math formula images to LaTeX sequences is a joint field of image

processing and text processing, which has recently gained increased research interest in

the deep learning community [30-32]. The sequence-to-sequence model (seq2seq), also

called the encoder-decoder architecture, has been successfully applied to intersect these

two fields. The encoder for such applications is usually a convolutional neural network

(CNN) which encodes the input images as abstract feature representations, and the decoder

is usually a recurrent neural network (RNN) that represents a language model to translate

 53

the encoder output into a sequence of tokens drawn from a vocabulary. This architecture

makes the size of input images and output sequences flexible, and could be trained in an

end-to-end fashion. Seq2seq model has been successfully used in image captioning [31,

32] and scene text recognition [30] tasks, which shares similar technical requirements with

that of the image to LaTeX task. Recently, the authors in [38] successfully applied an

attention-based seq2seq model to translate images to LaTeX, which demonstrated the

model’s capability of handling structural contents.

Leveraging the previous success, in this chapter we propose a new seq2seq model

called MI2LS (Math Image to LaTeX Sequence) which focuses on addressing three key

problems that have not been investigated in prior works. Firstly, to help the model better

differentiate the 2-dimensional spatial relationship of math symbols, we propose to

augment the image feature maps by adding sinusoidal positional encoding for richer

representation of spatial locality information. Secondly, we propose a sequence-level

objective function based on the BLEU (bilingual evaluation understudy) [69] score, which

could better capture the interrelationship among different tokens in a LaTeX sequence

than the token-level cross-entropy loss. Knowing that the sequence-level evaluation score

is discrete and non-differentiable, we propose to solve the optimization problem based on

the policy gradient algorithm [70] in reinforcement learning for model training. Thirdly,

we eliminate the exposure bias [71] problem by closing the feedback loop during the

sequence-level training, i.e., feeding back the predicted token instead of the ground truth

token for the next time step. This is made possible because the token alignment problem

in token-level training no longer exists in sequence-level training. The overall model

 54

architecture includes a CNN encoder, an RNN decoder, and a soft attention mechanism,

as shown in Figure 13. The model was trained and evaluated on the IM2LATEX-100K

dataset [38], and achieved state-of-the-art performance on both the BLEU score and image

similarity measurements.

Figure 13 The proposed encoder-decoder architecture of the deep neural network.

Neural Network Architecture

In this section, we first present the formulation of the problem. Next, we introduce

the proposed seq2seq architecture as shown in Figure 13, and explain the encoder, which

is a convolutional neural network augmented with positional encoding, and the decoder,

which is a stacked bidirectional long short-term memory (LSTM). In the end, we explain

the soft attention mechanism.

 55

Problem Formulation

The math formula recognition problem is formulated as a sequence prediction

problem. Let (𝑥, 𝑦) be an image-LaTeX sequence pair. 𝑥 ∈ ℝ ×¢ is a grayscale image

with height 𝐻 and width 𝑊 . 𝑦 = [𝑦e, 𝑦o, … , 𝑦¥] is the ground truth LaTeX sequence

consisting of 𝑇 tokens that marks up the math formula in the image. 𝑥 can be rendered by

𝑦 using the standard TeX compiler. The goal of our task is to recover	𝑦 given the input

image 𝑥, i.e., to find a mapping function 𝑓 so that 𝑓(𝑥) → 𝑦. Given a set of 𝑁 image-

LaTeX ground truth pairs 𝐺 = {𝑥h, 𝑦h}h§eq , we use supervised training to build a sequence

prediction function 𝑓 that approximates 𝑓 . During the test time, we use 𝑓(𝑥) → 𝑦 to

predict a LaTeX sequence 𝑦 that reconstructs the input image 𝑥. Evaluation is done by

measuring the similarity between 𝑦 and the ground truth sequence 𝑦, and between the

rendered image 𝑥 and the ground truth image 𝑥.

Encoder

The encoder is used to encode the input images into abstract feature

representations. It is composed of a convolutional neural network (CNN) and positional

encoding.

Convolutional Neural Network

We use a CNN to extract features from the input images. CNN is consisted of

convolution, pooling and activation layers. At each convolution layer, an input image is

convolved with a set of kernels, which act as image filters. The kernel values are trainable,

which makes the image features data-driven instead of hand-crafted. The pooling layer is

usually composed of a max pooling function or average pooling function, which reduces

 56

the image size and increases the size of the receptive field. The activation layer adds

nonlinearity to the neural network. It is usually a Rectified Linear Units (ReLU) that

replaces negative inputs with 0 and keeps the positive inputs unchanged. We use a CNN

architecture based on the VGG-VeryDeep that has been adapted particularly for OCR

applications [34]. Details of the CNN configuration can be found in Table 9. The feature

maps are convolved to a 2D matrix instead of a flattened feature vector in order to retain

the spatial locality information, as shown in Figure 13. This practice also allows the model

to accept input images of arbitrary size. As a result of the CNN configuration, both the

width W’ and height H’ of the output feature maps are 8 times smaller than that of the

input image, and each position is 𝐷 dimensions deep (𝐷 = 512 in our implementation).

Table 9 The encoder CNN configurations. #maps: the number of feature maps. k:
kernel size. p: padding size. s: stride size. BN: batch normalization. The sizes are in
order (height, width).

Type #maps k p s

BN -
Convolution 512 (3,3) (1,1) (1,1)

MaxPooling (2,1) (0,0) (2,1)

BN -
Convolution 512 (3,3), (1,1) (1,1)

MaxPooling (1,2) (0,0) (1,2)

Convolution 256 (3,3) (1,1) (1,1)

BN -
Convolution 256 (3,3) (1,1) (1,1)

MaxPooling (2,2) (0,0) (2,2)

Convolution 128 (3,3) (1,1) (1,1)

MaxPooling (2,2) (0,0) (2,2)

Convolution 64 (3,3) (1,1) (1,1)

Input Gray-scale image

 57

Positional Encoding

For text recognition, one could simply unfold the feature maps from the encoder

to an array and feed it into an RNN decoder without explicitly considering spatial

localization, because RNN is capable of capturing left-to-right location ordering.

However, in math formulas, the spatial relationship among symbols span along different

directions: left-right, top-down, sub/sup-scripts, nested, etc. The positional relationships

among math symbols carry critical math semantics. As such, special efforts to preserve

spatial locality are necessary. Here we tailor the 1-D positional encoding technique

proposed in the Transformer model [9] to 2-D as follows:

𝑃𝐸 𝑥, 𝑦, 2𝑖 = sin(𝑥/10000¨h/©)
𝑃𝐸 𝑥, 𝑦, 2𝑖 + 1 = cos(𝑥/10000¨h/©)

𝑃𝐸 𝑥, 𝑦, 2𝑗 + 𝐷/2 = sin(𝑦/10000¨j/©)

𝑃𝐸 𝑥, 𝑦, 2𝑗 + 1 + 𝐷/2 = cos(𝑦/10000¨j/©)
where 𝑥 and 𝑦 specifies the horizontal and vertical positions, and 𝑖, 𝑗 ∈ [0, 𝐷/4) specifies

the dimension. These signals are added to the feature maps.

The positional encoding has the same size and dimension as the feature maps. Each

dimension of the positional encoding is composed of a sinusoidal signal of a particular

frequency and phase, representing either the horizontal or the vertical directions. We use

a timescale ranging from 1 to 10000. The number of different timescales is equal to 𝐷/4,

corresponding to different frequencies. For each frequency, we generate a sine/cosine

signal on the horizontal/vertical direction. All these signals are concatenated to 𝐷

dimensions. The first half of the dimensions encodes the horizontal positions, and the

second half encodes the vertical positions.

 58

Figure 14 Visualization of the positional encoding.

In Figure 14 we show a visualization of the positional encoding when 𝐷 = 512.

The top half of the figure shows the positional encoding signals changing along one axis.

The signals span from position 1 to 100 at dimension 1, 128, 256, and 384. The signal

frequency decreases as the dimension number increases. The bottom half shows the

positional encoding signals in 2D. The signals span from position (1,1) to (100, 100) at

dimension 1 and 512. Dimension 1 encodes the horizontal positions, and dimension 512

encodes the vertical positions.

The positional encoding has the same size as that of the feature maps and is defined

for every channel (𝐻«×𝑊′×𝐷). The positional encoding and the feature maps are added

together, and then unfolded into a 1-dimensional array 𝐸 ∈ ℝt×e×©, where 𝐿 = 𝐻«×𝑊′ is

 59

the length of the array. Each vector 𝑒h ∈ 𝐸 has a dimension of 𝐷, which is the feature size.

Each such vector corresponds to a certain part of the input image. Note that this position

encoding technique has the advantage of not adding new trainable parameters to the neural

network. Furthermore, compared to trainable positional embedding, sinusoidal encoding

can be scaled to lengths that are unseen in the training data.

Decoder

RNN is well suited for sequence prediction tasks, because it maintains a history of

the previous predictions and is able to traverse from the start to the end of sequence at

arbitrary length. Let 𝑉 be the vocabulary that contains all the permissible LaTeX tokens.

We use an RNN to approximate a language model 𝑝(𝑦@|𝑦e, … , 𝑦@�e, 𝐸), which makes a

prediction on the probability distribution of the token 𝑦@ ∈ 𝑉 at time 𝑡 based on the

prediction history 𝑦h¯@ and the encoder output 𝐸 . Next we introduce the token

representation and the structure of the RNN.

Token Embeddings

A LaTeX token refers to a basic processing unit within a LaTeX sequence. The

LaTeX source of a formula is first split into a sequence of tokens 𝑦e, 𝑦o, … , 𝑦¥ (details of

LaTeX tokenization can be found in the next section). A token can be fed into the RNN in

different representations. One straightforward option is to represent each token as a one-

hot vector, which implies that tokens are orthogonal to each other, and thus it may miss

important language semantics. Similar to natural language words, many LaTeX tokens are

interrelated. For example, ‘{‘ and ‘}’ may have a higher correlation because they need to

be used in pair as defined in the LaTeX grammar. As a result, we propose to add a word

 60

embedding [72] layer commonly used in NLP, where a token 𝑦@ is projected into a high-

dimensional vector 𝑤@:

𝑤@ = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑦@

This embedding is trainable and is able to capture the interrelationship between different

tokens [72].

Stacked Bidirectional LSTM

Figure 15 (a) The structure of the stacked bidirectional LSTM with attention layer.
(b) The structure of an LSTM cell, where 𝒊, 𝒇, 𝒐 represent input gate, forget gate,

and output gate separately.

We propose to use a decoder model based on two layers of bidirectional long-short

term memory (LSTM) cells [73]. Stacking multiple layers of LSTM increase the depth of

the RNN and thus helps to capture more complex language semantics. Using bidirectional

cells in each layer helps to capture the contexts from both forward and backward directions

between tokens. Figure 15 (a) shows the structure of the stacked bidirectional LSTM that

we used. For convenience, we will simply refer to this network as RNN henceforth.

 61

LSTM is more capable of handling long sequences than the standard RNN, which

is subject to the vanishing gradient problem [74] with the growth of sequence length.

Figure 15 (b) shows the structure of an LSTM cell. The core to the LSTM is the cell state

𝑐@ that records the information that has been observed at time 𝑡. The LSTM is capable of

adding or removing information from the cell state via three types of gates: input gate 𝑖@,

forget gate 𝑓@, and output gate 𝑜@. As implied by their names, these gates control read of

the current input, forget of the current cell state value, or output of the current cell value.

Each gate is comprised of a sigmoid neural network layer and a pointwise multiplication,

expressed as below:

𝑖@ = 𝜎(𝑊hµ𝑤@�e +𝑊h>ℎ@�e)
𝑓@ = 𝜎(𝑊·µ𝑤@�e +𝑊·>ℎ@�e)

𝑜@ = 𝜎(𝑊?µ𝑤@�e +𝑊?>ℎ@�e)
𝑐@ = 𝑓@ ∗ 𝑐@�e + 𝑖@ ∗ tanh(𝑊%µ𝑤@�e +𝑊%>ℎ@�e)

ℎ@ = 𝑜@ ∗ 𝑐@
where ℎ@ represents the RNN hidden state at time 𝑡, 𝜎 represents the sigmoid function,

and 𝑊 represents the weight matrix.

In NLP applications, the initial hidden state and cell state of the decoder is usually

the output of the encoder RNN. However, in our model the encoder is a CNN which does

not yield such an output. In order to derive informative initial states for the RNN decoder,

we add additional layers to train the initial states based on the encoder output as below:

ℎd = tanh	(𝑊>
1
𝐿

𝑒h

t

h§e

+ 𝑏>)

𝑐d = tanh	(𝑊%
1
𝐿

𝑒h

t

h§e

+ 𝑏%)

 62

Attention

Theoretically, LSTM can be scaled up to capture long-term memory as needed.

However, it is not uncommon that the markup of a complicated math formula extends to

over a hundred LaTeX tokens. In such cases, an initial hidden state vector in RNN would

be insufficient to compress all the information from the encoder. This problem is even

more profound in our model because the CNN encoder does not have memory capability.

The attention mechanism [35] has been introduced to solve this problem and has now

become a widely adopted approach to enhance the performance on longer sequences.

Basically, it maintains the complete encoder output, namely, the memory bank 𝐸, based

on which to calculate a context vector 𝐶@ for the decoder at every time step 𝑡. We adopt

the soft attention mechanism, which means that the context vector 𝐶@ is calculated as a

linear combination of the vectors 𝑒h ∈ 𝐸 in the memory bank:

𝐶@ = 𝛼h@𝑒h

t

h§e

where 𝛼h@ is the ith weight at time 𝑡.

The attention weights are calculated with an additional feedforward layer by

feeding in the previous hidden state of the LSTM ℎ@�e and the memory bank 𝐸, and then

pass it through a softmax layer for normalization:

𝑎h@ = 𝛽¥tanh	(𝑊eℎ@�e +𝑊o𝑒h)
𝛼h@ = softmax(𝑎h@)

where the softmax function is used to generate a probability distribution that sums up to

1, defined assoftmax 𝑎h@ = exp 𝑎h@ / exp	(𝑎m@)t
m§e . The attention weights indicate

 63

which parts of the memory bank should be focused on at the current time step, thus helps

the model better capture the salient parts of the input image.

