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ABSTRACT

Lateral control of an autonomous and connected vehicle (ACV), especially in emergency sit-

uations, is important from the safety viewpoint. In these situations, the trajectory to be followed

by an ACV must either be planned in real-time (e.g., for a possible evasion maneuver if the ob-

stacle to be avoided is detected) or be communicated from its preceding vehicle. Typically, the

trajectory information is available to the following ACV in the form of GPS time samples. From

the viewpoint of lateral control, the lateral velocity information is not readily available, and the

feedback structure must reflect this reality. In this work, we develop a methodology to synthesize

a lateral control algorithm for a following ACV in a two-vehicle platoon in two steps: (1) From

the limited preview information of the trajectory to be tracked via samples of GPS waypoints,

and we estimate the radius of curvature of the trajectory using “least-square” estimation and (2)

develop a fixed-structure feedback control scheme for following the predecessor by synthesizing

the set of stabilizing gains corresponding to lateral position error, heading error and heading rate

error. Numerical simulation and experimental results corroborate the effectiveness of the proposed

feedback-feedforward schemes.

Based on this proposed feedback-feedforward controller, we investigated Emergency Lane

Change (ELC) control problem for a convoy of autonomous and connected vehicles. Typically,

an ELC maneuver is triggered by emergency cues from the front or the end of convoy as a re-

sponse to either avoiding an obstacle or making way for other vehicles to pass. From a safety

viewpoint, connectivity of ACVs is essential as it entails obtaining or exchanging information

about other ACVs in the convoy. This work assumes that ACVs have reliable connectivity and

that every following ACV has the information about GPS position traces of the lead and immedi-

ately preceding vehicles in the convoy. This information provides a “discretized” preview of the

trajectory to be tracked. Based on the available information, this work focuses on two schemes

for synthesizing lateral control of ACVs based on (a) a single composite ELC trajectory that fuses

lead and preceding vehicle’s GPS traces and (b) separate ELC trajectories based on preview data of
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preceding and lead vehicles. The former case entails the construction of a single composite ELC

trajectory, determination of the cross track error, heading and yaw rate errors with respect to this

trajectory and synthesis of a lateral control action. The latter case entails the construction of two

separate trajectories corresponding to the lead vehicle’s and preceding vehicle’s data separately

and the subsequent computation of two sets of associated errors and lateral control actions and

combining them to provide a steering command. Numerical and experimental results corroborate

the effectiveness of these two schemes.

For multiple vehicle control in a convoy/platooning, identifying vehicles and objects in the

vicinity of platooning vehicles is critical for convoy/platooning safety. A neighboring vehicle may

change lanes and enter a lane with platooning vehicles. Any deployable platooning system must

be able to first identify the presence of a cut-in vehicle before performing any control actions on

the vehicles. In this work, we present a sensor fusion algorithm that combines radar and vision

data obtained onboard a moving truck to identify the states of the cut-in vehicle. We then present

experimental results to corroborate the performance of the proposed algorithms.
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NOMENCLATURE

ACV Autonomous and Connected Vehicle

CD Center of Gravity

EOM Equation of Motion

ESP Electric Power Steering

ELC Emergency Lane Change

GNSS Global Navigation Satellite System

IMU Inertia Measurement Unit

LIDAR Light Detection and Ranging

NN Nearest Neighbour

MHT Multiple Hypothesis Tracking

PDA Probabilistic Data Association

I, J,K Unit vectors of the global frame.

i, j, k Unit vectors of the vehicle body frame.

et, en Tangential and normal vectors to the trajectory

m Vehicle mass

Iz Moment of inertia about vehicle center of mass

Cf Cornering stiffness of the front tires

Cr Cornering stiffness of the rear tires

αf Sideslip angle of the front tires

αr Sideslip angle of the rear tires

Fcf Cornering forces at the front wheels

Fcr Cornering forces at the rear wheels
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δc, δf Steering input and outputs

Jw Steering wheel inertia

bw Torsional viscous damping coefficient of the steering column

Kr Torsional stiffness of the steering column

ζ, wn Damping ratio and natural frequency of steering actuation
system

vx, vy Longitudinal and lateral components of vehicle’s velocity

θ Vehicle heading with respect to a frame fixed to the ground

elat Lateral error of the vehicle from the trajectory

θ̃ Heading error of the vehicle

˙̃θ Heading rate error of the vehicle

β Sideslip angles at CG of vehicle

L1 Space of absolutely Lebesgue integrable functions; i.e.,∫
|f | <∞

L2 Space of square-Lebesgue-integrable functions, i.e.,
∫
|f |2 <

∞

Ksg Steer gradient of vehicle

Wf ,Wr Front/rear axle loads of vehicle

ke, kθ, kω Gain for lateral error, yaw error and yaw rate error

K Gain set with parameter ke, kθ, kω

∆(s;K) Characteristic polynomial of system with EPS dynamics
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1. INTRODUCTION, LITERATURE REVIEW, NOVELTY AND THESIS OUTLINE

1.1 Introduction and literature review

One of the primary functions of driving is lane-keeping, which is a central task in autonomous

vehicle control research. This task involves having a vehicle follow the center of the lane, while

moving forward. Thus the vehicle stays within the boundaries of the lane at all times. However,

manual driving accounts for major economic loss annually. In 2018, the Texas Department of

Transportation reported 540,561 motor vehicle accidents on major Texas roadways. 18% of these

accidents were caused by distracted driving due to factors such as cell phone use or carelessness.

However, with the advent of the Advanced Driver Assistant Systems (ADAS), accidents can be

reduced. These intelligent systems alert drivers or correct vehicle behavior during dangerous ma-

neuvers, thereby saving lives. Thus, it is of paramount interest to improve autonomous vehicle

lane-keeping capabilities.

In this work, a lateral controller is developed for lane-keeping purposes. Two applications of

this controller are also explored further, which involve:

1. The lateral control of a single following Autonomous and Connected vehicle (ACV or

simply a vehicle) in two-vehicle platooning, during an emergency lane change scenario.

A cue for an emergency lane change can arise from the front of the two-vehicle convoy as

an evasive maneuver for obstacle avoidance, or from behind as a response to an approaching

emergency vehicle, such as an ambulance. In such an emergency scenario, a lane changing

trajectory must be constructed in real-time by a vehicle, as one of the responses for obstacle

avoidance, and tracked closely by the vehicle’s controller. In a similar scenario, it is pos-

sible that there can be multiple vehicles following a leading one, where the leading vehicle

constructs the trajectory in real-time (as it has the best view of the obstacle.) The trajectory

information is conveyed to the followers in real-time. Usually, this trajectory information

may only provide a limited preview for the following vehicle(s); controlling the lateral dy-
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namics of a following ACV with such limited preview information is the first focus of this

work.

2. The lateral control of a/an convoy of ACV(s), in two or more platooning, during an

emergency lane change scenario.

Emergency Lane Change (ELC) maneuvers can be initiated usually by observing cues from

the front or rear of a convoy of ACVs. For example, pot-holes or debris may serve as frontal

cues, while emergency vehicles such as police or ambulances, serve as rear cues. The dis-

tinguishing feature of an ELC maneuver from a nominal lane change maneuver is that (a) it

is not pre-planned e.g. it is constructed in real-time and that (b) the trajectory to be tracked

is different from the center of a lane. Additionally, Vehicle-to-Infrastructure (V2X) com-

munication facilitates exchange of information with infrastructure and other vehicles in the

presence of obstacles, computation and transmission of the corresponding sensing/control

actions for ELC maneuvers of ACVs in the convoy. How one can exploit the connectedness

of an ACV, in terms of utilizing information from different vehicles or infrastructure. It is not

readily apparent in the case of convoys for executing an ELC maneuver, which is the second

focus of this work.

The lateral controller for a vehicle typically consists of a feedforward and a feedback compo-

nent [2, 3, 4, 5, 6, 7]. A feedforward controller takes the preview information and constructs a

trajectory to be tracked, based on which a feedforward steering angle input is computed. If the

lateral vehicle dynamic model were to be known exactly, and the vehicle were to be following

the desired trajectory with no lateral, and heading errors, such an input would keep the vehicle on

the trajectory when there are no disturbing inputs on the vehicle. Since this is rarely the case, a

feedback controller is necessary. The task of a feedback controller is to get the vehicle back on the

desired trajectory in the presence of disturbances, model uncertainties and initial errors in heading

and lateral positions.

The difficulty of lateral controller design for the following ACV is closely related to the in-
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formation available to the controller. To perform a lateral control task, one must first identify a

trajectory or a path and then have the means to detect the deviation from the trajectory. Fenton et

al. [2], who first proposed the two-component lateral control framework, used a wire for guidance;

this served as the desired trajectory to track, and the deviation from the wire was fed back in lateral

control. Vision systems and GNSS are independent of the road infrastructure for vehicle guidance

and control [8, 9, 10, 11, 5]. Infrastructure dependent lane detection was adopted by California

PATH; lane tracking with magnetic markers enabled the sensing of lateral deviation of the vehicle;

moreover, magnetic markers embedded the curvature (preview) information of the road which was

sensed by the vehicle [6, 4, 12]. An overview of lateral control for lane keeping and lane changing

is provided in [13, 14, 15].

The work considered here differs from that in the literature in three distinct ways: the following

ACV does not have a preplanned trajectory to track; rather it must construct a trajectory in real-

time based on the limited GPS measurements communicated by the lead ACV in the platoon; in

this way, it differs from the virtual trajectory construction scheme proposed by [8] and necessitates

connectivity for the following ACV; it also differs from [16] in the construction of the desired

trajectory by virtue of lead vehicle’s GPS data being transmitted in real-time, whereas in [16], the

data is specified a priori; secondly, lane change maneuvers have thus far focused only on the design

of a maneuver for the lead (or a single) vehicle [17] and not the following ACVs! Thirdly, the

structure of the feedback controller chosen in this work is different from what has been considered

in the literature [2, 5, 6].

For ELC maneuvers involving two or more following vehicles in a platoon, one cannot but deal

with the problem considered here. In this case, the trajectory to be tracked must be constructed

in real-time along with its curvature information; from the sensed position and orientation of the

following ACV, its lateral deviation and heading error from the constructed trajectory must be

computed and corrected with the help of feedback. Usually, the lateral component of vehicle

velocity is not readily available (or very noise prone) and correspondingly, one may not be able

to feed back the rate of change of lateral deviation; lack of such information renders the task of
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determining/tuning stabilizing controller gains difficult.

In this work, we use the following two steps to design the lateral controller. The first step is to

fit the curve of the desired trajectory and to compute error signals that are needed by the feedback

controller. We use a “least-square” approach to construct a trajectory consisting of straight-line

segments and circular arcs using the communicated position information of the lead vehicle; the

lateral deviation of the vehicle from the circular arc and the heading error and its rate can then

be computed by knowing the position, longitudinal velocity and heading of the controlled vehicle

using sensory measurements (from GPS). Fitting a trajectory with circular arc splines (i.e., with

geometric primitives, namely, circular arcs and straight line segments) has attracted research in

diverse engineering applications such as CAD, CNC machining, etc. [18, 19, 20, 16]; it is rea-

sonable for this application as roads in the US are constructed as circular arc splines [21]. The

variation in radius of the trajectory of a vehicle on the road is usually much smaller than the mean

radius of the lanes. As alluded to earlier, an approximation of curves with these primitives have the

following advantages: the resulting curve will be (a) invariant to rotation, (b) have a well-defined

tangent vector at every point on the trajectory, (c) have a standard arc representation consisting of

two arc endpoints and its center. The primary motivation for approximating the trajectory with

circular arcs and straight line segments in this work is as follows: it makes the task of computing

feedback signals such as lateral deviation, heading angle error and heading rate error simple;

correspondingly, the experimental implementation of the lateral control is easier.

The second step in the controller design is to build the feedforward and feedback controller.

The feedforward component of control is based on the knowledge of track length, radius of curva-

ture, longitudinal velocity, and the steer gradient of the vehicle. The feedback component of the

vehicle is based only on three measurements (which are also its states) computed from the previ-

ous step, namely - lateral deviation, heading error, and its rate. Since the rate of lateral deviation

is not measurable to the desired accuracy, we do not consider it a signal that can be fed back.

Consequently, feedback synthesis can be posed as a fixed structure (three parameters) stabilization

problem. We construct the set of stabilizing controllers using methods described in [22] and pick
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a controller from this set to corroborate the lateral vehicle controller design proposed here.

When dealing with a multiple vehicle convoy (more than two vehicles in a platoon), a natural

question arises as to what information, if at all, should the ACVs communicate and how should

each ACV be controlled so that an emergency lane change maneuver can be performed success-

fully. As can be expected, the flow of information and architecture for control can have a significant

influence on how the maneuver is carried out. Hence, a design of the controller, different from a

single- vehicle control, is required.

In executing an ELC maneuver, a controlled vehicle must decide the trajectory to track based

on the available data from the lead and other vehicles in the convoy and from its onboard sensors

and then extract the requisite feedback/feedforward information from the available information to

take a control action. As in the longitudinal control case, if a following vehicle tracks its preceding

vehicle’s trajectory, error amplification can occur; from a safety viewpoint, it may be better to use

the information of the lead vehicle’s trajectory in conjunction with that of its preceding vehicle.

In this work, we define the first vehicle of platoon is “leading vehicle”, and the one ahead of ith

vehicle is “preceding vehicle”. There is an attendant issue of how one can utilize such information

from different vehicles and is not readily apparent in the case of lateral control of convoys for

executing an ELC maneuver. This work deals with this issue in Chapter 5.

Another contribution of this work is to demonstrate the mobility and safety benefits of con-

nectivity for Emergency Lane Change Maneuvers. In an ELC maneuver, guidance (in terms of

trajectory to be tracked) from infrastructure sensing cannot be directly obtained; it must rather be

computed in real-time. To elaborate further, consider the figure 1.1. Consider a convoy of vehicles,

each of length Lc, traveling in a two-lane highway with vehicle A (shown) being the (i−1)st ACV

and vehicle B following it being the ith ACV in the convoy. Suppose there is an obstacle in the left

half of the right lane as shown; the convoy makes an ELC as a response to evading the obstacle.

