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 ABSTRACT 

 

In the era of digitization, the vast volume of scientific publications has become 

readily accessible to the readers. With the help of information retrieval technologies, a 

reader can conveniently locate an existing publication by typing in only a few keywords 

in a search engine. However, existing technologies cannot be directly applied on the 

contents of many scientific publications. This is due to the limitations of the PDF format, 

which is the de facto standard format for scientific publications nowadays. Being a layout-

based graphical format, PDF unfortunately does not offer easy access to its fine-grained 

contents. 

In this dissertation, we introduce a PDF content extraction and recognition system 

to bridge the gap. The system focuses on extracting crucial elements from scientific 

publications including text, math expressions, figures, and tables, which carry most of the 

technical substances. The proposed system investigated four specific problems. Firstly, 

we designed a set of algorithms to locate math expressions (ME) in PDF documents, which 

are often blended into the body text. These algorithms include calculating the ME 

likelihood of each PDF object based on the PDF font information, and reducing the 

fragmented detections using a bigram regularization model. In addition to the algorithm 

development, we also released a new dataset for the research community. Secondly, we 

proposed a deep neural network to recognize math expressions and produce their markup 

LaTeX. We used an encoder-decoder neural architecture, while the encoder takes images 

as inputs, and the decoder generates LaTeX tokens as outputs. We also designed a 
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sequence-level objective function to train the neural network in an end-to-end fashion, 

which affectively enforced the grammar-level correctness of the predicted LaTeX 

sequences. Thirdly, we developed the PDF2LaTeX OCR system, which recognizes entire 

PDF pages of mixed text and MEs. In the backend, we implemented machine learning 

algorithms to segment and label the contents, and applied the neural translators to convert 

page images into their LaTeX sources. Finally, we integrated the PDF2LaTeX system with 

two existing figure and table extraction tools, which enables the system to process a much 

wider range of scientific documents. For demonstration, we developed a graphical user 

interface for readers to conveniently interact with the contents on PDF pages. 
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CHAPTER I  

INTRODUCTION  

 

Background 

Researchers are experiencing an explosion of scientific publications. According to 

a research done by the University of Ottawa [1], by the year of 2009 researchers have 

published 50 million research papers in cumulative. This trend is fast growing. According 

to the 2019 statistics report from [2], on arXiv.org alone there are around 150,000 preprints 

published each year, mostly in the fields of physics, math, and computer science, as 

illustrated in Figure 1 (reprinted with permission from arXiv.org). Modern search engines 

have made it possible to retrieve a research paper with only a few keywords from large-

scale databases. However, retrieving fine-grained contents from research papers in PDF 

format remains an unsolved problem. “PDF is evil”, as stated by the creator of PDFMiner 

[3], for good reasons. PDF is the de facto standard publishing format. Despite its 

popularity, PDF is essentially a collection of graphical representations. Even though 

modern PDF encodes text information into PDF fonts [4], this information can be missing 

or even be wrong [5]. In addition, PDF does not contain structural information or tags, 

making it difficult for machines to understand contents beyond text. For example, in the 

fields of science, technology, engineering, and mathematics (STEM), math expressions 

are heavily used and are blended into the main body text. Unfortunately, math expressions 

are not tagged and are often represented as graphics. This not only harms text-based 
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information retrieval and knowledge mining, but also misses the opportunity to explore 

the rich technical information carried inside math expressions. 

 

Figure 1 Trends of arXiv publications, reprinted from [2]. 
 

In contrast to the PDF format, LaTeX is much more informative on organizing 

document contents. It explicitly marks different types of document components including 

math expressions, figures, tables, etc. One existing effort to advocate LaTeX is the preprint 

publisher arXiv.org, which gives authors the option to upload LaTeX source files together 

with PDF files. Nevertheless, this is still a relatively small portion compared to the vast 

volume of existing PDF publications. Since manual annotation is apparently infeasible, 

advanced techniques are needed to process PDF contents. 
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Existing PDF parsers like PDFMiner [3] and Apache PDFBox [6] provide some 

nice functions to decode PDF contents and reconstruct text and basic page layout 

structures such as columns and paragraphs. However, these tools are far from ideal not 

only because they rely on PDF fonts (which may not be available), but also because 

contents beyond text cannot be processed. In addition, image-based PDF documents 

would make PDF parser-based solutions in vain. Optical character recognition (OCR)-

based approaches can be used to overcome the limitations of PDF parsers. Modern OCR 

techniques can recognize English text at very high accuracy [7], but recognizing other 

components remains challenging. InftyReader [8] is the best-known commercial software 

to convert mathematical documents into LaTeX source files. Yet it is costly and the 

performance is still unsatisfying when being applied to scientific publications. 

Research Objectives 

 In this dissertation I developed a PDF content analysis system for scientific 

publications. The system can extract and recognize different paper components including 

plaintext, math expressions, figures, and tables. The recognition results can be used to 

reconstruct the LaTeX source files of the target PDF documents. The system provides 

semantic-level understanding of the PDF format, which brings at least the following 

benefits to the research community: 

• Recognizing the correct text encodings can improve the performance of text-based 

information retrieval and knowledge mining on PDF documents. 

• Math expressions in LaTeX format can be used for math information retrieval 

(MIR) [9]. MIR is almost inaccessible nowadays except for a few applications with 
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very limited databases, such as NIST Digital Library of Mathematical Functions 

[10] and Wolfram Functions Site [11]. 

• Math expressions in LaTeX format can be easily converted to other formats like 

MathML [12], which can be used on web browsers, and Braille code [13], which 

can be used for blind people. 

• Figures and tables can be indexed and retrieved to help researchers quickly grasp 

the gist of other research works. 

• For historical PDF documents based on images, conversion to LaTeX is useful for 

data compression and indexing purposes. 
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Figure 2 System overview and research tasks. 
 

 The overall design of the proposed system is shown in Figure 2. In this system, a 

PDF page is modeled as the main body, figures, and tables, where the main body is 

composed of a mixture of plaintext and math expressions. The system processes tables 

and figures separately, because they are usually placed at dedicated page areas. The 

bounding boxes of inline and displayed math expressions are first extracted based on a 

customized PDF parser and a feed-forward multi-stage algorithm. Next, a deep neural 
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network with CNN-LSTM architecture is trained to translate the images of math 

expressions into their markup LaTeX. The system can then use OCR approaches 

combined with a series of machine learning algorithms to convert entire PDF pages into 

their LaTeX sources. The system is composed of four research tasks listed below: 

Task 1: Math expression extraction with feed-forward multi-stage algorithms 

PDF is meant for page layout design, where the structural information and 

semantic tags of the document contents are not available. As a result, extracting math 

expressions from PDF is not a straightforward process. In this task, I will propose a model 

that can extract math expressions based on the PDF typesetting. The model is based on 

the observation that math expressions follow different layout patterns as compared to 

plaintext. This makes it possible to predict the tags and positions of math expressions 

based on the font information given by PDF parsers. A PDF page is formulated as a 

collection of symbols and tokens. Each symbol is associated with glyph name, value 𝑣%, 

font 𝑓%, and bounding boxes. The likelihood of a token being a plaintext word or a segment 

of a math expression is first calculated using the statistics of the font size. To reduce the 

split detection errors, a bigram regularization model is proposed to increase the stability 

and the smoothness of the label prediction by considering the labels of neighbors. The 

complete math expressions can be constructed by merging neighboring tokens with math 

tags. The contents and bounding boxes of math expressions will be extracted and 

evaluated, and will be further analyzed in the following research tasks. I will also introduce 

a new dataset, which was generated semi-automatically for evaluating the proposed model 

and related research tasks. 
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Task 2: Math2LaTeX translation with an encoder-decoder deep neural network 

Math expressions carry the most significant technical substances in STEM papers, 

but they cannot be easily understood by machines because they are represented as 

graphical elements in PDF documents. In this task I will propose a model that recognizes 

math expressions based on image inputs. The recognition results will be saved as LaTeX 

format. This not only involves segmenting and recognizing individual symbols, but also 

the size and layout relationship between different symbols, and a language model to guide 

correct LaTeX grammar. This problem is an intersection of image processing and 

sequence prediction. As a result, I propose to use a deep neural network with encoder-

decoder (CNN-LSTM) architecture, where the encoder is used to process the input images, 

and the decoder is used to generated the LaTeX sequences that mark up the input MEs. 

Relative position is important for analyzing the structure and relationship between 

different math symbols. To preserve this information, I propose to tailor the sinusoidal 

positional encoding method proposed in the Transformer model [9] into 2D to preserve 

the spatial locality information of math expressions. I will also introduce a sequence-level 

training objective function, which can enforce the correctness of the entire LaTeX 

sequence during training and improve the performance of the model. I will also introduce 

the policy gradient algorithm that made sequence-level training possible. 

Task 3: PDF2LaTeX conversion with OCR and machine learning algorithms 

The task of PDF2LaTeX conversion aims to reconstruct the LaTeX source code 

for entire PDF pages, which are composed of a mixture of text and math expressions. This 

is different from task 2 in that previously the model only translates individual math 
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expressions that are assumed to be extracted already. This task processes entire 

mathematical documents. This can be done by simply combining task 1 and task 2, but it 

will not overcome the limitations of PDF parsers such as missing fonts. Instead, I will 

introduce a new system based on OCR, which extracts math expressions and text in both 

postscript and image-based PDF files and translates them into markup LaTeX. The input 

becomes a grayscale image of a page. Assuming that tables and figures are already 

detected and removed from PDF pages, the proposed system need to first recognize the 

page layout and segment it into plaintext words and math expressions, and then translate 

them to LaTeX individually. The boundary between plaintext words and math expressions 

will also need to be determined. This is done by first using the profile projection cutting 

(PPC) to split the images of pages into column, lines, and tokens. To determine if a token 

is a plaintext word or a math segment, we used a CNN as a binary classifier that captures 

visual features and classify the labels of each token. To determine the boundary of math 

and text, I propose to post-process the CNN classification results with a conditional 

random field (CRF). After math classification, complete math expressions can be 

constructed by merging neighboring math segments. Their contents are finally recognized 

using the CNN-LSTM neural network. 

Task 4: Integration of figure and table extraction modules 

The presence of figures and tables in a page can disrupt the parsing process of the 

PDF2LaTeX system. In addition, figures and tables themselves contain important 

information. As a result, it becomes necessary to add figure and table extraction modules 

into the proposed system. Figure images can be very diverse and difficult to recognize, 
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while their caption text can be detected and utilized. For tables, one can extract not only 

their caption text, but also their rich cell data because table structure can be reconstructed 

relatively easily. Commercial software and research tools that extract figures and tables 

are readily available, but a comprehensive system to parse various components in 

scientific papers still does not exist. In this task, I will integrate figure and table extraction 

modules into the PDF2LaTeX system as a further step to the semantical understanding of 

paper contents. The positions of figures and tables are detected using the PDFFigures [10] 

software. The extraction results are given as the bounding boxes of these objects and the 

text of the captions. In addition, I will use the Camelot software [11] to extract the cell 

data from tables. Finally, figures and tables are masked out from the page by overlapping 

the detected area with white pixels. The rest of the contents are converted to LaTeX using 

the existing PDF2LaTeX system. The final system is able to extract text, math expressions, 

figures, tables, and their captions all together and index the recognized contents for 

information retrieval purposes.  

Summary of Findings 

In summary, the proposed PDF content extraction and recognition system can 

semantically parse different components in scientific publications, including plaintext, 

math expressions, figures, and tables. The main body including plaintext and math 

expressions can be recognized and converted to LaTeX format. Figures and tables can be 

extracted and saved together with their captions for indexing purposes. The system serves 

as the foundation to understand semantical contents and retrieve information from 
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scientific publications in PDF format. The technical novelties in the proposed work are 

summarized below: 

Table 1 A summary of technical novelties in this dissertation. 
 Existing Works This Work 

Math 
Extraction 
from PDF 

Rule-based and global 
training-based methods at 
lower accuracy, lack of 
training and test data  

Font-based algorithms for math 
extraction, bigram regularization to 
incorporate neighboring information, 
MOP dataset for evaluation 

Math-to-
LaTeX 
Translation 

Empirical math structural 
analysis, token-level training 
objective function, lack of 
position information 

Positional encoding for math layout 
structure, elimination of exposure bias 
problem, policy gradient for 
sequence-level objective function 

PDF-to-
LaTeX 
Conversion 

Open-source plaintext 
recognition tools, commercial 
math document analysis tools 
at lower accuracy and high cost 

PPC for PDF image segmentation, 
CNN and CRF for math/plaintext 
labeling, deep neural networks for 
LaTeX translation 

Figure/Table 
Extraction 

Rule-based and machine 
learning-based algorithms that 
only detect figures/tables 

An integrated system that extracts 
plaintext, math expressions, figures, 
and tables simultaneously 

 

Dissertation Outline 

The rest of the dissertation is organized as follows. In Chapter II we discuss the 

related works, including extracting MEs from PDF documents, recognition of MEs, 

conversion of MEs from images to LaTeX, conversion from PDF documents to LaTeX, 

and figure and extraction from PDF documents. In Chapter III, we introduce a feed-

forward multi-stage algorithm which is used to locate the bounding boxes of MEs in PDF 

documents, and a bigram regularization model that can stabilize the predicted labels and 

reduce split detection errors. We also introduce the MOP dataset in this chapter. In Chapter 
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III, we introduce an encoder-decoder neural network which is used to take images of math 

formulas as inputs, and converts the recognized contents into their markup LaTeX strings 

in an end-to-end fashion. We also introduce the 2-dimensional positional encoding and a 

sequence-level objective function used in this model. In Chapter IV, we introduce a 

comprehensive OCR system called PDF2LaTeX, which can convert entire mathematical 

documents in PDF format into their LaTeX source files. We will discuss the details of the 

machine learning algorithms in the system including deep neural networks and a 

conditional random field. In Chapter V, we enhance the PDF2LaTeX system with figure 

and table extraction modules. We will briefly discuss the mechanisms of two external tools 

and explain how they are embedded into the existing system. Finally, in Chapter VI we 

conclude this dissertation and discuss future works. 



 

 

 

12 

CHAPTER II  

LITERATURE REVIEW 

 

Extracting Math Expressions from PDF documents 

PDF is a layout-based format designed for printing and exchanging documents [4]. 

Modern works on ME extraction from PDF documents are mainly based on OCR or PDF 

parser [12-14]. In the OCR-based approaches, a PDF document is first rendered into an 

image, and MEs are detected based on shape analysis. For example, in [15], the OCR 

technique was used to recognize MEs from Japanese documents, where non-Japanese 

characters are classified as ME characters. A follow up work [8] further utilized the 

position and size information to improve the performance. An image segmentation method 

based on fuzzy logic was proposed in [16] to isolate MEs area from plaintext area. A deep 

learning technique based on the combination of convolutional neural network and 

recurrent neural network was employed to detect MEs based on image analysis in 

conjunction with PDF metadata analysis [13]. 

Since PDF does not contain tagged information about its contents, external 

processing tools are required to extract and understand its elements. Some popular text-

based open source PDF parsers include Apache PDFBox [6], Apache Tika [17], Poppler 

[18], PDFMiner [3], etc. These tools can not only extract text from PDF documents, but 

also the metadata associated with the text, such as font, glyph name, Unicode, bounding 

box, etc. As a result, PDF parser provides richer and more accurate information over OCR-

based PDF processing methods [13, 19, 20]. 
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ME extraction based on PDF parsers has been extensively studied recently [12, 21-

23]. The general features used to differentiate ME from Non-ME (NME) include the 

following aspects: math elements, fonts, linguistics, and spatial layouts. Math elements 

include operations, relations, Greek symbols, delimiters, functions, integrals, fractions, 

and squares. In [24] the authors also used the special font name to extract MEs. Linguistic 

features include the purity of words [12], letters ratio [22], and matching with plaintext 

word [21]. Spatial layout features include line height, above/below space, left/right indent 

[24], line centeredness, variation of line width [23], sparsity of characters, variance of 

baseline, variance of bounding box size [12]. There is a trend of using adaptive features 

[21, 22] besides the general features. For example, to accommodate the writing habits of 

each user, [21, 22] proposed to use the local features based on the identified displayed 

mathematical expression. Past methods mostly model the ME extraction problem as a 

classification problem and train a discriminant model. [22] is the only work that 

systematically models the neighboring information for the decision-making processes. 

The work proposed to use the Conditional Random Field (CRF) as a sequential model for 

the inline ME detection. 

Different attributes of PDF objects have been used as features in machine learning 

models. In [12], the support vector machine (SVM) was used to identify inline MEs based 

on geometric layout and content features. Nine different machine learning algorithms, 

combined with heuristic rules were used to extract both inline and displayed MEs [23]. In 

a recent work [21], a weakly-supervised Font Setting based Bayesian model (FSB) was 

proposed for ME extraction. Without using any ground truth data for training, the 
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algorithm first employed heuristic rules for displayed ME detection, and then used a 

Bayesian predictor based on the font and glyph name value of the displayed ME characters 

to detect inline MEs. 

Math Expression Recognition 

Automatic recognition of math formulas in digital publications has long been 

recognized as a challenging task [25]. The task first requires to locate math formulas in 

digital documents, then analyze the structure of math formulas, and finally translate them 

into math markup languages. In [20], Garain et al. proposed to use a commercial OCR 

tool as a text classifier, where patterns that cannot be recognized by the OCR were further 

analyzed to detect math formulas. In [5], Wang et al. developed a PDF parser to detect 

math formulas based on the font statistics with a feed-forward algorithm. In [26], they 

further proposed a bigram label regularization method to reduce the over-segmentation 

problem during formula detections. In [13], Gao et al. proposed to combine the PDF font 

information with vision features, and manually labeled a large dataset to train a deep neural 

network for math formula detection. Once math formulas are detected, the next step is to 

analyze their 2-dimensional layout structure. Twaaliyondo el al. in [27] proposed a method 

that first divided the formulas into subexpressions based on larger symbols and blank 

spaces in a recursive manner, and then represented the structure of the formulas as a tree. 

In [8], Suziki et al. used a similar approach as [20] to first locate the math formulas, and 

then represented the structure of math formulas as trees, and used a minimum-cost 

spanning-tree algorithm for the structure analysis. This proposed work was made into the 

commercial software -- InftyReader. 
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Recently, convolutional neural networks have achieved new performance levels 

for OCR tasks [28], which gives new solutions to translate math formulas from images in 

a data-driven manner, yet requiring to resolve the following additional problems: 1) the 

input image is not segmented, 2) the output is a sequence of tokens of arbitrary length, and 

3) structural information needs to be understood. Techniques such as Connectionist 

Temporal Classification (CTC) [29] models the inter-label dependencies implicitly, 

making it possible to train a neural network directly with unsegmented data. Existing 

solutions to predict sequence from image inputs can be found in text recognition and image 

captioning tasks [29-34], which usually combines CNN with a sequential model to 

construct an encoder-decoder (seq2seq) architecture. Jaderberg et al. in [30] showed that 

combining CNN with NLP techniques like Conditional Random Field (CRF) was very 

effective in recognizing text in images. Another common approach is to use RNN as the 

sequence predictor. This was referred to as a CRNN model in [34], which was end-to-end 

trainable for image-based sequence recognition tasks. The attention mechanism [35] has 

been proposed to emulate the human vision system, which allows the model to attend the 

salient parts of an image while generating the target sequence. Xu et al. in [32] combined 

the attention mechanism with the CRNN model which achieved further performance gain 

in image captioning task. With minor modifications, this architecture can be tailored to 

translate images of math formulas into their LaTeX markup sequences. 

In [36], Zhang et al. proposed a gated recurrent unit (GRU) based encoder-decoder 

model combined with attention mechanism to translate handwritten math to LaTeX. The 

model takes the stroke information as inputs, and shows capability to recognize both 
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symbols and their structures simultaneously. In [37], they replaced the GRU encoder with 

a CNN encoder, enabling the model to take images as inputs instead of strokes. In [38], 

Deng et al. proposed another seq2seq model that targets on machine-rendered real-world 

math formula images. The model is composed of a CNN and a multi-row RNN as the 

encoder, and an attention-based LSTM as the decoder. The model was tested on the 

IM2LATEX-100K dataset and outperformed the INFTY system [8]. The model was found 

to achieve good performance for recognizing handwritten math formulas as well [39]. In 

[40], Wang et al. improved the model in [38] by replacing the CNN encoder with a 

DenseNet [41], and enhanced the attention mechanism with a joint attention mechanism 

[42], which combines the channel-wise attention with spatial-wise attention. In [43], 

Zhang et al. increased the source image size by two times and applied double-attention 

mechanism, and improved the performance over [38]. All the above-mentioned works 

used the token-level maximum likelihood estimation as the training objective. 