To incorporate the context vector 𝐶@ information into the RNN, we compute

another hidden state vector 𝑂@ based on the context vector 𝐶@ and the current hidden state

ℎ@. 𝑂@ is called an attentional hidden state vector, which is fed back into the next time step

of the RNN. It is also used to compute the probability distribution of the next token:

𝑂@ = tanh	(𝑊À ℎ@, 𝐶@)
We also adopt the input-feeding approach proposed in [35], in which the input

embedding vector is concatenated with the attentional vector from the previous time step

as the input for the RNN. This way, decisions are made by considering the past alignment

information.

ℎ@ = 𝑅𝑁𝑁(ℎ@�e, 𝑤@�e, 𝑂@�e)
The prediction probability becomes:

𝑝(𝑦@) = softmax	(𝑊 𝑂@)

which represents the probability distribution of the next token over the vocabulary V.

Training objectives

An ideal objective function should be constructed at the sequence level because of

the rigorous nature of the LaTeX grammars. In addition, it is highly desirable that the

objective function is differentiable for the backpropagation algorithm. In this section we

will describe the design of a sequence-level objective function and techniques to compute

its derivative based on the policy gradient algorithm. We note that it is infeasible to train

the neural network with the sequence-level objective function from a random start,

because the neural network may not converge under a poor random prediction policy. To

 64

overcome these challenges, we start off by training the neural network with a token-level

objective function until it converges. This forms the initial state for the sequence-level

training, as such the model can focus on a much smaller search space.

Token-level Objective Function

The objective function of the token-level training is based on the maximum

likelihood estimation (MLE). Given a training dataset of image and LaTeX sequence pairs

{𝑥h, 𝑦h}h§eq of size 𝑁 , where 𝑥h and 𝑦h represents the ith input image and ground truth

LaTeX sequence respectively, the goal is to find a set of parameters 𝜃 that maximizes the

log-likelihood of the training data:

𝜃{t| = argmax
Ä

𝐿{t| 𝜃

where

𝐿{t| 𝜃 = 𝑝 𝑦h, 𝑥h
q

h§e

= 𝑝 𝑦@h 𝑦eh , … , 𝑦@�eh , 𝑥h
¥

@§e

q

h§e

	

This is equivalent to minimizing the cross-entropy loss (XENT):

𝐿Å|q¥ 𝜃 = −
1
𝑁

𝑦h ∙ log	(𝑦h)
q

h§e

where 𝑦h is the prediction. The derivative of the cross-entropy loss can be directly used as

the gradient.

The token-level objective function faces two limitations. Firstly, it maximizes the

probability of the next correct token, without considering the sequence-level contexts

governed by the LaTeX grammar. Secondly, to avoid the token misalignment problem,

the ground truth token needs to be fed into the RNN at every time step during the training

 65

time, instead of using the RNN’s previous prediction. At the prediction time, however, the

previous prediction from the RNN is fed back as the next input since the ground truth data

is no longer available. As a result, the probability distribution being trained on is

𝑝(𝑦@|𝑦h¯@, 𝐸) , but the probability distribution being tested on is 𝑝(𝑦@|𝑦h¯@, 𝐸) . This

discrepancy is known as the exposure bias [71] problem. The sequence-level training

objective function aims to overcome these problems.

Sequence-level Objective Function

The formulation of a sequence-level training objective starts with its sequence-

level performance metrics. Let (𝑥h, 𝑦h) be the ith training pair, and 𝑦h be the prediction.

Let R(𝑦h	, 𝑦h) → [0,1] be a function that maps the predicted sequence to a scalar reward,

where a larger value indicates a better performance. R(𝑦h	, 𝑦h) could be the BLEU score

or any other evaluation metrics. The optimization goal is to maximize the expected reward

across the dataset:

𝐿Ç 𝜃 = 𝔼�É(ÊË|µË)[R 𝑦h	, 𝑦h]
q

h§e

= 𝑝Ä(𝑦h|𝑥h)R(𝑦h, 𝑦h)
ÊË∈Ì(µË)

q

h§e

where 	𝔼 ∙ denotes the expectance and Υ(𝑥h) is the set of all the possible predicted

sequences for the input image 𝑥h. The training objective becomes:

𝜃Ç = argmax
Ä

{𝐿Ç 𝜃 }

This sequence-level objective function aims to optimize the prediction of

individual tokens within the context of the entire sequence. It also makes it possible to

eliminate the exposure bias problem because the optimization is no longer based on each

individual token but on the entire sequence, thus it is no longer necessary to feed in ground

 66

truth token at every time step to guarantee token alignment. We can simply close the

feedback loop by feeding the predicted token instead of the ground truth token to the next

time step during the training time.

Notice that it is computationally infeasible to optimize 𝐿Ç 𝜃 based on exhaustive

search due to the exponential growth of the search space of Υ(𝑥h). Meanwhile the gradient

descent is not directly applicable here because the reward function R 𝑦h	, 𝑦h is a discrete

function of the prediction thus is not differentiable. To address this problem, recent

solutions have been proposed in NLP community [71, 75, 76], which proposes to

formulate this optimization problem as a reinforcement learning problem. In this setting,

the prediction model is treated as an agent. Prediction on the next token is an action. At

completion of the prediction, the predicted sequence is compared against the ground truth

sequence to get a sequence-level evaluation score, which is the reward. The parameters of

the neural network define a policy. Even though 𝐿Ç 𝜃 is not differentiable, the policy

gradient algorithm [70] can be used to transform the gradient of expectation as an

expectation of gradient so that we can avoid taking derivative over the reward function:

∇Ä𝐿Ç 𝜃 = 𝔼�É(ÊË|µË) R 𝑦h, 𝑦h ∇Ä log 𝑝Ä(𝑦h|𝑥h)
q

h§e

In principle, one may leverage the REINFORCE algorithm [77] to estimate the

above expectation based on sampling methods. In specific, the expected value can be

approximated by taking one sample from the distribution 𝑦	~	𝑝Ä(𝑦|𝑥h) using multinomial

sampling [78]. Unfortunately, it difficult for the neural network to converge this way due

to the high variance in gradient estimation. One technique to reduce the variance is to

 67

subtract an average reward 𝑟 from the prediction reward [71]. This way, the estimated

derivative becomes:

∇Ä𝐿Ç 𝜃 = R 𝑦h	, 𝑦 − 𝑟 ∙ ∇Ä log 𝑝Ä(𝑦|𝑥h)
q

h§e

The average reward 𝑟 was estimated by training a separate neural network layer in

[71]. In our work, we simply use Monte Carlo sampling to estimate 𝑟 , i.e., taking 𝑘

samples from the multinomial distribution and calculate the average value. Now that the

derivative is obtainable, the backpropagation algorithm can be used for the sequence-level

training.

Experiments

In this section, we will first introduce the dataset used to train and evaluate our

model, and then discuss the evaluation metrics and other baseline methods, followed by

implementation details in the end.

Dataset and Preprocessing

We used the public dataset IM2LATEX-100K [38], which is constructed from the

LaTeX sources of publications crawled from High Energy Physics - Theory topic on

arXiv.org. The dataset contains a total of 103,556 LaTeX sequences representing different

math formulas. The length of characters of each sequence ranges from 38 to 997, with

mean 118 and median 98. Each math formula is rendered into the PDF format by the

pdfLaTeX1 tool, and then converted to greyscale images in PNG format at resolution 1654

1LaTeX (version 3.1415926-2.5-1.40.14)

 68

× 2339. The dataset provides a standard partition of a training set of 83,883 formulas, a

validation set of 9,319 formulas, and a test set of 10,354 formulas.

The training of our model starts with constructing a token vocabulary 𝑉. This can

be done by tokenizing the LaTeX sources in the dataset. A straightforward approach to

tokenize the LaTeX sources is to treat each individual character as a token. A more

sophisticated approach is to parse the LaTeX sources into shortest reserved LaTeX words.

For example, '\psi' stands for “ 𝜓” in LaTeX, which would be treated as one single token,

rather than four separate tokens ‘\’, ‘p’, ‘s’, ‘i’. The second approach has the obvious

advantages of reducing the sequence length and avoiding unnecessary prediction errors

and computations. However, this approach is not trivial because it needs to have a

complete list of LaTeX reserved words and an effective parsing algorithm to segment the

LaTeX sources. Here we adopt the LaTeX parser developed in [38]. This parser first

converts a LaTeX source into an abstract syntax tree using KaTex [79], and then generates

the tokens by traversing through the syntax tree. One can also apply tree transformation

during this process to normalize the LaTeX sequences. This normalization step can reduce

the LaTeX polymorphic ambiguity since a same math formula image can be produced

from different LaTeX source sequences. Details of the normalization rules can be found

in [38]. Two utility tokens <START> and <END> are added to the vocabulary to represent

the start of sequence and end of sequence respectively. The decoder is initialized with the

<START> token and keeps making predictions until it encounters the <END> token. We

end up with a vocabulary of size of 483.

 69

Images are preprocessed by being cropped to only the formula area, and then

downsampled to half of their original sizes for memory efficiency. To facilitate

parallelization, images of similar sizes are grouped and padded with whitespaces into

buckets of 20 different sizes.2

Evaluation Criteria and Baselines

Two types of performance metrics are used to measure the accuracy of the

prediction system. The first is the BLEU score between the predicted sequence and the

ground truth sequence. Widely used to measure the quality of machine translation on

natural languages, the BLEU score measures overlapping of n-grams. We report the

cumulative 4-gram BLEU score commonly used in the literature. Due to the LaTeX

grammar ambiguity, (e.g., 𝑥h
j can be expressed by either x_i^j or x^j_i), we further report

the similarity between the ground truth image and the image rendered from the predicted

LaTeX sequence based on four different metrics: image edit distance, exact match, exact

match without space, and Image-based Mathematical Expression Global Error (IMEGE)

[80]. The image edit distance refers to the column-wise edit distance between the ground

truth image and the tested image. To calculate the image edit distance, the image is first

binarized, and then converted into a 1D array. Each element in the array is a string

representation of that column of data (the string is composed of 0’s and 1’s). The edit

2Different sizes of width-height buckets (in pixel): (320, 40), (360, 60), (360, 50), (200,
50), (280, 50), (240, 40), (360, 100), (500, 100), (320, 50), (280, 40), (200, 40), (400,
160), (600, 100), (400, 50), (160, 40), (800, 100), (240, 50), (120, 50), (360, 40), (500,
200).

 70

distance score is equal to 1 − 𝑒, where 𝑒 is the total number of edit operations divided by

the length of the 1D array. We also report the exact match accuracy (i.e., two images are

exactly the same), and the exact match after eliminating the whitespace columns. These

three metrics were first used in [38]. We further report the IMEGE score proposed in [80],

which is based on the idea of image distortion model.

Based on these performance metrics, our method is evaluated against the

commercial software InftyReader [8], and three recent works based on deep learning:

WYGIWYS [38], Double Attention [43], and DenseNet [40]. For completeness, we also

compare our model with the popular commercial software Mathpix [81]. Since it is a

closed-source for-profit software, we only run it manually on 100 images and report the

evaluation results.

Implementation Details

Given a relatively small vocabulary size of 483, we choose a small token

embedding size of 32. The dimension of the CNN feature maps and that of the RNN hidden

states are both set to 𝐷 = 512. The mini-batch gradient descent algorithm with Adam

optimizer [82] is used to train the parameters, with an initial learning rate of 0.1. Batch

size is set to 16 due to GPU memory limitation. To reduce overfitting and improve

generalization, the dropout technique [83] with dropout rate of 0.4 is used during training.

Randomly dropping out nodes during training can be viewed as a form of simulation to

create an ensemble of different neural network configurations.

For sequence-level training, the choice of evaluation metrics is very flexible. For

computation efficiency, we use BLEU score as the sequence-level evaluation metric. The

 71

initial learning rate is set to 0.00005 for the reinforcement training. The sampling size 𝑘

for calculating the average reward is set to 20.

To reduce the chance of being trapped at suboptimal solutions, beam search [84]

is used while making predictions during the test time. At every time step, beam search

selects 𝑏 tokens with the highest probabilities from the vocabulary. The model stops

making new predictions until all 𝑏 predicted tokens become <EOS>. We use a beam size

𝑏 = 5.

The overall system is implemented in PyTorch [85] to produce a deep learning

model consisting of 10,870,595 parameters. It is trained on an 8GB NVIDIA Quadro

M5000 GPU with 2048 CUDA cores.

Results and Discussions

General Performance

Table 10 Performance evaluation of different models on the IM2LATEX-100K
dataset.
Model BLEU Image Edit

Distance
Exact
Match

Exact Match
(-ws)

IMEGE

INFTY 66.65 53.82 15.60 26.66 -
WYGIWYS 87.73 87.60 77.46 79.88 90.26
Double
Attention

88.42 88.57 79.81 - -

DenseNet 88.25 91.57 - - -
MI2LaTeX
w/o Reinforce

89.08 91.09 79.39 82.13 95.41

MI2LaTeX
with Reinforce

90.28 92.28 82.33 84.79 96.15

The detailed performance results are reported in Table 10, where the last two rows

show the performance of our model without and with the sequence-level reinforcement

 72

training. All the four deep learning models achieved a significantly better performance

over the InftyReader system. Among different deep learning models, [43] and [40]

achieved a better performance over the deep learning baseline [38], which is attributed to

the introduction of more sophisticated convolutional networks and attention models. The

best performance is achieved by training our model with BLEU score as the reinforcement

reward, which shows the highest score on all the five evaluation metrics, with a BLEU

score of 90.28%, image edit distance of 92.28%, exact match rate of 82.33%, exact match

rate without whitespace of 84.79%, and an IMEGE score of 96.15%. The performance

results reaffirm our observation about the importance of preserving positional locality,

sequence-level optimization criteria, as well as the elimination of the exposure bias

problem.