The following distance of vehicle B (and every ACV) is d0; clearly, if d0 is small, the obstacle

will be occluded by the preceding vehicles in the convoy. Let ∆i be the distance at which the ith

following ACV can clearly see the obstacle for the first time without any occlusions in front of it,
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i.e., this can happen only if the preceding vehicle has moved out of the line of sight between the

ith vehicle and the obstacle. If we make the assumption that the lateral displacement of an ACV

is proportional to the longitudinal distance it has traveled, and that an ACV will not occlude the

view of its following vehicle unless it travels a distance 2W
3

laterally, where W is the width of

the lane (and 2W
3

is the car width), we can derive a simple recursive relationship between ∆i and

∆i−1 as follows: The longitudinal distance traveled by the preceding (or (i − 1)st ACV) when it

moves by a distance 3W
2

for a fully executed ELC is ∆i−1; however, to not occlude the ith ACV,

if we assume that its right edge must move laterally by a distance 2W
3

(equal to the car width), the

distance moved by ith and (i− 1)st ACVs is 4
9
∆i−1. Consequently,

∆i = ∆i−1 + d0 + Lc −
4

9
∆i−1 =

5

9
∆i−1 + d0 + Lc.

Without V2X communication, there is a danger of the ith ACV seeing the obstacle closer than its

Figure 1.1: An Emergency Lane Change (ELC) Scenario - do denotes the desired following dis-
tance; ∆i−1 is the distance at which the (i− 1)th following ACV can clearly see the obstacle.
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predecessor, i.e., ∆i < ∆i−1, especially when there is no V2X communication and when d0+Lc <

4
9
∆1. From the view of safety and convenience, Shui [23] indicated that

∆1 ≥ 2.4v

√
W

Amax
,

where v is the velocity of the ACV while making a lane change, Amax is the maximum allowable

lateral acceleration. Correspondingly, one can get a lower bound on how close ACVs can follow in

the absence of V2X communications in order to execute the ELC while meeting basic safety and

comfort requirements:

d0 ≥
4

9
∆1 − Lc =

16

15
v

√
W

Amax
− Lc.

In other words, every following ACV must maintain a minimum time headway of 16
15

√
W

Amax
sec-

onds; for a naturalistic lane change maneuvers [24] Amax < 1 m/s2; with a typical lane width of

W ≈ 3 m, the minimum time headway must at least be 1.85 sec; however, with V2X communi-

cation, this gap be significantly reduced and mobility can be correspondingly improved.

1.2 Novelty

The novelty of this work is as follows: (a) the problem of tracking a vehicle based on its com-

municated trajectory information (a la bread crumbs dropped by the previous vehicle) has not been

considered in the literature before, (b) the use of “least-squares” technique to fit a trajectory con-

sisting of a circular arc and straight line segments using the preview (bread crumb) information of

the preceding vehicle for lateral control of following ACVs is novel; it is required for the compu-

tation of feedforward control, and in the computation of feedback signals, and (c) the use of fixed

structure controller synthesis techniques to account for the lack of sensor measuring the rate of

change of error in lateral vehicle position. (d) to provide a direct method to fuse the information of

the lead and preceding vehicles to synthesize target trajectories that aid lateral string stability by

suppressing the amplification of crosstrack errors, and (e) to corroborate numerically and experi-

mentally the performance of the lateral controller using the feedback controller synthesized in the

earlier work of the authors [25, 26]. An additional novel contribution of this paper is to demon-
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strate that the frozen parameter controller design approach guarantees closed loop stability if (a)

the longitudinal speed of ACV exceeds a certain non-zero threshold and is upper bounded, (b) its

longitudinal acceleration is square integrable. This is reasonable given the finite duration of ELC

maneuvers.

1.3 Outline of Dissertation

This paper is organized as follows: in Chapter 2, we present the scheme for computing the

optimal “least-square” fit circular arc from the limited preview information communicated to the

controlled vehicle. Details of computation of signals for feedback and feedforward controller de-

sign can be found in this chapter. In Chapter 3, we present a model for lateral vehicle dynamics

that we use for controller design. The model is represented by the error signal states, which is

helpful for controller design; we also supply the necessary experimental details of finding the pa-

rameters required for lateral control. In Chapter 4 , we outline the procedure for constructing the

feedback gains for enabling an autonomous and connected following vehicle to track the desired

trajectory. Numerical and experimental results presented at the end of the chapter corroborate

the effectiveness of designed controllers. In Chapter 5, we investigated Emergency Lane Change

(ELC) control for a convoy of autonomous and connected vehicles. We present two possible ar-

chitectures for constructing an ELC trajectory for a convoy of autonomous and connected vehicles

lateral control with Limited Preview Information. Numerical/Simulation results presented at the

end of the chpater corroborate the effectiveness of lateral controllers for a convoy of autonomous

and connected vehicles. In Chapter 6, we investigated the problem of identification vehicles and

objects in the vicinity of platooning vehicles. An Extended Kalman Filter(EKF) is design to esti-

mated the cut-in vehicle’ status based on radar and camera fused data. Experimental results support

the effectiveness of this design.
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2. FITTING CIRCULAR ARCS AND STRAIGHT LINE SEGMENTS THROUGH THE

GIVEN DATA

In this section, we present the definition of the preview section (or preview data to be more

accurate) first, then demonstrate how to classify the given preview section data corresponds to a

circular arc or a straight line segment. Subsequently, we provide a procedure for computing the

radius of curvature for feedforward controller and feedback error signals(lateral error) for feedback

controller design. Figure 2.1 is the flow chart of this chapter.

Figure 2.1: Flow chart for curve fitting and error signals derivation

Let the preview information/data be represented by (x1, y1), (x2, y2), . . . , (xN , yN), i.e., the
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N preview/recent samples of the preceding vehicle’s trajectory. Preview data will be based on

the current location of the vehicle. The number N could be picked based on the time between

samples; for example, if the following vehicle were to maintain a one second of time headway1,

and the GPS/communication sample frequency is 20 Hz, then we can pick N = 20; in this case,

any data within 1 sec ahead of the current time-stamped data of preceding vehicle’s trajectory will

constitute preview information. Note that the data (x1, y1), . . . , (xN , yN) could be contaminated

with noise.

The goal of this section is as follows:

• Based on given preview data: (x1, y1), (x2, y2), · · · , (xN , yN), we must decide if it the

trajectory of the preceding vehicle corresponds to a straight line or a curve.

• If it has been determined that the data corresponds to a curved trajectory, one must then fit a

center (Xc, Yc), radius R of the “least-square fit” circular arc through these points.

• Once the trajectory is calculated, one must compute the feedback signals: the lateral error of

the vehicle from the trajectory, elat, the heading error of the vehicle, θ̃, and the heading rate

error, ˙̃θ.

Clearly, the above-listed tasks are important for computing feedforward and feedback control in-

puts – the first two tasks are crucial for the computation of feedforward control computation de-

pending on whether the road is straight or is curving.

The more general problem of fitting a circular arc spline has been considered in the literature

[16, 20, 18, 27, 19]; the problem considered here is a simplified version but is based on data that is

constantly arriving. In some sense, it is more like a filtering problem that we have here as against

a smoothing problem considered in [16, 20, 18, 27, 19].
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Figure 2.2: Lateral deviation of preview data with a straight line segment connecting the first and
last data points

2.1 Determining If Preview Information Represents a Straight Line Segment or a Curved

Trajectory

We use a simple heuristic: Since the data is time-stamped and can be sequenced, we connect

the first sample (x1, y1) and the last sample (xN , yN) with a straight line segment, L, and compute,

for each i between 1 and N , the distance (disi) of the samples (xi, yi) from L using the formula:

disi = |(Yi − Y1) cosψ − (Xi −X1) sinψ|

= |(Yi − Y1)(YN − Y1)− (Xi −X1)(XN −X1)√
(XN −X1)2 + (YN − Y1)2

|

If maxi disi < 0.1 m, we consider the preview data to represent a straight line segment, as shown

as Fig. 2.2; else we fit a circular arc through the given data as in the next subsection.

1Time Headway: If ∆(v) is the desired following distance of a vehicle as an affine function of its velocity, v, i.e.,
∆(v) = ∆(0) + hv, we refer to h as the time headway; note ∆(0) is its desired standstill following distance.
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2.2 Fitting a Circular Arc Through Preview Information

Figure 2.3: Preview information with predicted center position and radius for curve

In this case, the problem can be posed as follows: Given (x1, y1), (x2, y2), · · · , (xN , yN), find

a “least square fit” of a circular arc, i.e., find the center (Xc, Yc) and radius R so that the error

J =
N∑
i=1

[R2 − (xi −Xc)
2 − (yi − Yc)2]2

is minimized. With each data (xi, yi), this objective function assigns an area error – the difference

between the area of a circle of radius R and the area of the circle that passes through (xi, yi) while

being centered at (Xc, Yc). The total sum of the square of the area errors is π2 times the objective

function J .

There is a plethora of ways to fit a circular arc through a given data [27, 28]; this choice is

made to exploit the simplicity of computing the center and radius of the arc with at most three
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linear algebraic equations: the first step is to compute the center (xC , yC) using the following set

of equations:

 a11 a12

a12 a22


 xC

yC

 =

 b1

b2

 ,
where

a11 := (
N∑
i=1

xi)
2 −N(

N∑
i=1

x2i ),

a12 := (
N∑
i=1

xi)(
N∑
i=1

yi)−N(
N∑
i=1

xiyi)

a22 := (
N∑
i=1

yi)
2 −N(

N∑
i=1

y2i ),

b1 :=
1

2
[(

N∑
i=1

xi)(
N∑
i=1

x2i + y2i )− (
N∑
i=1

xi(x
2
i + y2i ))],

b2 :=
1

2
[(

N∑
i=1

yi)(
N∑
i=1

x2i + y2i )− (
N∑
i=1

yi(x
2
i + y2i ))]

One can explicitly solve for xC , yC as:

xC =
a22b1 − a12b2
a11a22 − a212

, yC =
a11b2 − a12b1
a11a22 − a212

.

The radius of curvature, R, can be calculated using

R =

√√√√ 1

N

N∑
i=1

[(xi − xC)2 + (yi − yC)2].
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2.3 Computation of Feedback Error Signals

In Fig. 2.4 and 2.5, I, J represent the unit vectors of the global/ground frame. Let (Xv, Yv)

denote the position of ego vehicle in the global frame (as Zv = 0 because the motion of the vehicle

is assumed to be in the plane Zv = 0). Computation of feedback error signals depends on whether

the trajectory represented by preview data is a straight line segment or a circular arc. In the former

case, the desired heading rate is zero; as can been seen from the illustration below, the lateral error

Figure 2.4: Heading and lateral errors for a straight line segment

can be computed to be:

elat =
Yv −mXv − c√

1 +m2
.

where

y = mx+ c
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is the straight-line equation based on closest point (X1, Y1) and second closest point (X2, Y2).

Desired yaw angle θR is also based on these two points. The yaw error is given by

θ̃ := θ − θR,

and the yaw rate error is given by:
˙̃θ := θ̇.

If the trajectory is a circular arc, then (X0, Y0) is the projection of (Xv, Yv) onto the circular

arc, i.e., it is the point on arc closest to vehicle’s current position (Xv, Yv)) and can be constructed

by drawing a line joining the center of the circle (Xc, Yc) to the current position of the vehicle

(Xv, Yv) and extending, if necessary, to meet the circular arc at (X0, Y0). The angle made by the

tangent at (X0, Y0) with the positive I axis of the ground will be represented by θR. As shown, unit

vectors i, j are attached to the vehicle along the longitudinal and lateral axes respectively, and the

angle θ made by i with I represents the heading θ in the governing equations of motion.

The lateral error can be defined as:

elat := R−
√

(Xv −Xc)2 + (Yv − Yc)2,

The yaw error can be defined as:

θ̃ := θ − θR

where θR is defined as based on the closest point and second closest point on the preview section,

correspondingly, the yaw rate error is:

˙̃θ := θ̇ − vx
R
.
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Figure 2.5: Heading and lateral errors for a circular arc

2.4 Concluding Remarks

In this section, we presented how to classify the preview section into a circular arc or a straight

line segment. The radius of curvature for feedforward control command can be computed as well

as feedback error signals. In the next chapter, we are going to use this error signals to represent

our lateral dynamic model, which is essential for the lateral controller design for autonomous and

connected following vehicles.
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3. LATERAL DYNAMIC MODEL FOR CONTROL∗

In this chapter, we will present the lateral dynamic vehicle model for controller design firstly.

The lateral dynamic model will be expressed using the error signals of the feedback controller;

doing so will aid controller design. In the second section, some key parameters in this modified

model will be estimated, such as vehicle weight, moment of inertia, and wheel length. Based on

these parameters, we present the determination of front and rear cornering stiffness for feedback

controller design and steer gradient for feedforward controller design. Furthermore, we consider a

“more” realistic (singularly perturbed) actuation model; we combine a second-order linear steering

model with the modified lateral dynamic model. The determination of steering actuation system

parameters will also be present in this chapter.

3.1 Original Lateral Dynamic Model for Control

As in [6, 12, 29, 30, 31, 32, 7], a bicycle model is adopted here for lateral control. In this work,

we focus on the problem of vehicle lateral motion control with constant longitudinal velocity and/or

the variation of it is small and not critical. In such a case, the bicycle model is a simple but very

useful vehicle model [33].

Let vx, vy denote the longitudinal and lateral components of vehicle’s velocity and θ be the

vehicle heading with respect to a frame fixed to the ground (as shown in Fig. 3.1). Let I, J

represent the unit vectors of the global frame and i, j be the unit vectors attached to the vehicle in

the longitudinal and lateral directions respectively. Let m, Iz be the vehicle mass and moment of

inertia about its center of mass, and a, b be the distance of the center of mass to the front and rear

axles respectively. Let Cf , Cr be the cornering stiffness of the front and rear tires; αf ,αr be the

sideslip angle of the front and rear tires; and Fcf , Fcr be the cornering forces at the front and rear

wheels respectively. For a front-steered vehicle, we define steering input as δf . Before we apply

Newton-Euler’s equations, we list the assumptions for the validity of the model [30], [34]:

∗Parts of this chapter are reprinted with permission from [1].
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Figure 3.1: Illustration of bicycle model

1. The radius of turn, R, is far larger than wheelbase L.

2. The left and right steer angle must be approximately the same, and the value is approximately

equal to steering input (δf ).

3. The side slip angles of front wheels αf are equal, as are the slip angles of rear wheel side

slip angle αr.

4. Side slip angles at CG β is small, so that

β = arctan
vy
vx
≈ vy
vx

5. The radius of turn R, the vehicle side slip angle β, and the yaw rate of vehicle θ̇ are fixed

during a steady-state turn. The lateral velocity in a steady-state turn vy = θ̇R ,and the lateral
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acceleration in steady-turn ay =
v2y
R

.

