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ABSTRACT 

Operational Niño indices in the Eastern Pacific region use a one-box method to calculate 

sea surface temperature anomalies for identifying El Niño and La Niña events. A new sea surface 

temperature index method is presented here, which we call the Niño Difference Index. The 

definition calls for an additional sea surface temperature box to be placed in the Maritime 

Continent to use in conjunction with an Eastern Pacific sea surface temperature box. Our two-

box method measures the sea surface temperature gradient in the tropical Pacific region, a 

hallmark feature of ENSO events since the sea surface temperature gradient weakens 

(strengthens) during an El Niño (La Niña) event. The definition of the Niño Difference Index has 

a more fundamental connection to ENSO since Niño indices only measure the sea surface 

temperature anomalies in a localized area of the tropical Pacific which have a strong sea surface 

temperature response during El Niño/La Niña events. The Niño Difference Index also relates to 

the shift in the locations of strong atmospheric convection in the tropical Pacific because the it is 

a measure of where convection migrates to/away from during an ENSO event. Niño Difference 

Index definitions are searched for using the local and remote response of precipitation to ENSO 

to use this measure of the atmospheric response and see if different regions of the globe find 

different index definitions that are optimal. Southern Oscillation Index data is also incorporated 

in our search process to search for Niño Difference Index options. Once Niño Difference Index 

options are narrowed down to a small subset, a series of final correlation tests is done using 

different ENSO metrics. This will determine the strength of the final Niño Difference Index 

options relationship with ENSO compared to the operational Niño indices. 
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1. INTRODUCTION

1.1. ENSO background 

The term El Niño Southern Oscillation (ENSO) identifies a coupled ocean-atmosphere 

phenomenon that occurs over the equatorial Pacific. El Niño relates to the oceanic component of 

warming sea surface temperatures while the Southern Oscillation relates to the associated Walker 

Circulation change. ENSO is also the leading mode of inter-annual global climate variability 

(Wu et al. 2019). The purpose of this research is to better quantify the magnitude of ENSO and 

its planetary consequences in the context of changing climate conditions. 

A common way to characterize the development of an ENSO event is through the 

Bjerknes feedback process (Cai et al. 2015). The Walker Circulation’s mean flow at the surface 

is from east to west (easterly), which locally amplifies the trade winds and directly correlates 

with the direction of the mean SST gradient in the equatorial Pacific. Under normal conditions, 

winds blow from higher pressure in the eastern Pacific (EP) where cooler SSTs reside to lower 

pressure where warmer SSTs are in the western Pacific.  However, shifts in the normal 

convective zones in the equatorial tropical Pacific and SST gradient changes during an ENSO 

event lead to a change in the strength or even the direction of the Walker Circulation. During an 

El Niño, warmer sea surface temperatures (SST) extend eastward. As a result, the strength of the 

Walker Circulation decreases in an El Niño event due to the weakening of the SST gradient, 

allowing the main area of convection in the equatorial Pacific to extend eastward into the central 

Pacific (CP) region. During a La Niña, anomalously cool SSTs develop in the western tropical 

Pacific. This causes the main area of convection to be constrained westward, deeper in the 
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Maritime Continent (MC) region (Neelin 2011, pp. 103-107). As a result, there is enhanced 

easterly trade wind intensity due to a stronger than normal SST gradient. The shifts in the 

atmospheric circulation in the equatorial Pacific during an ENSO event lead to changes in 

circulation and weather patterns across the globe. 

1.2. Index Definitions 

Multiple indices already exist to characterize and quantify ENSO because multiple 

atmospheric and oceanic fields change during an occurrence of an ENSO event. The different 

indices in public or private use by meteorologists can focus on changes in different atmospheric 

and oceanic fields. The Southern Oscillation Index (SOI), the Niño 3 index, the Oceanic Niño 

index (ONI), the MEI, the OLR El Niño and OLR La Niña are examples of indices that have 

been created to identify different phases of ENSO. Our research is about creating a new index; to 

illustrate the need, we will now review other indices in operational use or use in research. 

The first definition to reach operational use was the SOI. Walker and Bliss (1932) created 

the original SOI using seasonal pressure, temperature, and rainfall measurements from carefully 

selected individual stations across the globe to develop a single number. Each season had 

different measurements from different locations to best represent the variability due to ENSO.  

However, the most common present-day form of the SOI calculates the difference between 

atmospheric pressure measurements from two locations in the tropical Pacific, Tahiti and Darwin 

(Allan et al. 1991).  

The National Oceanic and Atmospheric Administration (NOAA) uses sea surface 

temperature anomalies (SSTa) over the Niño 3.4 region (5°N to 5°S, 120°W to 170°W) to 

classify El Niño or La Niña conditions via the ONI or the Niño 3.4 index. Both use the Niño 3.4 
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region for SST averaging and a three-month running mean of SSTa’s for each individual index 

value (Lindsey 2013; Kousky and Higgins 2007). For example, a Niño 3.4 index and an ONI 

value for January of 1980 would be the average SSTa for December 1979 through February 1980 

(DJF). The Niño 3.4 index uses 1981-2010 as climatology to calculate the SSTa’s for index 

values while the ONI uses thirty year centered averages for each five-year period (Huang et al. 

2016). For example, the ONI calculates SSTa’s for the years 1966-1970 using the base SST 

average from 1951-1980. According to NOAA, a El Niño or La Niña event has occurred when 

SSTa’s exceed the threshold of +/- 0.5°C for five consecutive monthly index values (Kousky and 

Higgins 2007). The Japan Meteorological Agency (JMA) calculates the Niño 3 index using a 

five month running mean of SST’s in the Niño 3 region (5°N to 5°S, 90°W to 150°W) to prevent 

intra-seasonal variations in SST’s from yielding false signals in identifying ENSO events 

(Trenberth 1997). For example, an index value for March of 2019 uses the SST mean from 

January 2019 to May 2019. Then they use a sliding thirty-year period as climatology to calculate 

SSTa’s for final index values. The JMA declares an ENSO event when SSTa’s exceed the 

threshold of +/- 0.5°C for six consecutive monthly index values or more (Trenberth 1997).  

The process-oriented El Niño index (PEI) separates the four Niño indices (Niño 1+2, 

Niño 3, Niño 3.4, Niño 4) and specifies classification of events based on the evolution of ENSO 

events (Song et al. 2016). EP El Niño events are declared if SSTa’s in the Niño 1+2 or 3 regions 

are equal to or greater than 0.5 standard deviation of monthly SSTa’s for four consecutive 

months. CP El Niño’s are declared if Niño 3.4 or Niño 4 anomalies are equal to or greater than a 

0.5 standard deviation of monthly SSTa’s for four consecutive months (Song et al. 2016). 

The Multivariate ENSO Index (MEI) includes the atmospheric and oceanic responses 

associated with ENSO based on a combined principal component (PC) analysis of six observed 
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fields: sea level pressure (SLP), zonal and meridional wind, SST, near surface air temperature, 

and total cloudiness (Wolter and Timlin 1993). The MEI approach calculates the first PC of the 

combined observed fields to identify and quantify the variability due to ENSO in the leading 

mode. A new version of the MEI is based on two fields rather than six, which are the SST and 

SLP fields (Wolter and Timlin 2011). This allows for their analysis to go back farther in time 

since they have more temporal data for those two fields.  

