
IMPORTANCE OF CODE AND SOLUTION VERIFICATION IN CREDIBLE

SIMULATIONS

A Dissertation

by

AARON MARTIN KRUEGER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Yassin A. Hassan
Committee Members, Rodolfo Vaghetto

Maria D. King
William H. Marlow
Vincent A. Mousseau

Head of Department, Michael Nastasi

December 2020

Major Subject: Nuclear Engineering

Copyright 2020 Aaron Martin Krueger

ABSTRACT

Current interest in verification, validation, and uncertainty quantification (VVUQ) has

increased substantially over the past 30 years with increased awareness of potential in-

accuracies of numerical simulations. This requires rigorous VVUQ analysis methods to

correctly estimate the numeric and physics modeling uncertainties of numerical simula-

tions for a given application. While methods exist that quantify these uncertainties, these

methods are not the most rigorous in identifying code errors and estimating numerical

and physical modeling uncertainties. The VVUQ methods presented in this dissertation

describe three state-of-the-art improvements to current VVUQ methods: modified equa-

tion analysis method of manufactured solutions (MEAMMS) code verification, identifying

and characterizing the "Asymptotic Point", and how this impacts validation and uncer-

tainty quantification. MEAMMS code verification builds on the method of manufactured

solutions (MMS) and the modified equation analysis (MEA) to identify code errors that

are below, of the same order, or with certain implementations, higher than the numer-

ical method. Previous code verification methods, such as MMS, do not identify these

types of coding errors. Characterizing the asymptotic point for multiple manufactured so-

lutions provides additional insight into how discretization error behaves for a variety of

discretization sizes. This characterization is able to evaluate the performance of different

discretization uncertainty methods inside the asymptotic range, near the asymptotic point,

and outside the asymptotic range. Code and solution verification sensitivities show the

importance of code and solution verification in validation and uncertainty quantification

studies. By changing the amount of coding error and numerical uncertainty on a synthetic

problem, the impact can be measured. This novel work aims at extending the field of

VVUQ by developing tools and methodologies that improve the quality of computational

ii

software’s prediction capability.

iii

DEDICATION

I would like to dedicate this work to my parents and sister. Without their constant love,

support, encouragement, and sacrifices, I would not be the person I am today. I am truly

blessed to call them family.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Yassin Hassan for advising me throughout this process and

the research opportunities he has provided me over the years. I would also like to thank

Dr. Vincent Mousseau for mentoring me the past five years. Not only has he mentored

me technically in V&V topics, but also in how to approach problems with wisdom and in-

tegrity. I would like to thank my other committee members, Dr. Maria King, Dr. Rodolfo

Vaghetto, and Dr. William Marlow, for technical support and guidance throughout the

project. Additionally, I would like to thank my colleagues at Sandia National Laborato-

ries, especially Dr. Nathan Porter, Dr. Troy Haskin, and Lindsay Gilkey for their numerous

technical and editorial comments throughout this work. I would like to thank my graduate

school colleagues, Dr. Landon Brockmeyer, Dr. Jonathan Lai, John Mulloy, and Jesse

Latimer, for staying up late with me too many times to finish school assignments or re-

search. I know I will look back at these memories fondly. Lastly, I would like to thank

the numerous friends and family that have supported me throughout my life, especially

in graduate school. They have provided the necessary distraction, comfort, and guidance

throughout my life, for which I am grateful.

v

CONTRIBUTORS AND FUNDING SOURCES

This work was supported by a dissertation committee consisting of Professor Yassin

Hassan (advisor) and Professors Rodolfo Vaghetto and William Marlow of the Depart-

ment of Nuclear Engineering, Professor Maria King of the Department of Biological and

Agricultural Engineering, and Dr. Vincent Mousseau of Sandia National Laboratories.

All work conducted for the dissertation was completed by the student, under the ad-

visement of Professor Yassin Hassan of the Department of Nuclear Engineering and Dr.

Vincent Mousseau of Sandia National Laboratories.

This research was partially supported by the Consortium for Advanced Simulation of

Light Water Reactors (CASL) (www.casl.gov), an Energy Innovation Hub

(http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under

U.S. Department of Energy Contract No. DE-AC05-00OR22725.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiv

1. INTRODUCTION . 1

1.1 Origins of Numerical Simulations . 2
1.2 Development of V&V Concepts . 3

1.2.1 Software Quality Assurance . 3
1.2.2 Code Verification . 4
1.2.3 Solution Verification . 7
1.2.4 Validation . 9
1.2.5 Uncertainty Quantification . 11

1.3 Use of Codes for Nuclear Power Plants 13
1.3.1 RELAP . 13
1.3.2 MELCOR . 14
1.3.3 GOTHIC . 16
1.3.4 Computational Fluid Dynamics 16
1.3.5 Applying V&V Concepts to Nuclear Power Plant Codes and Sim-

ulations . 18
1.4 Code Verification Improvements . 19
1.5 Solution Verification Improvements . 20
1.6 Importance of Code and Solution Verification 21

2. BACKGROUND EQUATIONS . 22

2.1 Shallow Water Equations . 22

vii

2.2 Shallow Water Equations with Radionuclide Transport 24

3. MEAMMS . 26

3.1 Verification . 26
3.1.1 MMS . 27
3.1.2 MEA . 28
3.1.3 MEAMMS Development . 28

3.2 Demonstration Case . 28
3.2.1 Code Implementation . 29
3.2.2 Newton’s Method . 32
3.2.3 Manufactured Solutions Source Terms 34
3.2.4 Local Truncation Error Calculation 35

3.3 Problem Setup . 41
3.4 MMS Order of Accuracy Test Results 44
3.5 MEAMMS Test Results With Leading Order Terms 46
3.6 MEAMMS Test Results With Higher Order Terms 46
3.7 Example of Where MMS Fails . 50

3.7.1 Zeroth-Order Coding Error . 50
3.7.2 First-Order Coding Error . 55

3.8 Coarse Code Verification . 60
3.9 Code Verification Conclusion and Future Work 62

4. SOLUTION VERIFICATION . 64

4.1 Introduction . 64
4.2 Solution Verification Method Development 65

4.2.1 Derivation of Asymptotic Point 65
4.2.2 Derivation of Solution Verification Methods 67
4.2.3 Comparison Metrics . 69

4.3 Description of Test Problems . 71
4.3.1 Steady State . 71
4.3.2 Transient . 72
4.3.3 Initial and Boundary Conditions 73
4.3.4 Numerical Settings . 74

4.4 Results . 75
4.4.1 Steady State . 76
4.4.2 Transient . 80

4.5 Conclusion and Future Work . 84

5. VERIFICATION AND VALIDATION CONSIDERATIONS 85

5.1 Introduction . 85

viii

5.2 Problem Description . 86
5.2.1 Synthetic Experimental Data Generation 87
5.2.2 Computational Solution . 97

5.3 Results . 100
5.3.1 Proper V&V Process . 101
5.3.2 Improper V&V Process . 104
5.3.3 Full Scale Comparison . 108

5.4 Conclusion and Future Work . 110

6. CONCLUSION . 112

REFERENCES . 116

ix

LIST OF FIGURES

FIGURE Page

3.1 Visualization of Staggered Scalar and Momentum Grid 30

3.2 Visualization of the Eight Numerical Schemes Implimented 32

3.3 MMS Order of Accuracy Slope Results for the Implemented Stable Nu-
merical Schemes (Height) . 45

3.4 MMS Order of Accuracy Results for the Implemented Stable Numerical
Schemes (Velocity) . 45

3.5 MEAMMS Order of Accuracy Slope Results for the Implemented Stable
Numerical Schemes (Height) . 47

3.6 MEAMMS Order of Accuracy Results for the Implemented Stable Nu-
merical Schemes (Velocity) . 47

3.7 Spatial Distribution of Discretization Error After 20 Timesteps with Higher
Order LTE Source Terms (Height) . 49

3.8 Spatial Distribution of Discretization Error After 20 Timesteps with Higher
Order LTE Source Terms (Velocity) . 49

3.9 MMS Order of Accuracy Slope Results for Implicit Upwind with Zeroth-
Order Coding Error (Height) . 51

3.10 MMS Order of Accuracy Slope Results for Implicit Upwind with Zeroth-
Order Coding Error (Velocity) . 52

3.11 Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with Zeroth-Order Coding Error (Height) 52

3.12 Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with Zeroth-Order Coding Error (Velocity) 53

3.13 Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with Zeroth-Order Coding Error (Height) 53

x

3.14 Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with Zeroth-Order Coding Error (Velocity) 54

3.15 Higher Order MEAMMS Discretization Error Results After 10 Timesteps
for Implicit Upwind with Zeroth-Order Coding Error (Height) 54

3.16 Higher Order MEAMMS Discretization Error Results After 10 Timesteps
for Implicit Upwind with Zeroth-Order Coding Error (Velocity) 55

3.17 MMS Order of Accuracy Slope Results for Implicit Upwind with First-
Order Coding Error (Height) . 56

3.18 MMS Order of Accuracy Slope Results for Implicit Upwind with First-
Order Coding Error (Velocity) . 57

3.19 Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with First-Order Coding Error (Height) 57

3.20 Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with First-Order Coding Error (Velocity) 58

3.21 Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with First-Order Coding Error (Height) 58

3.22 Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with First-Order Coding Error (Velocity) 59

3.23 Higher Order MEAMMS Discretization Error Results After 10 Timesteps
for Implicit Upwind with First-Order Coding Error (Height) 59

3.24 Higher Order MEAMMS Discretization Error Results After 10 Timesteps
for Implicit Upwind with First-Order Coding Error (Velocity) 60

4.1 The Three Regions Analyzed: Inside, Near, and Outside the Asymptotic
Range. 67

4.2 Error in Height as a Function of Discretization Size for Steady State Problem 77

4.3 Error in Velocity as a Function of Discretization Size for Steady State
Problem . 77

4.4 Observed Order of Accuracy of Height as a Function of Discretization
Size for Steady State Problem . 78

xi

4.5 Observed Order of Accuracy of Velocity as a Function of Discretization
Size for Steady State Problem . 79

4.6 Error with GCI Uncertainty in Height as a Function of Discretization Size
for Steady State Problem . 79

4.7 Error with GCI Uncertainty in Velocity as a Function of Discretization
Size for Steady State Problem . 80

4.8 Error in Height as a Function of Discretization Size for Transient Problem 81

4.9 Error in Velocity as a Function of Discretization Size for Transient Problem 81

4.10 Observed Order of Accuracy of Height as a Function of Discretization
Size for Transient Problem . 82

4.11 Observed Order of Accuracy of Velocity as a Function of Discretization
Size for Transient Problem . 82

4.12 Error with GCI Uncertainty in Height as a Function of Discretization Size
for Transient Problem . 83

4.13 Error with GCI Uncertainty in Velocity as a Function of Discretization
Size for Transient Problem . 83

5.1 Visualization of the Experimental Setup 94

5.2 Scaled Experimental Data for Fission Product Concentration 95

5.3 Full Scale Experimental Data for Fission Product Concentration 97

5.4 Code Verification for Height and Velocity for Proper V&V Case 102

5.5 Code Verification for Fission Product Concentration for Proper V&V Case 102

5.6 Solution Verification for Fission Product Concentration for Proper V&V
Case . 103

5.7 Calibration of k for Case 1 . 104

5.8 Validation for Case 1 . 104

5.9 Calibration of ν for Case 2 . 106

5.10 Calibration of ν for Case 3 . 106

xii

5.11 Validation for Case 2 . 107

5.12 Validation for Case 3 . 107

5.13 Comparison Between Full Scale and Scaled Up Scaled Fission Product
Concentration . 108

5.14 Scaled Comparison Between Cases 1, 2, and 3 109

5.15 Full Scale Comparison Between Cases 4, 5, and 6 110

xiii

LIST OF TABLES

TABLE Page

3.1 Description of the Numerical Schemes Implemented Within the Code . . 42

3.2 MMS Calculation Setup . 42

3.3 MEAMMS Calculation Setup . 43

3.4 Refinement Setup . 43

3.5 Order of Accuracy Calculation without LTE Source Term 44

3.6 MEAMMS Order of Accuracy Calculation with Leading LTE Source Term 46

3.7 Discretization Error After Multiple Timesteps With Higher Order LTE
Source Terms . 48

3.8 Order of Accuracy Calculation with Zeroth-Order Coding Error 51

3.9 Order of Accuracy Calculation with First-Order Coding Error 56

3.10 Code Bug Calculation Setup . 61

3.11 Order of Accuracy Calculation with Decreasing Timestep and Spatial Step
Size . 61

3.12 Discretization Calculation with Increasing LTE 62

4.1 Asymptotic Ratio Table . 66

4.2 Steady State Calculation Setup . 75

4.3 Transient Calculation Setup . 76

5.1 Scaled Settings . 91

5.2 Full Scale Settings . 96

5.3 Improper V&V Cases . 99

xiv

5.4 All Simulation Cases . 101

5.5 Scaled Calibrated Coefficients . 108

5.6 Full Scale Calibrated Coefficients . 109

xv

1. INTRODUCTION

In the last few decades, the amount of computational power available to scientists

and engineers has drastically increased the use of computational fluid dynamics (CFD)

simulation and system analysis codes to solve nuclear engineering problems [1]. From

accident analysis to design optimization to safety margin determination, simulations aim

to improve the design and analysis of nuclear power plants. However, the credibility of

simulation results has been a concern since the beginning of numerical simulations. As

CFD simulations and system codes grow in complexity, the ability to determine the trust-

worthiness becomes even harder. As a result, a subset within the CFD and system code

community has pushed for more rigorous methods to check if the equations in the software

are solved correctly. This is referred to as verification. Additionally, validation evaluates

if the equations being solved are correctly chosen for the problem [2].

Within verification lies two distinct types: code verification and solution or calcu-

lation verification. Code verification is "the process of determining that the numerical

algorithms are correctly implemented in the computer code and of identifying errors in

the software" [3] while solution verification is "the process of determining the correctness

of the input data, the numerical accuracy of the solution obtained, and the correctness of

the output data for a particular simulation" [1]. Validation on the other hand determines

if the numerical simulation result is "close enough" to experimental data. In addition to

verification and validation, uncertainty quantification assesses the total uncertainty, which

combines the uncertainties from the solution verification and validation process. Code

verification, solution verification, validation, and uncertainty quantification all need tools

and methodologies to be done correctly by the larger CFD and system code communities

to produce credible simulations. This is the primary purpose of the verification and vali-

1

dation (V&V) community. By applying V&V tools and methodologies to nuclear power

simulations, evidence is produced to provide simulation credibility. The next few sections

look at the progression of V&V tools and methodologies to assess the current state-of-the-

art as well as the limitations of these methods. It also describes the progression of nuclear

power system codes and simulations in their use of V&V tools and methodologies. Then,

new tools and methodologies are presented to improve the current state-of-the-art of the

prediction capabilities of nuclear power plant codes and simulations.

1.1 Origins of Numerical Simulations

One of the first uses of using numerical techniques for solving engineering problems

was by L. F. Richardson. He approximated differential equations using difference equa-

tions to solve the stress on a masonry dam [4]. Using the difference equations rather than

the differential equations, solutions were able to be obtained on irregular geometries where

exact solutions did not exist. He also developed the Richardson extrapolation, which is an

algorithm to determine the mesh independent solution of differential equations. Using the

difference between the numerical solution on the finest grid and the coarsest grid, the lead-

ing local truncation error (LTE) was calculated and removed from the solution to increase

the accuracy. L. R. Richardson et al. continued this work in [5]. In future sections, the

Richardson extrapolation will be used to estimate the discretization error for more com-

plicated simulations.

It is important to remember that this work was completed in 1911 and 1927, respec-

tively. Since this was before the development of modern computers, numerical calculations

had to be completed by hand, which was extremely prohibitive for large or complicated

calculations. As computers begin to develop and more widely used, the use of numerical

simulations to solve engineering problems also become more widely used, including in

the nuclear engineering field.

2

1.2 Development of V&V Concepts

With the development of more complex software to model complex physical phenom-

ena, ensuring the software was coded well enough to be useful in prediction became a new

field of research. Methodologies first started comparing to physical experiments, which

evolved into the topic of validation. With numerical schemes such as the second-order

temporal scheme developed by John Crank and Phyllis Nicolson [6] being applied to com-

plex engineering problems, ensuring the code was bug free became a complicated task in

and of itself, which evolved into code verification and solution verification. Unfortunately,

there is no true system-level software test to ensure the software is working correctly [1]

and it is extremely difficult to assess the impact of code bugs [7]. Software quality assur-

ance (SQA) tools and methodologies, in addition to code and solution verification, have

been developed to reduce the number of code bugs.

1.2.1 Software Quality Assurance

Software developers and V&V developers have different hierarchies for SQA and code

verification. Software developers typically include code verification as part of SQA while

Oberkampf and Roy consider as SQA as part of code verification [1] with numerical al-

gorithm testing as separate from SQA, but included as the other part of code verification.

Based on previous software development experience [8, 9, 10], the numerical algorithm

testing has not been a priority and is often neglected. Therefore, this dissertation separates

SQA and code verification as two distinct activities, but both are necessary in the devel-

opment of computational software. Separating SQA from code verification also has the

ability to rank the maturity of both activities separately, which will help improve the im-

plementation of numerical algorithm testing. SQA involves the testing and documentation

of the code that does not impact the numerical algorithm, which is the same definition as

Oberkampf and Roy [1]. Code verification is based on what Oberkampf and Roy refer to

3

numerical algorithm testing [1].

SQA includes regularly timed static testing and dynamic testing [11], unit testing [12],

component testing [13], regression testing, and code coverage testing. Just as important

is documenting the results of the testing, as well as theory manuals to state the theoreti-

cal performance and limitations of the software being developed. These SQA processes

reduce the probability of code bugs as well as reduce the time of finding code bugs when

the testing indicates the presence of a code bug. Similar processes are in code verification,

but focus on the testing of the numerical algorithm rather than the code as a whole.

1.2.2 Code Verification

Code verification activity methodologies have been developed extensively, but can be

difficult to implement, especially for commercial codes. The methodologies can be classi-

fied into different levels of rigor. From Oberkampf and Roy [1], the following list are code

verification activities with increasing rigor:

• Simple Tests

• Code-to-Code Comparison

• Convergence Tests

• Order of Accuracy Tests

While different applications and customer requirements dictate which level of rigor

should be applied, the most rigorous code verification type should be applied to nuclear

power plant safety codes. This is because of the large consequence of software prediction

failure, such as bridge, reactor, or airplane failure. Below are the outlines of different

levels of code verification rigor. These levels will be referred to later in this chapter to

classify the current rigor of code verification in different thermal hydraulic nuclear power

4

plant simulation software. It should be noted that all of these tests can be useful, regardless

of rigor level. Rigor level is determined by which test is the final test the code passes.

1.2.2.1 Simple Tests

Simple tests are tests based on intuition, such as symmetry problems or conservation

tests. Symmetry tests are problems where the boundary conditions are set such that the

exact solution is unknown, but the behavior should be symmetric. This allows for testing if

the software can predict the symmetry. The downside of this method is that the numerical

solution can’t be compared to the exact solution because it’s unknown. Conservation tests

are problems where the flux into the domain should match the flux out of the domain.

As with the symmetry problems, the numerical solution can’t be compared to the exact

solution. In addition, these types of tests have poor code coverage because only a small

subset of boundary conditions and physics can be tested.

1.2.2.2 Code-to-Code Comparison

Code-to-code comparisons can be more rigorous than simple tests, but only for one

situation. The only situation where code-to-code comparisons work as a final code veri-

fication test is when the physics is modeled exactly the same and the numerical scheme

and grid are exactly the same. This tends only to apply to different versions of the same

code, such as testing the solutions between two different revisions. All other situations

tend to have slight physics modeling or numerical schemes that impact the comparison

that suggest a code bug when it most likely indicates a non-equal comparison. The next

code verification activities all require access to an exact solution, which improves the rigor

of the testing immensely.

5

1.2.2.3 Convergence Tests

Convergence tests assess whether uniform refinement of the grid converges to the exact

solution. This proves that the numerical solution is consistent with the physical model. As

recommended by Oberkampf and Roy, convergence tests should be the minimum require-

ment for rigorous code verification [1].

1.2.2.4 Order of Accuracy Tests

The order of accuracy test calculates the rate (also referred to as order) of convergence

and compares it to the theoretical order of convergence. This test requires the exact so-

lution to calculate the most accurate observed order of accuracy based on absolute error.

Additionally, relative error is able to be used, but the fidelity of the observed order of ac-

curacy is reduced. This method has the ability to identify bugs that are one order lower

than the theoretical order of this method. While this is the state-of-the-art code verification

method, it does not identify code bugs that are of the same order as the theoretical order

of the method [14].

1.2.2.5 Analytical Solutions

Historically, analytic solutions have been used to quantify error in the numerical method

since the beginning of numerical analysis. The obvious downside is that analytical solu-

tions to problems that exercise all portions of the code are difficult to impossible to derive.

While still useful, a different approach to obtain an exact solution provides an even more

useful tool.

1.2.2.6 Manufactured Solutions

The current most rigorous method to obtain an exact solution is called the method of

manufactured solutions (MMS). According to Roache [15], the first known use of MMS

for code verification purposes was Steinberg and Roache [16], but the first mention of

6

"manufactured solution" was Oberkampf et al. [17]. This method uses a proposed solution

to the physical model and then derive a source term that makes the proposed solution true.

This allows for extensive testing of all aspects of the numerical method. Once a convincing

amount of code verification evidence has been documented, the coding error uncertainty

is minimized. While this method is the most rigorous, it can not be applied to "black box"

codes, since it requires intimate knowledge of the code.

1.2.3 Solution Verification

After code verification activities have been completed, solution verification activities

can begin. Solution verification is estimating the numerical error due to discretizing the

physical models within the software for problems of interest when an exact solution is

unknown. This includes iteration error, round off error, discretization error, and sampling

error for stochastic methods. While there are many components to solution verification, if

code verification is completed properly, only discretization error and sampling error (for

stochastic codes) need to be explicitly measured. Round off error can be minimized using

computer hardware and software that uses 16 digits of precision. Iteration error can be

minimized by setting the iterative convergence tolerance to be a few magnitudes lower

than discretization error, and sampling error can be minimized by sampling enough to

reduce the impact by a few magnitudes lower than discretization error. This may be an

iterative process in and of itself, but this ensures a small impact of other sources of error.