6. Linear Model for Cornering Forces: Fr = Crαr, Ff = Cfαf

From Newton-Euler’s equations, we obtain lateral vehicle dynamic equation of motion:

m(
dvy
dt

+ vxθ̇) = Fcf + Fcr, (3.1)

Iθ̈ = aFcf − bFcf . (3.2)

In this work, we only focus on lateral motion control and assume that longitudinal velocity is nearly

a constant; furthermore, we assume that the slip angles are small. Hence, we use linear tire force

model, the tire force can be represented as:

Ff = Cfαf (3.3)

Fr = Crαr (3.4)

The tire slip angle (such as αf or αr) is defined as the angle from tire velocity to the direction

of its orientation; from Fig 3.1, the geometric relationship can be determined to be:

αr = −(
vy − bθ̇
vx

) (3.5)

αf = δf −
vy + aθ̇

vx
(3.6)

Furthermore, we can find out the relationship between steering angle (δf ) and tire slip angles (αr,

αf ):

αf − αr = δf −
L

R
(3.7)
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Combinin the Eqns (3.1) - (3.6), we obtain:

m(
dvy
dt

+ vxθ̇) = Cfδf −
Cf + Cr
vx

vy −
aCf − bCr

vx
θ̇, (3.8)

Iθ̈ = aCfδ −
aCf − bCr

vx
vy −

a2Cf + b2Cr
vx

θ̇. (3.9)

These Equations of Motion (EOM) correspond to lateral dynamic model. We notice that it is a

set of equations based on the states of a vehicle. However, for the feedback controller design, it

is desired to cast the equations of motion using errors in position and heading with respect to the

desired trajectory. The EOMs above need to be simplified and modified.

3.2 Simplifying Original Lateral Dynamic Model Based on Error Signal States

The relative lateral error (elat), yaw error (θ̃) and yaw error rate ( ˙̃θ) can be computed using the

results in the previous section based on the computed trajectory.

From the Eqns 3.8, we notice it is a set of nonlinear, vehicle states based equations. In order

to express the EOMs using feedback error signals, we need to establish the kinematic relationship

between states of a vehicle and the errors in position and heading concerning the desired trajectory.

Consider a vehicle (modeled as a rigid stick, bold line in Fig. 3.2) trying to follow a trajectory

(bold curve in Fig. 3.2) shown in Fig. 3.2. Let (Xv, Yv) denote the position of vehicle’s CG in an

inertial frame and (X0, Y0) is its projection onto a trajectory that it must track. Let elat(maroon line

in Fig. 3.2) be the perpendicular (shortest) distance of (Xv, Yv) to the trajectory (or equivalently

(X0, Y0)). Let et, en be the tangential and normal vectors to the trajectory at (X0, Y0) respectively

and i, j be the unit vectors attached to the vehicle in the longitudinal and lateral directions respec-

tively. Let I , J be the inertial reference frame. Let θ, θR be the angles made by i, et with the x-axis

of the inertial reference frame.

Define the following position vectors for the vehicle CG and its projection:

Rv = XvI + YvJ, R0 = X0I + Y0J (3.10)
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Figure 3.2: Illustration of Heading and position errors in lateral direction.

and

Rv = R0 + elaten (3.11)

Note that
det
dt

= θ̇Ren,
den
dt

= −θ̇Ret (3.12)

Hence:
dRv

dt
=
dRo

dt
+ ėlaten − elatθ̇Ret (3.13)

Note that
dR0

dt
= Rθ̇R (3.14)

where R is the radius of curvature of the track at (X0, Y0), it follows that:

dRv

dt
= (R− elat)θ̇Ret + ėlaten = vxi+ vyj (3.15)
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where vx and vy are the components of velocity along the longitudinal and lateral direction. Using

coordinate transformation, we get:

 (R− elat)θ̇R

ėlat

 =

 cos (θ − θR) − sin (θ − θR)

sin (θ − θR) cos (θ − θR)


 vx

vy

 (3.16)

Similarity, the acceleration of vehicle can be represent as:

d2Rv

dt2
= (Ṙ− ėlat)θ̇Ret + (R− elat)θ̈Ret + (R− elat)θ̇2Ren + ëlaten − ėlatθ̇Ret, (3.17)

= [(Ṙ− 2ėlat)θ̇R + (R− elat)θ̈R]et + [(R− elat)θ̇2R + ëlat]en (3.18)

= (
dvx
dt
− vyθ̇)i+ (

dvy
dt

+ vxθ̇)j (3.19)

Acceleration can be similarly transformed by transform matrix as:

 (Ṙ− 2ėlat)θ̇R + (R− elat)θ̈R

(R− elat)θ̇2R + ëlat

 =

 cos (θ − θR) − sin (θ − θR)

sin (θ − θR) cos (θ − θR)


 dvx

dt
− vyθ̇

dvy
dt

+ vxθ̇

 (3.20)

We make the following additional simplifying assumptions:

• Vehicle’s longitudinal speed is a constant, say vx = V0.

• The difference between vehicle’s heading angle, θ and road’s heading angle, θR is relatively

small, i.e. |θ − θR| << 1.

• The radius of curvature of the road is a piece-wise constant, i.e. dR
dt
≈ 0.

• The radius of curvature of the road is significantly larger than lateral deviation, i.e. R >>

elat.

• Ignore quadratic or higher order terms.

One can decompose the acceleration and velocity of the vehicle in road and vehicle’s frame and

relate them through a coordinate transformation; the above assumptions can be used to simplify
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velocity (Eqn 3.16) and acceleration (Eqn 3.20) resulting in the following:

Rθ̇R ≈ V0, , (3.21)

ėlat ≈ V0(θ − θR) + vy, (3.22)

Rθ̈R ≈ 0, (3.23)

Rθ̇2R + ëlat ≈
dvy
dt

+ V0θ̇. (3.24)

Note that equation (3.24) can be combined with equation (3.21):

ëlat ≈
dvy
dt

+ V0(θ̇ − θ̇R). (3.25)

Using equations (3.21), (3.22), (3.23) and (3.25), we can express vehicle dynamic equations (3.8)

and (3.9) in terms of the states, elat, ėlat, θ̃, dθ̃dt using the following matrices:

M :=

 m 0

0 Iz

 , (3.26)

C :=

 Cf+Cr
V0

aCf−bCr
V0

aCf−bCr
V0

a2Cf+b
2Cr

V0

 , (3.27)

L :=

 0 −(Cf + Cr)

0 −(aCf − bCr)

 , (3.28)

B :=

 1

a

 , (3.29)

F :=

 mV 2
0 + (aCf − bCr)

a2Cf + b2Cr

 , (3.30)

x :=

 elat

θ̃

 . (3.31)
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Governing equations thus can be written as:

Mẍ + Cẋ + Lx = BCfδf − F(
1

R
). (3.32)

The above model assumes that the actuation is instantaneous, and sometimes, it may be worth-

while to consider a “more” realistic (singularly perturbed) actuation model, which limits feedback

gains that can be chosen. The singularly perturbed model will include the dynamics of steering

wheel, steering column, steering motor, and rack-pinion, as shown in Fig.3.3. In general, one can

lump and associate a transfer function which takes the commanded steering angle, δc, as the input

and δf as the output:

δf (s) = Ha(s)δc(s),

where Ha(s) is the actuation transfer function. In this work, we use a second order model for

steering actuation dynamics; the transfer function

Ha(s) =
Kr

Jws2 + bws+Kr

,

where Jw is the steering wheel inertia, bw is the torsional viscous damping coefficient ,and Kr

is the torsional stiffness of the steering column. A natural question arises on the determination

of parameters used in the vehicle model as they will be required for synthesizing both feedfor-

ward and feedback components. In the following subsections, we will discuss how we have

obtained these parameters experimentally for our autonomous car (Lincoln MKZ platform from

AutonomouStuff).

We first note that when δ and V0 are constants, the resulting trajectory of the vehicle is a circle;

its radius R is related to δ and V0 through geometric parameter L = a+ b (distance between axles)

and the steer gradient, Ksg as:

δ =
L

R
+Ksg

V 2
0

R
. (3.33)
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Figure 3.3: Illustration of Electrical Power Steering System

This relation can be determined by setting ẍ = 0 and ẋ = 0; we exploit this relationship to estimate

key vehicle parameters as in [35].

3.2.1 Estimation of Key Vehicle Parameters

The key vehicle parameters that are needed for vehicle control are: (a) Loads on the front

and rear axles - this is necessary for the computation of steer gradient used for determining the

feedforward steering input, (b) distance of vehicle’s center of mass from the front and rear axles

and (c) determination of vehicle’s yaw inertia.

The vehicle was placed in a weighing station in different configurations:

1. the rear wheels were on the ground and the front wheels were placed on the scale to get the

load on the front axle.
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2. the rear wheels were placed on the scale while the front wheels were on the ground to get

the rear axle load.

3. all the wheels were placed on the scale to get the total weight and check if the sum of the

front and rear axle loads is close to the total weight, W .

Once the front/rear axle loads (Wf ,Wr respectively) have been determined experimentally, the

distances (a, b respectively) of the center of mass to the front and rear axles can be computed using

the following equations representing the moment and force balance:

Wf × a−Wr × b = 0, Wf +Wr = W,

⇒ a =
Wr

W
, b =

Wf

W
.

Vehicle’s yaw inertia about the center of mass can then be computed as:

I = a2
Wf

g
+ b2

Wr

g
.

Below is the table of parameters we have determined experimentally. In this table, m = W
g
.

Table 3.1: Parameters of Vehicle (Reprinted with permission from [1])

Parameter Description Value Unit
m vehicle total mass 1896 [kg]
Wf vehicle front axle load 1052.32g N
Wr vehicle rear axial mass 843.68g N
Iz vehicle inertia 3803 [kg.m2]
a distance of c. g. to the front axle 1.2682 [m]
b distance of c. g. to the rear axle 1.5818 [m]
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3.2.2 Determination of Front and Rear Cornering Stiffness and Steer Gradient

The parameter Ksg can be estimated by carrying out different runs, where in each run corre-

sponds to a specified V0 and δ. Having collected the data from multiple runs, one can use linear

regression to find Ksg. The general procedure can be illustrated as Fig.3.4.

Figure 3.4: Flow chart for Kus determination

The collected test data for each run includes: the GPS coordinates of ego vehicle’s trajectory,

δ and V0. The values of V0 ranged from 5 m/sec to 13.5 m/sec (i.e., 11.25 mph to 30 mph)

with 0.5 m/sec increments. The value of δ was set at 0.1061 rad. We did not perform tests with

multiple steering angles because of safety and space considerations.

From each run, we constructed multiple data points, noting that the vehicle speed, V0, or the

steering angle, δ, may not remain constant throughout the run. For each run and for each point

on the trajectory in the run, we associate a subset of the data from the run (much like the preview
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data) corresponding to its future locations in the next 1 second until we come to 1 second before

the run. For each data set, we find a mean speed Vmean and mean steering angle, δmean and find the

corresponding radius of curvature, Rmean using the algorithm described in the earlier section. We

sort the data sets in increasing order of speed, and they are plotted in the figure below:

Figure 3.5: Experimental data for computing cornering stiffness and steer gradient (Reprinted with
permission from [1])

In the plots, the x-axis represents the index of the data set. The data from the experiments can

then be used to set up an overdetermined system of equations in Ksg using equation (3.33).

AKsg = B.

We discretize the vehicle speed ,and for each data set with vehicle speed in the given discretiza-
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tion, we then get the best estimate of Ksg as:

Ksg = (ATA)−1ATB.

Doing so, would give us the variation of steer gradient, Ksg, with the speed of the vehicle, V0, as

shown in Fig. 3.6.

Figure 3.6: Steering gradient as a function of vehicle speed. (Reprinted with permission from [1])

When V0 < 5m/s, we assume the steer gradient is negligible, as Ackerman steering angle

component, L
R

, of δ is dominating. For speeds V0 > 13.4m/s, we take the value of Ksg that

corresponds to V0 = 13.4 m/sec; due to limitation of space of RELLIS test track, this is the

highest speed that we could achieve in a run within the limitations of space.

Fig. 3.6 was converted to a look-up table and implemented in the vehicle, i.e., for a measured

vehicle speed, steering gradient was determined from this look-up table for the computation of

feedforward steering input.
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For the synthesis of feedback stabilizing controllers, we need to determine the cornering stiff-

ness coefficients Cf and Cr respectively. Once Ksg has been determined as a function of speed,

we note the relationship between Ksg and Cf , Cr as:

Ksg =
Wf

Cf
− Wr

Cr
.

For each discretization of the velocity, we can only get one equation in two variables, Cf and Cr;

we can arrange the overdetermined system of equations as:

AcΨ = Ksg,

where

Ψ =

 1
Cf

1
Cr

 ,
and

Ac =

[
Wf −Wr

]
.

Correspondingly, we can determine the “least-norm” solution as:

Ψ = (ATc Ac)
−1ATcKsg.

Plots of Cf and Cr as they vary with V0 are shown below: We fit a fourth-order polynomial of

the cornering stiffness coefficients for synthesizing feedback control; the order of fit seems to be

adequate for approximating the plots of Cf and Cr with speed V as shown in the Fig. 3.7.

3.2.3 Identification of Steering Actuation Dynamics

Actuation system is assumed to be a linear, second order system, as in [36]:

Ha(s) =
Kr

Jws2 + bws+Kr

=
ω2
n

s2 + 2ζωns+ ω2
n

. (3.34)
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Figure 3.7: Cornering stiffness variation with speed (Reprinted with permission from [1])

The idea of determining the parameters wn, ζ is to provide a unit step steering command and

observe the response. From the response, one can determine ζ and wn using “log-dec” method

[37].

The response of the steering system to a steering command of 0.106 rad is shown in figure 3.8.

The first peak (X1, T1) and second peak(X2, T2) in this figure are used for computing ζ andwn. The

"log-dec", η = ln(X1−SC
X2−SC ). The time elapsed between the peaks is Td = T2− T1; correspondingly,

the damped natural frequency is ωd = 2π
Td

, and the damping ratio ζ and natural frequency can be

calculated as:

ζ =
η√

(2π)2 + η2
, ωn =

ωd√
1− ζ2

. (3.35)

We found that ζ = 0.4056, ωn = 21.4813 rad/s from the data and we use these values for design
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Figure 3.8: Step response of steering actuation system (Reprinted with permission from [1])

and implementation of lateral controller.
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4. LATERAL CONTROLLER SYNTHESIS FOR AN AUTONOMOUS VEHICLE

CONTROL∗

In this chapter, we present the lateral controller for an autonomous vehicle. This controller is

designed based on the simplified lateral dynamic model, which has been discussed in Chapter 3.

The stability issue will also be discussed in the latter sections of this chapter. Furthermore, a series

of experiments will be designed to corroborate the effectiveness of designed lateral controllers.

A Lateral controller for tracking a trajectory can be decomposed into two parts: a feedforward

part and a feedback part. A feed forward part is aimed at estimating the steering control command

while a feedback part is designed to ensure the decay of feedback error signals. The final desired

steering command(δc) is the summation of feedforward(δff ) and feedback(δfb),i.e.,

δc = δff + δfb.