 The outgoing long-wave radiation (OLR) method uses two separate indices for 

identifying El Niño’s and La Niña’s (Chiodi and Harrison 2010;2013;2015). The OLR El Niño 

index uses OLR anomalies over the region 5°S to 5°N and 160°W to 110°W (Chiodi and 

Harrison 2013). On the other hand, the OLR La Niña index uses the same latitude bounds, but 

shifts the box westward to 150°E to 180°E (Chiodi and Harrison 2015). These boxes are set to 

the regions where atmospheric convection is known to shift in the equatorial tropical Pacific 

during an El Niño and La Niña, respectively. OLR anomalies in the regions where anomalous 

convective activity occurs due to ENSO reflect atmospheric heating anomalies, which drive 

changes in extratropical circulation patterns during ENSO events (Chiodi and Harrison 

2010;2015). Additionally, these indices yield a distribution that exhibit a more event-like pattern, 

where extreme events deviate from the Gaussian distribution of index values for more moderate 

events or normal conditions. Indices such as the ONI yield a distribution that closely resembles a 

Gaussian-type distribution (Chiodi and Harrison 2010).  We used Monthly CP OLR data in our 

research, which is the average OLR in a box bounded by 170°E-140°W,5°S-5°N, in our research 

because we could not find the calculated index values for the original Chiodi and Harrison 

definitions.  
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1.3. Strengths and weaknesses of each ENSO index 

Climate change may affect some of the current ENSO indices because of warming SST’s 

in the tropical Pacific. However, there are uncertainties regarding the ENSO signal and 

teleconnections changing in a warming climate (Drouard 2019). Changes in ENSO SST patterns 

also remain uncertain in a warming climate (Collins 2000; Meehl et al. 2006, Cai et al. 2015). 

Warming may be non-uniform across the tropical Pacific basin, which would lead to changes in 

the zonal mean SST gradient. This would create issues with current Niño indices since a different 

zonal mean SST gradient would cause a need for different index thresholds than currently in use 

to identify ENSO events. Additionally, there have been more CP El Niño’s since the early 

1990’s (Song et al. 2016). If this trend continues, it would hurt the viability of the Niño 3 index, 

which is centered in the cold tongue region of the EP. The Niño 3.4 index catches some of the 

CP El Niño’s variability.  

 The Niño 3 index and the ONI are currently in operational use to monitor ENSO events 

by the JMA and NOAA, respectively. Both use shifting thirty-year base average periods to 

calculate SSTa’s for monthly index values. This means that the most recent ten to fifteen years of 

index values must use lagged averages (Lindsey 2013; Kousky and Higgins 2007), which will 

create inhomogeneity in the indices most recent values as the averages change. For example, the 

ONI uses the 1986-2015 SST average as climatology for the period of 2011-2015.  

The MEI may be affected because a warmer climate could yield different spatial 

Empirical Orthogonal Function (EOF) patterns for ENSO event responses than in the past 

(Wolter and Timlin 2011). A change in the spatial pattern would lead to a weaker 

correspondence to the ENSO signal, the leading mode of variability across the globe. 
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A need to change the pressure stations used for SOI may occur under climate change 

because these stations are in the western (Darwin) and central (Tahiti) tropical Pacific regions. 

Their pressure difference reflects pressure changes in different regions of the tropical Pacific 

where high variability due to ENSO currently occurs. However, it measures the atmospheric 

response, not the initial SST gradient change in the tropical Pacific associated with ENSO. If the 

variability pattern of pressure shifts eastward, for example, then Tahiti would no longer be in the 

region where high variability occurs and would no longer be a good location to use for the SOI. 

The OLR method may be slightly affected by climate change due to a shift in where the 

main convective area lies during an El Niño or a La Niña. Thus, in a changing climate, the box 

bounds that monitor El Niño or La Niña may need adjustment. This is the case with SOI as well 

because it is an atmospheric response to the changing SST gradient during ENSO events in the 

tropical Pacific. Additionally, the period of record for the OLR is short since it spans the length 

of the satellite-era. This and the fact that is based on OLR would make it hard to relate it to 

model output.  

Different model-based studies use different definitions of ENSO. Ham et al. 2015a uses 

the Niño 3 and Niño 4 indices to identify EP and Central Pacific (CP) El Niño’s. Their definition 

of EP (CP) El Niño events call for the Niño 3 index (Niño 4 index) in DJF exceeds one standard 

deviation of the mean index value. Ham et al. 2015b uses the Niño 3 index to investigate the 

behavior of ENSO amplitude in a warming climate, using RCP 4.5 runs, versus historical climate 

runs. Oh et al. 2014 also uses the Niño 3 index, and examines the role of ENSO on precipitation 

anomalies over the southeastern United States in DJF using the ENSO event definition from 

JMA. Gonzalez et al. 2015 uses the Niño 3.4 index to examine the skill of the index to detect 

ENSO events across different lead times for different climate models. Rashid et al. 2016 uses the 
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leading EOF and PC of SSTa’s over the tropical Pacific basin to define ENSO. The lack of 

consensus between model-based studies on how to define ENSO events makes it difficult to 

compare results with observation-based studies. 

Other papers create ENSO indices that solve some of the issues of other indices but are 

not in operational use. One such index is the ENSO longitude index (ELI) (Williams and 

Patricola 2018). The ELI uses the longitude of the primary warm pool of SST’s in the tropical 

Pacific as the proxy to define El Niño and La Niña events. Williams and Patricola (2018) 

compares the ONI to the ELI and finds that the ELI is more fundamentally intertwined with 

ENSO. It is based on the direct connection between convective heating and where the maximum 

of SST’s on the longitude axis exist during an ENSO event (Williams and Patricola 2018).  ELI 

performance would not be affected in a warmer climate since it measures the longitudinal axis 

where the largest SST’s reside, which may change for common ENSO events in a future climate. 

1.4. Motivation 

An ideal ENSO index would be able to measure the non-linear aspects of ENSO. It would 

also be able to summarize these non-linear aspects in a way that enables the scientific 

community and community at large to convey information about the current state of ENSO. 

Also, an index definition that is unambiguous is desirable to monitor ENSO since it would likely 

not need to be adapted due to a changing climate. This summary directly relates to the projected 

seasonal forecast for extratropical regions susceptible to ENSO. 

The Niño Difference Index (NDI) employs a two-box method, where we take the 

difference of monthly average SSTs between where deep convection normally occurs and where 

it migrates to (or away from) during ENSO events. A hallmark feature of El Niño events is the 
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reduction or reversal of the zonal SST gradient in the tropical Pacific. Thus, this method is meant 

to encapsulate this feature into its index values. Also, the NDI is intended to be simple to use and 

measure what leads to the atmospheric response. This would make the NDI a strong candidate to 

be utilized as a universal tool for ENSO monitoring and forecasting. 

 The OLR method will be our primary guide for the creation of the NDI because it is a 

measure of where high convective activity shifts to in the tropical Pacific during ENSO events, 

which directly relates to our method to create an ENSO index definition. Each of the definitions 

listed above has merit in representing the coupled ocean-atmosphere response due to ENSO. 

However, an issue that arises from this is the lack of consensus among the scientific community 

on which method to use to monitor ENSO. The global atmospheric response to ENSO, which is 

driven by a change in the zonal SST gradient in the equatorial tropical Pacific, is nonlinear. The 

desirability of an ENSO index that directly relates to the change of the zonal SST gradient in the 

tropical Pacific, which is a fundamental feature of ENSO, is the motivating purpose for the 

creation of the NDI.  

 In section 2, I will discuss the data sets and methods used for NDI testing and creation. 