PDF Recognition 

Similar to ME extraction, techniques for PDF document analysis can also be 

categorized into two types: PDF parser-based and OCR-based techniques. PDF parsers are 

tools used to decode PDF source files [4] into font objects which contain information such 

as text, bounding boxes, sizes, etc. On the other hand, OCR-based approaches process 

PDF documents as images. In either type, it is crucial to recover the structure of the pages 

and differentiate between math and text. 

In PDF parser-based approaches, statistics of font information can be used to 

analyze the structure of PDF pages and detect math expressions. For example, in [21] 
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Wang et al. developed a PDF parser based on PDFBox to extract font objects from PDF 

documents, and used statistics of font positions and sizes to separate math expressions 

from plaintext. In [26], they further developed a bigram regularization model to 

incorporate the neighboring information to enhance the boundary detection between math 

and plaintext. Similarly, Iwatsuki et al. in [22] trained a conditional random field (CRF) 

which incorporated neighboring information and linguistic features, and achieved 

performance gain on detecting inline math expressions. Once math expressions are 

located, additional techniques are required to recognize the contents. For example, Baker 

et al. in [24] used a linear grammar approach to parse math expressions in PDF documents, 

and went further in [14] to interpret the semantical meaning of math expressions using 

spacing and font information. A major limitation of this type of technique is that they rely 

on the text information in fonts, which are not always available. 

OCR-based approaches are not subject to the missing font problem but can involve 

more in-depth techniques. This is because information available in PDF parsers will 

instead need to be inferred from pixel values. Fortunately, modern OCR techniques, 

especially deep learning techniques, have made it possible to effectively extract such 

information from images. For example, Gao et al. demonstrated using CNN to detect math 

expressions [13] from PDF documents, and showed that combining pixel information with 

PDF parser output can further enhance the recognition accuracy. Deng et al. [38, 39] 

demonstrated that by using the CNN-LSTM neural network architecture with attention 

mechanism, it is possible to translate an image of a math formula into its markup LaTeX 
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source in an end-to-end fashion. In [44], the performance is further enhanced with 

positional encoding and sequence-level training. 

We have reviewed the literature on math extraction and recognition. Still, 

recognizing an entire PDF page is a more complicated task and there are very few tools 

available for this. Tesseract OCR [45], originally developed in Hewlett-Packard lab and 

now maintained by Google, is an excellent open-source OCR tool that recognizes not only 

text in different languages at high accuracy, but also the basic structure of pages. However, 

it does not handle math expressions thus cannot be used to process mathematical 

documents. InftyReader [8] is the only known system by far that recognizes PDF pages 

with math expressions. It is a commercial software based on the Infty system [8] developed 

by Suzuki et al, which can not only convert math expressions to LaTeX and MathML, but 

can also process entire PDF pages and recover the markup LaTeX sources. 

Extracting Figures and Tables from PDF Documents 

In the 2017 international conference on document analysis and recognition 

(ICDAR), a research competition [46] was held on page object detection algorithms for 

document images. The target objects include figures, tables, and displayed math formulas. 

Almost all submitted works used deep learning models to detect page objects. Among 

these works, Faster-RCNN [47] is the most popular choice because it is the state-of-the-

art object detection model that has been widely used on natural scene images. Saha et al. 

in [48] used this model to detect page objects. Due to the lack of training data, they used 

transfer learning based on a pre-trained model trained on ImageNet [49]. The model 

achieves excellent accuracy on table detection, but on figure and math expression 
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detection the accuracy becomes lower. A similar approach was proposed by Schreiber et 

al. earlier in [50]. In this work, the authors also used Faster-RCNN but focused on table 

detection and went further to use another neural network to detect table rows and columns. 

A common shortcoming of deep learning-based approaches is the lack of data and the 

drifting of the predicted bounding boxes, which are not effectively captured by the 

evaluation criterion--intersection over union (IOU) rate of 80%. In contrast, PDF parser-

based methods can behave more robust since text information can be utilized. In addition, 

captions can be detected easily based on string matching and position heuristics. In [51], 

Perez-Arriaga et al. developed a TAble Organization (TAO) system based on PDFMiner 

[3]. TAO generates table candidates by applying heuristic rules based on structural 

alignments on the XML output of PDFMiner. It then extracts the text contents of each cell 

in the candidate tables and saves them into JSON format. This system is purely based on 

structural information without using text information, thus does not detect captions. In 

[52], Clark et al. developed a figure and table detection system called PDFFigures. The 

system uses a unified framework to detect both figures and tables based on the observation 

that a region with no body text that is adjacent to a caption must contain either tables or 

figures. The first step is to extract the text with a PDF parser, and then detect captions 

based on keywords matching and a few heuristic rules. Body text and figure text (text 

inside figures/tables) are differentiated by page margins. Once the captions are located, 

their adjacent regions of space are scored based on their size, number of figure text, etc. 

Finally, the captions are assigned to the proposed regions with the highest scores. Figures 

and tables are differentiated by the caption keywords. In [10], the authors added more 
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heuristic rules to the software and released PDFFigures 2.0, which is applicable to 

publications in a wider range of topics. 
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CHAPTER III  

MATH EXPRESSIONS EXTRACTION FROM PDF DOCUMENTS BASED ON 

MODELING OF FONTS* 

 

This chapter proposes a multi-stage architecture to extract math expressions (ME) 

from PDF documents based on font analysis. The feed-forward algorithm starts from 

symbol-level analysis based on metadata of PDF objects, including font size, font name, 

and glyph name. Two subsequent stages utilize a group of spatial and semantic heuristics 

to merge multiple ME symbols into both inline ME and displayed ME. For inline ME, 

they are blended into plaintext sentences in scientific papers.  Detecting inline MEs is a 

non-trivial problem due to the unrestricted usage of font styles and blurred boundaries 

with plaintext in scientific publications. For instance, many inline MEs detected by 

existing algorithms are split into multiple parts incorrectly due to the misidentification of 

a few characters. As such, we propose a bigram regularization model to resolve the split 

detection problem in inline ME detection. The model incorporates neighboring constraints 

                                                

*Reprinted with permission from “Extraction of Math Expressions from PDF Documents 
based on Unsupervised Modeling of Fonts” by Wang, Z., Beyette, D., Lin, J., & Liu, J. C. 
in 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp. 
381-386), Copyright 2019 IEEE, “Bigram Label Regularization to Reduce Over-
Segmentation on Inline Math Expression Detection” by Wang, X., Wang, Z., & Liu, J. C. 
in 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp. 
387-392), Copyright 2019 IEEE, and “Semi-Automatic LaTeX-Based Labeling of 
Mathematical Objects in PDF Documents: MOP Data Set” by Beyette, D., Wang, Z., Lin, 
J., & Liu, J. C. in the Proceedings of the ACM Symposium on Document Engineering 2019 
(DocEng’19) (pp. 1-4), Copyright 2019 ACM. 
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during labeling of ME vs. plaintext. The algorithm is tested on the Marmot dataset 

(amended with missing cases). For displayed ME, the proposed method achieved 93.6% 

precision, 99.4% recall, and 96.4% F1-score. For inline ME, the method achieved 92.2% 

precision, 91.9% recall, and 92.1% F1-score. In addition, the algorithm only takes an 

average of 1.09s to process a page, which is faster than other existing methods. Finally, 

we will introduce the MOP (Mathematical Objects in PDF Documents) dataset and the 

semi-automatic ME labeling system used to generate the dataset. A total of 1,802 PDF 

pages from arXiv high energy physics (hep-th) were labelled, and a benchmark was 

generated with the proposed algorithm. 

Overview 

Natural language processing (NLP) techniques have been widely used to extract 

knowledge from scientific publications and facilitate the process for information retrieval 

[53]. However, NLP techniques are specifically designed for standard natural languages, 

which makes it difficult to be directly used in lots of scientific publications because a 

sentence is often mixed with non-textual elements such as math expressions (ME). Thus, 

identifying the non-textual parts of a sentence becomes a critical issue. This is especially 

important for Portable Document Format (PDF) documents, because the PDF format does 

not contain tagged information about its content. PDF is the de facto standard format for 

modern electronic publications. Although the PDF format is a versatile format for 

document sharing and printing, it is difficult to retrieve non-plaintext information from 

PDF documents. While research has been done on recognizing basic components from 

PDF documents, such as headings, tables, paragraphs, etc. [54-56], extraction of 
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mathematical expressions remains an unsolved problem. Human readers can effortlessly 

distinguish MEs from natural language words, based on reserved words, names, and 

symbols, it can be highly challenging for a computer to achieve perfect accuracy in ME 

extraction, especially when plaintexts are used for ME representations. In addition, 

complex math notations/symbols may be composed of smaller pieces of graphic 

primitives. For instance, a square root “ 			” could be composed of graphic elements “√” 

and “−” in PDF. MEs can be loosely classified as displayed MEs and inline MEs. 

Displayed MEs are isolated from plaintext and occupy one or more lines. They are 

relatively easier to detect because of their special spatial patterns. Inline MEs are blended 

into natural language sentences and are generally harder to detect. 

Being able to detect MEs automatically would greatly benefit the sentence 

understanding by machines such as Part-Of-Speech Tagging [57]. In addition, the MEs 

themselves contain important information because they are concise representations of 

scientific contents in publications, especially in the Science, Technology, Engineering, 

and Mathematics (STEM) fields. As such, being able to extract MEs automatically is the 

foundation to scientific contents analysis. Different approaches have been proposed to 

extract ME from PDF documents. One category of existing works used the optical 

character recognition (OCR) techniques by first converting the PDF documents into 

images. However, special math symbols and spatial relationship could be incorrectly 

recognized by OCR tools. OCR techniques do not utilize the rich information encoded in 

PDF format. Another category of solutions used PDF parsers to extract PDF objects first, 

and then apply rule-based methods or machine learning algorithms to predict MEs. The 
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key is to utilize the encoded features with discriminant power in order to achieve good 

extraction performance at low computation cost. 

In this chapter, we propose a multi-stage algorithm to extract ME, based on the 

hierarchical relationship between math elements. In the first stage, we introduce a 

likelihood ratio test model based on font size variation feature, and matching of font name 

and glyph name to detect individual ME symbols. In the following stages we propose a 

group of heuristic rules to merge ME symbols into inline MEs and displayed MEs. Finally, 

we will introduce a bigram regularization model that utilizes the neighboring information 

in bigram tokens to fix the misidentified ME labels and reduce the split ratio. The model 

penalizes the label change thus increases the stability of the prediction. While our model 

is simple, fast, and accurate, it does not recover the semantics (the math symbolic notation) 

of ME symbols when they are encoded by multiple PDF objects. Thus, we will use 

“symbol” and “PDF object” interchangeably in the following sections. 

The Multi-Stage Algorithm 

In our model, a PDF document is formulated as a set of encoded PDF objects. The 

metadata of an object describes its attributes, such as Unicode, bounding boxes, font, 

glyphs (shape in vector graphics), glyph names, etc. A math symbol can be represented by 

a set of PDF objects. A set of closely spaced math symbols forms a math token which 

represents a multi-variable/operator math notation. An ME may be composed of multiple 

tokens. The overall hierarchy, starting from PDF objects, math symbols, math tokens, to 

inline and displayed MEs is illustrated in Figure 3. 
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Figure 3 The flow chart of the system model. The bottom line shows an example of 
the metadata of “Ω”. Glyph name and Unicode are shown in grey because they are 

not always available in PDF documents. 
 

The preprocessing step, stage 0, performs the PDF parsing in order to extract 

features needed for symbol extraction. At stage 1, symbols are classified into ME vs. 

plaintext using a likelihood ratio test model based on font size features, and matching of 

font name and glyph name. At stage 2, symbols are merged into tokens, which are further 

merged to produce inline ME vs. plaintext words based on a few different heuristic rules. 

At stage 3, displayed MEs are identified based on a group of spatial rules. 

Stage 0: PDF Pre-processing and Feature Design 

PDF Pre-processing 

Several open source PDF libraries are available for PDF parsing, e.g., Apache 

PDFBox [6], Apache Tika [17], PDFMiner [3], etc. We developed a customized PDF 



 

 

 

26 

parser on top of the PDFBox library to extract PDF objects and their metadata including 

font name, glyph name, Unicode, and two types of bounding boxes (BBox). There are two 

types of BBoxes: font box and glyph box. The PDF specification states that a font box is 

“the smallest rectangle enclosing the shape that would result if all of the glyphs of the font were 

placed with their origins coincident and then filled” [4]. A font box (marked as red boxes in 

Figure 4) usually has some white space between the box edges and the symbol itself. These 

boxes are identical to the highlighted boxes when marking text on PDF files. The glyph 

box is a box in contact with the glyph shape [4] (shown as the green boxes in Figure 4). 

Effective methods to calculate gylph boxes can be found in [24, 58]. 

 

Figure 4 Font box, glyph box, and three different types of gaps in a sequence of 
PDF objects representing words and an ME. 

 

Using the top left coordinates of each glyph box as the reference position of each 

PDF object, we first sort these PDF objects in the left to right, and top to down sequence. 

Glyph boxes are not used in the subsequent ME extraction steps, but they are still 

important for future ME layout analysis (e.g., subscript, superscript). We also adopt the 

projection profiling cutting (PPC) method to separate text into different columns [21]. The 

PPC technique is based on calculating the total count of black pixels for each column line. 
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The blank space between adjacent columns has zero (black pixel) counts, and is used as a 

delimiter to direct the order of row-by-row PDF objects. 

In addition to the column spacing, three other types of spacing gaps among PDF 

objects are analyzed: the symbol gap, token gap, and line gap, which are illustrated in 

Figure 4. The physical gap sizes may vary among documents, but their relative 

relationship on the histogram holds. Figure 5 shows an example of the histogram for gap 

values of a PDF page. Based on the observation on histograms, we set the first highest 

peak of the histogram as the symbol gap: the gap between adjacent symbols in a token. 

We set the second highest peak to be the token gap. Adjacent symbols whose gaps that are 

smaller than the token gap are grouped as tokens. In plaintext, a token usually corresponds 

to a natural language word. In MEs, a token could be only part of an ME because the gaps 

inside MEs are less uniform and can be larger than the token gap value. Thus, the gap-

based analysis is necessary for detecting tokens of PDF objects, but additional attributes 

are needed to recover the structure of MEs. 

 

Figure 5 A histogram of gaps between adjacent font boxes on a PDF page. X-axis 
shows the gap distance in pt. The bin width is 0.1 pt. 
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Font size as a feature 

In our system design, the height of a font box is defined as its font size. Similarly, 

the height of a glyph box is defined as its glyph size. In most documents, the font size for 

plaintext remains unchanged, except for headings, special layouts, e.g., highlights, tables, 

etc. On the other hand, we observed that the font size of symbols in most MEs changes 

frequently. 

 

Figure 6 (1) Text stream vs. font size (in pt) of a single PDF page. The black circles 
mark the occurrences of different PDF elements. (2) A zoom in which shows the 

phrase and its font sizes. 
 

An example of the font size distribution for a PDF page, which contains the phrase 

illustrated in Figure 4, is given in Figure 6 (1). The font size for the main body text is 

around 13pt. However, the font size changes with other components: figure/table captions, 

headings, inline/displayed MEs, etc. In this particular example, the font sizes in MEs range 

from 5pt to 21pt, where the very large font sizes correspond to large operators, and the 

very small ones correspond to sub- or superscripts. Figure 6 (2) gives a zoom in view of 

font sizes corresponding to the sentence in Figure 4, with the actual symbols plotted on 

top of the trace line, clearly suggesting the font size fluctuates in MEs. This patterns were 

consistently observed in numerous examples, except when plaintexts were directly used 
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as MEs. This observation leads to the design of an unsupervised algorithm for symbol-

level ME detection, where the font size is used as the detection feature. Details of this 

algorithm are discussed next. 

Stage 1: Symbol-level ME Detection 

This stage is consisted of two parts: (1) font size based likelihood ratio test, and 

(2) font/glyph name based matching. 

Font Size-based Likelihood Ratio Test 

Although MEs usually have variations in font size, the font size change alone is 

not sufficient to detect MEs because 1) font size also changes during transitions from the 

main body text to other elements such as headings, captions, etc.; 2) neighboring symbols 

inside an ME may have the same font size. Thus, a statistical model is necessary to 

incorporate the font size information systematically. Here we propose to use a likelihood 

ratio test model for symbol level classification of ME vs. non-ME (NME). That is, let c 

be an unknown symbol/character on a PDF page, 𝐹𝑆 be its font size, and 𝐿 ∈ 𝑀𝐸,𝑁𝑀𝐸  

be its label. The likelihood ratio 𝐿2 test is based on the font size information, formulated 

as follows: 

𝐿2 𝑐 =
𝑃(𝐿 = 𝑀𝐸|𝐹𝑆 = 𝑓𝑠%)
𝑃(𝐿 = 𝑁𝑀𝐸|𝐹𝑆 = 𝑓𝑠%)

 

The decision rule for any character 𝑐 is that: if 𝐿2 𝑐 > 1, 𝐿 𝑐 = 𝑀𝐸, otherwise 

𝐿 𝑐 = 𝑁𝑀𝐸. The key questions is how to estimate the likelihood on the right-hand-side 

in the equation. One obvious solution is to use ground truth data with human-labeled MEs, 

and model the likelihood 𝑃(𝐿 = 𝑀𝐸|𝐹𝑆 = 𝑓𝑠%)  with a supervised training model. 
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However, ground truth data can be expensive to label and contains human errors. An even 

more important issue is that the font size feature may not be generalized across different 

PDF pages. For example, a certain font size may be used intensively for plaintext in one 

document, but used mainly for MEs in a different document. Here, we instead propose an 

unsupervised grouping algorithm to generate ME/NME training samples automatically 

based on the font size variations. We build this model for each page we process 

independently. 

First we observe that the font size changes in MEs occur rapidly within short 

distances. On the other hand, the font size of plaintext contents, including headings, 

figure/table captions, etc., changes at much longer distances. Based on this property, we 

propose a grouping algorithm to classify unknown symbols into two groups: 𝐺=>?2@ and 

𝐺A?BC  based on their distances to font size change, and use the groups as samples to 

estimate the likelihood of ME vs. NME. The pseudocode of this method is shown below: 

Table 2 Pseudocode of the symbol grouping method 
Symbol grouping method 

procedure GROUP( P ) 
/* P is the sorted collection of all symbols on a page */ 
1     current_size = first_symbol.size 
2     G = [] 
3     for char in P: 
4            if char.size != current_size: 
5                   if length(G) <= threshold: 
6                          add all symbols in G to Gshort 
7                   else: 
8                          add all symbols in G to Glong 
9                   G = [] 
10                  current_size = char.size 
11           add char to G 
12    return Gshort and Glong 
end GROUP 
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We set the threshold in the above grouping algorithm as 3. To explain this choice, 

we inspected 562 inline and displayed MEs from the Marmot dataset [59] and visualized 

the pattern of font size change inside MEs. The result is shown in Figure 7. We observe 

that the font size in MEs changes within 3 symbols in 95.2% of the cases. Thus, 3 is a 

reasonable choice for the threshold. 

 

Figure 7 The length of symbol sequence until a font size change. 
 

To derive the decision rule, we hypothesize that symbols in 	GEFGHI  are ME 

samples, and symbols in GJGKL  are NME samples on an unknown PDF page. Let 

Count(c|FS = fsW) be the total number of symbols with font size	fsW on a page. We can 

estimate the likelihood as: 

P L = ME FS = fsW =
Count(c|FS = fsW, c ∈ GEFGHI)

Count(c|FS = fsW)
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P L = NME FS = fsW =
Count(c|FS = fsW, c ∈ GJGKL)

Count(c|FS = fsW)
 

Merge the above equations, we have: 

LH c =
Count(c|FS = fsW, c ∈ GEFGHI)
Count(c|FS = fsW, c ∈ GJGKL)

 

Font Name and Glyph Name Matching 

In addition to the font size feature, font name and glyph name of ME symbols also 

provide very useful information for identifying MEs. Knowing that numerous custom 

fonts are available in PDF documents, a systematic enumeration is required to complete 

the matching approach. As a demonstration, we explored a limited number of PDF 

documents, and identified that font names containing the following substrings are meant 

for ME symbols: (“GreekwithMathPi”, “Math”, “+MSBM”, “+CMSY”, “+CMMI”). 