Figure 4.1: Structure of Controller

∗Parts of this chapter are reprinted with permission from [1].
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As shown in Fig.4.1, the feedforward controller requires road curvature (R), and vehicle’s

longitudinal velocity (vx). The feedback controller requires lateral error(elat), yaw error (θ̃) and

yaw rate error ( ˙̃θ). The signal vx can be measured while the computation of all other signals from

available measurements and computed trajectory has been discussed in Chapter 2. Clearly, vx can

be obtained from vehicle directly. In the following sections, we will outline how these controllers

are designed:

4.1 Feedforward Controller

The feedforward controller essentially provides the steering input that would keep the vehicle

on the desired circular trajectory without any feedback if the initial conditions were to be appro-

priate and if the disturbance inputs on the vehicle are absent. The feedforward steering controller

predicts steering inputs and improves the system performance because it will send out steering

command before the vehicle deviates from its path[38]. Moreover, the feedforward steering con-

troller may also sustain a reasonable passenger comfort[39]. One may view the feedforward steer-

ing input, δff , as that steering input, which results in the vehicle’s trajectory being a circle of radius

R when it is traveling at a longitudinal speed of V0. The derivation of feedforward steering input

is as shown as follows: In a steady-state turn, the vehicle equation of motion Eqn.3.8 becomes:

m
v2y
R

= Fcf + Fcr, (4.1)

0 = aFcf − bFcf . (4.2)

Then cornering forces on front and rear tires can be represented as:

Ff = m
v2x
R

b

L
(4.3)

Fr = m
v2x
R

a

L
(4.4)

34



Substituting Eqn.4.4 and Eqn.4.4 into Eqn.3.5 and Eqn.3.6, we got:

αf = m
v2x
R

b

L

1

Cf
(4.5)

αr = m
v2x
R

a

L

1

Cr
(4.6)

Recall the relationship between steering angle(δf ) and tire slip angles(αr,αf ) in Eqn. 3.7. Clearly,

the corresponding feedforward steering input is:

δff =
a+ b

R
+ (

mb

LCf
+
ma

LCr
)
V 2
0

R
=
a+ b

R
+Ksg

V 2
0

R
. (4.7)

Note that for understeered vehicles, Ksg > 0 and the open-loop handling dynamics will be

unconditionally stable [40, 41].

4.2 Feedback Controller Design

Feedback control is based on available information, namely, elat, θ̃ and ˙̃θ; the lateral velocity

information is not readily available; hence, we seek a “fixed structured” control law of the form:

δfb = −keelat − kθθ̃ − kw ˙̃θ,

where the gains ke, kθ and kw need to be determined. Higher order controllers can suffer from the

problem of fragility [42] and often require more parameters to tune.

From the governing equations, the transfer functions relating elat(s) and θ̃(s) to δf (s) can be
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related through the open-loop characteristic polynomial, ∆o(s) as:

∆o(s) = s2(mIs2 +
(I +ma2)Cf + (I +mb2)Cr

V0
s

+
(a+ b)2CfCr

V 2
0

−m(aCf − bCr)), (4.8)

elat(s)

δf (s)
=

Cf
∆o(s)

(Is2 +
b(a+ b)Cr

V0
s+ (a+ b)Cr), (4.9)

θ̃(s)

δf (s)
=

Cf
∆o(s)

(mas2 +
(a+ b)Cr

V0
s). (4.10)

Since

δf = Ha(s)δc(s)

= −Ha(s)(keelat(s) + (kθ + kws)θ̃(s)), (4.11)

it follows that the closed-loop characteristic equation can be expressed as:

∆o(s) +Ha(s)keCf (Is
2 +

b(a+ b)Cr
V0

s+ (a+ b)Cr)

+Ha(s)(kθ + kws)Cf (mas
2 +

(a+ b)Cr
V0

s) = 0. (4.12)

For the second-order steering actuation model, it follows that the characteristic polynomial may be

expressed in terms of the control parameter vector K = (ke, kθ, kw) as:

∆(s;K) = (s2 + 2ζωns+ ω2
n)∆o(s) + keω

2
nCf (Is

2 +
b(a+ b)Cr

V0
s+ (a+ b)Cr)

+(kθ + kws)ω
2
nCf (mas

2 +
(a+ b)Cr

V0
s). (4.13)
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Note that ∆(s,K) = A6s
6 + A5s

5 + A4s
4 + A3s

3 + A2s
2 + A1s+ A0, where

A6 =
Im

ω2
n

,

A5 =
2Imζ

ωn
+
Cf (I + a2m) + Cr(I + b2m)

V0ω2
n

,

A4 =
2ζ(Cf (I + a2m) + Cr(I + b2m))

V0ωn

+ (
(a+ b)2CfCr

V 2
0 ω

2
n

−m(aCf − bCr)) +mI,

A3 = (
2ζ((a+ b)2CfCr)

V 2
0 ωn

−m(aCf − bCr))

+
Cf (I + a2m) + Cr(I + b2m)

V0
+ Cfmakω,

A2 = (
(a+ b)2CfCr

V 2
0

−m(aCf − bCr))

+ (CfIke + CfCr
(a+ b)

V0
kω +maCfkθ),

A1 = CfCr
(a+ b)

V0
(bke + kθ),

A0 = CfCr(a+ b)ke,

where ζ , ωn are the damping ratio and natural frequency of steering actuation. They can be found

out in our previous work[1] as well as previous Chapter 2. The detailed derivation of ∆(s;K) can

be seen in Appendix A.

4.2.1 Stabilizing Gain Set Generation

A natural problem regarding the stability of tracking is to determine the set of control gains, K,

so that the closed-loop characteristic polynomial (4.13) is Hurwitz. An advantage of determining

the entire set is that the set can be pruned to accommodate additional performance criteria.

There are many ways to construct the set of controllers [43, 22, 44, 45] in the parameter space.

We adopt the D-decomposition approach of [22, 45] here. This method has been used as early

as the 1970s by Siljak in his work [46] and subsequently by Bhattacharyya and his collaborators

[22],[43], in the construction of the set of stabilizing PID and fixed structure controllers. Here we

37



notice the error signals for feedback controller design are lateral error(elat), yaw error(θ̃), and yaw

rate error( ˙̃θ). However, there is no lateral error rate(ėlat) available. One may adopt an observer-

based controller design that estimates the lateral error rate; however, we have chosen a more direct

approach of synthesizing a static output feedback controller with available information. This will

ensure that the number of parameters to tune is small (three). There are also some popular estima-

tion techniques such as KF, or EKF to estimate the non-observable states. However, the drawbacks

are obvious: First, from the aspect of EKF itself, it estimation can be degraded by the accumula-

tion rounding errors in addition to the non-Gaussian noise[47]. Also, this kind of Dynamic Output

Feedback scheme has more control parameters to tune; in KF or EKF, we need to specify extra

gains: because of separation theorem, we must have both controller and observer gains; moreover,

with dynamic output feedback, the closed-loop can be fragile [42]. If a static output feedback con-

troller can be designed, it is simpler to implement and tune as we only need three gains. Moreover,

based on this D-decomposition method, one can construct the set of stabilizing gains and visualize

the set!

Primarily, this approach relies on the continuous dependence of roots of a polynomial on its

coefficients for every regular perturbation. The approach then involves decomposing the parameter

space into disjoint signature-invariant regions by identifying their boundaries. The boundaries can

be obtained by

• Determining the set of K for which ∆(0,K) = 0

• Determining the set of K for which ∆(jw,K) = 0 for some w.

Once the parameter space is partitioned, one can then sample every partition to determine the

partition corresponding to ∆(s;K) being Hurwitz. Here we notice that there are three parameters,

ke, kθ and kω. For the synthesis of a stabilizing set, we fix the ke for some constant value and find

out the signature-invariant regions in ke-kω plane.

38



The kθ and kω can be represented as a function of ω by D-decomposition as:

kθ =
(D4o(jω) (−D1e(jω)− keD2e(jω)) +D4e(jω) (D1o(jω) + keD2o(jω)))

|Aθω|
(4.14)

kω =
(D3o(jω)(D1e(jω) + keD2e(jω)) +D3e(jω)(−D1o(jω)− keD2o(jω)))

|Aθω|
(4.15)

where:

D1e(jω) = −α5

ω2
n

w6 + (
α1

ω2
n

+
α4

ωn
+ α5)w

4 − (α1)w
2,

D1o(jω) = (
α4

ω
+

2ζα5

ωn
)w4 − (

2ζα1

ω
+ α4)w

2,

D2e(jω) = −(α2)w
2 + α0, D2o(jω) = (

α0

v0
b)

D3e(jω) = −(α3)w
2, D3o =

α0

V0

D4e(jω) = −α0

V0
w2, D4o = −(α1)w

2

From equations above, kθ and kθ can be plotted. An example is displayed when ke = 0.06, at

V0 = 15m/s, the relevant Cf and Cr have been gathered from Fig. 3.7 and the controller set is

illustrated in Fig. 4.2. The whole kθ−kω plane is partitioned by boundaries conditions above. The

whole plane is decomposed by 3 disjoint signature invariant regions. By checking the signature of

the characteristic polynomial for a sampled controller in each region, only gain set (kθ, kω) from

inner contour of curve, i.e. region 2 stabilized system. The detailed procedure can be found out in

Appendix B.

We can increase ke and similarly get related stabilizing regions. Then several layers of stabi-

lizing regions can be determined, and a stabling set can be constructed. The controller gains can

then be chosen from this stabilizing set.
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Figure 4.2: Single layer of Stabilizing Gain Set for V = 15m/s with ke = 0.06.

4.2.2 Closed-loop Stability with varying longitudinal velocity

Let Q,G,H be appropriate matrices (in controllable canonical form) so that the the transfer

function, Ha(s), from steering command, δc, to steering angle, δf , has the following minimal

realization:

η̇ = Qη + Gδc, δf = Hη.

Note that the dynamics of the vehicle can be expressed as

ẋ

ẍ

 =

 0 I

−L −γC0


x

ẋ

+

 0

B

Cfδf −

0

F

 1

R
. (4.16)
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Let Kp := [ke kθ] and Kv := [0 kω]. Since

δc = −Kpx−Kvẋ, (4.17)

the closed loop dynamics is then given by:


ẋ

ẍ

η̇


︸ ︷︷ ︸

ż

=


0 I 0

−L −γC0 BHCf

−GKp −GKv Q


︸ ︷︷ ︸

A(γ)


x

ẋ

η


︸ ︷︷ ︸

z

+


0

−F

0


︸ ︷︷ ︸

F̃

1

R
. (4.18)

Once the controller gains are fixed, i.e., Kp,Kv are known, closed loop stability can be exam-

ined by formally considering a linear system

ż = A(t)z(t). (4.19)

Problem (9.31) of [48] can be employed to establish closed loop stability; it is stated here for

completeness:

Lemma 1: Suppose the linear system:

z = A(t)z(t) (4.20)

satisfies the following conditions:

• For some k > 0, ‖A(t)‖ ≤ k for all t ≥ 0,

• For some σ > 0, every eigenvalue of A(t) has a real part less than −σ for every t ≥ 0, and

• ‖Ȧ(t)‖ is square integrable, i.e., for some ρ > 0,

∫ ∞
0

‖Ȧ(t)‖2dt ≤ ρ. (4.21)
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Then, the solution z = 0 is exponentially stable.

Proof: It can be found in the solutions manual [49].

Closed loop stability with varying longitudinal speed has not been considered in the literature;

the following result provides the connection between “frozen parameter” control synthesis and

stability of linear time varying system at hand with varying longitudinal speed:

Proposition 1: Consider the linear time varying system

ż = A(γ(t))z

given above. Suppose Kp, Kv have been chosen to satisfy the following conditions:

(a) The real part of eigenvalues of A(γ) are less than −σ for every γ ∈ [ 1
Vmax

, 1
Vmin

].

(b) The longitudinal acceleration of the vehicle is square integrable, i.e,
∫∞
0
v̇2x(τ)dτ <∞.

Then, the equilibrium z = 0 is exponentially stable.

Proof: We will use the proof of Problem (9.31) of [48] to arrive at the result. Essentially, it requires

that three conditions be satisfied:

• Note that γ(t) = 1
vx(t)

. Hence, ‖A(γ(t))‖ is bounded for all t or equivalently, it is bounded

for all γ ∈ [ 1
Vmax

, 1
Vmin

]; in this case, it is easy to verify that this condition holds.

• The real part of the eigenvalues of A(γ(t)) are less than −σ for some σ > 0; again this

condition holds because the gains Kp,Kv have been chosen to be in the set of stabilizing

controllers that render A(γ(t)) Hurwitz for every γ ∈ [ 1
Vmax

, 1
Vmin

].

• The third condition requires
∫∞
0
‖Ȧ(γ(τ))‖2dτ < ∞; in our case, it is easy to see that

A(γ) is linear in γ and for some appropriate constant matrices A0 and A1, we can express

A(γ) = A0 + γA1. Consequently,

Ȧ(γ) = γ̇A1, (4.22)
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implying that Ȧ(γ) is square integrable if γ̇ is square integrable, i.e., γ̇ ∈ L2 as γ is bounded.

However,

γ̇ = − 1

v2x
v̇x (4.23)

=⇒
∫ ∞
0

|γ̇(τ)|2dτ =

∫ ∞
0

1

v4x(τ)
|v̇x(τ)|2dτ

≤ 1

V 4
min

∫ ∞
0

|v̇x(τ)|2dτ.

By virtue of v̇x being square integrable, the third condition is also satisfied. Hence, the closed

loop time varying system is exponentially stable by Lemma 1.

The assumption that the longitudinal acceleration is square integrable is very reasonable be-

cause often acceleration/deceleration maneuvers are associated with a finite change in longitudinal

speed; the finite time duration of acceleration maneuvers renders this condition readily satisfied.

4.3 Numerical and Experimental Results

4.3.1 Fitting a Circular Arc

The effectiveness of estimating the trajectory using the “least-square” approach in Section 2

depends on the noise in the sampled values of GPS. To examine this issue, we consider a preview

for a vehicle is traversing a circular trajectory of radius R ∈ {100, 200} meters at a speed of

25m/s; we sample it at 20 Hz and provide a preview of 20 samples of the trajectory to the vehi-

cle (A preview time of 1 second translates to a preview distance of 25 m). We induce noise in the

samples and want to determine the noise level at which the error in reconstructing the trajectory ex-

ceeds 25 cm; the error in reconstructing the trajectory can be calculated via the Euclidean distance

between the estimated value of the sample and its true value. For each level of noise, we conduct

100 numerical simulations, each corresponding to one realization of the random noise sequence of

twenty samples. Figures shown below show demonstrate trajectory reconstruction with a noise in

GPS of 15 cm corresponding to two trajectories of radii 100 m and 200 m ,respectively. While the

cross-track error in both cases is acceptable (<20 cm), the longitudinal error in the estimation of
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position seems to increase with the noise level (from about 25 cm to 5 m depending on the noise

level). It appears that the longitudinal error in estimation can be corrected with other sensing and

communication mechanisms.