To assess discretization error, an understanding of discretizing the physical models in

both space and time is necessary. The physical models are discretized using a Taylor se-

ries. Since accounting for all high ordered terms is computationally expensive, terms are

truncated and referred to as local truncation error (LTE). Discretization error is based off

the transported LTE terms in the Taylor series [18]. This idea was used by Richardson to

improve the accuracy of the solution. It was also used to assess the stability of numerical

7

methods. Hirt first used the modified equation analysis to assess the LTE and whether or

not the LTE would be a stabilizing error or a destabilizing error [19]. The first instance

of using MEA to assess accuracy was completed by Cyrus and Fulton [20]. Even though

this work was completed in 1968, most researchers were not concerned with accessing

discretization error until the late 1980s and early 1990s [2]. The prominent work from this

era were post-processing methods based on the Richardson extrapolation. The standard

solution verification method developed in this era was the grid convergence index (GCI)

by Roache. Recently, other post-processing solution verification methods have been devel-

oped such as the factors of safety for Richardson extrapolation method [21], least squares

GCI method [22, 23], robust verification analysis [24], and StREEQ [25].

1.2.3.1 Grid Convergence Index

GCI was developed to provide a uniform was of reporting numerical uncertainty [2].

This was done by estimating the error using the difference between Richardson extrapo-

lated quantity of interest (QoI) and the QoI calculated on the finest grid. This estimated

error is then multiplied by a safety factor to account for uncertainties in this estimation.

Since the original derivation used Eq. 1.1 as the error model, uncertainty in the C1 or p

coefficients are increased if the local truncation error does not match this model.

(1.1)Error = C1h
p

The error model is not appropriate when there are other dominant terms or the solution

is not in the asymptotic region. The factor of safety is bifurcated into two different safety

factors based on the behavior of the numerical scheme. When the observed order of ac-

curacy is "close enough" to the theoretical order of accuracy Fs = 1.25, but when it’s far

from the theoretical order, Fs = 3. Roache never provided a metric for the definition of

"close enough" and left it up to the user, but Oberkampf and Roy [1] suggested to use 10%

as the metric for "close enough". The rest of the solution verification methods are based on

8

the error model in Eq. 1.1, but aim to improve the method of accounting for uncertainty.

1.2.3.2 Factors of Safety for Richardson Extrapolation

The factors of safety for Richardson extrapolation method aims to improve the factor

of safety function from a sharp transition between 1.25 and 3 to a smooth transition where

uncertainty is increased as the difference in observed and theoretical order of accuracy is

increased. These increases are based on tuned coefficients from a database of problems

across different physics.

1.2.3.3 Least Squares GCI

The least squares GCI (LSGCI) method is an improvement on GCI by informing the

uncertainty model with more QoI solutions on different grids using a least squares calcula-

tion. Additional terms are included in the uncertainty calculation. Just like in the factors of

safety method, LSGCI increases uncertainty as the difference in observed and theoretical

order of accuracy is increased, but used different terms to increase the uncertainty.

1.2.3.4 Robust Verification Analysis

The robust verification method builds on the logic of the least squares GCI method,

but uses many L-norms to calculate multiple optimized coefficients. The method then uses

robust statistics to determine the median optimized result and determines the uncertainty

based on the spread of the L-norm results. The additional robustness has the potential to

work better than other methods outside the asymptotic range [26].

1.2.4 Validation

Another question of physical correctness was researched, which was the beginning of

validation studies. Early validation studies were qualitative in nature, which included the

use of the viewgraph norm. As the subject of validation evolved, quantitative measures

of model form uncertainty was developed. To help identify specific models that have

9

large model form uncertainty, separate effects validation was developed to test individual

physics to make sure the models perform adequately. To ensure that the models perform

together well, integral testing is performed to understand the total model form uncertainty.

1.2.4.1 Separate Effects Validation

Separate effects testing allows for smaller, less complicated physics comparisons to

test a physics model to identify initial points of large model form uncertainty and to re-

duce the likelihood of compensating model form error. To help with identifying the impor-

tant physics that need to be tested, a phenomena identification and ranking table (PIRT)

should be created to identify the important physics for the problem of interest [1]. PIRTs

were originally developed for code scaling, applicability, and uncertainty evaluations of

nuclear power plant’s accident scenarios [27]. Using such a tool helps identify the impor-

tant physics of the problem and the experiments that need to be completed for validation

comparison. Additionally, a qualitative PIRT (QPIRT) was developed to better quantify

the dominant physics [28, 29].

1.2.4.2 Integral Testing Validation

Integral testing is more application based with the combination of many single effects

physics. An important part of integral testing is to collect experimental data that covers a

large range of application space. This allows for a better validation evaluation by evalu-

ating the model form error in more of the application space. This is a more difficult test

for the multiple physics models utilized in the validation assessment when separate effects

coefficients are determined first.

1.2.4.3 Validation Experiment Assessment

Through decades of validation assessments, it became clear that not all experiments

are created equal. Oberkampf and Smith developed criteria for quality of validation exper-

10

iments for CFD applications [30]. While meeting the most rigorous criteria is difficult to

achieve, it is meant to be an ideal set of criteria meant to evolve with experimental mea-

surement development. It also specifies the data necessary to collect and provide to the

computational physicist. When validation testing begins, it is important that the experi-

menter works with the computational physicist because computational physicist’s model

is ultimately being tested.

1.2.5 Uncertainty Quantification

While uncertainty quantification can be computed using many different methods, the

most important part is to identify and quantify all sources of uncertainty. While identi-

fying the dominating sources of uncertainty is difficult, not quantifying key sources of

uncertainty can be devastating because of the potential consequences of engineering sys-

tems. Once all sources of large uncertainties are identified, there are two main things to

consider: 1) is the uncertainty aleatory or epistemic? and 2) should local methods or global

methods be used? This will define the process of computationally quantifying uncertainty.

1.2.5.1 Aleatory Uncertainty

Aleatory uncertainty is defined as the uncertainty due to inherent randomness [1].

Aleatory uncertainty in parameters tends to be associated with uncertainty in a systems

initial conditions and boundary conditions. An example of aleatory uncertainty is the

geometric dimension uncertainty associated with a manufacturing process. This type of

uncertainty lends itself to being easily modeled as a probability distribution.

1.2.5.2 Epistemic Uncertainty

Epistemic uncertainty is defined as the uncertainty due to a lack of knowledge. Within

epistemic uncertainty, there are two types: recognizable uncertainty and blind uncertainty.

Recognizable uncertainty is an epistemic uncertainty for which there was a conscious deci-

11

sion to characterize its uncertainty to a certain precision. Blind uncertainty is an epistemic

uncertainty for which there wasn’t a conscious decision to characterize its uncertainty to

a certain precision. Since blind uncertainty is impossible to characterize individually, it

is important to reduce this uncertainty as much as possible. Since epistemic uncertainty

is from a lack of knowledge, it doesn’t behave well when its modeled as a probability

distribution. Because of this, epistemic uncertainty is usually quantified by bounds (i.e.

the value of a parameter is between value A and value B). While epistemic uncertainty is

more difficult to model, it is important to reduce and characterize this type of uncertainty

to have reliable predictions.

1.2.5.3 Local Method

Local uncertainty quantification is useful when the uncertainty around a specific point

is desired. By perturbation input or values within the code, the impact can be quantified.

This is very similar to a sensitivity analysis, but relies on the actual range of reasonable

parameters. This is an important distinction because the most sensitive parameters are not

necessarily the most significant. The other downside of this method is that information

near the nominal value can be understood. To get a better understanding of the uncertainty

for values far from nominal, a global uncertainty method should be employed.

1.2.5.4 Global Method

Global uncertainty quantification is useful when the uncertainty of the entire range of

values is desired. This is done by randomly sampling a probability distribution to select

the parameter input or values within the code. This uncertainty is propagated through the

code to the outputs. This is completed using Monte Carlo or Latin hypercube sampling.

While the uncertainty throughout the range of values is determined, the computational

cost is significantly more than local uncertainty quantification, especially if the code is

computationally intensive such as a CFD simulation.

12

1.3 Use of Codes for Nuclear Power Plants

Computational software has been used for nuclear power plant design, safety analysis,

and licensing since the 1960s. With the increase in computational power, the use and

complexity of the software has increased throughout the 1960s, 1970s, and 1980s. During

this time, the software was tested and compared with experimental data to determine if the

simulation was providing correct results. While validation activity was being completed,

code and solution verification was not. There were two reasons for this: 1) the field of

V&V was in it’s infancy and the understanding of which components of the code needed

to be tested were still being determined and 2) the Nuclear Regulatory Commission’s

(NRC) definitions for V&V terms and concepts are currently 5-10 years behind the field

of V&V [31], even though it lead the field in the 1970s and 1980s. Therefore, most code

focused on validation rather than both verification and validation to determine if the code

was working as intended. Below is a detailed history of V&V activities for prominent

thermal hydraulic simulation software.

1.3.1 RELAP

RELAP is one of the first thermal-hydraulics codes and has been developed by Idaho

National Laboratory for the best estimate of transient simulations of light water reactor

coolant systems during accident scenarios [32]. First starting out as a code to simulate

small break loss of coolant accidents for pressurized water reactors using three control vol-

umes, RELAP5-3D claims to have the ability to also simulate large break loss of coolant

accidents, operator transients, boiling water reactors, test reactors, molten salt reactors, liq-

uid metal reactors, high temperature gas-cooled reactors, supercritical fluid reactors, and

more recently small modular reactors and traveling wave reactors in three dimensions [33].

In addition, the plan to develop RELAP-7 is underway and plans to utilize modern V&V

methodologies [34].

13

Code verification activity for RELAP-5/3D is unclear with only mentioning roughly

2400 test case comparisons to ensure that the code is performing as intended [33]. This

could either fall under the category of SQA or code verification depending on the test type.

In addition, solution verification assessments have not been widespread in the literature,

leading to assume that there is a general lack of estimating numerical uncertainty in RE-

LAP calculations. This appears to change for RELAP-7 with the use of manufactured

solutions to assess spatial and temporal convergence [34] although only one simple test

for verifying the order of accuracy has been completed [35].

Some validation has been completed since the releases of RELAP-5/3D with compar-

isons to 54 test cases [33]. These test cases include phenomenological, separate effects,

and integral testing to assess validation. Volume 3 of the RELAP user manual documents

the results of the tests. RELAP-7 plans on assessing the same validation tests as RELAP-

5/3D and includes test specifications that require comparisons to single-phase, two-phase,

heat conduction, and component tests [34].

UQ has been completed using the code scaling, applicability, and uncertainty (CSAU)

method ever since the NRC revised the acceptance criteria of emergency core cooling

systems (ECCS) [36]. This approach changes the historical conservative analysis with a

best estimate approach, which requires analysis of the uncertainty in the best estimate to

assess safety margin. CSAU was first used on a large break loss of coolant accident in

1990 [37].

1.3.2 MELCOR

MELCOR is an engineering thermal-hydraulic software that models the progression of

severe accidents in light water reactors. It is developed by Sandia National Laboratories

for the NRC. It claims to have the ability to model the thermal hydraulic behavior in the

reactor coolant system, reactor cavity, containment, and confinement buildings. Specific

14

phenomena include core heatup, core degradation, core relocation, core-concrete attack,

hydrogen production, hydrogen transport, and hydrogen combustion, and fission product

release and transport [38].

MELCOR was first developed in the early 1980’s and since the beginning, V&V has

been included in the development of the code. Code verification was completed using an-

alytical solutions, but only checked for convergence by comparing the MELCOR output

with the analytic solution [39, 40]. While this was state-of-the-art at the time, it continues

to be the only code verification completed. Modern solution verification tools and method-

ologies have also not rigorously been utilized to determine the numerical uncertainty. One

of the only instances of assessing the numerical uncertainty was performed by shuffling

the order of the flow paths, which caused variance in the solution [41, 42]. This uncer-

tainty was characterized, but uncertainty due to spatial or temporal discretization have not

been historically assessed.

Validation for light water reactors has been an ongoing development since the early

development of the code and is the strongest component of V&V [8, 9, 10, 39]. MELCOR

has two types of validation studies: separate effects and integral testing with an emphasis

on covering the most important physics [9]. This helps determine the adequacy of different

physics models.

Early versions of uncertainty quantification of MELCOR was determining numerical

sensitivities of the QoI based on some perturbation. Currently, analyses with large number

of runs with different inputs to determine error bars have been applied to the NRC State-of-

the-Art Reactor Consequence Analyses (SOARCA) study. SOARCA used best estimate

with uncertainty quantification to present results rather than a PRA-style conservation-

based results [43]. This focused on realism rather than the worse-case scenario. This

uncertainty quantification using MELCOR allowed for accessing internal parameters, in-

put, and control sequences to perform a complete Monte Carlo uncertainty analysis. The

15

Monte Carlo Analysis provided the average outcome as well as uncertainty bands to make

informed decisions.

1.3.3 GOTHIC

GOTHIC is a general thermal-hydraulic analysis software package developed and main-

tained by Zachry Nuclear Engineering (formerly Numerical Applications Incorporated) for

the Electric Power Research Institute for nuclear power plant design, safety, and licensing.

It claims to solves the conservation of mass, momentum, and energy in multi-phase with

the ability for multiple directional fidelity (1D, 2D, or 3D) or lumped parameter analysis.

Since GOTHIC is a proprietary code, the code verification can not be assessed readily,

but evidence of solution verification is found in some instances [44].

Validation has been documented to included separate effects testing [45]. The separate

effects tests include condensation heat transfer on a vertical flat plate and evaporative heat

transfer from a hot pool to a dry atmosphere. Since GOTHIC is a proprietary code, integral

testing documentation was not readily available in the literature.

While sensitivity studies for GOTHIC have been found [46], there is a lack of a full

uncertainty quantification. Again, this could be due to the proprietary nature of the code.

1.3.4 Computational Fluid Dynamics

Computational fluid dynamics (CFD) has been a new addition to thermal-hydraulic

codes that increases the fidelity of thermal-fluid predictions. Nuclear initiatives such as

the consortium for advanced simulation of light water reactors (CASL) have utilized CFD

codes such as STAR-CCM+ [47] to perform high fidelity simulations to train faster run-

ning lower fidelity codes [48, 49]. With the increase in fidelity comes an increase in grid

complexity and therefore an increase in V&V complexity. An example of an increase in

V&V complexity involves verifying the numerical order on unstructured grids. Since the

stencil used won’t be able to perfectly cancel out lower ordered terms, determining the

16

theoretical order of the numerical method is non-trivial. This makes completing code and

solution verification complicated because code verification needs the theoretical order of

accuracy and solution verification uses the theoretical order of accuracy to determine the

discretization uncertainty. Nevertheless, V&V is an important step in ensuring credible

predictions for engineering problems.

Code and solution verification for CFD has been largely developed by high conse-

quence applications such as the aerospace and nuclear weapons fields. It was these fields

that pushed for the development of capable V&V tools and methodologies to be applied

on codes developed by the national labs or the national aeronautics and space adminis-

tration (NASA). Commercial codes, however, have historically been design to be robust

rather than accurate, which means that the code verification applied to codes like STAR-

CCM+ have only begun to use tools such as MMS to verify the correct implementation

of the numerical method. Most of STAR-CCM+’s tests focus on qualitative convergence

to an analytical solution rather than the more rigorous order of convergence test. Solu-

tion verification is more widely applied than thermal-hydraulic system codes and is even

a requirement for some journals [50]. While solution verification is frequently used, the

problem of which solution verification method to use becomes a difficult question. In ad-

dition, most solution verification methods are based on the Richardson extrapolation and

require being in the asymptotic region to perform correctly. Since CFD resolves or mod-

els more physics, they tend to have a larger range of scales. This makes achieving the

asymptotic region extremely difficult.

Validation assessments for commercial codes like STAR-CCM+ are typically included

within the testing requirements to ensure that physical models are matching certain bench-

mark experiments. These tests include both separate effects and integral testing. In ad-

dition, for large engineering projects, additional experiments are completed to validation

models for specific conditions. Unfortunately, these tests are typically not completed with

17

validation in mind and do not provide the CFD user with data that completely tests the

physical models. The other issue with validation assessments are from a lack of code

and solution verification before the validation assessment is completed. This allows for

code bugs in the numerical scheme and large numerical uncertainty to exist and impact the

predictive capability of the code.

Uncertainty quantification in CFD has become a hot area of research due to inter-

national benchmark problems such as the Generic Mixing Experiment (GEMIX) [51].

This benchmark is part of the Organization for Economic Co-operation and Development

(OECD) CFD initiative for nuclear reactor safety, which is also called OECD/CFD4NRS.

GEMIX is an experiment that measured the mixing of two fluid layers in a channel and pro-

vided CFD users with not only mean values of the experiment, but also the variance. Three

open cases and one blind case provided the ability to assess model form uncertainty in the

three open cases and input and numerical uncertainty of the blind case to make predic-

tions for the blind case. Participants assessed the uncertainty using different methods and

provided the results to the benchmark organizers. As an example, one of the participants

used the ASME V&V 20 [52] methodology to perform the uncertainty quantification [53].

This type of study informed the organizers of which uncertainty quantification methods,

tools, and techniques provided the best prediction and uncertainty results. Studies such as

these aim to not only improve the state-of-the-art for uncertainty quantification, but also

improve the state-of-the-practice for uncertainty quantification in CFD applications.

1.3.5 Applying V&V Concepts to Nuclear Power Plant Codes and Simulations

As stated above, the state-of-the-practice of V&V for nuclear power plant codes and

simulations is behind the state-of-the-art tools and methodologies in the V&V field. A

need for a more rigorous way to test the numerical method in thermal-hydraulic and CFD

codes is necessary to ensure accurate results. Additionally, solution verification needs

18

to be applied, especially in thermal-hydraulics codes. The solution verification methods

used should be robust and provide realistic, conservative numerical uncertainty estimates

inside, near, and outside the asymptotic range. While validation and uncertainty quan-

tification has historically been widely applied to nuclear power plant analysis, the code

and solution verification has not been rigorously applied. Therefore, work should be com-

pleted to show how much of an impact code and solution verification play in the ability to

complete a validation and uncertainty quantification analysis. The next sections describe

tools, methodologies, and tests for better analyzing simulations. These sections not only

make computational predictions for nuclear power plants more accurate and with less un-

certainty, but shows the impact of what happens when verification has not been properly

executed.

1.4 Code Verification Improvements

Using a manufactured solution (MS), all system variable are equated to arbitrary smooth

functions and substituted into the partial differential equation. This provides a source term

that makes the original function for a particular system variable correct. This can be used

as an exact solution when an analytical solution is not available. Since the exact solution is

known, the numerical method implemented in the code can be tested to ensure the correct

implementation of the numerical method and reduce the number of possible code bugs.

This is completed by running the simulation at different discretization sizes and observ-

ing the rate of convergence. If the observed rate of convergence matches well with the

theoretical order of accuracy, the probability of code bugs is low, but if it doesn’t match,

code bugs might exist in the code or the simulations were not in the asymptotic range.

The problem with MMS is that it doesn’t test all aspects of the numerical scheme, such as

the theoretical local truncation error. Therefore, new methods are needed to identify these

type of code bugs as well as lower order code bugs.

19

Chapter 3 will present a method to not only verify the correct order of accuracy, but

also verify the correct amount of discretization error. This is completed by combining

the modified equation analysis (MEA) and MMS, which we refer to as MEAMMS (pro-

nounced memes). MEAMMS is able to calculate the discretization error in two ways:

1) leading-order cancellation method called leading order MEAMMS and 2) high-order

cancellation method called higher order MEAMMS. The high-order cancellation method

has already been tested as part of the author’s previous work [14], but for a much simpler

problem.

1.5 Solution Verification Improvements

There are many methods of solution verification that estimate the numerical uncer-

tainty of a simulation, but the most popular type is based on the Richardson extrapolation.

The Richardson extrapolation used the leading term of the truncated Taylor series to esti-

mate the numerical error. This works well when the leading term is "large" compared to all

other higher order terms and the numerical uncertainty is well behaved. When simulations

have well behaved discretization uncertainty, the simulation is generally referred to be in

the asymptotic range [1]. While the definition is straightforward, determining where the

asymptotic region starts is not well defined or characterized. What is even less charac-

terized is how well different solution verification methods perform inside, near, and well

outside the start of the asymptotic range or as referred to in this study as the asymptotic

point.

Chapter 4 will quantitatively characterize the performance of GCI for calculations in-

side, near, and outside the asymptotic range. The problem is complex enough to be realistic

and uses the non-linear form of the coupled shallow water equations.

20

1.6 Importance of Code and Solution Verification

Validation and uncertainty quantification can be completed using a number of methods

and tools. In addition, evaluating validation experiments and estimating and characterizing

the largest uncertainties for a system is crucial for good predictive capabilities. However,

if proper SQA, code verification, and solution verification has not been completed prior

to the validation quantification assessment, the predictive capabilities will be extensively

reduced. This has a negative impact on the extrapolation data with no evidence that it

happened.

Chapter 5 will quantitatively show the importance of SQA, code verification, and so-

lution verification in the validation and uncertainty quantification assessment. To show

this, a simulation with code bugs and large numerical uncertainties will be completed in

addition to a simulation with no code bugs and small numerical uncertainties. Then, a

calibration and validation assessment will be completed for both simulations. The predic-

tive capabilities of each simulation will be quantitatively assessed by predicting the QoI

outside the validation state space. This assessment shows that the simulation with code

bugs and large numerical uncertainties will be inferior to the simulation with no code bugs

and small numerical uncertainties.

21

2. BACKGROUND EQUATIONS

Before the MEAMMS methodology, solution verification analysis, or the VVUQ work

is presented, a basic description of the equations is described. A new code is developed to

fully show off the MEAMMS method as well as present the asymptotic point calculation

for solution verification analysis. This code solves the discretized shallow water equations,

which provides the opportunity to test MEAMMS and the asymptotic point calculation on

a non-linear coupled equation set. Below is the derivation of the shallow water equations

for use in the code as well as a modified shallow water equation to implement viscous

effects.

2.1 Shallow Water Equations

The shallow water equations are a simplified version of the multiphase Euler equa-

tions by assuming that the pressure’s equation of state is a function of height, gravity,

and a constant density and that the change in energy as a function of time is zero. For

more information about the shallow water equations, see pg. 35 of [54]. The multiphase

isothermal Euler equations are shown in Eq. 2.1 through Eq. 2.4.

(2.1)
∂αρ

∂t
+
∂αρu

∂x
= 0

(2.2)
∂αρu

∂t
+
∂αρu2

∂x
+ α

∂P

∂x
= 0

(2.3)
∂e

∂t
= 0

(2.4)P = αρgh

Starting with the one-dimensional multiphase Euler equations, the chain rule is applied

so that partial derivatives are a function of just one variable, which is shown in Eq. 2.5

through Eq. 2.7.