Sections 3 through 8 will cover and explain the results from NDI testing. Section 9 summarizes 

our findings and identifies avenues for future work. 
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2. DATA AND METHODS 

2.1. Data 

 

The data for this project includes gridded sea surface temperature data, various ENSO 

indices, and global precipitation data. Our primary SST dataset is the ERSSTv5 dataset, which 

has a 2° by 2° grid resolution, from the National Centers for Environmental Information (Source: 

https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-

temperature-ersst-v5 Huang et al. 2018) For sensitivity testing, we use the Centennial in situ 

Observation-Based Estimates (COBE) SST dataset from the Japanese Meteorological Agency 

(https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst/cobe-sst.html Ishii et al. 2005) and the 

Hadley Centre Sea Ice and Sea Surface Temperature (HadISST1) dataset from the United 

Kingdom Met Office (https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html Rayner 

et al. 2003), which both have a 1° by 1° grid resolution. We choose to use monthly data from all 

three datasets with a temporal coverage of January 1900 to February 2019 to have 119 years of 

data for each season.  

We use three different reconstructed SST datasets to verify that our results for the optimal 

NDI are robust to choice of dataset. All three reconstructed SST datasets use the International 

Comprehensive Ocean-Atmosphere dataset (ICOADS) for in-situ SST observations 

(https://climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11) (Huang et al. 2017). 

However, each dataset uses a different version of the ICOADS due to the different release dates 

of the three SST datasets. Additionally, ERSSTv5 uses ARGO float (Destin 2014) ocean 

temperature data within five meters of the sea surface for additional in-situ SST data to track 

temporal SST changes across ocean basins (Huang et al 2018). Near-surface ARGO float 
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observations are similar to ship observations, thus it’s an additional observational data source 

ERSSTv5 utilizes to make the final SST reanalysis product. However, ERSSTv5 only uses 

ARGO float observations after the turn of the twentieth century because they do not become 

statistically useful until then (Huang et al. 2017). HadISST1 and COBE do not include ARGO 

float observational data. Differences between each SST reconstruction dataset also stem from the 

time period they choose to use as the mean climatology, methods they use to adjust raw biases in 

in-situ SST observations, and the methods for reconstruction. Climatology base period is not an 

important difference since all three use overlapping time periods; however, it is beneficial to 

know what the base period is for final SST value calculations.  

Bias-adjustments to in-situ SST data differ amongst the three datasets used. The 

ERSSTv5 uses nighttime marine air temperature data that extends back to the late 1800’s to 

make bias adjustments to the sea-surface temperature observations (Huang et al. 2016). The 

HadISST1 only makes bias adjustments for in-situ SST data prior to World War II (Rayner et al. 

2003), using linear equations to take into account the annual amount of slow/fast moving ships 

and wooden/canvas bucket measurements leading up to 1941. These equations use the period 

1951-1980 to compare the adjustment calculations (Folland and Parker 1995). COBE follows the 

same bias-adjustment procedure as HadISST1 for pre-World War II in-situ SST data except for 

engine room intake measurements (Hirahara 2014).  

The HadISST1 converts in-situ observational SST values to gridded SSTa’s using the 

Reduced Space Optimal Interpolation (RSOI) technique (Rayner et al. 2003). RSOI uses EOF’s 

that are as large or larger than the size of ocean basins to reconstruct SSTa fields, especially in 

regions/periods of time where data is sparse (Jones et al. 2001). With this method, 1961-1990 is 

used as the climatology base period. Since such large-scale procedures lead to dampened local 
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variance, the non-interpolated gridded in-situ SST data was blended with the reconstruction data 

to restore local variance.  Thus, HadISST1 fields are a blend of observations with reconstruction 

fields (Rayner et al. 2003).  

COBE uses the base period of 1961-2005 as climatology. They use bias-corrected in situ 

and satellite SST observations to create a SST analysis of their defined SST field mean state. 

They call their reconstructed SST field analysis the “multi-time-scale analysis” (Hirahara 2014). 

First, they calculate the secular trend, which is the leading EOF of year-to-year mean SSTa’s for 

5° longitude by 5° latitude grid boxes of satellite and in situ observations that spans the length of 

the data set. Then, they compute EOFs to explain ~90% of the SST variance for time periods 

ranging from interannual to interdecadal using the SST field mean state from the aforementioned 

climatology period. They use this information to reconstruct the SST fields in areas with a lack 

of observations in space and time. They also include daily SST information in the reanalysis 

product to incorporate localized SST variance where data is temporally and spatially high. The 

SST fields are then converted to monthly, gridded data with a grid resolution of 1° longitude by 

1° latitude (Hirahara 2014).  

ERSSTv5 utilizes the SST climatology base period of 1971-2000 to convert in-situ SST 

observations that pass quality control tests into monthly SSTa’s (Huang et al. 2017). The 

calculation of monthly averages for each 2° by 2° grid box is done after compiling SSTa’s from 

observations into their respective grid boxes. They execute this by first filtering the in-situ SST 

observations to create low frequency gridded SSTa’s. Then, the high frequency component of 

SSTa’s, defined by the difference of the raw and low frequency SSTa’s, are fit to 130 Empirical 

Orthogonal Teleconnections (EOT). EOT’s are regional EOFs that have a maximum spatial scale 

of 5000 km in longitude and 3000 km in latitude (45° longitude by 27° latitude size box). The 



 

 
 
 

 

12 

EOT spatial patterns are derived from the Optimum Interpolation SST (OISST) version 2 

monthly data using the time period of 1982 to 2011. The final reconstruction of SST’s merges 

low frequency and high frequency SSTA’s and then adds this field to the monthly climatology 

(Huang et al. 2016).  

Since ENSO drives seasonal precipitation anomalies across the globe, and precipitation 

anomalies are the primary driver of societal impacts due to ENSO, we measure the global ENSO 

response using patterns of precipitation variability. We use the Global Precipitation Climatology 

Project (GPCP) version 2.3, which sources satellite and rain gauge data to integrate into a 

monthly gridded precipitation field with 2.5° by 2.5° grid resolution (Adler et al. 2018) (Source: 

https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html). GPCP data becomes available in 

1979, the beginning of the satellite era, since the methods used to create the global precipitation 

product rely on satellite observations. We use data that spans from January of 1979 to February 

of 2019 so we have 40 years of precipitation data for all seasons to use for our analysis.  

Two different methods are used to create the final precipitation product based on the 

availability of microwave estimates. For all data after 1987, they first use multiple microwave 

and infrared satellites to produce large-scale (5° by 5° grid) average precipitation values. Then, 

they use large-scale averages from land gauges where they are available to adjust the merged 

large-scale satellite analysis to better match the regional-scale (2.5° by 2.5° grid) gauge analysis. 

The large-scale gauge adjusted satellite analysis is merged with the post-1987 gauge analysis to 

create the final analysis for this time period (Adler et al. 2003). However, no microwave-

estimates are available to create monthly gridded precipitation data prior to 1987. Instead, they 

use the OLR precipitation index (OPI) to create the beginning portion of the GPCP dataset. The 

fundamental principle of this technique is that observations show OLR anomalies have a defined 
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negative correlation with precipitation anomalies worldwide. First, they calibrate a global linear 

function for the OPI using OLR and local precipitation anomalies from the merged GPCP 

analysis data spanning from 1988-1997. Then, they use OLR anomalies from 1979-1987 to 

calculate monthly OPI-estimated precipitation anomalies for that time period. The precipitation 

anomaly values are then added to the mean precipitation field to create monthly precipitation 

estimates. This field is merged with the gauge analysis for 1979-1987 to create the final analysis 

for this time period. The monthly gridded precipitation fields for each time period are combined 

to create the final GPCP product that spans from the beginning of 1979 to 2019 (Adler et al. 

2003).   

Four different indices incorporated in our analysis each provide quantified measures of 

the responses to ENSO using different oceanic and atmospheric parameters. The primary SST 

index used in our analysis is the monthly Niño 3.4 index data from the Earth System Research 

Laboratory (Rayner et al. 2003 https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/). 