Figure 4.3: Trajectory Comparison at R =
100 m

Figure 4.4: Trajectory Comparison at R =
200 m

4.3.2 Construction of Stabilizing Set of Feedback Gains

In order to construct the set of stabilizing feedback gains, we used the parameters from Ta-

ble 3.1. Since the stabilizing set (which is non-convex) depends on V0, we find the sets of all

the stabilizing controllers for a range of speeds in {10, 20, 30, 40, 50, 60, 67} mph and choose a

controller in the intersection of all these stabilizing sets. The actual gains using this procedure are

(ke, kθ, kω) = (0.06, 0.96, 0.08) and is an interior point in all the stabilizing sets. The stabilizing set

corresponding to V0 ∈ {10, 20, 30, 40, 50, 60, 70} mph is shown in Fig. 4.5, 4.6,4.7,4.8,4.9,4.10
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and 4.11.

Figure 4.5: Stabilizing set of controllers for 10 mph
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Figure 4.6: Stabilizing set of controllers for 20 mph

Figure 4.7: Stabilizing set of controllers for 30 mph
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Figure 4.8: Stabilizing set of controllers for 40 mph

Figure 4.9: Stabilizing set of controllers for 50 mph
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Figure 4.10: Stabilizing set of controllers for 60 mph

Figure 4.11: Stabilizing set of controllers for 67 mph
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From the figures above, the stabilizing gain set space volume is shrinking: with higher opera-

tion speed, the system is more natural to be unstable. Also, the cross-section area is shrinking with

ke value increasing, which indicates that the controller is very sensitive to ke. Hence, there are two

rules that need to be followed:

• Pick gain sets at stabilizing space highest operating speed.

• Pick ke as low as possible, which provides a larger gain sets for (kθ and kω)

The actual gains using this procedure are (ke, kθ, kω) = (0.06, 0.96, 0.08) and is an interior point

in stabilizing set for V = 70 mph. It is also inside the stabilizing set of controllers for all speeds

until V = 70 mph.

4.3.3 Experimental Setup

The algorithms were implemented on a Lincoln MKZ car. The vehicle was equipped with a

drive-by-wire system for autonomous steering, throttle and brake control. Data concerning the

vehicle states (position, yaw angle, and yaw rate) were obtained from an onboard integrated GPS

system and IMU unit. The controller operates at 50 Hz.

4.3.3.1 Lane Keeping Test

In this test, the vehicle follows a 2-mile long loop at the TAMU’s RELLIS campus with its

pre-recorded GPS coordinates (see Fig. 4.12); there are four turns, and the vehicle followed this

path in the clockwise direction from the starting point (shown using a small circle in the figure).

The turning radii at the four corners along the path are approximately: 42m, 81m, 76m ,and 114m.

The target speed is 13.4 m/s. For driver safety, we limited the vehicle speed so that the lateral

acceleration does not exceed 1.5m/s2 during the turns; this implies that the turning speed can at

most be vturn =
√
alimR.

With the designed controller, the lateral (cross-track) error is shown in Fig. 4.13. There are

four pairs of red vertical bars; each pair denotes the time interval when the vehicle was taking a

turn around the corner. The maximum lateral error obtained through this entire experiment was
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less than 0.45 m. The maximum error occurs during the first turn, which is the sharpest one of

all the four turns. On an average, the cross-track error settled to around 0.1m after each of the

turns. The corresponding vehicle speed, yaw error, yaw rate error ,and the feedback (FB) and the

feedforward (FF) control commands can be seen in Figs. 4.14, 4.15, 4.16 and 4.17. Please note

that feedforward command is triggered only when it can be determined that the preview section

data corresponds to a curved segment. As shown in Fig. 4.17, the feedforward control input is only

supplied while turning.

4.3.3.2 Lane Change Test

We conducted multiple lane change tests to corroborate the controller’s performance. The pro-

cedure used in each of the tests is as follows: In the first run, the vehicle was run in the manual

mode. It starts from rest, accelerates to 30 m/sec, then performs a double lane change maneuver

(simulating a maneuver where the vehicle turns left to go to the next lane and then right to get

back onto the original lane). The corresponding reference path is shown in Fig. 4.18. We then

collected the GPS data corresponding to this run for simulating the data that a following connected

and autonomous vehicle would receive via communication. In the next run, the vehicle was run

in autonomous mode, with the pre-recorded data from the previous run providing limited preview

information. To simulate this, the autonomous vehicle could only use the GPS waypoint informa-

tion that is at most 30 ms ahead. In the lane-change tests, a maximum lateral error of about 0.3 m

was obtained and occurred at the end of each lane change maneuver. The corresponding vehicle

speed, yaw error, yaw rate error ,and feedback and feedforward control commands for one of the

tests can be seen in Figs. 4.20, 4.21, 4.22 and 4.23. Similar to lane-keeping tests, the feedforward

command is triggered only when it can be determined that the preview section data corresponds to

a curved segment (when lane change actually occurs).

To corroborate the performance of the controller for non-zero initial errors, we conduct seven

test runs with different initial errors. The lateral error corresponding to multiple runs is shown in

Fig. 4.24. In these runs, the autonomous vehicle was tracking the same track repeatedly during

each run. The maximum lateral error observed was still less than 0.35m during each of the multiple
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runs. From table 4.1, we can notice that the maximum of lateral error is 0.3358 m. The maximum

of the average lateral error is 9 cm, and the minimum of the the average lateral error is 6.89 cm.

Considering that the initial position of the vehicle for each run is not identical, the performance of

the controller is stable, and consistent.

Table 4.1: Maximum and Average Lateral Error for Multiple-runs of Lane Change test (Reprinted
with permission from [1])

Test Number Maximum Average Unit
1 0.3262 0.0729 [m]
2 0.2850 0.0689 [m]
3 0.3358 0.0861 [m]
4 0.2841 0.0756 [m]
5 0.2976 0.0832 [m]
6 0.3003 0.0759 [m]
7 0.3192 0.09 [m]

Figure 4.12: Lane keeping test: Vehicle reference path (Reprinted with permission from [1])
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Figure 4.13: Lane keeping test: Lateral error (Reprinted with permission from [1])

Figure 4.14: Lane keeping test: Longitudinal speed (Reprinted with permission from [1])
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Figure 4.15: Lane keeping test: Yaw error (Reprinted with permission from [1])

Figure 4.16: Lane keeping test: Yaw rate error (Reprinted with permission from [1])
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Figure 4.17: Lane keeping test: Feedback/Feedforward command (Reprinted with permission from
[1])

Figure 4.18: Lane change test: Vehicle reference path (Reprinted with permission from [1])
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Figure 4.19: Lane change test: Lateral error (Reprinted with permission from [1])

Figure 4.20: Lane change test: Longitudinal speed (Reprinted with permission from [1])

55



Figure 4.21: Lane change test: Yaw error (Reprinted with permission from [1])

Figure 4.22: Lane change test: Yaw rate error (Reprinted with permission from [1])
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Figure 4.23: Lane change test: Feedback/Feedforward command (Reprinted with permission from
[1])
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Figure 4.24: Lateral error of the vehicle corresponding to multiple lane changing tests (Reprinted
with permission from [1])
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5. LATERAL CONTROLLER SYNTHESIS FOR A CONVOY OF AUTONOMOUS AND

CONNECTED VEHICLES

In this chapter, we consider an architecture where the lead vehicle in a convoy constructs a tra-

jectory in real-time for an ELC maneuver based on the information that it has, and communicates

its position information to its following vehicles. Since vehicles need not be identical, communi-

cating vehicle-specific information such as throttle angle, steering angle, or brake pedal position

information may not be suitable; hence, it is simpler from the implementation viewpoint to focus

on communicating information about vehicle kinematics , such as vehicle’s position, yaw angle,

yaw angle rate etc.. Note that the first vehicle of platoon is “leading vehicle”, and the one ahead

of ith vehicle is “preceding vehicle”. Every following vehicle could additionally get the position

information of its preceding vehicle (which are GPS coordinates referring to the same frame as

lead vehicle), in synthesizing the controller. This architecture is similar in spirit to the longitudinal

vehicle following architecture employed by California PATH [50]. However, the details of how the

lead vehicle information is used are markedly different, as can be seen in the following sections.

To reiterate [51, 26], consideration of GPS information of lead and preceding vehicles arises

from the need to address string instability in the lateral direction - certainly, crosstrack errors

should not amplify for ensuring safety. Fig. 5.1 illustrates a convoy, where the ego ACV (shown

in purple color) has access to sampled position data of the ACVs ahead. The red and blue colored

dots correspond respectively to the locations at which their position data was transmitted to other

ACVs including the ego ACV. The ego ACV receives this data, stores it and uses only the data that

is within a distance Lpreview ahead of it; this is shown in Fig. 5.1 as ego preview data; this data

can be sorted in increasing order of distance from the ego ACV. let (xl1, y
l
1), (x

l
2, y

l
2), . . . , (x

l
N , y

l
N)

(corresponding to red dots in the ego preview data) denote the GPS data of lead vehicle; simi-

larly, let (xp1, y
p
1), (xp2, y

p
2), . . . , (xpM , y

p
M) denote the data corresponding to the preceding ACV. The

problem is to construct a target trajectory as a circular arc spline approximation of the data at hand.
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Circular arc spline1 is especially useful here because (1) a majority of US roads are built as circular

arc splines [21], (2) computation of curvature and error signals (namely, crosstrack error, heading

and heading rate errors) becomes easy.

Figure 5.1: Illustration of the sampled trajectories of ACVs in the convoy and the information
available to the ego ACV

1A circular arc spline is a union of straight line segments and circular arcs so that the resulting curve is continuous
with tangent defined everywhere but allows for piecewise constant curvature

60



It has been mentioned in [52, 53] that human drivers require a preview/lookahead information

equivalent to about 0.8 sec of time headway; in other words, if v is the ACV’s longitudinal speed,

all the preview data within Lpreview = 0.8 × v ≈ 30 m should suffice for highway speeds. Typi-

cally the maximum frequency of GPS data update is 20 Hz and hence, M,N < 20. The duration

for a lane change is typically 5 − 6 sec [54]; clearly, for this reason, it is reasonable to assume

that there can be atmost one change in curvature of the target trajectory in 1 sec. We currently

use GPS-RTK [55] that has an accuracy of approximately 2 cm in position; correspondingly, the

transmitted data is assumed to be of the same order of accuracy. Since the radius of curvature of

the data is typically of the order of 100′s of meters, and the distance between successive samples

of GPS data transmitted by the ACVs is of the order of 1 m, it suffices to only consider circular

arc splines where circular arcs and straight lines alternate in succession. Since the data is sorted

and the GPS-RTK provides position data with a cm accuracy with the distance between succes-

sive data samples from ACV being of the order of m, we can exploit this situation further. For

example, consider the case where the ego ACV that is going straight needs to decide whether to

turn based on the available preview data. Since the data is sorted by distance, consider the data

from the preceding vehicle (the same can be done for the lead vehicle also): Find the largest k ≥ 3

such that points (xp2, y
p
2), . . . , (xpk−1, y

p
k−1) are no farther than a threshold, say ε cm, from the line

connecting (xp1, y
p
1) and (xpk, y

p
k); clearly, we can associate a straight line segment with the data

(xp1, y
p
1), . . . , (xpk, y

p
k) and associate a circular arc with the rest of the data. We choose the threshold

to be 10 cm (about 5 times the accuracy specified by GPS-RTK). This would allow us to focus on

circular arc approximation of the rest of data.

There can be various architectures possible for constructing an ELC trajectory; for example, as

in California PATH longitudinal control architecture, one could have the sampled GPS information

of the lead and preceding vehicles via V2X communication. Such V2X communication is also be

adopted by previous works[56, 57, 58]. Consideration of GPS information of lead and preced-

ing vehicles arises from the need to address string instability in the lateral direction - certainly,

lateral tracking errors should not amplify for ensuring the safety of vehicles in the neighboring
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lanes. Without lead and preceding vehicles’ information, the lateral string stability can not be

guaranteed[56]. In this case, there are two possible architectures:

• Synthesize a composite ELC trajectory that fuses the GPS information of both lead and

preceding vehicles of every following vehicle in the convoy.

• Synthesize many ELC trajectories with each trajectory corresponding to the information

from a preceding/lead vehicle. One must then correspondingly synthesize feedback infor-

mation to regulate the tracking error.

A general formulation for fitting a circular arc that would suffice for these two possible archi-

tectures will be considered in the next subsection.

5.1 Synthesizing a Composite ELC Trajectory

5.1.1 Fitting a circular arc based on preview data

There are two sources for the preview data – lead ACV and the preceding ACV; one may want

to weigh the data differently. For this case, consider a weighing parameter α ∈ [0, 1] that will be

used in defining a convex combination of two different error functions.

Let (Xc, Yc) be the coordinates of the center of the circle sought and R be its radius.

A circle is defined by an equation of the form:

e(x, y) = 0,

where

e(x, y) := (x−Xc)
2 + (y − Yc)2 −R2.

One can think of πe as the difference between the areas of a circle passing through a point

(x, y) with center at (Xc, Yc) and another circle of radius R. Associated with the given data,
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(xp1, y
p
1), . . . , (xpM , y

p
M), (xl1, y

l
1), . . . , (x

l
N , y

l
N), one can define a composite error

J = α

M∑
i=1

(e(xpi , y
p
i ))

2 + (1− α)
N∑
j=1

(e(xlj, y
l
j))

2.

Then (Xc, Yc), R can be determined as the arguments minimizing J and can be determined

from three linear equations in Xc, Yc, (R
2 −X2

c − Y 2
c ).

In the first architecture, we pick α = 0.5, i.e., we provide equal weight to the data from lead

and preceding ACVs and then determine the composite ELC trajectory. The choice of α = 0.5

simplifies implementation as we can treat the data from lead and preceding ACVs as coming from

the same source ACV.

In the second architecture, we can set α = 1 to compute a target trajectory based on the data

associated with preceding ACV and α = 0 to compute another target trajectory based on the data

associated with lead ACV.

Once an ELC trajectory is computed, one must now calculate the feedback signals: the lateral

error of the vehicle from the trajectory, elat, the heading error of the vehicle, θ̃, and the heading

rate error, ˙̃θ. The radius of curvature allows us to compute the feedforward control with respect to

an ELC trajectory and the feedback signals help vehicle track the trajectory!