22

(2.5)ρ
∂α

∂t
+ α

∂ρ

∂t
+ αρ

∂u

∂x
+ ρu

∂α

∂x
+ αu

∂ρ

∂x
= 0

(2.6)αρ
∂u

∂t
+ αu

∂ρ

∂t
+ ρu

∂α

∂t
+ αu2 ∂ρ

∂x
+ 2αρu

∂u

∂x
+ ρu2∂α

∂x
+ α

∂P

∂x
= 0

(2.7)
∂e

∂t
= 0

Next, density is assumed to be the constant ρ0, so derivatives of ρ in space and time

are zero. Therefore, Eq. 2.5 and Eq. 2.6 are simplified to Eq. 2.8 and Eq. 2.9.

(2.8)ρ0
∂α

∂t
+ α
�
�
���
0

∂ρ

∂t
+ αρ0

∂u

∂x
+ ρ0u

∂α

∂x
+ αu

�
�
���
0

∂ρ

∂x
= 0

(2.9)αρ0
∂u

∂t
+ αu

�
�
���
0

∂ρ

∂t
+ ρ0u

∂α

∂t
+ αu2

�
�
���
0

∂ρ

∂x
+ 2αρ0u

∂u

∂x
+ ρ0u

2∂α

∂x
+ α

∂P

∂x
= 0

Next, the equation of state for pressure (Eq. 2.4) is substituted into the pressure term

of Eq. 2.9 and shown in Eq. 2.10.

(2.10)αρ0
∂u

∂t
+ ρ0u

∂α

∂t
+ 2αρ0u

∂u

∂x
+ ρ0u

2∂α

∂x
+ αρ0g

∂h

∂x
= 0

By factoring a velocity out of specific terms in the momentum equation, the mass equa-

tion can be separated out of the momentum equation and because the mass equation equals

zero, the factored out terms are canceled out of the momentum equation (see Eq. 2.11).

Additionally, all terms in the mass include a constant density and all terms in the mo-

mentum equation include a constant density times the void fraction. This can be further

simplified out of the mass and momentum equations, which are shown in Eq. 2.12 through

Eq. 2.13.

(2.11)αρ0
∂u

∂t
+ αρ0u

∂u

∂x
+ αρ0g

∂α

∂x
+

���
���

��
���

���
���:0

u

(
ρ0
∂α

∂t
+ αρ0

∂u

∂x
+ ρ0u

2∂α

∂x

)
= 0

23

(2.12)
∂α

∂t
+ α

∂u

∂x
+ u

∂α

∂x
= 0

(2.13)
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

To convert α, a non-dimentional quantity, in Eq. 2.12 and Eq. 2.13 into a dimensional

one, a total height of the domain, l is used to convert the normalized α in terms of a

dimentional one. This relationship is shown in Eq. 2.14. Equation 2.14 is then substituted

into Eq. 2.12 and Eq. 2.13 to form Eq. 2.15 and Eq. 2.16.

(2.14)α =
h

l

(2.15)
1

l

∂h

∂t
+
h

l

∂u

∂x
+
u

l

∂h

∂x
= 0

(2.16)
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

Since each term in Eq. 2.15 and Eq. 2.16 include 1
l
, each equation is multiplied by l

on each side. The resulting equations are the shallow water equations, which is shown in

Eq. 2.17 and Eq. 2.18.

(2.17)
∂h

∂t
+ h

∂u

∂x
+ u

∂h

∂x
= 0

(2.18)
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

2.2 Shallow Water Equations with Radionuclide Transport

For the last portion of the dissertation, the code needs to model atmospheric trans-

port of fission products, C. The atmospheric transport equations are the shallow water

equations with the fission product distribution modeled using an advection and diffusion

equation. The shallow water equations are

(2.19)
∂h

∂t
+ h

∂u

∂x
+ u

∂h

∂x
= 0 and

24

(2.20)
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0,

are coupled to the fission product equation,

(2.21)
∂C

∂t
+ u

∂C

∂x
+ k

∂2C

∂x2
= 0,

through velocity, u, in the advection term. The fission products,C, is measured as atoms/m3.

In addition to the temporal and advective terms, there’s a diffusive term to model the tur-

bulent diffusion of the fission products. Using this set of equations represents all the com-

ponents necessary for studies such as dose assessment studies at site boundaries. These

studies require models that are calibrated and validated, so it is an ideal equation set to

study the components of the VVUQ framework.

25

3. MEAMMS

Verification is the process of checking that the equations in the software are pro-

grammed correctly. Previous work has developed the MMS to verify the order of accuracy

of codes, but MMS only identifies coding errors that are one order lower than the order

of the numerical method, which leaves the potential to impact the solution. Therefore, a

more rigorous method needs to be developed to identify coding errors that are of the same

order as the numerical method. There has been significant work completed by the author

to show the feasibility of creating a more rigorous code verification method [14], but the

previous work does not address non-linear coupled equation problems. In this section,

the development of MEAMMS is presented, including why this method addresses coding

errors that are of the same order as the numerical method, as well as applying the method

to a non-linear coupled equation set.

3.1 Verification

MMS is based on the "p" verification method, which compares the theoretical order

of accuracy with the observed order of accuracy. At least two simulations with different

levels of discretization size are needed. Using the exact solution provided my MMS, the

exact error is calculated by

(3.1)εh = fh − fexact

where εh is the exact error, h is the characteristic discretization size, fh is the QoI on the hth

grid, and fexact is the exact solution of the QoI. Using the Richardson extrapolation [4, 5],

the assumed form of the error, which is based on the leading order local truncation term,

is shown in

(3.2)εh = gph
p +O

(
hp+1

)

26

where gp is the pth order coefficient, p is the order of the numerical method, and O (hp+1)

represents the higher-order terms. When the solution is in the asymptotic region, the

higher-order terms can be neglected. The resulting equation is shown in

(3.3)εh = gph
pobs .

To calculate the grid-independant solution, a second solution is made by coarsening

the discretization size by two. The resulting equation that describes this error is shown in

(3.4)ε2h = gp (2h)pobs .

Combining section 3.3 and section 3.4 yields

(3.5)pobs =
ln
(
ε2h
εh

)
ln (2)

,

Now that the observed order of accuracy is calculated, the theoretical order of accuracy

(pth) is determined. Using MEA, the leading LTE term can be calculated. The order of

this term defines the theoretical order of accuracy. Since the order of accuracy is quite

sensitive to coding errors, comparing the observed order of accuracy to the theoretical

order of accuracy can highlight these errors. Oberkampf and Roy [1] have suggested a

tolerance within 10% identifies that the numerical scheme does not have coding errors that

MMS can highlight. It should be noted that the behavior of the observed order of accuracy

is a function of the leading order LTE dominance compared to the higher order terms. This

means that the solution needs to be within the asymptotic range.

3.1.1 MMS

As stated above, MMS requires an exact solution. An exact solution can be from

either an analytic solution or a manufactured solution when an analytical solution is not

available. Since there are many equation configurations in a code that do not have an

analytical solution, manufactured solutions are valuable to ensure that the these equations

are implemented correctly. There are two steps to calculate a manufactured solution. The

27

first is to choose a function that represents the exact solution, φ (x, t). The second step is

to substitute the exact solution into the PDE to determine the resulting right-hand-side of

the equation, which is shown by

(3.6)L (φ (x, t)) = Q (x, t) ,

where L (φ) is the nonlinear operator, φ (x, t) is the manufactured solution, and Q (x, t)

is the source term. It should be noted that for MMS to work, the code needs to be able

to import source terms. Now that an exact solution is available, the observed order of

accuracy can be calculated.

3.1.2 MEA

Truncation error results from the terms dropped from a numerical solution when ap-

proximating a PDE. One way of calculating the LTE is using MEA. MEA was origi-

nally developed for stability calculations [19], but has also been used in accuracy calcula-

tions [20]. In this study, MEA is used to calculate the theoretical LTE for comparison to

the LTE produced by the code. This process more thoroughly tests the performance of the

numerical scheme.

3.1.3 MEAMMS Development

MEAMMS was developed by the author in [55], which gives a comprehensive deriva-

tion of MEAMMS. The summary of the derivations is that when the theoretical leading

LTE is subtracted from the code, the observed order of accuracy should increase. When

this does not happen, it means that there is a coding error in the code.

3.2 Demonstration Case

Before solving the shallow water equations numerically, an exact solution to the equa-

tions need to be derived. Using MMS, the functional form of u and h are known. MMS

uses the philosophy of starting from the end and working backwards to find the exact so-

28

lution. By allowing the user to set the functional form of u and h, source terms to the

shallow water equations can be derived, which force the exact solution to be the user spec-

ified function. Using Eq. 2.17 and Eq. 2.18, source terms are included on the right side of

the shallow water equations, which are shown in Eq. 3.7 and Eq. 3.8.

(3.7)
∂h

∂t
+ h

∂u

∂x
+ u

∂h

∂x
= QMass

(3.8)
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= QMom

3.2.1 Code Implementation

The code was built as a coupling of two separate code languages for fast an easy solv-

ing of the discrete equations while easily calculating higher order Taylor series terms. This

lead to the coupling of two Mathematica scripts with a Python wrapper. The first Mathe-

matica script implemented eight numerical schemes to solve the shallow water equations.

The numerical schemes are all based on the second order in time and space Crank-Nicolson

central difference scheme with the addition or subtraction of diffusion in either time or

space. Using input flags, a first-order diffusion term is added, subtracted, or zeroed out.

The second Mathematica script calculates the LTE symbolically for each of the different

numerical scheme as well as calculate the MMS exact solutions and MMS source terms.

The Python wrapper then interprets the numerical scheme equations and solves the resid-

ual form of the shallow water equations. It also interprets the LTE, exact solutions, and

MMS source terms. This framework allows for the numerical and exact solutions to be

calculated and compared to ensure the proper implementation of the numerical scheme

and the asymptotic point for solution verification analysis.

3.2.1.1 Grid Method

Before the numerical scheme is derived, the implied grid and time step orientation

should be explained. To avoid "checkerboarding," the conservation of mass state variables

29

are computed at a separate location than the conservation of momentum state variables.

This is apposed to co-located mass and momentum equations, which has the downside of

having oscillating solutions between the even and odd grid. The staggered grid shown in

Figure 3.1 provides a visualization of the scalar (mass) and vector (momentum) cells and

the location of the state variables relative to other state variables. This orientation is the

basis of the derivation of the numerical scheme and the calculation of LTE.

Scalar Cell
i

xi xi+1xi−1

hi hi+1hi−1

Vector Cell
i− 1/2

ui−1/2

xi−1/2

Vector Cell
i+ 1/2

ui+1/2

xi+1/2

Figure 3.1: Visualization of Staggered Scalar and Momentum Grid

3.2.1.2 Numerical Scheme Implementation

As stated before, the numerical scheme is based on the Crank-Nicolson central differ-

ence scheme with the ability to add to subtract a first-order diffusion term in space, time,

or both. The discretization scheme is split up into multiple term to simplify the derivation.

To start, the u∂h
∂x

advection term in the mass equation was discretized as a central differ-

ence steady state term plus a first-order diffusion term to have the possibility of having

a downwind or upwind discretization scheme, which is shown in Eq. 3.9. Since the h∂u
∂x

30

already has the necessary terms located at the correct location to be second order, there is

not an additional diffusion term added, which is shown in Eq. 3.10. These terms were then

substituted into the transient equation, which is shown in Eq. 3.11. The transient equation

is second order in time, but has the ability to add diffusion is space. The discrete equation

also includes the LTE term to ensure the PDE and discrete equations match exactly up to

the order of the LTE.

(3.9)SteadyMass1 = V

(
ui+ 1

2
+ ui− 1

2

2

)[(
hi+1 − hi−1

2∆x

)
+ A

(
hi+1 − 2hi + hi−1

2∆x

)]

(3.10)SteadyMass2 = V hi

(
ui+ 1

2
− ui− 1

2

∆x

)

(3.11)

hn+1
i − hni

∆t
+

1

2

(
Steadyn+1

Mass1
+ SteadynMass1

)
+
B

2

(
Steadyn+1

Mass1
− SteadynMass1

)
+

1

2

(
Steadyn+1

Mass2
+ SteadynMass2

)
+
B

2

(
Steadyn+1

Mass2
− SteadynMass2

)
+ LTEMass = QMass

The momentum equation is discretized in a similar manner in Eq. 3.12 through Eq. 3.14.

(3.12)SteadyMom1 = V ui+ 1
2

[(
ui+ 3

2
− ui− 1

2

2∆x

)
+ A

(
ui+ 3

2
− 2ui+ 1

2
+ ui− 1

2

2∆x

)]

(3.13)SteadyMom2 = V g

(
hi+1 − hi

∆x

)

(3.14)

un+1
i+ 1

2

− un
i+ 1

2

∆t
+

1

2

(
Steadyn+1

Mom1
+ SteadynMom1

)
+
B

2

(
Steadyn+1

Mom1
− SteadynMom1

)
+

1

2

(
Steadyn+1

Mom2
+ SteadynMom2

)
+
B

2

(
Steadyn+1

Mom2
− SteadynMom2

)
+ LTEMom = QMom

To visualize the different possible numerical scheme and the stability of each scheme,

Figure 3.2 shows the schemes in terms of the diffusion addition and subtraction in space

and time.

31

Figure 3.2: Visualization of the Eight Numerical Schemes Implimented

3.2.2 Newton’s Method

To demonstrate how the non-linear terms were formulated, an example derivation is

performed for the implicit upwind scheme (A=1 and B=1). Equation 3.15 and Eq. 3.16

are the implicit upwind schemes for the mass and momentum equations.

(3.15)
V

(
hn+1
i − hni

∆t

)
+ V

(
un+1
i+ 1

2

+ un+1
i− 1

2

2

)(
hn+1
i − hn+1

i−1

∆x

)

+ V
(
hn+1
i

)(un+1
i+ 1

2

− un+1
i− 1

2

∆x

)
+ LTEMass = QMass

(3.16)
V

(
un+1
i+ 1

2

− un
i+ 1

2

∆t

)
+ V

(
un+1
i+ 1

2

)(un+1
i+ 1

2

− un+1
i− 1

2

∆x

)

+ V g

(
hn+1
i+1 − hn+1

i

∆x

)
+ LTEMom = QMom

Newton’s method uses a first-order Taylor series to make its linear approximation in

32

the state variable. Since it is a linear solver, multiple iteration updates of hk and uk are

necessary for nonlinear problems between each time step to resolve nonlinearities.

(3.17)δh = hn+1 − hk

(3.18)δu = un+1 − uk

Incorporating Eq. 3.17 and Eq. 3.18 into Eq. 3.9 and Eq. 3.10, assuming second-order

terms are negligible, and simplifying:

δhi

[
V

∆t
+

V

∆x

(
3uki+1/2

2
−
uki−1/2

2

)]
− δhi−1

[
V

2∆x

(
uki+1/2 + uki−1/2

)]
+δui+1/2

[
V

∆x

(
3hki
2
−h

k
i−1

2

)]
+δui−1/2

[
V

∆x

(
3hki
2
−h

k
i−1

2

)]
=V QMass−V LTEMass

− V
(
hki − hni

∆t

)
− V

2

(
uki+1/2 + uki−1/2

)(hki − hki−1

∆x

)
− V hki

(
uki+1/2 − uki−1/2

∆x

)
(3.19)

and

(3.20)

δui+1/2

[
V

∆t
+

V

∆x

(
2uki+1/2 − uki−1/2

)]
− δui−1/2

[(
V

∆x

)(
uki+1/2

)]
+ δhi+1

[(
V g

∆x

)]
− δhi

[(
V g

∆x

)]
= V QMom − V LTEMom

− V
(
uki+1/2 − uni+1/2

∆t

)
− V uki+1/2

(
uki+1/2 − uki−1/2

∆x

)
− V g

(
hki+1 − hki

∆x

)
.

Eq. 3.19 and Eq. 3.20 can then be represented in matrix form, which is shown in

(3.21)JδX = −res(X)

where

(3.22)Ji,j =
∂resj (X)

∂Xi

.

The Jacobian matrix (J) is then multiplied by δX . This process updates in the state

vector and the terms on the right are the residuals. Once the equations are posed in this

form, we have a simple linear system to solve for the state vector update, δX .

33

The state vector is then updated

(3.23)Xk+1 = Xk + δX,

until

(3.24)max
(
Xk
)
< EtolNonlinear .

Once the nonlinear tolerance is met, Xn+1 is set to be Xk+1. This completes the

timestep.

3.2.3 Manufactured Solutions Source Terms

It is important to note that some functions of u and h are more useful than others.

Since the source terms are based on derivatives of u and h, functions that allow for easy

calculation of derivatives are desired. In the example for ASME V&V 20’s sample calcu-

lation, trigonometric functions are used, such as sine and cosine [52]. Additionally, adding

coefficients to the functions allow for the user to set the length scales and time scales of

the problem. By setting the timestep and cell size small relative to the length and time

scales, the numerical problem is within the asymptotic region. Equation 3.25 and Eq. 3.26

are the chosen functional forms of u and h for this particular study.

(3.25)u = u1 + u2 cos (kux+ ωut)

(3.26)h = h1 + h2 sin (khx+ ωht)

Now that the functional form of u and h are selected, the derivatives that are included

in Eq. 3.7 and Eq. 3.8 need to be calculated. The derivatives for u and h in space and time

are shown in Eq. 3.27 through Eq. 3.30.

(3.27)
∂u

∂x
= −u2ku sin (kux+ ωut)

(3.28)
∂u

∂t
= −u2ωu sin (kux+ ωut)

34

(3.29)
∂h

∂x
= h2kh cos (khx+ ωht)

(3.30)
∂h

∂t
= h2ωh cos (khx+ ωht)

Eq. 3.27 through Eq. 3.30 are then substituted back into Eq. 3.7 and Eq. 3.8 to calculate

QMass and QMom, which is shown in Eq. 3.31 and Eq. 3.32.

(3.31)QMass = (h2ωh cos (khx+ωht))−(h1 +h2 sin (khx+ωht)) (u2ku sin (kux+ωut))
+ (u1 + u2 cos (kux+ ωut)) (h2kh cos (khx+ ωht))

QMom = − (u2ωu sin (kux+ ωut))− (u1 + u2 cos (kux+ ωut)) (u2ku sin (kux+ ωut))
+ g (h2kh cos (khx+ ωht))

(3.32)

Now that QMass and QMom are known, Eq. 3.31 and Eq. 3.32 are substituted back into

Eq. 3.7 and Eq. 3.8, which is shown in Eq. 3.33 and Eq. 3.34. This means that the exact

solution to Eq. 3.33 and Eq. 3.34 are Eq. 3.25 and Eq. 3.26, which is useful for debugging

and verifying the order of accuracy in numerical problems.

(3.33)

∂h

∂t
+ h

∂u

∂x
+ u

∂h

∂x
= (h2ωh cos (khx+ ωht))

− (h1 + h2 sin (khx+ ωht)) (u2ku sin (kux+ ωut))
+ (u1 + u2 cos (kux+ ωut)) (h2kh cos (khx+ ωht))

(3.34)

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= − (u2ωu sin (kux+ ωut))

− (u1 + u2 cos (kux+ ωut)) (u2ku sin (kux+ ωut))
+ g (h2kh cos (khx+ ωht))

3.2.4 Local Truncation Error Calculation

MEAMMS combines the power of MEA with the MMS to calculate higher-order LTE

terms numerically to ensure the numerical method is implemented correctly. Since the

35

MEA calculated the symbolic form of LTE and MMS provides the symbolic form of the

exact solution, the high-order derivatives can be computed using the exact solution pro-

vided by the MMS. To show how this works, the LTE for implicit upwind scheme is

derived below.

Using the implicit upwind numerical scheme shown in Eq. 3.15 and Eq. 3.16, the

LTEMass and LTEMom is calculated by substituting Taylor series back into the equation,

which is referred to MEA. For the conservation of mass equation, the Taylor series is set

about hn+1
i and un+1

i , so all terms not located at hn+1
i and un+1

i need to be approximated to

be at hn+1
i and un+1

i using a Taylor series expansion. For the conservation of momentum

equation, the Taylor series is set about hn+1
i+ 1

2

and un+1
i+ 1

2

, so all terms not located at hn+1
i+ 1

2

and un+1
i+ 1

2

need to be approximated to be at hn+1
i+ 1

2

and un+1
i+ 1

2

using a Taylor series expansion.

Equation 3.35 through Eq. 3.38 are the Taylor series for the conservation of mass equation

and Eq. 3.39 through Eq. 3.42 are the Taylor series for the conservation of momentum

equation.

(3.35)hni = hn+1
i −∆t

∂h

∂t

∣∣∣∣n+1

i

+
∆t2

2

∂2h

∂t2

∣∣∣∣n+1

i

− · · ·+ ∆tn

n!

∂nh

∂tn

∣∣∣∣n+1

i

(3.36)hn+1
i−1 = hn+1

i −∆x
∂h

∂x

∣∣∣∣n+1

i

+
∆x2

2

∂2h

∂x2

∣∣∣∣n+1

i

− · · ·+ ∆xn

n!

∂nh

∂xn

∣∣∣∣n+1

i

(3.37)un+1
i+ 1

2

= un+1
i +

∆x

2

∂u

∂x

∣∣∣∣n+1

i

+
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

+ · · ·+
(

∆x
2

)n
n!

∂nu

∂xn

∣∣∣∣n+1

i

(3.38)un+1
i− 1

2

= un+1
i − ∆x

2

∂u

∂x

∣∣∣∣n+1

i

+
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

− · · ·+
(

∆x
2

)n
n!

∂nu

∂xn

∣∣∣∣n+1

i

(3.39)un
i+ 1

2
= un+1

i+ 1
2

−∆t
∂u

∂t

∣∣∣∣n+1

i+ 1
2

+
∆t2

2

∂2u

∂t2

∣∣∣∣n+1

i+ 1
2

− · · ·+ ∆tn

n!

∂nu

∂tn

∣∣∣∣n+1

i+ 1
2

(3.40)un+1
i− 1

2

= un+1
i+ 1

2

−∆x
∂u

∂x

∣∣∣∣n+1

i+ 1
2

+
∆x2

2

∂2u

∂x2

∣∣∣∣n+1

i+ 1
2

− · · ·+ ∆xn

n!

∂nu

∂xn

∣∣∣∣n+1

i+ 1
2

36

(3.41)hn+1
i+1 = hn+1

i+ 1
2

+
∆x

2

∂h

∂x

∣∣∣∣n+1

i+ 1
2

+
∆x2

8

∂2h

∂x2

∣∣∣∣n+1

i+ 1
2

+ · · ·+
(

∆x
2

)n
n!

∂nh

∂xn

∣∣∣∣n+1

i+ 1
2

(3.42)hn+1
i = hn+1

i+ 1
2

− ∆x

2

∂h

∂x

∣∣∣∣n+1

i+ 1
2

+
∆x2

8

∂2h

∂x2

∣∣∣∣n+1

i+ 1
2

− · · ·+
(

∆x
2

)n
n!