The Niño 3.4 index uses HadISST1 data to calculate monthly index (SSTa) values based on the 

1981-2010 climatological SST mean for three-month running means of SST’s in the Niño 3.4 

region. Niño 3.4 index data is available for the full temporal length of the three SST datasets 

used for analysis (January 1900-February 2019) while ONI data is only available dating back to 

1950. Since the ONI is the current operational ENSO index in use by NOAA, we correlate ONI 

data, calculated using ERSSTv5 SST data, from the Climate Prediction Center 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php) with 

Niño 3.4 index data for each standard season to verify that these Niño 3.4 region indices are 

interchangeable. The strong correlations for all seasons indicate that the indices are nearly 

identical, thus confirming we can use the Niño 3.4 index rather than the ONI to measure the SST 
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response in the Niño 3.4 region due to ENSO. We include Niño 3 index data from the Tokyo 

Climate Center (http://ds.data.jma.go.jp/tcc/tcc/products/elnino/index/), calculated using the 

coupled ocean-atmosphere JMA model (MRI-CPS2), to compare our NDI choices with another 

operational SST index in use to monitor ENSO. The JMA calculates index (SSTa) values using a 

sliding thirty–year period as climatology for five month running means. Southern Oscillation 

Index (SOI) data from the University of East Anglia’s Climate Research Unit (Ropelewski and 

Jones 1987 https://crudata.uea.ac.uk/cru/data/soi/) is also used, with the same temporal length as 

the Niño 3.4 index. The Climate Research Unit calculates the SOI using a two-step normalization 

procedure with raw monthly SLP data. 1951-1980 is used as the climatological mean base period 

to generate the index data (Ropelewski and Jones 1987). We also use the CP OLR index, which 

has a spatial coverage of 170°E to 140°W and 5°S to 5°N 

(https://www.cpc.ncep.noaa.gov/data/indices/cpolr.mth.81-10.ascii from 

https://www.cpc.ncep.noaa.gov/data/indices/). Although the CP OLR index does not match the 

El Niño and La Niña OLR indices used by Chiodi and Harrison 2013 and 2015, it is a single 

index rather than two separate indices based on ENSO phase. We use to evaluate the relationship 

between the ENSO induced atmospheric OLR response in the tropical Pacific and our two-box 

SST method.  

2.2. Methods 

 

Our first objective is to identify the combination of MC and EP regions whose mean 

monthly sea surface temperatures, when differenced, are highly correlated to the global ENSO 

response in all seasons. For simplicity and consistency with the traditional Niño regions 

(Barnston et al.1997), we constrain each region to be rectangular, bounded by meridians and 
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parallels. Each such box, as we shall henceforth refer to them, is uniquely defined by four 

parameters, which we choose to be the box width, box height, and the latitude and longitude 

position of the box center. This yields a total of eight degrees of freedom to investigate when 

choosing the optimal MC and EP boxes for the NDI. After a global exploration of the full eight-

parameter space, we perform a series of tests that isolate different degrees of freedom to optimize 

our MC and EP box sizes and locations for our final NDI options.  The primary measure of 

optimization is the correlations between the resulting NDI and the time series measuring the 

atmospheric responses to ENSO.  

We use Principal Component (PC) analysis to calculate the six leading modes of 

precipitation variability for all standard seasons to confirm that the leading mode is the one 

corresponding to the planetary ENSO response. To do this, we first extract the monthly values 

for each standard season using the gridded global precipitation data. We detrend the seasonal 

precipitation data by removing the mean trend over time at each grid point and then calculate the 

annual mean of each season at each grid point. We perform this calculation over four differing 

spatial domains because our interest is to see whether precipitation responses in different parts of 

the globe require different definitions of the NDI. Note that these definitions focus on separating 

the regions where the local and remote responses of precipitation patterns occur due to ENSO. 

The regions in the tropical Pacific where local shifts in convection patterns occur due to the 

zonal SST gradient changes associated with ENSO are the EP and MC regions. Here we define 

EP region latitude and meridian bounds to be 10°S to 10°N, and 160°E to 80°W while the MC 

region includes the area between 10°S and 15°N, and 110°E to 160°E. In figures 1 through 4, 

normalized amplitude refers to the method we use to standardize each PC and the corresponding 

spatial EOF data, which is the standard deviation of the original PC. We divide the raw PC time 
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series by the standard deviation of that PC time series to generate the time series used in analysis. 

Then, we multiply the respective spatial EOF field by the standard deviation of the raw PC time 

series. The first domain is Extratropical Precipitation (EXP), which includes all global 

precipitation data except for the defined EP and MC regions (Figure 1). The second is Northern 

Hemisphere Precipitaton (NHP), which includes precipitation data north of the equator and 

outside the EP and MC regions (Figure 2). The third is Tropical Precipitation (TROP), which 

includes precipitation data only in the defined EP and MC regions (Figure 3). Global 

Precipitation (GP) is included in our analysis for comparison purposes and final correlation tests 

(Figure 4).  

Precipitation EOFs are calculated to show the spatial patterns and retrieve the resulting 

PC time series for the leading modes of variability across the globe. Note that the standardized 

PC time series is what we use for analysis discussed in sections 3 through 7. The sign of the PC 

is chosen so that the slope of the time series against the Niño 3.4 index is always positive since 

sign is arbitrary in a PC time series. This is applied to SOI data as well for consistency purposes. 

We only display the two leading spatial EOF modes for all four cases. We choose to display DJF 

fields since the strongest atmospheric impacts due to ENSO appear in this season (Neelin, pp. 

132). In figures 1, 2 and 4, the high spatial variability of precipitation over continental regions in 

the leading mode (mode 1) match the DJF precipitation variability due to El Niño from past 

observations (Neelin, pp. 132). The remote and global precipitation EOFs (Figures 1, 2, and 4) 

have similar spatial variability patterns in the leading mode, making them not as unique as 

anticipated. However, the TROP (Figure 3) domain covers only the EP and MC regions, thus 

making it unique since it isolates the local response of convection due to SST gradient changes 

associated with ENSO.  
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Tables 2 and 3 display a big gap in seasonal correlation values between the first and 

second PC of GP and the Niño 3.4 index/SOI. In NDJ and DJF, the second PC is nearly 

uncorrelated with the SOI and Niño 3.4 while the first PC is strongly correlated with them. 

Although ENSO is the leading mode of climate variability, there is evidence that the second 

spatial EOF mode captures climate variability of a different strain of ENSO, the central Pacific 

El Niño (Ashok et al. 2007). Ashok 2007 calculates and plots the leading spatial EOF modes of 

SSTa’s in the Pacific basin from 1979-2004. The first spatial EOF mode clearly identifies the 

traditional flavor of ENSO, the eastern Pacific El Niño (Figure 5). However, the second spatial 

EOF mode displays anomalously warm SST’s in the central Pacific, shifted westward to the 

dateline compared to EP El Niño’s (Figure 5). This mode captures the spatial SSTa pattern 

observed in years when CP El Niño’s occur (Ashok et al. 2007) (Figure 6). For our analysis, we 

only use the first PC of precipitation for all four cases to measure the local and remote 

precipitation responses to ENSO since the strong correlations with the SOI and the Niño 3.4 

index indicate that it captures the dominant ENSO signal. 

The SOI has consistently lower values for correlations with the first PC of GP than the 

Niño 3.4 index. This does not mean the SOI is not useful in operation to monitor ENSO. 

Correlations are still high, above 0.8 for most seasons except for MAM and MJJ (Table 2). 