5.2 Lateral Controller Synthesis

Lateral controller for tracking a trajectory can be decomposed into two parts: a feedforward

part and a feedback part, i.e.,

δc = δff + δfb (5.1)

In the following subsections, we will outline how these controllers are designed:

5.2.1 Feedforward Controller

Feedforward controller structure depends on the architecture employed.
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5.2.1.1 With a Composite ELC Trajectory:

In this case, there is only a single trajectory. The feedforward controller essentially provides the

steering input that would keep the vehicle on the circular part of trajectory without any feedback

if the initial conditions were to be appropriate and if the disturbance inputs on the vehicle are

absent. One may view the feedforward steering input, δff , as that steering ,input which results in

the vehicle’s trajectory being a circle of radius R when it is traveling at a longitudinal speed of V0.

Clearly, the corresponding feedforward steering input is:

δff =
a+ b

R
+Ksg

V 2
0

R
(5.2)

The detailed derivation has already been present in Chapter4 Note that for understeered vehicles,

Ksg > 0 and the open-loop handling dynamics will be unconditionally stable [40, 41].

5.2.1.2 Separate ELC Trajectories Based on Lead and Preceding Vehicles

Let α ∈ (0, 1) denote the weight we assign to the lead vehicle’s trajectory in terms of tracking.

Then

δff = α(
a+ b

Rl

+Ksg
V 2
0

Rl

) + (1− α)(
a+ b

Rp

+Ksg
V 2
0

Rp

) (5.3)

where Rl, Rp denote respectively the radii of trajectory computed based on the preview data of

lead and preceding vehicles respectively.

5.2.2 Feedback Controller Design

As with feedforward controller design, feedback controller design also depends on the archi-

tecture.

64



5.2.2.1 With a Composite ELC Trajectory:

Feedback control is based on available information, namely, elat, θ̃ and ˙̃θ; the lateral velocity

information is not readily available; all the error signals can be found in Chapter2. Hence, we seek

a control law of the form:

δfb = −keelat − kθθ̃ − kw ˙̃θ (5.4)

where the gains ke, kθ and kw need to be determined.

5.2.2.2 Separate ELC trajectories corresponding to lead and preceding vehicle’s preview data

Suppose elat,l, θ̃l and ˙̃θl be the lateral spacing error, heading error and yaw rate error correspond-

ing to the ELC trajectory based on lead ACV’s data; similarly, elat,p, θ̃p and ˙̃θp be corresponding

errors for the ELC trajectory based on preview data from preceding ACV.

The structure of feedback controller we pick in this case is as follows:

δfb = −(1− α)(keelat,l + kθθ̃l + kω
˙̃θl)− α(keelat,p + kθθ̃p + kω

˙̃θp).

5.2.3 Construction of the Set of Stabilizing Structured Feedback Controllers

The gains ke, kθ and kω must be chosen for implementation; in this subsection, we will adopt

the procedure from our earlier work on the construction of structured feedback controllers to arrive

at the set for both cases.

5.2.3.1 With a Composite ELC Trajectory

Our earlier work in Chapter4 is directly can be applied to synthesizing the set of stabilizing

feedback gains. From the governing equations, the transfer functions relating elat(s) and θ̃(s) to
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δf (s) can be related through the open-loop characteristic polynomial, ∆o(s) as:

∆o(s) = s2(mIs2 +
(I +ma2)Cf + (I +mb2)Cr

V0
s

+
(a+ b)2CfCr

V 2
0

−m(aCf − bCr)), (5.5)

elat(s)

δf (s)
=

Cf
∆o(s)

(Is2 +
b(a+ b)Cr

V0
s+ (a+ b)Cr), (5.6)

θ̃(s)

δf (s)
=

Cf
∆o(s)

(mas2 +
(a+ b)Cr

V0
s). (5.7)

Since

δf = Ha(s)δc(s)

= −Ha(s)(keelat(s) + (kθ + kws)θ̃(s)), (5.8)

it follows that the closed-loop characteristic equation can be expressed as:

∆o(s) +Ha(s)keCf (Is
2 +

b(a+ b)Cr
V0

s+ (a+ b)Cr)

+Ha(s)(kθ + kws)Cf (mas
2 +

(a+ b)Cr
V0

s) = 0. (5.9)

For the second-order steering actuation model, it follows that the characteristic polynomial may be

expressed in terms of the control parameter vector K = (ke, kθ, kw) as:

∆(s;K) = (s2 + 2ζωns+ ω2
n)∆o(s) + keω

2
nCf (Is

2 +
b(a+ b)Cr

V0
s+ (a+ b)Cr)

+(kθ + kws)ω
2
nCf (mas

2 +
(a+ b)Cr

V0
s). (5.10)
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5.2.3.2 With Separate ELC Trajectories Based on Preview Data of Preceding and Leading vehi-

cles

One can examine the evolution of elat,p and apply the feedforward and feedback control inputs

specified in the earlier subsections for this case. We can rewrite the feedback law as:

δfb = −(keelat,p + kpθ̃p + kω
˙̃θp)

+α(ke(elat,p − elat,l) + kθ(θ̃p − θ̃l) + kω( ˙̃θp − ˙̃θl)). (5.11)

One may neglect the component of state: elat,p, θ̃p,
˙̃θp in the terms elat,p − elat,l, θ̃p − θ̃l and ˙̃θp − ˙̃θl

as these will be dominated by the difference in the ELC trajectories constructed based on preview

data of lead and preceding vehicles. For this reason, the characteristic polynomial will remain the

same as before. Hence, a fundamental problem regarding the stability of tracking is to determine

the set of control gains, K, so that the closed-loop characteristic polynomial (B.1) is Hurwitz. An

advantage of determining the entire set is that the set can be pruned to accommodate additional

performance criteria.

5.2.3.3 Construction of the Set of Stabilizing Fixed Structure Controllers

In Chapter 4, we present “D-decomposition” for the construction of the set of stabilizing fixed

structure controllers. Essentially, this approach relies on the continuous dependence of roots of a

polynomial on its coefficients for every regular perturbation. The approach then involves decom-

posing the parameter space into disjoint signature-invariant regions by identifying their boundaries.

The boundaries can be obtained by (a) determining the set of K for which ∆(0,K) = 0 and (b)

determining the set of K for which ∆(jw,K) = 0 for some w. Once the parameter space is par-

titioned, one can then sample every partition to determine the partition corresponding to ∆(s;K)
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being Hurwitz. Recall that ∆(s,K) = A6s
6 + A5s

5 + A4s
4 + A3s

3 + A2s
2 + A1s+ A0, where

A6 =
Im

ω2
n

,

A5 =
2Imζ

ωn
+
Cf (I + a2m) + Cr(I + b2m)

V0ω2
n

,

A4 =
2ζ(Cf (I + a2m) + Cr(I + b2m))

V0ωn

+ (
(a+ b)2CfCr

V 2
0 ω

2
n

−m(aCf − bCr)) +mI,

A3 = (
2ζ((a+ b)2CfCr)

V 2
0 ωn

−m(aCf − bCr))

+
Cf (I + a2m) + Cr(I + b2m)

V0
+ Cfmakω,

A2 = (
(a+ b)2CfCr

V 2
0

−m(aCf − bCr))

+ (CfIke + CfCr
(a+ b)

V0
kω +maCfkθ),

A1 = CfCr
(a+ b)

V0
(bke + kθ),

A0 = CfCr(a+ b)ke,

where ζ , ωn are the damping ratio and natural frequency of steering actuation. The rest of proce-

dure is same as Chapter 4.

5.3 Numerical and Experimental Results

5.3.1 Construction of Stabilizing Set of Feedback Gains

In order to construct the set of stabilizing feedback gains, we used the parameters from Table

5.1.In this test, we set the vehicle numerical test speed at V0 = 67 mph. The vehicle’s cornering

stiffness can be fixed by the Fig. 3.7. Since the stabilizing set (which is non-convex) depends on

V0, we find the sets of all the stabilizing controllers for a range of speeds in {10, 20, 30, 40, 50, 60, 67}mph

and selected a controller (ke, kθ, kω) = (0.06, 0.96, 0.08) that belongs to the interior of the inter-

section of all these stabilizing sets. The stabilizing set corresponding to V0 = 67 mph is shown in

Fig. 4.11.
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Table 5.1: Parameters of EPS and vehicle with V = 67 mph

Parameter Value Unit
m 1896 [kg]
I 3803 [kgm2]
a 1.2682 [m]
b 1.5818 [m]
Cf 400000 [N/rad]
Cr 381900 [N/rad]
ζ 0.4056 [-]
ωn 21.4813 [rad/s]

5.3.2 Numerical Simulation Setup

The trajectory in Fig. 5.2 represents a nominal double lane change on a 1 km road section and

is the target trajectory for lead ACV. It corresponds to an ACV turning left to go to the adjacent

left lane and then right to get back into the original lane. The second ACV (literally, the first

following ACV) in the convoy will use the sampled trajectory information of the lead ACV and

adopt the control law developed in this paper. All other vehicles in the platoon will have access

to the sampled trajectory information of the lead and their preceding ACVs path and adopt the

lateral controller designed in the earlier section; we test the two designs - one is based on the

composite ELC trajectory, the other one is based on separate trajectory on lead and preceding

vehicles. For simulations in this section, we consider a four-vehicle platoon. Every vehicle in the

platoon maintains a constant speed of 30m/s. Initially, all the vehicles have zero lateral value and

zero heading error.

5.3.2.1 Lateral control with a composite ELC trajectory

For simplicity of implementation, α was chosen to be 0.5 in the computation of the composite

ELC trajectory for each ACV. Based on the composite ELC trajectory, feedforward control input,

feedback error signals and feedback control have been determined as described in the controller

synthesis section. Fig. 5.3 shows the lateral error response of the control scheme while trying to

69



track the composite ELC trajectory in Fig. 5.2. In the double lane change maneuver considered, the

first (left) lane change begins at around 8 seconds and ends before 15 seconds; the second (right)

lane change begins at approximately 24 seconds and ends at 30 seconds. The maximum lateral

error was found to be approximately 8 cm and occurred at the beginning and end of curved section

of the trajectory; see Fig 5.3; moreover, the maximum lateral errors seem to form a monotonically

decreasing sequence affirming lateral string stability.

Figure 5.2: Composite ELC Trajectory: Vehicle reference path

5.3.2.2 Lateral control with separate ELC trajectories

In this section, consider the separate ELC trajectories, one based on the lead vehicle’s data and

the other based on preceding vehicle’s data. As described in Section III, we design the feedback

and feedforward controllers and weigh them equally, i.e., set α = 0.5. The target paths is shown in

Fig. 5.4. As shown in Fig. 5.5, the maximum lateral error of about 0.08 meters was obtained and

occurred at the beginning and end turning section of lane change. Moreover, string instability was

not observed in the simulations.
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Figure 5.3: Composite ELC Trajectory: Lateral error

5.3.3 Experimental Setup

The developed control algorithms were implemented on a Lincoln MKZ car. The vehicle

was equipped with a drive-by wire system for autonomous steering, throttle and brake control.

Data concerning the vehicle states (position, yaw angle, and yaw rate) were obtained from an

on-board integrated GPS system and IMU unit. The controller operates at 50 Hz. Since we had

only one Lincoln MKZ, we emulated a convoy with multiple runs of the same vehicle - this was

possible because of the look-ahead nature of the control scheme as every following vehicle needed

only the information of its preceding ACV and the lead ACV in the convoy. In the first run,

the Lincoln MKZ vehicle would track the trajectory as a lead ACV in the convoy; the closed

loop trajectory information (provided via time stamped GPS information) is stored on-board and

accessed in subsequent runs. In the second run, it will access the stored GPS information from

the first run to simulate the acquisition of perfectly communicated GPS information from the lead

ACV; in the ith run, it would access the stored trajectory information from the preceding run and

the first run to compute the steering command.

In the experiment conducted on our RELLIS campus, the target speed of every vehicle in the
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Figure 5.4: Separate Trajectories: Vehicle reference path

platoon is 25m/s. The target trajectory for the experiment is the same as the one considered in the

numerical simulation section. Due to the time limitation, we computed the steering angle using

the first architecture described in this paper - which is based on composite ELC trajectory. The

desired trajectory is shown as Fig. 5.6.

5.3.4 String Instability with lack of lead ACV’s preview data

If the target trajectory for a following ACV were to be constructed solely based on the po-

sition (preview) data of its preceding vehicle, lateral string instability can set in. In the plot,

PL1 corresponds to the lead vehicle, PL2 and PL3 correspond to the first and second following

ACVs respectively. As can be seen from Fig. 5.8, crosstrack errors seem to amplify. Anima-

tion of these results suggest that the second following ACV crosses the lane boundary https:

//youtu.be/UT1OYCb50gU.

5.3.5 String Stability with lead ACV’s preview data

If the target trajectory for the following ACV incorporates the lead vehicle’s position informa-

tion, then lateral string stability was observed in Fig. 5.7. The readers are encouraged to view the

accompanying video at https://youtu.be/UT1OYCb50gU.
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Figure 5.5: Separate Trajectories: Lateral difference between vehicles and their preceding one’s
track

Figure 5.6: Experiment: Vehicle reference path
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Figure 5.7: Experiment: Lateral String Stability With Lead Vehicle’s (Preview) Data

Figure 5.8: Experiment: Lateral String Instability Without Lead Vehicle’s (Preview) Data
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6. FUSING RADAR AND VISION DATA FOR CUT-IN VEHICLE IDENTIFICATION IN

PLATOONING APPLICATIONS

6.1 Introduction

Truck platooning systems (Level 2) extend the radar, camera and vehicle-to-vehicle commu-

nications based, cooperative adaptive cruise control to provide precise automated lateral and lon-

gitudinal vehicle control in order to maintain a tight formation of vehicles with short following

distances. A manually driven truck leads a platoon, while the steering, acceleration and braking

of following truck(s) are automatically controlled with the driver(s) engaged, monitoring system

performance and the driving environment at all times. Level 1 truck platooning has already demon-

strated the potential for significant fuel savings, enhanced mobility, and associated emissions re-

ductions from platooning vehicles. Level 2 automation may increase these benefits while reducing

driver workload and increasing safety.

The objective of this work is to address fundamental problems that arise when vehicles present

in the adjacent lanes of the platooning vehicles maneuver to change lanes and cut into the gap

between the platooning trucks. The sensing systems (figure 6.1) in the platooning trucks must be

able to identify and estimate the state of these "cut-in" vehicles in real-time so that suitable control

actions can be taken. The current truck platooning system developed at the Texas Transportation

Institute uses a forward looking scanning radar (Delphi [59]), a forward looking camera (Mobil-

Eye) and Dedicated Short Range Communication (DSRC) information for situation awareness.