∂nh

∂xn

∣∣∣∣n+1

i+ 1
2

Eq. 3.35 through Eq. 3.42 are substituted into Eq. 3.15 and Eq. 3.16, which is shown

in Eq. 3.43 and Eq. 3.44 and simplified in Eq. 3.45 and Eq. 3.46.

V

h
n+1
i −

(
hn+1
i −∆t ∂h

∂t

∣∣n+1

i
+ ∆t2

2
∂2h
∂t2

∣∣∣n+1

i
− · · ·+ ∆tn

n!
∂nh
∂tn

∣∣n+1

i

)
∆t


+
V

2

[(
un+1
i +

∆x

2

∂u

∂x

∣∣∣∣n+1

i

+
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

+ · · ·+
(

∆x
2

)n
n!

∂nu

∂xn

∣∣∣∣n+1

i

)

+

(
un+1
i − ∆x

2

∂u

∂x

∣∣∣∣n+1

i

+
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

− · · ·+
(

∆x
2

)n
n!

∂nu

∂xn

∣∣∣∣n+1

i

)](hn+1
i

∆x

)

−

hn+1
i −∆x ∂h

∂x

∣∣n+1

i
+ ∆x2

2
∂2h
∂x2

∣∣∣n+1

i
− · · ·+ ∆xn

n!
∂nh
∂xn

∣∣n+1

i

∆x




+ V
(
hn+1
i

)
un+1

i + ∆x
2

∂u
∂x

∣∣n+1

i
+ ∆x2

8
∂2u
∂x2

∣∣∣n+1

i
+ · · ·+ (∆x

2)
n

n!
∂nu
∂xn

∣∣n+1

i

∆x


−

un+1
i − ∆x

2
∂u
∂x

∣∣n+1

i
+ ∆x2

8
∂2u
∂x2

∣∣∣n+1

i
− · · ·+ (∆x

2)
n

n!
∂nu
∂xn

∣∣n+1

i

∆x


+ LTEMass = QMass

(3.43)

37

V

u
n+1
i+ 1

2

−
(
un+1
i+ 1

2

−∆t ∂u
∂t

∣∣n+1

i+ 1
2

+ ∆t2

2
∂2u
∂t2

∣∣∣n+1

i+ 1
2

− · · ·+ ∆tn

n!
∂nu
∂tn

∣∣n+1

i+ 1
2

)
∆t



+ V
(
un+1
i+ 1

2

)u
n+1
i+ 1

2

−
(
un+1
i+ 1

2

−∆x ∂u
∂x

∣∣n+1

i+ 1
2

+ ∆x2

2
∂2u
∂x2

∣∣∣n+1

i+ 1
2

− · · ·+ ∆xn

n!
∂nu
∂xn

∣∣n+1

i+ 1
2

)
∆x



+ V g


(
hn+1
i+ 1

2

+ ∆x
2

∂h
∂x

∣∣n+1

i+ 1
2

+ ∆x2

8
∂2h
∂x2

∣∣∣n+1

i+ 1
2

+ · · ·+ (∆x
2)

n

n!
∂nh
∂xn

∣∣n+1

i+ 1
2

)
∆x

−

(
hn+1
i+ 1

2

− ∆x
2

∂h
∂x

∣∣n+1

i+ 1
2

+ ∆x2

8
∂2h
∂x2

∣∣∣n+1

i+ 1
2

− · · ·+ (∆x
2)

n

n!
∂nh
∂xn

∣∣n+1

i+ 1
2

)
∆x

+ LTEMom = QMom

(3.44)

38

(3.45)

V
∂h

∂t

∣∣∣∣n+1

i

+ V un+1
i

∂h

∂x

∣∣∣∣n+1

i

+ V hn+1
i

∂u

∂x

∣∣∣∣n+1

i

−QMass︸ ︷︷ ︸
PDE

+V

(
−∆t

2

∂2h

∂t2

∣∣∣∣n+1

i

+ · · · − ∆tn−1

n!

∂nh

∂tn

∣∣∣∣n+1

i

)
︸ ︷︷ ︸

Temporal Truncation Error

+V
(
un+1
i

)(
−∆x

2

∂2h

∂x2

∣∣∣∣n+1

i

+ · · · − ∆xn−1

n!

∂nh

∂xn

∣∣∣∣n+1

i

)
︸ ︷︷ ︸

Spatial Truncation Error

+V

(
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

+ · · ·+ ∆xn

2n!

∂nu

∂xn

∣∣∣∣n+1

i

)(
∂h

∂x

∣∣∣∣n+1

i

)
︸ ︷︷ ︸

Spatial Truncation Error

+ V

(
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

+ · · ·+ ∆xn

2n!

∂nu

∂xn

∣∣∣∣n+1

i

)
︸ ︷︷ ︸

Spatial Truncation Error

∗
(
−∆x

2

∂2h

∂x2

∣∣∣∣n+1

i

+ · · · − ∆xn−1

n!

∂nh

∂xn

∣∣∣∣n+1

i

)
︸ ︷︷ ︸

Spatial Truncation Error

+ V
(
hn+1
i

)(∆x2

6

∂3u

∂x3

∣∣∣∣n+1

i

+ · · ·+ ∆xn−1

n!

∂nu

∂xn

∣∣∣∣n+1

i

)
+ LTEMass︸ ︷︷ ︸

Spatial Truncation Error

= 0

39

(3.46)

V
∂u

∂t

∣∣∣∣n+1

i+ 1
2

+ V
(
un+1
i+ 1

2

) ∂u
∂x

∣∣∣∣n+1

i+ 1
2

+ V g
∂h

∂x

∣∣∣∣n+1

i+ 1
2

−QMom︸ ︷︷ ︸
PDE

−V
(

∆t

2

∂2u

∂t2

∣∣∣∣n+1

i+ 1
2

+ · · · − ∆tn−1

n!

∂nu

∂tn

∣∣∣∣n+1

i+ 1
2

)
︸ ︷︷ ︸

Temporal Truncation Error

−V
(
un+1
i+ 1

2

)(∆x

2

∂2u

∂x2

∣∣∣∣n+1

i+ 1
2

+ · · · − ∆xn−1

n!

∂nu

∂xn

∣∣∣∣n+1

i+ 1
2

)
︸ ︷︷ ︸

Spatial Truncation Error

+V g

(
∆x2

24

∂3h

∂x3

∣∣∣∣n+1

i+ 1
2

+ · · ·+ 2

(
∆x
2

)n−1

n!

∂nh

∂xn

∣∣∣∣n+1

i+ 1
2

)
+ LTEMom︸ ︷︷ ︸

Spatial Truncation Error

= 0

After subtracting the PDE from Eq. 3.45 and Eq. 3.46, the resulting LTE for mass and

momentum are shown in Eq. 3.47 and Eq. 3.48.

LTEMass = V

(
∆t

2

∂2h

∂t2

∣∣∣∣n+1

i

− · · ·+ ∆tn−1

n!

∂nh

∂tn

∣∣∣∣n+1

i

)

+ V
(
un+1
i

)(∆x

2

∂2h

∂x2

∣∣∣∣n+1

i

− · · ·+ ∆xn−1

n!

∂nh

∂xn

∣∣∣∣n+1

i

)

− V
(

∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

+ · · ·+
(

∆x
2

)n
n!

∂nu

∂xn

∣∣∣∣n+1

i

)(
∂h

∂x

∣∣∣∣n+1

i

)

+ V

(
∆x2

8

∂2u

∂x2

∣∣∣∣n+1

i

+ · · ·+
(

∆x
2

)n
n!

∂nu

∂xn

∣∣∣∣n+1

i

)(
∆x

2

∂2h

∂x2

∣∣∣∣n+1

i

− · · ·

+
∆xn−1

n!

∂nh

∂xn

∣∣∣∣n+1

i

)
−V

(
hn+1
i

)(∆x2

6

∂3u

∂x3

∣∣∣∣n+1

i

+ · · ·+ ∆xn−1

n!

∂nu

∂xn

∣∣∣∣n+1

i

)
(3.47)

40

(3.48)

LTEMom = V

(
∆t

2

∂2u

∂t2

∣∣∣∣n+1

i+ 1
2

+ · · · − ∆tn−1

n!

∂nu

∂tn

∣∣∣∣n+1

i+ 1
2

)

+ V
(
un+1
i+ 1

2

)(∆x

2

∂2u

∂x2

∣∣∣∣n+1

i+ 1
2

+ · · · − ∆xn−1

n!

∂nu

∂xn

∣∣∣∣n+1

i+ 1
2

)

− V g

(
∆x2

24

∂3h

∂x3

∣∣∣∣n+1

i+ 1
2

+ · · ·+ 2

(
∆x
2

)n−1

n!

∂nh

∂xn

∣∣∣∣n+1

i+ 1
2

)

3.3 Problem Setup

To show how MMS order of accuracy testing compares to MEAMMS testing, a test

problem was set up using the numerical schemes in Figure 3.2. MMS and MEAMMS

using the leading order was only able to test numerical methods listed in Table 3.1 as

stable because both code verification methods requires a stable solution to test the order of

accuracy. MEAMMS with higher order terms was able to test all numerical schemes and

only requires one computation rather than two or more. Unstable methods do not converge

to the exact solution as ∆x approaches zero, while stable methods converge. Sometimes

the stability is dependent on the mesh settings, as with the explicit upwind scheme. While

A-stable cases are between stable and unstable, making the method unpredictable with

regards to stability.

The one-dimensional domain is characterized by a length and constant cross-sectional

area. Flow through the domain enters the left boundary and exits the right boundary. The

time-dependent boundary conditions for the left and right boundaries are determined using

ghost cells at the boundary. Each ghost cell value is set by the manufactured solution. The

manufactured solution also provides the initial condition throughout the domain. The

boundary conditions and the initial conditions provide enough information to track the

height and the velocity of the wave through the domain. For the MMS test problem,

the manufactured solution uses coefficients listed in Table 3.2. For the MEAMMS test

41

Table 3.1: Description of the Numerical Schemes Implemented Within the Code

Temporal
Scheme

Spatial
Scheme B A

Temporal
Order

Spatial
Order

Stability
Condition

Explicit
Downwind 1 1 1 1 Unstable

Upwind 1 -1 1 1 U1∆t /∆x < 1
Central Difference 1 0 1 2 Unstable

Implicit
Downwind -1 1 1 1 Unstable

Upwind -1 -1 1 1 Stable
Central Difference -1 0 1 2 Stable

Crank
Nicolson

Downwind 0 1 2 1 Unstable
Upwind 0 -1 2 1 Stable

Central Difference 0 0 2 2 A-Stable

problems, the manufactured solution uses coefficients listed in Table 3.3

Table 3.2: MMS Calculation Setup

Quantity Value
Domain Length (m) 6.28

End Time (s) 1.0
Cross-Sectional Area (m2) 0.04

h1 2.150
h2 0.220
u1 1.220
u2 0.133
kh 0.00112
ku 0.00116
ωh 0.00155
ωu 0.00110
g 0.990

While refinement studies with exact solutions require only two grids, four grids (coarse

through very fine) were chosen to observe that the order of accuracy was relatively stable

and converging to the theoretical order of accuracy. Table 3.4 shows the cell and timestep

42

Table 3.3: MEAMMS Calculation Setup

Quantity Value
Domain Length (m) 6.28

End Time (s) 1.0
Cross-Sectional Area (m2) 0.04

h1 2.150
h2 0.220
u1 1.220
u2 0.133
kh 0.112
ku 0.116
ωh 0.155
ωu 0.110
g 0.990

sizes for each refinement level.

Table 3.4: Refinement Setup

Quantity # of Cells ∆ x # of Timesteps ∆ t
Coarse 10 0.6280 10 0.1000

Medium 20 0.3140 20 0.0500
Fine 40 0.1570 40 0.0250

Very Fine 80 0.0785 80 0.0125

While the Richardson extrapolation only requires two grids, another method to calcu-

late the observed order of accuracy is to use a more complex error model, which requires

more data to inform the error model. This method removes the assumption of the numer-

ical method to converge to the exact PDE solution [56]. This is important because even

if the numerical scheme is suppose to converge to the correct value, the incorrect imple-

mentation of the numerical method could converge to the incorrect solution. To model the

constant error, the error model is updated to add a constant error term to the truncation

43

error in Eq. 3.2, which is shown in Eq. 3.49. The zeroth-order error term (ε0) captures the

zeroth-order error without impacting the pth ordered term. Unlike the conventional MMS

error model, the more complex error model helps the code developer to identify which

term the error is impacting.

(3.49)εh = ε0 + gph
p +O

(
hp+1

)
Using the error model in Eq. 3.49, the coefficients are solved by using the least squares

optimization method used in [56].

3.4 MMS Order of Accuracy Test Results

The first code verification method to test the code was MMS with the simplified error

model. MMS is only able to test for coding errors that impacts the order of accuracy one

order lower than the theoretical order of the numerical method since it can’t distinguish

coding errors that don’t impact the order of accuracy. Using a constant Courant, Friedrichs,

and Lewy (CFL) number [57], the grid and timestep are refined to calculate the observed

order of accuracy. Based on the results from the refinement study, the order of accuracy

is listed in Table 3.5 and shown as the slope in Figure 3.3 for height and Figure 3.4 for

velocity. These results show that the stable numerical scheme within the code passes the

MMS order of accuracy test, which is the current state-of-the-art code verification testing.

Table 3.5: Order of Accuracy Calculation without LTE Source Term

Numerical Scheme p1h p2h p1u p2u

Theoretical
Order

Explicit Upwind 0.945 0.949 0.961 0.981 1.000
Implicit Upwind 0.973 0.950 0.955 0.975 1.000

Implicit Central Difference 1.002 0.963 0.967 0.985 1.000
Crank Nicolson Upwind 0.959 0.948 0.958 0.9785 1.000

Crank Nicolson
Central Difference 1.956 1.979 2.020 2.047 2.000

44

1002 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Normalized X Size

10 13

10 12

10 11

10 10

10 9

10 8
Er

ro
r (

m
)

Order-of-Accuracy Slope for Height
IMUW
IMCD
CNUW

EXUW
CNCD

Theoretical First Order
Theoretical Second Order

Figure 3.3: MMS Order of Accuracy Slope Results for the Implemented Stable Numerical
Schemes (Height)

1002 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Normalized X Size

10 13

10 12

10 11

10 10

10 9

10 8

10 7

Er
ro

r (
m

/s
)

Order-of-Accuracy Slope for Velocity
IMUW
IMCD
CNUW

EXUW
CNCD

Theoretical First Order
Theoretical Second Order

Figure 3.4: MMS Order of Accuracy Results for the Implemented Stable Numerical
Schemes (Velocity)

45

3.5 MEAMMS Test Results With Leading Order Terms

Now that the observed order of accuracy matches the theoretical order of accuracy, the

code has been verified to have no coding errors that impact the order of accuracy. Since

there is a probability of coding errors of the same order as the numerical method, the lead-

ing LTE is added as a source term. If there are no zeroth-order coding errors or coding

errors of the same order as the numerical method, the LTE will cancel the leading trunca-

tion error produced by the code and increase the order of accuracy. Table 3.6 shows that the

observed order of accuracy has increased by one for all first-order schemes and increased

by two for the second order scheme because all odd LTE terms are zero. These results are

confirmed in Figure 3.5 for height and Figure 3.6 for velocity by the discretization error

slope matching the theoretical discretization slope.

Table 3.6: MEAMMS Order of Accuracy Calculation with Leading LTE Source Term

Numerical Scheme p1h p2h p1u p2u

Theoretical
Order

Explicit Upwind 1.960 1.978 1.865 1.873 2.000
Implicit Upwind 1.954 1.972 1.886 1.872 2.000

Implicit Central Difference 1.964 1.983 1.931 1.942 2.000
Crank Nicolson Upwind 1.957 1.975 1.844 1.852 2.000

Crank Nicolson
Central Difference 3.967 3.986 3.924 3.951 4.000

3.6 MEAMMS Test Results With Higher Order Terms

The MEAMMS with higher order terms builds on the testing of the MEAMMS lead-

ing order. So instead of canceling out the leading truncation error, all truncation error is

canceled to lower than round-off error. While calculating enough LTE terms to cancel

the truncation error to this level requires work, there is the benefit of ensuring no higher

46

1002 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Normalized X Size

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5
Er

ro
r (

m
)

Order-of-Accuracy Slope for Height
IMUW
IMCD
CNUW

EXUW
CNCD

Theoretical Second Order
Theoretical Fourth Order

Figure 3.5: MEAMMS Order of Accuracy Slope Results for the Implemented Stable Nu-
merical Schemes (Height)

1002 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Normalized X Size

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

Er
ro

r (
m

/s
)

Order-of-Accuracy Slope for Velocity
IMUW
IMCD
CNUW

EXUW
CNCD

Theoretical Second Order
Theoretical Fourth Order

Figure 3.6: MEAMMS Order of Accuracy Results for the Implemented Stable Numerical
Schemes (Velocity)

47

order coding errors, requires only one simulation result, and the spatial grid and timestep

size does not have to be in the asymptotic range as long as high enough terms are used to

compute a converging result. This state-of-the-art code verification method is the most rig-

orous test that can be applied a code that utilizes a numerical method. The code was able

to pass the higher order MEAMMS test, which is shown in Table 3.7 where the discretiza-

tion error is lower than round off error after 10 and 20 timesteps. This is confirmed when

the discretization error is plotted spatially after 20 timesteps, which is shown in Figure 3.7

for height and Figure 3.8 for velocity.

Table 3.7: Discretization Error After Multiple Timesteps With Higher Order LTE Source
Terms

Numerical
Scheme

10 Steps
||h||2

20 Steps
||h||2

10 Steps
||u||2

20 Steps
||u||2

Explicit
Downwind 4.500 ∗ 10−15 2.087 ∗ 10−13 1.906 ∗ 10−15 7.369 ∗ 10−14

Explicit
Upwind 4.622 ∗ 10−16 1.813 ∗ 10−16 2.126 ∗ 10−16 3.738 ∗ 10−16

Explicit
Central Difference 5.588 ∗ 10−16 1.901 ∗ 10−15 3.452 ∗ 10−16 1.236 ∗ 10−15

Implicit
Downwind 2.513 ∗ 10−14 7.548 ∗ 10−13 1.978 ∗ 10−14 4.655 ∗ 10−13

Implicit
Upwind 4.441 ∗ 10−16 4.054 ∗ 10−16 2.794 ∗ 10−16 3.452 ∗ 10−16

Implicit
Central Difference 1.445 ∗ 10−15 2.630 ∗ 10−15 1.261 ∗ 10−15 2.006 ∗ 10−15

Crank-Nicolson
Downwind 1.010 ∗ 10−14 6.642 ∗ 10−13 9.233 ∗ 10−15 2.162 ∗ 10−13

Crank-Nicolson
Upwind 4.441 ∗ 10−16 4.622 ∗ 10−16 3.569 ∗ 10−16 3.511 ∗ 10−16

Crank-Nicolson
Central Difference 6.784 ∗ 10−16 1.404 ∗ 10−15 7.364 ∗ 10−16 8.835 ∗ 10−16

48

0 1 2 3 4 5 6 7
Node Location (m)

1.5

1.0

0.5

0.0

0.5

1.0
Er

ro
r (

m
)

1e 12

Discretization Error for Height
IMUW
IMCD
CNUW

EXUW
CNCD
CNDW

EXCD
EXDW
IMDW

Figure 3.7: Spatial Distribution of Discretization Error After 20 Timesteps with Higher
Order LTE Source Terms (Height)

0 1 2 3 4 5 6 7
Node Location (m)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Er
ro

r (
m

/s
)

1e 12

Discretization Error for Velocity
IMUW
IMCD
CNUW

EXUW
CNCD
CNDW

EXCD
EXDW
IMDW

Figure 3.8: Spatial Distribution of Discretization Error After 20 Timesteps with Higher
Order LTE Source Terms (Velocity)

49

3.7 Example of Where MMS Fails

To test the power and robustness of MEAMMS, coding errors are deliberately placed

in the code to test each code verification method. There are two types of coding errors

that are placed within the code: a zeroth-order coding error and a first-order coding error.

Calculating the observed order of accuracy with the MMS method using the simplified

error model shouldn’t be able to detect first-order coding errors on a first-order method. It

should be able to detect lower order coding errors, but the simple model doesn’t distinguish

between zeroth-order coding errors and other ordered coding errors (or lack of ordered

coding errors). Calculating the observed order of accuracy calculated using the complex

error model and fitting the model with a least squares method [56] still doesn’t detect first-

order coding errors on a first-order method, but should be able to distinguish zeroth-order

coding errors and other coding errors (or lack of ordered coding errors). MEAMMS will

be able to detect both types of coding errors because both types of coding errors impact

the truncation error, which MEAMMS detects if there are changes to the truncation error.

3.7.1 Zeroth-Order Coding Error

A possible zeroth-order coding error is an additional constant added to the computed

solution. Zeroth-order coding errors alone do not impact the rate of convergence, but in-

stead impacts the value that the computed solution converges to. This means that regard-

less of the size of ∆x or ∆t, the error still exists. To test the code verification methods, a

constant error was added to the velocity QoI. This test is performed on the implicit upwind

numerical scheme using four tests: MMS, LSMMS, leading order MEAMMS, and higher

order MEAMMS. A summary of the first three methods and the observed order of accura-

cies for those methods are shown in Table 3.8. Also, the observed order of accuracy plots

are shown in Figures 3.9 through 3.14. Since higher order MEAMMS detect errors by

a reduction of discretization error to approximately round-off error using one simulation,

50

the results are presented in separate format in Figure 3.15 and Figure 3.16.