Figure 16 Robustness analysis on token length vs. image edit distance with different
models. The black curve shows the density distribution of token lengths in the test

set.

 73

Next, we report a robustness analysis of our model vs. WYGIWYS [38] with

respect to the sequence length. We use a bin size of 10 to quantize the sequence lengths,

and report the average of the image edit distances within a bin as the performance metric.

The results of the two models are shown in Figure 16. As expected, the performance of

both models declines as the sequence length increases, but at significantly different rates.

Knowing that the training set does not contain sequence longer than 150 tokens, this means

that the models are also tested on samples with unseen lengths during the test time. At

sequence length of 150, the edit distance scores of ours vs. [2] are 0.79 and 0.43,

respectively, and at the length of 200, the two scores are 0.54 and 0.17 respectively. Our

model shows the capability to handle sequences of unseen length better than the baseline

model, especially in the range within 300. Notice that only 3.4% of the test samples have

a length longer than 150 tokens, as indicated by the histogram of the token lengths shown

in black curve, which makes the performance score after 150 spiky because of the data

sparsity. The extra-long LaTeX sequences usually corresponds to large matrices or multi-

line math formulas. It remains an open problem to translate them reliably.

In terms of computation cost, the model is first trained for 23 epochs with the MLE

as the objective function, which took around 16 hours. The model with the highest token-

level accuracy on the validation set is chosen as the candidate model for the sequence-

level training. After we switched to the sequence-level objective function, the model is

trained for another 15 epochs, which took around 75 hours. The best model was selected

as the one with the highest BLEU score on the validation set.

 74

An analysis of Mathpix

We manually ran the Mathpix software on 100 images. These images are selected

as the first 100 images in the test set of IM2LATEX-100K. We also re-evaluated our

model on this subset of images. Table 11 shows a detailed comparison between the two

systems.

Table 11 Mathpix vs. MI2LaTeX on 100 images.
Mathpix MI2LaTeX

BLEU 80.64 92.08

Image Edit Dist 76.19 93.38

Exact Match 8.00 82.00

Exact Match (-ws) 34.00 84.00

IMEGE 83.19 97.23

As we can see, MI2LaTeX achieves significantly higher scores than Mathpix on

all evaluation metrics. This is inconsistent with our observation that Mathpix is highly

accurate. Particularly, the exact match rate of Mathpix is surprisingly low. By

investigating further, we found two reasons that lead to this result. The first reason is that

the LaTeX coding style of Mathpix is very different from human coding style. This can

be observed from the LaTeX sequences generated by Mathpix. Take "\left” and “\right”

operators for example. These two operators appear 273 times in the Mathpix predictions

(out of the 100 images) but only 95 times in the ground truth. This instantly brings down

the BLEU score of Mathpix. In comparison, this number is 82 in the MI2LaTeX

predictions, which is close to the ground truth. This is because MI2LaTeX is trained with

 75

human-crafted LaTeX source codes thus it mimics the human coding style. The second

reason is that the symbol distances detected by Mathpix is not as precise. This can be seen

from the first example in Figure 17 (left column). Even though in this example the

inaccurate symbol distances lead to recognition errors, in most cases minor differences on

symbol distances does not lead to semantic errors, and these differences may not even be

visually observable. This explains why the exact match rate is only 8% (i.e., only 8 out of

the 100 images give perfect matches) when we did not visually observe as many errors.

To perform a semantic-level evaluation, we visually inspected the images reconstructed

by Mathpix, and found that only 12 out of the 100 images contain semantic errors. In

comparison, 8 out of the 100 images reconstructed by MI2LaTeX contain semantic errors.

This means the two systems have comparable performance on the tested images. There

are also cases when Mathpix performs better than MI2LaTeX, such as the second example

shown in Figure 17 (right column).

Figure 17 Two examples showing the recognition quality of Mathpix and
MI2LaTeX. The reconstruction errors are highlighted as red blocks.

Discussions

The training is end-to-end, which means no explicit information is given about

segmentation of symbols in the images, scanning direction of the images, or the grammar

 76

for the LaTeX sequence outputs. And the evaluation performance suggests that these

information can be learned implicitly by our deep learning model. In

Figure 27 (Appendix A), we give an example that could help us better understand

the translation process of our model. The red rectangles in the images show the weights

of the soft attention, while deeper color indicates higher weight values. Since the weights

are applied on the CNN feature map, each attention weight corresponds to an area of 8×8

pixels in the original image, which is roughly the size of one character. We observe that

the trained deep neural network can segment the symbols of different shapes and sizes,

some of which are stacked or overlapped, e.g., the superscript “2” inside the square root

under the fraction line. The translation process roughly follows a left-to-right order,

similar to text recognition. Furthermore, it can also go from top-to-down (e.g., numerator

to denominator) or down-to-top (e.g., lower to higher limits in the integral operator). This

demonstrates the importance of capturing the spatial locality information. In addition,

tokens that are not visible in the input images are also generated. For example, ‘_’, ‘^’ are

generated for structural representation. ‘{‘, ‘}’ are generated for grouping. At every time

step, the weights are concentrated on only a few neighborhood regions. The model does

not focus on the whitespaces until it reaches the end, in which cases an <EOS> token is

generated.

Notice that compared to the DenseNet model [40], our model achieved a higher

performance gain on the BLEU score by 2.03%, but a lower performance gain on the

image edit distance by 0.71%. A possible explanation is that the sequence-level evaluation

metric we used for reinforcement learning is the BLEU score. This would naturally lead

 77

to an improvement on the BLEU score performance, but does not necessarily lead to the

same amount of improvement on the image edit distance because of the polymorphic

ambiguity in LaTeX language. Granted, the image edit distance score of course can be

used for sequence-level training, but its drastically increased computing cost makes it an

unattractive option, because every LaTeX sequence needs to be compiled to PDF and then

converted from PDF to image, which requires a lot of file-level I/O, not to mention the

high cost of calculating the image edit distance. One possible future improvement is to

distribute this part of computation to a group of machines to facilitate reinforcement

training using image edit distance. Notice that unlike [43] and [40], our performance gain

over baseline [38] is attributed to adding positional encoding, introducing the sequence-

level training objective, and eliminating exposure bias. We believe that our model could

be potentially further improved by fusing more recent advancement in deep learning

techniques, such as using DenseNet [41] as the encoder, joint attention [42] as the attention

mechanism, and GRU [86] or Transformer [9] as the decoder.

Summary

We have proposed MI2LaTeX, a deep neural network model with encoder-decoder

architecture to translate images with math formulas into their LaTeX source sequences.

The model was trained in an end-to-end manner without explicit labels about image

segmentation and grammar information. Nevertheless, the model managed to learn to

produce LaTeX output sequence that can reproduce the input image. Using the BLEU

score as the reward function and the policy gradient algorithm in reinforcement learning,

we successfully trained the model with sequence-level objective function and eliminated

 78

the exposure bias problem. MI2LaTeX was evaluated on the IM2LATEX-100K dataset

and was compared with other state-of-the-art solutions, and showed the best performance

on both sequence-based and image-based measurements. The model also showed more

robust performance towards longer LaTeX sequences.

 79

CHAPTER V

PDF2LATEX: A DEEP LEARNING SYSTEM TO CONVERT PDF DOCUMENTS

TO LATEX*

The mathematical contents of scientific publications in PDF format cannot be

easily analyzed by regular PDF parsers and OCR tools. In this paper, we propose a novel

OCR system called PDF2LaTeX, which extracts math expressions and text in both

postscript and image-based PDF files and translates them into LaTeX markup. As a

preprocessing step, PDF2LaTeX first renders a PDF file into its image format, and then

uses projection profile cutting (PPC) to analyze the page layout. The analysis of math

expressions and text is based on a series of deep learning algorithms. First, it uses a

convolutional neural network (CNN) as a binary classifier to detect math image blocks

based on visual features. Next, it uses a conditional random field (CRF) to detect math-

text boundaries by incorporating semantics and context information. In the end, the system

uses two different models based on a CNN-LSTM neural network architecture to translate

image blocks of math expressions and plaintext into the LaTeX representations. For

testing, we created a new dataset composed of 102 PDF pages collected from publications

on arXiv.org and compared the performance between PDF2LaTeX and the state-of-the-

*Reprinted with permission from “PDF2LaTeX: A Deep Learning System to Convert
Mathematical Documents from PDF to LaTeX” by Wang, Z., Liu, J. C. in the Proceedings
of the 20th ACM Symposium on Document Engineering 2020 (DocEng’20) (pp. 1-10),
Copyright 2020 by ACM.

 80

art commercial software InftyReader. The experiment results showed that the proposed

system achieved a better recognition accuracy measured by the string edit distance

between the predicted LaTeX and the ground truth.

Overview

We are in an era of explosive growth in digital publications. According to a

research done by the University of Ottawa [1], by the year of 2009, researchers have

published 50 million research papers cumulatively. According to the 2019 arXiv statistics

report [2], around 150,000 preprints are added to the repository site arXiv.org annually,

most of which are in the fields of physics, math, and computer science. This trend is still

fast growing. The vast majority of these papers are published in PDF format, despite some

criticism about the format [3]. The PDF format in its essence is a mixed representation of

different graphical elements, such as predefined fonts or vector graphics [4]. The openness

and the evolving nature of the PDF format make it very difficult to recover a stringent

markup from it. Textual contents can be embedded into PDF fonts, but they can also be

missing or even be wrong [5]. In addition, the format provides no structural information

or tags, making it difficult for machines to understand contents beyond text. Particularly,

math expressions are heavily used and blended into the main body text in scientific papers,

but they are not tagged and are often represented as graphics. This not only harms text-

based information retrieval and knowledge mining but also misses the rich technical

essence carried inside math expressions. As such, we are motivated to build an automated

system that takes mathematical documents in PDF format as inputs and produces their

LaTeX markup. Such a system will help both text-based and math information retrieval

 81

(MIR) [19] using the recovered text and LaTeX markup. MIR is important for math-based

digital libraries, such as NIST Digital Library of Mathematical Functions [87] and

Wolfram Functions Site [88]. The LaTeX markup of math expressions can be further

converted to other formats such as MathML [67] for web browsers, and Braille code [89]

for blind people. The system can also be very useful for re-digitization of image-based

PDF documents.

Existing PDF parsers like PDFMiner [3] and Apache PDFBox [6] are designed to

decode PDF text and reconstruct basic page layout structures such as columns and

paragraphs. However, they have limited ability on processing math expressions, which are

essentially a group of graphical objects, some of which may not even be rendered using

fonts (such as a fraction line). In addition, image-based PDF documents would make PDF

parser-based solutions in vain. Optical character recognition (OCR)-based approaches can

be used to overcome the limitations of PDF parsers. Modern OCR techniques can

recognize English text at very high accuracy [7], but recognizing math expressions

remains challenging because of their complex layout structures. In recent years, several

effective methods have been developed for recognizing math expressions, from explicit

layout structure analysis [8, 90] to end-to-end deep learning models [39, 44]. Yet,

recognizing mathematical documents requires not only the recognition of plaintext and

math expressions individually, but also the exact positions and boundaries of different

elements.

In this chapter, we propose a novel OCR system called PDF2LaTeX, which

leverages recent advancements in machine learning, especially deep learning, to convert

 82

mathematical documents from PDF format to LaTeX. PDF documents are first rendered

into images as the system input. To locate the text and math contents on the images, we

used projection profile cutting (PPC) to segment a page into image blocks of tokens and

ordered them line-by-line. Next, we designed a fully convolutional neural network (CNN)

with global average pooling to classify each image block into text or math. Then, we

trained a conditional random field (CRF) to utilize the semantics and context information

for math-text boundary delineation. This way we obtained an ordered sequence of images

blocks, each containing either a plaintext word or a math expression. To recognize the

contents in each image block, we used two neural networks with CNN-LSTM (Long short-

term memory) architecture to translate plaintext words and math expressions into LaTeX

respectively. We also created a new dataset with 102 PDF pages using real-world arXiv

papers and developed an evaluation tool. Comparison with the state-of-the-art commercial

software InftyReader [8] showed that PDF2LaTeX achieved better conversion accuracy.

The contributions of this work are summarized below:

• Proposed a deep learning-based OCR system that models visual, semantics, and

context information for mathematical document analysis.

• Generated LaTeX markup from PDF documents with state-of-the-art quality.

• Released a new dataset and an evaluation tool for the PDF-to-LaTeX conversion

task.

Segmentation and Detection

In this section, we first discuss the projection profile cutting technique used to

segment a PDF page. Then, we give details on the design of a fully convolutional neural

 83

network for math/text classification, followed by a conditional random field to enhance

the math-text boundary delineation.

Projection Profile Cutting

Projection profile cutting (PPC) is a technique used to detect the structure of a page

by repeatedly cutting an image on the horizontal and vertical direction based on projection

profiles. A projection profile is a histogram calculated by summing together all the pixel

values along either the horizontal or vertical axis. For example, if we project all the black

pixels horizontally, we get a horizontal projection profile that can be used for line

detection.

Figure 18 Visualization of PPC. The bottom plot shows the vertical projection
profile of the entire page. The right plot shows the horizontal projection profile of

the right column.

 84

In our system, PPC is used to segment a page into columns, lines, and tokens.

Specifically, we first render a PDF page into a grayscale image at 250 dpi, then binarize

it and calculate the vertical projection and horizontal projection alternatively. Figure 18

shows a visualization of PPC on a page. The design of our PPC algorithm is based on the

assumption that tables and figures are already detected and removed. We refer the readers

to [50, 51] for table detection and [48, 52] for figure detection algorithms.