The specific goal of this article is to develop a sensor fusion algorithm that combines radar, camera

and inertial data to provide real-time estimates of any cut-in vehicle present in the field of view of

these sensors. Development of these algorithms can significantly increase the situational awareness

of the platooning system, and improve the safety and performance of the overall system.

Fusing radar, camera and inertial data sensed from moving platforms is challenging for several

reasons. The sensors, radar and camera, on-board the trucks provide data at around 20 Hz that
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Figure 6.1: Data collected of neighboring vehicles from a stationary truck using the onboard sen-
sors over a period of 40 minutes. The first subplot shows the GPS data of the center of mass of the
vehicles. The second subplot shows the radar data and the third subplot shows the corresponding
camera data collected on-board the truck. The radar has a field of view of 20 degrees and the
camera has a field of view of 40 degrees.

is intermittent and noisy. We obtain this data through the Bendix Wingman Fusion system in

the form of ten tracks associated with both the radar and camera. Each radar track returns the

following estimates of an object: radar confidence, range, range rate, lateral position, object angle

and acceleration of the object. Each camera track returns the following estimates of an object:

angle corresponding to the left corner of the object, angle corresponding to the right corner of the

object, longitudinal distance and range rate. At any time instant, an object may be present in the

radar data and not be present in the camera data and vice-versa. Also, the object-track assignment

in both radar and camera data is not known a-priori. For example, an object can appear in track 1

of the radar data at a time instant, and then switch tracks in other time instants. It is also possible

that an object appears in multiple tracks of radar at any time instant. The sensor fusion algorithms

must be able to handle these challenges in real-time.

76



Sensor fusion algorithms that track multiple objects in real-time has been of significant inter-

est to the researchers over the last couple of decades owing to its importance in transportation,

robotics and autonomous vehicle applications. The algorithms generally differ in the type of sen-

sors used, how the data association problem between different sensors is addressed, the type of

object tracking problems posed and any specific constraints with respect to the context/application

where algorithms will be finally used. Data collected from sensors on moving platforms and the

field of view of the sensors also play a critical role in posing the different subproblems that arise

in sensor fusion. As a comprehensive review of multiple object tracking is out of scope of this

conference paper, we refer the readers for survey papers in [60, 61]. Here, we mention few papers

related to our work.

LIDAR and vision data is fused for pedestrian identification in [61]. A multiple object tracking

algorithm for identifying pedestrians and cyclists using radar and vision data is presented in [62].

A particle filter based algorithm for pedestrian tracking using radar and vision data is developed

in [63]. Authors in [64] present a perception system built from multiple cameras, LIDARs and

radars that can be deployed on cars in realistic environments which aim to track multiple classes

of objects including vehicles, pedestrians, bicyclists etc. LIDAR and radar data are fused in [65].

In this Chapter, we fuse data from a forward looking radar and camera from a moving vehicle

to estimate the state of the cut-in vehicles in the adjacent lanes. Each of the sensors (radar and

camera) already provide us with processed measurements such as range, range-rate, object angle

etc. We develop a data association algorithm to first associate a radar measurement with a camera

measurement, and then assign each fused measurement with the tracked objects (section 6.3). The

state equations for describing the motion of a cut-in vehicle are developed from a moving platform

in section 6.4. An Extended Kalman Filter is then used to predict the motion of each of the cut-in

vehicles in the field of view of the sensors (section 6.5). Experimental results are provided with

multiple cut-in vehicles from a stationary and a moving truck to corroborate the performance of

the proposed algorithms in section 6.6. Finally, the article concludes with some suggestions for

future work.
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6.2 Overall Approach

There are four keys steps in our approach. First, at each time instant, we pre-process the radar

data to only include any track with a confidence that is at least equal to a minimum threshold1.

Also, any radar measurement that is very close to another radar measurement is deleted. In the

second step, we fuse the radar and camera measurements using a nearest neighbor algorithm with

a ranking on the priority of the measurements (section 6.3). In the third step, we use a simple

greedy algorithm to assign a fused measurement to an object. Specifically, a fused measurement

is assigned to an object if the Euclidean distance between the measurement and the predicted state

of the object is less than a pre-defined limit. Any un-assigned fused measurement is retained

for a specific amount of time until we can associate it with another fused measurement at a later

time. Any object or a un-assigned fused measurement that cannot be assigned to another fused

measurement obtained within a time horizon is removed from the system. At the end of third

step, we have a list of objects with (possibly) a fused measurement assigned to each object. In the

final step, an extended Kalman filter is used to find the new state of each object (sections 6.4 and

6.5). Note that our approach is applicable to any moving object. In the platooning application, the

moving object we are interested in is a cut-in vehicle.

6.3 Fusing Radar and Camera Data

There are several methods available for fusing data from different sensors: Nearest Neighbour

(NN) algorithm, Probabilistic Data Association (PDA), Multiple Hypothesis Tracking (MHT) and

Joint PDA which generalizes the PDA approach with a limit on the number of hypothesis used in

MHT. In this work, we use a NN algorithm with a ranking on the priority of the measurements.

We chose the NN algorithm because it is simple to implement and produces quick solutions. This

algorithm works in the following way:

• At each time step, a camera measurement is first assigned to a radar measurement if Eulidean

distance and the perpendicular distance (figure 6.2) of the radar measurement is within a

1This step only applies to radar data as the confidence information is only available for a radar track.
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Figure 6.2: Computing the perpendicular distance of a radar measurement to the line corresponding
to a camera measurement.
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Figure 6.3: An illustration of the cut-in vehicle and the corresponding reference frames.

pre-defined limit from the camera measurement. Initial data processing suggested to us that

the object distance and relative speed (or range-rate) estimates from the radar were more

accurate while the object angle estimate from the camera was more reliable. Therefore, after

a camera measurement is assigned to the radar measurement, a new fused measurement is
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added which includes the object distance and object velocity from the radar, and the object

angle from the camera. Also, once a fused measurement is added, the corresponding radar

and camera measurement is removed from the system.

• After exhausting the possible assignments of the camera with the radar measurements, we

may have un-assigned measurements from both radar and camera. Therefore, the measure-

ments are ranked in the following order of descending priorities: The set of fused mea-

surements, the set of un-assigned camera measurements and the set of un-assigned radar

measurements. We do not impose any ordering within each of the sets. Un-assigned mea-

surements from camera were given more priority because there was lot more noise in the

radar data.

6.4 Equations of motion for the Cut-in Vehicle

Consider a cut-in vehicle traveling in front of a moving truck. Let (Xt, Yt) denote the global

position of the origin of the radar frame attached to the truck. Let the global position of the cut-in

vehicle be represented as (Xc, Yc). There are four states we would like to estimate in our problem:

The lateral (δx) and the longitudinal (δy) position of the cut-in vehicle with respect to the radar

frame, the speed (Vc) of the cut-in vehicle in the global frame and the heading angle (β) of the

cut-in vehicle in the global frame. Each of the measurements obtained at the end of the algorithm

discussed in the previous section has the following information: The lateral position (δx) of the

cut-in vehicle with respect to the origin of the radar frame, distance of the cut-in vehicle (ρ) with

respect to the origin of the radar frame, the relative speed of the cut-in vehicle (ρ̇) with respect to

the origin of the radar frame.

For simplicity, we only consider the kinematics of the vehicles. We assume the cut-in vehicle

is traveling at a constant speed at a fixed heading angle, i.e., V̇c = 0 and β̇ = 0. We assume the

radar attached to the truck is moving at a constant velocity and turning with a constant yawrate,

i.e., V̇t = 0 and ψ̈ = 0 (Vt is the speed and ψ is the heading angle of the truck as shown in figure

6.3).
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6.4.1 State Equations

Note that (Xc − Xt, Yc − Yt) are the global coordinates of the relative position of the cut-in

vehicle with respect to the origin of the radar frame. These coordinates are related to (δx, δy) in the

following way:

 δx

δy

 =

 sinψ − cosψ

cosψ sinψ


 Xc −Xt

Yc − Yt

 . (6.1)

By differentiating the above equation, we get,

 δ̇x

δ̇y

 = ψ̇

 cosψ sinψ

− sinψ cosψ


 Xc −Xt

Yc − Yt

+

 sinψ − cosψ

cosψ sinψ


 Ẋc − Ẋt

Ẏc − Ẏt

 . (6.2)

Substituting Ẋc = Vccosβ, Ẏc = Vcsin β, Ẋt = Vtcosψ, Ẏt = Vtsinψ, and further simplifying,

we get

 δ̇x

δ̇y

 = ψ̇

 δy

−δx

+

 sinψ − cosψ

cosψ sinψ


 Vccos β − Vtcosψ

Vcsin β − Vtsinψ

 . (6.3)

Summarizing all the equations for the state variables x̄ = (δx, δy, Vc, β), we get,
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

δ̇x

δ̇y

V̇c

β̇


=



0

1

0

0


Vt+



0 ψ̇ sin (ψ − β) 0

−ψ̇ 0 0 cos (ψ − β)

0 0 0 0

0 0 0 0





δx

δy

Vc

β


. (6.4)

Note that in the above equations, Vt and ψ are inputs and are assumed to be known.

6.4.2 Output equations

The observations are represented using the vector y = (δx, ρ, ρ̇) where ρ =
√
δ2x + δ2y . ρ̇ can

be expressed in the terms of the state variables and the inputs in the following way:

ρ̇ =
δx
ρ
δ̇x +

δy
ρ
δ̇y

=
δx
ρ

(ψ̇δy + sin(ψ − β)Vc) +
δy
ρ

(−ψ̇δx + cos(ψ − β)Vc)

=
δx
ρ

sin(ψ − β)Vc +
δy
ρ

cos(ψ − β)Vc. (6.5)

6.5 Extended Kalman Filter Equations

The state equations in 6.4 can be represented as

˙̄x = f(x̄, u).
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Discretizing these equations with respect to time, we get,

x̄k = x̄k−1 + ∆tf(x̄k−1, uk−1)︸ ︷︷ ︸
f̄(x̄k−1, uk−1)

(6.6)

where x̄k denotes the state of the system at time tk, uk denotes the input at time tk and ∆t represents

the time interval between any two adjacent measurements. Similarly, the output equations for

variables y = (δx, ρ, ρ̇) can also be discretized and written in the form yk = h(x̄k, uk) where yk

represents the output of the system at time tk.

As the above equations are non-linear, we linearize the state and output equations to obtain the

corresponding Jacobian matrices at each step in the following way:

∂f̄

∂x̄
=



1 ∆tψ̇ ∆tsin(ψ − β) F14

−∆tψ̇ 1 ∆tcos(ψ − β) F24

0 0 1 0

0 0 0 1


,

F14 = −∆tVccos(ψ − β),

F24 = ∆tVcsin(ψ − β),

and
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∂h

∂x̄
=


1 0 0 0

δx√
δ2x+δ

2
y

δy√
δ2x+δ

2
y

0 0

H31 H32 H33 H34

 ,

H31 = Vcsin(ψ − β)
δ2y

(δ2x + δ2y)
3
2

− δyδx

(δ2x + δ2y)
3
2

(Vccos(ψ − β)− Vt),

H32 = −Vcsin(ψ − β)
δyδx

(δ2x + δ2y)
3
2

+
δ2x

(δ2x + δ2y)
3
2

(Vccos(ψ − β)− Vt),

H33 =
δx√
δ2x + δ2y

sin (ψ − β) +
δy√
δ2x + δ2y

cos (ψ − β),

H34 = − δx√
δ2x + δ2y

Vc cos (ψ − β) +
δy√
δ2x + δ2y

Vc sin (ψ − β)

The EKF algorithm can be summarized as follows: The states are first propagated through

the following equations to obtain an estimate for x̄k based on x̄k−1. This estimate is denoted as

x̂k|k−1 = f̄(x̂k−1, uk−1). Let the state covariance matrix at time tk be denoted as Pk. As the states

are propagated, the covariance matrices also need to be updated suitably. Define

Fk =
∂f̄

∂x̄
|x̂k−1 (6.7)

Hk =
∂h

∂x̄
|x̂k|k−1. (6.8)

The new covariance matrix for the states obtained based on x̄k−1 and uk is given by

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1 (6.9)

where Qk is the covariance matrix associated with the noise in the states. Next, the Kalman Filter
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gain matrix, K can be obtained as

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (6.10)

where Rk is the covariance matrix associated with the noise in the outputs. Once a measurement

(yk) is associated with a cut-in vehicle, the new estimated state and its covariance matrix at time tk

for the cut-in vehicle is given by

x̂k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (6.11)

and

Pk = (I −KkHk)Pk|k−1 (6.12)

where I is the identity matrix.

6.6 Experimental Results

We first discuss the parameters used in the key steps of our algorithm for the experiments. In the

pre-processing step, the minimum threshold for the confidence for retaining any radar measurement

was set to 0.7. In the data association or data fusion step, a radar measurement is associated with

a camera measurement if the distance between the measurements is less than a pre-defined limit

(=5 meters). Also, any measurement or an object that is not associated with a new measurement

for more than 0.5 secs is deleted from the system. An object can be associated with a fused

measurement if the Euclidean distance between them is less than 5 meters. Finally, for the EKF

implementation, the following are the covariance matrices used in the experiments:

Qk =
∆t2

0.12



1 0 0 0

0 1 0 0

0 0 0.1 0

0 0 0 0.1


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and

Rk =


1 0 0

0 1 0

0 0 1

 .
A cut-in vehicle is said to be present in the field of view of the sensing system of the truck if it

is present in the region of interest of the truck as shown in figure 6.4. In the experiments, we chose

the width limit to be equal to 10 meters and the distance limit to be equal to 150 meters.

Radar Frame

Distance limit

Width limit

10o

Figure 6.4: Region of interest in front of the truck.

In the field experiments we performed, there was one cut-in vehicle in between two moving

trucks. The sensor fusion algorithms presented here were implemented in the following truck to

identify the states of the cut-in vehicle as it changed lanes. The exact position of the center of

mass (CM) of the cut-in vehicle was measured using a Piksi GPS (which has 2 cm accuracy).
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The estimated states of the cut-in vehicle from the moving truck are shown in figures 6.5-6.8. The

average error in the estimation of δx, δy, Vc and β was 0.68m, 1.92m, 0.25m/sec and 0.11 radians

respectively. Note that the radar and the camera measurements we obtain are likely associated with

the rear end of the car. This discrepancy could explain the error we mainly observed in δy. The

heading angle of the cut-in vehicle was the most challenging to estimate as there is no direct

measurement of this angle and this difficulty can be observed in figure 6.8.
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Figure 6.5: Estimates of δx compared with the exact x values of the center of mass of the vehicle.
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Figure 6.6: Estimates of δy compared with the exact y values of the center of mass of the vehicle.
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Figure 6.7: Estimates of Vc compared with the exact speed of the vehicle.
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Figure 6.8: Estimates of β compared with the exact yaw angle of the vehicle.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this work, we first considered the problem of controlling the lateral motion of a vehicle

traveling at a constant speed based on the sampled GPS coordinates of the preceding vehicle. We

deployed an algorithm in Chapter 2 to compute the curvature of the trajectory based on the limited

preview, and used it for constructing feedforward steering input. Using a fixed structure feedback

controller synthesis, we constructed the steering feedback input to enable a vehicle to track the

desired trajectory. Experimental results corroborate the effectiveness of the design procedure.

