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ABSTRACT

In this thesis a theoretical framework for a spin-1 exchange dynamics is developed by the use of

effective Hamiltonian theory. We develop this framework through several applications beginning

with the standard Jaynes-Cummings model, which under the method of time-averaging leads to

the Hamiltonian described by one-axis twisting in a more efficient manner than standard adiabatic

elimination. The process of developing effective many-body spin Hamiltonian’s is then applied in

several contexts. The robustness of the systems we studied are demonstrated through the generation

of entangled states under various constraints.

We find that when fixed within a sub-manifold of the collective angular momentum states the

time evolution of minimally uncertain atomic states results in atomic cat states, which have been

utilized in a variety of contexts for precision measurements. More so, when the initial state is given

freedom to evolve between all angular momentum sub-manifolds large degrees of entanglement

results. We give analytic results for the case of two-atoms where the entanglement quantification is

given through the fidelity, and Schmidt number. This gives implications for measurement protocols

through Ramsey pulses, quantum simulators, and creation of spin-1 Bell states for teleportation.

Under different operating conditions, we demonstrate the emergence of electromagnetically

induced transparency(EIT) which provides a platform for quantum memory, polarization conver-

sion, and state transfer. A limitation of photonic processes is the short optical resonance lifetime,

however, our system is free of this issue due to the dispersive approximation constraining the sys-

tem to a decoherence free ground state manifold. As a result our EIT scheme can result in longer

storage times, and more efficient state transfer as decoherence due to spontaneous emission is not

the limiting factor.
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1. INTRODUCTION

Information since first introduced by Calude Shannon has been a main institute of study in

understanding how retrieving, storing, and passing information can be accomplished in the most

efficient manner without loss. Quantum information addresses these questions through a differ-

ent platform, one hallmarked by entanglement first introduced by Erwin Schrödinger. Quantum

mechanics has advantages over classical information theory through the use of this phenomena in

being able to perform classes of computations at exponentially faster rates. The photon has proven

to be a strong candidate as the medium for quantum information transfer when coupled to matter.

However, this idea while simple in theory, has proven to be difficult to realize due to decoherence

processes, and scale to large ensembles. An emerging technique for addressing these issues is with

superconducting circuits[1, 2]. The central goal of the present work is to analyze a different model,

spin-1 atoms, and extend the theory of effective spin-spin interactions.

In chapter 2 we introduce the basic concepts of standard quantum optics techniques. Begin-

ning from first principles we quantize the electromagnetic-field and derive its interaction with an

ensemble of spin-1
2

atoms. Then using a technique introduced by G. Agarwal [3], we show that in

a dispersive approximation the Jaynes-Cummings Hamiltonian [4] can be described by a spin-spin

exchange interaction mediated by the electromagnetic field. We then discuss a recent experimental

realization of this interaction from M.Norcia and J.Thompson et.al [5], where they demonstrated

one-axis twisting, and the emergence of a many-body energy gap reminiscent of condensed matter

systems. We conclude the chapter by showing the possible states that can result from the time

evolution, and how they can be applied to measurement schemes. This not only demonstrates

the power of spin theories but also introduces the mathematical formalism we extend to higher

dimensional spin systems.

Motivated by recent experiments out of Stanford where spin exchange interactions were ob-

served in a cold atomic cloud of spin-1 rubidium-87 atoms, we develop the theoretical underpin-

ning from first principles[6, 7]. We demonstrate that beginning from the atom-light interaction the
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manifold of excited states can be removed from the description through the use of time-averaging.

More so, we use the uniqueness that our effective Hamiltonian theory is structured to work over

many time-scales, which allows a second use of the formalism to remove the excited states. As

a result we have a description solely determined by the atomic degrees of freedom mediated by

intra-cavity photons. A consequence of this Hamiltonian is seen through the development of en-

tangled states in two different settings. First, we consider the case of a fixed symmetric angular

momentum manifold, where we are able to realize macroscopic superposition of states. Second,

we look the opposing case when the manifolds are allowed to mix, in which case we also observe

the emergence of highly entangled states which we characterize through different entanglement

measures.

The final chapter focuses on electromagnetically induced transparency, first introduced by S.

Harris[8]. The consequence of this resonant processes has had profound implications for quantum

information science through quantum state transfer, memory, and dark state polaritons[9, 10]. We

show that our model mimics the trilinear interaction similar to the one resulting from radiation pres-

sure in optomechanics[11]. However, atomic EIT is limited by the optical excited states lifetime

which eventually leads to decoherence. Optomechanical interactions occur at smaller frequencies

so the dampening is not as great, and can lead to longer coherence times. However, our system

is unique and EIT takes place within a decoherence free subspace, ideal for quantum information

perspectives.

While atomic EIT is limited by the optical excited states lifetime, optomechanical interactions

occur at lower frequencies, therefore, the resulting dampening is not decoherence inducing. The

uniqueness of our system is that EIT occurs between ground states, therefore, the space is protected

from decoherence, which has implications for more impactful quantum informational protocols.

2



2. ATOM LIGHT INTERACTION

The central theme of this thesis is to describe a new narrative of spin-1 interactions. However, it

is first instructive to draw out a story that has been told several times before,which is the interaction

between spin-1
2

atoms. The platform for these spin problems occur in a dispersive high-quality

cavity resonator. All narratives have characters, and the first we introduce is the cavity field which

is taken to be a standing wave. An ensemble of alkali-earth atoms will be the main character of

study throughout this thesis. The purpose of re-illustrating the spin-1
2

story is twofold. One, it

will allow us to introduce the various mathematical constructions we repeatedly use in the spin-1

case. Second, it will provide a firm base for us to refer back on when we begin describing the

consequences of spin-1 interactions.

The beginning of this chapter will first discuss the physical meaning of promoting the electro-

magnetic field to a quantum mechanical observable through the process of canonical quantization.

Section II. will be dedicated to the atom, and its interaction with the quantized field, demonstrat-

ing that the interaction is just an abstractification of an interacting harmonic oscillator. We then

conclude this chapter by discussing consequences from atom-light interactions, demonstrating its

utility by developing highly entangled states and their application to precision measurements.

2.1 The beauty of the Vector Potential

In classical electrodynamics the standard quantities of interest are the electric and magnetic

fields[12, 13]. However, in Quantum Mechanics we are interested in observables, thus what we

would like to achieve as a description of the electromagnetic field as an operator. Classicaly an-

alytic solutions for the electric and magnetic fields is done through the use of potential functions,

because in general directly determining ~E or ~B requires more difficult computations. In the ab-

sence of a local charge distribution the fields are determined through the vector potential using

the relations; ~E = −∂ ~A
∂t

and ~B = ∇ × ~A. Furthermore, it is more efficient to quantize through

~A and then perform the derivative instead of quantizing the fields individually. Then by the Leg-

3



endre transformation we convert from the Lagrangian picture to the Hamiltonian which we then

decompose into field operators.

In trying to develop a theory that treats the electromagnetic field as an observable, it is in

fact one of an algebraic origin. Consider a map given by an exponential function, which takes

compact intervals to the unit circle. This mapping is composed of elements from the Lie group

U(n), which is the unitary group [14]. Consider a local transformation by defining an element

of the unitary group that acts on the fields, g = eφ(x), where x is a spacetime coordinate. In

general the Hamiltonian for a field will depend on ψ(x) or ∇ψ. When our g acts as a global

transformation(independent of the spacetime-coordinates) then our Lagrangian will be invariant,

but when g depends on the coordinates the derivative will cause an in-homogeneous term to arise.

To deal with poor behavior, we introduce an affine connection which gives a precise meaning to

transporting data in a consistent manner, however, removing the mathematical jargon this is just

the four-vector potential Aµ = (A0, ~A).

With this we can define our gauge transformation by acting on the vector potential with g.

Aµ → gAµg
−1 + ig∂µg

−1

→ Aµ + ∂µφ(x)

(2.1)

Before we get lost in the trees of the math, remember we are trying to motivate why we want

to use the vector potential. One reason being that the connection under gauge transformations is

nothing but the standard transformation in electrodynamics. The second being because it allows us

to construct a new kind of derivative called the covariant derivative. The presence of this function

allows us to define a curvature, which is the electromagnetic field strength tensor, Fµν . Since this is

being derived from an invariant quantity of U(1) then necessarily our Lagrangian will be invariant

as well. The covariant derivative is defined to be, Dµ = ∂
∂µ
− iAµ. One can show that under this

definition the in-homogeneous terms will get cancelled under local gauge transformations. For a

complete geometric construction we define the curvature [14]

4



Fµν = i[Dµ, Dν ]

= ∂µAν − ∂νAµ
(2.2)

The operation defined above is not the operator commutator we are used to but a geometrical op-

eration known as the Lie Bracket between vector fields[14]. Mathematically, these derivatives are

passing information between the algebra and the group. This mathematical interlude was provided

to give a detailed explanation for why we are interested in the vector potential for quantization,

mainly to ensure the Lagrangian is invariant under local gauge transformations.

2.1.1 Electromagnetic Field as Coupled Oscillators

We consider the situation where our system is not near any local charge distributions, allowing

us to use the source free Maxwell Equations. We begin with the Lagrangian, which we know from

construction in the previous section is gauge invariant. Proceeding with a Legendre transformation

we derive the Hamiltonian through a canonically. This procedure results in a complete introduction

of the first character of this story, the field. We define the kinetic energy term in the Lagrangian

L =
−1

4µ0c
FµνF

µν (2.3)

Which when integrated over all of space, L =
∫
Ld3x gives the total Lagrangian. Upon minimizing

the action, S =
∫
Ld4x with respect to Ȧµ, we find the momenta to be πµ = δS

δȦµ
. In component

form we have, πi = −Ei
c

and π0 = 0, where we used F0i = −Ei and Fij = εijkBk, [1]. Note

how one of our momenta is zero, this is a result of our U(1) gauge invariance from the previous

section. The Legendre transformation takes our Lagrangian and moves it from configuration space

to phase space, resulting in a Hamiltonian described in terms of its conjugate variables. Resulting

5



in the electromagnetic energy density in classical dynamics

H =
1

2

∫ (
ε0E

2 +
1

µ0

B2

)
d3x (2.4)

Our goal is now to derive operator expressions for ~E and ~B such that the Hamiltonian is now

an operator function. As discussed previously we will utilize the vector potential since all other

quantities can be found from it. Beginning with the wave equation

(∇2 − 1

c2

∂2

∂t2
) ~A = 0 (2.5)

We imagine the system placed within a large box of V = L3 and apply periodic boundary condi-

tions resulting in plane wave solutions of the form, A(x, t) = 1√
ε0V

∑
Ak(t)e

ik·r where the wave

vectors obey, ki = 2πni
L

and ni is an integer. In order to arrive at 4.4 we applied a gauge fixing

condition. The reason for that is because when determining the equations of motion, the conju-

gate momenta with respect to the scalar potential is zero. Mathematically, this means in classical

phase space we can’t assign all the velocities to the momenta. So the necessity of a constrained

Hamiltonian must be introduced. Introducing Lagrange multipliers into the constrained Hamilto-

nian allows for a valid Legendre transformation. Following this process first laid out by Dirac, we

find the necessary constraints lead to fixing a gauge. In the Coulomb gauge the vector potential

satisfies, ∇ · ~A = 1√
ε0V

∑
ik · Ak(t)eik = 0 or that k · Ak = 0. This also means that there is no

longer a scalar potential, therefore, the vector potential is now a three-potential. This constraint is

what allows us to consider a basis of two orthonormal vectors which will become the polarization.