Column detection. The first step is to determine if a page is single-column or

double-column. To do this, we first calculate the vertical projection profile based on the

entire image. The rationale is that a double-column page will have an empty region in the

center of the vertical projection profile. Notice that titles and headers can act as noise in

the center region. To remove noise, we designed a finite impulse response low-pass filter

(LPF) to smooth the profile. The filter has an order of 9 and a cut-off frequency of 0.125

Hz. The original vertical projection profile and the profile filtered by the LPF are shown

at the bottom of Figure 18. We then set values that are smaller than 10% of the maximum

value of the profile to zero. If consecutive zeros are observed in the center of the profile,

we split the page into two columns around the zeros and process the line detection and

token detection algorithms on each column separately. Otherwise, we process the entire

page as one column. This algorithm can also be easily generalized to process more than

two columns.

Line detection. We calculate the horizontal projection profile per column and split

the profile into multiple segments of non-zero values. Each such segment becomes the

horizontal boundary of a candidate line. An example is shown in the plot on the right side

 85

of Figure 18. This process produces preliminary results for line segmentation, which are

further processed by several heuristic rules, as detailed below:

Figure 19 Examples of line detection heuristics. (a) Split overlapped lines. (b)
Merge hats. (c) Merge fraction lines. (d) Merge binding variables.

• Overlapped lines. Two separate lines can be falsely merged together if their pixels

overlap horizontally. For example, in Figure 19 (a), the superscript “T” on the

second line overlaps with the pixels on the first line, making their projection

profiles connected together. To handle such errors, we split a profile segment into

two from the center if the height of this line is larger than the most common line

height on the page, but the values around the center are smaller than 10% of the

median of the profile values.

• Variable hats. The hat of a math variable can be falsely detected as an independent

line. An example is shown in Figure 19 (b). To merge hats, if a line is mostly blank

but has small groups of connected pixels, this line becomes a candidate for variable

hats. If the distance between this candidate and its closest neighbor line is smaller

 86

than the most common line distance of this page, this line is merged to its closest

neighbor line as a hat.

• Fraction expressions. A fraction expression can be falsely detected as three

separate lines: the numerator, the denominator, and the fraction line, as shown in

Figure 19 (c). To merge these, we first detect black lines as long narrow lines filled

with black pixels. Next, we merge this black line with its two neighbor lines

(numerator and denominator) if the widths of the neighbor lines are shorter than

the black line and the distance to the black line is smaller than the most common

line distance of this page.

• Binding variables. Binding variables are math variables bonded with big operators

such as a big sum or a big product operator. They can be falsely detected as

independent lines, as shown in Figure 19 (d). To merge the binding variables with

the big operators, we first need to find lines that potentially contain big operators,

which are defined as lines whose heights are larger than twice of the most common

line height. We also need to find the binding variables lines, which are defined as

the neighbors of the big operator lines whose height is smaller than the most

common line height and the distance to the big operator line is smaller than the

most common line distance. Once binding variables are detected, we merge them

into their corresponding big operator lines.

Token detection. The process is similar to line detection. We first calculate the

vertical projection profile per line and split the profile into multiple segments of non-zero

values. Each such segment becomes the vertical boundary of a candidate character. We

 87

define character distance as the distance between two neighboring non-zero segments. The

most common character distance corresponds to the distance of characters within tokens,

which is smaller than the distance between tokens. As such, we use twice the most

common character distance as the threshold to group characters into tokens. An example

result of token segmentation is shown in Figure 20. As we can see, the algorithm works

well for plaintext words but poor for math expressions. In fact, math expressions are

almost always detected as broken math segments, because the character distances within

math expressions do not have fixed patterns like that of text. This problem can be easily

fixed if the labels of each token are given (math vs. text), because complete math

expressions can be obtained by simply merging the neighboring math segments. In the

following subsection, we will introduce two machine learning models to classify each

token into math or plaintext.

Figure 20 Token segmentation results. The bounding boxes mark the boundary of
each token.

CNN Classifier

Plaintext words and math segments have different visual features. For example,

the layout structure of math segments is less restricted than plaintext because it can include

sub/sup-scripts, different font sizes, etc. In addition, math segments can include Greek

letters and math operators that are not present in plaintext words. These features can be

easily captured by a convolutional neural network (CNN) [28]. Below we will first

 88

describe the process of synthesizing the training data for the CNN, then elaborate the

design of a fully convolutional neural architecture for math/text classification, and finally

evaluate the performance of the classifier on the synthetic data.

The synthetic data for training and testing are generated from the 2003 KDD Cup

dataset [91], which includes approximately 29,000 LaTeX source files of hep-th papers

from arXiv. We used LaTeXML [66] to parse the LaTeX source files into XML format,

in which the LaTeX code of math expressions and plaintext words are extracted and

explicitly tagged. Next, we used TeX Live [92] to compile each math expressions and

plaintext words into PDF files and then render them into images. This gives us a lot of

images of math expressions and plaintext words, together with their ground truth labels.

Notice that our classification is performed on math segments vs. plaintext words, thus we

went further to apply PPC on the math expression images and split them into smaller image

blocks of math segments. These images are generated in different resolutions and different

fonts (bold, italic, etc.) which ensures that they cover special cases like section titles. We

padded both the plaintext images and math segments images with four-pixel-wide

whitespaces. It is very important that all the images get the exact same padding, otherwise

the CNN would capture the padding space as the main feature and give false results. In

total, the synthetic dataset contains ~75k plaintext words and ~75k math segments, which

are randomly split into a training set of 119,500 images, a validation set of 13,259 images,

and a test set of 16,073 images.

Given the large amount of data we have, we decided to train a deep convolutional

neural network for math detection from scratch. Since the input images have various sizes,

 89

we decide to use a fully convolutional network proposed in [93], which handles flexible

input sizes by using global average pooling to avoid scaling the images or adding

additional fully connected layers. The architecture of the CNN is presented in Table 12. It

is similar to the VGG-VeryDeep architecture that has been adapted particularly for OCR

applications [34]. We used a global average pooling layer as the last layer, which takes

the average of the two output feature maps and produces two scalar values. The two scalar

values are further passed through a softmax function which gives the likelihood of being

a plaintext word or a math segment.

Table 12 CNN Configuration. #maps: the number of feature maps. k: kernel size. p:
padding size. s: stride size. BN: batch normalization. GlobalAvgPool: global average
pooling. The sizes are in order (height, width).

Type #maps k p s
GlobalAvgPool
Convolution 2 (3,3) (1,1) (1,1)
MaxPooling (2,1) (0,0) (2,1)
BN
Convolution 512 (3,3) (1,1) (1,1)
MaxPooling (1,2) (0,0) (1,2)
Convolution 256 (3,3) (1,1) (1,1)
BN
Convolution 256 (3,3) (1,1) (1,1)
MaxPooling (2,2) (0,0) (2,2)
Convolution 128 (3,3) (1,1) (1,1)
MaxPooling (2,2) (0,0) (2,2)
Convolution 64 (3,3) (1,1) (1,1)
Input Gray-scale image

The CNN model is implemented in PyTorch [85]. It contains 2,150,685 parameters

and is trained for 5 epochs which took 0.2 hours on an Nvidia Quadro M5000 GPU (8GB,

2048 CUDA cores). We used Adam optimizer [82] with a mini-batch size of 32. We also

applied the dropout technique [83] during training with a dropout rate of 0.4. For testing,

 90

an image block is classified as positive (math) if the likelihood is above 0.5, and negative

(plaintext) if otherwise. Out of 16,073 test samples, 15,482 are classified correctly, which

gives an accuracy of 96.3%. By looking closer at the confusion matrix in Table 13, we

observed a lot more false positives (540) than false negatives (51). The confusion matrix

converts to precision 93.6%, recall 99.4%, and F1-score 96.4%. In Section 3.3 we will

dive into the cause and the solution to the large false positive number.

Table 13 Confusion matrix of the CNN output.
Predicted
Plaintext

Predicted Math

Plaintext 7,922 540
Math 51 7,560

Conditional Random Field

The CNN classifier gives us a decent math/plaintext classification accuracy on the

synthetic dataset. However, there are still many false positives as we have observed in

Table 13. This problem becomes more obvious when the model is tested on real

publications, as shown in Figure 21 (a). As we can see, the false positives mainly come

from the stop words such as “it”, “is”, “of”, “and”, etc., which are falsely classified as

math. The reason behind is that these stop words are occasionally included as part of math

expressions in the training set. On the other hand, we did not resample these words as

plaintext samples when constructing the dataset (the resampling frequency would also be

tricky to determine), thus the classification of these words is biased towards positive. At

the same time, false negative errors are also noticeable. For example, the math segment

“sup	{𝐺(∆(𝑡,” circled in red is falsely classified as plaintext.

 91

Figure 21 Label assignment before CRF (a) and after CRF (b). Bold bounding
boxes mark math labels.

These observations indicate that more important features need to be included in

addition to the visual features given by the CNN classifier. One example is the text

information, which can be extracted by English OCR engines from the images. The text

information carries semantical meanings that can be used to identify the stop words

mentioned above. In addition, if the recognized text is a meaningless string instead of a

valid English word, it is more likely that the image contains a math segment instead of a

plaintext word. In addition to the text information, the math likelihood of the neighbors

and the physical distance to the neighboring images are also useful features. They contain

context information that can be used to correct errors such as a misclassified segment in

the middle of a long math expression. Taking these into consideration, we decide to use a

 92

conditional random field (CRF) to model these features. CRFs are a type of supervised

machine learning model for sequence labeling purposes, while in our application a

sequence is a line of tokens. Assuming that the length of a line is 𝑇, we want to find a set

of labels	𝑙 that best describes each token 𝑥, i.e., maximizes the conditional probability

𝑝 𝑙 𝑥 . The label 𝑙 ∈ {0,1}, where 0 indicates plaintext and 1 indicate math. Suppose the

CRF has 𝐾 different feature functions 𝑓m, each with a corresponding weight 𝜆m. 𝑝 𝑙 𝑥 is

modeled as:

𝑝 𝑙 𝑥 =
1

𝑍(𝑥)
𝑒𝑥𝑝 𝜆m𝑓m(𝑙@, 𝑙@�e, 𝑥@)

Õ

m§e

¥

@§e

where 𝑍(𝑥) is a normalization factor that sums over all possible labels 𝑙«, which is defined

as below:

𝑍 𝑥 = 𝑒𝑥𝑝 𝜆m𝑓m(𝑙@, 𝑙@�e, 𝑥@)
Õ

m§e

¥

@§eAÖ

The feature functions are composed of pointwise features and pairwise features.

Pointwise features describe individual tokens, including the math likelihood of the tokens

given by the CNN classifier, the text content, and the image block size. Pairwise features

describe the relationship between a token and its immediate neighbors. All the features are

summarized in Table 14. Text features are one-hot encoded.

 93

Table 14 Full list of CRF features.
Pointwise features
Math
likelihood

The math likelihood given by the CNN
classifier

Text The text string recognized by the OCR engine
is_plaintext Whether the text string is a valid English word
Width The width (in pixel) of the image block
Height The height (in pixel) of the image block
Pairwise features
Math
likelihood

The math likelihood of the neighbor token
given by the CNN classifier

Text The text string of the neighbor token
recognized by the OCR engine

Distance The distance (in pixel) to the neighboring
image block

The CRF model is implemented with sklearn-crfsuite [94]. The parameters 𝜆m can

be learned by the gradient descent algorithm with maximum likelihood estimation as the

cost function. Since the number of parameters is relatively small, we created a small

dataset to train the CRF. We picked 10 PDF pages from the 2003 KDD Cup dataset and

ran our PPC algorithm to segment the pages into tokens. For each token, we used the

binary CNN classifier to generate the math likelihood, then used an OCR engine (which

will be illustrated in Section 4.2) to generate the text, and manually labeled each token as

either math or plaintext as the ground truth. This results in 312 lines, 2,726 tokens of data

in total. For evaluation, we applied 10-fold cross-validation by training a model with nine

pages and testing with the remaining one page. We report precision, recall, and F1 score

in Table 15. The scores are calculated as the average value of the cross-validation results.

 94

Table 15 CRF performance with 10-fold cross-validation.
Performance Precision Recall F1
Before CRF 60.2% 98.7% 74.8%
Pointwise Features Alone 89.8% 95.7% 92.6%
Pointwise + Pairwise 95.8% 97.4% 96.6%

Table 15 shows the performance without CRF, with CRF using pointwise features

alone, and with CRF using the pointwise and pairwise features together. As we can see,

before CRF is applied, the precision is fairly low because of the large amount of

misclassified stop words. By including the pointwise features, the precision is greatly

improved because the semantics information is considered. By including the pairwise

features, we achieved the best precision and F1-score, which is attributed to the

neighboring context information.

After we apply the CRF on each line, each image block is assigned a refined label.

By merging the neighboring math image blocks into larger images, we obtain complete

math expressions, which define the math/text boundaries.

Neural Translators

We used PPC and math classification algorithms to decompose a page into a group

of image blocks with labels. In this section, we focus on the final step of the system, which

is to recognize each image block of plaintext words and math expressions into LaTeX.

Math expressions are intrinsically more difficult to recognize than plaintext words. This

is because 1) unusual symbols in different sizes are present in math expressions, 2) the

structural layout of the symbols needs to be understood, and 3) the generated LaTeX needs

to follow correct grammar. In comparison, recognizing plaintext only requires to

recognize the individual characters one by one. In section 4.1, we will introduce a neural

 95

network with CNN-LSTM architecture which has recently shown success in recognizing

math expressions and generating markup LaTeX. In section 4.2, we will use the same

neural architecture to train a customized plaintext OCR model. Since the LaTeX

generation process is very similar to the translation task in natural language processing,

we refer to these neural networks as translators.

Math Translator

Figure 22 CNN-LSTM Neural Architecture.