Glyph names such as operators (“plus”, “equal”, “element”, “summationdisplay”), Greek 

symbols (“delta”, “gamma”), etc., also indicate ME symbols. Symbols with the above font 

and glyph names are identified as ME symbols. 

 

Figure 8 Fragmented detection of symbols in an ME. Symbols in red/green 
rectangles indicate symbols that are classified as ME/NME. 

 

As it will become clear in Section IV, Stage 1 alone already yields good 

performance at the symbol level. That being said, most MEs are composed of a sequence 

of multiple symbols, which should be aggregated into one single entity, rather than as 

separate ones. Figure 8 illustrates an example which should be labelled as one single ME, 
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rather than a number of split ME symbols (marked in red) and false negatives (marked in 

green). In this case, the “min” and the parentheses are not recognized as ME because they 

have the same font size as plaintext (marked in green). The stage 2 algorithm aims to 

address this issue based on a number of heuristic rules. 

Stage 2: Inline ME Detection 

As mentioned earlier, symbols are grouped into a token when their gaps are smaller 

than the token gap threshold. That being said, additional steps are required to decide if 

adjacent ME tokens need to be further merged into one ME. 

First, a token is designated as an ME token when any of its symbols is a known 

math symbol, and all symbols in the same token are also labeled as ME symbols. For the 

example in Figure 8, the word “min” in “minu∈[0,1]” will be labeled as ME because it is 

within the same token as "c∈[d,e]", which are known math symbols from the previous stage. 

Based on this rule, we get the token-level ME detection. 

Next, adjacent ME tokens are merged into one ME as an inline ME candidate. 

Three additional rules are employed in this step: 1) plaintext commas, periods, and 

semicolons located at the end of the token are excluded from the merging process; 2) when 

a math operator (“=”, “+”, “∈”, etc.) is at the beginning or end of a token, its neighbor 

token is also merged; 3) if unmatched parentheses are detected inside a token, we extend 

the token until parentheses become valid. After the merging process, the ME in Figure 8 

becomes complete. 
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Stage 3: Displayed ME Detection 

A line is identified as a displayed ME if it satisfies one of the two rules: 1) the line 

contains ME symbols and starts or ends with an equation number in the following format: 

“(x)” where “x” is an integer, and a gap exist between the equation number and the rest 

symbols; 2) the line contains only ME tokens or white-listed math words such as (“max”, 

“exp”, “mean”, “sin”, etc.), without other common natural language words. For 

implementation, we used Pattern [60] and Wordnet lemmatizer [61] to normalize the 

words into their root form, and then match them with the natural language corpus from the 

Natural Language Toolkit (NLTK) [62]. 

A lengthy displayed ME may take more than one line. To merge these equations 

across lines, we check if the beginning or the ending symbol of a displayed ME is a math 

operator. If so, we merge this line with its neighbor line into one displayed ME. An 

example is shown on the first row in Table 3. Fraction line, which is often encoded as 

graphic elements, can cause false split of an equation, as the second example in Table 3. 

In this case, the displayed ME was falsely labeled into 3 different MEs. This issue can be 

readily solved by merging lines whenever they are overlapped (line gap<0). A drawback 

of this rule is that false merging can occur when a displayed ME overlaps with a plaintext 

line, but these cases are rare. Another scenario is that very often the binding variables of 

large math operators are falsely detected as separate MEs, as shown on the third row in 

Table 3. To identify these binding variables, we evaluate the neighbor lines of every 

displayed ME. The rules for a neighbor line to be binding variables is empirically derived 

as follows: 1) this line is bounded by the displayed ME on the horizontal-axis, and 2) the 
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height of this line is smaller than the average line height or the line gap between this line 

and the displayed ME is less than the average line gap. If such a line were detected, we 

merge it with the displayed ME line. 

Table 3 Examples for the displayed ME detection. Green boxes indicate the 
detected NME. Red Boxes indicate the detected inline ME. Blue boxes indicate the 
detected displayed ME. 
Steps Before After 

Multi-line 

ME 

Fraction 

Line 

Binding 

Variables 

Bigram Regularization Model for Inline ME Detection 

Displayed MEs are easier to detect because of their unique spatial layout with 

respect to other plaintext and inline MEs. Inline MEs are more difficult to detect because 

of their unrestricted usage of fonts and blurred boundaries with plaintext. Figure 9 

describes an inline ME scenario, which is the focus of this paper. The false and miss rate 

for state-of-the-art inline ME detection is about 10% [21], which is still unsatisfactory. A 

major issue is that many inline MEs are detected as multiple parts, as shown by the blue 

highlights in Figure 9. 
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Figure 9 An example of split detections of inline MEs. The parts that are detected 
successfully are marked in blue. The red lines mark the boundaries of tokens. 

Inline MEs are usually identified on the word level, or more precisely, token level. 

A token refers to a group of neighboring characters that are spatially close to each other 

(boundaries of tokens are marked by red lines in Figure 9). A token typically corresponds 

to either a natural language word, or a part of an ME. Unfortunately, existing works on 

ME extraction [12, 21, 59] are mainly pointwise solutions, which means these works only 

treated tokens as independent units without systematically incorporating their neighboring 

information. The issue of the pointwise strategies is that the extracted MEs are prone to 

high split ratios, as MEs could be composed of multiple tokens, but the misidentification 

of a single token would result in a split detection. This problem is especially common 

when plaintext is used inside the ME. We observed two facts indicating that neighboring 

information could be useful to reduce the high split detection ratios: 1) misclassified 

tokens often have blurred classification boundaries, i.e., similar posterior probability for 

being an ME or Non-ME (NME); 2) the neighboring tokens of a misclassified token are 

often detected correctly. 

Inspired by the pairwise potentials concept commonly used in the Markov Random 

Field (MRF) algorithm, this paper proposes a bigram regularization model that utilizes the 

neighboring information in bigram tokens to fix the misidentified ME labels and reduce 

the split ratio. Next, we first present the formulation of the inline ME detection. Second, 
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we illustrate some observations on the split cases and show the necessity for bigram 

modeling. Third, we present the formulation of an objective function that incorporates 

both unigram and bigram terms. Fourth, we transformed the objective function into a 

Mixed Integer Programming (MIP) problem. Finally, we explain an implementation with 

the Bayesian model to derive the ME likelihood for unigram tokens and show a detailed 

case study of the bigram regularization. 

Document Model and Problem Formulation 

We formulate a PDF document as different hierarchical elements, as shown in 

Figure 10. A PDF document 𝐷h  is consisted of pages {𝑃h
j} , where each page 𝑃h

j  is

composed of columns {𝒞h,jm }. A column 𝒞h,jm  contains lines {𝐿h,j,mA }, where each line could 

stand for a displayed ME or a mix of inline ME and plaintext. Each line 𝐿h,j,mA  is composed 

of characters which could be organized as a sequence of tokens, (𝑡h,j,m,Ae , 𝑡h,j,m,Ao , …). A token 

could either be a plaintext word or part of an ME, where each character 𝑐 ∈ 𝑡 is associated 

with glyph name value 𝑣%, font 𝑓%, etc. 
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Figure 10 The formulation of a PDF page. The red rectangles mark different 
elements, including columns, lines, tokens, characters, and examples for inline ME 

and displayed ME. 

The inline ME identification will be performed on the lines that are not identified 

as displayed MEs. Given such a line 𝐿 = {𝑡e, … 𝑡qr}, the goal is to predict inline ME label 

sequence 𝑦 = {𝑦e, … , 𝑦qr}, where the subscript is omitted for convenience. 𝑁t  is the 

number of tokens in the line. 𝑦h ∈ {0,1} is the ME label, where 0 stands for NME and 1 

stands for ME. The inline ME identification is performed on each line separately. MEs 

across multiple lines are left separate because the goal is only to find the ME bounding 

boxes. 
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Why Bigram Model? 

Figure 11 ME likelihood of tokens in a sentence mixed with natural language words 
and MEs. We took the log of the probabilities for better scalability. 

Here we use a case study to demonstrate the necessity for bigram modeling. Figure 

11 shows a detailed analysis of the sentence in Figure 9. The x-axis shows the sequence 

of tokens, while the y-axis shows the log of ME/NME likelihood for each token 𝑡h. The 

likelihood is derived from the Bayesian model [21]. We observe that the plaintext words 

(“for”, “so”, “that”) have a large log probability for NME as compared to ME. On the 

contrary, most ME parts have a large log probability for ME as compared to NME. There 

are less determinant zones such as “t”, “.”, “,”, “1”. The over split issue happens because 

the tokens “t”, “1”, and “,” in the less determinant zone are misclassified as NME. We 

further observe that the labels of their direct neighbors are classified correctly. This 

indicates that a bigram model that utilizes the neighboring information would help correct 

these misclassifications and hence reduce split detections. 
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The Bigram Regularization 

In this section, we will first brief the unigram (single token) decision model, and 

then show how neighboring information is incorporated as the bigram regularization term 

to improve the inline ME decision process. 

From the view of a unigram decision process, the goal is to assign the most likely 

labels 𝑦h  to each of the observed tokens 𝑡h , i.e., maximizing the posterior probability 

𝑃(𝑦h|𝑡h)h∈[e,qr] . This is equivalent to minimizing the negation of summation of log 

probability − log	(𝑃(𝑦h|th))h∈[e,qr] , which can be further formulated as: 

𝑈 𝑦 = − 𝑦h 𝑙𝑜𝑔 𝑃{| 𝑡h + 1 − 𝑦h 𝑙𝑜𝑔(𝑃q{|(𝑡h))
h

	

where 𝑃[q]{| th  could be obtained from a classification model, e.g., the Bayesian model 

[21] or the SVM [12]. For convenience, we write

𝑈 𝑦 ≡ − 𝑦h	𝑙𝑜𝑔	(𝐿𝑅(𝑡h))
h

	

where 

𝐿𝑅 𝑡h = 𝑃{|(𝑡h)/𝑃q{|(𝑡h)	
𝑈 𝑦  represents the unary potentials. The unary term alone indicates that each 

token t is treated as independent from others. However, we observed that this is not 

sufficient because the neighboring tokens could contain useful information to correct the 

misclassified inline ME labels. In order to incorporate the neighboring information, we 

propose to add a pairwise term into the objective function. The pairwise term acts as 

bigram regularization which prefers the label 𝑦h to be similar to its direct neighbors 𝑦h�e 

and 𝑦h�e. Mathematically, we add a penalty 𝑃 𝑦 	to account for label change: 
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𝑃 𝑦 = 𝑦h − 𝑦h�e
h∈ e,qr

	

By merging the unary and pairwise terms, we have the following objective 

function: 

𝑓 𝑦 = 𝑈 𝑦 + 𝜆𝑃 𝑦 	
where λ > 0 is a weight parameter for the pairwise penalty. 

Regularization Solver Design 

Since the pairwise term in the objective function is in absolute value 𝑦h − 𝑦h�e , 

𝑖 ∈ 1, 𝑁t , the optimization problem becomes non-linear. Fortunately, we can transform 

the objective function into a linear function by introducing two auxiliary variables. 

Let 𝑧�h  and 𝑧�h  be two auxiliary variables with the following constraint set 𝒞: 

𝑧�h + 𝑧�h = 𝑦h − 𝑦h�e

𝑧�h − 𝑧�h = 𝑦h − 𝑦h�e

𝑧�h , 𝑧�h ∈ {0,1}
	

This way, the objective function is transformed into the following form: 

𝑓 𝑦, 𝑧 = − 𝑦h 𝑙𝑜𝑔 𝐿𝑅 𝑡h + 𝜆 (𝑧�h + 𝑧�h )
h∈[e,qr)h∈[e,qr]

	

subject to the constraint set 𝒞 and 𝑦h ∈ {0, 1}. 

This is essentially a Mixed-Integer Programming (MIP) problem, which could be 

solved by a linear integer solver. In our implementation, we used the Simplex algorithm 

in the CyLP software package [63] to solve this function. 
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Scenario Analysis for the Bigram Regularization 

We will study two scenarios based on the example in Figure 11. We first focus on 

this segment of the sentence: [“[”, “1”, “,”, “T]”]. The likelihood for these four tokens is 

roughly [-14, 0, 0, -15]. The values of the objective function under different predicted 

labels are enumerated in Table 4. 

Table 4 The value of the objective function under different label assignments for 
token sequence [“[”, “1”, “,”, “T]”]. 

Label	 Objective	value	 Reduced	
[1,0,0,1]	 1*-14+0*0+0*0+1*-15+2𝜆	 -29+2𝜆	
[1,0,1,1]	 1*-14+0*0+1*0+1*-15+2𝜆	 -29+2𝜆	
[1,1,1,1]	 1*-14+1*0+1*0+1*-15	 -29	

From the table, we can see that if we assign label 0 (NME) to the less determinant 

tokens (“1” and “,”), which are between two highly determinant ME (“[” and “T]”), a 

penalty of 2𝜆  will be introduced. As long as 𝜆 > 0, the objective function would be 

minimized when labels [1,1,1,1] are chosen, which means the bigram regularization 

successfully solves the over split issue in this scenario. 

On the other hand, we should not set 𝜆 too high, as it would blur the boundaries 

between ME and NME. To explain this, we look into the bigram [“that”, “w”] in Figure 

11. The log likelihood for these two tokens are roughly [13, -12]. Again, we enumerate

the objective function value under different labeling situation in Table 5 below: 
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Table 5 The value of the objective function under different label assignments for 
token sequence [“that”, “w”]. 

Label	 Objective	value	 Reduced	
[0,0]	 0*13+0*-12	 0	
[0,1]	 0*13+1*-12+𝜆	 -12+𝜆	
[1,0]	 1*13+0*-12+𝜆	 13+𝜆	
[1,1]	 1*13+1*-12	 1	

This time the ground truth label is [0,1], which corresponds to an objective 

function value of -12+𝜆. In this case, if 𝜆 is set to larger than 12, the best prediction 

becomes [0,0], which would introduce false negatives into the results. Thus, we need to 

select the value of 𝜆  carefully during the decision process. We will present a more detailed 

analysis in the experiment section on the effect of the parameter 𝜆. 

Experiments and Results 

The Marmot Dataset 

We used the Marmot dataset [59] to evaluate our algorithms. The dataset contains 

400 single PDF pages collected from the CiteSeerX digital library. Each page has human-

labeled ground truth BBoxes for each MEs. The original dataset contains 1575 displayed 

MEs and 7907 inline MEs. We also included the 1888 additional MEs annotated in [64] 

as they are missing from the original ground truth (e.g., in page “10.1.1.161.9629_10” 

alone, 23 inline MEs are missing from the ground truth data.). MEs inside the figure areas 

are excluded from the evaluation process because they are not labeled in the ground truth 

data. 
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Experiment Setup 

We will first report the performance on the symbol-level ME detection (Stage 0), 

and then the detailed evaluation on the ME-level detection. For comparison purposes, we 

implemented the FSB model [21] and compared it with our method. 

The evaluation is based on the overlapping of BBoxes. Let 𝑀C@	be the set of ground 

truth BBox, 𝑀%	be the set of predicted ME symbol BBox, and 𝑀��	be the set of predicted 

ME BBox. The relationship between two BBoxes could either be fully overlapped (OL), 

fully separated (SP), contained (CT), or partially overlapped (OS). The OL relationship 

required two BBoxes to have a common area larger than 95%. The OS relationship 

indicates a common area smaller than 95%. 

For symbol-level detection, we report the performance using the three metrics 

defined below: 

• Correct: ∃𝑚C@ ∈ 𝑀C@, 𝑟𝑒𝑙(𝑚%	, 𝑚C@) = 𝐶𝑇

• False: ∀𝑚C@ ∈ 𝑀C@, 𝑟𝑒𝑙(𝑚%	, 𝑚C@) = 𝑆𝑃

• Miss: a symbol is in 𝑀C@ but not in 𝑀%

For ME-level detection, we report the evaluation metrics defined in [21]. The 

detailed metrics include correct (Cor), miss (Mis), false (Fal), partial (Par), expanded 

(Exp), partial and expanded (Pae), merged (Mer), and split (Spl). The general metrics 

include precision, recall, and F1-score. We report the ME-level performance on inline ME 

and displayed ME separately, and then the two combined. 
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Results and Discussions 

Symbol-level Performance 

Table 6 Symbol-level evaluation results 
Correct False Miss 

Stage 1.1 69,716 3,902 44,695 
Stage 1.2 46,269 1,601 68,142 
Stage 1.1+1.2 81,081 4,532 33,330 

We first show the detailed performance of Stage 1. Stage 1 consists of two sub-

steps: Stage 1.1) font size-based likelihood ratio test and Stage 1.2) font name and glyph 

name matching. Here we report the performance of Stage 1.1 and Stage 1.2 individually, 

and the two combined. Table 6 shows the statistics of the evaluation data. In total, there 

are 114,411 ME symbols in the dataset. Stage 1.1 alone gives us precision 94.7% and 

recall 60.9%. Stage 1.2 alone gives us precision 96.7% and recall 40.4%. With Stage 1.1 

and Stage 1.2 combined, we get precision 94.7% and recall 70.9%. This result shows that 

most of the ME symbols are captured by the likelihood ratio test (Stage 1.1). While font 

name and glyph name gives a much lower recall rate, they complement the font size 

information. Still, we have a non-negligible amount of miss detections even when the two 

sub-steps are combined. The main cause is the miss detections on plaintext, numbers, and 

parentheses inside MEs. We will show that the following stages significantly reduce the 

miss rate. 
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ME-level Performance 

Table 7 Detailed performance statistics for ME-level detection 
Cor Mis Fal Par Exp Pae Mer Spl 

Displayed 
ME (FSB) 839 208 473 970 57 33 0 31 
Displayed 
ME (Ours) 

1181 9 109 238 128 35 2 2 

Inline ME 
(FSB) 

4192 829 2290 2971 1491 800 2 2 

Inline ME 
(Ours) 

5598 810 776 2580 651 397 5 0 

Table 7 summarizes the detailed performance statistics. Compared to the baseline 

method, our algorithm improves the performance significantly especially on Cor, Fal, and 

Pae. A large number of expanded boxes and partially detected boxes from the FSB model 

becomes perfect matches (95% coverage) with our algorithm. Also, false positives are 

greatly reduced. Next we compare precision, recall, and F1-score. On displayed ME, our 

algorithm achieves precision 93.6%, recall 99.4%, and F1 96.4%. In comparison, the FSB 

model has precision 80.3%, recall 90.3%, and F1 85.0%. On inline ME, our algorithm 

gives precision 92.2%, recall 91.9%, and F1 92.1%. The FSB model has precision 80.5%, 

recall 91.9%, and F1 85.8%. By combining the two types of MEs together, our algorithm 

gives precision 92.4%, recall 93.0%, and F1 92.7%. The FSB model gives precision 

80.5%, recall 91.7% and F1 85.7%. 

Another similar study [13] based on the deep learning model reported 93.4% F1-

score on the original Marmot dataset [59]. Knowing that the original Marmot dataset 

missed a number of cases [64], it would be useful to rerun the experiment with the 

amended ground truth data to assess its robustness. 
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Computation Cost 

Our experiment was done on a PC with Intel Xeon 3.5Ghz CPU, 16GB RAM. On 

the Marmot dataset, our algorithm takes an average of 1.09s to extract MEs from one page. 

The FSB model is a weakly-supervised model, which takes an average of 4.48s to process 

a page on the same machine. Supervised machine learning methods take longer to train 

models and make predictions. Take [23] for example, it takes 763 seconds to train word 

classifiers, and takes about 10 seconds to predict a word. 

The MOP Dataset 

Knowing that there are large amount of labeling errors in the Marmot dataset, we 

also developed a more accurate and larger dataset MOP [65] based on a semi-automated 

LaTeX-based labeling system. MOP dataset contains 1,802 PDF pages, each 

corresponding to the ground truth bounding boxes of math expressions. The overall semi-

automatic pipeline used to generate the dataset is shown in Figure 12. The pages in the 

MOP dataset are constructed from hep-th papers and their LaTeX sources on arXiv. PDF 

pages are processed with our PDF parser to output a string of glyph names. LaTeX source 

files are processed with LaTeXML [66] software to output strings and math expressions 

with identifiers. The math expressions in PDF are located by matching the strings in the 

two types of outputs. The bounding boxes are automatically generated and visually 

inspected to guarantee correctness. The visual inspection is done by a research personnel 

as a Boolean correction manner – pages with errors are discarded, while pages without 

errors are kept. In total, there are 1,802 pages generated for this dataset, containing 10,486 

MEs and labels of their bounding boxes. On average, there are 28.4 MEs per page. This is 
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more math-dense than the Marmot dataset. At the same time, the MOP dataset also 

contains more diverse pages, such as those with references. In comparison, pages in 

Marmot are more uniform in that they are all selected as the central parts of papers. 