Plugging the solution for the vector potential into 4.5 we get

(
∂2

∂t2
+ ω2) ~A = 0 (2.6)
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Where we defined ω = ck. The equation above is nothing but the massless Klein-Gordon Equation

which can be easily solved with Fourier techniques

~A(x, t) =
1√
ε0V

∑
k,s

uks(t) ~εkse
ik·r + u∗ks(t) ~ε

∗
kse
−ik·r

(2.7)

Here we defined the mode function, uks = αkse
−iωt and sum over wave-vectors and polarizations.

Constructing the electric and magnetic field in terms of these modes as

~E =
i√
V ε0

∑
ks

ωksuks ~εkse
ik·r + C.C

~B =
i√
V ε0

∑
ks

uks(~k × ~εks)e
ik·r + C.C

(2.8)

Now inserting the above expressions into the Hamiltonian

H = 2
∑
ks

ω2uksu
∗
ks (2.9)

We can re-write this equation in a more familiar form by defining functions pks and qks that satisfy

the equations of motion, ∂qks
∂t

= pks and ∂pks
∂t

= −ω2qks. From this it leads, q = uks + u∗ks

and p = −iω(uks − u∗ks). Solving for the mode functions and inserting into 4.9 we recover the

Hamiltonian for a classical harmonic oscillator

H =
1

2

∑
ks

(p2
ks + ω2qks) (2.10)

Proceeding canonically we promote p and q to operators that satisfy, [qks, pk′s′ ] = ih̄δkk′δss′ . For-

mally they are written as

aks =
1

2ω
(ωqks + ipks)

a†ks =
1

2ω
(ωqks − ipks)

(2.11)
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Upon this promotion to operators we arrive at the quantized Hamiltonian for the electromagnetic

field

H =
∑
ks

ω(a†ksaks +
1

2
) (2.12)

Along with the operator description of the fields

~A =
∑
ks

√
1

2V ωε0
aks ~εkse

i(k·r−ωt) +H.C

~E = i
∑
ks

√
ω

2V ε0
aks ~εkse

i(k·r−ωt) +H.C

~B = i
∑
ks

√
1

2V ωε0
aks(~k × ~εks)e

i(kr−ωt) +H.C

(2.13)

This first section introduced the supplementary character for the story we are going to be discussing

in this thesis. However, we are interested in the atom and its interaction with the field. In the

following section we develop the theory of the atom, and derive the canonical model of spin-1
2

atoms. Following this we focus on developing some mathematical tools in the context of atomic

cat states, and Heisenberg limited measurements, that will be used in the spin-1 theory.

2.2 The Atom and The Field

In the previous section we developed a quantum mechanical description of the supporting char-

acter in our spin-1
2

story . In this section we will introduce the main character, the atom. Further-

more, this section will be to develop the dance between the atom and the field, which we can then

easily extend to the case of spin-1 atoms.

(Allow me to fade from the first person plural momentarily, and discuss the intuition for this inter-

action. Like the field being a harmonic oscillator, so is the atom, I imagine the atom containing a

small spring locked inside oscillating at a frequency ωa. Such that when interacting with the field it

causes this little spring to either advance or slow down its oscillation. We determined the field can

be described by an oscillator, which when coupled to the atom, it combines to a "big" oscillator
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Figure 2.1: A model of a spin-1
2

atom labelled by the ground state, |g〉 separated by a transition
frequency ωa.

where the spring has been damped to a detuned frequency.)

A spin-1
2

atom is the simplest model we can conceive. The structure is composed of two energy

levels, |g〉,|e〉 which spans the Hilbert space of dim(H) = 2N , where N is the total atom number.

The quantized field causes excitations of the electron leading to transitions between these levels.

Defining the zero-point energy of the atom to be in the middle of the transition, the Hamiltonian

takes the form:

Hatom = ωaSz (2.14)

Where Sz = 1
2
(|e〉 〈e| − |g〉 〈g|). Imagine we take the atom and place it inside a cavity motionless.

Initially the cavity is taken to be in a vacuum state with the atoms cooled down so that their center

of mass motion can be neglected. To this point we have taken the electric field to spatially vary

in the cavity, but in practice the wavelength of the light is magnitudes larger than the size of the

atom, therefore, the position dependence of the field can be neglected. This is known as the dipole

approximation[15]
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Figure 2.2: Atoms can be arranged on the node or anti-node of the cavity field, to maximize the
coupling the atom is usually placed at the anti-node. The coupling induces an atom-light interaction
term, g(S−a

†+ S+a), which causes the the excited and ground state manifold to be dressed by the
eigenstates of the Hamiltonian.

Hdip = −~d · ~E(r, t)

= −
√
ωc
2ε0

(S− + S+)dge(u(r)a(t) + u(r)∗a(t)†)

= (S− + S+)(g(r)a(t) + g(r)∗a(t)†)

= g(S−a
† + S+a)

(2.15)

Here S− = |g〉 〈e| and S+ = |e〉 〈g| are the raising and lowering spin operators for a single atom.

We also defined the mode function from 4.9, u(r) = eik·r√
V

, such that u(r) = 0 on the boundary of

the cavity walls and
∫
|u(r)|2d3r = 1. The coupling constant, g(r), arises at the location of the

atom on the wave and if the wavelength is in the visible spectrum it is much larger than the atoms

size, therefore, u(r) = u(0) = 1 so the position dependence is negligible. The reader will notice

that our final form for the interaction only involves two terms instead of four. The missing terms

correspond to S−a and S+a
†. The physical interpretation is as follows, when the atom transitions

from excited to ground state, a photon in the field is simultaneously annihilated. While the other

term conveys that the atom moves from ground to excited while a photon is created. When the

frequency of the atom and field are close, they correspond to non-resonant processes and as such

play a minor role in the evolution when compared to the resonant processes. Thus the final step

corresponds to neglecting these, hence making the rotating wave approximation[15]. We now can
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present the setting of the story with the full model describing a single atom interacting with a

single electromagnetic field mode, and each characters corresponding energies. This is a stripped

down version of QED known as the Jaynes-Cummings model[4] which to good approximation can

describe many phenomena in Quantum Optics

H = ωaSz + g(S−a
† + S+a) + ωca

†a (2.16)

2.2.1 Dispersive Interactions

In this section we turn to the investigation of a particular regime of the Hamiltonian derived in

the previous section. We eliminate the cavity field degrees of freedom through a new method of

time-averaging which is discussed in detail in the appendix. This procedure is equivalent to tracing

over the field variables in the density matrix. This collective interaction has been experimentally

powerful in the investigation of spin-squeezing, and quantum information[16, 5, 17].

Considering collective interactions by placing a large ensemble inside the cavity, and assum-

ing the cloud interacts identically with the field. Making a Markov-Approximation the cloud is

assumed to be dense so that the interactions take place on the same time-scale across the spatial

distance of the atoms[15].

H =
N∑
j=1

ωaS
j
z + gj(S

j
−a
† + Sj+a) + ωca

†a (2.17)

Then through a unitary transformation U = eiH0t where H0 = Hatom + Hfield we move into the

interaction picture, where we define the atom-cavity detuning as ∆ = ωc − ωa

Hint =
∑
j

gj(aS
j
+e

i∆t +H.C) (2.18)

In the dispersive regime the detuning is at a time-scale that is oscillating much faster than the scale
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of the coupling, and cavity linewidth, ∆� g, κ

Heff = −iHint

∫ t

0

dτHint(τ)

=
∑
ij

gigj
∆

(Si+S
j
− + a†a(Si+S

j
− − Si−S

j
+))

=
g2

∆
(J+J− + 2a†aJz)

(2.19)

When, ∆ is large, ei∆t, is oscillating harmonically compared to the time-scale of the dynamics of

the atoms, allowing the use of the time averaging. These methods have been developed in a varying

of contexts which give the same result, however, the strength of our method is in its simplicity

[18, 19]. Moving from line two to three we assume the coupling to be homogeneous throughout

the ensemble, and define the collective operators, J± =
∑N

i S
i
±. The final assumption we make

is that the cavity is initially prepared in vacuum so that the mean photon number, 〈0| a†a |0〉 = 0.

Thus our effective spin-spin interaction becomes

Heff =
g2

∆
J+J− (2.20)

Physically, this Hamiltonian is conveying the following fact about nature. When the ith atom emits

a photon into the cavity, the jth atom absorbs it. Thus, one can imagine two spins starting anti-

aligned, then when the interaction ensues, the arrows begin flip-flopping. The effective interaction

is describing spin flips mediated by the electromagnetic field. This Hamiltonian is the starting

point for the description of many beautiful phenomena in nature such as spin-squeezing, and non-

demolition [5, 11, 20, 21].

2.3 Experimental Analysis of Heff

A hallmark of Quantum optics is the study of coherence in atom-light systems, and of recent in-

terests has been to realize quantum simulators through effective interactions. Possible realizations

have been studied through phonon-mediated coupling in trapped ion systems, and direct atomic
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Figure 2.3: A diagrammatic description of 4.21, demonstrating how the cavity field mediates the
spin-spin interaction.

collisions. A new method utilizing the effective Hamiltonian in the previous section, demonstrated

tunable spin-spin exchange interactions on the clock transition of a superradiant laser [5].

The experiment is the same system we described above, where the lasing is occurring on the clock

transition of Strontium-87 in the ground state manifold. Upon tuning further off resonance the

cavity field can be eliminated and slaved to the atomic variables, which results in 4.21. Using the

angular momentum algebra we can re-write the Hamiltonian

Heff =
g2

∆
(J2 − J2

z + Jz) (2.21)

The final term in the Hamiltonian above just is a single particle rotation and can be neglected in

the large ensemble regime. The term, J2
z is a frequency shift which causes the states to undergo

one-axis twisting. The final term, J2 creates a many-body energy gap which prevents single par-

ticle dephasing. This similar interaction arises in the case of spin-1 atoms and it plays the role of
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fixing us in a decoherence free subspace.

This model can be mapped to the Familiar Heisenberg spin-chain which in the condensed mat-

ter community displays some well known properties. One, being a global spin-precession of the

collective Bloch vector, and second an opening of an energy gap. Both of these features are mea-

sured in the JILA experiment, and are a large step in developing new advances in atomic clock

technology, and precision measurements.

2.4 A Quantum Zoo

The remaining part of thus chapter on spin-1
2

atoms is dedicated to applying the formalism built.

First, we will introduce a zoo of states, starting with the atomic-coherent states, and their represen-

tation in the angular momentum basis, and subsequently we will demonstrate their evolution into

Atomic Cat States. These states are the analog of field cat states which were first experimentally

realized[13]. These highly entangled states have proved to be useful in precision measurements,

which we demonstrate theoretically can reach the Heisenberg limit.

2.4.1 A new basis

This Hilbert space is a vector space determined by the Lie group SO(3), whose infinitesimal

generators are, σj where j = 1, 2, 3 define the Pauli-matrices. This basis is isomorphic to SO(3)

because the commutator of the basis elements give the same description. SO(3) is the group of

three-dimensional rotations. Thus we can identify our Hilbert space geometrically as the sphere.

Furthermore, any single spin-1
2

state can be parametrized as a point on the sphere as[22]

|θ, φ〉 = cos
θ

2
|g〉+ e−iφsin

θ

2
|e〉 (2.22)

2.4.2 Dicke States

In this model we have been considering an ensemble of N two-level atoms. The most general

state for the ensemble would require specifying the state for each individual atom, however, in a

course-grained approximation it is adequate enough to consider the sum over all atoms. We define
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the collective atomic operators as

J± =
N∑
j=1

Sj±

Jz =
N∑
j=1

Sjz

(2.23)

Where the spin operators are in terms of Pauli matrices, S± = σ±
2

. With this description if we also

make the assumption the atoms are identical, then we need not to account for their spatial location

since they will be interacting with the same local environments. This set of operators obeys the

commutation relations,[Ji, Jj] = iεijkJk, [J+, J−] = 2Jz, and [Jz, J±] = ±J±.