To translate images of math expressions into LaTeX, we adopt the neural network

model proposed in [44]. The model has an encoder-decoder architecture, as shown in

Figure 22. The encoder is a CNN that processes the input images, and the decoder is an

LSTM that generates sequential outputs, in our case, a sequence of LaTeX tokens. The

CNN first extracts visual features from the original image and produces a set of feature

maps. To preserve the spatial location information, the feature maps are combined with

positional encoding [9], which is essentially a set of sinusoidal signals that represent

positions. The decoder is a two-layer bidirectional LSTM [73] which is used to translate

the encoder output into a sequence of LaTeX tokens. At every step, the encoder output is

fed into the decoder via the soft attention mechanism [35], which means the input to the

LSTM is a weighted combination of the encoder output, where the weights are learned by

 96

a separate network. The attention mechanism enables the neural network to selectively

focus on different regions of the input images at different steps. The network is first trained

using the maximum likelihood estimation as the training objective, which is token-level

optimization. Once the token-level training converges, we advance further to a sequence-

level training objective using the policy gradient algorithm [70] in reinforcement learning.

The reward function for the policy gradient algorithm is chosen as the BLEU score [69].

We refer the readers to [44] for more details.

We trained the model using the public dataset IM2LATEX-100K [38] which

contains ~100k images of math expressions and their LaTeX ground truths. The dataset is

split into ~90k of training data and ~10k of test data. Each LaTeX string is tokenized into

a sequence of reserved LaTeX tokens, such as “\frac”, “\sigma”, “a”, “{”, etc. Each image

is preprocessed by cropping out the surrounding white spaces and downsampling two

times for memory efficiency. The model is implemented in PyTorch and contains

10,870,595 parameters in total. It is trained with a mini-batch size of 16 and a dropout rate

of 0.4. The training took around 90 hours on our 8GB Nvidia GPU. We applied beam

search [84] during the prediction time, with a beam size of 5. For evaluation, we used the

cumulative 4-gram BLEU score as the criteria. The experiment results showed a BLEU

score of 90.28% on the test set.

While applying this math translator to PDF pages, we further applied divide-and-

conquer approaches to some large math expressions for reducing complexity. This is

helpful because even though LSTM has long-term memory that handles longer sequences

better than vanilla recurrent neural networks, as math expressions become longer and more

 97

complicated, the neural network still produces more errors, especially on the math

expressions that expand to multiple lines. To remediate this problem, math expressions

expanding to multiple lines are translated line-by-line and then concatenated together. For

fraction expressions, numerator and denominator are translated separately and then

merged together.

Plaintext Translator

Existing commercial and open-source OCR tools can be used to recognize English

text in plaintext images. However, it is difficult to efficiently parallelize these OCR tools

on batches of single-word image blocks. Take Tesseract OCR [45] for example, it runs

fast on larger images with a collection of sentences, but runs much slower on batches of

small images because the software overhead becomes a major performance bottleneck.

Furthermore, these tools cannot be used with GPUs. For better efficiency, we decided to

train a customized plaintext OCR engine.

Notice that the previous CNN-LSTM architecture can be directly applied to

plaintext recognition because the two tasks are very similar. The differences are that

plaintext does not have complex layout structures like math expressions, and the character

set is smaller (mostly English alphabets). As a result, we decide to inherit the same neural

network specifications from the previous section for this task. Given that the feature

distribution of plaintext is quite different from math expressions, we decided to train a

new model from scratch with a new dataset. We generated a synthetic dataset by collecting

75,581 plaintext words from the 2003 KDD Cup dataset and rendered them into images

 98

in different sizes and fonts. We used 60,000 images for training and 15,581 images for

testing.

The training procedure is similar to that of the math translator. Since this task is

relatively simpler, we only trained it with the token-level objective function. The ground

truths are tokenized into individual characters instead of reserved LaTeX tokens. The

model was trained with a mini-batch size of 20 and a dropout rate of 0.4. The training took

2.5 hours on our 8GB Nvidia GPU. Experiment results show that 15,527 out of 15,581

words were recognized perfectly, which gave an accuracy of 99.65%.

Experiments and Results

In this section, we first describe a new dataset we created for evaluating the

proposed PDF2LaTeX system. We then describe normalization rules and evaluation

criteria, and the baseline results generated by the state-of-the-art system InftyReader. In

the end, we compare the performance of the two systems.

Dataset

The recognition accuracy of the InftyReader system was previously reported as

98.51% in [8] on a dataset of 476 pages. We inspected the 476-page dataset available on

the Infty website 3 , and found that these pages are synthesized with displayed math

expressions and repeating English words in different fonts and sizes. Our target task, on

the other hand, is to recognize real-world scientific publications that follow a different

data distribution. As a result, we decided to create a more sophisticated dataset using real-

3 http://www.inftyproject.org/en/database.html

 99

world papers from arXiv. The dataset consists of 102 PDF pages collected from arXiv

papers covering different domains including physics, AI, economics, signal processing,

statistics, machine learning, and genomics. We manually extracted the LaTeX source of

each page and removed tables, figures, footnotes, references, citations, and comments.

Then we compiled these sources into PDF files with TeX Live [92] and rendered them

into images at 250 dpi resolution. In the LaTeX ground truth, without counting space,

there are 116,970 characters used to construct math expressions and 126,187 characters

used to construct plaintext. There are in total 2,233 math expressions in the dataset, with

an average of 22 math expressions per page. The dataset and the evaluation tool are

publicly available on Github4.

Baseline and Evaluation Criteria

We generated a baseline for our dataset by processing each page with the state-of-

the-art commercial software InftyReader (version 3.2.0 released in November 2019).

InftyReader recognizes PDF pages by OCR and can generate the recognition results in

LaTeX format. We will compare the LaTeX output of our system with this baseline.

Before the evaluation, we need to normalize all the LaTeX sources as follows:

1. Remove the preambles such as macros, i.e., the content before \begin{document}

and after \end{document}.

2. Replace all math claimers with $, e.g., \begin{equation}, \begin{eqnarray},

\end{gather}, etc.

4 https://github.com/wzlxjtu/PDF2LaTeX-dataset

 100

3. Remove section and paragraph claimers, including \section{}, \subsection{},

\paragraph{}, etc.

4. Remove spaces

5. Ignore cases

6. Normalize math polymorphism

Math polymorphism refers to the problem that a same math expression can be

expressed by different LaTeX strings. For example, 𝑋ØÙ can be expressed by either X_a^b

or X^b_a. We used the LaTeX parser developed in [38] to handle the math polymorphism

problem. The parser uses KaTeX [79] to convert a LaTeX string into an abstract syntax

tree, and then traverses the tree in fixed orders to generate the normalized LaTeX string.

Notice that the parser can only solve the polymorphism problem to a limited extent.

For evaluation, we used the string edit distance between the predicted LaTeX and

the ground truth LaTeX as the performance metric. In addition to the string edit distance,

we also report the edit distance relative to the document size, i.e., edit distance rate,

defined below:

𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡	𝑟𝑎𝑡𝑒 = 1 −
𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡

#𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

The edit distance rate is more intuitive to understand since higher values (closer to

1) indicate better performance. We also separate LaTeX sources into math parts and

plaintext parts, and report the edit distance rate on math and plaintext separately. The

evaluation script is released together with the dataset.

 101

Results

In Table 16, we show the evaluation results of InftyReader and PDF2LaTeX

system on our 102-page dataset. The results include the string edit distance and the edit

distance rate on the overall documents and on the math part and plaintext part alone. In

overall, the string edit distance of InftyReader is 76,012, while the string edit distance of

PDF2LaTeX is 48,820. This is relative to the total number of 258,383 characters in the

ground truth, which is after normalization. By converting these numbers to edit distance

rate, InftyReader achieves an overall edit distance rate of 70.6%, while PDF2LaTeX

achieves 81.1%. By separating the LaTeX source into math and plaintext, InftyReader

achieves an edit distance rate of 86.6% on plaintext, and 46.0% on math. In comparison,

PDF2LaTeX achieves an edit distance rate of 94.8% on plaintext, and 65.9% on math.

Table 16 Results reported in Edit Distance (Rate).
Performance InftyReader PDF2LaTeX
Subset
Edit Dist Rate
(text)

86.6% 94.8%

Edit Dist Rate
(math)

46.0% 65.9%

Overall
Edit Dist Rate 70.6% 81.1%
Edit Dist 76,012 48,820

Next, we report the processing speed of the two systems. This experiment was

done on a PC with Intel Xeon 3.5Ghz CPU, 16GB RAM. InftyReader took an average of

25 seconds to process a page. In comparison, PDF2LaTeX took an average of 40 seconds

to process a page on the same machine. Notice that our model has the advantage of being

able to execute on a GPU. By simply deploying the neural networks on our 8GB Nvidia

 102

Quadro M5000 GPU (without further parallelizing across different pages), the time to

process a page is reduced to an average of 14 seconds.

Discussions

In Figure 28 in Appendix B we visualize two examples from the experiment

results. Each column of the table corresponds to part of a document in the dataset. The

first row shows the original documents. The second row shows the pages reconstructed

from the InftyReader output. The third row shows the pages reconstructed from the

PDF2LaTeX output. The reconstruction errors are highlighted in red. We can see clearly

that PDF2LaTeX produces significantly fewer errors than InftyReader. In fact, most of the

errors for both systems occur inside math expressions, which means the performance gain

of PDF2LaTeX is largely attributed to the better math translator. Yet, another important

advantage of PDF2LaTeX is the better segmentation results. This can be reflected in two

parts: 1) for displayed math expressions, InftyReader can mistakenly split sup/sub-scripts

and fraction expressions into different lines, as shown in both examples in

Figure 28, while our PPC algorithm demonstrated better robustness; 2) for inline math

expressions, PDF2LaTeX can detect the math/plaintext boundary more clearly. This is

largely attributed to the conditional random field, which utilizes not only the visual

features, but also the semantics and context information. The poorer math/plaintext

boundary explains why InftyReader only gives an edit distance rate of 86.6% on plaintext

in this dataset, as compared to the 99.44% reported in [8].

We have seen from the previous section that the edit distance between our output

and the ground truth is 48,820, which is an average of 479 edit distance per page. This is

 103

far from perfect, but it is also important to understand that this is not equivalent to 479

errors per page. For example, a minor error like failing to recognize the italic font of a

character would result in 9 edit distance error because the italic command \textit{} has 9

characters. Furthermore, we need to keep in mind that the math polymorphism problem is

not entirely solved even after the normalization technique is applied. To fully solve the

polymorphism problem, we will need to convert the recognized math expressions into

their semantical representations such as Content MathML [67] before making

comparisons. This conversion remains an open problem to date.

The current version of PDF2LaTeX still has limitations and requires future works.

For example, the current system only supports limited font styles, because all the training

and test data were generated with TeX Live. It is necessary to label more training data

covering all sorts of fonts in order to increase the robustness of the system. In addition,

noise removal and deskewing techniques are needed in order to process scanned

documents and historical publications. Finally, figure and table detection algorithms need

to be integrated with the current segmentation algorithm.

Summary

In conclusion, we have proposed a novel OCR system that converts mathematical

documents from PDF format into their markup LaTeX. The system used projection profile

cutting to segment a page into an ordered sequence of tokens, and then used a

convolutional neural network and a conditional random field to classify the token labels

and refine the segmentation results. In the end, the system used two CNN-LSTM neural

networks to translate the detected plaintext words and math expressions into their markup

 104

LaTeX. The system was evaluated on a new 102-page dataset composed of real-world

scientific publications and achieved a better recognition rate than the previous state-of-

the-art commercial software InftyReader.

 105

CHAPTER VI

FIGURE AND TABLE EXTRACTION IN THE PDF2LATEX SYSTEM

Figures and tables play a critical role in presenting technical details and experiment

results in research papers. In PDF documents, positions of figures and tables are unknown.

Fortunately, several external tools have been developed for extracting these elements from

PDF documents automatically. In this work, we will integrate the PDFFigures software

into the PDF2LaTeX system, which can locate the bounding boxes of figures and tables,

and can further extract their captions. We will also integrate the Camelot software, which

can parse the detected tables and extract the cell contents from these tables. The extracted

figures, tables, and their captions will be saved and formatted for information retrieval

purposes. With the information given by these software, the page segmentation step in the

PDF2LaTeX system will be able to skip table and figure areas, which enables the system

to convert a much larger variety of real-world publications into their LaTeX sources. The

proposed system is evaluated on a new dataset with 25 PDF pages, each containing text,

math expressions, and figures/tables. The experiment results show that the proposed

system achieved a comparable performance to the previous version of the PDF2LaTeX

system on LaTeX conversion, and has extended capabilities to process pages with figures

and tables.

Overview

Given the fast-growing number of digital publications, it is becoming increasingly

important to develop algorithms that can automatically extract contents and mine

 106

knowledge from existing publications. While the PDF format helps the publishers and the

readers to distribute digital publications very conveniently, it also brings difficulties on

extracting non-textual elements from PDF documents, because the PDF format does not

contain tags about its contents. The PDF2LaTeX system proposed in task 3 leveraged

state-of-the-art machine learning algorithms and successfully extracted math expressions

and converted documents to LaTeX [5, 44]. However, the system was not able to extract

figures and tables, which are widely present in research papers and often contain important

technical details and summaries of experiment results. In addition, the presence of figures

and tables in a page can disrupt the page segmentation process of the PDF2LaTeX system

and lead to recognition errors. As a result, a figure and table extraction module becomes

a necessary add-on to the current PDF2LaTeX system. Even though information about

figures and tables on a PDF page is not directly available, these elements usually occupy

exclusive page areas and follow rigid layout patterns, thus are relatively easy to detect. A

number of research tools and commercial software have been develop for figure and table

extraction, such as PDFFigures [10] and Camelot [11]. Nevertheless, a comprehensive

system that can parse various components (including text, math expressions, figures, and

tables) in scientific papers still does not exist.