However, the Niño 3.4 index has a stronger relationship to the response of global precipitation 

patterns due to ENSO than the SOI. This is expected since changes in the location of the SST 

warm pool in the tropical Pacific region drive the changes the atmospheric pressure field and 

regions of strong convection during ENSO.  
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3. OVERVIEW OF RESULTS 

  

 We employ a multi-step selection process to narrow down the multitude of NDI options 

available. Correlation calculations of the NDI and EP/MC box options for the NDI with the PC 

time series of seasonal precipitation and other ENSO indices use SST data that covers the 

standard and one-month lead seasons. In section 4, we review key papers that lead to the 

selection of the Niño 3.4 region to monitor ENSO. In section 5, the search of all possible 

combinations of EP and MC boxes varies the latitude and longitude of the box centroids as well 

as the size of the box: eight degrees of freedom in all. Here the exploration of ideal NDI box 

options with comparison to the SOI and EXP PC 1 will be analyzed. Also, the limitation of the 

degrees of freedom will allow us to isolate the search to the MC region first, then the EP region 

once MC box candidates are chosen in section 6. Then, in section 7, correlations of the NDI 

options, the Niño 3 index, and the Niño 3.4 index with atmospheric ENSO metrics will 

determine whether the two-box SST method improves upon the one-box SST methods in 

operational use to monitor ENSO and which NDI options will be recommended for future work. 

Finally in section 8, the ability of the recommended NDI options from section 7 and the Niño 3.4 

index to identify moderate vs. strong ENSO events will be evaluated using defined OLR vs. non-

OLR events from Chiodi and Harrison 2015.   
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4. THE REBIRTH OF THE NIÑO 3.4 SST REGION FOR ENSO MONITORING  

 

Trenberth 1997 and Barnston et al. 1997 were the pioneers of developing the Niño 3.4 

index and the ONI, the latter being the operational index in use by NOAA. The rest of this 

section reviews these papers and reevaluates their results in the context of global precipitation, 

with a focus on Barnston et al. 1997. Since our limited degrees of freedom method to search for 

NDI options in section 3.4 incorporates the Niño 3.4 index, it is important to discuss how the 

Niño 3.4 region was chosen as a viable location in the EP region to monitor ENSO.  

 Trenberth 1997 compared the Niño 3 region to the Niño 3.4 region. Trenberth also looked 

at histograms of SSTa’s from 1950 to March of 1997 for Niño 3 and Niño 3.4 (Figure 7). The 

Niño 3 histogram is strongly skewed in the negative direction. On the other hand, the Niño 3.4 

histogram shows a more bimodal pattern, which is more representative of the ENSO 

phenomenon (Trenberth 1997). This indicates that the Niño 3.4 region is more representative of 

where warmer SST’s in the tropical Pacific migrate to (away from) during El Niño (La Niña) 

events, which suggests that the Niño 3.4 region has a stronger connection to ENSO than the Niño 

3 region. Although the paper shows some advantages of using the Niño 3.4 region rather than the 

Niño 3 region to monitor ENSO, Trenberth acknowledged that it may be suitable for different 

countries to use different ENSO indices based off of remote impacts of relevance. The objective 

of our research is to determine a NDI candidate to recommend as a universal tool for ENSO 

event identification.  

Barnston et al. 1997 searched for the SST region that has the strongest relationship to 

ENSO by evaluating the relationship between the SOI and tropical Pacific SSTs. Using data 

from 1950-1979, Barnston found that the highest correlations between the SOI and local SSTs 
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reside between the dateline and 120°W, centered near the equator (Figure 8). Barnston et al. 

1997 also uses Canonical Correlation Analysis (CCA) to predict JFM tropical Pacific SSTs with 

subsurface sea temperature, global sea level pressure and tropical SSTs being the predictors for 

zero, one, and two season leads (Figure 9). They find that the highest correlation values (>0.8) 

reside south of the equator (0° to 10°S) between 170°W and 120°W. The strongest correlations 

in the tropical Pacific regions shown in figures 6 and 7 closely align with where the Niño 3.4 

region is located. 

Barnston et al. 1997 also calculated spatial correlations between local SST and SOI for 

the season DJF using data from 1955-1994. Figure 10 shows that for DJF in the tropical Pacific 

region, the correlation maximum is near the longitudinal center of the Niño 3.4 region, which is 

145°W; however, the latitude center is located around 5°S (Barnston et al. 1997). Similar to what 

is shown in figure 8 and 9 using CCA, the strongest area of correlations, outlined by the -80 

contour, encompasses a large part of the Niño 3.4 region in figure 10. To compare our data to 

figure 10, we present spatial grid point correlation maps that use DJF ERSSTv5 SST and SOI 

data for two different time periods.  

The correlations of EP region grid point SST’s and the SOI for 1900-2019 display a 

similar spatial pattern to figure 10 from Barnston et al. 1997 (Figure 11). The region of strongest 

correlations (<-0.8) both extend from ~170°W to ~120°W, the longitude bounds for the Niño 3.4 

region. The most important difference to note is that the area of SSTs with the strongest 

correlations to the SOI (<-0.8) includes a larger band of latitudes, extending northward to 5°N, 

using SST and SOI data from 1900-2019 compared to 1955-1994. Using a longer time series 

encompasses a larger portion of the Niño 3.4 region compared to the same analysis Barnston et 

al. 1997 did with a shorter period of data. A potential cause for this minor difference is the SST 
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dataset Barnston et al. 1997 used for their results. Barnston et al. 1997 did not mention what SST 

data they used and ERSST data was not available at the time of this publication, which means 

differences within the SST datasets may cause the differences seen between figures 10 and 11. 

Using satellite era data from 1979 to 2019, the region of strongest correlations (<-0.8) covers the 

same area as data that begins in 1900 (Figures 11 and 12). Smoothing the correlation field by 

using a 50w by 10h EP box using data from 1979 to 2019, the same box size used to calculate 

the ONI and Niño 3.4 index, still robustly identifies the Niño 3.4 region as the optimal place for 

an SST box (Figures 13). A similar pattern is observed using data from 1900-2019 for 50w by 

10h boxes. This verifies what influenced the choice to use the Niño 3.4 region for an operational 

oceanic ENSO index by NOAA. The Niño 3.4 region, which lies between the Niño 3 and Niño 4 

regions, was chosen based on the strong correlations in DJF between SSTs in that area and the 

SOI (Trenberth 1997).   

Our results build upon what Barnston and Trenberth did. Our analysis uses improved 

datasets that were not viable to use or available when Barnston and Trenberth did their EP and 

Niño 3.4 SST region tests. First, there were only ~15 years of satellite-era data, not near enough 

to be statistically relevant. This would eliminate the potential to use GPCP data in their analysis. 

Also, there were no satisfactory reconstructed SST datasets available when Trenberth and 

Barnston wrote their papers (e.g., Smith and Reynolds 2003). Zero-month and one-month leads 

are both employed in our methods since the oceanic response leads the atmospheric response 

(Trenberth 1997; Barnston et al. 1997). 
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5. EIGHT DEGREES OF FREEDOM SEARCH METHOD FOR NDI OPTIONS 

 

Eight degrees of freedom represents the full available amount to scan for a new two-box 

SST index. The following sub-section uses the full eight degrees of freedom to search for the 

best candidate box definitions for a new index, using SOI and EXP PC 1 data that spans the 

length of the satellite era (1979-2019).  

 In this process all degrees of freedom are allowed to change to analyze which boxes are 

most suitable for the NDI. The degrees of freedom are box height, width, longitude, and latitude. 