A basis for the collection of two-level atoms can be assigned as

|µ1〉1 |µ2〉2 |µ3〉3 ... |µj〉j ... |µN〉N (2.24)

Where in the above each µj can take the values, |e〉 or |g〉 respectively. There are then 2N possible

states, which we define through a product state

|v;M〉 =
⊗
k∈v

|e〉k
⊗
k 6∈v

|g〉k (2.25)

with the vector ~v=j1, ..., jN/2+m which denotes the number of atomic labels, and the numberN/2+

m is the total population in the excited states, and m = Ne−Ng
2

is the atomic inversion number.

These product states are eigenstates of the collective inversion operator

Jz |v;m〉 = m |v;m〉 (2.26)

Algebraically these operators form a basis for the su(2) algebra, and in representation theory,

a top or bottom weight is chosen from which a ladder of eigenvalues and eigenvectors can be

constructed. This "weight" is the just an eigenvalue of the "weight-space." The algebra su(2) has

15



a finite irreducible representation, therefore, contains a highest weight state. When this state is

acted on by the raising operator it has a zero-eigenvalue. Physically, this puts a restriction on the

energy-eigenstates of our problem. The raising operator cannot create states above the total particle

number:

J+

∣∣∣∣N2 ;
N

2

〉
= 0 (2.27)

We can move up and down the ladder of inversion states by applying the raising or lowering

operator. The issue is that these operators in general connect one initial product state to a whole

manifold of final states which is inconvenient. To resolve this we can then introduce a new basis

which is now an eigenstate of the Casimir operator of su(2), which is the total collective spin,

J2 = J2
x + J2

y + J2
z . We define the states as

J2 |λ, j,m〉 = j(j + 1) |λ, j,m〉

Jz |λ, j,m〉 = m |λ, j,m〉
(2.28)

The allowed values of J are N
2
, N

2
−1, .. and orbital angular momentum, m, are bounded by−j, j+

1, ...j. The variable λ distinguishes between the degenerate j,m states which we will omit from this

point further to follow standard convention. The ladder operators act on the Dicke states as

J+ |j,m〉 =
√

(j −m)(j +m+ 1) |j,m+ 1〉

J− |j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉
(2.29)

This algebra now only connects between single states instead of product states. We can construct

these in terms of a generalization on the Bloch sphere by applying a unitary operator to the Dicke

states defining the atomic coherent states[22]

|θ, φ〉 = D(η) |j,−j〉 (2.30)
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where D(η) = exp(ηJ+ − η∗J−) and the constant η = θ
2
e−iφ. This unitary operator can be

disentangled by using the Baker-Campbell Hausdorff formula to be

D(η) =
exp(ηJ+)

(1 + |η|2)j
(2.31)

Upon which application to the Dicke state results in the atomic coherent state for an ensemble of

atoms

|θ, φ〉 =

2j∑
k

(
2j

k

)1/2

sink
θ

2
cos2j−k θ

2
e−ikφ |j, k − j〉 (2.32)

This collective expression is in terms of the basis states for the Casimir operator and Jz. These will

be the starting point for our development of atomic cat states in the following section.

2.4.3 Atomic Cat States

In the previous section we developed a way to represent an ensemble of atoms in the Dicke

basis, which is algebraically is related to the su(2) angular momentum algebra. The initial state

for the atoms is the atomic coherent state in this basis, which we will now study the consequences

when evolving under non-linear evolution.

|θ, φ〉 =

2j∑
k

(
2j

k

)1/2

sink
θ

2
cos2j−k θ

2
e−ikφ |j, k − j〉 (2.33)

Evolving under the Schrodinger Equation using the effective Hamiltonian 4.21

|ψ(t)〉 = e−iHeff t |θ, φ〉

= e−iHeff t
∑
k

(
2j

k

)1/2

sink
θ

2
cos2j−k θ

2
e−ikφ |j, k − j〉

=
∑
k

(
2j

k

)1/2

e−ikφ
′

sink
θ

2
cos2j−k θ

2
e−iτ(2j+t)−k2 |j, k − j〉

=
∑
k

(
2j

k

)1/2

e−ikφ
′

sink
θ

2
cos2j−k θ

2
e
iπ
m
k(k+1) |j, k − j〉

(2.34)
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Defining a new phase, φ′ = φ + π
m

(2j + 2) and set τ = tg2

∆
= π

m
. To deal with the quadratic

nature we check the periodicity of the unitary operator e
iπ
m
k(k+1)[23]. Which allows the application

of Fourier decomposition by splitting the evolved state into even/odd Fourier series. First consider,

k → k +m

e
iπk
m

(k+1) = e
iπ(k+m)

m
(k+m+1)

= (−1)m+1e
iπk
m

(k+1)

(2.35)

e
iπk2

m = e
iπ
m

(k+m)2

= (−1)me
iπk
m

(k+1)

(2.36)

From the above results we see in the first case that our state will revive when m is an odd integer,

and the second when m is an even integer. Revival is when we begin with the initial state and after

a period under evolution it will return back to this state. In this problem we are beginning with an

minimally uncertain state and we expect to return after a given amount of time known as the revival

time which here is 2π[24]. We decompose the evolution into even and odd Fourier components as

e
iπ
m
k(k+1) =

m−1∑
q

f (o)
q e

2πiq
m

k

e
iπ
m
k2 =

m−1∑
q

f (e)
q e

2πiq
m

k

(2.37)

Where f oq , f eq are even and odd coefficients respectively as

f (o)
q =

1

m

m−1∑
k

e
−2πiq
m

ke
iπ
m
k(k+1)

f (e)
q =

1

m

m−1∑
k

e
−2πiq
m

ke
iπ
m
k2

(2.38)
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From a mathematical perspective this is useful because we took a result that was quadratic in the

eigen-energies and linearized them through a decomposition. But, this is an insightful result from

a physical perspective as well. Imagine you want to run an experiment and you are interested in

determining a particular state that is a result of some non-linear evolution. Provided it is periodic

you can determine the collapse and revival times which allows the experimentalist to probe time

their dynamics systematically. Beginning from an atomic coherent state the evolution has resulted

in even and odd coherent states that are out of phase with one another.

|ψ(t)〉odd =
m−1∑
q

f (o)
q |θ, φ+

π

m
(2j + 2− 2q) >

|ψ(t)〉even =
m−1∑
q

f (e)
q |θ, φ+

π

m
(2j + 1− 2q) >

(2.39)

A method to see the cat states arise under time evolution is to look at the diagonal components

of the density matrix, which represent the population statistics of the atoms. To determine this

we use a quasi-probability distribution [25, 22], known as the Q-function. There are several other

functions of merit to quantify the dynamics of the state such as the P-representation or Wigner

function. The problem with the P-representation is that this function need not always exist, on

the other hand the Wigner function, while it always exists, it strays away from the meaning of

probability distribution as it can become negative. Also, since our goal is to look at systems of

higher spin the Q-function is easy to calculate numerically, while the Wigner function depends on

the algebraic properties of the group because it ultimately is an integral over the group volume(Haar

measure), which are notoriously difficult to calculate for higher SU(N) groups[26, 27, 28]. The

Q-function in terms of the angles defining the atomic coherent state is defined as

Q =
2j + 1

4π
〈θ, φ| ρ |θ, φ〉 (2.40)

Here ρ is the density matrix defined to be, ρ = |ψ(t)〉 〈ψ(t)|. In order to see the how the state

evolves we calculate the density matrix at various times on the interval, [0, 2π] and plot the Q-
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Figure 2.4: Q-function from simulation time-evolution of atomic-coherent states with the effective
Hamiltonian. The top position is the initial atomic coherent state in

∣∣−π
2
, π

2

〉
. The time-evolution

is seen by moving clockwise, at which the bottom position we see two distinct distributions which
represent the coherent superposition of states out of phase. At t = τ∆

mg2
= 2π we recover the initial

state showing the periodicity.

function on the Bloch sphere (Fig 2.4). In the diagram we see that initially the ensemble starts

localized, and upon time evolution the distribution is slowly separates until we see two well local-

ized distributions. At this point the state is in a superposition of atomic coherent states, known as

an atomic cat state. Continuing the evolution at t = 2π we have a complete revival to the initial

state.

Several theoretical schemes have been put forward to generate these states and have recently

even been verified an experimental setting[29, 30], and now that we have mathematically demon-

strated their possibility of existence, we would like to discuss what makes them difficult to detect.

The evolution time is defined as t = π∆
mg2

. If one wants to experimentally create these states, we

need to generate coherence between the atoms as fast as possible in order to prevent rapid de-

coherence due to heating and atomic collisions. To achieve this we need our time to be small

which implies that g must be large, however, this parameter is influenced by experimental tech-
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nicalities and it wasn’t until superconducting cavities were utilized did this regime become more

accessible[31, 32].

2.4.4 How precise can we be?

The final portion of this chapter is dedicated to an application of these states, and how powerful

they can be in non-demolition schemes. Imagine we want to create a new device, that requires

precise measurements of particular quantities such as time. Furthermore, we want an atomic clock

that gives measurements proportional to 1/N where N is the total number of atoms in the cavity.

Achieving this value is known as the Heisenberg limit which is an upper bound on how precise a

measurement can be as a result of the energy-time uncertainty principle. In this final section we

demonstrate how cat states result in measurements of an arbitrary phase of an interferometer that

can reach this bound. The experiment we are considering is shown in the figure. Consider input

light through a beam-splitter where we interested in measuring a random phase. We consider the

atoms to be initialized in a product state

|ψ(0)〉 =
N∏
j=1

|g〉j (2.41)

To generate the atomic cat states we apply a non-linear rotation on |ψ(0)〉

|ψ(t)〉 = e
iπ
2
J2
x |ψ(0)〉 (2.42)

Utilizing our mathematical tricks from the previous sections we want to linearize this operation.

Writing, Jx = e
iπ
2
JyJze

−iπ
2
Jy , we see that the eigenvalues of this operator are going to be integers

proportional to Jz. Therefore, J2
x will be proportional k2 where k is an integer, which from the

previous section is periodic in an integer m

e
iπ
m
J2
x =

m−1∑
q

f (e)
q e

2πiq
m

Jx (2.43)
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We now specify to the case of m=2 and derive analytic solutions

e
iπ
2
J2
x |ψ(0)〉 =

m−1∑
q

f (E)
q e

2πiq
m

Jx |ψ(0)〉

=
1√
2
e
iπ
4 |ggg..〉+

1√
2
e
−iπ
4 eiπJx |ggg..〉

=
1√
2
e
iπ
4 (|ggg..〉+ (i)N−1 |ee..〉)

(2.44)

We saw in deriving the Dicke States we can move between the computational and angular momen-

tum basis by unitary operators. The cat states derived in the previous rotate into the states above

under e
−iπJy

2 . Physically, this means we can create another state to add to our quantum zoo, known

as a GHZ. The GHZ state is just the atomic cat state in a rotated basis, where in this problem the

angles are θ = π/2 and φ = −π/2[25]. Next we perform the step that introduces the phase to be

measured

eiφJze
iπ
2
J2
x |ψ(0) > =

1√
2
e
iπ
4 (e

−iN
2
φ|gggg... > +(i)N−1e

iN
2
φ|eee... >) (2.45)

Where eiφJz = eiφ
∑
σz =

∏
eiφσz . To complete the measurement scheme we apply the inverse

non-linear transformation which amounts to i going to −i.

|ψout〉 = e
−iπ
2
J2
xeiφJze

iπ
2
J2
x |ψ(0)〉

= cos

(
N

2
φ

)
|gg..〉+ iN sin

(
N

2
φ

)
|ee..〉

(2.46)

To characterize the precision measurement we need to determine the sensitivity of our phase by

applying the error-propagation formula, by first determining the variance of the collective inversion

operator

〈ψout| Jz |ψout〉 = −N
2

cosNφ

∆Jz =

√
〈ψout| J2

z |ψout〉 − 〈ψout| Jz |ψout〉
2

(2.47)
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With the above result we find the sensitivity to be

∆φ =

√
∆Jz

(∂〈ψout|Jz |ψout〉
∂φ

)2

=
1

N

(2.48)

Furthermore, there highly entangled states played a major role in this scheme reaching the upper

bound in precision measurement. This theoretical work has recently been carried out in a variety

of experiments[33, 34, 35, 36].