Table 3.8: Order of Accuracy Calculation with Zeroth-Order Coding Error

Code Verification
Method p2h p2u No Code Bug

MMS −2.830 ∗ 10−3 −5.077 ∗ 10−3 1
LSMMS 0.000 0.000 1

Leading Order
MEAMMS 7.196 ∗ 10−5 −8.153 ∗ 10−6 2

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 6

10 5

10 4

10 3

10 2

Er
ro

r (
m

)

Order-of-Accuracy Slope for Height

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.9: MMS Order of Accuracy Slope Results for Implicit Upwind with Zeroth-Order
Coding Error (Height)

All code verification methods analyzed are able to detect a zeroth-order code bug,

but identify them in different ways. MMS with the simple error model identified the

coding error by degrading the observed order of accuracy. LSMMS with the complex

error model identified the coding error by having a non-constant value for ε0. The leading

order MEAMMS identified the coding error because the theoretical LTE doesn’t cancel the

51

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 6

10 5

10 4

10 3

10 2

Er
ro

r (
m

/s
)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.10: MMS Order of Accuracy Slope Results for Implicit Upwind with Zeroth-
Order Coding Error (Velocity)

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 5

10 4

10 3

10 2

Er
ro

r (
m

/s
)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.11: Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with Zeroth-Order Coding Error (Height)

52

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 5

10 4

10 3

10 2

Er
ro

r (
m

/s
)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.12: Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with Zeroth-Order Coding Error (Velocity)

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 12

10 10

10 8

10 6

10 4

10 2

Er
ro

r (
m

)

Order-of-Accuracy Slope for Height

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.13: Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with Zeroth-Order Coding Error (Height)

53

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r (
m

/s
)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.14: Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with Zeroth-Order Coding Error (Velocity)

0 1 2 3 4 5 6 7
Node Location (m)

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Er
ro

r (
m

)

Discretization Error for Height
IMUW

Figure 3.15: Higher Order MEAMMS Discretization Error Results After 10 Timesteps for
Implicit Upwind with Zeroth-Order Coding Error (Height)

54

0 1 2 3 4 5 6 7
Node Location (m)

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Er
ro

r (
m

/s
)

Discretization Error for Velocity
IMUW

Figure 3.16: Higher Order MEAMMS Discretization Error Results After 10 Timesteps for
Implicit Upwind with Zeroth-Order Coding Error (Velocity)

first-order error produced by the code perfectly and raise the observed order of accuracy

to two. Similarly, the higher order MEAMMS identified the coding error because the

discretization error after 10 timesteps isn’t approximately at the level of round off.

3.7.2 First-Order Coding Error

The first-order coding error is a boundary condition error that was originally part of

an early draft of the code. This is as simple as an incorrect equation or indexing on the

ghost cells. By adding an additional, unnecessary term to the boundary, the code should

still converge to the correct solution and still converge at the correct rate, but there will be

a difference in the truncation error at the boundary. This test is performed on the implicit

upwind numerical scheme using four tests: MMS, LSMMS, leading order MEAMMS,

and higher order MEAMMS. A summary of the first three methods and the observed order

of accuracies for those methods are shown in Table 3.9. Also, the observed order of

accuracy plots are shown in Figures 3.17 through 3.22. Since higher order MEAMMS

55

detect errors by a reduction of discretization error to approximately round-off error using

one simulation, the results are presented in separate format in Figure 3.23 and Figure 3.24.

Table 3.9: Order of Accuracy Calculation with First-Order Coding Error

Code Verification
Method p2h p2u No Code Bug

MMS 0.951 1.077 1
LSMMS 0.758 0.9449 1

Leading Order
MEAMMS 1.063 1.026 2

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 6

10 5

10 4

Er
ro

r (
m

)

Order-of-Accuracy Slope for Height

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.17: MMS Order of Accuracy Slope Results for Implicit Upwind with First-Order
Coding Error (Height)

Table 3.9 shows that both MMS error models did not detect the coding error because

the observed order of accuracy matches the theoretical order of accuracy. However, leading

order MEAMMS and higher order MEAMMS did detect the coding error. The leading

order MEAMMS identified the coding error because the theoretical LTE doesn’t cancel the

56

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 6

10 5

10 4
Er

ro
r (

m
/s

)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.18: MMS Order of Accuracy Slope Results for Implicit Upwind with First-Order
Coding Error (Velocity)

1002 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Normalized X Size

10 5

10 4

Er
ro

r (
m

)

Order-of-Accuracy Slope for Height

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.19: Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with First-Order Coding Error (Height)

57

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 5

10 4
Er

ro
r (

m
/s

)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.20: Least Squares MMS Order of Accuracy Slope Results for Implicit Upwind
with First-Order Coding Error (Velocity)

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 6

10 5

10 4

Er
ro

r (
m

)

Order-of-Accuracy Slope for Height

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.21: Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with First-Order Coding Error (Height)

58

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Normalized X Size

10 6

10 5

10 4
Er

ro
r (

m
/s

)

Order-of-Accuracy Slope for Velocity

IMUW
Theoretical First Order
Theoretical Second Order

Figure 3.22: Leading Order MEAMMS Order of Accuracy Slope Results for Implicit
Upwind with First-Order Coding Error (Velocity)

0 1 2 3 4 5 6 7
Node Location (m)

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Er
ro

r (
m

)

Discretization Error for Height
IMUW

Figure 3.23: Higher Order MEAMMS Discretization Error Results After 10 Timesteps for
Implicit Upwind with First-Order Coding Error (Height)

59

0 1 2 3 4 5 6 7
Node Location (m)

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Er
ro

r (
m

/s
)

Discretization Error for Velocity
IMUW

Figure 3.24: Higher Order MEAMMS Discretization Error Results After 10 Timesteps for
Implicit Upwind with First-Order Coding Error (Velocity)

first-order error produced by the code perfectly and raise the observed order of accuracy

to two. Similarly, the higher order MEAMMS identified the coding error because the

discretization error after 10 timesteps isn’t approximately at the level of round off.

3.8 Coarse Code Verification

An important note in completing code verification activities is that the solutions need to

be within the asymptotic region. The asymptotic region starts when the leading order error

becomes the dominant source of the total error. When this happens, the observed order of

accuracy will start to converge to the theoretical order of accuracy when coding errors are

removed. To show how this works, a coarse grid and large timestep was chosen and then

the timestep and spatial step was reduced. As the timesteps and spatial steps are reduced,

the solution becomes increasingly accurate and eventually enters the asymptotic region

when the observed order of accuracy matches the theoretical order of accuracy to within a

tolerance. The parameters in Table 3.10 shows the problem setup for the test. Table 3.11

60

shows the observed and theoretical order of accuracy with decreasing the timestep and

spatial step.

Table 3.10: Code Bug Calculation Setup

Quantity Value
Domain Length (m) 6.28

End Time (s) 1.0
Cross-Sectional Area (m2) 0.04

h1 2.150
h2 0.220
u1 1.220
u2 0.133
kh 1.12
ku 1.16
ωh 1.55
ωu 1.10
g 0.990

Table 3.11: Order of Accuracy Calculation with Decreasing Timestep and Spatial Step
Size

∆x
L

p2h

Theoretical
Order

0.5 0.769 1.000
0.05 0.836 1.000

0.005 0.973 1.000

As the LTE is added, the observed order of accuracy becomes more accurate and the

solutions start to be inside the asymptotic region. This shows that grid and timestep refine-

ment studies need to be completed to determine if the simulation is inside the asymptotic

region. In addition, the convergence of the observed order of accuracy ideally would be

monitored to ensure that the particular problem didn’t get the write answer for the wrong

61

reason.

Another method to get more accurate solutions is to increase the order of the method.

Using the symbolic equations for the theoretical LTE, different ordered solutions are cal-

culated on a grid of 10 cells using 10 timesteps and a discretization error is calculated.

Table 3.12 shows the discretization error as a function of LTE order.

Table 3.12: Discretization Calculation with Increasing LTE

Leading LTE ||h||2 ||u||2
First 5.473 ∗ 10−2 1.385 ∗ 10−2

Second 1.101 ∗ 10−2 2.303 ∗ 10−3

Third 1.939 ∗ 10−3 6.089 ∗ 10−4

Fourth 3.014 ∗ 10−4 6.727 ∗ 10−5

Fifth 3.266 ∗ 10−5 1.110 ∗ 10−5

Sixth 4.476 ∗ 10−6 1.007 ∗ 10−6

This explains the use of higher order methods to compute solutions, even though the

boundary conditions become more complex with increasing the order of the method.

3.9 Code Verification Conclusion and Future Work

The use of MMS order of accuracy tests has increased the rigorousness of code verifi-

cation testing, but has shown to miss key coding errors. As presented, MEAMMS catches

the coding errors that MMS misses, which impacts the accuracy. Through MEAMMS

the code is tested to ensure it matches the numerical scheme intended for the application.

While calculating the LTE is a sizable effort, MEAMMS is meant for codes that require

an additional level of testing that MMS can not match.

Future work includes stability analyses, applying MEAMMS to problems with source

terms that include state variable information, apply MEAMMS to a non-uniform grid, and

apply MEAMMS to an unstructured grid. The stability analysis would be beneficial to

62

perform to add additional characteristics to match up with how the code performs, espe-

cially in the presence of coding errors. To make the problem more realistic, source terms

that include state variables should be tested to ensure applying MEAMMS to problems

with source terms are straight forward. The next step to making the problem more realistic

is to apply MEAMMS to a problem with non-uniform spacing. This would then cover all

structured grid problems for system codes and CFD codes. Lastly, to make this method

applicable to all problems, MEAMMS should be applied to an unstructured grid. This can

be challenging due to the sheer number of LTE terms and the lack of cancellation of LTE

method due to equal, but opposite LTE.

63

4. SOLUTION VERIFICATION

Solution verification is a crucial step in a VVUQ framework. It allows the user to

quantify the numerical uncertainty produced when the physics equations are numerically

solved when there is no exact solution. While there has been a significant effort to improve

these methods in the past three decades, there are still questions about their performance

near and outside the asymptotic region. This work aims to characterize the performance

of solution verification methods inside, near, and outside the asymptotic region for steady

state and transient problems. To accomplish this, the asymptotic point is derived by com-

paring the L2 Norm of the leading LTE terms with the L2 Norm of the higher order LTE

terms. Problems are run on manufactured problems, so an exact solution and an exact error

is available, but is not used as part of the solution verification algorithm. This allows for a

comparison between the estimated numerical uncertainty with the exact discretization er-

ror. This work is to continue solution verification analysis and derivation of the asymptotic

point from the previous work [58].

4.1 Introduction

Solution verification is the process of quantifying the numerical uncertainty for a nu-

merically calculated QoI when the exact discretization error is unknown. Discretization

error comes from truncating higher order terms in the numerical scheme and being trans-

ported through the numerical solution. Computing the discretization error is prohibitively

complex and computationally expensive to calculate without an error transport equation,

which requires editing the source code and is not currently implemented in most, if not all,

commercial simulation codes. Therefore, the discretization error is treated as an uncer-

tainty. There are multiple ways of estimating this uncertainty with positives and negatives

with each method. This work focuses on solution verification methods that are based on

64

the Richardson extrapolation, which assumes that the solutions are inside the asymptotic

range. Often times for real world applications, the solutions are not inside the asymptotic

region because it requires prohibitively fine grids or small time steps. Therefore, there is a

need to evaluate the performance of solution verification methods inside, near, and outside

the asymptotic region.

4.2 Solution Verification Method Development

To better understand solution verification, let’s look at three important details of so-

lution verification: the asymptotic region, the solution verification derivation, and various

error metrics.

4.2.1 Derivation of Asymptotic Point

Since solving PDEs analytically for real world problems is most likely impossible, nu-

merical approximations of the PDEs are necessary. For finite volume schemes, a Taylor

series is used as the approximation method. For the Taylor series to be convergent, the so-

lution must be inside the asymptotic region. The asymptotic range starts when the leading

order LTE term becomes dominant compared to all other higher order terms. For example,

the Taylor series,

(4.1)φi+1 = φi + ∆x
∂φ

∂x

∣∣∣∣
i

+
∆x2

2

∂2φ

∂x2

∣∣∣∣
i

+
∆x3

6

∂3φ

∂x3

∣∣∣∣
i

+ . . . ,

can be used to approximate the derivative ∂φ
∂x

. By rearranging the terms in 4.1, the

following derivative is approximated by

(4.2)
∂φ

∂x

∣∣∣∣
i︸︷︷︸

Exact Derivative

=
φi+1 − φi

∆x︸ ︷︷ ︸
Approximated Derivative

−∆x

2

∂2φ

∂x2

∣∣∣∣
i︸ ︷︷ ︸

Leading Order LTE

− ∆x3

6

∂3φ

∂x3

∣∣∣∣
i

− . . .︸ ︷︷ ︸
Higher Order LTE

.

By evaluating the leading order LTE term and the higher order terms using the manu-

factured solution, the asymptotic point is defined when the ratio between the leading and

higher order LTE terms is equal to one. This is shown in

65

(4.3)LTEratio =
−∆x

2
∂2φ
∂x2

∣∣∣
i

−∆x3

6
∂3φ
∂x3

∣∣∣
i
+ . . .

.

For this analysis, there are three main regions of interest: inside, near, and outside the

asymptotic region. Inside of the asymptotic range is where the leading order error domi-

nates the higher order solution. This is where the numerical solution is clearly converging

to the exact solution at close to the theoretical rate of convergence. The left boundary of

inside the asymptotic range is where ∆x = 0, while the right boundary of inside of the

asymptotic region is defined to be 10% of the ∆x that corresponds to the asymptotic point.

This is further illustrated by Table 4.1.

Table 4.1: Asymptotic Ratio Table

LTE Term
Start of

Asymptotic Region
Asymptotic

Point
Outside

Asymptotic Region
Leading Order

LTE Term 10 1 0.1

Higher Order
LTE Term 1 1 1

The outside of the asymptotic region is where the solution is characterized as random

because the higher order terms are dominating the leading order error and the numeri-

cal solution is not converging to the exact solution. The left boundary of outside of the

asymptotic region is defined to be the ∆x that corresponds to the asymptotic point, while

the right boundary is defined as the largest ∆x that is outside the asymptotic region. Near

the asymptotic region is defined to be between the two regions, where the leading order

error and the higher order error is roughly the same magnitude. These regions are classi-

fication zones and data within these zones are evaluated separately. This is due to some

solution verification methods performing differently than others in different regions. A

66

visual description of these regions are shown in Figure 4.1.

Figure 4.1: The Three Regions Analyzed: Inside, Near, and Outside the Asymptotic
Range.

4.2.2 Derivation of Solution Verification Methods

This analysis evaluates the performance of GCI, which is based on the Richardson

extrapolations. The basic concept of GCI is to estimate the difference between the extrap-

olated numerical solution and the finest solution and add a factor of safety that is dependent

on how well behaved the extrapolation matches the theoretical performance of the extrap-

olation. To derive GCI, an explanation of the Richardson extrapolation is necessary and is

loosely based on the derivation in [1].

The Richardson extrapolations is based on the work of L. F. Richardson [4, 5] where

he observed how the numerical approximation starts to converge to the grid independent

solution at a rate based on the order of the leading LTE terms. As an example, let’s take

three numerical approximations from three successively refined grids,

(4.4)f1 = f̃ + c1h
p + c2h

p+1 +O
(
hp+2

)
,

(4.5)f2 = f̃ + c1 (rh)p + c2 (rh)p+1 +O
(
hp+2

)
, and

67

(4.6)f3 = f̃ + c1

(
r2h
)p

+ c2

(
r2h
)p+1

+O
(
hp+2

)
,

where f1, f2, and f3 are QoIs on successively coarsened grids, f̃ is the grid independent

or Richardson extrapolated QoI value, c1 and c2 are constant coefficients, h is the charac-

teristic grid size, r is the coarsening factor, and p is the order of the numerical method.

Neglecting higher order terms, Eqs. 4.4, 4.5, and 4.6 are simplified to

(4.7)f1 = f̃ + c1h
p,

(4.8)f2 = f̃ + c1 (rh)p , and

(4.9)f3 = f̃ + c1

(
r2h
)p
.

To solve for the order of accuracy, p, and ultimately f̃ , Eq. 4.8 is subtracted from

Eq. 4.9 and Eq. 4.7 is subtracted from Eq. 4.8, which is shown in

(4.10)f3 − f2 = c1r
php (rp − 1) and

(4.11)f2 − f1 = c1h
p (rp − 1) .

Dividing Eq. 4.10 by Eq. 4.11 then results into

(4.12)
f3 − f2

f2 − f1

= rp.

Applying logarithmic rules allows for solving for p,

(4.13)p =
ln
(
f3−f2

f2−f1

)
ln (r)

.

Once p is known, f̃ is now solved for using

(4.14)f̃ = f1 −
f2 − f1

rp − 1
.

f̃ is only exact when the derivation assumptions are met. These include neglecting

higher order terms and c1 being a constant. Since these assumptions are not perfectly true,

68

f̃ is not exact and therefore not used as the prediction of the numerical code. This is where

GCI comes into play. GCI uses f̃ − f1, which is the difference between the Richardson

extrapolated QoI value and the QoI on the finest grid, to estimate the discretization error

for the finest mesh. Using this error and a factor of safety, uncertainty bars are applied to

the f1 solution, which represents the 5th and 95th percentiles, which is shown in

(4.15)GCI = Fs
|f2 − f1|
rp − 1

.

The factor of safety, Fs, is dependent on how well behaved pobs is to the theoretical

order of accuracy. The factor of safety is 1.25 for well behaved solutions and 3.0 for

ill-behaved solutions. The original implimentation left it to engineering judgement to

determine if the solution was behaved or ill-behaved, but Oberkampf and Roy suggested

a difference of 10% between the observed and theoretical order of accuracy to determine

if the solution was behaved or ill-behaved [1]. Eq. 4.15 is an engineering approximation

that determines the error bounds for the discretization error. Using GCI, the numerical

uncertainty will be quantified using Oberkampf and Roy’s version of GCI.

4.2.3 Comparison Metrics

To evaluate solution verification methods, a variety of metrics are used to compare each

method. Each metric has a specific strength in summarizing a large set of comparison data

in one number. The normalized L1 norm, L2 norm, and Linf norm are all based on the

normalized P norm equation,

(4.16)||X||p =
1

n1/p

(
n∑
i=1

|xi|p
)1/p

,

where p is the value of the norm, xi is the difference between the exact error and the

estimated error, and n is the length of xi. Below are detailed descriptions of the metrics

used in this work.

69

4.2.3.1 L1 Norm

The normalized L1 norm is a measure of the average absolute difference of the error

vector, X , which is shown in

(4.17)||X||1 =
1

n

(
n∑
i=1

|xi|
)
.

This norm is useful when quantifying an error vector by describing the average abso-

lute error for a given process.

4.2.3.2 L2 Norm

The normalized L2 norm, also known as the root-mean-square (RMS) error, is a mea-

sure of the square root of the average of the square vector, X2, which is shown in

(4.18)||X||2 =
1

n1/2

(
n∑
i=1

|xi|2
)1/2

.

This norm is useful for quantifying the spread of the error vector and is sensitive to

outlier data, which is important in highlighting larger disagreements.

4.2.3.3 L∞ Norm

The L∞ norm is a measure of the maximum error in the error vector. This is derived

by taking the limit of Eq. 4.16 as P− > inf, which simplifies to

(4.19)||X||∞ = max (xi) .

This norm is useful when quantifying a maximum value of the error vector. This

highlights problem areas in the vector that could be hidden by theL1 andL2 norms because

it only finds the outliers.

4.2.3.4 Using Comparison Metrics

Since these test problems utilize manufactured solutions, the estimated discretization

error with uncertainty bars can be compared to the exact discretization error. This allows

70

for solution verification methods to be evaluated for their performance. Their performance

is based on how well the discretization uncertainty bound contains the exact discretization

error. When the exact discretization error is outside the bound, the distance between the

exact discretization error and the nearest bound is calculated. This calculation is performed

spatially for the steady state case and spatially at the end time for the transient case. This

comparison will illuminate the performance of the solution verification methods inside,

near, and outside the asymptotic range.

4.3 Description of Test Problems

To fully understand the performance of the solution verification method, it is applied

to a manufactured test problem. This test problem uses the shallow water equations with

source terms. The first test is a steady state problem to get a baseline assessment of the so-

lution verification method. To understand how the solution verification method performs

when both spatial and temporal components of discretization error, the second test is a

transient test. This test uses manufactured solutions that are a function of space and time.

The manufactured solutions are functions of sine and cosine. Since sine and cosine func-

tions change throughout the spatial and temporal domain, the area of interest is the whole

domain. The exact test cases with derivation of the manufactured solutions are shown

below.

4.3.1 Steady State

The manufactured solutions and manufactured solution source terms are derived in a

similar manner as in the code verification section. The QoIs for this problem are velocity,

u, and wave height, h and are shown in

(4.20)u = u1 + u2 cos (kux)

(4.21)h = h1 + h2 sin (khx) .

71

To avoid wave overlap, the velocity QoI is a cosine function while the height is a sine

function. This is the same manufactured solution as Eq. 3.25 and Eq. 3.26, but the temporal

coefficient is set to zero to remove the functional dependence on time.

Once the QoI functions are chosen, the relevant derivatives are calculated in

(4.22)
∂u

∂x
= −u2ku sin (kux)

(4.23)
∂u

∂t
= 0

(4.24)
∂h

∂x
= h2kh cos (khx)

(4.25)
∂h

∂t
= 0.

By substituting Eqs. 4.22 through 4.25 into Eq. 4.20 and Eq. 4.21, the source terms are

calculated and shown in

QMass = − (h1 + h2 sin (khx)) (u2ku sin (kux)) + (u1 + u2 cos (kux)) (h2kh cos (khx))
(4.26)

(4.27)QMom = − (u1 + u2 cos (kux)) (u2ku sin (kux)) + g (h2kh cos (khx)) .

4.3.2 Transient

The manufactured solutions and manufactured solution source terms for the transient

sine and cosine test problem are derived in the exact same manner as in the code verifi-

cation section, but presented again here for completeness. The QoIs for this problem are

velocity, u, and wave height, h and are shown in

(4.28)u = u1 + u2 cos (kux+ ωut)

(4.29)h = h1 + h2 sin (khx+ ωut) .

To avoid wave overlap, the velocity QoI is a cosine function while the height is a sine

function. This is the same manufactured solution in Eq. 3.25 and Eq. 3.26.

72

Once the QoI functions are chosen, the relevant derivatives are calculated in

(4.30)
∂u

∂x
= −u2ku sin (kux+ ωut)

(4.31)
∂u

∂t
= −u2ωu sin (kux+ ωut)

(4.32)
∂h

∂x
= h2kh cos (khx+ ωht)

(4.33)
∂h

∂t
= h2ωh cos (khx+ ωht) .

By substituting Eqs. 4.30 through 4.33 into Eq. 4.28 and Eq. 4.29, the source terms are

calculated and shown in

(4.34)QMass = (h2ωh cos (khx+ωht))−(h1 +h2 sin (khx+ωht)) (u2ku sin (kux+ωut))
+ (u1 + u2 cos (kux+ ωut)) (h2kh cos (khx+ ωht))

QMom = − (u2ωu sin (kux+ ωut))− (u1 + u2 cos (kux+ ωut)) (u2ku sin (kux+ ωut))
+ g (h2kh cos (khx+ ωht))

(4.35)

4.3.3 Initial and Boundary Conditions

Using the manufactured solutions, the solution is known at the start of the problem for

both the steady state and transient problems. This is used to initialize the computational

simulation through

(4.36)h (x, 0) = h1 + h2sin (khx) , and

(4.37)u (x, 0) = u1 + u2sin (kux) .

This allows for starting with zero error, but as the problem evolves over space for the

steady state case and space and time for the transient case, discretization error starts to

accumulate throughout the computational domain.