Figure 12 The semi-automatic pipeline used to generate the MOP dataset. 

We also tested our multi-stage ME extraction algorithm on this dataset. The 

evaluation results serve as a benchmark of this dataset. In Table 8, we show the detailed 

comparison of the performance of the algorithm on this dataset and on the Marmot dataset. 

As we can see, the F1-score on the two datasets are similar, which suggests that the 

algorithm performs relatively robust across different types of papers. However, we also 

observe that the precision on the MOP dataset is noticeably lower. This is due to the 

diversity of the MOP dataset. For example, the URL links in the references could introduce 

false positives in the proposed algorithm, because they can also introduce font size 

changes. On the other hand, the recall score is higher on the MOP dataset, which suggests 

that the font-based features in the proposed algorithm suits better for pages generated with 

the LaTeX math mode. 
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Table 8 Benchmark of the MOP dataset 
Data Set F1 Precision Recall 

MOP 91.8% 86.4% 97.8% 

Marmot 93.1% 93.1% 90.5% 

Summary 

In this chapter, we presented a multi-stage algorithm to detect math expressions 

from PDF documents. We first extracted metadata from PDF objects and identified the 

font size as an effective feature. Then we used a grouping method based on the font size 

feature to generate labels and estimate the likelihood for being ME/NME. Symbol-level 

detection is done by likelihood ratio test and font name and glyph name matching. 

Subsequent steps merged ME symbols into inline/displayed MEs based on spatial and 

semantic heuristics. Next, we proposed a bigram label regularization model to solve the 

split detection issues during inline ME extraction from scientific publications. The model 

is composed of a unary term that uses the unigram ME likelihood information, and a 

pairwise term that incorporates the bigram neighbouring information. The bigram 

regularization model can greatly reduce the over split issue, which is very important in the 

later stages of ME parsing. The case study also showed the model’s interpretability. The 

bigram regularization model also serves as a proof-of-concept to incorporate other types 

of neighbouring constraints and penalties. The algorithm could serve as the foundation to 

applications such as PDF tagger, structural and semantic analysis on MEs, math-based 

information retrieval, etc. 
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CHAPTER IV  

MI2LATEX: MATH FORMULA IMAGES TO LATEX TRANSLATION BASED ON 

DEEP NEURAL NETWORKS* 

In this chapter we propose a deep neural network model with an encoder-decoder 

architecture that translates images of math formulas into their LaTeX markup sequences. 

The encoder is a convolutional neural network (CNN) that transforms images into a group 

of feature maps. To better capture the spatial relationships of math symbols, the feature 

maps are augmented with 2D positional encoding before being unfolded into a vector. The 

decoder is a stacked bidirectional long short-term memory (LSTM) model integrated with 

the soft attention mechanism, which works as a language model to translate the encoder 

output into a sequence of LaTeX tokens. The neural network is trained in two steps. The 

first step is token-level training using the Maximum-Likelihood Estimation (MLE) as the 

objective function. At completion of the token-level training, the sequence-level training 

objective function is employed to optimize the overall model based on the policy gradient 

algorithm from reinforcement learning. Our design also overcomes the exposure bias 

problem by closing the feedback loop in the decoder during sequence-level training, i.e., 

feeding in the predicted token instead of the ground truth token at every time step. The 

*Reprinted with permission from “Translating Math Formula Images to LaTeX Sequences
Using Deep Neural Networks with Sequence-level Training” by Wang, Z., Liu, J. C.
in arXiv (2019): arXiv-1908, Copyright 2019 arXiv.
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model is trained and evaluated on the IM2LATEX-100K dataset and shows state-of-the-

art performance on both sequence-based and image-based evaluation metrics. 

Overview 

Math formulas often carry the most significant technical substances in many 

science, technology, engineering and math (STEM) fields. Being able to extract the math 

formulas from digital documents and translate them into markup languages is very useful 

for a wide range of information retrieval tasks. Portable Document Format (PDF) is the 

de facto standard publication format, which makes document distribution very easy and 

reliable. Although math formulas can be recognized by human readers relatively easily, 

computer-based math formula recognition in PDF documents remains a major challenge. 

This is mainly because the PDF format does not contain tagged information about its math 

contents. Recognizing math formulas from PDF documents is intrinsically difficult 

because of the presence of unusual math symbols and complex layout structures. In 

addition, math formulas in PDF documents could partially be represented by blocks of 

graphics directly rendered from the PDF glyphs, which preserves the correct shapes but 

misses the meaning of contents. These problems would be readily solved if the markup 

sources of the PDF documents are available. A good example is the preprint repositories 

arXiv.org which gives readers access to the LaTeX source files along with the PDF files, 

but it only comprises a small fraction of the existing digital publications. For vast majority 

of digital documents, advanced techniques are needed to translate the PDF math contents 

into their markup sources. Being a structured math description language, LaTeX can be 
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used to retrieve math formulas, and can be easily converted to other formats such as 

MathML [67] to support high-level applications. 

With the earliest effort dating back to 1967 [68], different approaches have been 

developed to recover math contents with different levels of success. Recent advancement 

in optical character recognition (OCR) techniques has made it possible to recognize text 

in digital documents at high accuracy. However, recognizing math formulas is difficult, 

because on top of recognition of individual math symbols, it is also necessary to recognize 

the structural relationship among symbols, such as sub/sup-scripts, nested fractions, 

matrix, etc. Researchers have developed rule-based structural analysis methods and 

syntactic parsers to convert math formulas to their markup languages. One successful 

example is the INFTY system [8], which was designed to convert documents into 

structured formats like LaTeX, and was later made into a commercial software called 

InftyReader for digital document processing. With the rise of deep learning technology, it 

has been demonstrated that hand-crafted features and rules can now be replaced by 

learnable feature representations. 

Translating math formula images to LaTeX sequences is a joint field of image 

processing and text processing, which has recently gained increased research interest in 

the deep learning community [30-32]. The sequence-to-sequence model (seq2seq), also 

called the encoder-decoder architecture, has been successfully applied to intersect these 

two fields. The encoder for such applications is usually a convolutional neural network 

(CNN) which encodes the input images as abstract feature representations, and the decoder 

is usually a recurrent neural network (RNN) that represents a language model to translate 
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the encoder output into a sequence of tokens drawn from a vocabulary. This architecture 

makes the size of input images and output sequences flexible, and could be trained in an 

end-to-end fashion. Seq2seq model has been successfully used in image captioning [31, 

32] and scene text recognition [30] tasks, which shares similar technical requirements with

that of the image to LaTeX task. Recently, the authors in [38] successfully applied an 

attention-based seq2seq model to translate images to LaTeX, which demonstrated the 

model’s capability of handling structural contents. 

Leveraging the previous success, in this chapter we propose a new seq2seq model 

called MI2LS (Math Image to LaTeX Sequence) which focuses on addressing three key 

problems that have not been investigated in prior works. Firstly, to help the model better 

differentiate the 2-dimensional spatial relationship of math symbols, we propose to 

augment the image feature maps by adding sinusoidal positional encoding for richer 

representation of spatial locality information. Secondly, we propose a sequence-level 

objective function based on the BLEU (bilingual evaluation understudy) [69] score, which 

could better capture the interrelationship among different tokens in a LaTeX sequence 

than the token-level cross-entropy loss. Knowing that the sequence-level evaluation score 

is discrete and non-differentiable, we propose to solve the optimization problem based on 

the policy gradient algorithm [70] in reinforcement learning for model training. Thirdly, 

we eliminate the exposure bias [71] problem by closing the feedback loop during the 

sequence-level training, i.e., feeding back the predicted token instead of the ground truth 

token for the next time step. This is made possible because the token alignment problem 

in token-level training no longer exists in sequence-level training. The overall model 
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architecture includes a CNN encoder, an RNN decoder, and a soft attention mechanism, 

as shown in Figure 13. The model was trained and evaluated on the IM2LATEX-100K 

dataset [38], and achieved state-of-the-art performance on both the BLEU score and image 

similarity measurements. 

Figure 13 The proposed encoder-decoder architecture of the deep neural network. 

Neural Network Architecture 

In this section, we first present the formulation of the problem. Next, we introduce 

the proposed seq2seq architecture as shown in Figure 13, and explain the encoder, which 

is a convolutional neural network augmented with positional encoding, and the decoder, 

which is a stacked bidirectional long short-term memory (LSTM). In the end, we explain 

the soft attention mechanism. 
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Problem Formulation 

The math formula recognition problem is formulated as a sequence prediction 

problem. Let (𝑥, 𝑦) be an image-LaTeX sequence pair. 𝑥 ∈ ℝ ×¢ is a grayscale image 

with height 𝐻  and width 𝑊 . 𝑦 = [𝑦e, 𝑦o, … , 𝑦¥]  is the ground truth LaTeX sequence 

consisting of 𝑇 tokens that marks up the math formula in the image. 𝑥 can be rendered by 

𝑦 using the standard TeX compiler. The goal of our task is to recover	𝑦 given the input 

image 𝑥, i.e., to find a mapping function 𝑓 so that 𝑓(𝑥) → 𝑦. Given a set of 𝑁 image-

LaTeX ground truth pairs 𝐺 = {𝑥h, 𝑦h}h§eq , we use supervised training to build a sequence 

prediction function 𝑓  that approximates 𝑓 . During the test time, we use 𝑓(𝑥) → 𝑦  to 

predict a LaTeX sequence 𝑦 that reconstructs the input image 𝑥. Evaluation is done by 

measuring the similarity between 𝑦 and the ground truth sequence 𝑦, and between the 

rendered image 𝑥 and the ground truth image 𝑥. 

Encoder 

The encoder is used to encode the input images into abstract feature 

representations. It is composed of a convolutional neural network (CNN) and positional 

encoding. 

Convolutional Neural Network 

We use a CNN to extract features from the input images. CNN is consisted of 

convolution, pooling and activation layers. At each convolution layer, an input image is 

convolved with a set of kernels, which act as image filters. The kernel values are trainable, 

which makes the image features data-driven instead of hand-crafted. The pooling layer is 

usually composed of a max pooling function or average pooling function, which reduces 
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the image size and increases the size of the receptive field. The activation layer adds 

nonlinearity to the neural network. It is usually a Rectified Linear Units (ReLU) that 

replaces negative inputs with 0 and keeps the positive inputs unchanged. We use a CNN 

architecture based on the VGG-VeryDeep that has been adapted particularly for OCR 

applications [34]. Details of the CNN configuration can be found in Table 9. The feature 

maps are convolved to a 2D matrix instead of a flattened feature vector in order to retain 

the spatial locality information, as shown in Figure 13. This practice also allows the model 

to accept input images of arbitrary size. As a result of the CNN configuration, both the 

width W’ and height H’ of the output feature maps are 8 times smaller than that of the 

input image, and each position is 𝐷 dimensions deep (𝐷 = 512 in our implementation). 

Table 9 The encoder CNN configurations. #maps: the number of feature maps. k: 
kernel size. p: padding size. s: stride size. BN: batch normalization. The sizes are in 
order (height, width). 

Type #maps k p s 

BN - 
Convolution  512 (3,3) (1,1) (1,1) 

MaxPooling (2,1) (0,0) (2,1) 

BN - 
Convolution  512 (3,3), (1,1) (1,1) 

MaxPooling (1,2) (0,0) (1,2) 

Convolution 256 (3,3) (1,1) (1,1) 

BN - 
Convolution 256 (3,3) (1,1) (1,1) 

MaxPooling (2,2) (0,0) (2,2) 

Convolution 128 (3,3) (1,1) (1,1) 

MaxPooling (2,2) (0,0) (2,2) 

Convolution 64 (3,3) (1,1) (1,1) 

Input Gray-scale image 
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Positional Encoding 

For text recognition, one could simply unfold the feature maps from the encoder 

to an array and feed it into an RNN decoder without explicitly considering spatial 

localization, because RNN is capable of capturing left-to-right location ordering. 

However, in math formulas, the spatial relationship among symbols span along different 

directions: left-right, top-down, sub/sup-scripts, nested, etc. The positional relationships 

among math symbols carry critical math semantics. As such, special efforts to preserve 

spatial locality are necessary. Here we tailor the 1-D positional encoding technique 

proposed in the Transformer model [9] to 2-D as follows: 

𝑃𝐸 𝑥, 𝑦, 2𝑖 = sin(𝑥/10000¨h/©) 
𝑃𝐸 𝑥, 𝑦, 2𝑖 + 1 = cos(𝑥/10000¨h/©) 

𝑃𝐸 𝑥, 𝑦, 2𝑗 + 𝐷/2 = sin(𝑦/10000¨j/©) 

𝑃𝐸 𝑥, 𝑦, 2𝑗 + 1 + 𝐷/2 = cos(𝑦/10000¨j/©) 
where 𝑥 and 𝑦 specifies the horizontal and vertical positions, and 𝑖, 𝑗 ∈ [0, 𝐷/4) specifies 

the dimension. These signals are added to the feature maps. 

The positional encoding has the same size and dimension as the feature maps. Each 

dimension of the positional encoding is composed of a sinusoidal signal of a particular 

frequency and phase, representing either the horizontal or the vertical directions. We use 

a timescale ranging from 1 to 10000. The number of different timescales is equal to 𝐷/4, 

corresponding to different frequencies. For each frequency, we generate a sine/cosine 

signal on the horizontal/vertical direction. All these signals are concatenated to 𝐷 

dimensions. The first half of the dimensions encodes the horizontal positions, and the 

second half encodes the vertical positions. 
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Figure 14 Visualization of the positional encoding. 

In Figure 14 we show a visualization of the positional encoding when 𝐷 = 512. 

The top half of the figure shows the positional encoding signals changing along one axis. 

The signals span from position 1 to 100 at dimension 1, 128, 256, and 384. The signal 

frequency decreases as the dimension number increases. The bottom half shows the 

positional encoding signals in 2D. The signals span from position (1,1) to (100, 100) at 

dimension 1 and 512. Dimension 1 encodes the horizontal positions, and dimension 512 

encodes the vertical positions. 

The positional encoding has the same size as that of the feature maps and is defined 

for every channel (𝐻«×𝑊′×𝐷). The positional encoding and the feature maps are added 

together, and then unfolded into a 1-dimensional array 𝐸 ∈ ℝt×e×©, where 𝐿 = 𝐻«×𝑊′ is 
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the length of the array. Each vector 𝑒h ∈ 𝐸 has a dimension of 𝐷, which is the feature size. 

Each such vector corresponds to a certain part of the input image. Note that this position 

encoding technique has the advantage of not adding new trainable parameters to the neural 

network. Furthermore, compared to trainable positional embedding, sinusoidal encoding 

can be scaled to lengths that are unseen in the training data. 

Decoder 

RNN is well suited for sequence prediction tasks, because it maintains a history of 

the previous predictions and is able to traverse from the start to the end of sequence at 

arbitrary length. Let 𝑉 be the vocabulary that contains all the permissible LaTeX tokens. 

We use an RNN to approximate a language model 𝑝(𝑦@|𝑦e, … , 𝑦@�e, 𝐸), which makes a 

prediction on the probability distribution of the token 𝑦@ ∈ 𝑉  at time 𝑡  based on the 

prediction history 𝑦h¯@  and the encoder output 𝐸 . Next we introduce the token 

representation and the structure of the RNN. 

Token Embeddings 

A LaTeX token refers to a basic processing unit within a LaTeX sequence. The 

LaTeX source of a formula is first split into a sequence of tokens 𝑦e, 𝑦o, … , 𝑦¥ (details of 

LaTeX tokenization can be found in the next section). A token can be fed into the RNN in 

different representations. One straightforward option is to represent each token as a one-

hot vector, which implies that tokens are orthogonal to each other, and thus it may miss 

important language semantics. Similar to natural language words, many LaTeX tokens are 

interrelated. For example, ‘{‘ and ‘}’ may have a higher correlation because they need to 

be used in pair as defined in the LaTeX grammar. As a result, we propose to add a word 
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embedding [72] layer commonly used in NLP, where a token 𝑦@ is projected into a high-

dimensional vector 𝑤@: 

𝑤@ = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑦@  

This embedding is trainable and is able to capture the interrelationship between different 

tokens [72]. 

Stacked Bidirectional LSTM 

Figure 15 (a) The structure of the stacked bidirectional LSTM with attention layer. 
(b) The structure of an LSTM cell, where 𝒊, 𝒇, 𝒐 represent input gate, forget gate, 

and output gate separately. 

We propose to use a decoder model based on two layers of bidirectional long-short 

term memory (LSTM) cells [73]. Stacking multiple layers of LSTM increase the depth of 

the RNN and thus helps to capture more complex language semantics. Using bidirectional 

cells in each layer helps to capture the contexts from both forward and backward directions 

between tokens. Figure 15 (a) shows the structure of the stacked bidirectional LSTM that 

we used. For convenience, we will simply refer to this network as RNN henceforth. 
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LSTM is more capable of handling long sequences than the standard RNN, which 

is subject to the vanishing gradient problem [74] with the growth of sequence length. 

Figure 15 (b) shows the structure of an LSTM cell. The core to the LSTM is the cell state 

𝑐@ that records the information that has been observed at time 𝑡. The LSTM is capable of 

adding or removing information from the cell state via three types of gates: input gate 𝑖@, 

forget gate 𝑓@, and output gate 𝑜@. As implied by their names, these gates control read of 

the current input, forget of the current cell state value, or output of the current cell value. 

Each gate is comprised of a sigmoid neural network layer and a pointwise multiplication, 

expressed as below: 

𝑖@ = 𝜎(𝑊hµ𝑤@�e +𝑊h>ℎ@�e) 
𝑓@ = 𝜎(𝑊·µ𝑤@�e +𝑊·>ℎ@�e) 

𝑜@ = 𝜎(𝑊?µ𝑤@�e +𝑊?>ℎ@�e) 
𝑐@ = 𝑓@ ∗ 𝑐@�e + 𝑖@ ∗ tanh(𝑊%µ𝑤@�e +𝑊%>ℎ@�e) 

ℎ@ = 𝑜@ ∗ 𝑐@ 
where ℎ@ represents the RNN hidden state at time 𝑡, 𝜎 represents the sigmoid function, 

and 𝑊 represents the weight matrix. 

In NLP applications, the initial hidden state and cell state of the decoder is usually 

the output of the encoder RNN. However, in our model the encoder is a CNN which does 

not yield such an output. In order to derive informative initial states for the RNN decoder, 

we add additional layers to train the initial states based on the encoder output as below: 

ℎd = tanh	(𝑊>
1
𝐿

𝑒h

t

h§e

+ 𝑏>)

𝑐d = tanh	(𝑊%
1
𝐿

𝑒h

t

h§e

+ 𝑏%)
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Attention 

Theoretically, LSTM can be scaled up to capture long-term memory as needed. 

However, it is not uncommon that the markup of a complicated math formula extends to 

over a hundred LaTeX tokens. In such cases, an initial hidden state vector in RNN would 

be insufficient to compress all the information from the encoder. This problem is even 

more profound in our model because the CNN encoder does not have memory capability. 

The attention mechanism [35] has been introduced to solve this problem and has now 

become a widely adopted approach to enhance the performance on longer sequences. 

Basically, it maintains the complete encoder output, namely, the memory bank 𝐸, based 

on which to calculate a context vector 𝐶@ for the decoder at every time step 𝑡. We adopt 

the soft attention mechanism, which means that the context vector 𝐶@ is calculated as a 

linear combination of the vectors 𝑒h ∈ 𝐸 in the memory bank: 

𝐶@ = 𝛼h@𝑒h

t

h§e

 

where 𝛼h@ is the ith weight at time 𝑡. 

The attention weights are calculated with an additional feedforward layer by 

feeding in the previous hidden state of the LSTM ℎ@�e and the memory bank 𝐸, and then 

pass it through a softmax layer for normalization: 

𝑎h@ = 𝛽¥tanh	(𝑊eℎ@�e +𝑊o𝑒h) 
𝛼h@ = softmax(𝑎h@)

where the softmax function is used to generate a probability distribution that sums up to 

1, defined assoftmax 𝑎h@ = exp 𝑎h@ / exp	(𝑎m@)t
m§e . The attention weights indicate 
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which parts of the memory bank should be focused on at the current time step, thus helps 

the model better capture the salient parts of the input image. 