In this chapter, we will integrate the figure and table extraction modules into the

existing PDF2LaTeX system to make it capable of processing pages with figures and

tables. Firstly, we used the PDFFigures software to extract the bounding boxes of figures

and tables, as well as the caption text associated with them. The segmentation method --

projection profile cutting used in the PDF2LaTeX system is updated to skip the figure and

 107

table areas, which are provided by the PDFFigures software. Figures contain diverse types

of images and can be difficult to parse. As a result, we save the detected figures as image

files for visualization and use their captions for indexing. Tables are different from figures

in that their structure can be recognized relatively easily, thus their cell data can be

extracted. We propose to use the Camelot software to extract the cell data from tables. The

proposed system is a further step to the semantical understanding of paper contents. The

resulting system is able to extract text, math expressions, figures, tables, and their captions

all together and index the recognized contents for information retrieval purposes, as shown

in Figure 23. The detected figures and tables can help the readers quickly grasp the gist of

the technical contents. To evaluate the proposed system, we constructed a new dataset

with 25 PDF pages, each containing a mixture of text, math expressions, and

figures/tables. The proposed system converted these pages into their LaTeX sources,

which were compare with their ground truth LaTeX sources. The evaluation results

measured by string edit distance shows that the proposed system achieved a comparable

performance to the previous version of the PDF2LaTeX system, which was evaluated on

pages without figures and tables.

 108

Figure 23 The PDF2LaTeX system with figure and table detection capabilities. The
main body is converted to LaTeX. The detected figures and captions are saved as

image-caption pairs. The tables are decomposed into cell data.

Method

In this section, we first introduce two existing tools that can extract figures and

tables from PDF documents. Next, we discuss how these tools are integrated into the

PDF2LaTeX system, which enables it to process PDF documents with graphics

components and convert them into LaTeX sources.

Figures and Tables Extraction Tools

he first step of extracting figures and tables is to locate their positions on a page.

The PDFFigures software [10] has been developed by Clark et al. for this purpose. The

cell data in tables also provides very useful information, thus we propose to use the

 109

Camelot software [11] to decompose the detected tables into cell data. Below we briefly

review the mechanisms of these tools.

PDFFigures is capable of extracting the bounding boxes of figures, tables, and

their corresponding captions from a PDF page. It first extracts the text from a PDF page

using the Apache PDFBox library [6]. Next, texts are grouped into text blocks which

represent paragraphs, titles, captions, etc. Captions are then located using regular

expression matching and a few heuristic rules about the caption words and fonts. Regions

of figure and table are proposed by expanding the caption regions towards different

vertical and horizontal directions without touching text blocks. Each proposed region is

scored as potential figure and table regions by heuristic rules and assigned to captions.

Camelot software can be used to decompose tables in PDF documents into its cell

data. The texts are extracted using PDFMiner [3]. Camelot provides two different

algorithms to decompose a table. One algorithm is called Lattice, which first detects

horizontal and vertical line boundaries in a table. Next, the intersection points of these

lines are determined by using the “AND” operation of the line pixels. Finally, the cell data

is located as the text in between the intersection points. Another algorithm is called

Stream, which infers the location of cell data based on the text spatial layout. In this

method, texts are first grouped into words and lines using spatial statistics. Next, the

number of columns are determined as the mode of number of words in each row. Lines

are then split into a list of column ranges. Finally, table cells are located as the intersection

of rows and columns. By default, the choice of the algorithm need to be specified

manually.

 110

Integration with the PDF2LaTeX System

The previous PDF2LaTeX system was proposed to convert mathematical

documents from the PDF format to the LaTeX format. The system effectively recognizes

plaintext and math expression in PDF pages, but does not handle figures and tables. This

is because the presence of figures and tables on a page would disrupt the projection profile

cutting method used for page segmentation. This greatly limits the type of pages that

PDF2LaTeX can process, because figures and tables are frequently used in many scientific

publications. Knowing that figures and tables can be extracted with tools such as

PDFFigures, we propose to integrate PDFFigures software into the existing PDF2LaTeX

system.

Figure 24 Figure and table areas are masked out by white rectangles, as indicated
by the dash lines.

 111

First, we use PDFFigures to locate the bounding boxes of figures and tables. Next,

we use the PyPDF Python library to overlay a white rectangle in the area specified by the

bounding box, which masks out the existing figures and tables with white pixels. An

example is shown in Figure 24. The PDF page with the white mask is then rendered into

an image, and processed by the remaining PDF2LaTeX steps. The rationale of this

approach is that the white masks do not add pixel values to the projection profile during

segmentation. The main body part of the page (plaintext and math expressions) is

converted to LaTeX in the same way as before. For visualization purposes, the detected

figures and tables will both be saved as image files. The detected captions of the figures

and tables will be saved along with their corresponding figures and tables for indexing and

retrieval purposes.

Comparing to figures, tables usually follow strict layout structures thus can be

recognized relatively easily. The Camelot software has been designed to detect tables on

a PDF page and decompose them into cell data. We observed that Camelot can be

erroneous during the table detection phase, which results in failures during the

decomposition phase. To solve this problem, instead of using the Camelot for table

detection, we specify the locations of the tables and only use Camelot for table

decomposition in the specified areas. The coordinates of tables are provided by the

PDFFigures software. Notice that in the Camelot coordinate system, (0,0) is defined as the

bottom left corner of the page. In PDFFigures, (0,0) is defined as the top left corner. As a

result, we apply the following coordinates conversion:

𝑦e%ØÜÝA?@ = 𝑝𝑎𝑔𝑒>ÝhC>@ − 𝑦o��··hCc2Ý=

 112

𝑦o%ØÜÝA?@ = 𝑝𝑎𝑔𝑒>ÝhC>@ − 𝑦e��··hCc2Ý=

We also observed that for table decomposition, the two algorithms in Camelot

(Lattice vs. Stream) have pros and cons on different kinds of tables. For example, the

Lattice method works better for tables with full-line boundaries. The Stream method

works better for tables whose lines are hidden and cell elements are indicated by spaces.

Since there is not a method to automatically choose between the two algorithms, we

propose to use an auto-selection rule as follows:

𝑟𝑎𝑡𝑖𝑜 =
#𝑐𝑒𝑙𝑙𝑠

#𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

#𝑐𝑒𝑙𝑙𝑠 indicates the number of cells, which is provided by the Stream method.

#𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 indicates the number of line intersections, which is provided by the

Lattice method. If #𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is zero, we set the ratio to 1. We use this ratio as a

decision rule for algorithm selection. If the ratio is larger than a threshold, we select the

Stream method, because a larger ratio indicates fewer line boundaries, which are likely to

be hidden. If the ratio is smaller than a threshold, we select the Lattice method, because a

smaller ratio indicates more line boundaries. In our implementation, we set the threshold

to 0.8.

 113

Figure 25 Lattice vs. Stream method for different kind of tables. (a) Lattice is
chosen. (b) Stream is chosen.

An example of applying this rule is shown in Figure 25. The table in Figure 25 (a)

contains 43 intersection points and 27 cells. This gives a ratio of 0.63, which is smaller

than the threshold, thus the Lattice method is applied. On the other hand, the table in Figure

25 (b) has no intersection point, which yields a ratio of 1. This is larger than the threshold,

thus the Stream method is applied. In our integrated system, the table contents recognized

by Camelot are saved as .CSV files.

Experiments and Dataset

The performance of the proposed system is categorized by the accuracy of figure

and table detection, the decomposition of table contents, and the LaTeX generated from

the main body. The performance related to figures and tables has been previously reported

by the authors of PDFFigures and Camelot [52]. As a result, we focus the system

 114

evaluation on the predicted LaTeX of the main body. The accuracy of the main body

recognition is measured by the string edit distance between the predicted LaTeX and the

corresponding ground truth LaTeX. A lower edit distance indicates a better performance.

We also report the edit distance rate, which is defined as below:

𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡	𝑟𝑎𝑡𝑒 = 1 −
𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡

#𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

The edit distance rate is more intuitive in that it is relative to the size of the

document. A value closer to 1 indicates a better performance. We also applied some

preprocessing steps before the evaluation. For the ground truth files, we removed the

preambles before \begin{document} and \after{document}. We also replaced all the math

claimers with ‘$’, and removed section claimers, spaces, and ignored cases. For LaTeX

that marks math expressions, we used the KaTeX parser [79] to normalize them in order

to reduce the math polymorphism problem.

Since there is neither existing tools nor dataset for this task, we constructed a new

dataset for testing. The dataset is composed of 25 PDF pages collected from real-world

publications on arXiv. We manually selected pages that contain a mixture of text, math

expressions, figures, and tables. Footnotes, references, and citations are removed from the

pages. The portion of LaTeX sources that marks figures and tables are also removed during

evaluation. There are 21 figures and 11 tables in total. Every PDF page in the dataset

contains at least one figure or table. The main body part consists of 84,537 characters in

total. For comparison, we used the previous PDF2LaTeX system without the figure and

table extraction module as the baseline. Ideally, the performance of the new system on this

 115

new dataset should be comparable to the previous system evaluated on the PDF2LaTeX-

102 dataset which does not contain figures or tables.

Results and Discussions

Table 17 Performance of the PDF2LaTeX system with and without figure/table
extraction modules.

	 Performance	
w/o	ßigures/tables	

Performance	
with	ßigures/tables	

Edit	Dist	(page)	 479	 446	
Edit	Dist	(total)	 48,820	 11,155	
Edit	Dist	Rate	 81.1%	 86.8%	

In Table 17, we report the detailed evaluation results of the new system evaluated

on the 25-page dataset. For the baseline, we present the evaluation results of the previous

PDF2LaTeX system without figure/table extraction modules evaluated on the

PDF2LaTeX-102 dataset, which does not contain figures and tables. As we can see, the

new system achieved an edit distance of 446 per page. This is lower than the old system,

which has an edit distance of 479 per page. When converted to the edit distance rate, the

new system achieved an edit distance rate of 86.8%, while the old system achieved 81.1%.

This means the performance of the proposed new system on pages with figures and tables

is comparable to the performance of the old system on pages without figures or tables.

As we observed, the performance of the new system is slightly higher than the old

system, even though the algorithm that processes the main body remains the same. The

performance gain is due to the fact that there are fewer complicated math expressions in

the 25-page dataset. This is reasonable because figures and tables present more often in

the result sections, while math expressions present more often in the method sections. In

 116

other words, the pages with figures and tables tend to contain fewer math expressions,

which are the main sources of LaTeX recognition errors.

For the computation cost, the new PDF2LaTeX system takes an average of 50s to

process a page. This is evaluated on a machine with Intel Xeon 3.5Ghz CPU and 16GB

RAM. Note that the main body part of a page is recognized by the neural networks, which

can be parallelized on a GPU to speed up the system.

A Demo Application

The PDF2LaTeX system serves as the backend for parsing the PDF documents.

This opens up a lot of possibilities for different applications. In this section, we

demonstrate a PDF content viewer we developed as a front-end application for readers.

The software aims to improve the reading experience of professionals who need to have

access to the data inside the PDF documents. The software is written in Python Tkinter5.

This application is a graphical-based PDF viewer, in which PDF pages are

represented as images. Each element including tokens, MEs, figures, tables, etc. is

wrapped in a rectangle object, which is augmented by the underlying data. Features of this

interface include:

• highlights the critical elements on a page including MEs, figures, tables, and

captions

• left-click to copy the underlying text of an object to clipboard

• left-click to open a table as a .csv file

5 https://docs.python.org/3/library/tkinter.html (Accessed Aug 2020)

 117

• right-click to copy the MathML of an ME to clipboard

MathML is generated in the backend based on the recognized markup LaTeX of an

ME. The LaTeX to MathML conversion is realized by the Python software package

latex2mathml6. MathML can be directly used in different environments, such as 1) display

math expressions on webpages or 2) paste MathML in Microsoft Word which becomes an

editable math formula object.

Figure 26 shows the interface of this software. The pop-up window shows that the

source LaTeX of an ME being left-clicked is copied to the clipboard.

Figure 26 The graphical user interface of the PDF2LaTeX system.

6 https://pypi.org/project/latex2mathml/ (Accessed Aug 2020)

 118

Summary

We have proposed a new version of the PDF2LaTeX system, which is designed to

extend the previous version of the system to process pages with figures and tables. The

PDFFigures software was integrated to extract figures and tables from PDF pages. The

Camelot software was integrated to decompose the extracted tables into cell data. In

addition, captions of the figures and tables were also extracted and saved. In the end, the

main body including the plaintext and math expressions were converted to LaTeX. For

evaluation, we constructed a new dataset of 25 PDF pages from research papers which

contains figures and tables. The evaluation results suggest that the performance of the new

system is comparable to the previous system, but has extended capabilities for processing

figures and tables. To our knowledge, this is the first system than can systematically parse

real-world scientific publications and convert them to LaTeX. The system serves as the

foundation to knowledge mining and information retrieval based on the vast amount of

existing PDF documents.

 119

CHAPTER VII

CONCLUSIONS

This dissertation presented a comprehensive system for content extraction and

recognition in scientific publications, with a focus on the PDF format. These contents

mainly include math expressions, figures, and tables, which carry important technical

details but are very difficult for machine to process. The proposed content extraction

algorithms help machines to locate the positions of different elements on a page and assign

labels of their identities. The proposed recognition algorithms help machines understand

the contents of these elements, and convert them to the LaTeX format, which can be

directly used for NLP, searching, etc. This system serves as the foundation to applying a

lot of different types of information retrieval and data mining technologies on top of PDF-

based scientific publications.

Summary of Findings

In the first task, we designed a group of algorithms to extract math expressions

from PDF documents. This is a necessary step not only for PDF documents with missing

fonts, but also for those with correct fonts embedded, because the existence of MEs could

disrupt text extraction and NLP analysis. Existing ME extraction algorithms either rely on

the font information or require global training. The former approaches fail when correct

fonts are missing. The latter approaches are usually supervised learning-based algorithms

that are fine-tuned for specific datasets and thus do not generalize well outside the training

dataset. This is a real problem when applying supervised machine learning algorithms in

 120

this field due to the lack of training data. A full exploitation of the font information helped

us design the algorithm based on the font size feature, which is adaptive and robust,

meanwhile does not require training. Another advantage is that the critical feature – font

size, is not affected by the missing fonts problem. The multi-stage algorithm exploits the

hierarchical relationship from symbols to the structural layout of MEs. At the same time,

the design of the bigram regularization model borrows the idea from the Markov Random

Field, which utilizes neighboring information for label predictions. The model stabilizes

the predicted labels by penalizing label changes, thus reduces split detection errors. The

model is simple and does not require training other than hand-tuning a penalty parameter.