73

For the boundary conditions, the manufactured solution is also used. Since the code

is implicit upwind, the left boundary is defined as the exact solution as the computational

solution, which is shown in

(4.38)h (0, t) = h1 + h2sin (ωht) , and

(4.39)u (0, t) = u1 + u2sin (ωut) .

Since this is a one dimensional problem solved using a first-order method, only one

boundary needs to be defined.

4.3.4 Numerical Settings

The range of discretization sizes span across outside, near, and inside the asymptotic

range. The steady state and transient simulations use identical simulation settings except

that the temporal coefficients (ωh and ωu) in the manufactured solutions are set to zero.

This ensures that the steady state manufactured solutions do not change as a function of

time.

4.3.4.1 Steady State

The steady state simulation settings are based on the computational limitations of only

being able to run 29 simulations where the number of cells increase by 20% for each

refinement. Based on this limitations, the length scales of the problem were selected such

that the middle of the near asymptotic region is in the middle of the plot. This provides

the ideal settings to analyze all three different regions. The settings for the steady state

simulations are shown in Table 4.2.

4.3.4.2 Transient

The transient simulation settings are based on the computational limitations of only

being able to run 25 simulations where the number of cells and time steps increase by 20%

for each refinement. This is less than the number of refinement levels of the steady state

74

Table 4.2: Steady State Calculation Setup

Quantity Value
Domain Length (m) 1.0

End Time (s) 1.0
Cross-Sectional Area (m2) 0.04

h1 1.150
h2 0.022
u1 1.220
u2 0.0133
kh 12.12
ku 12.55
ωh 0.00
ωu 0.00
g 9.81

Ncoarse 4
NSims 29
r 1.2

study because the transient simulations cost significantly more computationally. Based

on this limitations, the length scales and time scales of the problem were selected such

that the middle of the near asymptotic region is in the middle of the plot. This provides

the ideal settings to analyze all three different regions. The settings for the steady state

simulations are shown in Table 4.3.

4.4 Results

Solution verification methods are used to estimate the discretization error and include

uncertainty. For real world applications, simulations often do not fully resolve the QoI

that are calculated. This means that the solutions are calculated outside the asymptotic

range. To better understand the performance of solution verification methods like GCI,

two separate simulation data sets are ran inside, near, and outside the asymptotic range to

determine the performance. The first set of simulations is a steady state case, where only

spatial discretization error exist. The second set of simulations is a transient case, where

75

Table 4.3: Transient Calculation Setup

Quantity Value
Domain Length (m) 1.0

End Time (s) 1.0
Cross-Sectional Area (m2) 0.04

h1 1.150
h2 0.022
u1 1.220
u2 0.0133
kh 12.12
ku 12.55
ωh 12.16
ωu 12.30
g 9.81

Ncoarse 4
NSims 25
r 1.2

both spatial and temporal discretization error exists.

4.4.1 Steady State

For the steady state case, the solution for both height and velocity are computed for a

range of different discretizations. Using this data, the relative error between the solution

on one mesh and the next refined mesh is computed. Additionally, the exact discretiza-

tion is also computed as a reference. Only the performance metrics have access to the

exact discretization data because in real world applications, the exact discretization error

is unknown. The relative and exact discretization error for height and velocity are shown

in Figure 4.2 and Figure 4.3, respectively.

In addition to showing the relative and exact discretization error, the three different

asymptotic ranges are shown. To the right of the black dotted lines is outside the asymp-

totic range, between the red and black dotted lines is near the asymptotic range, and to

the left of the red dotted lines inside the asymptotic range. Additionally, reference slopes

76

10 2 10 1

x

10 5

10 4

10 3

10 2

10 1

100

In
te

rp
ol

at
ed

 E
rro

r i
n

He
ig

ht
 (m

)

Observed
Exact
p=1
p=2
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.2: Error in Height as a Function of Discretization Size for Steady State Problem

10 2 10 1

x

10 6

10 5

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

Ve
lo

cit
y

(m
/s

)

Observed
Exact
p=1
p=2
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.3: Error in Velocity as a Function of Discretization Size for Steady State Problem

77

are shown to put into perspective the observed order of accuracy in each of the ranges.

When the simulation data is outside the asymptotic range, the observed order of accu-

racy is much larger than the theoretical first-order slope. This is because the higher order

LTE is dominating the leading order LTE. As the solution starts to get near the asymptotic

range, the exact discretization error starts to match the theoretical performance because

the leading LTE terms is starting to dominate. Since the relative discretization error is cal-

culated between two meshes with similar level of refinement, it takes a more refinement

than the exact discretization error data set for the leading LTE terms to dominate. Once the

solutions are fully inside the asymptotic region, both the relative and exact discretization

error starts to match the first-order of accuracy slope. This is confirmed when visualizing

just the the order of accuracy, which is shown in Figure 4.4 for height and Figure 4.5 for

velocity.

10 2 10 1

x

0

1

2

3

4

5

6

Or
de

r o
f A

cc
ur

ac
y

fo
r H

ei
gh

t

Figure 4.4: Observed Order of Accuracy of Height as a Function of Discretization Size for
Steady State Problem

Both these figures show the order of accuracy very chaotic outside the asymptotic

region, smoother near the asymptotic region, and convergent to the theoretical order of

accuracy of one. This should give a good data set to see how the GCI performs in these

78

10 2 10 1

x

0

1

2

3

4

Or
de

r o
f A

cc
ur

ac
y

fo
r V

el
oc

ity

Figure 4.5: Observed Order of Accuracy of Velocity as a Function of Discretization Size
for Steady State Problem

three asymptotic regimes. While the error and observed order of accuracy data looks

chaotic, the discretization uncertainty calculated by GCI bounds the exact discretization

error everywhere for Height (Figure 4.6). For velocity, there are only a few points that are

not bounded (Figure 4.7) in the near asymptotic range regime.

10 2 10 1

x

10 7

10 6

10 5

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

He
ig

ht
 (m

)

Computed Mean
Exact
Numerical Uncertainty
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.6: Error with GCI Uncertainty in Height as a Function of Discretization Size for
Steady State Problem

This is broken up by asymptotic regimes. These results are initially surprising because

of how chaotic the order of accuracy is, but upon further inspection in how the GCI cal-

79

10 2 10 1

x

10 7

10 6

10 5

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

Ve
lo

cit
y

(m
/s

)

Computed Mean
Exact
Numerical Uncertainty
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.7: Error with GCI Uncertainty in Velocity as a Function of Discretization Size
for Steady State Problem

culation is performed as formulated by [1], the observed order of accuracy used in the

equations is bounded between the theoretical order of accuracy and 0.5. This effectively

smooths out the observed order of accuracy, making the GCI computation more reliable.

4.4.2 Transient

For the transient case, the discretization error is a combination of spatial and temporal

errors, which should make it the more difficult for the solution verification methods to

estimate the discretization error. However, the results suggest that the additional entropy

from the temporal term smooths the solution. As with the steady state case, the QoIs are

the discretization errors in height and velocity and are shown in Figure 4.8 and Figure 4.9,

respectively.

As with the steady state case, the higher order LTE terms are dominating the leading

order LTE, which leads to a higher order discretization error outside the asymptotic region.

This dominance becomes less near the asymptotic range, and finally, inside the asymptotic

range, the discretization error converges to the theoretical order of accuracy, which is one.

The observed order of accuracy plots shown in Figure 4.10 and Figure 4.11 show that

there are more data points that are convergent to the theoretical order of accuracy. This

80

10 2 10 1

x

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

He
ig

ht
 (m

)

Observed
Exact
p=1
p=2
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.8: Error in Height as a Function of Discretization Size for Transient Problem

10 2 10 1

x

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

Ve
lo

cit
y

(m
/s

)

Observed
Exact
p=1
p=2
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.9: Error in Velocity as a Function of Discretization Size for Transient Problem

81

is most likely due to the additional diffusion from the temporal error term. The observed

order of accuracy is chaotic outside the asymptotic regions, starts to being smooth near the

asymptotic region, and convergent to the theoretical order of accuracy inside the asymp-

totic region.

10 2 10 1

x

0

1

2

3

4

5

6
Or

de
r o

f A
cc

ur
ac

y
fo

r H
ei

gh
t

Figure 4.10: Observed Order of Accuracy of Height as a Function of Discretization Size
for Transient Problem

10 2 10 1

x

0

1

2

3

4

5

6

Or
de

r o
f A

cc
ur

ac
y

fo
r V

el
oc

ity

Figure 4.11: Observed Order of Accuracy of Velocity as a Function of Discretization Size
for Transient Problem

The GCI discretization uncertainty bound for the transient problem actually performs

82

better than the steady state problem, which is shown in Figure 4.12 for height and Fig-

ure 4.13 for velocity. These results are even more surprising because capturing both tem-

poral and spatial discretization error in the uncertainty bound. This is caused by having a

much smoother computed mean discretization error, which could be cause by the addition

of temporal discretization error within this problem.

10 2 10 1

x

10 7

10 6

10 5

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

He
ig

ht
 (m

)

Computed Mean
Exact
Numerical Uncertainty
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.12: Error with GCI Uncertainty in Height as a Function of Discretization Size for
Transient Problem

10 2 10 1

x

10 7

10 6

10 5

10 4

10 3

10 2

10 1

In
te

rp
ol

at
ed

 E
rro

r i
n

Ve
lo

cit
y

(m
/s

)

Computed Mean
Exact
Numerical Uncertainty
Mass Asymptotic Point
Momentum Asymptotic Point
Mass Asymptotic Range
Momentum Asymptotic Range

Figure 4.13: Error with GCI Uncertainty in Velocity as a Function of Discretization Size
for Transient Problem

83

The L1, L2, and L∞ values confirm that the GCI discretization uncertainty bounds the

exact error for all regimes, which are all zero.

4.5 Conclusion and Future Work

Understanding solution verification method’s performance in a variety of computa-

tional regimes is an important step towards delivering credible predictions. Since the

regimes (inside, near, and outside the asymptotic range) have different behavior, it is im-

portant to ensure the solution verification methods bound the exact discretization error

without too much conservatism.

This work aims at starting this analysis. With the author’s definitions of inside, near,

and outside the asymptotic range, the solution is put into perspective of how dominant the

leading order LTE is. By testing the performance of GCI on a steady state and transient

case, GCI’s performance is tested for spatial discretization error and both spatial and tem-

poral discretization error. For both data sets, GCI correctly bounds the exact discretization

error in all regimes. It does, however, have more chaotic behavior near and outside the

asymptotic range. Therefore, it is important that other solution verification methods per-

form better than GCI outside and near the asymptotic range for cases that are more chaotic

than this data set.

Future work would be to assess more solution verification methods, such as least

squares GCI (LSGCI) [22], factor of safety method [21], robust multi-regression [24], and

StREEQ [25] to determine if any of the approaches above perform better. Additionally,

applying these methods on data sets that have a large difference in spatial and temporal

scales of the mass and momentum equations would be more realistic than these data sets

where the the scales are roughly the same for the mass and momentum equations.

84

5. VERIFICATION AND VALIDATION CONSIDERATIONS

For engineering applications, it is often is the case that computational codes are used to

make predictions when little experimental data exists. In the nuclear power plant industry,

full scale experiments are expensive as well as potentially hazardous when investigating

accident phenomena. Because of this, scaled experiments are the only feasible way to

understand the physics for the plant. These experiments are used to inform the models

used within computational codes. One key assumption is that the models are applicable

when scaling to the full system to predict full system QoIs. The credibility of these predic-

tions is reduced when verification and validation (V&V) activities are not followed when

developing simulations. Unfortunately, it is common practice to skip code and solution

verification and jump right to calibration and validation. While assessing if the models

match well with scaled experimental results and calibrating the model when useful, not

assessing and reducing numerical error has the unintended consequence of being cali-

brated into the model. This results in the model being a function of discretization error

and coding errors, rather than strictly a function of physics. Completing each component

of V&V is of crucial importance when using codes for predictive capabilities. This study

will show that when each component of the V&V process is not properly completed, the

predictive capability of a simulation is degraded.

5.1 Introduction

To make credible predictions, assessing or reducing each source of error for the QoI

is necessary. Each step in the V&V framework assesses different sources of error. The

V&V framework consists of SQA, code verification, solution verification, calibration, and

validation. SQA reduces coding errors that reduce the quality of the code. SQA pro-

cesses, such as documenting the code or performing regression tests, reduce unintended

85

code changes. Code verification checks the equations within the code are coded as in-

tended, which reduces code bug error. Solution verification assesses numerical error for

the given application and makes sure it’s acceptable for the given application. Validation

and calibration assesses and reduces model form error. When one of these errors are not

quantified and accounted for, it reduces the credibility of the prediction being made.

The two most unquantified class of errors are code bug errors and numerical errors.

The reason these two error are typically unquantified is the historical perspective that the

ultimate test of quality is quantitatively matching experimental data. While the ramifi-

cations of only quantifying model form error might be limited when the predictions are

interpolated inside of the experimental data set, it causes large problems when the predic-

tions are extrapolated outside of the experimental data set. The reason for this is scaling

concepts applied to continuous equations are not necessarily scaled in the same way as the

discrete equations where code bug errors and numerical errors exist.

5.2 Problem Description

To show the issue of not properly completing code and solution verification, an exam-

ple problem is developed. The example problem mimics a problem in nuclear power plant

accident dose calculation at the site boundary. Since the full scale experiment is too costly

and hazardous to complete, scaled experiments inform computational tools to predict full

scale phenomena. To understand how code and solution verification impacts the predictive

capability of calculating the dose at the boundary, two different simulations are produced.

The correct VVUQ simulation completes code verification using MEAMMS, solution ver-

ification using GCI, validation and calibration on the scaled experiment. These calibrated

coefficients are then used to simulate the full scale problem. The incorrect VVUQ simula-

tions only performs validation and calibration on the scaled experiment. These calibrated

coefficients are then used to simulate the full scale problem. Using synthetic experimental

86

data for the scaled and full scale problem, the predictive capability of both simulations

are measured. The difference in the predictive capability is solely due to the use of code

and solution verification. The following describes how the synthetic experimental data is

generated as well as the computational simulation set up.

5.2.1 Synthetic Experimental Data Generation

To model the atmospheric transport of fission products, the shallow water equations

in Eq. 2.19 and Eq. 2.20 and the advection diffusion equation in Eq. 2.21 are used. To

understand how to set up the scaled experiment, these equations are non-dimensionalized

to determine the problem set up in the scaled and full scale experiment.

5.2.1.1 Non-Dimensional Equation Set

To start the non-dimensionalization process, each variable and coefficient is normal-

ized by a characteristic value of the variable. For instance, for flow between the power

plant and the site boundary, the characteristic length can be set to the distance between the

power plant and the site boundary. This means the scaled experiment is based on the total

length of the set up. This process is done for every variable. The normalized variables are

derived in

(5.1)t∗ =
t

t0
,

(5.2)h∗ =
h

h0

,

(5.3)x∗ =
x

x0

,

(5.4)C∗ =
C

C0

,

u∗ =
u

u0

=
x∗

t∗
, (5.5)

87

g∗ =
g

g0

=
h∗

t∗2
, and (5.6)

ν∗ =
ν

ν0

=
x∗2

t∗
. (5.7)

The non-dimensionalized variables are then substituted into the conservation equa-

tions, Eq. 2.19, Eq. 2.20, and Eq. 2.21, which is shown in

(5.8)
(
h0

t0

)
∂h∗

∂t∗
+

(
h0u0

x0

)
h∗
∂u∗

∂x∗
+

(
u0h0

x0

)
u∗
∂h∗

∂x∗
= 0,

(5.9)
(
u0

t0

)
∂u∗

∂t∗
+

(
u2

0

x0

)
u∗
∂u∗

∂x∗
+

(
g0h0

x0

)
g∗
∂h∗

∂x∗
= 0, and

(5.10)
(
C0

t0

)
∂C∗

∂t∗
+

(
C0u0

x0

)
u∗
∂C∗

∂x∗
+

(
ν0C0

x2
0

)
ν∗
∂2C∗

∂x∗2
= 0.

Now to divide by the coefficients in front of time

(5.11)
∂h∗

∂t∗
+

(
t0
h0

)(
h0u0

x0

)
h∗
∂u∗

∂x∗
+

(
t0
h0

)(
u0h0

x0

)
u∗
∂h∗

∂x∗
= 0,

(5.12)
∂u∗

∂t∗
+

(
t0
u0

)(
u2

0

x0

)
u∗
∂u∗

∂x∗
+

(
t0
u0

)(
g0h0

x0

)
g∗
∂h∗

∂x∗
= 0, and

(5.13)
∂C∗

∂t∗
+

(
t0
C0

)(
C0u0

x0

)
u∗
∂C∗

∂x∗
+

(
t0
C0

)(
ν0C0

x2
0

)
ν∗
∂2C∗

∂x∗2
= 0.

After some simplification, the resulting equations are

(5.14)
∂h∗

∂t∗
+

(
t0u0

x0

)
h∗
∂u∗

∂x∗
+

(
u0t0
x0

)
u∗
∂h∗

∂x∗
= 0,

(5.15)
∂u∗

∂t∗
+

(
t0u0

x0

)
u∗
∂u∗

∂x∗
+

(
t0g0h0

u0x0

)
g∗
∂h∗

∂x∗
= 0, and

(5.16)
∂C∗

∂t∗
+

(
t0C0u0

x0

)
u∗
∂C∗

∂x∗
+

(
t0ν0

x2
0

)
ν∗
∂2C∗

∂x∗2
= 0.

88

Using the identity u0 = x0

t0
, an additional simplification is completed on

(5.17)
∂h∗

∂t∗
+ h∗

∂u∗

∂x∗
+ u∗

∂h∗

∂x∗
= 0,

(5.18)
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+

(
g0h0

u2
0

)
g∗
∂h∗

∂x∗
= 0, and

(5.19)
∂C∗

∂t∗
+ u∗

∂C∗

∂x∗
+

(
ν0

u0x0

)
ν∗
∂2C∗

∂x∗2
= 0.

The terms in brackets can then be replaced by non-dimensional numbers, which are

shown in

(5.20)
∂h∗

∂t∗
+ h∗

∂u∗

∂x∗
+ u∗

∂h∗

∂x∗
= 0,

(5.21)
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+

[
1

Fr2

]
g∗
∂h∗

∂x∗
= 0, and

(5.22)
∂C∗

∂t∗
+ u∗

∂C∗

∂x∗
+

[
1

Pe

]
ν∗
∂2C∗

∂x∗2
= 0.

where Fr = u√
gh

is the Froude number and Pe = ux
ν

is the Péclet number. This process

allows for understanding how the results can be scaled from the scaled experiment to the

full scale experiment. The next section derives the exact solution and the method to add

error to mimic manufactured experimental measurement error for the scaled experiment.

5.2.1.2 Scaled Experiment

The scaled experiment represents an experiment that is relatively inexpensive to gen-

erate a large amount of data as opposed to the full scale where generating only a few data

points is feasible. Using the large amount of scaled data, physical coefficients in the code

are able to be calibrated. To fully control the problem, the data is generated from a very

fine numerical solution and is used instead of an exact solution. The very fine numerical

solution allows for a better understanding of the prediction performance. The numerical

89

solution for the shallow water equations are of the same manufactured solutions as previ-

ous test problems. The sine and cosine functions represent the atmospheric portion of the

test problem by modeling the height and velocity of atmospheric equations. The functions

representing height and velocity are

(5.23)u = u1 + u2 cos (kux+ ωut) and

(5.24)h = h1 + h2 sin (khx+ ωht) .

The fission product concentration released during an accident can be represented as a

pulse. To ensure the pulse is smooth across the entire domain, the pulse is initialized as a

Gaussian functions shown in

(5.25)C = C1 + C2e
− (kCx−ωCt)

2

2δ2 .

The manufactured solution is used to initialize the solution and the boundaries are set

far from the pulse to ensure the boundaries are not impacting the solution. The manufac-

tured solution coefficients, characteristic values, and non-dimensional coefficients for the

scaled problem are shown in Table 5.1.

90

Ta
bl

e
5.

1:
Sc

al
ed

Se
tti

ng
s

Q
ua

nt
ity

U
ni

t
D

im
en

si
on

al
V

al
ue

C
ha

ra
ct

er
is

tic
V

al
ue

C
ha

ra
ct

er
is

tic
V

al
ue

E
qu

at
io

n
N

on
-D

im
en

si
on

al
V

al
ue

N
on

-D
im

en
si

on
al

V
al

ue
E

qu
at

io
n

x
[L
en
g
th

]
25
.0

00
25
.0

00
x

0
=

x 1
1.

00
0

x
∗

=
x x
0

t
[T
im
e]

6.
00

0
6.

00
0

t 0
=

t 1
1.

00
0

t∗
=

t t 0

h
1

[H
ei
g
h
t]

0.
01

15
0.

01
15

h
1

0
=

h
1 1

1.
00

0
h
∗ 1

=
h

1

h
1
0

h
2

[H
ei
g
h
t]

0.
00

22
0.

01
15

h
2

0
=
h

1
0

0.
19

1
h
∗ 2

=
h

2

h
2
0

u
1

[Leng
th

T
im
e

]
1.

22
0

4.
16

7
u

1
0

=
x

0 t 0
0.

29
3

u
∗ 1

=
u

1

u
1
0

u
2

[Leng
th

T
im
e

]
0.

01
33

4.
16

7
u

2
0

=
x

0 t 0
0.

00
3

u
∗ 2

=
u

2

u
2
0

c 1
[F
ra
ct
io
n

]
0.

00
01

0.
50

0
c 1

0
=

c 1 1
0.

00
02

c∗ 1
=

c 1 c 1
0

c 2
[F
ra
ct
io
n

]
0.

50
0

0.
50

0
c 2

0
=
c 1

0
1.

00
0

c∗ 2
=

c 2 c 2
0

k
h

[1
L
en
g
th

]
0.

31
2

0.
04

0
k
h

0
=

1 x
0

7.
80

0
k
∗ h

=
k
h

k
h

0

k
u

[1
L
en
g
th

]
0.

31
6

0.
04

0
k
u

0
=

1 x
0

7.
90

0
k
∗ u

=
k
u

k
u

0

k
C

[1
L
en
g
th

]
0.

10
0

0.
04

0
k
C

0
=

1 x
0

2.
50

0
k
∗ h

=
k
C

k
C

0

ω
h

[1 T
im
e

]
0.

15
5

0.
16

7
ω
h

0
=

1 t 0
0.

93
0

ω
∗ h

=
ω
h

ω
h

0

ω
u

[1 T
im
e

]
0.

10
0

0.
16

7
ω
u

0
=

1 t 0
0.

60
0

ω
∗ u

=
ω
u

ω
u

0

ω
C

[1 T
im
e

]
0.

21
0

0.
16

7
ω
C

0
=

1 t 0
1.