To incorporate the context vector 𝐶@  information into the RNN, we compute 

another hidden state vector 𝑂@ based on the context vector 𝐶@ and the current hidden state 

ℎ@. 𝑂@ is called an attentional hidden state vector, which is fed back into the next time step 

of the RNN. It is also used to compute the probability distribution of the next token: 

𝑂@ = tanh	(𝑊À ℎ@, 𝐶@ ) 
We also adopt the input-feeding approach proposed in [35], in which the input 

embedding vector is concatenated with the attentional vector from the previous time step 

as the input for the RNN. This way, decisions are made by considering the past alignment 

information. 

ℎ@ = 𝑅𝑁𝑁(ℎ@�e, 𝑤@�e, 𝑂@�e ) 
The prediction probability becomes: 

𝑝(𝑦@) = softmax	(𝑊 𝑂@) 

which represents the probability distribution of the next token over the vocabulary V. 

Training objectives 

An ideal objective function should be constructed at the sequence level because of 

the rigorous nature of the LaTeX grammars. In addition, it is highly desirable that the 

objective function is differentiable for the backpropagation algorithm. In this section we 

will describe the design of a sequence-level objective function and techniques to compute 

its derivative based on the policy gradient algorithm. We note that it is infeasible to train 

the neural network with the sequence-level objective function from a random start, 

because the neural network may not converge under a poor random prediction policy. To 
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overcome these challenges, we start off by training the neural network with a token-level 

objective function until it converges. This forms the initial state for the sequence-level 

training, as such the model can focus on a much smaller search space. 

Token-level Objective Function 

The objective function of the token-level training is based on the maximum 

likelihood estimation (MLE). Given a training dataset of image and LaTeX sequence pairs 

{𝑥h, 𝑦h}h§eq  of size 𝑁 , where 𝑥h  and 𝑦h  represents the ith input image and ground truth 

LaTeX sequence respectively, the goal is to find a set of parameters 𝜃 that maximizes the 

log-likelihood of the training data: 

𝜃{t| = argmax
Ä

𝐿{t| 𝜃

where 

𝐿{t| 𝜃 = 𝑝 𝑦h, 𝑥h
q

h§e

= 𝑝 𝑦@h 𝑦eh , … , 𝑦@�eh , 𝑥h
¥

@§e

q

h§e

	 

This is equivalent to minimizing the cross-entropy loss (XENT): 

𝐿Å|q¥ 𝜃 = −
1
𝑁

𝑦h ∙ log	(𝑦h)
q

h§e

where 𝑦h is the prediction. The derivative of the cross-entropy loss can be directly used as 

the gradient. 

The token-level objective function faces two limitations. Firstly, it maximizes the 

probability of the next correct token, without considering the sequence-level contexts 

governed by the LaTeX grammar. Secondly, to avoid the token misalignment problem, 

the ground truth token needs to be fed into the RNN at every time step during the training 



 65 

time, instead of using the RNN’s previous prediction. At the prediction time, however, the 

previous prediction from the RNN is fed back as the next input since the ground truth data 

is no longer available. As a result, the probability distribution being trained on is 

𝑝(𝑦@|𝑦h¯@, 𝐸) , but the probability distribution being tested on is 𝑝(𝑦@|𝑦h¯@, 𝐸) . This 

discrepancy is known as the exposure bias [71] problem. The sequence-level training 

objective function aims to overcome these problems. 

Sequence-level Objective Function 

The formulation of a sequence-level training objective starts with its sequence-

level performance metrics. Let (𝑥h, 𝑦h) be the ith training pair, and 𝑦h be the prediction. 

Let R(𝑦h	, 𝑦h) → [0,1] be a function that maps the predicted sequence to a scalar reward, 

where a larger value indicates a better performance. R(𝑦h	, 𝑦h) could be the BLEU score 

or any other evaluation metrics. The optimization goal is to maximize the expected reward 

across the dataset: 

𝐿Ç 𝜃 = 𝔼�É(ÊË|µË)[R 𝑦h	, 𝑦h ]
q

h§e

= 𝑝Ä(𝑦h|𝑥h)R(𝑦h, 𝑦h)
ÊË∈Ì(µË)

q

h§e

 

where 	𝔼 ∙  denotes the expectance and Υ(𝑥h)  is the set of all the possible predicted 

sequences for the input image 𝑥h. The training objective becomes: 

𝜃Ç = argmax
Ä

{𝐿Ç 𝜃 } 

This sequence-level objective function aims to optimize the prediction of 

individual tokens within the context of the entire sequence. It also makes it possible to 

eliminate the exposure bias problem because the optimization is no longer based on each 

individual token but on the entire sequence, thus it is no longer necessary to feed in ground 
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truth token at every time step to guarantee token alignment. We can simply close the 

feedback loop by feeding the predicted token instead of the ground truth token to the next 

time step during the training time. 

Notice that it is computationally infeasible to optimize 𝐿Ç 𝜃  based on exhaustive 

search due to the exponential growth of the search space of Υ(𝑥h). Meanwhile the gradient 

descent is not directly applicable here because the reward function R 𝑦h	, 𝑦h  is a discrete 

function of the prediction thus is not differentiable. To address this problem, recent 

solutions have been proposed in NLP community [71, 75, 76], which proposes to 

formulate this optimization problem as a reinforcement learning problem. In this setting, 

the prediction model is treated as an agent. Prediction on the next token is an action. At 

completion of the prediction, the predicted sequence is compared against the ground truth 

sequence to get a sequence-level evaluation score, which is the reward. The parameters of 

the neural network define a policy. Even though 𝐿Ç 𝜃  is not differentiable, the policy 

gradient algorithm [70] can be used to transform the gradient of expectation as an 

expectation of gradient so that we can avoid taking derivative over the reward function: 

∇Ä𝐿Ç 𝜃 = 𝔼�É(ÊË|µË) R 𝑦h, 𝑦h ∇Ä log 𝑝Ä(𝑦h|𝑥h)
q

h§e

In principle, one may leverage the REINFORCE algorithm [77] to estimate the 

above expectation based on sampling methods. In specific, the expected value can be 

approximated by taking one sample from the distribution 𝑦	~	𝑝Ä(𝑦|𝑥h) using multinomial 

sampling [78]. Unfortunately, it difficult for the neural network to converge this way due 

to the high variance in gradient estimation. One technique to reduce the variance is to 
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subtract an average reward 𝑟 from the prediction reward [71]. This way, the estimated 

derivative becomes: 

∇Ä𝐿Ç 𝜃 = R 𝑦h	, 𝑦 − 𝑟 ∙ ∇Ä log 𝑝Ä(𝑦|𝑥h)
q

h§e

The average reward 𝑟 was estimated by training a separate neural network layer in 

[71]. In our work, we simply use Monte Carlo sampling to estimate 𝑟 , i.e., taking 𝑘 

samples from the multinomial distribution and calculate the average value. Now that the 

derivative is obtainable, the backpropagation algorithm can be used for the sequence-level 

training. 

Experiments 

In this section, we will first introduce the dataset used to train and evaluate our 

model, and then discuss the evaluation metrics and other baseline methods, followed by 

implementation details in the end. 

Dataset and Preprocessing 

We used the public dataset IM2LATEX-100K [38], which is constructed from the 

LaTeX sources of publications crawled from High Energy Physics - Theory topic on 

arXiv.org. The dataset contains a total of 103,556 LaTeX sequences representing different 

math formulas. The length of characters of each sequence ranges from 38 to 997, with 

mean 118 and median 98. Each math formula is rendered into the PDF format by the 

pdfLaTeX1 tool, and then converted to greyscale images in PNG format at resolution 1654 

1LaTeX (version 3.1415926-2.5-1.40.14) 
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× 2339. The dataset provides a standard partition of a training set of 83,883 formulas, a 

validation set of 9,319 formulas, and a test set of 10,354 formulas. 

The training of our model starts with constructing a token vocabulary 𝑉. This can 

be done by tokenizing the LaTeX sources in the dataset. A straightforward approach to 

tokenize the LaTeX sources is to treat each individual character as a token. A more 

sophisticated approach is to parse the LaTeX sources into shortest reserved LaTeX words. 

For example, '\psi' stands for “ 𝜓” in LaTeX, which would be treated as one single token, 

rather than four separate tokens ‘\’, ‘p’, ‘s’, ‘i’. The second approach has the obvious 

advantages of reducing the sequence length and avoiding unnecessary prediction errors 

and computations. However, this approach is not trivial because it needs to have a 

complete list of LaTeX reserved words and an effective parsing algorithm to segment the 

LaTeX sources. Here we adopt the LaTeX parser developed in [38]. This parser first 

converts a LaTeX source into an abstract syntax tree using KaTex [79], and then generates 

the tokens by traversing through the syntax tree. One can also apply tree transformation 

during this process to normalize the LaTeX sequences. This normalization step can reduce 

the LaTeX polymorphic ambiguity since a same math formula image can be produced 

from different LaTeX source sequences. Details of the normalization rules can be found 

in [38]. Two utility tokens <START> and <END> are added to the vocabulary to represent 

the start of sequence and end of sequence respectively. The decoder is initialized with the 

<START> token and keeps making predictions until it encounters the <END> token. We 

end up with a vocabulary of size of 483. 
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Images are preprocessed by being cropped to only the formula area, and then 

downsampled to half of their original sizes for memory efficiency. To facilitate 

parallelization, images of similar sizes are grouped and padded with whitespaces into 

buckets of 20 different sizes.2 

Evaluation Criteria and Baselines 

Two types of performance metrics are used to measure the accuracy of the 

prediction system. The first is the BLEU score between the predicted sequence and the 

ground truth sequence. Widely used to measure the quality of machine translation on 

natural languages, the BLEU score measures overlapping of n-grams. We report the 

cumulative 4-gram BLEU score commonly used in the literature. Due to the LaTeX 

grammar ambiguity, (e.g., 𝑥h
j can be expressed by either x_i^j or x^j_i), we further report

the similarity between the ground truth image and the image rendered from the predicted 

LaTeX sequence based on four different metrics: image edit distance, exact match, exact 

match without space, and Image-based Mathematical Expression Global Error (IMEGE) 

[80]. The image edit distance refers to the column-wise edit distance between the ground 

truth image and the tested image. To calculate the image edit distance, the image is first 

binarized, and then converted into a 1D array. Each element in the array is a string 

representation of that column of data (the string is composed of 0’s and 1’s). The edit 

2Different sizes of width-height buckets (in pixel): (320, 40), (360, 60), (360, 50), (200, 
50), (280, 50), (240, 40), (360, 100), (500, 100), (320, 50), (280, 40), (200, 40), (400, 
160), (600, 100), (400, 50), (160, 40), (800, 100), (240, 50), (120, 50), (360, 40), (500, 
200). 
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distance score is equal to 1 − 𝑒, where 𝑒 is the total number of edit operations divided by 

the length of the 1D array. We also report the exact match accuracy (i.e., two images are 

exactly the same), and the exact match after eliminating the whitespace columns. These 

three metrics were first used in [38]. We further report the IMEGE score proposed in [80], 

which is based on the idea of image distortion model. 

Based on these performance metrics, our method is evaluated against the 

commercial software InftyReader [8], and three recent works based on deep learning: 

WYGIWYS [38], Double Attention [43], and DenseNet [40]. For completeness, we also 

compare our model with the popular commercial software Mathpix [81]. Since it is a 

closed-source for-profit software, we only run it manually on 100 images and report the 

evaluation results. 

Implementation Details 

Given a relatively small vocabulary size of 483, we choose a small token 

embedding size of 32. The dimension of the CNN feature maps and that of the RNN hidden 

states are both set to 𝐷 = 512. The mini-batch gradient descent algorithm with Adam 

optimizer [82] is used to train the parameters, with an initial learning rate of 0.1. Batch 

size is set to 16 due to GPU memory limitation. To reduce overfitting and improve 

generalization, the dropout technique [83] with dropout rate of 0.4 is used during training. 

Randomly dropping out nodes during training can be viewed as a form of simulation to 

create an ensemble of different neural network configurations. 

For sequence-level training, the choice of evaluation metrics is very flexible. For 

computation efficiency, we use BLEU score as the sequence-level evaluation metric. The 
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initial learning rate is set to 0.00005 for the reinforcement training. The sampling size 𝑘 

for calculating the average reward is set to 20. 

To reduce the chance of being trapped at suboptimal solutions, beam search [84] 

is used while making predictions during the test time. At every time step, beam search 

selects 𝑏  tokens with the highest probabilities from the vocabulary. The model stops 

making new predictions until all 𝑏 predicted tokens become <EOS>. We use a beam size 

𝑏 = 5. 

The overall system is implemented in PyTorch [85] to produce a deep learning 

model consisting of 10,870,595 parameters. It is trained on an 8GB NVIDIA Quadro 

M5000 GPU with 2048 CUDA cores. 

Results and Discussions 

General Performance 

Table 10 Performance evaluation of different models on the IM2LATEX-100K 
dataset. 
Model BLEU Image Edit 

Distance 
Exact 
Match 

Exact Match 
(-ws) 

IMEGE 

INFTY 66.65 53.82 15.60 26.66 - 
WYGIWYS 87.73 87.60 77.46 79.88 90.26 
Double 
Attention 

88.42 88.57 79.81 - - 

DenseNet 88.25 91.57 - - - 
MI2LaTeX 
w/o Reinforce 

89.08 91.09 79.39 82.13 95.41 

MI2LaTeX 
with Reinforce 

90.28 92.28 82.33 84.79 96.15 

The detailed performance results are reported in Table 10, where the last two rows 

show the performance of our model without and with the sequence-level reinforcement 
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training. All the four deep learning models achieved a significantly better performance 

over the InftyReader system. Among different deep learning models, [43] and [40] 

achieved a better performance over the deep learning baseline [38], which is attributed to 

the introduction of more sophisticated convolutional networks and attention models. The 

best performance is achieved by training our model with BLEU score as the reinforcement 

reward, which shows the highest score on all the five evaluation metrics, with a BLEU 

score of 90.28%, image edit distance of 92.28%, exact match rate of 82.33%, exact match 

rate without whitespace of 84.79%, and an IMEGE score of 96.15%. The performance 

results reaffirm our observation about the importance of preserving positional locality, 

sequence-level optimization criteria, as well as the elimination of the exposure bias 

problem. 

Figure 16 Robustness analysis on token length vs. image edit distance with different 
models. The black curve shows the density distribution of token lengths in the test 

set. 
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Next, we report a robustness analysis of our model vs. WYGIWYS [38] with 

respect to the sequence length. We use a bin size of 10 to quantize the sequence lengths, 

and report the average of the image edit distances within a bin as the performance metric. 

The results of the two models are shown in Figure 16. As expected, the performance of 

both models declines as the sequence length increases, but at significantly different rates. 

Knowing that the training set does not contain sequence longer than 150 tokens, this means 

that the models are also tested on samples with unseen lengths during the test time. At 

sequence length of 150, the edit distance scores of ours vs. [2] are 0.79 and 0.43, 

respectively, and at the length of 200, the two scores are 0.54 and 0.17 respectively. Our 

model shows the capability to handle sequences of unseen length better than the baseline 

model, especially in the range within 300. Notice that only 3.4% of the test samples have 

a length longer than 150 tokens, as indicated by the histogram of the token lengths shown 

in black curve, which makes the performance score after 150 spiky because of the data 

sparsity. The extra-long LaTeX sequences usually corresponds to large matrices or multi-

line math formulas. It remains an open problem to translate them reliably. 

In terms of computation cost, the model is first trained for 23 epochs with the MLE 

as the objective function, which took around 16 hours. The model with the highest token-

level accuracy on the validation set is chosen as the candidate model for the sequence-

level training. After we switched to the sequence-level objective function, the model is 

trained for another 15 epochs, which took around 75 hours. The best model was selected 

as the one with the highest BLEU score on the validation set. 
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An analysis of Mathpix 

We manually ran the Mathpix software on 100 images. These images are selected 

as the first 100 images in the test set of IM2LATEX-100K. We also re-evaluated our 

model on this subset of images. Table 11 shows a detailed comparison between the two 

systems. 

Table 11 Mathpix vs. MI2LaTeX on 100 images. 
Mathpix MI2LaTeX 

BLEU 80.64 92.08 

Image Edit Dist 76.19 93.38 

Exact Match 8.00 82.00 

Exact Match (-ws) 34.00 84.00 

IMEGE 83.19 97.23 

As we can see, MI2LaTeX achieves significantly higher scores than Mathpix on 

all evaluation metrics. This is inconsistent with our observation that Mathpix is highly 

accurate. Particularly, the exact match rate of Mathpix is surprisingly low. By 

investigating further, we found two reasons that lead to this result. The first reason is that 

the LaTeX coding style of Mathpix is very different from human coding style. This can 

be observed from the LaTeX sequences generated by Mathpix. Take "\left” and “\right” 

operators for example. These two operators appear 273 times in the Mathpix predictions 

(out of the 100 images) but only 95 times in the ground truth. This instantly brings down 

the BLEU score of Mathpix. In comparison, this number is 82 in the MI2LaTeX 

predictions, which is close to the ground truth. This is because MI2LaTeX is trained with 
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human-crafted LaTeX source codes thus it mimics the human coding style. The second 

reason is that the symbol distances detected by Mathpix is not as precise. This can be seen 

from the first example in Figure 17 (left column). Even though in this example the 

inaccurate symbol distances lead to recognition errors, in most cases minor differences on 

symbol distances does not lead to semantic errors, and these differences may not even be 

visually observable. This explains why the exact match rate is only 8% (i.e., only 8 out of 

the 100 images give perfect matches) when we did not visually observe as many errors. 

To perform a semantic-level evaluation, we visually inspected the images reconstructed 

by Mathpix, and found that only 12 out of the 100 images contain semantic errors. In 

comparison, 8 out of the 100 images reconstructed by MI2LaTeX contain semantic errors. 

This means the two systems have comparable performance on the tested images. There 

are also cases when Mathpix performs better than MI2LaTeX, such as the second example 

shown in Figure 17 (right column). 

Figure 17 Two examples showing the recognition quality of Mathpix and 
MI2LaTeX. The reconstruction errors are highlighted as red blocks. 

Discussions 

The training is end-to-end, which means no explicit information is given about 

segmentation of symbols in the images, scanning direction of the images, or the grammar 
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for the LaTeX sequence outputs. And the evaluation performance suggests that these 

information can be learned implicitly by our deep learning model. In  

Figure 27 (Appendix A), we give an example that could help us better understand 

the translation process of our model. The red rectangles in the images show the weights 

of the soft attention, while deeper color indicates higher weight values. Since the weights 

are applied on the CNN feature map, each attention weight corresponds to an area of 8×8 

pixels in the original image, which is roughly the size of one character. We observe that 

the trained deep neural network can segment the symbols of different shapes and sizes, 

some of which are stacked or overlapped, e.g., the superscript “2” inside the square root 

under the fraction line. The translation process roughly follows a left-to-right order, 

similar to text recognition. Furthermore, it can also go from top-to-down (e.g., numerator 

to denominator) or down-to-top (e.g., lower to higher limits in the integral operator). This 

demonstrates the importance of capturing the spatial locality information. In addition, 

tokens that are not visible in the input images are also generated. For example, ‘_’, ‘^’ are 

generated for structural representation. ‘{‘, ‘}’ are generated for grouping. At every time 

step, the weights are concentrated on only a few neighborhood regions. The model does 

not focus on the whitespaces until it reaches the end, in which cases an <EOS> token is 

generated. 

Notice that compared to the DenseNet model [40], our model achieved a higher 

performance gain on the BLEU score by 2.03%, but a lower performance gain on the 

image edit distance by 0.71%. A possible explanation is that the sequence-level evaluation 

metric we used for reinforcement learning is the BLEU score. This would naturally lead 
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to an improvement on the BLEU score performance, but does not necessarily lead to the 

same amount of improvement on the image edit distance because of the polymorphic 

ambiguity in LaTeX language. Granted, the image edit distance score of course can be 

used for sequence-level training, but its drastically increased computing cost makes it an 

unattractive option, because every LaTeX sequence needs to be compiled to PDF and then 

converted from PDF to image, which requires a lot of file-level I/O, not to mention the 

high cost of calculating the image edit distance. One possible future improvement is to 

distribute this part of computation to a group of machines to facilitate reinforcement 

training using image edit distance. Notice that unlike [43] and [40], our performance gain 

over baseline [38] is attributed to adding positional encoding, introducing the sequence-

level training objective, and eliminating exposure bias. We believe that our model could 

be potentially further improved by fusing more recent advancement in deep learning 

techniques, such as using DenseNet [41] as the encoder, joint attention [42] as the attention 

mechanism, and GRU [86] or Transformer [9] as the decoder. 