There are four degrees of freedom for each region, making a total of eight. We define the MC 

region to be bound by the meridians 80°E/180° and 25°S/29°N parallels and the EP region to be 

bound by the meridians 160°E/80°W and 13°S/13°N parallels for this search. The box centroid 

restrictions have odd parallel and even meridian bounds in this test is because of the ERSSTv5 

SST dataset 2° by 2° grid boxes center on the odd grid points for latitude and the even grid points 

for longitude. The maximum allowed height (north-south extent) for the box in the EP region is 

12° while the maximum height of the box in the MC region is 28°. The minimum allowed height 

for boxes in both regions is 4°. Although the longitude bounds for the possible MC and EP 

regions slightly overlap, we exclude all MC/EP region box pairs that overlap from this search but 

do not otherwise restrict box width (east-west extent) within this region. We find the 10,000 NDI 

options whose correlation is the strongest with the SOI for each one-month lead and standard 

season. Color shading identifies the grid point locations of EP/MC box options for NDI options 

where the correlations with the SOI are the strongest. Lighter colors represent a high number of 

grid points for individual EP/MC region NDI box sizes and locations that share that same grid 

point. The darker colors represent a low number of NDI options that share that same grid point. 
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Figures 14 shows heat maps: the number of times each grid point falls within one of the 

10,000 EP and MC box combinations that produce the largest seasonal correlations between the 

NDI and the SOI. Both the latitude and longitude of the most frequently selected EP and MC 

grid points vary for each season. This relates to the changing seasonal location of maximum 

SSTs in the tropical Pacific during the maturation and decay of ENSO events.  

MJJ has a preferred location for the MC box near the equator and ~125°E (Figure 14a). 

The preferred location for the EP box is centered near 160°W and the equator. The light colored 

heat map signature for EP box options covers most of the longitudinal EP region domain, 

becoming weaker east of ~120°W. This implies that short and wide EP SST boxes are more 

frequently selected.  The EP high hits concentration spans ~10° latitude, centered just south of 

the equator. JJA has a core for MC heat map values at ~5°S and 130°E (Figure 14b). The EP 

region has a core near the dateline centered at ~5°S that covers the western half of the region 

(~170°E to ~140°W).  The preferred location for the EP box in ASO is constrained farther 

westward than JJA, covering longitudes 160°E to 160°W, compared to JJA whereas the preferred 

location for the MC box is near the heart of the MC region and as in JJA is centered at ~10°S and 

~130°E (Figures 14c). The preferred box options for this plot overlap near the dateline for the EP 

and MC choices. SON has an EP box heat core centered near 10°S that extends farther eastward 

into the EP region compared to ASO, covering the longitude band of ~170°E to 140°W (Figure 

14d). The preferred MC region has a short and wide core centered along the EP region at ~10°S, 

spanning the breadth of longitudes from ~110°E to 150°E.  

NDJ exhibits broad and diffused heat cores in the MC and EP regions, which are both 

centered near the equator (Figure 14e). This implies that the correlations with SOI are not very 

sensitive to the EP and MC box locations. However, DJF exhibits a different pattern. From NDJ 



 

 
 
 

 

24 

to DJF, the heat cores decrease in size and the locations of the heat core centers shift northward 

into the northern areas of the EP and MC regions (Figure 14f). It is interesting that the preferred 

areas for EP and MC region SST boxes shift so far northward with only a one-month difference 

in seasonal averages. The FMA box options heat core in the MC region is centered at roughly 

135°E and 5°N, whereas the EP region does not have a distinct core (Figure 14g). Rather, box 

hits are spread across the EP region and extend across the dateline. On the other hand, in MAM 

the MC region does not have a distinct heat core (Figure 14h) and the EP heat core extends from 

~120°W across the dateline to about 170°E along the latitudinal center of 10°N.  

A noticeable feature of the aforementioned plots is that the breadth of the heat cores in 

the EP region shrinks westward from MJJ to ASO. Then, it expands slightly eastward in SON 

before shifting eastward into the heart of the EP region in NDJ and DJF. These changes likely 

reflect the spatial evolution of SSTs and the corresponding circulation response due to ENSO. 

Similar to the SOI, using EXP PC 1 as the atmospheric ENSO metric to find optimal NDI 

options leads to distinct seasonal differences in the preferred areas of EP and MC box locations 

(Figure 15a-h). This confirms that the box locations for the NDI options with the strongest 

correlations to the SOI and EXP PC 1 are highly sensitive to season using this method. Also, the 

locations of the highest hits in the EP and MC region for each one-month lead and standard 

season differs from the SOI. This shows that optimal box locations of NDI candidates are 

sensitive to the metric used to measure the atmospheric response to ENSO.  

There are three issues that arise from this search using eight degrees of freedom. First, 

different seasons identify different areas in the EP/MC region where there is high overlap of NDI 

boxes using both SOI and EXP PC 1. This shows that the eight degrees of freedom method does 

not robustly identify a specific MC and EP region to place boxes for the NDI across all seasons. 
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Second, the strongest EP/MC box options heat map signatures blend together for some one-

month lead and standard seasons, making it hard to distinguish the boundary between the EP and 

MC region for the placement of boxes. We do not expect optimal EP and MC boxes for the NDI 

that nearly overlap because they would not sample much of the SST gradient in the tropical 

Pacific. Third, the NDI options we plot as heat maps for each one-month lead and standard 

season account for 0.18% (10,000 out of ~5,500,000) of the total amount of options available 

when allowing for all eight degrees of freedom to vary. The heat maps show a statistically 

indistinguishable sample size of the total data, even though these are the NDI options with the 

strongest correlations to the SOI or EXP PC 1.  

The highest NDI correlations with the SOI (EXP PC 1) from the eight degrees of freedom 

search are compared to the correlations of the SOI (EXP PC 1) with the Niño 3.4 index (Table 4-

5). Using the SOI, the strongest NDI candidate has slightly higher correlations than the Niño 3.4 

index for JJA and SON; however, the Niño 3.4 index has stronger correlations for DJF and 

MAM (Table 4). Using EXP PC 1, the top NDI candidate has a much stronger correlation than 

the Niño 3.4 index in JJA and SON. In DJF, the top NDI candidate has a slightly stronger 

correlation than the Niño 3.4 index. In MAM, the top NDI candidate has a slightly weaker 

correlation than the Niño 3.4 index (Table 5). This implies that the leading PC’s of precipitation 

may be better ENSO metrics to use for our search of optimal NDI options than the SOI. The top 

NDI candidate using EXP PC 1 has a much stronger correlation in JJA and SON with this ENSO 

metric than the Niño 3.4 index whereas 

Indeed, allowing all eight degrees of freedom to vary is the most straightforward way to 

search for a two-box SST index method; however, it does not identify a robust location in the EP 

or MC regions to place boxes for the NDI.  In the next section, we limit the degrees of freedom 
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in our search for NDI options. This approach narrows down the most important aspects to 

investigate when searching for NDI options, which is the box centroid location in both the MC 

and EP region. 
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6. TWO DEGREES OF FREEDOM SEARCH METHOD FOR NDI OPTIONS  

6.1. Overview of process to select NDI candidates 

 

 Searching across all eight degrees of freedom did not isolate potential EP or MC box 

options to use for the NDI. Each seasonal heat map had unique spatial variability, and only 

samples less than one percent of the available 5,500,000 total NDI options. To constrain our 

search for NDI boxes to a manageable amount of options to investigate, we limit the search to 

two degrees of freedom. This method inhibits us from searching for EP and MC boxes for the 

NDI simultaneously, as we were able to do in the prior section when allowing all eight degrees 

of freedom to vary. Thus, we first search for boxes within the MC region domain by using the 

Niño 3.4 index for the EP region. Once MC boxes are selected, the MC region is then held 

constant by using each selected MC box to search for optimal boxes within the EP domain to 

create final NDI options. The MC region includes the area between the 80°E/180° meridians, and 

the 21°S/21°N parallels while the EP region includes the area between the 160°E/80°W 

meridians and the 15°S/15°N parallels (Figure 16). These region definitions are slightly modified 

from the ones used in section 5. We constrain the latitudinal extent of the MC region because we 

want to limit the area of large land masses (Southeast Asia and Australia) included in the search 

region so that we analyze MC boxes that mostly reside over the ocean. We also slightly increase 

the latitudinal extent of the EP region to evaluate whether boxes centered in the northern and 

southern EP will be suitable to use for the NDI. We only include boxes in these searches that 

fully fit within the defined domain for each respective region. The following sub-sections explain 

the methods for the MC and EP regions box search, discuss the criteria used for the selection of 
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boxes in each region, and walk through the selection process for boxes in each region for our 

final subset of NDI options.    