26
0

ω
∗ C

=
ω
C

ω
C

0

δ
[N
on
−
D
im

]
0.

10
0

1.
00

0
δ 0

=
1

0.
10

0
δ∗

=
δ δ 0

g
[Heig

h
t

T
im
e2

]
9.

81
0.

00
03

g
0

=
h

0 t2 0
30
,7

10
g
∗

=
g g
0

ν
[Leng

th
2

T
im
e

]
1.

10
0

10
4.

16
7

ν 0
=

x
2 0 t 0

0.
01

1
ν
∗

=
ν ν
0

91

Based on these values, the two non-dimensional parameters are Fr = 3.632 and Pe =

27.727. These values are necessary to ensure the correct balance of physics is preserved

between the scaled and full scale experiment.

A very fine case is used as the exact solution for the fission product concentration. To

ensure the numerical error is low, the first-order LTE is calculated to be small relative to the

physical diffusion coefficient, ν. Using the leading order LTE calculated in Mathematica,

which is the same as Eq. 3.45 except height is replaced by fission product concentration,

the modified equation PDE for the fission product conservation of mass equation is shown

in

(5.26)V
∂C

∂t
+ V u

∂C

∂x
+ V C

∂u

∂x
− V ν ∂

2C

∂x2︸ ︷︷ ︸
PDE

−V
2

∆t
∂2C

∂t2
− V

2
∆xu

∂2C

∂x2︸ ︷︷ ︸
LTE

.

To combine all of the second order derivatives, the second derivative in time needs to

be substituted with terms solely in space. To do this, an analysis similar to the derivation of

the CFL number is performed [57]. First, the fission product transport equation is shown

in

(5.27)
∂C

∂t
+ u

∂C

∂x
+ C

∂u

∂x
− ν ∂

2C

∂x2
= 0.

Taking the a first derivative in time of Eq. 5.27 and rearranging the second order in time

derivative to the left and all other terms to the right, which is shown in Eq. 5.28, shows

how the temporal LTE terms how to convert temporal derivatives to mix derivatives. Next,

taking the frist derivative in space, which is shown in Eq. 5.29, and second derivative in

space, which is shown in Eq. 5.30, provide the mixed terms necessary to convert the mixed

derivatives in Eq. 5.27 to be a function of derivatives in space, which is shown in Eq. 5.31.

(5.28)
∂2C

∂t2
= −u ∂

2C

∂t∂x
− C ∂2u

∂t∂x
+ ν

∂3C

∂t∂x2

(5.29)
∂2C

∂t∂x
= −u∂

2C

∂x2
− C∂

2u

∂x2
+ ν

∂3C

∂x3

92

(5.30)
∂2C

∂t∂x2
= −u∂

3C

∂x3
− C∂

3u

∂x3
+ ν

∂4C

∂x4

(5.31)
∂2C

∂t2
= u2∂

2C

∂x2
+ uC

∂2u

∂x2
− uν ∂

3C

∂x3
− C ∂2u

∂t∂x
− νu∂

3C

∂x3
− νC ∂

3u

∂x3
+ ν2∂

4C

∂x4

Eq. 5.31 is now substituted back into Eq. 5.26. Since we only want to understand how

the leading order LTE terms impact the amount of diffusion in the problem, all non-second

order derivatives are removed. These diffusive terms are shown in

(5.32)−V ν ∂
2C

∂x2
− V

2
∆tu2∂

2C

∂x2
− V

2
∆tuC

∂2u

∂x2
+
V

2
∆tC

∂2u

∂t∂x
− V

2
∆xu

∂2C

∂x2
.

Since diffusive terms in velocity do not directly impact the diffusiveness of the fission

product concentration, these derivatives are also removed, which is shown in Eq. 5.33.

These terms are split up into physical diffusion terms and numerical diffusive terms. When

these two terms are present in the computational simulation, the result is an effective dif-

fusive coefficient, νmodel, which is shown in Eq. 5.33. When the ratio between numerical

diffusion and physical diffusion is low, the physical results dominate the solution, which is

ideal for the experimental case. While this can be computationally expensive, it is neces-

sary to avoid numerical bias in the experimental solution. This ratio is shown in Eq. 5.35.

Using this equation and requiring it to be less than 7.5%, the time and space discretization

for the experimental setup is determined to be ∆t = 0.06(s) and ∆x = 0.05(m).

(5.33)−V ∂
2C

∂x2

 ν︸︷︷︸
Physical Diffusion

+
1

2
∆tu2 +

1

2
∆xu︸ ︷︷ ︸

Numerical Diffusion

 .

(5.34)νmodel = ν +
1

2
∆tu2 +

1

2
∆xu.

(5.35)νratio =
1
2
∆tu2 + 1

2
∆xu

ν

Now that the numerical error of the experimental results have been shown to be small,

the experimental setup description can be described. The QoI being measured is the fission

93

product concentration at the point specified in Figure 5.1 as a function of time. This

represents measuring the fission product concentration as a function of time at the site

boundary in the full scale case.

Figure 5.1: Visualization of the Experimental Setup

To mimic experimental measurement error, the height, velocity, and fission product

concentration are distorted by adding normally distributed random noise. Since it is typical

to have measurement error on the order of 1%, the magnitude of the noise is set to 1% of

the first-order coefficient. This process is described using

(5.36)QoIMeasurement = QoI (x, t) +N (0, σ)

Based on the coefficients in Table 5.1 and the manufactured solutions in Eq. 5.23,

Eq. 5.24, and the initial conditions in Eq. 5.25, the resulting scaled experimental values

for the fission product concentration is shown in Figure 5.2. To understand how the mea-

surement error impacts the experimental values, both the before and after measurement

uncertainty data is shown.

Using these data sets, the νmodel in the code can be calibrated to the data set, which will

change based on the νratio value for a particular coarseness of the grid. This νmodel is then

used in the prediction phase when the full scale computed simulation results are compared

to the full scale simulation results.

94

0 1 2 3 4 5 6
Time (s)

0.05

0.10

0.15

0.20

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(fr
ac

)

Truth
Measurement

Figure 5.2: Scaled Experimental Data for Fission Product Concentration

5.2.1.3 Full Scale Experiment

For the full scale problem, each coefficient in the manufactured solution is based on

the scaled setup. Specifically, the full scale dimensionalized values are defined from the

small scale experiment non-dimensionalized values, the non-dimensional parameters Fr

and Pe, and the full scale characteristic values. Based on these values, they are converted

to the dimensionalized full scale values. The dimensionalized values, the characteristic

values, and the non-dimensionalized values are shown in Table 5.2.

95

Ta
bl

e
5.

2:
Fu

ll
Sc

al
e

Se
tti

ng
s

Q
ua

nt
ity

U
ni

t
D

im
en

si
on

al
V

al
ue

C
ha

ra
ct

er
is

tic
V

al
ue

C
ha

ra
ct

er
is

tic
V

al
ue

E
qu

at
io

n
N

on
-D

im
en

si
on

al
V

al
ue

N
on

-D
im

en
si

on
al

V
al

ue
E

qu
at

io
n

x
[L
en
g
th

]
25

0.
0

25
0.

0
x

0
=

x 1
1.

00
0

x
∗

=
x x
0

t
[T
im
e]

18
.9

7
18
.9

7
t 0

=
t 1

1.
00

0
t∗

=
t t 0

h
1

[H
ei
g
h
t]

0.
11

5
0.

11
5

h
1

0
=

h
1 1

1.
00

0
h
∗ 1

=
h

1

h
1
0

h
2

[H
ei
g
h
t]

0.
02

20
0.

11
5

h
2

0
=
h

1
0

0.
19

1
h
∗ 2

=
h

2

h
2
0

u
1

[Leng
th

T
im
e

]
3.

85
8

13
.1

8
u

1
0

=
x

0 t 0
0.

29
3

u
∗ 1

=
u

1

u
1
0

u
2

[Leng
th

T
im
e

]
0.

04
21

13
.1

8
u

2
0

=
x

0 t 0
0.

00
3

u
∗ 2

=
u

2

u
2
0

c 1
[C
on
ce
n
tr
a
ti
on

]
0.

00
01

0.
50

0
c 1

0
=

c 1 1
0.

00
02

c∗ 1
=

c 1 c 1
0

c 2
[C
on
ce
n
tr
a
ti
on

]
0.

50
0

0.
50

0
c 2

0
=
c 1

0
1.

00
0

c∗ 2
=

c 2 c 2
0

k
h

[1
L
en
g
th

]
0.

03
12

0.
00

4
k
h

0
=

1 x
0

7.
80

0
k
∗ h

=
k
h

k
h

0

k
u

[1
L
en
g
th

]
0.

03
16

0.
00

4
k
u

0
=

1 x
0

7.
90

0
k
∗ u

=
k
u

k
u

0

k
C

[1
L
en
g
th

]
0.

01
0

0.
00

4
k
C

0
=

1 x
0

2.
50

0
k
∗ h

=
k
C

k
C

0

ω
h

[1 T
im
e

]
0.

04
9

0.
05

27
ω
h

0
=

1 t 0
0.

93
0

ω
∗ h

=
ω
h

ω
h

0

ω
u

[1 T
im
e

]
0.

03
2

0.
05

27
ω
u

0
=

1 t 0
0.

60
0

ω
∗ u

=
ω
u

ω
u

0

ω
C

[1 T
im
e

]
0.

06
6

0.
05

27
ω
C

0
=

1 t 0
1.

26
0

ω
∗ C

=
ω
C

ω
C

0

δ
[D
im
en
si
on
le
ss

]
0.

10
0

1.
00

0
δ 0

=
1

0.
10

0
δ∗

=
δ δ 0

g
[Leng

th
T
im
e2

]
9.

81
0.

00
03

g
0

=
h

0 t2 0
30
,7

10
g
∗

=
g g
0

ν
[Leng

th
2

T
im
e

]
34
.7

9
3,

29
4

ν 0
=

x
2 0 t 0

0.
01

1
ν
∗

=
ν ν
0

96

Using the same measurement error methodology in the small scale experiment and

based on the coefficients in Table 5.2 and the manufactured solutions in Eq. 5.23, Eq. 5.24,

and initial condition from Eq. 5.25, the resulting full scale experimental values are scaled

up from the scaled experiments. The full scale fission product concentration true values

and experimental values are shown in Figure 5.3.

0 5 10 15
Time (s)

0.05

0.10

0.15

0.20

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(fr
ac

)

Truth
Measurement

Figure 5.3: Full Scale Experimental Data for Fission Product Concentration

Since the full scale experiment only has a few data points, a recalibration of the model

isn’t feasible. Instead, it allows for determining the performance of the prediction at the

full scale based on scaled experiment calibration. In the next section, two different com-

putational frameworks are shown. One with all components of V&V and one with just

calibration and validation.

5.2.2 Computational Solution

For this large scale prediction study, there are two different computational analyses that

are run: one that follows all of the V&V processes and one that only completes calibration

and validation. In an effort to have a variety of cases, the analysis that only completes

calibration and validation have two different νratios to represent a variety of numerical

error conditions. In addition, to study the effect of numerical error scaling, the ∆x and ∆t

97

scaling process is adjusted to scale incorrectly. This represents simulation software that

adjusts the mesh on the fly if certain cells are ill-conditioned.

For both analyses, the computational simulation is computed using the implicit upwind

numerical scheme. The boundary conditions and initial conditions for the shallow water

equation are set by the manufactured solution. This provides a reasonable result for the

height and velocity QoIs. The initial conditions for the fission product transport equation

is given by Eq. 3.45. Results are saved such that the time dependent fission product con-

centration is able to be compared to experimental results. Using this simulation set up as

well as the coefficients set up in Table 5.1 for the scaled simulation and Table 5.2 for the

full scale simulation, the computational results are generated.

5.2.2.1 Proper V&V Process

To ensure the predictive capability of the simulations are adequate for the problem,

all components of the V&V process are followed, except for SQA. This includes code

verification, solution verification, calibration, and validation. This analysis represents the

proper way to make computational predictions. It should be treated as the base analysis,

while the other analysis represents realistic ways to computational simulations are used to

incorrectly make predictions.

Code Verification The code verification technique used on the code is higher-order

MEAMMS, which is presented in an earlier chapter. Higher-order MEAMMS provides

confidence that the code doesn’t include coding errors that are lower than the order of the

numerical method, like regular MMS, but also coding errors that are of the same order and

higher than the numerical method. This provides increased confidence that there are no

coding errors in the code and reduces coding error to zero.

Solution Verification To ensure the numerical error doesn’t impact the prediction, the

kratio is set to 0.375 with a ∆x = 1.0 and a ∆t = 0.3. This ensures that the discretization

98

error is much smaller than the physical phenomenon. In addition, the numerical error is

computed using GCI to quantify the numerical error.

Model Calibration and Validation The diffusion model is calibrated using the scaled

case experimental data. The calibration used a least-squares minimization technique by

adjusting ν to minimize the difference between the experimental and numerical solution.

This results in a diffusive coefficient that well characterizes the physics of the problem.

Once the calibrated ν is determined, the model form error is calculated using an L2 norm

metric, which is shown in

(5.37)εMFE =

√√√√ N∑
i=1

(QoIexpi −QoIcompi)2

where εMFE is the L2 Norm of the model form error.

5.2.2.2 Improper V&V Process

To represent various missteps throughout the V&V process, two cases are used to

represent realistic scenarios that degrade the predictive quality of simulation results, which

are shown in Table 5.3. This includes skipping code verification, solution verification, and

incorrectly scaling the numerical error. Below are the descriptions how these cases are

sent up in the V&V context.

Table 5.3: Improper V&V Cases

Code Verification Solution Verification Mesh Scaling Degradation
None νratio ≈ 0.68 150%
None νratio ≈ 1 150%

Code Verification To represent a code with coding errors that would pass MMS, but not

MEAMMS, a first-order error is added to the base code to represent a code that has not

gone through rigorous code verification. These errors represent errors that in the small

99

scale case would not be blatant errors, but instead errors that produce reasonable, but

incorrect results.

Solution Verification Since solution verification measures the numerical error, skipping

this step could allow for a large numerical error to exist in the computed solution. To

represent skipping this step, two different cases are computed. The first case is where ∆x

and ∆t are set such that νratio ≈ 0.68. This represents the case when the numerical error is

of the same magnitude as the physics of the simulation. The second case is where ∆x and

∆t are set such that νratio ≈ 1. This represents the case when the numerical error equals the

physics of the simulation. Since solution verification is not completed, these errors would

be unknown.

Model Calibration and Validation The model calibration and validation is identical to

the method presented in the proper V&V procedure, but since the code has coding error

and numerical error in the solution, the calibration process includes this in the computation

result. This might at first appear to be a good thing, but since the calibrated model is

making a prediction for the full scale case, this calibrated model doesn’t represent the

underlying physics.

The two cases where improper V&V is implemented represent a variety of realistic

scenarios that happen when using real world software. In the next section, the proper

V&V results are compared to the improper V&V results to show the impact on predictive

quality.

5.3 Results

The results of both the scaled and full scale simulations are presented here. The first set

of results are based on following the proper V&V process while the second set of results

are based on following an improper V&V process. Table 5.4 shows all the simulations

completed for this study.

100

Table 5.4: All Simulation Cases

Case Scale
Proper V&V

Process? kratio
Mesh Scaling
Degradation Results Location

Case 1 Scaled Yes νratio ≈ 0.38 None Section 5.3.1
Case 2 Scaled No νratio ≈ 0.68 None Section 5.3.2
Case 3 Scaled No νratio ≈ 1.0 None Section 5.3.2
Case 4 Full Scale Yes νratio ≈ 0.38 None Section 5.3.3
Case 5 Full Scale No νratio ≈ 0.68 150% Section 5.3.3
Case 6 Full Scale No νratio ≈ 1.0 150% Section 5.3.3

Case 1 provides the νModel for Case 4, while Cases 2 and 3 provide νModel for Cases 5

and 6, respectively. To understand the impact of a proper V&V process, Case 4, 5, and 6

are compared to the full scale experimental data to determine the predictive capability loss

of Cases 5 and 6 when a proper V&V process isn’t followed.

5.3.1 Proper V&V Process

The proper V&V process involves code verification, solution verification, calibration,

and validation. Each component of the V&V process measures or reduces the error due

to coding error, numerical error, and model form error, respectively to each V&V process.

The next sections provide the measurement of each of these errors.

5.3.1.1 Code Verification

For code verification, the code is tested using the MEAMMS code verification method-

ology. MEAMMS adds the theoretical LTE into the numerical solution with the idea that if

it cancels out the observed LTE, the code doesn’t have coding errors that are lower than the

order of the LTE. When coding errors are minimized, the uncertainty due to coding errors

is drastically reduced. Figure 5.4 and Figure 5.5 show the spatial errors at the last timestep

of a MEAMMS analysis. Since the error reduction is quite large (greater than 1010) when

up to 20th order LTE is added to the numerical solution, the probability of coding errors is

101

practically zero. Therefore the uncertainty due to coding errors is also zero.

0.000 0.005 0.010 0.015 0.020 0.025
Node Location (m)

0

1

2

3

4

He
ig

ht
 (m

)/V
el

oc
ity

 (m
/s

)

1e 16
H Error
U Error

Figure 5.4: Code Verification for Height and Velocity for Proper V&V Case

0.000 0.005 0.010 0.015 0.020 0.025
Node Location (m)

0

2

4

6

8

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(F
ra

c)

1e 20

Figure 5.5: Code Verification for Fission Product Concentration for Proper V&V Case

5.3.1.2 Solution Verification

The next source of error that to quantify is numerical error. This is measured using the

solution verification tool, GCI. This is widely accepted as the standard solution verification

method because of it’s simplicity and ease of use. GCI uses the rate at which the error is

decreasing as the mesh sizing is reduced and determines an extrapolated solution when

102

the mesh size is zero. Using the difference between the extrapolated solution and the

solution on the finest grid, this difference is multiplied by a factor of safety to add an

error bound on the difference. This is then used as an error quantification of the numerical

error (See Section 4.2.2 for derivation). For the proper V&V case, the GCI value is a

very small number. This uncertainty is small relative to the scale of the numerical solution

in Figure 5.6.

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

Experiment
Computation with Numerical Uncertainty

Figure 5.6: Solution Verification for Fission Product Concentration for Proper V&V Case

5.3.1.3 Model Calibration and Validation

The next step is to calibrate the computational model’s diffusivity to experimental data.

To do this, multiple different model diffusion coefficients are computed and then compared

to experimental data. The coefficient that produces the lowest L2 norm is used as the

model’s coefficient for the prediction case. Since the experimental diffusivity and the nu-

merical diffusivity are known, an approximate estimate of the calibrated model diffusion

coefficient can be calculated to minimize the calibration effort. The predicted diffusion

coefficient is ν = 0.62 with the actual calibrated diffusion coefficient is ν = 0.9. The pre-

diction is slightly off due to the lack of calibration on the advective term. The calibration

test runs are shown in Figure 5.7.

103

0 2 4 6 8 10
Normalized t Size

0.05

0.10

0.15

0.20

0.25

0.30

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(F
ra

ct
io

n) Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Experiment

Figure 5.7: Calibration of k for Case 1

Now that the diffusion model is calibrated, the model form error is computed during

the validation portion. For this validation analysis, the validation metric is the L2 Norm

using Eq. 5.37. The model form error is shown in Figure 5.8.

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

Experiment
Computation

Figure 5.8: Validation for Case 1

5.3.2 Improper V&V Process

As with the proper V&V process, Cases 2 and 3’s diffusion models are calibrated

and model form error is quantified. However, code verification and solution verification

activities are represented as if these activities were skipped to highlight their importance

104

for using computational models as a prediction tool. Below describes the V&V activities

completed for the improper V&V cases (Case 2 and 3).

5.3.2.1 Code Verification

Since coding error is not assessed in the improper case, the code verification assess-

ment isn’t completed. This means that the coding error is incorrectly assumed to be zero.

To reproduce the scenario of when this can impact the predictive capability of the simu-

lation, Case 2 and Case 3 are run with the coding error described in the code verification

chapter. This increases the coding error and unknown effects will occur when this code

with the coding error is used to predict the full scale scenario (Cases 5 and 6).

5.3.2.2 Solution Verification

Since numerical error is not assessed in the improper case, the solution verification

assessment isn’t completed. This means that the numerical error is incorrectly assumed

to be zero. To reproduce the scenario of when this can impact the predictive capability of

the simulation, Case 2 has a large mesh size and therefore has a larger numerical error.

Case 3 takes it a step further and even has a large mesh size than Case 2, so the numerical

error is even larger. These large meshes push the solutions farther away from the exper-

imental data, but the calibration process can reduce these effects. Unfortunately, this has

unintended consequences when the full scale case is run.

5.3.2.3 Model Calibration and Validation

As with the proper V&V process, the improper V&V process cases’ diffusion model

is calibrated to the experimental data. For Case 2, the calibrated diffusion coefficient is

ν = 0.8 while the predicted calibrated diffusion coefficient is ν = 0.32. For Case 3,

the calibrated diffusion coefficient is ν = 0.6 while the predicted calibrated diffusion

coefficient is ν = 0.0063. The calibration test cases for Case 2 and Case 3 are shown

105

in Figure 5.9 and Figure 5.10, respectively.

0 2 4 6 8 10
Normalized t Size

0.05

0.10

0.15

0.20

0.25

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(F
ra

ct
io

n) Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Experiment

Figure 5.9: Calibration of ν for Case 2

0 2 4 6 8 10
Normalized t Size

0.05

0.10

0.15

0.20

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(F
ra

ct
io

n) Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8
Trial 9
Trial 10
Trial 11
Experiment

Figure 5.10: Calibration of ν for Case 3

Now that the models are calibrated, the model form error is calculated using the same

methodology as the proper V&V case, which uses Eq. 5.37 to calculate the model form

error. Based on this calculation, the model form error for Cases 2 and 3 are shown in Fig-

ure 5.11 and Figure 5.12, respectively.

106

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20
Experiment
Computation

Figure 5.11: Validation for Case 2

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

Experiment
Computation

Figure 5.12: Validation for Case 3

107

5.3.3 Full Scale Comparison

To ensure the scaling is correctly completed, the full scale fission product concentration

is compared to the scaled up version of the scaled fission product concentration. To scale

up the scaled fission product concentration, a factor of 3.16 is applied to the time and

a factor of 1.0 is applied to the concentration. As shown in Figure 5.13, the scaling is

correctly done to 2 digits because the L2 norm of the difference is 1.6%.

0 5 10 15
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(fr
ac

)

Scaled Experiment
Full Scale Experiment

Figure 5.13: Comparison Between Full Scale and Scaled Up Scaled Fission Product Con-
centration

Based on the results from the previous sections, the calibrated model diffusion coeffi-

cients are shown in Table 5.5. To show how the calibration process cannot tell the differ-

ence between diffusion from the model diffusion and numerical diffusion, each of cases

are compared to show how the calibration performed, which is shown in Figure 5.14.