In this work, we also considered the problem of controlling the lateral motion of a convoy of

autonomous vehicles; lateral control of an autonomous following vehicle is based on the sampled

GPS data from its lead and preceding vehicles. We presented two controller architectures to accom-

modate (and fuse) the communicated data. In either case, we considered data that corresponded to

a position of the lead/preceding vehicle within a specified distance of the ego vehicle in the con-

voy. In the first architecture, a composite ELC trajectory was constructed as a circular arc spline

by treating both data streams as if they originate from the same source. This is simpler in terms of

implementation as there is only one trajectory to be computed and only one set of feedback errors

and corresponding feedback and feedforward actions to be computed. In the second architecture,

a trajectory each was constructed for each ego vehicle as a circular spline that corresponded to the

data from its preceding and lead vehicles respectively. Two sets of feedback errors and control ac-

tions were then combined with appropriate weights to synthesize control actions. Simulation and

experimental results corroborate the effectiveness of the control schemes. The second scheme was

found to be slightly better in terms of its performance in simulation; experimentation will be con-

ducted in the near future once the prevailing COVID restrictions on experimentation are relaxed.

In simulations, and in the experimental tests conducted so far, string instability was not observed

thus far.
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A sensor fusion algorithm was presented in this work Chapter 6 to fuse radar and camera data

obtained from sensors on-board a moving truck to identify the presence of a cut-in vehicle. A

nearest neighbor algorithm with a priority on the ordering of fused measurements is used to first

fuse radar and vision data, and then a greedy algorithm is used to assign a fused measurement with

the cut-in vehicle state. The position and velocity estimates of the cut-in vehicle is estimated using

the EKF algorithm ,and the overall proposed approach has been experimentally tested.

The algorithms presented in this article are general and are useful in other applications of pla-

tooning also. For example, the hitch angle between the tractor and trailer of a heavy truck (say A)

can be estimated by communicating with the truck (B) immediately following the trailer of A in a

platoon. Specifically, the fused information of the rear end of the trailer can be computed in B and

this information can be sent to the tractor of A through Dedicated Short Range Communication

(DSRC). Sensor fusion algorithms similar to the one proposed in this article can be easily imple-

mented to estimate the hitch angle of A. This estimation is quite useful for accurately controlling

A and can augment any sensing systems already present in A.

7.2 Future work

In this work, we design an effective lateral controller for an autonomous vehicle firstly. Though

we made a “constant” longitudinal velocity assumption and there is no longitudinal considered in

our work. A proper longitudinal vehicle velocity controller is necessary and will contribute to

maintain longitudinal speed and distance, especially in the multiple vehicle control scenario. Then

longitudinal-lateral vehicle coupling issue should be discussed further.

In controller design for a convoy of autonomous vehicles, we only considered vehicles in the

convoy. In the future, we should consider vehicles vehicles in adjacent lanes. And other complex

scenarios.

In “cut-in” vehicle identification chapter, future work can include removing some of the as-

sumptions used in this part with respect to the dynamics of the moving truck and the cut-in vehi-

cle. Adding more sensors will also provide a larger field of view ,which will enable more accurate

cut-in vehicle identification algorithms.
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APPENDIX A

THE DERIVATION OF CLOSED-LOOP CHARACTERISTIC POLYNOMIAL

In Chapter 3, we defined the transfer function between tire steering command angle( δc ) and

tire steering angle( δf ) is:

Ha(s) =
δf
δc

=
Na(s)

Da(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

. (A.1)

Recall equation (3.26) we can elaborate it as:

 m 0

0 Iz


 ëlat

¨̃θ

+

 Cf+Cr
V0

aCf−bCr
V0

aCf−bCr
V0

a2Cf+b
2Cr

V0


 ėlat

˙̃θ

+

 0 −(Cf + Cr)

0 −(aCf − bCr)


 elat

θ̃


=

 1

a

Cfδf − 1

R

 aCf − bCr +mV 2
0

a2Cf + b2Cr

(A.2)

Combine the steering command transfer function Ha(s) and take Laplace transformation, the

equation above is :

 ms2 +
Cf+Cr
V0

s
aCf−bCr

V0
s− (Cf + Cr)

aCf−bCr
V0

s Is2 +
a2Cf+b

2Cr
V0

s− (aCf − bCr)


︸ ︷︷ ︸

A

 Elat(s)

Θ̃(s)

 (A.3)

= −

 1

a


︸ ︷︷ ︸

B

CfHa(s)

[
ke kωs+ kθ

]
︸ ︷︷ ︸

C

 Elat(s)

Θ̃(s)

 (A.4)

The characteristic polynomial is defined by the determinant of:

det(A+BC) = 0 (A.5)
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By Sylvester’s determinant theorem, the above determinant can be calculated fast as:

det(A(I + A−1BC)) = det(A)(1 + CA−1B) = det(A) + CAcofB = det(A) +Ha(s)Q̃(s)(A.6)

where Acof is the cofacotor of matrix A.

Acof =

 Is2 +
a2Cf+b

2Cr
V0

s− (aCf − bCr) −aCf−bCr
V0

s+ (Cf + Cr)

−aCf−bCr
V0

s ms2 +
Cf+Cr
V0

s


and

Q̃(s) = Cf

[
ke kωs+ kθ

]
Acof

 1

a


= Cfke(Is

2 +
(a+ b)bCr

V0
s+ (a+ b)Cr) + Cf (kωs+ kθ)(mas

2 +
(a+ b)Cr

V0
s)

where the det(A) is also the determinant of open-loop of transfer function, so

det(A) = ∆o(s)

= mIs4 + s3[
Cf (I + a2m) + Cr(I + b2m)

V0
] + s2[

(a+ b)2CfCr
V0

−m(aCf − bCr)]

Hence, the characteristic polynomial of system with EPS dynamics can be present as:

∆(s;K) = (s2 + 2ζωns+ ω2
n)∆o(s) + keω

2
nCf (Is

2 +
b(a+ b)Cr

V0
s+ (a+ b)Cr)

+(kθ + kws)ω
2
nCf (mas

2 +
(a+ b)Cr

V0
s). (A.7)
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Note that ∆(s,K) = A6s
6 + A5s

5 + A4s
4 + A3s

3 + A2s
2 + A1s+ A0, where

A6 =
Im

ω2
n

,

A5 =
2Imζ

ωn
+
Cf (I + a2m) + Cr(I + b2m)

V0ω2
n

,

A4 =
2ζ(Cf (I + a2m) + Cr(I + b2m))

V0ωn

+ (
(a+ b)2CfCr

V 2
0 ω

2
n

−m(aCf − bCr)) +mI,

A3 = (
2ζ((a+ b)2CfCr)

V 2
0 ωn

−m(aCf − bCr))

+
Cf (I + a2m) + Cr(I + b2m)

V0
+ Cfmakω,

A2 = (
(a+ b)2CfCr

V 2
0

−m(aCf − bCr))

+ (CfIke + CfCr
(a+ b)

V0
kω +maCfkθ),

A1 = CfCr
(a+ b)

V0
(bke + kθ),

A0 = CfCr(a+ b)ke,
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APPENDIX B

DERIVATION OF STABILIZING GAIN SETS

Firstly, recall the characteristic polynomial of system with EPS dynamics:

∆(s;K) = (s2 + 2ζωns+ ω2
n)∆o(s) + keω

2
nCf (Is

2 +
b(a+ b)Cr

V0
s+ (a+ b)Cr)

+(kθ + kws)ω
2
nCf (mas

2 +
(a+ b)Cr

V0
s). (B.1)

Note that ∆(s,K) = A6s
6 + A5s

5 + A4s
4 + A3s

3 + A2s
2 + A1s+ A0,

where

A6 =
Im

ω2
n

,

A5 =
2Imζ

ωn
+
Cf (I + a2m) + Cr(I + b2m)

V0ω2
n

,

A4 =
2ζ(Cf (I + a2m) + Cr(I + b2m))

V0ωn

+ (
(a+ b)2CfCr

V 2
0 ω

2
n

−m(aCf − bCr)) +mI,

A3 = (
2ζ((a+ b)2CfCr)

V 2
0 ωn

−m(aCf − bCr))

+
Cf (I + a2m) + Cr(I + b2m)

V0
+ Cfmakω,

A2 = (
(a+ b)2CfCr

V 2
0

−m(aCf − bCr))

+ (CfIke + CfCr
(a+ b)

V0
kω +maCfkθ),

A1 = CfCr
(a+ b)

V0
(bke + kθ),

A0 = CfCr(a+ b)ke,

Since A6 > 0, A5 > 0 and A4 > 0, a necessary condition for stability is that A3 > 0, A2 >
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0, A1 > 0, A0 > 0, yielding the conditions:

kω >

2ζ
ωn

(
(a+b)2CfCr

V 2
0

−m(aCf − bCr)
)

+
Cf (I+a

2m)+Cr(I+b2m)

V0

Cfam
, (B.2)

CfIke + CfCr
(a+ b)

V0
kω +maCfkθ > −(a+ b)2CfCr

V 2
0

−m(aCf − bCr), (B.3)

kθ > −bke, (B.4)

ke > 0 (B.5)

Secondly, we rewrite characteristic equation with gain sets (ke, kθ and kω) with ζ and ωn:

∆(s,K) =

A6s
6 + A5s

5 + A4s
4 + A3s

3 + A2s
2 + A1s+ A0

=
α5

ω2
n

s6 + (
α4

ω2
n

+
2ζα5

ω
)s5 + (

α1

ω2
n

+
2ζα4

ω
+ α5)s

4 + (
2ζα1

ω
+ α4)s

3 + α1s
2︸ ︷︷ ︸

D1

+ke

(
(α2)s

2 + (
α0

V0
b)s+ α0

)
︸ ︷︷ ︸

D2

+kθ

(
(α3)s

2 +
α0

V0
s)

)
︸ ︷︷ ︸

D3

+kω

(
(α3)s

3 +
α0

V0
s2)

)
︸ ︷︷ ︸

D4

where

α5 = Im, α4 =
Cf (ma

2 + I) + Cr(mb
2 + I)

V0

α3 = Cfam, α2 = CfI,

α1 =
CfCr(a+ b)2

V 2
0

−m(Cfa− Crb), α0 = (a+ b)CfCr,

103



Thirdly, let us use standard even-odd decomposition of polynomials D1,D2,D3 and D4:

D1 = D1e + sD1o (B.6)

D2 = D2e + sD2o (B.7)

D3 = D3e + sD3o (B.8)

D4 = D4e + sD4o (B.9)

where

D1e =
α5

ω2
n

s6 + (
α1

ω2
n

+
2ζα4

ωn
+ α5)s

4 + α1s
2,

D1o = (
α4

ω2
n

+
2ζα5

ωn
)s5 + (

2ζα1

ωn
+ α4)s

3,

D2e = (α2)s
2 + α0, D2o = (

α0

V0
b)s,

D3e = (α3)s
2, D3o = (

α0

V0
s),

D4e =
α0

V0
s2, D4o = (α3)s

3

With s = jω, we have:

∆(jω,K) = D1e(ω
2) + keD2e(ω

2) + kθD3e(ω
2) + kωD4e(ω

2)

+jω(D1o(jω) + keD2o(jω) + kθD3o(jω) + kωD4o(jω)) (B.10)
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still same, we can represent the even and odd terms with ζ and ωn terms:

D1e(jω) = −α5

ω2
n

w6 + (
α1

ω2
n

+
α4

ωn
+ α5)w

4 − (α1)w
2,

D1o(jω) = (
α4

ω
+

2ζα5

ωn
)w4 − (

2ζα1

ω
+ α4)w

2,

D2e(jω) = −(α2)w
2 + α0, D2o(jω) = (

α0

v0
b)

D3e(jω) = −(α3)w
2, D3o =

α0

V0

D4e(jω) = −α0

V0
w2, D4o = −(α1)w

2

The real roots boundary is given by:

∆(0) = 0 (B.11)

A0 = (a+ b)CfCrke = 0 (B.12)

The solution will be ke = 0. If ke is zero, then the characteristic equation can not be Hurwitz

because of the violation of stabilizing condition B.5. So this boundary can be skipped.

The complex roots boundary are given by:

∆(jω) = 0, ω ∈ (0,∞) (B.13)

For ω > 0, we have

D1e(jω) + keD2e(jω) + kθD3e(jω) + kωD4e(jω) = 0 (B.14)

D1o(jω) + keD2o(jω) + kθD3o(jω) + kωD4o(jω) = 0 (B.15)
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Rewrite above equations into matrix form we have:

 D3e(jω) D4e(jω)

D3o(jω) D4o(jω)


︸ ︷︷ ︸

Aθω

 kθ

kω

 =

 −D1e(jω)− keD2e(jω)

−D1o(jω)− keD2o(jω)

 (B.16)

So the gains kθ and kω can be represent as :

 kθ

kω

 =
1

|Aθω|

 D4o(jω) −D4e(jω)

−D3o(jω) D3e(jω)


 −D1e(jω)− keD2e(jω)

−D1o(jω)− keD2o(jω)

 (B.17)

Then kθ and kω can be represent with ω as:

kθ =
1

|Aθω|
(D4o(jω) (−D1e(jω)− keD2e(jω)) +D4e(jω) (D1o(jω) + keD2o(jω))) (B.18)

kω =
1

|Aθω|
(D3o(jω)(D1e(jω) + keD2e(jω)) +D3e(jω)(−D1o(jω)− keD2o(jω))) (B.19)

From equations above, kθ and kθ can be plotted. An example is displayed when ke = 0.9, at

V0 = 15m/s, the relevant Cf and cr have been deployed from Fig. 3.7: as Figure B.1 illustrated.

The whole kθ − kω plane is partitioned by boundaries from inequalities of characteristic polyno-

mials terms and curve of complex root boundary. The whole plane is construct by 10 disjoint root

invariant regions. By root checking,only gain set (kθ, kω) from inner contour of curve, i.e. region

4 stabilized system.
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Figure B.1: Stabilizing Gain Set for V = 15m/s with ke = 0.06.
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