The mixed integer programming algorithm was used to efficiently optimize the bigram

objective function. Finally, we introduced a semi-automated algorithm to generate the ME

ground truth bounding boxes in an efficient manner. This is possible because the LaTeX

sources of the PDF documents are essentially a variant of the labels of the content in PDF

documents. The semi-automated solution we proposed links the labels in the LaTeX

sources to the PDF documents. The outcome of this method is a large-scale dataset we

released. The dataset not only serves as a new evaluation platform for future researchers,

but also a better training source for supervised machine learning algorithms.

In the second task, we proposed a deep neural network to recognize MEs into

LaTeX. To overcome the missing fonts problem, we proposed to recognize MEs as

images. Recognition of MEs in images has been a research topic for decades. Traditional

approaches involve symbol segmentation, individual symbol recognition, structural

analysis, and finally, language model for sequence generation. In these approaches, an

 121

error generated in any stage cascades to the following steps. As compared to these

approaches, we used an end-to-end prediction model, i.e., given input images, the model

directly generates the output LaTeX strings. A deep learning model is made possible

thanks to the tons of data that are easily available from the real-world LaTeX sources of

existing scientific publications. The encoder-decoder architecture suits well for generating

sequences from the images. The encoder CNN process the input images and encodes them

into feature maps. The decoder RNN translates the feature maps into a sequence of LaTeX

tokens, which marks up the contents in the input images. With the help of the attention

mechanism, the model acts intelligently to focus on different parts of the image at every

prediction step. Knowing the importance of the relative position of different symbols, we

also introduced the 2-dimensional positional encoding, which adds sinusoidal signals to

the feature maps as positional information. The sequence-level training objective also

helped to enforce sequence-level correctness by considering the full sequence instead of

individual tokens, which suits well for the rigid grammar of the LaTeX language. The

policy gradient algorithm made it possible to train the model using a sequence-level

evaluation metric in that it helps avoid taking derivatives on the discrete evaluation

function but use the log-derivative of the likelihood instead.

In the third task, we introduced the PDF2LaTeX system, which focuses on page-

level recognition. The system can process documents not only in PDF format, but also in

image format. This requires an OCR-based solution, which is not subject to the limitations

of PDF fonts. However, OCR-based solutions do not utilize the rich information provided

by the PDF format. Fortunately, the recognition of text and MEs can be based on the

 122

success of the OCR engine proposed in the previous task, while individual English words

and MEs are translated into LaTeX using the deep neural network. There still remains a

challenge to locate the positions of text and MEs and identify their boundaries. We

proposed to use the projection profile cutting algorithm to segment pages into columns,

lines, and tokens. To classify if each token is an ME or plaintext, we trained a CNN as a

binary classifier, which captures the visual features of the characters. Furthermore, we

proposed to use a CRF to capture other features, especially the features of the neighboring

tokens. The context information introduced by the CRF brought some additional

performance gain. The deep neural network proposed in task 3 was directly used to

recognize MEs and translates them into LaTeX. Plaintext recognition is considered a

solved problem, but for efficiency, we trained another neural network with the same

encoder-decoder architecture to recognize plaintext image blocks in batches. Since there

exist no comprehensive dataset that are composed of real-world publications, we

composed a new dataset with pages of mixed text and MEs. The PDF2LaTeX system is

evaluated on this new dataset, and is compared with the commercial software InftyReader,

which is the only know system that serves similar purposes. The PDF2LaTeX outperforms

the InftyReader software, especially on differentiating ME vs. text and recognizing

complex MEs.

In the fourth task, we integrated figure and table extraction modules into the

PDF2LaTeX system. Although the system we proposed in task 3 was able to recognize

mathematical documents at the state-of-the-art accuracy, it has strict assumptions that

elements other than MEs and text do not exist. These elements are mainly composed of

 123

figures and tables, which often contain important information such as experiment results

or technical specifications. Processing figures and tables not only provides valuable

information, but is also a necessity in the PDF2LaTeX system, because the areas being

occupied by figures and tables must be handled explicitly to make the projection profile

cutting algorithm to give correct segmentation results. We proposed to integrate the

PDFFigures software into our system for detection. The PDFFigures software helps locate

the bounding boxes of figures, tables, as well as their captions. These elements are saved

as image-caption pairs, which can be used in the information retrieval systems. The area

of these elements are masked out by overlapping white padding on the corresponding page

areas. We also integrated the Camelot software to decompose the detected tables into cell

data, which are saved as .CSV files for easy data access. This greatly broadens the scope

of the PDF2LaTeX system.

Future Work

We observed in task 1 that one obstacle of existing supervised learning-based ME

detection solutions is the lack of training data. The MOP dataset is a pioneer work to

generate large-scale ground truth data automatically. It contains around 1,800 pages of

technical writings based on the LaTeX source files in the KDD dataset [91], which is

sufficient as a test set. However, this may still not be enough for training some data-hungry

but most effective machine learning models such as deep neural networks. The volume of

pages is not the only problem since all the pages in the MOP dataset are from the high-

energy physics subject on arXiv. To build more robust machine learning models, papers

from a wider range of research areas are needed. Thus, a sensible extension to this work

 124

is to crawl more LaTeX sources of publications from different areas and possibly different

publishers.

The math to LaTeX translator is an end-to-end neural network model, which

conveniently bypasses the intermediate steps of math expressions recognition, which

could be error-prone. These steps include character segmentation, symbol recognition,

structural analysis, language model with LaTeX grammar, etc. While this is an exquisite

design, at the same time it is also a compromise due to the lack of intermediate training

data. The obvious disadvantage is the lack of interpretability. When a prediction error

occurs in such models, it is nearly impossible to track the source of errors and correct it.

Generating images of math expressions from LaTeX can be fully automated, but

generating labels of individual symbols and their structural relationship requires tedious

human labels. However, if such labels become available in the future, it could be very

helpful to use several neural networks for different functions and train them separately.

Another direction to improve the model is to replace the CNN and LSTM with more

advanced neural architectures. For example, the ResNet [95] has been proposed very

recently which outperforms CNN, thanks to the residual connections across different

layers. This architecture can potentially help with extracting more precise representations

of ME images.

We have tested both the PDF2LaTeX system and the InftyReader system on the

PDF2LaTeX-102 dataset, and demonstrated that PDF2LaTeX can recognize pages in

scientific documents at a better accuracy. That being said, as a research product,

PDF2LaTeX has much more limited scope of applications as compared to the mature

 125

commercial software InftyReader. PDF2LaTeX is trained on arXiv papers rendered by

TeX, and is tested on a dataset generated in the same way. Its performance would suffer

when tested on unseen data. To make PDF2LaTeX as robust as the InftyReader, much

larger and diverse data need to be fed into the training process. Such data is not yet

available and the process requires some engineering arts. This is beyond the scope of this

dissertation but is certainly a path towards a better tool for real-world usage. For future

research related to the PDF pages-to-LaTeX task, it may also be helpful to introduce more

comprehensive evaluation metrics in addition to the string edit distance. For example, it

would be very beneficial to differentiate between the edit distance introduced by

difference in font styles and the edit distance introduced by structural recognition errors,

which would give insights to further improve the performance.

The figure and table extraction tools we integrated into the PDF2LaTeX system

have decent performance but can always be easily replaced for better performance.

PDFFigures and Camelot are PDF parser-based solutions, which has limitations when

being applied to PDF documents with bad font encodings. An alternative is to use OCR-

based figure and table detection approaches. For example, recent fast and accurate object

detection neural networks such as YOLO [96] can be trained and integrated for figure and

table detection purposes.

Finally, being a tool to give access to the various contents inside PDF documents,

the PDF2LaTeX system opens many opportunities to information retrieval systems and

data mining algorithms. Future researchers could build math information retrieval (MIR)

systems such as math expression-based search engine in PDF documents. MIR has been a

 126

topic in the research community but it has not been able to work on PDF documents. With

the help of PDF2LaTeX, the search engines can utilize the LaTeX being recovered to

match the math keywords queries. A naive ranking criterion can be as simple as using the

string edit distance between the query LaTeX and the target LaTeX. More advanced

matching criteria may also be developed, such as matching the operator trees of MEs. One

can simply convert MEs from LaTeX to Presentational MathML trees, or even to Content

MathML trees which contains more semantical meanings. Efficient algorithms such as the

pq-Gram [97] can be used to approximated tree edit distance very efficiently (in nlogn

time and linear space), which makes large-scale applications possible. One can go further

to dive deep into the ME contents and extracts the declarations of math variables, which

brings more semantical-level information for future processing. Some pioneer works on

this direction can be found in [98, 99].

 127

REFERENCES

[1] A. E. Jinha, "Article 50 million: an estimate of the number of scholarly articles in

existence," Learned Publishing, vol. 23, no. 3, pp. 258-263, 2010.

[2] (2020, Feb 20). arXiv submission rate statistics. Available:

https://arxiv.org/help/stats/2019_by_area

[3] (2020, Feb 7th). PDFMiner. Available: https://pypi.org/project/pdfminer/

[4] "Document management - Portable document format - Part 1: PDF 1.7," Adobe

Systems Incorporated, p. 242, July 1st 2008.

[5] Z. Wang, D. Beyette, J. Lin, and J.-C. Liu, "Extraction of Math Expressions from

PDF Documents based on Unsupervised Modeling of Fonts," in IAPR

International Conference on Document Analysis and Recognition (ICDAR),

Sydney, Australia, 2019: IEEE.

[6] (2020, Feb 7th). Apache PDFBox. Available: https://pdfbox.apache.org/

[7] S. Singh, "Optical character recognition techniques: a survey," Journal of

emerging Trends in Computing and information Sciences, vol. 4, no. 6, pp. 545-

550, 2013.

[8] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori, "INFTY: an

integrated OCR system for mathematical documents," in Proceedings of the 2003

ACM symposium on Document engineering, 2003, pp. 95-104: ACM.

 128

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.

Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural

information processing systems, 2017, pp. 5998-6008.

[10] C. Clark and S. Divvala, "Pdffigures 2.0: Mining figures from research papers,"

in 2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL), 2016, pp.

143-152: IEEE.

[11] (2020, April 27th). Camelot: PDF Table Extraction for Humans. Available:

https://camelot-py.readthedocs.io

[12] X. Lin, L. Gao, Z. Tang, X. Hu, and X. Lin, "Identification of embedded

mathematical formulas in PDF documents using SVM," in Document

Recognition and Retrieval XIX, 2012, vol. 8297, p. 82970D: International Society

for Optics and Photonics.

[13] L. Gao, X. Yi, Y. Liao, Z. Jiang, Z. Yan, and Z. Tang, "A Deep Learning-Based

Formula Detection Method for PDF Documents," in 14th IAPR International

Conference on Document Analysis and Recognition (ICDAR), 2017, pp. 553-558:

IEEE.

[14] J. B. Baker, A. P. Sexton, and V. Sorge, "Faithful mathematical formula

recognition from PDF documents," in Proceedings of the 9th IAPR International

Workshop on Document Analysis Systems, 2010, pp. 485-492: ACM.

[15] K. Inoue, R. Miyazaki, and M. Suzuki, "Optical recognition of printed

mathematical documents," in Proceedings in the Third Asian Technology

Conference on Math, 1998, pp. 280-289.

 129

[16] A. Kacem, A. Belaïd, and M. B. Ahmed, "Automatic extraction of printed

mathematical formulas using fuzzy logic and propagation of context,"

International Journal on Document Analysis and Recognition, vol. 4, no. 2, pp.

97-108, 2001.

[17] (2019, Feb 7th). Apache Tika. Available: https://tika.apache.org/

[18] (2019, Feb 7th). Poppler. Available: https://poppler.freedesktop.org/

[19] R. Zanibbi and D. Blostein, "Recognition and retrieval of mathematical

expressions," International Journal on Document Analysis and Recognition

(IJDAR), vol. 15, no. 4, pp. 331-357, 2012.

[20] U. Garain, B. Chaudhuri, and A. R. Chaudhuri, "Identification of embedded

mathematical expressions in scanned documents," in Proceedings of the 17th

International Conference on Pattern Recognition, 2004. ICPR 2004., 2004, vol.

1, pp. 384-387: IEEE.

[21] X. Wang and J.-C. Liu, "A Font Setting Based Bayesian Model to Extract

Mathematical Expression in PDF Files," in 14th IAPR International Conference

on Document Analysis and Recognition (ICDAR), 2017, vol. 1, pp. 759-764:

IEEE.

[22] K. Iwatsuki, T. Sagara, T. Hara, and A. Aizawa, "Detecting In-line Mathematical

Expressions in Scientific Documents," in Proceedings of the 2017 ACM

Symposium on Document Engineering, 2017, pp. 141-144: ACM.

[23] X. Lin, L. Gao, Z. Tang, J. Baker, and V. Sorge, "Mathematical formula

identification and performance evaluation in PDF documents," International

 130

Journal on Document Analysis and Recognition (IJDAR), vol. 17, no. 3, pp. 239-

255, 2014.

[24] J. B. Baker, A. P. Sexton, and V. Sorge, "A linear grammar approach to

mathematical formula recognition from PDF," in International Conference on

Intelligent Computer Mathematics, 2009, pp. 201-216: Springer.

[25] K.-F. Chan and D.-Y. Yeung, "Mathematical expression recognition: a survey,"

International Journal on Document Analysis and Recognition, vol. 3, no. 1, pp.

3-15, 2000.

[26] X. Wang, Z. Wang, and J.-C. Liu, "Bigram Label Regularization to Reduce

Over-Segmentation on Inline Math Expression Detection," in IAPR International

Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia,

2019: IEEE.