Summary 

We have proposed MI2LaTeX, a deep neural network model with encoder-decoder 

architecture to translate images with math formulas into their LaTeX source sequences. 

The model was trained in an end-to-end manner without explicit labels about image 

segmentation and grammar information. Nevertheless, the model managed to learn to 

produce LaTeX output sequence that can reproduce the input image. Using the BLEU 

score as the reward function and the policy gradient algorithm in reinforcement learning, 

we successfully trained the model with sequence-level objective function and eliminated 
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the exposure bias problem. MI2LaTeX was evaluated on the IM2LATEX-100K dataset 

and was compared with other state-of-the-art solutions, and showed the best performance 

on both sequence-based and image-based measurements. The model also showed more 

robust performance towards longer LaTeX sequences. 
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CHAPTER V  

PDF2LATEX: A DEEP LEARNING SYSTEM TO CONVERT PDF DOCUMENTS 

TO LATEX* 

The mathematical contents of scientific publications in PDF format cannot be 

easily analyzed by regular PDF parsers and OCR tools. In this paper, we propose a novel 

OCR system called PDF2LaTeX, which extracts math expressions and text in both 

postscript and image-based PDF files and translates them into LaTeX markup. As a 

preprocessing step, PDF2LaTeX first renders a PDF file into its image format, and then 

uses projection profile cutting (PPC) to analyze the page layout. The analysis of math 

expressions and text is based on a series of deep learning algorithms. First, it uses a 

convolutional neural network (CNN) as a binary classifier to detect math image blocks 

based on visual features. Next, it uses a conditional random field (CRF) to detect math-

text boundaries by incorporating semantics and context information. In the end, the system 

uses two different models based on a CNN-LSTM neural network architecture to translate 

image blocks of math expressions and plaintext into the LaTeX representations. For 

testing, we created a new dataset composed of 102 PDF pages collected from publications 

on arXiv.org and compared the performance between PDF2LaTeX and the state-of-the-

*Reprinted with permission from “PDF2LaTeX: A Deep Learning System to Convert
Mathematical Documents from PDF to LaTeX” by Wang, Z., Liu, J. C. in the Proceedings
of the 20th ACM Symposium on Document Engineering 2020 (DocEng’20) (pp. 1-10),
Copyright 2020 by ACM.
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art commercial software InftyReader. The experiment results showed that the proposed 

system achieved a better recognition accuracy measured by the string edit distance 

between the predicted LaTeX and the ground truth. 

Overview 

We are in an era of explosive growth in digital publications. According to a 

research done by the University of Ottawa [1], by the year of 2009, researchers have 

published 50 million research papers cumulatively. According to the 2019 arXiv statistics 

report [2], around 150,000 preprints are added to the repository site arXiv.org annually, 

most of which are in the fields of physics, math, and computer science. This trend is still 

fast growing. The vast majority of these papers are published in PDF format, despite some 

criticism about the format [3]. The PDF format in its essence is a mixed representation of 

different graphical elements, such as predefined fonts or vector graphics [4]. The openness 

and the evolving nature of the PDF format make it very difficult to recover a stringent 

markup from it. Textual contents can be embedded into PDF fonts, but they can also be 

missing or even be wrong [5]. In addition, the format provides no structural information 

or tags, making it difficult for machines to understand contents beyond text. Particularly, 

math expressions are heavily used and blended into the main body text in scientific papers, 

but they are not tagged and are often represented as graphics. This not only harms text-

based information retrieval and knowledge mining but also misses the rich technical 

essence carried inside math expressions. As such, we are motivated to build an automated 

system that takes mathematical documents in PDF format as inputs and produces their 

LaTeX markup. Such a system will help both text-based and math information retrieval 
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(MIR) [19] using the recovered text and LaTeX markup. MIR is important for math-based 

digital libraries, such as NIST Digital Library of Mathematical Functions [87] and 

Wolfram Functions Site [88]. The LaTeX markup of math expressions can be further 

converted to other formats such as MathML [67] for web browsers, and Braille code [89] 

for blind people. The system can also be very useful for re-digitization of image-based 

PDF documents. 

Existing PDF parsers like PDFMiner [3] and Apache PDFBox [6] are designed to 

decode PDF text and reconstruct basic page layout structures such as columns and 

paragraphs. However, they have limited ability on processing math expressions, which are 

essentially a group of graphical objects, some of which may not even be rendered using 

fonts (such as a fraction line). In addition, image-based PDF documents would make PDF 

parser-based solutions in vain. Optical character recognition (OCR)-based approaches can 

be used to overcome the limitations of PDF parsers. Modern OCR techniques can 

recognize English text at very high accuracy [7], but recognizing math expressions 

remains challenging because of their complex layout structures. In recent years, several 

effective methods have been developed for recognizing math expressions, from explicit 

layout structure analysis [8, 90] to end-to-end deep learning models [39, 44]. Yet, 

recognizing mathematical documents requires not only the recognition of plaintext and 

math expressions individually, but also the exact positions and boundaries of different 

elements. 

In this chapter, we propose a novel OCR system called PDF2LaTeX, which 

leverages recent advancements in machine learning, especially deep learning, to convert 
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mathematical documents from PDF format to LaTeX. PDF documents are first rendered 

into images as the system input. To locate the text and math contents on the images, we 

used projection profile cutting (PPC) to segment a page into image blocks of tokens and 

ordered them line-by-line. Next, we designed a fully convolutional neural network (CNN) 

with global average pooling to classify each image block into text or math. Then, we 

trained a conditional random field (CRF) to utilize the semantics and context information 

for math-text boundary delineation. This way we obtained an ordered sequence of images 

blocks, each containing either a plaintext word or a math expression. To recognize the 

contents in each image block, we used two neural networks with CNN-LSTM (Long short-

term memory) architecture to translate plaintext words and math expressions into LaTeX 

respectively. We also created a new dataset with 102 PDF pages using real-world arXiv 

papers and developed an evaluation tool. Comparison with the state-of-the-art commercial 

software InftyReader [8] showed that PDF2LaTeX achieved better conversion accuracy. 

The contributions of this work are summarized below: 

• Proposed a deep learning-based OCR system that models visual, semantics, and

context information for mathematical document analysis.

• Generated LaTeX markup from PDF documents with state-of-the-art quality.

• Released a new dataset and an evaluation tool for the PDF-to-LaTeX conversion

task.

Segmentation and Detection 

In this section, we first discuss the projection profile cutting technique used to 

segment a PDF page. Then, we give details on the design of a fully convolutional neural 
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network for math/text classification, followed by a conditional random field to enhance 

the math-text boundary delineation. 

Projection Profile Cutting 

Projection profile cutting (PPC) is a technique used to detect the structure of a page 

by repeatedly cutting an image on the horizontal and vertical direction based on projection 

profiles. A projection profile is a histogram calculated by summing together all the pixel 

values along either the horizontal or vertical axis. For example, if we project all the black 

pixels horizontally, we get a horizontal projection profile that can be used for line 

detection. 

Figure 18 Visualization of PPC. The bottom plot shows the vertical projection 
profile of the entire page. The right plot shows the horizontal projection profile of 

the right column. 
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In our system, PPC is used to segment a page into columns, lines, and tokens. 

Specifically, we first render a PDF page into a grayscale image at 250 dpi, then binarize 

it and calculate the vertical projection and horizontal projection alternatively. Figure 18 

shows a visualization of PPC on a page. The design of our PPC algorithm is based on the 

assumption that tables and figures are already detected and removed. We refer the readers 

to [50, 51] for table detection and [48, 52] for figure detection algorithms. 

Column detection. The first step is to determine if a page is single-column or 

double-column. To do this, we first calculate the vertical projection profile based on the 

entire image. The rationale is that a double-column page will have an empty region in the 

center of the vertical projection profile. Notice that titles and headers can act as noise in 

the center region. To remove noise, we designed a finite impulse response low-pass filter 

(LPF) to smooth the profile. The filter has an order of 9 and a cut-off frequency of 0.125 

Hz. The original vertical projection profile and the profile filtered by the LPF are shown 

at the bottom of Figure 18. We then set values that are smaller than 10% of the maximum 

value of the profile to zero. If consecutive zeros are observed in the center of the profile, 

we split the page into two columns around the zeros and process the line detection and 

token detection algorithms on each column separately. Otherwise, we process the entire 

page as one column. This algorithm can also be easily generalized to process more than 

two columns. 

Line detection. We calculate the horizontal projection profile per column and split 

the profile into multiple segments of non-zero values. Each such segment becomes the 

horizontal boundary of a candidate line. An example is shown in the plot on the right side 
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of Figure 18. This process produces preliminary results for line segmentation, which are 

further processed by several heuristic rules, as detailed below: 

Figure 19 Examples of line detection heuristics. (a) Split overlapped lines. (b) 
Merge hats. (c) Merge fraction lines. (d) Merge binding variables. 

• Overlapped lines. Two separate lines can be falsely merged together if their pixels

overlap horizontally. For example, in Figure 19 (a), the superscript “T” on the

second line overlaps with the pixels on the first line, making their projection

profiles connected together. To handle such errors, we split a profile segment into

two from the center if the height of this line is larger than the most common line

height on the page, but the values around the center are smaller than 10% of the

median of the profile values.

• Variable hats. The hat of a math variable can be falsely detected as an independent

line. An example is shown in Figure 19 (b). To merge hats, if a line is mostly blank

but has small groups of connected pixels, this line becomes a candidate for variable

hats. If the distance between this candidate and its closest neighbor line is smaller
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than the most common line distance of this page, this line is merged to its closest 

neighbor line as a hat. 

• Fraction expressions. A fraction expression can be falsely detected as three

separate lines: the numerator, the denominator, and the fraction line, as shown in

Figure 19 (c). To merge these, we first detect black lines as long narrow lines filled

with black pixels. Next, we merge this black line with its two neighbor lines

(numerator and denominator) if the widths of the neighbor lines are shorter than

the black line and the distance to the black line is smaller than the most common

line distance of this page.

• Binding variables. Binding variables are math variables bonded with big operators

such as a big sum or a big product operator. They can be falsely detected as

independent lines, as shown in Figure 19 (d). To merge the binding variables with

the big operators, we first need to find lines that potentially contain big operators,

which are defined as lines whose heights are larger than twice of the most common

line height. We also need to find the binding variables lines, which are defined as

the neighbors of the big operator lines whose height is smaller than the most

common line height and the distance to the big operator line is smaller than the

most common line distance. Once binding variables are detected, we merge them

into their corresponding big operator lines.

Token detection. The process is similar to line detection. We first calculate the 

vertical projection profile per line and split the profile into multiple segments of non-zero 

values. Each such segment becomes the vertical boundary of a candidate character. We 
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define character distance as the distance between two neighboring non-zero segments. The 

most common character distance corresponds to the distance of characters within tokens, 

which is smaller than the distance between tokens. As such, we use twice the most 

common character distance as the threshold to group characters into tokens. An example 

result of token segmentation is shown in Figure 20. As we can see, the algorithm works 

well for plaintext words but poor for math expressions. In fact, math expressions are 

almost always detected as broken math segments, because the character distances within 

math expressions do not have fixed patterns like that of text. This problem can be easily 

fixed if the labels of each token are given (math vs. text), because complete math 

expressions can be obtained by simply merging the neighboring math segments. In the 

following subsection, we will introduce two machine learning models to classify each 

token into math or plaintext. 

Figure 20 Token segmentation results. The bounding boxes mark the boundary of 
each token. 

CNN Classifier 

Plaintext words and math segments have different visual features. For example, 

the layout structure of math segments is less restricted than plaintext because it can include 

sub/sup-scripts, different font sizes, etc. In addition, math segments can include Greek 

letters and math operators that are not present in plaintext words. These features can be 

easily captured by a convolutional neural network (CNN) [28]. Below we will first 
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describe the process of synthesizing the training data for the CNN, then elaborate the 

design of a fully convolutional neural architecture for math/text classification, and finally 

evaluate the performance of the classifier on the synthetic data. 

The synthetic data for training and testing are generated from the 2003 KDD Cup 

dataset [91], which includes approximately 29,000 LaTeX source files of hep-th papers 

from arXiv. We used LaTeXML [66] to parse the LaTeX source files into XML format, 

in which the LaTeX code of math expressions and plaintext words are extracted and 

explicitly tagged. Next, we used TeX Live [92] to compile each math expressions and 

plaintext words into PDF files and then render them into images. This gives us a lot of 

images of math expressions and plaintext words, together with their ground truth labels. 

Notice that our classification is performed on math segments vs. plaintext words, thus we 

went further to apply PPC on the math expression images and split them into smaller image 

blocks of math segments. These images are generated in different resolutions and different 

fonts (bold, italic, etc.) which ensures that they cover special cases like section titles. We 

padded both the plaintext images and math segments images with four-pixel-wide 

whitespaces. It is very important that all the images get the exact same padding, otherwise 

the CNN would capture the padding space as the main feature and give false results. In 

total, the synthetic dataset contains ~75k plaintext words and ~75k math segments, which 

are randomly split into a training set of 119,500 images, a validation set of 13,259 images, 

and a test set of 16,073 images. 

Given the large amount of data we have, we decided to train a deep convolutional 

neural network for math detection from scratch. Since the input images have various sizes, 
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we decide to use a fully convolutional network proposed in [93], which handles flexible 

input sizes by using global average pooling to avoid scaling the images or adding 

additional fully connected layers. The architecture of the CNN is presented in Table 12. It 

is similar to the VGG-VeryDeep architecture that has been adapted particularly for OCR 

applications [34]. We used a global average pooling layer as the last layer, which takes 

the average of the two output feature maps and produces two scalar values. The two scalar 

values are further passed through a softmax function which gives the likelihood of being 

a plaintext word or a math segment. 

Table 12 CNN Configuration. #maps: the number of feature maps. k: kernel size. p: 
padding size. s: stride size. BN: batch normalization. GlobalAvgPool: global average 
pooling. The sizes are in order (height, width). 

Type #maps k p s 
GlobalAvgPool 
Convolution 2 (3,3) (1,1) (1,1) 
MaxPooling (2,1) (0,0) (2,1) 
BN 
Convolution 512 (3,3) (1,1) (1,1) 
MaxPooling (1,2) (0,0) (1,2) 
Convolution 256 (3,3) (1,1) (1,1) 
BN 
Convolution 256 (3,3) (1,1) (1,1) 
MaxPooling (2,2) (0,0) (2,2) 
Convolution 128 (3,3) (1,1) (1,1) 
MaxPooling (2,2) (0,0) (2,2) 
Convolution 64 (3,3) (1,1) (1,1) 
Input Gray-scale image 

The CNN model is implemented in PyTorch [85]. It contains 2,150,685 parameters 

and is trained for 5 epochs which took 0.2 hours on an Nvidia Quadro M5000 GPU (8GB, 

2048 CUDA cores). We used Adam optimizer [82] with a mini-batch size of 32. We also 

applied the dropout technique [83] during training with a dropout rate of 0.4. For testing, 
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an image block is classified as positive (math) if the likelihood is above 0.5, and negative 

(plaintext) if otherwise. Out of 16,073 test samples, 15,482 are classified correctly, which 

gives an accuracy of 96.3%. By looking closer at the confusion matrix in Table 13, we 

observed a lot more false positives (540) than false negatives (51). The confusion matrix 

converts to precision 93.6%, recall 99.4%, and F1-score 96.4%. In Section 3.3 we will 

dive into the cause and the solution to the large false positive number. 

Table 13 Confusion matrix of the CNN output. 
Predicted 
Plaintext 

Predicted Math 

Plaintext 7,922 540 
Math 51 7,560 

Conditional Random Field 

The CNN classifier gives us a decent math/plaintext classification accuracy on the 

synthetic dataset. However, there are still many false positives as we have observed in 

Table 13. This problem becomes more obvious when the model is tested on real 

publications, as shown in Figure 21 (a). As we can see, the false positives mainly come 

from the stop words such as “it”, “is”, “of”, “and”, etc., which are falsely classified as 

math. The reason behind is that these stop words are occasionally included as part of math 

expressions in the training set. On the other hand, we did not resample these words as 

plaintext samples when constructing the dataset (the resampling frequency would also be 

tricky to determine), thus the classification of these words is biased towards positive. At 

the same time, false negative errors are also noticeable. For example, the math segment 

“sup	{𝐺(∆(𝑡,” circled in red is falsely classified as plaintext. 
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Figure 21 Label assignment before CRF (a) and after CRF (b). Bold bounding 
boxes mark math labels. 

These observations indicate that more important features need to be included in 

addition to the visual features given by the CNN classifier. One example is the text 

information, which can be extracted by English OCR engines from the images. The text 

information carries semantical meanings that can be used to identify the stop words 

mentioned above. In addition, if the recognized text is a meaningless string instead of a 

valid English word, it is more likely that the image contains a math segment instead of a 

plaintext word. In addition to the text information, the math likelihood of the neighbors 

and the physical distance to the neighboring images are also useful features. They contain 

context information that can be used to correct errors such as a misclassified segment in 

the middle of a long math expression. Taking these into consideration, we decide to use a 
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conditional random field (CRF) to model these features. CRFs are a type of supervised 

machine learning model for sequence labeling purposes, while in our application a 

sequence is a line of tokens. Assuming that the length of a line is 𝑇, we want to find a set 

of labels	𝑙 that best describes each token 𝑥, i.e., maximizes the conditional probability 

𝑝 𝑙 𝑥 . The label 𝑙 ∈ {0,1}, where 0 indicates plaintext and 1 indicate math. Suppose the 

CRF has 𝐾 different feature functions 𝑓m, each with a corresponding weight 𝜆m. 𝑝 𝑙 𝑥  is 

modeled as: 

𝑝 𝑙 𝑥 =
1

𝑍(𝑥)
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where 𝑍(𝑥) is a normalization factor that sums over all possible labels 𝑙«, which is defined 

as below: 

𝑍 𝑥 = 𝑒𝑥𝑝 𝜆m𝑓m(𝑙@, 𝑙@�e, 𝑥@)
Õ
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The feature functions are composed of pointwise features and pairwise features. 

Pointwise features describe individual tokens, including the math likelihood of the tokens 

given by the CNN classifier, the text content, and the image block size. Pairwise features 

describe the relationship between a token and its immediate neighbors. All the features are 

summarized in Table 14. Text features are one-hot encoded. 
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Table 14 Full list of CRF features. 
Pointwise features 
Math 
likelihood 

The math likelihood given by the CNN 
classifier 

Text The text string recognized by the OCR engine 
is_plaintext Whether the text string is a valid English word 
Width The width (in pixel) of the image block 
Height The height (in pixel) of the image block 
Pairwise features 
Math 
likelihood 

The math likelihood of the neighbor token 
given by the CNN classifier 

Text The text string of the neighbor token 
recognized by the OCR engine 

Distance The distance (in pixel) to the neighboring 
image block 

The CRF model is implemented with sklearn-crfsuite [94]. The parameters 𝜆m can 

be learned by the gradient descent algorithm with maximum likelihood estimation as the 

cost function. Since the number of parameters is relatively small, we created a small 

dataset to train the CRF. We picked 10 PDF pages from the 2003 KDD Cup dataset and 

ran our PPC algorithm to segment the pages into tokens. For each token, we used the 

binary CNN classifier to generate the math likelihood, then used an OCR engine (which 

will be illustrated in Section 4.2) to generate the text, and manually labeled each token as 

either math or plaintext as the ground truth. This results in 312 lines, 2,726 tokens of data 

in total. For evaluation, we applied 10-fold cross-validation by training a model with nine 

pages and testing with the remaining one page. We report precision, recall, and F1 score 

in Table 15. The scores are calculated as the average value of the cross-validation results. 
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Table 15 CRF performance with 10-fold cross-validation. 
Performance Precision Recall F1 
Before CRF 60.2% 98.7% 74.8% 
Pointwise Features Alone 89.8% 95.7% 92.6% 
Pointwise + Pairwise 95.8% 97.4% 96.6% 

Table 15 shows the performance without CRF, with CRF using pointwise features 

alone, and with CRF using the pointwise and pairwise features together. As we can see, 

before CRF is applied, the precision is fairly low because of the large amount of 

misclassified stop words. By including the pointwise features, the precision is greatly 

improved because the semantics information is considered. By including the pairwise 

features, we achieved the best precision and F1-score, which is attributed to the 

neighboring context information. 