6.2. Selection of MC box options 

 

The Niño 3.4 box is the SST region in use by NOAA to quantify ENSO. Linear 

regression of the PC/SOI time series with the Niño 3.4 index holds fixed all four degrees of 

freedom in the EP region. A linearly regressed time series uses the Niño 3.4 index as the 

predictor for five measures of atmospheric response: NHP PC 1, EXP PC 1, TROP PC 1, and the 

SOI for the time period that matches the temporal period of GPCP data (1979-2019) as well as 

for SOI data that matches the full length of our three SST datasets (1900-2019). The residual 

time series calculation subtracts the linearly regressed response time series from the original 

response time series for all standard and one-month lead seasons.  

Holding MC box size constant further narrows the search down from four degrees of 

freedom to two after taking into account the EP region. Six possible MC box sizes are considered 

in this search. The MC region box search utilizes six different box sizes: 10° longitude (lon) by 

10° latitude (lat), 30° lon by 10° lat, 10° lon by 30° lat, 30° lon by 18 ° lat, 60° lon by 10° lat and 

60° lon by 30° lat.  A 10° lat by 10° lon box is a small box size that suppresses the random 

variability in having just a single grid point correlation. A 60° lon by 10° lat box is the largest 

short and wide box that yields a fair number of box option given our MC region definition. A 30° 

lon by 10° lat box cuts the width of the prior box in half, so it represents a more “reasonable” 

short and wide box option relative to the area of the MC itself. The 10° lon by 30° lat uses a tall 

and narrow box size that will limit its northward and southward extent of results. The 60° lon by 

30° lat box is the largest box one can use before it overlaps too much with the EP region. A 30° 
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lon by 18° lat box is the aspect ratio relative to the definition of the MC region that we 

hypothesize will have the strongest correlations with the residuals. These choices incorporate 

different MC box aspect ratios to determine the effect each has on MC box location preferences. 

This includes a range of box sizes as well, which will help determine whether a certain box size 

yields the best MC correlations.  

We then compute the correlations between the residual time series and all possible MC 

box time series’ within our defined MC region for all cases one-month lead/standard seasons. 

Since the PC’s are calculated using detrended GPCP data, we use detrended ERSSTv5 SST data 

for consistency. The correlation values of MC box options with the respective residual time 

series are assigned to their respective box centers and contoured on a map of the defined MC 

region for each individual box size. The objective is to identify MC box candidates to use in 

conjunction with an EP box to improve the NDI’s (two-box method) relationship to ENSO 

induced atmospheric responses over the single-box method like the Niño 3.4 index. The ultimate 

test of this hypothesis will come later when we compare the NDI correlations with atmospheric 

ENSO metrics against the Niño 3.4 index. 

Kug and Kang (2006) show that Indian Ocean SST’s play a major role in the rapid 

transition to La Niña conditions in the tropical Pacific after strong El Niño events. They look at 

the relative contributions of the western Indian Ocean SST index (WISST), which uses SSTa’s 

over the western Indian Ocean region (10°S-10°N, 55°E to 75°E), and Niño 3.4 region SSTa’s to 

changes in tropical Pacific SST’s over the course of an ENSO event. To do this, they calculate 

partial correlations of each respective SST region by first removing the affect of the other SST 

region with zonal surface wind and equatorial surface SST’s spanning from 5°S to 5°N. The 

partial lead/lag correlations of Niño 3.4 region SST’s based on NDJ show that the Niño 3.4 
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region SST’s affect MC region SST cooling (negative partial correlations) during the mature 

phase of El Niño, but that the WISST affects MC warming (positive partial correlations) and EP 

cooling in MAM and JJA following the mature phase of an El Niño (Figure 17). This confirms 

that the western Indian Ocean SST’s influence the transition and onset of La Niña events 

following an El Niño event (Kug and Kang 2006). The changes in the SSTa patterns over the 

course of an ENSO event coinciding with high western Indian Ocean SSTa’s (WISST cases) in 

NDJ are presented in the left panels of figure 18. Based on the seasonal SSTa patterns, it is clear 

that El Niño events that correspond with anomalously warm WISST are strong in DJF and 

dissipate quickly in MAM. Compared to WISST El Niño events, the SSTa’s in the EP region 

dissipate slower after the mature phase of El Niño in DJF for non-WISST El Niño events (Figure 

18). This provides evidence that anomalously warm western Indian Ocean SST’s drive the fast 

dissipation of strong El Niño’s from DJF to MAM. Although it does not directly explain our 

results for this box search, it is useful to know that western Indian Ocean SST’s can influence 

changes in MC and EP region SST’s during the transition from El Niño to La Niña conditions.   

Figure 14a shows that the best-performing area for a MC box using the SOI in MJJ is in 

the center of the MC region, which aligns with the region indicated as the best place to put a MC 

box for the two degrees of freedom search in figure 19b. Also, in figure 15a and 15b using EXP 

PC 1 the best-performing area for a MC box is centered over SE Asia, similar to figure 20 and 21 

in MJJ and JJA using EXP PC 1 for the two degrees of freedom search. This shows that that the 

eight degrees of freedom search identified areas in the MC region for a given season where a MC 

box adds information to the EP box. 

Seasonal correlation patterns differ for each case. For example, the NHP case has a strong 

correlation minimum in JJA for box centers that extend from 95°E-105°E and 8°N-16°N for a 
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10° lon by 10° lat box (Figure 22b) while the TROP case has a weaker correlation minimum 

farther eastward at ~140°E and 14°N for the same MC box size (Figures 23b). Also, the 

correlation patterns tend to be stronger farther north in the NHP where they are stronger farther 

south in the SOI. In MJJ, a strong correlation minimum exists from ~105°E to 135°E and ~8°S to 

0° (Figure 19), farther south compared to MJJ in figure 22a where the correlation minimum is 

north of the equator. This is consistent with the hemispheres of the predictands. Another example 

is for the DJF TROP case using a 10° lon by 10° lat box size, a strong correlation minimum is 

centered just south of the equator along  ~160°E (Figure 23) while in the NDJ/DJF EXP case for 

the same box size the correlation minimum is shifted westward to ~100°E (Figure 21). Different 

precipitation response regions can be sensitive to different ENSO SST patterns, although 

sampling error will also contribute to differences.  

The changing correlation patterns in the MC region may be an artifact of the relatively 

short temporal coverage of the GPCP. In other words, the correlation pattern variability from 

season to season may be smaller when there is a longer time period for analysis. Figure 24 

presents the MC box correlations using SOI data spanning from 1900 to 2019 for a 30° lon by 

10° lat box. Compared to figure 19 (SOI 1979-2019), the largest negative correlations shift 

slightly northward in MJJ (Figure 24a). ASO and NDJ also have similar correlation patterns, 

where NDJ has a correlation maximum that is shifted southeastward to ~6°S 125°E in SOI 1979-

2019 compared to SOI 1900-2019. In FMA, the spatial correlation patterns differ between the 

subplots of the different time periods. As another test of robustness, figures 25 and 26 show the 

standard season correlation patterns for SOI spanning from 1900-2019 for even and odd years. 