This chapter primarily was to introduce the simplest atom-light interaction; an ensemble of

spin-1
2

atoms interacting with a single cavity field. We then derived atomic cat states through the

evolution of an effective spin-spin interaction. These then proved to be valuable in a particular

measurement scheme where we found that in a beam-splitter we can reach the Heisenberg limit.

The remainder of this thesis is focused on spin-1 atoms, and its interaction with the electromagnetic

field. We focus on a first principle derivation of the effective spin-spin interaction and demonstrate

how we can realize spin-1 cat states in a symmetric subspace, and how we can map the physics to

a optomechanical interaction and realize electromagnetically-induced transparency.
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3. SPIN-1 THEORY

3.1 Spin-1 Interactions

A central goal of quantum information is to study coherence and its consequences. Applica-

tions for systems demonstrating stronger coherence include macroscopic states, quantum memory,

and state transfer[37, 9, 10]. A central problem with the system we described in the previous

chapter is spontaneous emission, while experimentally the dynamics can occur in a ground state

manifold, there is still heating from the transitions. Heating leads to rapid decoherence, which pre-

vents the creation of long lived states for the applications above. In this chapter we theoretically

describe a platform that is robust to decoherence due to the absence of spontaneous emission in the

ground state manifold. First, we give a description of the atom-light interaction for spin-1 atoms

and a single cavity mode through the dipole Hamiltonian. We show that in the dispersive regime

we can adiabatically eliminate the excited state leaving a Hamiltonian described completely by the

ground states. We end the chapter by changing from the computational basis to a collective spin

description.

3.1.1 Spin-1 Model

The model we are going to derive is to represent an ensemble of spin-1 atoms interacting with

a quantized cavity mode. The cavity field is taken to be quantized along the x-direction with

polarizations in the y direction denoted as horizontal and z direction as the vertical. The starting

point is the quantized electromagnetic field

~E(x, t) = i

√
h̄ωc
2εo

∑
σ

(
aσ ~εσu(x)− a†σ ~ε∗σu(x)∗

)
= i

√
h̄ωc
2εo

(
(ay ~εy + az~εz)u(x)− (a†y ~ε

∗
y + a†z~ε

∗
z)u(x)∗

) (3.1)

Here the mode functions are defined as, u(x) = eik·x√
V

with the normalization
∫ L

0
|u(x)|2d3x = 1.

Our first approximation to the theory is that for an atomic system k · x is going to be small number
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Figure 3.1: The cavity field(red) is taken along the x-direction, with the atoms(orange) places in
the cavity. We model an atom as an excited and ground state manifold. The excited state is taken
to be F = 0, mf = 0 angular momentum and ground state F = 1, mf = −1, 0,+1.

because k · x = 2π
λ
ao where λ is the wavelength of the cavity field and ao is the Bohr Radius[15].

Provided the light field is in the visible spectrum, the wavelength is much larger than the size of

the atom. This allows us to set u(x) = u(0) = 1 which is the electric-dipole approximation. We

now construct the dipole operator by applying the identity to both sides of d̂ and using the fact that

transitions within the ground state manifold are dipole forbidden

~d = 〈e| ~d |0〉 |e〉 〈0|+ 〈e| ~d |+〉 |e〉 〈+|+ 〈e| ~d |−〉 |e〉 〈−|+H.C (3.2)

The dipole-interaction is then taken to be

Hdip = −q~r · ~E(x, t) (3.3)
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Using the definition of our above operators for the field and dipole

Hdip = g0 |e〉 〈0| az + g∗0 |0〉 〈e| a†z + g+ |e〉 〈+| ay + g∗+ |+〉 〈e| a†y + g− |e〉 〈−| ay + g∗− |−〉 〈e| a†y

(3.4)

In deriving the Hamiltonian above we considered the model atom to be rubidium-87 where

the excited state manifold consisting of a single level is given by F = 0 and mf = 0[38]. The

ground state manifold is then, F = 1 and respectively all orbital angular quantum numbers mf =

−1, 0,+1, see 3.1. Then using our defined coordinate system the only non-zero matrix elements

are given by; 〈e| (z · ~εz) |0〉, 〈e| (y · ~εy) |+〉, 〈e| (y · ~εy) |−〉, along with their complex conjugates. The

effective couplings are defined as, gf = q
√

h̄ωc
2V εo

from which it follows: go = −igf 〈e| (z · ~εz) |0〉,

g+ = −igf 〈e| (y · ~εy) |+〉, and g− = −igf 〈e| (y · ~εy) |−〉. In arriving at Eq 3.4 we made one other

approximation which are the terms that go as, |e〉 〈0| a†z and |0〉 〈e| az along with all permutations of

the states. If the frequency of the field and the atom are nearly resonant these terms will correspond

to non-resonant terms and thus will play little role in the evolution of the system, and so we can

neglect them[15]. With the atom-light Hamiltonian we now write down the rest of the system, for

the field and atomic energy levels

Hfield = ωc(a
†
yay + a†zaz)

Hatom =
∑
i

ωi |i〉 〈i|
(3.5)

Here ωi is the atomic frequency and i indicates the level, for example |e〉 〈e|, not the atom

number, and ωc is the cavity frequency. For the remainder of this chapter we will consider an

ensemble of atoms in the cavity unless stated otherwise. The atomic cloud is taken to be dense so

that we can assume a Markov approximation for how the atoms interact with the field mode. We

then sum over all atoms and define, Sij = |i〉 〈j| for convenience. It is important to point out that
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these are not collective operators

Hfield = ωc(a
†
yay + a†zaz)

Hatom =
∑
i

Sijjωj

Hdip =
∑
i

g0S
i
e0az + g∗0S

i
0ea
†
z + g+S

i
e+ay + g∗+S

i
+ea

†
y + g−S

i
e−ay + g∗−S

i
−ea

†
y

(3.6)

It is now most convenient to work in the interaction picture by applying a transformation using the

free Hamiltonian.

Hint =
∑
i

g0S
i
e0aze

i∆t + g∗0S
i
0ea
†
ze
−i∆t + g+S

i
e+aye

i∆t+ = g∗+S
i
+ea

†
ye
−i∆t + g−S

i
e−aye

i∆t + g∗−S
i
−ea

†
ye
−i∆t

(3.7)

In 4.7 ∆ = ωi − ωc is the atom-cavity detuning. In deriving the above equation we used

that an operator transforms as, O(t) = eiHtOe−iHt and that the commutation relation between the

pseudo-spin operators are [Sij, Skl] = δkjSil− δilSkj . We now make a further approximation to the

theory which is when the detuning is the dominating time-scale, ∆ � gi, κ where κ is the cavity

line-width. In this dispersive approximation the exponential oscillate harmonically, allowing the
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application of our time averaging procedure, described in Appendix A.

Heff = Hspon +Hstark +HRaman +Hcoupling

Hspon =
∑
ij

g+g
∗
+

∆
Sie+S

j
+e +

g−g
∗
−

∆
Sie−S

j
−e +

g−g
∗
+

∆
Sie+S

j
−e +

g+g
∗
−

∆
Sie−S

j
+e +

g0g
∗
0

∆
Sie0S

j
0e

Hstark =
∑
ij

g+g
∗
+

∆
(Sie+S

j
+e − Si+eS

j
e+)a†yay +

g−g
∗
−

∆
(Sie−S

j
−e − Si−eS

j
e−)a†yay +

g0g
∗
0

∆
(Sie0S

j
0e − Si0eS

j
e0)a†zaz

HRaman =
∑
ij

−
g−g

∗
+

∆
Si+eS

j
e− −

g+g
∗
−

∆
Si−eS

j
e+a

†
yay +

g+g
∗
−

∆
Sie+S

j
−e +

g−g
∗
+

∆
Sie−S

j
+ea

†
yay

Hcoupling =
∑
ij

g0g
∗
+

∆
Sie0S

j
+ea

†
yaz −

g+g
∗
0

∆
Si0eS

j
e+a

†
zay +

g0g
∗
−

∆
Sie0S

j
−ea

†
yaz −

g−g
∗
0

∆
Si0eS

j
e−a

†
zay

+
g+g

∗
0

∆
Sie+S

j
0ea
†
zay −

g0g
∗
+

∆
Si+eS

j
e0a
†
yaz +

g−g
∗
0

∆
Sie−S

j
0ea
†
zay −

g0g
∗
−

∆
Si−eS

j
e0a
†
yaz

(3.8)

The interaction between spin-1 atoms is more complicated than the Jaynes-Cummings effective

theory because higher multipole moments from the electromagnetic field are manifesting. Later in

the chapter, we show these are coming through as second rank tensors in the atomic field operators.

We can simplify by expanding the sum into i = j and i 6= j, the latter term vanishes in all terms

above except for the spontaneous emission

Hspon =
∑
i 6=j

2g2

∆
Sie0S

j
0e +

g2

∆
Sie+S

j
+e +

g2

∆
Sie−S

j
−e −

g2

∆
Sie−S

j
+e −

g2

∆
Sie+S

j
−e

+
∑
i

2g2

∆
Siee +

g2

∆
Siee +

g2

∆
Siee

Hstark =
∑
i

g2

∆
(Siee − Si++)a†yay +

∑
i

g2

∆
(Siee − Si−−)a†yay +

∑
i

g2
0

∆
(Siee − Si00)a†zaz

HRaman =
∑
i

g2

∆
(Si+− + Si−+)a†yay

Hcoupling =
∑
i

i
√

2g2

∆
(Si+0 − Si−0)a†yaz +

i
√

2g2

∆
(Si0− − Si0+)a†zay

(3.9)

In chapter 1 we found that it was easier to deal with dynamics when working in the collective

angular momentum basis. Therefore, we determine a transformation from the computational to
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angular momentum basis in the following. The spin-1 algebra will be discussed in more depth in

later chapters, so we just quote the form of the operators here. F j
z = |+〉 〈+|j − |−〉 〈−|j and

F j
+ =
√

2(|+〉 〈0|+ |0〉 〈−|)j , F j
− =
√

2(|−〉 〈0|+ |0〉 〈+|)j . Using non-linear combinations of the

operators we can construct the Sij in terms of these. For example the states, Sj0+ =
F j−F

j
z√

2
, Sj0− =

−F j+F
j
z√

2
. We then define the collective operators, F =

∑N
j=1 F

j . We then make an approximation

to the excited states, since we are working in the regime, ∆/g >> κ, the probability that the atom

reaches the excited state manifold is negligible,therefore, we neglect terms with |e〉 〈e|

Hstark = −g
2

∆
F 2
z a
†
yay −

2g2

∆
(1− F 2

z )a†zaz

HRaman =
g2

∆
(F 2

x − F 2
y )a†yay

Hcoupling =
−g2

∆
((a†zay + a†yaz)Fy + i(FxFz + FzFx)(a

†
zay − a†yaz))

(3.10)

Before we proceed in adiabatically eliminating the cavity modes, and discussing a more phys-

ical picture. Lets discuss why the Hamiltonian takes the form that it does. In the above equations,

the Hamiltonian is constructed of three types of terms; scalar, vector, and tensor. We will discuss

each of these in succession and their relevance to experimental situations.