[27] H. M. Twaakyondo and M. Okamoto, "Structure analysis and recognition of

mathematical expressions," in Proceedings of 3rd International Conference on

Document Analysis and Recognition, 1995, vol. 1, pp. 430-437: IEEE.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with

deep convolutional neural networks," in Advances in neural information

processing systems, 2012, pp. 1097-1105.

[29] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, "Connectionist

temporal classification: labelling unsegmented sequence data with recurrent

neural networks," in Proceedings of the 23rd international conference on

Machine learning, 2006, pp. 369-376: ACM.

 131

[30] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep structured

output learning for unconstrained text recognition," arXiv preprint

arXiv:1412.5903, 2014.

[31] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, "Show and tell: A neural image

caption generator," in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 3156-3164.

[32] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y.

Bengio, "Show, attend and tell: Neural image caption generation with visual

attention," in International conference on machine learning, 2015, pp. 2048-

2057.

[33] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, "End-to-end text recognition with

convolutional neural networks," in Proceedings of the 21st International

Conference on Pattern Recognition (ICPR2012), 2012, pp. 3304-3308: IEEE.

[34] B. Shi, X. Bai, and C. Yao, "An end-to-end trainable neural network for image-

based sequence recognition and its application to scene text recognition," IEEE

transactions on pattern analysis and machine intelligence, vol. 39, no. 11, pp.

2298-2304, 2016.

[35] M.-T. Luong, H. Pham, and C. D. Manning, "Effective approaches to attention-

based neural machine translation," arXiv preprint arXiv:1508.04025, 2015.

[36] J. Zhang, J. Du, and L. Dai, "A gru-based encoder-decoder approach with

attention for online handwritten mathematical expression recognition," in 2017

 132

14th IAPR International Conference on Document Analysis and Recognition

(ICDAR), 2017, vol. 1, pp. 902-907: IEEE.

[37] J. Zhang, J. Du, S. Zhang, D. Liu, Y. Hu, J. Hu, S. Wei, and L. Dai, "Watch,

attend and parse: An end-to-end neural network based approach to handwritten

mathematical expression recognition," Pattern Recognition, vol. 71, pp. 196-206,

2017.

[38] Y. Deng, A. Kanervisto, and A. M. Rush, "What you get is what you see: A

visual markup decompiler," arXiv preprint arXiv:1609.04938, vol. 10, pp. 32-37,

2016.

[39] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, "Image-to-markup generation

with coarse-to-fine attention," in Proceedings of the 34th International

Conference on Machine Learning-Volume 70, 2017, pp. 980-989: JMLR. org.

[40] J. Wang, Y. Sun, and S. Wang, "Image To Latex with DenseNet Encoder and

Joint Attention," Procedia computer science, vol. 147, pp. 374-380, 2019.

[41] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely

connected convolutional networks," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 4700-4708.

[42] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua, "Sca-cnn:

Spatial and channel-wise attention in convolutional networks for image

captioning," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 5659-5667.

 133

[43] W. Zhang, Z. Bai, and Y. Zhu, "An Improved Approach Based on CNN-RNNs

for Mathematical Expression Recognition," in Proceedings of the 2019 4th

International Conference on Multimedia Systems and Signal Processing, 2019,

pp. 57-61: ACM.

[44] Z. Wang and J.-C. Liu, "Translating Mathematical Formula Images to LaTeX

Sequences Using Deep Neural Networks with Sequence-level Training," arXiv

preprint arXiv:1908.11415, 2019.

[45] R. Smith, "An overview of the Tesseract OCR engine," in Ninth International

Conference on Document Analysis and Recognition (ICDAR 2007), 2007, vol. 2,

pp. 629-633: IEEE.

[46] L. Gao, X. Yi, Z. Jiang, L. Hao, and Z. Tang, "ICDAR2017 competition on page

object detection," in 2017 14th IAPR International Conference on Document

Analysis and Recognition (ICDAR), 2017, vol. 1, pp. 1417-1422: IEEE.

[47] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object

detection with region proposal networks," in Advances in neural information

processing systems, 2015, pp. 91-99.

[48] R. Saha, A. Mondal, and C. Jawahar, "Graphical Object Detection in Document

Images," in 2019 International Conference on Document Analysis and

Recognition (ICDAR), 2019, pp. 51-58: IEEE.

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-

scale hierarchical image database," in 2009 IEEE conference on computer vision

and pattern recognition, 2009, pp. 248-255: Ieee.

 134

[50] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed, "Deepdesrt: Deep

learning for detection and structure recognition of tables in document images," in

2017 14th IAPR International Conference on Document Analysis and

Recognition (ICDAR), 2017, vol. 1, pp. 1162-1167: IEEE.

[51] M. O. Perez-Arriaga, T. Estrada, and S. Abad-Mota, "TAO: system for table

detection and extraction from PDF documents," in The Twenty-Ninth

International Flairs Conference, 2016.

[52] C. Clark and S. Divvala, "Looking beyond text: Extracting figures, tables and

captions from computer science papers.. 2015," in AAAI 2015 Workshop on

Scholarly Big Data, 2015.

[53] D. D. Lewis and K. S. Jones, "Natural language processing for information

retrieval," Communications of the ACM, vol. 39, no. 1, pp. 92-101, 1996.

[54] H. Déjean and J.-L. Meunier, "A system for converting PDF documents into

structured XML format," in International Workshop on Document Analysis

Systems, 2006, pp. 129-140: Springer.

[55] E. Oro and M. Ruffolo, "TREX: An approach for recognizing and extracting

tables from PDF documents," in ICDAR'09. 10th International Conference on

Document Analysis and Recognition, 2009, pp. 906-910: IEEE.

[56] F. Rahman and H. Alam, "Conversion of PDF documents into HTML: a case

study of document image analysis," in The Thirty-Seventh Asilomar Conference

on Signals, Systems and Computers, 2003, vol. 1, pp. 87-91: IEEE.

 135

[57] U. Schöneberg and W. Sperber, "POS Tagging and its Applications for

Mathematics," in Intelligent Computer Mathematics: Springer, 2014, pp. 213-

223.

[58] M. Suzuki, Y. Terada, T. Kanahori, and K. Yamaguchi, "New Tools to Convert

PDF Math Contents into Accessible e-Books Efficiently," Studies in health

technology and informatics, vol. 217, pp. 1060-1064, 2015.

[59] X. Lin, L. Gao, Z. Tang, X. Lin, and X. Hu, "Performance evaluation of

mathematical formula identification," in 10th IAPR International Workshop on

Document Analysis Systems (DAS), 2012, pp. 287-291: IEEE.

[60] T. D. Smedt and W. Daelemans, "Pattern for python," Journal of Machine

Learning Research, vol. 13, no. Jun, pp. 2063-2067, 2012.

[61] G. A. Miller, "WordNet: a lexical database for English," Communications of the

ACM, vol. 38, no. 11, pp. 39-41, 1995.

[62] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:

analyzing text with the natural language toolkit. " O'Reilly Media, Inc.", 2009.

[63] (2019, Jan 30). CyLP software package. Available: https://github.com/coin-

or/CyLP

[64] X. Wang, "Missing MEs in Marmot dataset, in

www.icst.pku.edu.cn/cpdp/data/marmot_data.htm, web posting:

http://rtds.cse.tamu.edu/resources/, posted at Aug. 2017,"

[65] D. Beyette, Z. Wang, J. Lin, and J.-C. Liu, "Semi-Automatic LaTeX-Based

Labeling of Mathematical Objects in PDF Documents: MOP Data Set," in

 136

Proceedings of the ACM Symposium on Document Engineering 2019, 2019, pp.

1-4.

[66] B. Miller, "LaTeXML: A Latex to XML Converter. url:

https://dlmf.nist.gov/LaTeXML/," LaTeXML/(visited on 03/03/2020).

[67] P. Ion, R. Miner, S. Buswell, and A. Devitt, Mathematical Markup Language

(MathML) 1.0 Specification. World Wide Web Consortium (W3C), 1998.

[68] R. H. Anderson, "Syntax-directed recognition of hand-printed two-dimensional

mathematics," in Symposium on Interactive Systems for Experimental Applied

Mathematics: Proceedings of the Association for Computing Machinery Inc.

Symposium, 1967, pp. 436-459: ACM.

[69] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, "BLEU: a method for

automatic evaluation of machine translation," in Proceedings of the 40th annual

meeting on association for computational linguistics, 2002, pp. 311-318:

Association for Computational Linguistics.

[70] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, "Policy gradient

methods for reinforcement learning with function approximation," in Advances in

neural information processing systems, 2000, pp. 1057-1063.

[71] M. A. Ranzato, S. Chopra, M. Auli, and W. Zaremba, "Sequence level training

with recurrent neural networks," arXiv preprint arXiv:1511.06732, 2015.

[72] O. Levy and Y. Goldberg, "Neural word embedding as implicit matrix

factorization," in Advances in neural information processing systems, 2014, pp.

2177-2185.

 137

[73] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[74] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with

gradient descent is difficult," IEEE transactions on neural networks, vol. 5, no. 2,

pp. 157-166, 1994.

[75] S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu, "Minimum risk

training for neural machine translation," arXiv preprint arXiv:1512.02433, 2015.

[76] L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu, "A study of reinforcement learning

for neural machine translation," arXiv preprint arXiv:1808.08866, 2018.

[77] R. J. Williams, "Simple statistical gradient-following algorithms for

connectionist reinforcement learning," Machine learning, vol. 8, no. 3-4, pp.

229-256, 1992.

[78] S. Chatterjee and N. Cancedda, "Minimum error rate training by sampling the

translation lattice," in Proceedings of the 2010 Conference on Empirical Methods

in Natural Language Processing, 2010, pp. 606-615: Association for

Computational Linguistics.

[79] (2019, Aug 25). KaTex. Available: https://katex.org/

[80] F. Álvaro, J.-A. Sánchez, and J.-M. Benedí, "An image-based measure for

evaluation of mathematical expression recognition," in Iberian Conference on

Pattern Recognition and Image Analysis, 2013, pp. 682-690: Springer.

[81] (2020, May 6th). Mathpix Snip. Available: https://mathpix.com/

 138

[82] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv

preprint arXiv:1412.6980, 2014.

[83] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting," The

journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.

[84] A. Graves, "Sequence transduction with recurrent neural networks," arXiv

preprint arXiv:1211.3711, 2012.

[85] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.

Desmaison, L. Antiga, and A. Lerer, "Automatic differentiation in pytorch,"

2017.

[86] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-

decoder for statistical machine translation," arXiv preprint arXiv:1406.1078,

2014.

[87] (2020, Feb 20th). NIST Digital Library of Mathematical Functions. Available:

https://dlmf.nist.gov/

[88] (2020, Feb 20th). Wolfram Functions Site. Available:

http://functions.wolfram.com/

[89] E. Foulke, "Reading braille," Tactual perception: A sourcebook, vol. 168, 1982.

[90] K. Ashida, M. Okamoto, H. Imai, and T. Nakatsuka, "Performance evaluation of

a mathematical formula recognition system with a large scale of printed formula

 139

images," in Second International Conference on Document Image Analysis for

Libraries (DIAL'06), 2006, pp. 12 pp.-331: IEEE.

[91] J. Gehrke, P. Ginsparg, and J. Kleinberg, "Overview of the 2003 KDD Cup,"

Acm Sigkdd Explorations Newsletter, vol. 5, no. 2, pp. 149-151, 2003.

[92] (2020, March 3). TeX Live. Available: https://www.tug.org/texlive/

[93] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint

arXiv:1312.4400, 2013.

[94] M. Korobov, "sklearn-crfsuite (2015)," ed, 2019.

[95] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770-778.

[96] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once:

Unified, real-time object detection," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 779-788.

[97] N. Augsten, M. Böhlen, and J. Gamper, "The pq-gram distance between ordered

labeled trees," ACM Transactions on Database Systems (TODS), vol. 35, no. 1,

pp. 1-36, 2008.

[98] J. Lin, X. Wang, Z. Wang, D. Beyette, and J.-C. Liu, "Prediction of

Mathematical Expression Declarations based on Spatial, Semantic, and Syntactic

Analysis," in Proceedings of the ACM Symposium on Document Engineering

2019, 2019, pp. 1-10.

 140

[99] X. Wang, J. Lin, R. Vrecenar, and J.-C. Liu, "QuQn map: Qualitative-

Quantitative mapping of scientific papers," in Proceedings of the ACM

Symposium on Document Engineering 2018, 2018, pp. 1-4.

 141

APPENDIX A

VISUALIZATION OF MI2LATEX

Figure 27 Visualization of the translation process for an input image. The image
sequences are ordered vertically. The title of each image represents the token being

produced at that certain time step. The red rectangles represent the attention
weights. Darker color indicates a larger weight. We sampled 20 out of 77 predicted

LaTeX tokens for concise presentation.

 142

143

APPENDIX B

VISUALIZATION OF PDF2LATEX

Figure 28 Visualization of two examples from the PDF2LaTeX-102 dataset. The
reconstruction errors are marked in red.

144

“28.pdf”

Original

InftyReader

PDF2LaTeX

145

“66.pdf”

Original

InftyReader

PDF2LaTeX

146

APPENDIX C

EXTERNAL SOURCES

Table 18 External sources used including datasets and tools.
Datasets	

Marmot	Dataset	 https://www.icst.pku.edu.cn/cpdp/sjzy/index.htm

KDD	Cup	2003	Dataset	 https://research.cs.cornell.edu/kddcup/datasets.html

Tools	

PDFFigures	2.0	 http://pdffigures2.allenai.org/

Camelot	 https://camelot-py.readthedocs.io/en/master/

sklearn-crfsuite	 https://sklearn-crfsuite.readthedocs.io/en/latest/

KaTeX	 https://katex.org/

PDFBox	 https://pdfbox.apache.org/

PDFMiner	 https://pdfminer-
docs.readthedocs.io/pdfminer_index.html

InftyReader	 http://www.inftyreader.org/