Table 5.5: Scaled Calibrated Coefficients

Case Diffusion Model Coefficient
Case 1 0.9
Case 2 0.8
Case 3 0.6

108

0 1 2 3 4 5 6
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(fr
ac

)

Scaled
Experiment
Case 1
Case 2
Case 3

Figure 5.14: Scaled Comparison Between Cases 1, 2, and 3

This shows that the calibrated model diffusion coefficient canceled out the numerical

diffusion. This cancellation is difficult to scale, so for the prediction cases, the numerical

diffusion either needs to be low or scaled properly. While the numerical diffusion is low

for Case 4, it is much larger for Cases 5 and 6. Also, the numerical diffusion for Cases 5

and 6 do not scale properly since there was no effort to quantify the numerical error during

the solution verification portion of V&V activities. Based on the scaling factor of 31.62,

the full scale calibrated diffusion coefficients and L∞ Norm errors are shown in Table 5.6.

Using these diffusion model coefficients, the full scale fission product concentration pre-

dictions for Cases 4, 5, and 6 are shown in Figure 5.15.

Table 5.6: Full Scale Calibrated Coefficients

Case Diffusion Model Coefficient
Case 4 28.46
Case 5 25.30
Case 6 18.97

While Case 4 predicts the full scale experimental data well, Case 5 and especially

109

0 5 10 15
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fi
ss

io
n

Pr
od

uc
t C

on
ce

nt
ra

tio
n

(fr
ac

)

Full Scale
Experiment
Case 4
Case 5
Case 6

Figure 5.15: Full Scale Comparison Between Cases 4, 5, and 6

Case 6 under predicts the fission product concentration. This has large ramifications when

the fission product concentration is used to calculation radiation dose at a reactor site

boundary. Since the fission product concentrations are under predicted, this means the

radiation dose is under predicted, which has serious public health consequences. Using

this as an example, it shows that skipping code and solution verification can have serious

consequences.

5.4 Conclusion and Future Work

Engineers use computational codes to make predictions where experimental data is not

available due to cost, time, or public safety. To ensure that these predictions are credible,

verification and validation are used to ensure errors are either reduce significantly or quan-

tified to ensure that the errors will not impact decision making. Historically, validation has

been viewed as the more necessary than verification, but this is not the case when scaling is

involved. This is because when scaling is involved, predictiveness is critical and all uncer-

tainties need to be characterized. As shown in the presented example, when verification

activities are not completed, the predictive quality is reduced. This is because calibra-

tion changes model coefficients to offset the effects of coding errors or numerical errors.

110

Where these errors are offset and applied to the application scale, the numerical errors are

not guaranteed to scale properly without quantifying the errors. As shown in Figure 5.15,

the predicted fission product concentration when both verification and validation are used

(Case 4) has a higher prediction quality than when verification is skipped (Cases 5 and

6). Therefore, code and solution verification can not be ignored and should be of equal

importance to calibration and validation.

While this is a proof of concept, future work would include applying this to a real

experiment and using production level software would add additional confidence that ver-

ification should be of importance to calibration and validation. Additionally, adding un-

certainty quantification activities to this example would provide even more evidence that

the uncertainty for Case 4 is computed correctly while would be severely under-predicting

the uncertainty in Cases 5 and 6.

111

6. CONCLUSION

With the recent increase in computational power and the rise in cost of experiments,

scientists and engineers have increased the use of computational fluid dynamics (CFD)

simulations and high fidelity system analysis codes to solve nuclear engineering problems.

Because of the increase in reliance of simulations and lower reliance on experiments,

credibility of these simulations is of utmost importance. Therefore, code and solution

verification play an important role in assessing credibility of these simulations.

In this work, the author examines various aspects of addressing the credibility in com-

plexity of CFD and system codes. In chapter 3, a new, more rigorous code verification

method is developed that is based on the method of manufacturing solutions (MMS). This

new methods works by testing additional information in the code, namely the local trun-

cation error (LTE). This additional code verification testing increases the confidence that

coding errors do not exist within the code. In chapter 4, a solution verification method,

GCI, is evaluated in newly defined solutions regimes: inside, near, and outside the asymp-

totic region. This allows for the solution verification method to be evaluated for different

discretization sizes. This is important to evaluate because for complex reactor geometry,

the range of spatial scales is quite large, making it difficult to have an ideal discretiza-

tion grid that resolves the physics while not requiring a large amount of computational

time. In chapter 5, a study is performed to evaluate the credibility of nuclear engineering-

relevant simulations when code and solution verification is ignored or improperly con-

ducted. In the first scenario where code and solution verification is performed, the predic-

tion at the application-scale is accurate. In the second scenario where code and solution

verification is not performed, the prediction at the application-scale is not accurate. This

means that when code and solution verification is performed, the credibility of the sim-

112

ulations is much better than the credibility of the simulations without code and solution

verification. Below is a more complete summary of the code verification method develop-

ment work, solution verification analyzation work, and the prediction comparison work.

Code verification is an important part of building credible simulations. The current

state-of-the-art is to use the method of manufactured solutions (MMS) to compare the ob-

served order of accuracy with the theoretical order of accuracy. While this method is useful

for finding some coding errors, MMS can not identify all coding errors. Therefore, it is

important to develop a code verification method to identify the coding errors that MMS

can not. Using the cobination of MMS and MEA to develop MEAMMS, the observed

LTE has to match the theoretical LTE. This means that MEAMMS tests more of the char-

acteristics than MMS. Additionally, higher order MEAMMS verifies the validity of lower

order MEAMMS by showing that the process is mathematically consistent. Additionally,

the study shows an example of when MMS cannot identify a coding error, but MEAMMS

can. This work has produced a conference paper [14] and an accepted journal paper [55].

While this work identified a problem and proposed a solution to that problem, the

example problems have been less than realistic. Future work will be to apply MEAMMS

to more realistic test problems. This would start to address the question of how to apply

MEAMMS to a production code.

Now that a more rigorous method of code verification is developed, evaluating solu-

tion verification methods in different regimes in an analytical way is an additional step

in producing credible simulations. The most used solution verification method, the grid

convergence index (GCI), is assessed inside, near, and outside the asymptotic region. The

key evolution of this work is a mathematical definition of the start of the asymptotic region

as well as outside the asymptotic region. Using the LTE calculated from the manufactured

solution, the asymptotic point is calculated where the leading LTE is equal to the higher

order LTE. This is the start of where the discretization goes from chaotic behavior to con-

113

vergent behavior. The start of the asymptotic region is then defined when the leading LTE

is one magnitude larger than the higher order LTE. This allows for evaluating the GCI

solution verification method in different convergence regions.

The reason for evaluating GCI in these regions is that real world problems often either

cannot identify if the solution is inside the asymptotic region or obtaining a solution inside

the asymptotic region is too computationally demanding. Therefore, understanding how

solution verification methods perform in all regimes is important for producing credible

simulations.

This work has produced a conference paper [58] with a journal paper in the works.

Future work is to include more than one solution verification method in the analysis and

to generate more complex data with differing length scales and time scales.

To additionally show the importance of code and solution verification in producing

credible simulations, two simulation strategies are compared. In the first simulation strat-

egy, code and solution verification is completed before calibration and validation. In the

second simulation strategy, code and solution verification is skipped and jumped straight

to calibration and validation. The test problem is to calibrate the turbulence model for a

fission product transport simulation. For the case where code and solution verification is

performed, coding error and numerical uncertainty is minimized first. Then calibration

and validation is performed. This simulation is valid in both interpolating between scaled

data and extrapolating in the full scale case.

For the case where code and solution verification is skipped, coding errors are added

into the solution and a coarse computational grid is used during the scaled calibration

and validation process. This approach matches the scaled data well, but not the full scale

case. The resulting fission product concentration at the site boundary is correctly predicted

by the case where code and solution verification is performed, while the fission product

concentration at the site boundary is under predicted by the case where code and solution

114

verification is skipped. This shows that when code and solution verification is skipped, the

credibility of the simulations suffers.

From the results shown in this work, it is clear that code and solution verification play

an important role in the credibility of simulations. The importance of code and solution

verification will increase as full scale experimental data becomes less available for ad-

vanced reactors, which increases the reliance on simulations. As simulations results are

used more to make decisions, it is crucial that robust code and solution verification meth-

ods are used to minimize coding error and numerical uncertainty.

115

REFERENCES

[1] W. L. Oberkampf and C. J. Roy, Verification and validation in scientific com-

puting. Cambridge, United Kingdom: Cambridge University Press, 2010.

doi:10.1017/CBO9780511760396.

[2] P. J. Roache, “Perspective: a method for uniform reporting of grid refinement stud-

ies,” Transactions-American Society of Mechanical Engineers Journal of Fluids En-

gineering, vol. 116, pp. 405–405, 1994.

[3] ASME, “Guide for verification and validation in computational solid mechanics,”

American Society of Mechanical Engineers, ASME Standard V&V 10-2006, New

York, NY.

[4] L. F. Richardson, “The approximate arithmetical solution by finite differences of

physical problems involving differential equations, with an application to the stresses

in a masonry dam,” Philosophical Transactions of the Royal Society of London.

Series A, Containing Papers of a Mathematical or Physical Character, vol. 210,

pp. 307–357, 1911. doi:10.1098/rsta.1911.0009.

[5] L. F. Richardson, B. J Arthur Gaunt, et al., “VIII. the deferred approach to the

limit,” Phil. Trans. R. Soc. Lond. A, vol. 226, no. 636-646, pp. 299–361, 1927.

doi:10.1098/rsta.1927.0008.

[6] J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions

of partial differential equations of the heat-conduction type,” in Mathematical Pro-

ceedings of the Cambridge Philosophical Society, vol. 43, pp. 50–67, Cambridge

University Press, 1947. doi:10.1007/BF02127704.

116

https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1098/rsta.1911.0009
https://doi.org/10.1098/rsta.1927.0008
https://doi.org/10.1007/BF02127704

[7] P. M. Knupp, C. C. Ober, and R. B. Bond, “Impact of coding mistakes on numerical

error and uncertainty in solutions to PDEs,” tech. rep., Sandia National Laboratories

Report SAND2017-5341, 2007.

[8] L. Humphries, “MELCOR Quality Assurance Practices,” in MELCOR Software

Quality Assurance Training, 2011.

[9] L. Humphries, “MELCOR Code V&V and SQA,” in Workshop on Operational Ex-

perience and Advances in MELCOR Modeling, Shenzhen, China, November 19-23,

2012.

[10] L. Humphries and J. Reynolds, “MELCOR Quality Assurance Practices,” in MEL-

COR Software Quality Assurance Training, 2014.

[11] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L. Tripp, Guide to the software

engineering body of knowledge: 2004 version SWEBOK. IEEE Computer Society,

2004.

[12] S. Eddins, “Taking control of your code: Essential software development tools for en-

gineers,” in International Conference on Image Processing, Atlanta, GA, Oct, vol. 9,

2006.

[13] B. Kleb and W. A. Wood, “Computational simulations and the scientific method,”

Journal of Aerospace Computing, Information, and Communication, vol. 3, no. 6,

pp. 244–250, 2006.

[14] A. M. Krueger, V. A. Mousseau, and Y. A. Hassan, “Rigorous code verification: An

additional tool to use with the method of manufactured solutions,” in ASME 2019

Verification and Validation Symposium, 2019. doi:10.1115/VVS2019-5166.

[15] P. J. Roache, “Code verification by the method of manufactured solutions,” Transac-

tions of the American Society of Mechanical Engineers Journal of Fluids Engineer-

117

https://doi.org/10.1115/VVS2019-5166

ing, vol. 124, no. 1, pp. 4–10, 2002. doi:10.1115/1.1436090.

[16] S. Steinberg and P. J. Roache, “Symbolic manipulation and computational fluid

dynamics,” Journal of Computational Physics, vol. 57, no. 2, pp. 251–284, 1985.

doi:10.1016/0021-9991(85)90045-2.

[17] W. Oberkampf, F. Blottner, and D. Aeschliman, “Methodology for computational

fluid dynamics code verification/validation,” in Fluid Dynamics Conference, p. 2226,

1995.

[18] A. M. Krueger, V. A. Mousseau, and Y. A. Hassan, “Adding confidence to solution

verification: Using MMS-informed MEA to better understand discretization error,”

in 2018 ANS Winter Meeting and Expo, 2018.

[19] C. W. Hirt, “Heuristic stability theory for finite-difference equations,” Journal of

Computational Physics, vol. 2, no. 4, pp. 339–355, 1968. doi:10.1016/0021-

9991(68)90041-7.

[20] N. J. Cyrus and R. E. Fulton, “Accuracy study of finite difference methods,” Tech.

Rep. NASA TN D-4372, National Aeronautics and Space Administration, 1968.

[21] T. Xing and F. Stern, “Factors of safety for richardson extrapolation,” Journal of

Fluids Engineering, vol. 132, no. 6, p. 061403, 2010.

[22] L. Eça and M. Hoekstra, “Discretization uncertainty estimation based on a least

squares version of the grid convergence index,” in Proceedings of the Second Work-

shop on CFD Uncertainty Analysis, Instituto Superior Tecnico, Lisbon, Oct, 2006.

[23] L. Eça and M. Hoekstra, “A procedure for the estimation of the numerical uncer-

tainty of cfd calculations based on grid refinement studies,” Journal of Computa-

tional Physics, vol. 262, pp. 104–130, 2014.

118

https://doi.org/10.1115/1.1436090
https://doi.org/10.1016/0021-9991(85)90045-2
https://doi.org/10.1016/0021-9991(68)90041-7
https://doi.org/10.1016/0021-9991(68)90041-7

[24] W. Rider, W. Witkowski, J. R. Kamm, and T. Wildey, “Robust verification analysis,”

Journal of Computational Physics, vol. 307, pp. 146–163, 2016.

[25] G. A. Radtke, N. Martin, C. H. Moore, A. Huang, and K. L. Cartwright, “Robust

verification of stochastic simulation codes,” Journal of Computational Physics, Sub-

mitted in 2020.

[26] A. M. Krueger, “Estimation of discretization error for three dimensional CFD simu-

lations using a taylor series modified equation analysis,” Master’s thesis, Texas A&M

University, 2017.

[27] R. Shaw, T. Larson, and R. Dimenna, “Development of a phenomena identification

and ranking table (PIRT) for thermal-hydraulic phenomena during a pwr lbloca,”

NUREG: CR-5074, EG&G, Idaho, 1988.

[28] J. P. Yurko and J. Buongiorno, “Quantitative phenomena identification and ranking

table (QPIRT) for bayesian uncertainty quantification,” 2012 International Congress

on Advances in National Power Plants (ICAPP ’12), June 24-28 2012.

[29] H. Luo, Quantified PIRT and uncertainty quantification for computer code valida-

tion. PhD thesis, Oregon State University, 2012.

[30] W. L. Oberkampf and B. L. Smith, “Assessment criteria for computational fluid dy-

namics model validation experiments,” Journal of Verification, Validation and Un-

certainty Quantification, vol. 2, no. 3, p. 031002, 2017.

[31] R. C. Schmidt, “A review of NRC regulatory requirements and statements and state-

ments concering verification, validation, and uncertainty quantification of computer

codes used in support of nuclear reactor license applications,” Sandia National Labo-

ratories Internal Letter Report, NEAMS FY09 Level 5 Milestone Report, Sept. 2009.

119

[32] RELAP5 Development Team, “RELAP5/MOD3 Code Manual Vol.1 Rev. 1,”

NUREG/CR-5535 report, Idaho National Laboratory, August 1995.

[33] G. Mesina, “A history of RELAP computer codes,” Nuclear Science and Engineer-

ing, vol. 182, no. 1, pp. v–ix, 2016.

[34] C. L. Smith, Y.-J. Choi, and L. Zou, “RELAP-7 Software Verification and Validation

Plan,” inl/ext-14-33201, Idaho National Laboratory, September 25, 2014.

[35] J. Yoo and Y.-J. Choi, “RELAP-7 Software Verification and Validation Plan: Re-

quirements Traceability Matrix (RTM) Update and Code Verification Strategy,”

INL/EXT-17-43199, Idaho National Laboratory, September 2017.

[36] A. Prosek and B. Mavko, “Evaluating code uncertainty—i: using the CSAU

method for uncertainty analysis of a two-loop PWR SBLOCA,” Nuclear Technol-

ogy, vol. 126, no. 2, pp. 170–185, 1999.

[37] B. Boyack, I. Catton, R. Duffey, K. Katsma, G. Lellouche, S. Levy, G. Wilson, and

N. Zuber, “Quantifying reactor safety margins part 1: an overview of the code scal-

ing, applicability, and uncertainty evaluation methodology,” Nuclear Engineering

and Design, vol. 119, no. 1, pp. 1–15, 1990.

[38] L. Humphries, B. Beeny, F. Gelbard, D. Louie, and J. Phillips, “MELCOR Computer

Code Manuals Vol. 2.2.9541: Reference Manual,” SAND report 2017-0455, Sandia

National Laboratories, January 2017.

[39] C. D. L. E. al., “MELCOR Validation and Verification 1986 Papers,” SAND report

86-2689, Sandia National Laboratories, 1986.

[40] L. N. Kmetyk, “MELCOR Assessment: Gedanken Problems Volume 1,” SAND re-

port 92-0762, Sandia National Laboratories, 1992.

120

[41] R. M. Summers and R. K. C. Jr., “Diagnosis and Resolution of Numerical Sensitiv-

ities in MELCOR,” in Presented at 20th Water Reactor Safety Information Meeting,

Bethesda, MD, October 22, 1992.

[42] L. Humphries, “Quicklook Overview of Model Changes in MELCOR 2.2: Rev 5342

to Rev 9496,” SAND report 2017-5599, Sandia National Laboratories, 2017.

[43] R. O. Gauntt, “Exercises in Severe Accident Analysis using MELCOR: Accident

Walkthrough,” in Presented at IAEA Workshop on Models and Methods For Calcu-

lating Severe Accident Source Terms for AP1000, Haiyang, China, April 27-May 1,

2015.

[44] K. Fernández Cosials, Analysis and improvement of hydrogen mitigation strategies

during a severe accident in nuclear containments. PhD thesis, Industriales, 2017.

[45] T. L. George and A. Singh, “Separate effects tests for GOTHIC condensation and

evaporative heat transfer models,” Nuclear Engineering and Design, vol. 166(3),

pp. 403–411, 1996.

[46] B. Beeny, R. Vaghetto, K. Vierow, and Y. Hassan, “MELCOR and GOTHIC anal-

yses of a large dry PWR containment to support resolution of GSI-191,” Nuclear

Technology, vol. 196, no. 2, pp. 292–302, 2016.

[47] Siemens, STAR-CCM+ Users’ Guide. 12.02.010-r8 ed., 2017.

[48] L. Gilkey, “STAR-CCM+ (CFD) calculations and validation,” Sandia Technical Re-

port SAND2017-12545 R, CASL, 2017.

[49] N. Gordon, “CTF (subchannel) calculations and validation,” Sandia Technical Report

SAND2017-12874 R, CASL, 2017.

[50] C. J. Freitas, “Editorial,” Journal of Fluids Engineering, vol. 115, no. 3, pp. 339–340,

1993.

121

[51] J. Fokken, B. Krohn, R. Kapulla, B. Niceno, H. Prasser, and A. Badillo,

“OECD/NEA CFD-UQ benchmark exercise: CFD prediction and uncertainty quan-

tification of a GEMIX mixing layer test—final report,” 2017.

[52] American Society of Mechanical Engineers (ASME), “Standard for verification and

validation in computational fluid dynamics and heat transfer,” Tech. Rep. V&V 20-

2009, American Society of Mechanical Engineers, New York, USA, 2009.

[53] A. C. Rakhimov, D. Visser, and E. Komen, “Uncertainty quantification method for

cfd applied to the turbulent mixing of two water layers,” Nuclear Engineering and

Design, vol. 333, pp. 1–15, 2018.

[54] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical

introduction. Berlin Heidelberg: Springer Science & Business Media, 3 ed., 2009.

doi:10.1007/b79761.

[55] A. Krueger, V. Mousseau, and Y. Hassan, “LTE-informed code verification,” Journal

of Verification, Validation, and Uncertainty Quantification, Accepted in 2020.

[56] L. Eça, C. M. Klaij, G. Vaz, M. Hoekstra, and F. S. Pereira, “On code verification

of RANS solvers,” Journal of Computational Physics, vol. 310, pp. 418–439, 2016.

doi:10.1016/j.jcp.2016.01.002.

[57] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of math-

ematical physics,” IBM Journal of Research and Development, vol. 11, pp. 215–234,

March 1967. doi:10.1147/rd.112.0215.

[58] A. M. Krueger, V. A. Mousseau, and Y. A. Hassan, “Characterization of solution

verification,” in ASME 2018 Verification and Validation Symposium, 2018.

122

https://doi.org/10.1007/b79761
https://doi.org/10.1016/j.jcp.2016.01.002
https://doi.org/10.1147/rd.112.0215

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Origins of Numerical Simulations
	Development of V&V Concepts
	Software Quality Assurance
	Code Verification
	Solution Verification
	Validation
	Uncertainty Quantification

	Use of Codes for Nuclear Power Plants
	RELAP
	MELCOR
	GOTHIC
	Computational Fluid Dynamics
	Applying V&V Concepts to Nuclear Power Plant Codes and Simulations

	Code Verification Improvements
	Solution Verification Improvements
	Importance of Code and Solution Verification

	Background Equations
	Shallow Water Equations
	Shallow Water Equations with Radionuclide Transport

	MEAMMS
	Verification
	MMS
	MEA
	MEAMMS Development

	Demonstration Case
	Code Implementation
	Newton's Method
	Manufactured Solutions Source Terms
	Local Truncation Error Calculation

	Problem Setup
	MMS Order of Accuracy Test Results
	MEAMMS Test Results With Leading Order Terms
	MEAMMS Test Results With Higher Order Terms
	Example of Where MMS Fails
	Zeroth-Order Coding Error
	First-Order Coding Error

	Coarse Code Verification
	Code Verification Conclusion and Future Work

	Solution Verification
	Introduction
	Solution Verification Method Development
	Derivation of Asymptotic Point
	Derivation of Solution Verification Methods
	Comparison Metrics

	Description of Test Problems
	Steady State
	Transient
	Initial and Boundary Conditions
	Numerical Settings

	Results
	Steady State
	Transient

	Conclusion and Future Work

	Verification and Validation Considerations
	Introduction
	Problem Description
	Synthetic Experimental Data Generation
	Computational Solution

	Results
	Proper V&V Process
	Improper V&V Process
	Full Scale Comparison

	Conclusion and Future Work

	Conclusion
	REFERENCES