After we apply the CRF on each line, each image block is assigned a refined label. 

By merging the neighboring math image blocks into larger images, we obtain complete 

math expressions, which define the math/text boundaries. 

Neural Translators 

We used PPC and math classification algorithms to decompose a page into a group 

of image blocks with labels. In this section, we focus on the final step of the system, which 

is to recognize each image block of plaintext words and math expressions into LaTeX. 

Math expressions are intrinsically more difficult to recognize than plaintext words. This 

is because 1) unusual symbols in different sizes are present in math expressions, 2) the 

structural layout of the symbols needs to be understood, and 3) the generated LaTeX needs 

to follow correct grammar. In comparison, recognizing plaintext only requires to 

recognize the individual characters one by one. In section 4.1, we will introduce a neural 
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network with CNN-LSTM architecture which has recently shown success in recognizing 

math expressions and generating markup LaTeX. In section 4.2, we will use the same 

neural architecture to train a customized plaintext OCR model. Since the LaTeX 

generation process is very similar to the translation task in natural language processing, 

we refer to these neural networks as translators. 

Math Translator 

Figure 22 CNN-LSTM Neural Architecture. 

To translate images of math expressions into LaTeX, we adopt the neural network 

model proposed in [44]. The model has an encoder-decoder architecture, as shown in 

Figure 22. The encoder is a CNN that processes the input images, and the decoder is an 

LSTM that generates sequential outputs, in our case, a sequence of LaTeX tokens. The 

CNN first extracts visual features from the original image and produces a set of feature 

maps. To preserve the spatial location information, the feature maps are combined with 

positional encoding [9], which is essentially a set of sinusoidal signals that represent 

positions. The decoder is a two-layer bidirectional LSTM [73] which is used to translate 

the encoder output into a sequence of LaTeX tokens. At every step, the encoder output is 

fed into the decoder via the soft attention mechanism [35], which means the input to the 

LSTM is a weighted combination of the encoder output, where the weights are learned by 
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a separate network. The attention mechanism enables the neural network to selectively 

focus on different regions of the input images at different steps. The network is first trained 

using the maximum likelihood estimation as the training objective, which is token-level 

optimization. Once the token-level training converges, we advance further to a sequence-

level training objective using the policy gradient algorithm [70] in reinforcement learning. 

The reward function for the policy gradient algorithm is chosen as the BLEU score [69]. 

We refer the readers to [44] for more details. 

We trained the model using the public dataset IM2LATEX-100K [38] which 

contains ~100k images of math expressions and their LaTeX ground truths. The dataset is 

split into ~90k of training data and ~10k of test data. Each LaTeX string is tokenized into 

a sequence of reserved LaTeX tokens, such as “\frac”, “\sigma”, “a”, “{”, etc. Each image 

is preprocessed by cropping out the surrounding white spaces and downsampling two 

times for memory efficiency. The model is implemented in PyTorch and contains 

10,870,595 parameters in total. It is trained with a mini-batch size of 16 and a dropout rate 

of 0.4. The training took around 90 hours on our 8GB Nvidia GPU. We applied beam 

search [84] during the prediction time, with a beam size of 5. For evaluation, we used the 

cumulative 4-gram BLEU score as the criteria. The experiment results showed a BLEU 

score of 90.28% on the test set. 

While applying this math translator to PDF pages, we further applied divide-and-

conquer approaches to some large math expressions for reducing complexity. This is 

helpful because even though LSTM has long-term memory that handles longer sequences 

better than vanilla recurrent neural networks, as math expressions become longer and more 
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complicated, the neural network still produces more errors, especially on the math 

expressions that expand to multiple lines. To remediate this problem, math expressions 

expanding to multiple lines are translated line-by-line and then concatenated together. For 

fraction expressions, numerator and denominator are translated separately and then 

merged together. 

Plaintext Translator 

Existing commercial and open-source OCR tools can be used to recognize English 

text in plaintext images. However, it is difficult to efficiently parallelize these OCR tools 

on batches of single-word image blocks. Take Tesseract OCR [45] for example, it runs 

fast on larger images with a collection of sentences, but runs much slower on batches of 

small images because the software overhead becomes a major performance bottleneck. 

Furthermore, these tools cannot be used with GPUs. For better efficiency, we decided to 

train a customized plaintext OCR engine. 

Notice that the previous CNN-LSTM architecture can be directly applied to 

plaintext recognition because the two tasks are very similar. The differences are that 

plaintext does not have complex layout structures like math expressions, and the character 

set is smaller (mostly English alphabets). As a result, we decide to inherit the same neural 

network specifications from the previous section for this task. Given that the feature 

distribution of plaintext is quite different from math expressions, we decided to train a 

new model from scratch with a new dataset. We generated a synthetic dataset by collecting 

75,581 plaintext words from the 2003 KDD Cup dataset and rendered them into images 
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in different sizes and fonts. We used 60,000 images for training and 15,581 images for 

testing. 

The training procedure is similar to that of the math translator. Since this task is 

relatively simpler, we only trained it with the token-level objective function. The ground 

truths are tokenized into individual characters instead of reserved LaTeX tokens. The 

model was trained with a mini-batch size of 20 and a dropout rate of 0.4. The training took 

2.5 hours on our 8GB Nvidia GPU. Experiment results show that 15,527 out of 15,581 

words were recognized perfectly, which gave an accuracy of 99.65%. 

Experiments and Results 

In this section, we first describe a new dataset we created for evaluating the 

proposed PDF2LaTeX system. We then describe normalization rules and evaluation 

criteria, and the baseline results generated by the state-of-the-art system InftyReader. In 

the end, we compare the performance of the two systems. 

Dataset 

The recognition accuracy of the InftyReader system was previously reported as 

98.51% in [8] on a dataset of 476 pages. We inspected the 476-page dataset available on 

the Infty website 3 , and found that these pages are synthesized with displayed math 

expressions and repeating English words in different fonts and sizes. Our target task, on 

the other hand, is to recognize real-world scientific publications that follow a different 

data distribution. As a result, we decided to create a more sophisticated dataset using real-

3 http://www.inftyproject.org/en/database.html 
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world papers from arXiv. The dataset consists of 102 PDF pages collected from arXiv 

papers covering different domains including physics, AI, economics, signal processing, 

statistics, machine learning, and genomics. We manually extracted the LaTeX source of 

each page and removed tables, figures, footnotes, references, citations, and comments. 

Then we compiled these sources into PDF files with TeX Live [92] and rendered them 

into images at 250 dpi resolution. In the LaTeX ground truth, without counting space, 

there are 116,970 characters used to construct math expressions and 126,187 characters 

used to construct plaintext. There are in total 2,233 math expressions in the dataset, with 

an average of 22 math expressions per page. The dataset and the evaluation tool are 

publicly available on Github4. 

Baseline and Evaluation Criteria 

We generated a baseline for our dataset by processing each page with the state-of-

the-art commercial software InftyReader (version 3.2.0 released in November 2019). 

InftyReader recognizes PDF pages by OCR and can generate the recognition results in 

LaTeX format. We will compare the LaTeX output of our system with this baseline. 

Before the evaluation, we need to normalize all the LaTeX sources as follows: 

1. Remove the preambles such as macros, i.e., the content before \begin{document}

and after \end{document}.

2. Replace all math claimers with $, e.g., \begin{equation}, \begin{eqnarray},

\end{gather}, etc.

4 https://github.com/wzlxjtu/PDF2LaTeX-dataset 
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3. Remove section and paragraph claimers, including \section{}, \subsection{},

\paragraph{}, etc.

4. Remove spaces

5. Ignore cases

6. Normalize math polymorphism

Math polymorphism refers to the problem that a same math expression can be

expressed by different LaTeX strings. For example, 𝑋ØÙ can be expressed by either X_a^b 

or X^b_a. We used the LaTeX parser developed in [38] to handle the math polymorphism 

problem. The parser uses KaTeX [79] to convert a LaTeX string into an abstract syntax 

tree, and then traverses the tree in fixed orders to generate the normalized LaTeX string. 

Notice that the parser can only solve the polymorphism problem to a limited extent. 

For evaluation, we used the string edit distance between the predicted LaTeX and 

the ground truth LaTeX as the performance metric. In addition to the string edit distance, 

we also report the edit distance relative to the document size, i.e., edit distance rate, 

defined below: 

𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡	𝑟𝑎𝑡𝑒 = 1 −
𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡

#𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

The edit distance rate is more intuitive to understand since higher values (closer to 

1) indicate better performance. We also separate LaTeX sources into math parts and

plaintext parts, and report the edit distance rate on math and plaintext separately. The 

evaluation script is released together with the dataset. 
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Results 

In Table 16, we show the evaluation results of InftyReader and PDF2LaTeX 

system on our 102-page dataset. The results include the string edit distance and the edit 

distance rate on the overall documents and on the math part and plaintext part alone. In 

overall, the string edit distance of InftyReader is 76,012, while the string edit distance of 

PDF2LaTeX is 48,820. This is relative to the total number of 258,383 characters in the 

ground truth, which is after normalization. By converting these numbers to edit distance 

rate, InftyReader achieves an overall edit distance rate of 70.6%, while PDF2LaTeX 

achieves 81.1%. By separating the LaTeX source into math and plaintext, InftyReader 

achieves an edit distance rate of 86.6% on plaintext, and 46.0% on math. In comparison, 

PDF2LaTeX achieves an edit distance rate of 94.8% on plaintext, and 65.9% on math. 

Table 16 Results reported in Edit Distance (Rate). 
Performance InftyReader PDF2LaTeX 
Subset 
Edit Dist Rate 
(text) 

86.6% 94.8% 

Edit Dist Rate 
(math) 

46.0% 65.9% 

Overall 
Edit Dist Rate 70.6% 81.1% 
Edit Dist 76,012 48,820 

Next, we report the processing speed of the two systems. This experiment was 

done on a PC with Intel Xeon 3.5Ghz CPU, 16GB RAM. InftyReader took an average of 

25 seconds to process a page. In comparison, PDF2LaTeX took an average of 40 seconds 

to process a page on the same machine. Notice that our model has the advantage of being 

able to execute on a GPU. By simply deploying the neural networks on our 8GB Nvidia 



 102 

Quadro M5000 GPU (without further parallelizing across different pages), the time to 

process a page is reduced to an average of 14 seconds. 

Discussions 

In Figure 28 in Appendix B we visualize two examples from the experiment 

results. Each column of the table corresponds to part of a document in the dataset. The 

first row shows the original documents. The second row shows the pages reconstructed 

from the InftyReader output. The third row shows the pages reconstructed from the 

PDF2LaTeX output. The reconstruction errors are highlighted in red. We can see clearly 

that PDF2LaTeX produces significantly fewer errors than InftyReader. In fact, most of the 

errors for both systems occur inside math expressions, which means the performance gain 

of PDF2LaTeX is largely attributed to the better math translator. Yet, another important 

advantage of PDF2LaTeX is the better segmentation results. This can be reflected in two 

parts: 1) for displayed math expressions, InftyReader can mistakenly split sup/sub-scripts 

and fraction expressions into different lines, as shown in both examples in  

Figure 28, while our PPC algorithm demonstrated better robustness; 2) for inline math 

expressions, PDF2LaTeX can detect the math/plaintext boundary more clearly. This is 

largely attributed to the conditional random field, which utilizes not only the visual 

features, but also the semantics and context information. The poorer math/plaintext 

boundary explains why InftyReader only gives an edit distance rate of 86.6% on plaintext 

in this dataset, as compared to the 99.44% reported in [8]. 

We have seen from the previous section that the edit distance between our output 

and the ground truth is 48,820, which is an average of 479 edit distance per page. This is 
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far from perfect, but it is also important to understand that this is not equivalent to 479 

errors per page. For example, a minor error like failing to recognize the italic font of a 

character would result in 9 edit distance error because the italic command \textit{} has 9 

characters. Furthermore, we need to keep in mind that the math polymorphism problem is 

not entirely solved even after the normalization technique is applied. To fully solve the 

polymorphism problem, we will need to convert the recognized math expressions into 

their semantical representations such as Content MathML [67] before making 

comparisons. This conversion remains an open problem to date. 

The current version of PDF2LaTeX still has limitations and requires future works. 

For example, the current system only supports limited font styles, because all the training 

and test data were generated with TeX Live. It is necessary to label more training data 

covering all sorts of fonts in order to increase the robustness of the system. In addition, 

noise removal and deskewing techniques are needed in order to process scanned 

documents and historical publications. Finally, figure and table detection algorithms need 

to be integrated with the current segmentation algorithm. 

Summary 

In conclusion, we have proposed a novel OCR system that converts mathematical 

documents from PDF format into their markup LaTeX. The system used projection profile 

cutting to segment a page into an ordered sequence of tokens, and then used a 

convolutional neural network and a conditional random field to classify the token labels 

and refine the segmentation results. In the end, the system used two CNN-LSTM neural 

networks to translate the detected plaintext words and math expressions into their markup 
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LaTeX. The system was evaluated on a new 102-page dataset composed of real-world 

scientific publications and achieved a better recognition rate than the previous state-of-

the-art commercial software InftyReader. 
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CHAPTER VI  

FIGURE AND TABLE EXTRACTION IN THE PDF2LATEX SYSTEM 

Figures and tables play a critical role in presenting technical details and experiment 

results in research papers. In PDF documents, positions of figures and tables are unknown. 

Fortunately, several external tools have been developed for extracting these elements from 

PDF documents automatically. In this work, we will integrate the PDFFigures software 

into the PDF2LaTeX system, which can locate the bounding boxes of figures and tables, 

and can further extract their captions. We will also integrate the Camelot software, which 

can parse the detected tables and extract the cell contents from these tables. The extracted 

figures, tables, and their captions will be saved and formatted for information retrieval 

purposes. With the information given by these software, the page segmentation step in the 

PDF2LaTeX system will be able to skip table and figure areas, which enables the system 

to convert a much larger variety of real-world publications into their LaTeX sources. The 

proposed system is evaluated on a new dataset with 25 PDF pages, each containing text, 

math expressions, and figures/tables. The experiment results show that the proposed 

system achieved a comparable performance to the previous version of the PDF2LaTeX 

system on LaTeX conversion, and has extended capabilities to process pages with figures 

and tables. 

Overview 

Given the fast-growing number of digital publications, it is becoming increasingly 

important to develop algorithms that can automatically extract contents and mine 
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knowledge from existing publications. While the PDF format helps the publishers and the 

readers to distribute digital publications very conveniently, it also brings difficulties on 

extracting non-textual elements from PDF documents, because the PDF format does not 

contain tags about its contents. The PDF2LaTeX system proposed in task 3 leveraged 

state-of-the-art machine learning algorithms and successfully extracted math expressions 

and converted documents to LaTeX [5, 44]. However, the system was not able to extract 

figures and tables, which are widely present in research papers and often contain important 

technical details and summaries of experiment results. In addition, the presence of figures 

and tables in a page can disrupt the page segmentation process of the PDF2LaTeX system 

and lead to recognition errors. As a result, a figure and table extraction module becomes 

a necessary add-on to the current PDF2LaTeX system. Even though information about 

figures and tables on a PDF page is not directly available, these elements usually occupy 

exclusive page areas and follow rigid layout patterns, thus are relatively easy to detect. A 

number of research tools and commercial software have been develop for figure and table 

extraction, such as PDFFigures [10] and Camelot [11]. Nevertheless, a comprehensive 

system that can parse various components (including text, math expressions, figures, and 

tables) in scientific papers still does not exist. 

In this chapter, we will integrate the figure and table extraction modules into the 

existing PDF2LaTeX system to make it capable of processing pages with figures and 

tables. Firstly, we used the PDFFigures software to extract the bounding boxes of figures 

and tables, as well as the caption text associated with them. The segmentation method -- 

projection profile cutting used in the PDF2LaTeX system is updated to skip the figure and 
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table areas, which are provided by the PDFFigures software. Figures contain diverse types 

of images and can be difficult to parse. As a result, we save the detected figures as image 

files for visualization and use their captions for indexing. Tables are different from figures 

in that their structure can be recognized relatively easily, thus their cell data can be 

extracted. We propose to use the Camelot software to extract the cell data from tables. The 

proposed system is a further step to the semantical understanding of paper contents. The 

resulting system is able to extract text, math expressions, figures, tables, and their captions 

all together and index the recognized contents for information retrieval purposes, as shown 

in Figure 23. The detected figures and tables can help the readers quickly grasp the gist of 

the technical contents. To evaluate the proposed system, we constructed a new dataset 

with 25 PDF pages, each containing a mixture of text, math expressions, and 

figures/tables. The proposed system converted these pages into their LaTeX sources, 

which were compare with their ground truth LaTeX sources. The evaluation results 

measured by string edit distance shows that the proposed system achieved a comparable 

performance to the previous version of the PDF2LaTeX system, which was evaluated on 

pages without figures and tables. 



 108 

Figure 23 The PDF2LaTeX system with figure and table detection capabilities. The 
main body is converted to LaTeX. The detected figures and captions are saved as 

image-caption pairs. The tables are decomposed into cell data. 

Method 

In this section, we first introduce two existing tools that can extract figures and 

tables from PDF documents. Next, we discuss how these tools are integrated into the 

PDF2LaTeX system, which enables it to process PDF documents with graphics 

components and convert them into LaTeX sources. 

Figures and Tables Extraction Tools 

he first step of extracting figures and tables is to locate their positions on a page. 

The PDFFigures software [10] has been developed by Clark et al. for this purpose. The 

cell data in tables also provides very useful information, thus we propose to use the 
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Camelot software [11] to decompose the detected tables into cell data. Below we briefly 

review the mechanisms of these tools. 

PDFFigures is capable of extracting the bounding boxes of figures, tables, and 

their corresponding captions from a PDF page. It first extracts the text from a PDF page 

using the Apache PDFBox library [6]. Next, texts are grouped into text blocks which 

represent paragraphs, titles, captions, etc. Captions are then located using regular 

expression matching and a few heuristic rules about the caption words and fonts. Regions 

of figure and table are proposed by expanding the caption regions towards different 

vertical and horizontal directions without touching text blocks. Each proposed region is 

scored as potential figure and table regions by heuristic rules and assigned to captions. 

Camelot software can be used to decompose tables in PDF documents into its cell 

data. The texts are extracted using PDFMiner [3]. Camelot provides two different 

algorithms to decompose a table. One algorithm is called Lattice, which first detects 

horizontal and vertical line boundaries in a table. Next, the intersection points of these 

lines are determined by using the “AND” operation of the line pixels. Finally, the cell data 

is located as the text in between the intersection points. Another algorithm is called 

Stream, which infers the location of cell data based on the text spatial layout. In this 

method, texts are first grouped into words and lines using spatial statistics. Next, the 

number of columns are determined as the mode of number of words in each row. Lines 

are then split into a list of column ranges. Finally, table cells are located as the intersection 

of rows and columns. By default, the choice of the algorithm need to be specified 

manually. 
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Integration with the PDF2LaTeX System 

The previous PDF2LaTeX system was proposed to convert mathematical 

documents from the PDF format to the LaTeX format. The system effectively recognizes 

plaintext and math expression in PDF pages, but does not handle figures and tables. This 

is because the presence of figures and tables on a page would disrupt the projection profile 

cutting method used for page segmentation. This greatly limits the type of pages that 

PDF2LaTeX can process, because figures and tables are frequently used in many scientific 

publications. Knowing that figures and tables can be extracted with tools such as 

PDFFigures, we propose to integrate PDFFigures software into the existing PDF2LaTeX 

system. 

Figure 24 Figure and table areas are masked out by white rectangles, as indicated 
by the dash lines. 
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First, we use PDFFigures to locate the bounding boxes of figures and tables. Next, 

we use the PyPDF Python library to overlay a white rectangle in the area specified by the 

bounding box, which masks out the existing figures and tables with white pixels. An 

example is shown in Figure 24. The PDF page with the white mask is then rendered into 

an image, and processed by the remaining PDF2LaTeX steps. The rationale of this 

approach is that the white masks do not add pixel values to the projection profile during 

segmentation. The main body part of the page (plaintext and math expressions) is 

converted to LaTeX in the same way as before. For visualization purposes, the detected 

figures and tables will both be saved as image files. The detected captions of the figures 

and tables will be saved along with their corresponding figures and tables for indexing and 

retrieval purposes. 