First, the scalar term arising in the Stark shift Hamiltonian. The Hilbert space structure is given

by, Id⊗ a†yay. Theoretically, and experimentally we are interested in the observables related to the

atomic degrees of freedom, and since this term is proportional to the identity on the atomic Hilbert

Space and can be eliminated by tuning a probe to the magic-zero or tune-out wavelength[39, 40,

41].

Second, the vectorial term which is linear in the atomic operators admits a nice interpretation

in a classical electrodynamics. Noticed first by Faraday, when a medium subjected to light and

a magnetic field it causes the plane of polarization to undergo a rotation[42]. This is what the

vectorial term is telling us, the field propagating in the x-direction undergoes a rotation by the

interaction with the atoms in the cavity. In optics this interaction has played a fundamental role

in non-demolition of quantum spin systems[43, 44] and will be our main course of study in the
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remaining portion of this thesis.

Finally, the tensor terms which contains all the quadratic operators. While vector terms was

rotating the circular modes of the field, these are doing the same except now to the elliptical

modes arising from the quadrapole moments of the field. Theoretically these terms are hard to

deal with if we want to develop an only spin degree system. It turns out that experimentally the

procedure of dynamic decoupling[21] for pulsed measurement schemes will eliminate this term. It

was demonstrated that this term in general vanishes if the probe field and externa1 magnetic field

are at ArcTan(
√

2) to one-another[45, 46]. Furthermore, for the remainder of this thesis we will

focus on the vector term, and how we can realize spin-spin interaction from it.
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4. PHOTON MEDIATED INTERACTIONS BETWEEN SPIN-1 ATOMS

In the previous chapters we dealt purely with the Hamiltonian describing the atom and the

light, we found that the physics of this interaction can be mapped classically to the Faraday Effect,

along with higher quadrupole moments. Using experimental techniques for the type of problem

we are interested in, we neglect higher order corrections and purely focus on the vector term.

In this chapter we are going to describe this interaction in perturbation theory by moving into

the dispersive regime, allowing us to apply the method of time-averaging. Through adiabatic

elimination of the fields we derive a Hamiltonian describing spin flips between spin-1 atoms, which

will resemble the physics of what we did in Chapter 1. With this model we will investigate certain

consequences. First, we will investigate the preparation of highly entangled states when working in

a fixed angular momentum manifold. Next, we will look into the story of when we allow angular

momentum mixing, and finally we discuss how one may develop electromagnetically induced

transparency, which mimics interactions in optomechanical systems.

4.1 Spin-1 Model

An outstanding goal of physics is to be able to encode information in highly entangled states

with long coherence times. However, entanglement is a non-local process while the interactions

are necessarily local which in turn puts a restriction on the allowable states. In this section we

derive an effective non-local interaction by eliminating the cavity modes, resulting in a pure spin

degree of freedom system. These sort of interaction are only recently being engineered in experi-

mental setting first used for quantum metrology on atomic clock transitions[5, 20], and processes

analogous to spin-mixing in Bose-Einstein Condensates[47, 48]. We find that these states are par-

ticularly useful for replicating interactions similarly found in optomechanical settings.

4.2 Adiabatic Elimination of Cavity modes

The scheme for generating spin-spin interactions is given in the 4.1. There is a Fabry-Perot

cavity supporting an electromagnetic field propagating in the x-direction. We then consider a
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Figure 4.1: Depiction of the system being studied. A dispersive high quality resonator being driven
by a control field polarized in y. An applied static magnetic field in z causes the degenerate ground
states to split by an energy gap of the Zeeman frequency.

static magnetic field applied perpendicular to the cavity axis in z. The Raman processes arise from

a strong control field applied with polarization in the y-direction. This results in the Hamiltonian

given by

HAL =
−g2

∆
((a†zay + a†yaz)Fy

HB = ωzFz

Hd = iεy(a
†
ye
−iωdt − ayeiωdt)

Hf = ωc(a
†
yay + a†zaz)

(4.1)

Where the angular velocity of the magnetic field is, ωz = −γB where γ is the gyromagnetic ratio

for the atom, and finally εy =
√

2κP
ωd

. In the previous definition, P is the power of the drive field,

κ is the linewidth of the field, and ωd is the drive frequency. We take the drive field to be strong so

that we can approximate it by a classical field in steady state. To determine the approximate steady
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state value we derive the Heisenberg equation of motion and use the ansatz, ay = αye
−iωdt

day
dt

= i[H, ay] + κ([a†y, ay]ay + a†y[ay, ay])

= (−κ− iωc)ay + εye
−iωdt

(4.2)

Which by setting to zero with the ansatz we find αy = εy
κ+i(ωd−ωc)

. Going into the interaction

picture and defining the cavity-drive detuning, δ = ωd − ωc, our Hamiltonian becomes

H =
Ω

2i
(a†zαyF+e

−i(δ+ωz)t − azα∗yF−ei(δ+ωz)t − a†zαyF−e−i(δ−ωz)t + azα
∗
yF+e

i(δ−ωz)t) (4.3)

The generation of coherent interactions is a result of the drive field being off Raman resonance.

Tuning the drive field to δ results in the two photon Raman resonance detuning, ∆+ = δ + ωz and

∆− = δ−ωz. When on two-photon resonance we expect the system to be in a superradiant regime,

but as the frequency of the fields get increased the decay gets suppressed leading to coherent

dynamics in the ground state manifold[6]. Hencefourth, the Hamiltonian takes the form

H =
Ω

2i
(a†zαyF+e

−i∆+t − azα∗yF−ei∆+t − a†zαyF−e−i∆−t + azα
∗
yF+e

i∆−t) (4.4)

We are again faced with the situation where we have fast oscillating exponential when ∆± � εy,

allowing us to apply the time-averaging procedure[3]. Upon doing the calculation, we get terms

that appear as, ei(∆+±∆−)t. We cannot just assume that these terms will average to zero based

off of previous approximation to eliminate the excited states. For the equation below to be valid,

the systems need to be far off of two-photon Raman resonance. The reason for this is that as we

approach the resonance condition the system induces superradiant decay. To achieve the former

we make a second time-scale approximation and require, |∆+ ±∆−| � |Ωαy|. Provided, this
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holds the exponential’s can be taken to be zero, and the resulting Hamiltonian is

H =

(
Ω

2i

)2
(
|αy|2

∆+

a†zazF+F− −
|αy|2

∆+

aza
†
zF−F+ +

|αy|2

∆−
a†zazF−F+ −

|αy|2

∆−
aza

†
zF+F−

)
(4.5)

To complete the derivation we make a final approximation to eliminate the fields. If az is initially

in vacuum, then, 〈0| a†zaz |0〉 = 0 and 〈0| aza†z |0〉 = 1 resulting in

H =
|Ωεy/2|2

κ2 + δ2

(
F+F−
∆−

+
F−F+

∆+

)
(4.6)

This pairwise interaction is interesting because the coupling is controlled by the drive field ampli-

tude, where the sign of the interaction can be varied depending on the two-photon detuning. More

so, upon a transformation this effective Hamiltonian can be expressed as a spin-1 Heisenberg XY

with a transverse magnetic field in z. The sign of the interaction then determines if it ferromag-

netic or anti-ferromagnetic, which is demonstrated in the experiment by E.Davis et.al where they

saw the magnetization flip between ferromagnetic and anti-ferromagnetic order as the cavity-drive

detuning was swept through resonance. The spin-flip process is seen by hopping between the sites

mediated by an intra-cavity photon. Interestingly, in the experiment [6] they found that the inter-

actions feel a time-dependent spatial-gradient on the cloud on the time-scale of the spin exchange.

The atoms probabilistically were hopping towards the left edge of the cloud, the reason for this

is that coupling is not homogeneous. In the cavity the ensemble is initially displaced from cavity

center causing the excitations to "prefer" a direction to hop initially.

4.2.1 Symmetric Dicke States and Geometry

Before we discuss physical consequences of the Hamiltonian, first we need to understand the

Hilbert Space where everything is living a little bit better. The states in Chapter 1. composing

spin-1
2

particles have the Pauli matrices as the basis of the algebra along with the identity. These

correspond to the Lie group SU(2) which are isomorphic to the sphere. However, by merely
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moving from n=2 to n=3 the group SU(3) and its corresponding algebra become a bit more com-

plicated, I am not sure about the reader but we have a hard time visualizing an eight dimensional

sphere where these states live. The nice aspect of such a large space is that it can be decomposed

into many smaller spaces. If we pick a specific angular momentum level F, then provided the mea-

surement times are faster than 1/Γ where Γ is the scattering rate, then the system will remain in

the same manifold. Algebraically, this means that we are working in a symmetric subspace, which

is well described in terms of Dick-States. The reason we can ultimately use these states, is because

SU(3) can be decomposed into several representations which are isomorphic to SU(2). Through

various combinations of basis matrices of SU(3) we can create symmetric spaces that are alge-

braically the same as the spin-1/2 algebra. If we fix a specific angular momentum then we are pro-

jecting from our total space into one of these spaces. The spin-1 algebra is span{F 2, Fz, F+, F−}.

We can then develop how these act on the angular momentum states

F 2 |F,m〉 = F (F + 1) |F,m〉

Fz |F,m〉 = m |F,m〉

F± |F,m〉 =
√
F (F + 1)−m(m± 1) |F,m± 1〉

(4.7)

Where the allowed values ofF are {N ,N−1,N−2, ...0} andmf is constrained to be {−F, ..0, ..F}.In

the following section we will utilize these relations to explicitly derive the manifold of states for

two atoms and demonstrate how to connect the angular momentum description with the standard

computational basis.

4.2.2 Two-atom Spin-1 Dicke-States

The symmetric manifold used is F = N where N is the total number of atoms, so for N = 2

there will be three manifolds, F = 2, F = 1, F = 0. Once we define the relations for these

states, we will determine the construction of Atomic-spin cat states for the F = 2 manifold.When

constructing a space of eigenvectors for an algebra, we have to first specify either the lowest weight

or highest weight state. Then by repeated application of the raising or lowering operator we can
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construct a ladder of states inside our Hilbert Space. For N = 2 we start in the lowest weight and

apply the raising operator and note that m = n+ − n−

F+ |F = 2,m = −2〉 = F+ |n+ = 0, n− = 2, n0 = 0〉

|F = 2,m = −1〉 = |0, 1, 1〉

|F = 2,m = 0〉 =
1√
3
|1, 1, 0〉+

√
2

3
|0, 0, 2〉

|F = 2,m = 1〉 = |1, 0, 1〉

|F = 2,m = 2〉 = |2, 0, 0〉

(4.8)

Where in the above the left-hand side represents the angular momentum states, and the right hand

side are the number states for the field. We can then translate this in terms of the basis, |+〉 , |−〉 , |0〉

resulting in

|F = 2,m = −2〉 = |−−〉

|F = 2,m = −1〉 =
|−0〉+ |0−〉√

2

|F = 2,m = 0〉 =
1√
3

(
|+−〉+ |−+〉√

2

)
+

√
2

3
|00〉

|F = 2,m = 1〉 =
|+0〉+ |0+〉√

2

|F = 2,m = 2〉 = |++〉

(4.9)

Using this iterative method we repeat for the other two manifolds N = 1

|F = 1,m = −1〉 =
|−0〉 − |0−〉√

2

|F = 1,m = 0〉 =
|+−〉 − |−+〉√

2

|F = 1,m = 1〉 =
|+0〉 − |0+〉√

2

(4.10)
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And finally for N = 0

|F = 0,m = 0〉 = − 1√
3

(
|+−〉+ |−+〉√

2

)
+

1√
3
|0, 0〉 (4.11)

Furthermore, we have constructed the spin-1 Dicke like states for the case of N = 2. One can

verify that each of these manifolds are orthogonal to one another, and properly normalized. One

can extend this procedure further and derive a correspondence between the case ofN atoms, but it

tedious and one must worry about convergence properties when determining the Clebsch-Gordon,

however, a calculation is presented in [49, 50, 51]. For the remaining section of the thesis we focus

on the dynamics of the decoherence free subspace of N = 2.

Decoherence is a persistent problem of quantum information, a non-unitary process, that in-

troduced through heating effects causes rapid decay of the off-diagonal elements of the density

matrix. This process is harmful when trying to engineer methods for information storage, creation

of entangled states, or precision measurements. For optical systems the noise is primarily intro-

duced through spontaneous emission. However, as mentioned above, this system takes place in a

decoherence free subspace. These spaces are special because they are in principle exempt from de-

coherence due to a particular symmetry in the environment. Given a state in these subspaces they

will all acquire the same phase under evolution so that any superposition of them remains intact

despite environmental influences. In our system the environmental factor we should worry about

is spontaneous emission. We already have adiabatically removed the excited state and transitions

between the ground state levels are all forbidden and only occur through spin-flips mediated by

virtual photons. Thus any superposition of states are going to be protected in this manifold from

spontaneous emission.

4.2.3 Spin-1 Cats in a Symmetric Subspace

In chapter 1 of this work we dedicated time to develop a Quantum Zoo of states. One of which

was the atomic cat states from non-linear time evolution. In this section we demonstrate that our

effective spin-spin interaction can create these states provided we work in a symmetric manifold
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at a fixed angular momentum. One purpose for making this constraint is that in this subspace the

geometry is governed by SU(2), where the standard coherent states are defined. We could utilize

SU(3) coherent state but the parameterization requires seven independent angles and the analytic

expression is not insightful[52, 53]. It is common in high energy physics to use these types of

states, but the basis they generally utilize is the Gelfand-Tsetlin basis[54, 55].

Beginning with the effective Hamiltonian in the beginning section we rewrite in a different form

using the angular momentum algebra

Heff =
|Ωεy/2|2

κ2 + δ2

(
F+F−
∆−

+
F−F+

∆+

)
=
|Ωεy/2|2

κ2 + δ2

(
F+F−∆+

∆−∆+

+
F−F+∆−
∆+∆−

)
=
|Ωεy/2|2

κ2 + δ2

(
(F 2 − F 2

z + Fz)∆+

∆−∆+

+
(F 2 − F 2

z − Fz)∆−
∆+∆−

)
=

|Ωεy/2|2δ
(κ2 + δ2)(ω2

z + δ2)

(
F 2 − F 2

z + βFz
)

= χ
(
F 2 − F 2

z + βFz
)

(4.12)

To get line four from three above, we expanded the definitions of the detuning, and factored the

equation which resulted in the constant, β = ωz
δ

, and χ is the coupling. We take the initial state of

the atoms to be in spin-coherent state

|θ, φ〉 =
∑
k

(
2F

k

)1/2

sink
θ

2
cos2F−k θ

2
e−ikφ |F, k − F 〉 (4.13)

Evolving the initial state under the Time-Dependent Schrodinger equation results in the following

state

|ψ(t)〉 =
∑
k

(
2F

k

)1/2

sink
θ

2
cos2F−k θ

2
e−ikφe−itχ(k(2F+1+β)+F (1−β))eitχk(k+1) |F, k − F 〉

=
∑
k

(
2F

k

)1/2

sink
θ

2
cos2F−ke−ikφ

′

ei
π
m
ψei

π
m
χk(k+1) |F, k − F 〉

(4.14)
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In the above derivation we set, τ = χt = π
m

where m is an integer. We also defined the phases

φ
′

= φ + π
m

(2F + 1 + β) and ψ = F (1− β). We note that in the limit where β = 1 we have the

same expressions as in the spin-1
2

case. In chapter 1, we demonstrated that the unitary operator,

U = ei
π
m
k(k+1) is periodic for odd and even m. Following the same approach and expression from

the Chapter 1, we determine the even and odd Atomic Schrodinger Cat states to be

|ψodd〉 = e−i
πψ
m

m−1∑
q=0

f (o)
q

∣∣∣θ, φ+
π

m
(2F + β + 1− 2q)

〉
|ψeven〉 = e−i

πψ
m

m−1∑
q=0

f (e)
q

∣∣∣θ, φ+
π

m
(2F + β − 2q)

〉 (4.15)

When β = 1 the expression for the cat states above are equivalent to the Chapter 1 up to an overall

phase. When first investigating properties of these states we demonstrated their utility in precision

measurement of a phase. We sought to demonstrate the same abilities with these states, which

would be experimentally more useful because they would have a longer coherence time since they

live in a decoherence free subspace. A crucial part of that derivation was using the property, σ2
i = 1

where σi is a Pauli operator where we had to calculate eσi . The problem is that in the SU(3) basis,

and spin-1 operators do not obey this relation, but rather, eiθFi = 1 + isin(θ)Fi + (cos(θ)− 1)F 2
i

where i = x, y, z. The evolution is non-trivial and initial calculation have shown that an analytical

expression may not be insightful and is left to future work.

4.2.4 Entangled Two-Atom State

The previous section demonstrated the evolution under the effective Hamiltonian in a fixed

angular momentum subspace gives rise to entangled superpositions of spin coherent states. Natu-

rally, what happens if we allow the angular momentum spaces to mix upon evolution? That is the

idea we address in this final section. First we fix some notation to distinguish between the angular

momentum state and computation state. For the orbital levels, mf , when in the zero level it will

be denoted as |F,m = 0〉. When in the computational basis the state, |0〉 will be given
∣∣0̃〉 so as to

not be confused. We will now use the construction from section 3.2.2 for the two atom states and
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study their evolution. Consider the spin-1 atoms initially in the Zeeman sublevel,

∣∣0̃, 0̃〉 =
1√
3
|0, 0〉+

√
2

3
|2, 0〉 (4.16)

Then evolving under the time-dependent Schrodinger equation using the effective Hamiltonian

from the previous section

|ψ(t)〉 =
1√
3
|0, 0〉+ e−6iχt

√
2

3
|2, 0〉

=

(
e−6iχt

3
− 1

3

)
(|+−〉+ |−+〉) +

(
2e−6iχt

3
+

1

3

) ∣∣0̃, 0̃〉 (4.17)

Here we used the definition of |0, 0〉 and |2, 0〉 in terms of the Zeeman levels which was derived

in 4.2.2. Note that when t = 0 we recover the initial state as expected. The motivation for studying

these states was from a recent experiment where the group was able to generate all nine Bell states

for three levels and perform quantum teleportation[56]. Unlike the standard Bell states constructed

with qubits, the added third level adds non-trivial phases to the states, and we were curious if we

would be able to generate them for two atoms. We are able to generate states similar at various

times, however, we are unable to generate the whole space because as can been seen above we

cannot create combinations with terms, |++〉, and |−−〉.

In the case of two atoms there are variety of tools developed in the context of quantum in-

formation to study the entanglement between bipartite systems, a few being; concurence[57], and

Schmidt decomposition[58]. We look at the Schmidt coefficients, from which we can calculate the

Schmidt number which is the number of nonzero coefficients for the decomposed state[58]. We

calculate this for time evolved states at various χt to quantify the entanglement. In the appendix

we give a summary on the theory of Schmidt decomposition for pure states. In the following we

give an explicit calculation for χt = π
6

|ψ〉 =
−2

3
(|+−〉+ |−+〉)− 1

3

∣∣0̃, 0̃〉 (4.18)
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Figure 4.2: Fidelity of the time-evolved state against |φ〉 = 1√
2

(|+−〉+ |−+〉). Where, F =

|〈φ|ψ(t)〉|2. For time χt = π
6

the fidelity is nearly 1, which is max entanglement confirming our
findings from the Schmidt coefficients.

The first step is to determine the density matrix for this state

ρ =
2

9
|+−〉

〈
0̃, 0̃
∣∣+

4

9
|+−〉 〈+−|

+
4

9
|+−〉 〈−+|+ 2

9
|−+〉

〈
0̃, 0̃
∣∣

+
4

9
|−+〉 〈+−|+ 4

9
|−+〉 〈−+|

+
1

9

∣∣0̃, 0̃〉 〈0̃, 0̃∣∣+
2

9

∣∣0̃, 0̃〉 〈+−|+ 2

9

∣∣0̃, 0̃〉 〈−+| (4.19)

The total Hilbert space H = HA

⊗
HB is the tensor product of the space for the individual atoms

each of which is spanned by three possible states. To decompose we now find the partial trace for

each subsystem
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ρA = TrB(ρ)

=
4

9
|+〉 〈+|+ 4

9
|−〉 〈−|+ 1

9

∣∣0̃〉 〈0̃∣∣
= TrA(ρ)

= ρB

(4.20)

Here we used Tr(|i〉 〈j|) = δij , and find the reduced density matrices are equivalent after tracing

out the other system. We observe that the above matrix is diagonal with eigenvalues, λ1 = 4/9,

λ2 = 4/9, λ3 = 1/9. Then following the appendix the Schmidt coefficients are determined by

the square root of the eigenvalues. Notice, how we have a degenerate eigenspace, this implies

that the decomposition is not unique, we can find many basis to describe the state. This state

contains 3 Schmidt coefficients implying that it is entangled due to being larger than one. We

confirm the entanglement in another manner using the Fidelity see 4.2. The quantum fidelity is a

measure of "distance" from a reference state to the one of interest, our fiducial state is taken to be

|φ〉 = 1√
2

(|+−〉+ |−+〉) and the fidelity is found to be

F = |〈φ|ψ(t)〉|2

=
4

9
(1− cos(6χt))

(4.21)

The 4.2 displays the behavior of the fidelity is periodic, at the points where it is maximum, the

distance between the time-evolved state and the reference is minimal. These points are occurring

for the states of highest Schmidt number indicating further the degree of entanglement.

In this chapter we were attempting to address the question of what is the particular regime

where spin-exchange interaction can be realized? And what type entangled states can be created?

We demonstrated that provided the cavity frequency is dominating compared to a weak drive field

we can adiabatically eliminate the cavity mode resulting in an effective Hamiltonian that described

a spin-flip process. More so, in a decoherence free subspace of fixed angular momentum, arbitrary

coherent superpositions of atomic states can be realized which are robust to spontaneous emission.