Comparing to figures, tables usually follow strict layout structures thus can be 

recognized relatively easily. The Camelot software has been designed to detect tables on 

a PDF page and decompose them into cell data. We observed that Camelot can be 

erroneous during the table detection phase, which results in failures during the 

decomposition phase. To solve this problem, instead of using the Camelot for table 

detection, we specify the locations of the tables and only use Camelot for table 

decomposition in the specified areas. The coordinates of tables are provided by the 

PDFFigures software. Notice that in the Camelot coordinate system, (0,0) is defined as the 

bottom left corner of the page. In PDFFigures, (0,0) is defined as the top left corner. As a 

result, we apply the following coordinates conversion: 

𝑦e%ØÜÝA?@ = 𝑝𝑎𝑔𝑒>ÝhC>@ − 𝑦o��··hCc2Ý= 
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𝑦o%ØÜÝA?@ = 𝑝𝑎𝑔𝑒>ÝhC>@ − 𝑦e��··hCc2Ý= 

We also observed that for table decomposition, the two algorithms in Camelot 

(Lattice vs. Stream) have pros and cons on different kinds of tables. For example, the 

Lattice method works better for tables with full-line boundaries. The Stream method 

works better for tables whose lines are hidden and cell elements are indicated by spaces. 

Since there is not a method to automatically choose between the two algorithms, we 

propose to use an auto-selection rule as follows: 

𝑟𝑎𝑡𝑖𝑜 =
#𝑐𝑒𝑙𝑙𝑠

#𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

#𝑐𝑒𝑙𝑙𝑠 indicates the number of cells, which is provided by the Stream method. 

#𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  indicates the number of line intersections, which is provided by the 

Lattice method. If #𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is zero, we set the ratio to 1. We use this ratio as a 

decision rule for algorithm selection. If the ratio is larger than a threshold, we select the 

Stream method, because a larger ratio indicates fewer line boundaries, which are likely to 

be hidden. If the ratio is smaller than a threshold, we select the Lattice method, because a 

smaller ratio indicates more line boundaries. In our implementation, we set the threshold 

to 0.8. 
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Figure 25 Lattice vs. Stream method for different kind of tables. (a) Lattice is 
chosen. (b) Stream is chosen. 

An example of applying this rule is shown in Figure 25. The table in Figure 25 (a) 

contains 43 intersection points and 27 cells. This gives a ratio of 0.63, which is smaller 

than the threshold, thus the Lattice method is applied. On the other hand, the table in Figure 

25 (b) has no intersection point, which yields a ratio of 1. This is larger than the threshold, 

thus the Stream method is applied. In our integrated system, the table contents recognized 

by Camelot are saved as .CSV files. 

Experiments and Dataset 

The performance of the proposed system is categorized by the accuracy of figure 

and table detection, the decomposition of table contents, and the LaTeX generated from 

the main body. The performance related to figures and tables has been previously reported 

by the authors of PDFFigures and Camelot [52]. As a result, we focus the system 
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evaluation on the predicted LaTeX of the main body. The accuracy of the main body 

recognition is measured by the string edit distance between the predicted LaTeX and the 

corresponding ground truth LaTeX. A lower edit distance indicates a better performance. 

We also report the edit distance rate, which is defined as below: 

𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡	𝑟𝑎𝑡𝑒 = 1 −
𝑒𝑑𝑖𝑡	𝑑𝑖𝑠𝑡

#𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

The edit distance rate is more intuitive in that it is relative to the size of the 

document. A value closer to 1 indicates a better performance. We also applied some 

preprocessing steps before the evaluation. For the ground truth files, we removed the 

preambles before \begin{document} and \after{document}. We also replaced all the math 

claimers with ‘$’, and removed section claimers, spaces, and ignored cases. For LaTeX 

that marks math expressions, we used the KaTeX parser [79] to normalize them in order 

to reduce the math polymorphism problem. 

Since there is neither existing tools nor dataset for this task, we constructed a new 

dataset for testing. The dataset is composed of 25 PDF pages collected from real-world 

publications on arXiv. We manually selected pages that contain a mixture of text, math 

expressions, figures, and tables. Footnotes, references, and citations are removed from the 

pages. The portion of LaTeX sources that marks figures and tables are also removed during 

evaluation. There are 21 figures and 11 tables in total. Every PDF page in the dataset 

contains at least one figure or table. The main body part consists of 84,537 characters in 

total. For comparison, we used the previous PDF2LaTeX system without the figure and 

table extraction module as the baseline. Ideally, the performance of the new system on this 
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new dataset should be comparable to the previous system evaluated on the PDF2LaTeX-

102 dataset which does not contain figures or tables. 

Results and Discussions 

Table 17 Performance of the PDF2LaTeX system with and without figure/table 
extraction modules. 

	 Performance	
w/o	ßigures/tables	

Performance	
with	ßigures/tables	

Edit	Dist	(page)	 479	 446	
Edit	Dist	(total)	 48,820	 11,155	
Edit	Dist	Rate	 81.1%	 86.8%	

In Table 17, we report the detailed evaluation results of the new system evaluated 

on the 25-page dataset. For the baseline, we present the evaluation results of the previous 

PDF2LaTeX system without figure/table extraction modules evaluated on the 

PDF2LaTeX-102 dataset, which does not contain figures and tables. As we can see, the 

new system achieved an edit distance of 446 per page. This is lower than the old system, 

which has an edit distance of 479 per page. When converted to the edit distance rate, the 

new system achieved an edit distance rate of 86.8%, while the old system achieved 81.1%. 

This means the performance of the proposed new system on pages with figures and tables 

is comparable to the performance of the old system on pages without figures or tables. 

As we observed, the performance of the new system is slightly higher than the old 

system, even though the algorithm that processes the main body remains the same. The 

performance gain is due to the fact that there are fewer complicated math expressions in 

the 25-page dataset. This is reasonable because figures and tables present more often in 

the result sections, while math expressions present more often in the method sections. In 
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other words, the pages with figures and tables tend to contain fewer math expressions, 

which are the main sources of LaTeX recognition errors. 

For the computation cost, the new PDF2LaTeX system takes an average of 50s to 

process a page. This is evaluated on a machine with Intel Xeon 3.5Ghz CPU and 16GB 

RAM. Note that the main body part of a page is recognized by the neural networks, which 

can be parallelized on a GPU to speed up the system.  

A Demo Application 

The PDF2LaTeX system serves as the backend for parsing the PDF documents. 

This opens up a lot of possibilities for different applications. In this section, we 

demonstrate a PDF content viewer we developed as a front-end application for readers. 

The software aims to improve the reading experience of professionals who need to have 

access to the data inside the PDF documents. The software is written in Python Tkinter5. 

This application is a graphical-based PDF viewer, in which PDF pages are 

represented as images. Each element including tokens, MEs, figures, tables, etc. is 

wrapped in a rectangle object, which is augmented by the underlying data. Features of this 

interface include:  

• highlights the critical elements on a page including MEs, figures, tables, and

captions

• left-click to copy the underlying text of an object to clipboard

• left-click to open a table as a .csv file

5 https://docs.python.org/3/library/tkinter.html (Accessed Aug 2020) 
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• right-click to copy the MathML of an ME to clipboard

MathML is generated in the backend based on the recognized markup LaTeX of an 

ME. The LaTeX to MathML conversion is realized by the Python software package 

latex2mathml6. MathML can be directly used in different environments, such as 1) display 

math expressions on webpages or 2) paste MathML in Microsoft Word which becomes an 

editable math formula object. 

Figure 26 shows the interface of this software. The pop-up window shows that the 

source LaTeX of an ME being left-clicked is copied to the clipboard. 

Figure 26 The graphical user interface of the PDF2LaTeX system. 

6 https://pypi.org/project/latex2mathml/ (Accessed Aug 2020) 
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Summary 

We have proposed a new version of the PDF2LaTeX system, which is designed to 

extend the previous version of the system to process pages with figures and tables. The 

PDFFigures software was integrated to extract figures and tables from PDF pages. The 

Camelot software was integrated to decompose the extracted tables into cell data. In 

addition, captions of the figures and tables were also extracted and saved. In the end, the 

main body including the plaintext and math expressions were converted to LaTeX. For 

evaluation, we constructed a new dataset of 25 PDF pages from research papers which 

contains figures and tables. The evaluation results suggest that the performance of the new 

system is comparable to the previous system, but has extended capabilities for processing 

figures and tables. To our knowledge, this is the first system than can systematically parse 

real-world scientific publications and convert them to LaTeX. The system serves as the 

foundation to knowledge mining and information retrieval based on the vast amount of 

existing PDF documents.  
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CHAPTER VII  

CONCLUSIONS 

This dissertation presented a comprehensive system for content extraction and 

recognition in scientific publications, with a focus on the PDF format. These contents 

mainly include math expressions, figures, and tables, which carry important technical 

details but are very difficult for machine to process. The proposed content extraction 

algorithms help machines to locate the positions of different elements on a page and assign 

labels of their identities. The proposed recognition algorithms help machines understand 

the contents of these elements, and convert them to the LaTeX format, which can be 

directly used for NLP, searching, etc. This system serves as the foundation to applying a 

lot of different types of information retrieval and data mining technologies on top of PDF-

based scientific publications. 

Summary of Findings 

In the first task, we designed a group of algorithms to extract math expressions 

from PDF documents. This is a necessary step not only for PDF documents with missing 

fonts, but also for those with correct fonts embedded, because the existence of MEs could 

disrupt text extraction and NLP analysis. Existing ME extraction algorithms either rely on 

the font information or require global training. The former approaches fail when correct 

fonts are missing. The latter approaches are usually supervised learning-based algorithms 

that are fine-tuned for specific datasets and thus do not generalize well outside the training 

dataset. This is a real problem when applying supervised machine learning algorithms in 
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this field due to the lack of training data. A full exploitation of the font information helped 

us design the algorithm based on the font size feature, which is adaptive and robust, 

meanwhile does not require training. Another advantage is that the critical feature – font 

size, is not affected by the missing fonts problem. The multi-stage algorithm exploits the 

hierarchical relationship from symbols to the structural layout of MEs. At the same time, 

the design of the bigram regularization model borrows the idea from the Markov Random 

Field, which utilizes neighboring information for label predictions. The model stabilizes 

the predicted labels by penalizing label changes, thus reduces split detection errors. The 

model is simple and does not require training other than hand-tuning a penalty parameter. 

The mixed integer programming algorithm was used to efficiently optimize the bigram 

objective function. Finally, we introduced a semi-automated algorithm to generate the ME 

ground truth bounding boxes in an efficient manner. This is possible because the LaTeX 

sources of the PDF documents are essentially a variant of the labels of the content in PDF 

documents. The semi-automated solution we proposed links the labels in the LaTeX 

sources to the PDF documents. The outcome of this method is a large-scale dataset we 

released. The dataset not only serves as a new evaluation platform for future researchers, 

but also a better training source for supervised machine learning algorithms. 

In the second task, we proposed a deep neural network to recognize MEs into 

LaTeX. To overcome the missing fonts problem, we proposed to recognize MEs as 

images. Recognition of MEs in images has been a research topic for decades. Traditional 

approaches involve symbol segmentation, individual symbol recognition, structural 

analysis, and finally, language model for sequence generation. In these approaches, an 



 121 

error generated in any stage cascades to the following steps. As compared to these 

approaches, we used an end-to-end prediction model, i.e., given input images, the model 

directly generates the output LaTeX strings. A deep learning model is made possible 

thanks to the tons of data that are easily available from the real-world LaTeX sources of 

existing scientific publications. The encoder-decoder architecture suits well for generating 

sequences from the images. The encoder CNN process the input images and encodes them 

into feature maps. The decoder RNN translates the feature maps into a sequence of LaTeX 

tokens, which marks up the contents in the input images. With the help of the attention 

mechanism, the model acts intelligently to focus on different parts of the image at every 

prediction step. Knowing the importance of the relative position of different symbols, we 

also introduced the 2-dimensional positional encoding, which adds sinusoidal signals to 

the feature maps as positional information. The sequence-level training objective also 

helped to enforce sequence-level correctness by considering the full sequence instead of 

individual tokens, which suits well for the rigid grammar of the LaTeX language. The 

policy gradient algorithm made it possible to train the model using a sequence-level 

evaluation metric in that it helps avoid taking derivatives on the discrete evaluation 

function but use the log-derivative of the likelihood instead. 

In the third task, we introduced the PDF2LaTeX system, which focuses on page-

level recognition. The system can process documents not only in PDF format, but also in 

image format. This requires an OCR-based solution, which is not subject to the limitations 

of PDF fonts. However, OCR-based solutions do not utilize the rich information provided 

by the PDF format. Fortunately, the recognition of text and MEs can be based on the 
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success of the OCR engine proposed in the previous task, while individual English words 

and MEs are translated into LaTeX using the deep neural network. There still remains a 

challenge to locate the positions of text and MEs and identify their boundaries. We 

proposed to use the projection profile cutting algorithm to segment pages into columns, 

lines, and tokens. To classify if each token is an ME or plaintext, we trained a CNN as a 

binary classifier, which captures the visual features of the characters. Furthermore, we 

proposed to use a CRF to capture other features, especially the features of the neighboring 

tokens. The context information introduced by the CRF brought some additional 

performance gain. The deep neural network proposed in task 3 was directly used to 

recognize MEs and translates them into LaTeX. Plaintext recognition is considered a 

solved problem, but for efficiency, we trained another neural network with the same 

encoder-decoder architecture to recognize plaintext image blocks in batches. Since there 

exist no comprehensive dataset that are composed of real-world publications, we 

composed a new dataset with pages of mixed text and MEs. The PDF2LaTeX system is 

evaluated on this new dataset, and is compared with the commercial software InftyReader, 

which is the only know system that serves similar purposes. The PDF2LaTeX outperforms 

the InftyReader software, especially on differentiating ME vs. text and recognizing 

complex MEs. 

In the fourth task, we integrated figure and table extraction modules into the 

PDF2LaTeX system. Although the system we proposed in task 3 was able to recognize 

mathematical documents at the state-of-the-art accuracy, it has strict assumptions that 

elements other than MEs and text do not exist. These elements are mainly composed of 
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figures and tables, which often contain important information such as experiment results 

or technical specifications. Processing figures and tables not only provides valuable 

information, but is also a necessity in the PDF2LaTeX system, because the areas being 

occupied by figures and tables must be handled explicitly to make the projection profile 

cutting algorithm to give correct segmentation results. We proposed to integrate the 

PDFFigures software into our system for detection. The PDFFigures software helps locate 

the bounding boxes of figures, tables, as well as their captions. These elements are saved 

as image-caption pairs, which can be used in the information retrieval systems. The area 

of these elements are masked out by overlapping white padding on the corresponding page 

areas. We also integrated the Camelot software to decompose the detected tables into cell 

data, which are saved as .CSV files for easy data access. This greatly broadens the scope 

of the PDF2LaTeX system. 

Future Work 

We observed in task 1 that one obstacle of existing supervised learning-based ME 

detection solutions is the lack of training data. The MOP dataset is a pioneer work to 

generate large-scale ground truth data automatically. It contains around 1,800 pages of 

technical writings based on the LaTeX source files in the KDD dataset [91], which is 

sufficient as a test set. However, this may still not be enough for training some data-hungry 

but most effective machine learning models such as deep neural networks. The volume of 

pages is not the only problem since all the pages in the MOP dataset are from the high-

energy physics subject on arXiv. To build more robust machine learning models, papers 

from a wider range of research areas are needed. Thus, a sensible extension to this work 
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is to crawl more LaTeX sources of publications from different areas and possibly different 

publishers. 

The math to LaTeX translator is an end-to-end neural network model, which 

conveniently bypasses the intermediate steps of math expressions recognition, which 

could be error-prone. These steps include character segmentation, symbol recognition, 

structural analysis, language model with LaTeX grammar, etc. While this is an exquisite 

design, at the same time it is also a compromise due to the lack of intermediate training 

data. The obvious disadvantage is the lack of interpretability.  When a prediction error 

occurs in such models, it is nearly impossible to track the source of errors and correct it. 

Generating images of math expressions from LaTeX can be fully automated, but 

generating labels of individual symbols and their structural relationship requires tedious 

human labels. However, if such labels become available in the future, it could be very 

helpful to use several neural networks for different functions and train them separately. 

Another direction to improve the model is to replace the CNN and LSTM with more 

advanced neural architectures. For example, the ResNet [95] has been proposed very 

recently which outperforms CNN, thanks to the residual connections across different 

layers. This architecture can potentially help with extracting more precise representations 

of ME images. 

We have tested both the PDF2LaTeX system and the InftyReader system on the 

PDF2LaTeX-102 dataset, and demonstrated that PDF2LaTeX can recognize pages in 

scientific documents at a better accuracy. That being said, as a research product, 

PDF2LaTeX has much more limited scope of applications as compared to the mature 
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commercial software InftyReader. PDF2LaTeX is trained on arXiv papers rendered by 

TeX, and is tested on a dataset generated in the same way. Its performance would suffer 

when tested on unseen data. To make PDF2LaTeX as robust as the InftyReader, much 

larger and diverse data need to be fed into the training process. Such data is not yet 

available and the process requires some engineering arts. This is beyond the scope of this 

dissertation but is certainly a path towards a better tool for real-world usage. For future 

research related to the PDF pages-to-LaTeX task, it may also be helpful to introduce more 

comprehensive evaluation metrics in addition to the string edit distance. For example, it 

would be very beneficial to differentiate between the edit distance introduced by 

difference in font styles and the edit distance introduced by structural recognition errors, 

which would give insights to further improve the performance. 

The figure and table extraction tools we integrated into the PDF2LaTeX system 

have decent performance but can always be easily replaced for better performance. 

PDFFigures and Camelot are PDF parser-based solutions, which has limitations when 

being applied to PDF documents with bad font encodings. An alternative is to use OCR-

based figure and table detection approaches. For example, recent fast and accurate object 

detection neural networks such as YOLO [96] can be trained and integrated for figure and 

table detection purposes. 

Finally, being a tool to give access to the various contents inside PDF documents, 

the PDF2LaTeX system opens many opportunities to information retrieval systems and 

data mining algorithms. Future researchers could build math information retrieval (MIR) 

systems such as math expression-based search engine in PDF documents. MIR has been a 
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topic in the research community but it has not been able to work on PDF documents. With 

the help of PDF2LaTeX, the search engines can utilize the LaTeX being recovered to 

match the math keywords queries. A naive ranking criterion can be as simple as using the 

string edit distance between the query LaTeX and the target LaTeX. More advanced 

matching criteria may also be developed, such as matching the operator trees of MEs. One 

can simply convert MEs from LaTeX to Presentational MathML trees, or even to Content 

MathML trees which contains more semantical meanings. Efficient algorithms such as the 

pq-Gram [97] can be used to approximated tree edit distance very efficiently (in nlogn 

time and linear space), which makes large-scale applications possible. One can go further 

to dive deep into the ME contents and extracts the declarations of math variables, which 

brings more semantical-level information for future processing. Some pioneer works on 

this direction can be found in [98, 99]. 
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APPENDIX A 

VISUALIZATION OF MI2LATEX 

Figure 27 Visualization of the translation process for an input image. The image 
sequences are ordered vertically. The title of each image represents the token being 

produced at that certain time step. The red rectangles represent the attention 
weights. Darker color indicates a larger weight. We sampled 20 out of 77 predicted 

LaTeX tokens for concise presentation. 
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APPENDIX B 

VISUALIZATION OF PDF2LATEX 

Figure 28 Visualization of two examples from the PDF2LaTeX-102 dataset. The 
reconstruction errors are marked in red. 
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APPENDIX C 

EXTERNAL SOURCES 

Table 18 External sources used including datasets and tools. 
Datasets	

Marmot	Dataset	 https://www.icst.pku.edu.cn/cpdp/sjzy/index.htm 

KDD	Cup	2003	Dataset	 https://research.cs.cornell.edu/kddcup/datasets.html 

Tools	

PDFFigures	2.0	 http://pdffigures2.allenai.org/ 

Camelot	 https://camelot-py.readthedocs.io/en/master/ 

sklearn-crfsuite	 https://sklearn-crfsuite.readthedocs.io/en/latest/ 

KaTeX	 https://katex.org/ 

PDFBox	 https://pdfbox.apache.org/ 

PDFMiner	 https://pdfminer-
docs.readthedocs.io/pdfminer_index.html 

InftyReader	 http://www.inftyreader.org/ 