We further demonstrated that when the angular momentum states are allowed to mix we are able to
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generate highly entangled states which we quantified through their Schmidt number and fidelity. In

the final chapter we apply this the Hamiltonian on different grounds and see what phenomena can

be realized when on Raman resonance. We primarily focus on the application of electromagnet-

ically induced transparency which is has a wide range of applications for quantum informational

purposes.
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5. ELECTROMAGNETICALLY INDUCED TRANSPARENCY

With the advent of increasing technological capabilities studying information in the context of

quantum many-body systems has become more accessible. An issue with quantum information

processing is storing and retrieving information. This arises in atomic systems by transferring

quantum states of light into metastable states of matter. A process well studied that achieves this

mechanism is electromagnetically induced transparency(EIT)[25, 8]. This technique of eliminating

the absorption of a medium is discussed in the classical setting in the first section. The unique result

of EIT is that it can slow the group velocity of light propagating in the medium[37], which leads

to the use of slow light for informational purposes. Since EIT first being discovered in optical

mediums, it has since been applied in a varying of contexts such as; optomechanically-induced

transparency [59, 60], and meta-materials with plasmons[61]. Optomechanical interactions are

described by exceptionally non-linear Hamiltonians[62, 16, 63]. In section 2 we discuss how

under a Holstein-Primakoff transformation our effective Hamiltonian from Chapter 2, takes on a

similar non-linear structure. Using this formalism we then present the transparency conditions for

this model and give an interpretation for the physical consequences.

5.1 Electromagnetically Induced Transparency

Why is an object black? The reason is that the medium absorbs all wavelengths of light.

Suppose you want to make this dark medium clear now, how can this be accomplished? The un-

intuitive answer is to shine more light on it. This the natural phenomena of electromagnetically

induced transparency. Given an otherwise opaque medium can be made transparent by adding a

coupling laser to the system. Electromagnetically induced transparency is an on resonant behav-

ior, i.e when the frequency of light is matched to an atomic transition frequency. If this matching

occurs the propagating light is accompanied by strong absorption or dispersion, however, there

are scenarios where the absorption can be cancelled. EIT is the result of the correct conditions

leading to the cancellation of the absorption turning the medium opaque. Ultimately, this is a re-
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Figure 5.1: Lambda structure three-level atom, where the transition |b〉 to |a〉 is coupled by a weak
probe field(green). While the transition |c〉 to |a〉 is coupled by a strong drive field(purple). The
decay rates from the excited states are shown by the red-lines.

sult of the quantum states between the transitions destructively interfering. The first experimental

realization[64] found that an optically thick medium becomes transparent to a weak probe field by

applying an additional strong drive. Recently EIT has been applied to a wide range of more com-

plex systems such as magneto-optical rotation [65], selective sub-radiance in atomic arrays[66],

and at exceptional point in a coupled resonator[67].

5.1.1 Three-Level Atom

We consider an atomic system consisting of 3-level Λ as shown in 5.1. The ground state, |b〉 is

coupled to |a〉 by a probe field with Rabi frequency Ωp. While the excited state |a〉 and meta-stable

state |c〉 are coupled by a drive field with a Rabi frequency Ωd. The question we want to answer is,

what is the dipoles’ response to the probe field in the presence of the drive field? The probe field is

weak compared to the drive, Ωd � Ωp. The combined effect of these fields is cause a superposition

of the ground and meta-stable state which dresses the excited state.

H =
∑
i=a,b,c

ωi |i〉 〈i| −
(
Ωp |a〉 〈b| e−iωpt + Ωd |a〉 〈c| e−iωdt

)
+H.C (5.1)

Here ωp and ωd are respectively the frequency of the probe and drive field. To understand the

coherent behavior we treat the system using a density matrix formalism. The reason for doing this
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is that the off diagonal elements, ρij relay the relative phases between the different states, where

as, the diagonal components deliver information on the population statistics. The density matrix is

given by the Von-Neumann equation

ρ̇ = −i[H, ρ] (5.2)

Treating the system to be closed we add the incoherent decay in a phenomenological manner. If

the atoms are initially in |b〉, then there will be few excitations that reach the upper level or the

meta-stable state through emission due to the probe beam being too weak, therefore, ρaa ≈ 0,

ρcc ≈ 0, and ρbb ≈ 1. We are interested in the response of the probe field, thus, we want to density

matrix element for the coherence between the states |b〉 and |a〉

ρab =
iΩpe

−iωpt(γcb + i∆)

[(γab + i∆)(γcb + i∆) + Ω2
d]

(5.3)

Here ∆ = ωab−ωp. To derive the equation above we find the equation of motion for each coherence

and then since, Ωp is weak it can be treated perturbatively while Ωd is large it must be kept to all

orders. Following this we make the substitutions, ρab = ρ̃abe
−iωpt, and ρcb = ρ̃cbe

−i(ωp+ωca)t into

the equations of motion and solve the coupled differential equations.

To get an understanding of the relationship between the transmission and absorption of light we

can use Beer-Lambert law which tells us that the transmission will be proportional to absorption

and path length of medium

T (∆) = e−Im[χ]kL (5.4)

Where χ is the susceptibility which is a complex number. This is found through the relation

to the polarization of a medium, P = ε0χE . From the above relation we can deduce that the

absorption is proportional to the imaginary part of χ. EIT then arises when the resonance condition

is met, ∆ = 0, and in this case the real part of χ will vanish, and Im(χ) will be on the order of
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γcb. Therefore, the ideal EIT condition is the limit where the decay of coherence between the

ground level and meta-stable state vanish, which is a physical scenario since that transition is

dipole forbidden. In this limit the transmission will go to unity, and absorption will go to zero.

Furthermore, due to the presence of a drive field the system becomes transparent to the probe field.

The above section was not to give a rigorous demonstration of an already well studied model,

but to give an overview of the classical theory for us to refer back on when describing the con-

sequences of our system. Before moving on to our results, we first discuss transparency in op-

tomechanical systems. The reason for this is that the structure of our Hamiltonian mimics the ones

typically found in this discipline allowing us to apply these techniques to our problem.

5.1.2 Induced EIT with Optomechanics

The platform for optomechanics is different than everything discussed in this thesis thus far.

Before now we have simply stated that the story is playing out in a linear resonator with a resonant

frequency, ωc. However, with optomechanics we consider a cavity that has a free hanging mirror, or

connected to spring see 5.2. Vibrations result from the field impinging on the free-mirror causing

the cavity resonance frequency to become dependent on the position of the swaying mirror, i.e

ωc = πnc
L

(1 − x
L

), where L is the length of the cavity in equilibrium, c is the speed of light, and n

is an integer. The Hamiltonian of the system can be described with the following structure[68, 69]

H = ωca
†a+ ωmb

†b+ g(b† + b)a†a+ iεp(a
†e−iωpt − aeiωpt) + iεd(a

†a−iωdt − aeiωdt) (5.5)

Here the a are the operators for the cavity field, b are the phonon operators. Then there is an applied

probe and drive field just as in the case for atomic EIT, these are accompanied by the amplitudes, εp

and εd. To tease out the EIT behavior we study the mean response of the probe field in the presence

of the drive and therefore the quantum fluctuations are not examined. It is important to also be

working in the sideband resolved limit where the frequency of the oscillator, ωm � κ where κ is

the cavity linewidth, this is the regime where normal mode splitting is known to occur[70, 71]. In

this model the presence of the probe and drive field cause a radiation pressure force to oscillate at a
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Figure 5.2: An optomechanical system consisting with a cavity field(red) and a mirror with a
moveable boundary. The response of the driven system is then probed with a weak beam where its
output response is measured.

difference of the two fields. If this is driven on resonance with frequency of the mechanical mode

then the free standing mirror will coherently vibrate creating sidebands of the cavity fields. Due to

the sideband resolved regime the anti-stokes scattering is the important contribution, because the

Stokes scattering will be strongly depressed. When this scattering frequency matches that of the

near-resonant probe field there will be destructive interference, causing the transparency.

5.2 Spin-1 Electromagnetically Induced Transparency

In Chapter 2 and 3 we developed a methodology for constructing effective many-body spin

Hamiltonian when in the dispersive regime. The main underlying assumption was that certain

frequency scales had to be far off the two-photon Raman resonance to apply the method of time

averaging[3]. Here we are dealing with the same system, we are in a far detuned regime with

respect to the cavity field and atomic transition. We know the atom-light interaction takes the form

of the Faraday rotation as described previously. In developing the spin-spin exchange we had to

make a second approximation comparing, ∆+, ∆− and ∆+ ± ∆−. This final approximation is

what allowed elimination of the cavity field, by assuming these combinations are large compared

to the drive amplitude. In this chapter we are investigating the opposite regime which is where we

are on the two-photon Raman resonance, ∆+ = −ωz. We show that the effective Hamiltonian in

this case is similar to Eq 5.5 for the optomechanical situation, and we investigate the implications
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Figure 5.3: Linear cavity supporting a single cavity mode(red) with an ensemble of spin-1
atoms(orange). There is an applied probe beam(green) of frequency ωp and strong drive field(blue)
with frequency ωd. The probe field is polarized in z, while the drive is in y. The black arrow
indicates the perpendicular static magnetic field.

of EIT for this system.

5.2.1 Model

We consider a linear cavity with an ensemble of spin-1 atoms with the cavity field is propa-

gating in x with polarization in y and z, along with an applied perpendicular magnetic field see

5.3. The drive field has an amplitude of εy =
√

2κyPd
h̄ωd

, where Pd is the drive power, and ωd is the

frequency. In order see EIT effects we apply a weak probe field with an amplitude, εz =
√

2κzPp
h̄ωp

,

where Pp is the probe power, and ωp the frequency. The system is described by the Hamiltonian

HAL =
−g2

2i∆
(a†zay + a†yaz)(F+ − F−)

HB = −ωzFz

Hd = iεy(a
†
ye
−iωdt − ayeiωdt)

Hp = iεz(a
†
ze
−iωpt − azeiωpt)

Hf = ωc(a
†
yay + a†zaz)

(5.6)
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To see how the Hamiltonian admits a similar structure as the optomechanical interaction we make

a transformation of the spin variables. Consider the boson creation and annihilation operators

which live on an infinite dimensional Fock space. The spin-1 operators must satisfy that angular

momentum algebra, and this must be preserved under any transformation. The Holstein-Primakoff

transformation[72] performs a truncation of the Fock space by mapping the spin-operators into

the bosonic ones for large spin number. The spin variables take the form, F+ =
√

2SNb, F− =
√

2SNb† and Fz = (SN − b†b). One can show that the commutation relations, [F+, F−] = 2Fz

are held in this definition by noting, [b, b†] = 1. The atom-light interaction and Zeeman interaction

are the only Hamiltonian’s changed under this transformation

HAL =
i
√

2SNg2

2∆
(a†zay + a†yaz)(b− b†)

HB = ωzb
†b

(5.7)

Suppose the drive field is strong where, εy � εz then we can treat the drive as a classical field

in steady-state. To determine the field amplitudes, αy, we determine the Heisenberg equations of

motion for ay in the absence of any interaction and set the time derivative to zero with the ansatz,

ay = αye
−iδt

Hint = iΩ
(
a†zαybe

−i(δ+ωz)t − a†zαyb†e−i(δ−ωz)t + azα
∗
ybe

i(δ−ωz)t − azα∗yb†e−i(δ+ωz)t
)

Hp = iεz(a
†
ze
−iδpt − azeiδpt)

(5.8)

Where above we also went into the interaction picture, resulting in the cavity-drive and cavity-

probe detuning defined to be δ = ωd − ωc and δp = ωp − ωc. The redefined coupling constant is,

Ω =
√

2SNg2

2∆
. Instead of making a dispersive approximation, we define the two-photon resonance

conditions to be ∆+ = δ + ωz and ∆− = δ − ωz. To develop EIT we set the two-photon Raman
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resonance to zero resulting in the condition, δ = −ωz

Hint = iΩ
(
a†zαyb− azα∗yb†

)
Hp = iεz(a

†
ze
−iδpt − azeiδpt)

(5.9)

This resonance approximation also gives terms proportional to e±2iωzt, which are off resonant

and will not contribution to the dynamics, which is just the rotating-wave approximation[15]. To

understand how the probe field responds in the presence of the coupling field, we determine the

susceptibility through the equations of motion for, b and az.

ȧz = Ωαyb+ εze
−iδpt − κzaz

ḃ = −Ωα∗y − κbb
(5.10)

Here κz is the loss rate for the z-polarized cavity mode, and κb is the bosonic dampening. These

equations are linear which allow an ansatz similar to when solving for the steady-state for the drive

field. We assume the form to be, az = ãe−iδpt and b = b̃e−iδpt. Upon plugging these into the

equations of motion the steady state fields satisfy

ã =
Ωαy b̃

κz − iδp
+

εz
κz − iδp

b̃ =
−Ωα∗y
κb − iδp

(5.11)

Eliminating b̃ from the first equation above and solving for ã, we determine the susceptibility to be

χ =
2κz
εz
ã

=
2κz

(κz − iδp) + |Ωαy |2
κb−iδp

(5.12)

To visualize the response we look at the real and imaginary parts of the susceptibility which

relay information on the dispersion and absorption of the output field at the probe frequency. The
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Figure 5.4: Real part of the susceptibility as a function of normalized frequency δp/κz. Demon-
strating the behavior as the probe power is varied. The black dotted line is at Pd = 0, coral at
Pd = 1 mW, and maroon at Pd = 5 mW. The distinct EIT dip arises on the resonance demon-
strating the emergence of a transparency window. Normal disperson becomes more apparent with
increased probe powers.

susceptibility can be written as, χ = χ1 + iχ2 where

χ1 =
2κzκb(Ω

2α2
y + κzκb − δ2

p) + 2κzδ
2
p(κz + κb)

(Ω2α2
y + κzκb − δ2

p)
2 + δ2

p(κb + κz)2

χ2 =
2κzκbδp(κz + κb)− κzδp(Ω2α2

y + κzκb − δ2
p)

(Ω2α2
y + κzκb − δ2

p)
2 + δ2

p(κb + κz)2

(5.13)

To numerically simulate these expressions above we use the parameters from[6] to demonstrate

applicability of our theory. We model the transition between,
∣∣5S1/2, F = 1

〉
to
∣∣5P3/2

〉
in a cloud

of N = 106 rubidium-87 atoms trapped in a standing wave cavity with frequency, ωc = 2π ×

(4)1014 [38]. The atom-cavity resonance is far detuned, ∆ = −2π × 10 GHZ. The length of the

cavity, l = 500µm with a Vacumm-Rabi frequency 2g = 2π× 3.0(2.0) MHZ, κ = 2π× 200(50)

kHz, and the cavity-drive detuning, δ = −2π×0.875 MHZ. In the experiment they used a magnetic

field of 4Gwhich gives a Larmor frequency, ωz = −70.4MHZ which does not satisfy the necessary
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Figure 5.5: Imaginary part of the susceptibility as a function of the normalized frequency δp/κz.
The dotted line is in the absence of the drive field. We then vary the probe power from 1mW(coral)
to 5mW(maroon) and observe the distinct anomalous dispersion in the EIT region, leading to
normal dispersion due to interference behavior.

condition. Therefore, to reach the EIT regime the magnetic field should be B = 0.285G.

In 5.4 we investigate the real part at various probe powers. We see that when the probe field is

absent we return the standard Lorentzian behavior which signifies that there is complete absorption.

As the power of the probe field is increased we see a narrow contribution that is inverted, which

is the opening of the EIT window. With higher probe powers the dip will begin to broaden and

demonstrate a normal dispersion which is accompanied with a reduction in the group velocity[73].

Contrasting with atomic-EIT the dip does not go all the way to zero in this case, because there is

no infinite lifetime. In our model the "big oscillator" is a large ensemble of atoms in the ground

state, and as discussed in previous chapters there is no decay between these atoms, which implies

the oscillator has a zero dampening factor, i.e κb = 0, which would lead to larger coherence times

facilitating better quantum memory, and light storage protocols. In 5.4 the nature of the dip is a

result of destructive interference asymmetric profiles in the response function in the EIT region. In

5.5 we see that on resonance the complex susceptibility vanishes, which implies the refractive index
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will go to unity and there will be perfect transmission of the probe field at the output, implying

that the phase of the probe will be the same as if in vacuum. We also observe how that due to the

drive field the anomalous dispersion is changed to normal. This behavior in the response function

has been experimentally seen in a variety of systems[74, 75, 76].

In this final chapter we investigated a different aspect of the effective spin exchange Hamilto-

nian. Finding that when on resonance the ensemble of ground state atoms behave has a collective

oscillator such that when a weak probe field, accompanied with a strong drive induces perfect

transmission of the probe. Compared to the standard OMIT set-up our oscillator is not restricted

by its dampening due to the absence of spontaneous emission. Furthermore, this model poses as a

strong candidate for memory protocols, and state transfer in quantum simulations.
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6. SUMMARY AND CONCLUSIONS

Not all time-scales are treated equal. Through the consideration of what the dominating dy-

namics are can result in a radically different description of the system as reflected through the

Hamiltonian. In general solving the dynamics of a complete system is impossible, which is what

makes effective interactions important. These descriptions are projections onto a subspace of the

total system, reflecting a partial spectrum of the eigenstates. Previously researchers had to utilize

projection operator methods to adiabatically eliminate degrees of freedom through the density op-

erator. The method developed in this thesis is unique due to the simplicity. Our method requires

only a simple integral, and algebraic manipulations to realize precise effective interactions. More

so, our method works over multi-time scales. This is reflected in the application of spin-1 atoms,

where in order to realize a description solely in terms of the atomic degrees of freedom, required

two time averaging procedures. Each use had to weigh the dominating degree of freedom, and

determine the correct regime to validly remove the fast dynamics. This development, is a step

forward in understanding more complex many-body systems and how we may realize them in

experimental settings.

Beyond the development of the technique of realizing many-body effective Hamiltonian’s the

system we choose to study is unique in its own right and has several advantages compared to the

standard spin-1
2

system. Real atomic structures are hopelessly complicated, and experimentally

realizing only two levels is a very specific goal. By understanding higher spins systems, we pave a

way to study atoms in a more general setting. This theoretical description can easily be extended to

SU(N) spin systems, allowing for precise modelling of more realistic atomic structures. Another

key advantage of the spin-1 system is that by including more atomic levels, through the adiabatic

elimination, we can constrain the dynamics to take place within a ground state manifold. These

spaces are special because they are protected from decoherence resulting from spontaneous emis-

sion. The only worry comes from atomic collisions. However, this small issue can be taken care

of if the sample of atoms is ultra-cold, and dilute.
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We developed a hammer in this thesis, and the amount of nails left to be hit is uncountable.

A few notable ones for investigation is the conversion of polarization of input probe beam into a

different output polarization, known as magneto-optical rotation. Also, our specific spin-1 effective

interaction can be mapped to a spin-1 Heisenberg model which is known to host interesting phase

transitions, and special non-thermalizing eigenstates known as scarred states. More so, our method

opens up a way to study interesting statistical properties of condensed matter systems, simulated

in a quantum optically setting. Finally, through the demonstration of EIT it would be interesting

to study collective state transfer in these decoherence-free subspaces, and compare the coherence

time compared to standard methods.
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APPENDIX A

TIME-AVERAGING

A.1 Introduction

The central tool used throughout this thesis was adiabatic elimination of certain degrees of

freedom. The systems that we dealt with in this work are composed of an atomic and light field

degree of freedom. In a particular problem the dynamics are occurring on the relevant time-scale,

and depending on the regime other degrees may not be contributing and therefore you can trace

them out of the Hilbert space. The standard method of this is by constructing the density-matrix

and the dissipation terms, and then tracing out the degree of freedom[77]. When moving into

the interaction picture the discrepancy of the time scale can arise through harmonically oscillating

exponential. For this case there have been several methods put forward on adiabatic elimination[19,

18] which give the same effective theory as the method we put forward.

A.2 Method of Time Averaging

First, take the Hamiltonian to be the form, H = H0 + V (t), where H0 is the free term and

V (t) is a perturbation. In this thesis the V was the dipole-atom interaction. Then by defining

a unitary operator, U = e−iH0t move into the interaction picture. Upon this transformation the

Hamiltonian will be of the form, H+e
−iδt +H−e

iδt where δ is the detuning depending on the form

the Hamiltonian in the Schrodinger picture. If the exponential in each term are rapidly oscillating

we can average time over time(h̄ = 1)

∂ψ

∂t
= −iV (t)ψ (A.1)

Here V (t) is a fast oscillating Hamiltonian in the interaction picture, where 〈ψ|V |ψ〉 = 0. Now

we break the state into a slow and fast part, ψ = φ+ φ, with φ, and φ being the time-averaged and

rapidly oscillating components. Inserting this ansatz into the equation above and equate the fast
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variables results in

∂φ

∂t
= −iV (t)φ (A.2)

Integrating the above solution

φ = Te−i
∫ t
0 V (τ)dτφ

= −i
∫ t

0

V (τ)dτφ
(A.3)

Here we go to first order in the interaction from the time-ordered Dyson series. With this solution

we iterate it in the Schrodinger equation and equate the time-averaged variables which to first order

gives

φ = −i

(
−iV (t)

∫ t

0

V (τ)dτ

)
φ

= −iHeffφ

(A.4)

Where the effective Hamiltonian is the time-averaged and defined to be,Heff = −iV (t)
∫ t

0
V (τ)dτ .

In general when determining the effective interaction this approach will result in a time-independent

Hamiltonian since the fast oscillating portions will be sent to zero. However, it is important to

understand the timescale that the dynamics are occurring because there are instances where you

cannot just set the exponential parts to zero since they wont be in a fast oscillating regime, resulting

in a time-dependent interaction.
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APPENDIX B

SCHMIDT DECOMPOSTION

As pointed out throughout the thesis quantum information has the upper hand over classical

information due to entanglement. This natural result is still far from being completely understood

and the tools developed for quantifying the degree of entanglement only exist between bipartite

systems. In this thesis we considered our subsystems to be two spin-1 atoms each containing three

possible levels.The Hilbert space is then, H = H1

⊗
H2 with dim(H) = 3N . Since this Hilbert

space is finite dimensional then it is also Cauchy, which means that there is a notion of convergence

for sequences. Therefore, we can write the state for the total system as[58]

|ψ〉 =
∑
i

λi |iA〉
⊗
|iB〉 (B.1)

Here λi are positive and
∑

i λ
2
i = 1 and are known as the Schmidt coefficients. To understand

whether the state is a product state, we determine the density matrix for each subsystem, ρA =

TrB(ρ) and ρB = TrA(ρ). What you find is

ρA =
∑
i

λ2
i |iA〉 〈iA|

ρB =
∑
i

λ2
i |iB〉 〈iB|

(B.2)

The reduced density matrices share the same eigenvalues and the number of non-zero eigenvalues

is the Schmidt number and quantifes the degree of entanglement. For example, is the state has a

Schmidt number of one then it is pure and non-entangled. In this thesis we found depending on

the point in time evolution that the max entanglement was found at a Schmidt number of 3.
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