The correlation patterns are similar for JJA, SON, and DJF; however, they differ in MAM. 

ENSO events typically decay in MAM, which may account for the lack of agreement in MAM 
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between figures 25 and 26 in MAM and in FMA between figures 19 and 24a. Also, feedbacks 

due to ENSO occur in MAM such as changes in trade winds and pressure fields in the tropical 

Pacific. Otherwise, this shows that the correlation patterns are robust using either time period for 

this data set. We did not perform this analysis for GPCP data due to the short temporal length of 

the data set.   

We choose box options that have robust negative correlation extrema in both the one-

month lead and the zero month lead seasons. That way, we don’t have to worry about sensitivity 

in the one-month lead versus the zero month lead season. We look for areas in the MC region 

where there will be additional information added for monitoring ENSO using a two-box SST 

method rather than just using the Niño 3.4 index. Thus, negative correlation extremes are what 

we look for since the definition of the NDI calls for the MC box to have the opposite sign of the 

EP box. An example of a box not chosen is the correlation maximum that appears at ~130°E and 

8°S in NDJ and DJF using NHP PC 1 (Figures 22,27-28). Positive correlation maxima of the 

residuals and the MC SST box options do not add any additional information to the NDI since 

the sign of that MC box is the same as the Niño 3.4 index.  

We select six MC box options for further analysis. For our first box candidate, there is a 

correlation signal that appears in NDJ/DJF EXP case for MC box sizes 10° lon by 10° lat and 

30° lon by 10° lat, which leads to our first MC box choice. For each MC box size (Figures 20-

21), a moderate correlation minimum appears for MC box centers that vary between ~4°S-

8°S/95°E-110°E. For our first candidate, we choose the MC box center location to be at 4°S and 

101°E with dimensions 10° lon by 10° lat since the correlation minimum is well defined and the 

strongest compared to the 30° lon by 10°lat box size. A robust signal appears in a different area 

in ASO and SON using NHP PC 1 for MC box sizes of 10° lon by 10° lat, 30° lon by 10° lat, and 



 

 
 
 

 

33 

30° lon by 18° lat, which leads to our second MC box choice. For each MC box size (Figures 22, 

27-28) strong correlation minima appear for MC box centers that vary between ~0°-6°S/105°E-

115°E.  For our second candidate, we choose the MC box center location to be at 0° (equator) 

and 113°E with dimensions 30° lon by 18° lat. Two reasons exist as to why we use the 30° lon 

by 18° lat dimensions for the second, third and sixth MC box selections. First, regions of strong 

correlations for the 30° lon by 18° lat MC box size match up with other MC box sizes for 

season(s) that contribute to these three MC box selections. Second, the aspect ratio of this MC 

box size best represents the aspect ratio of our MC region definition out of the box sizes used in 

this search. For our third and fourth box candidates, a strong correlation minimum exists for the 

10° lon by 10° lat and 30° lon by 18° lat box sizes in ASO/SON, NDJ/DJF, and FMA/MAM 

using TROP PC 1 (Figures 23,29). The minimum is located at ~155°-175°E and ~5°S-5°N for 

the 10° lon by 10° lat box size and at ~155°E-165°E across different latitudinal bands for each 

season for the 30° lon by 18° lat box size. For our third and fourth MC box options, the chosen 

MC box centers are 0°,149°E with box dimensions 30 ° lon by 18° lat and 4°S,149°E with 

dimensions 10° lon by 10° lat. Both MC box options are selected using the ASO/SON and 

NDJ/DJF subplots. The box centroids are both moved westward to give the MC box some extra 

space from the EP region because placing the box center on this longitude axis is still within the 

area of strong negative correlations in ASO/SON and NDJ/DJF in figures 23 and 29. The fifth 

box choice, with a box center of 4°N and 130°E, is placed in the heart of the MC region due to 

its size of 60° lon and 30° lat and the lack of box options available to analyze when using this 

MC box size for this search. For our sixth candidate, a large correlation minimum appears in the 

30° lon by 18° lat, 30° lon by 10° lat, and 10° lon by 10° lat cases in MJJ/JJA for SOI (1900-
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2019) between ~125-140°E and 0°-8°S (Figures 24, 30-31). For our sixth MC box option, we 

choose the MC box center 4°S by 131°E with box dimensions 30° lon by 18° lat.  

6.3. EP box selection for MC box candidates: final NDI options 

 

Next, we calculate the NDI with EP boxes for all six MC box options across our defined 

EP domain and correlate it with the leading PC’s of precipitation and the SOI. The criteria for 

choosing an EP box for each MC box option is to have a correlation maximum when the EP box 

is in the Niño region. Since the definition of the NDI calls for the EP box to be subtracted by the 

MC box, higher index values favor El Niño conditions and lower index values favor La Niña 

conditions like the Niño 3.4 index. The correlations differ than those in section 4 because those 

are the correlations of EP boxes and the SOI, not the NDI. The same procedure of searching over 

two degrees of freedom in the MC region is done for the EP region. The four degrees of freedom 

in the MC region are held constant by using the six MC box options selected in the previous 

section. Two degrees of freedom in the EP region are accounted for by holding EP box size 

constant.  All EP boxes for the respective MC box choices are constrained to have dimensions 

50° lon by 10° lat since the Niño 3.4 index, which uses a 50° lon by 10° lat EP box, holds the EP 

regions degrees of freedom constant for our MC box selection process.  

All MC boxes have EP box centroids that mirror the Niño 3.4 region or are very close to 

that. All EP boxes chosen use the same measure of atmospheric response as was used to choose 

the respective MC box option. To illustrate our EP box sensitivity procedure to look for EP 

boxes that optimally correspond to for our MC box locations, MC box options one through three 

will be used as examples. In the 50° lon by 10° lat EP box size for MC box option one, the broad 

area of high correlations in EXP NDJ appears (Figure 32a). However, the correlation maximum 
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in DJF is smaller and constrained to the western EP region (Figure 32b). Although the 

correlation maximum in NDJ/DJF is not centered on the Niño 3.4 region box center (0°,145°W), 

the correlation maximum encompasses that EP box centroid. Since the Niño 3.4 index is used to 

hold the EP region constant in the MC box search, we choose the EP box center to be 0°,145°W 

for MC box option one, which mirrors the Niño 3.4 region SST box. For the second MC box, the 

area of highest correlations in NHP NDJ (Figure 33a) is small and is centered just south of the 

equator along ~145°W. The correlation maximum broadens in NHP DJF (Figure 33b) and 

includes the area of highest correlations seen in NHP NDJ. Box option two uses 2°S,145°W as 

its EP box. This is centered along the Niño 3.4 box meridian center but lies 2°S from its 

latitudinal center. Box option three has a broad area of high correlations in TROP JJA, 

ASO/SON, and NDJ/DJF that appears in the heart of the EP region (Figure 34). Box option three 

uses an EP box centered at 0°,145°E since the area of the highest positive correlations includes 

the Niño 3.4 region SST box. The seasonal EP region plots using TROP PC for box option four 

look similar to box option three. Thus, box option four also uses an EP box that mirrors the Niño 

3.4 region SST box. Box options five and six use the same EP box center as box options one, 

three, and four. Given that the highest correlations tend to be similar to the Niño 3.4 EP box 

correlations, we choose the Niño 3.4 EP box for almost all of our MC box options because this 

box is widely used and to facilitate comparisons with the MC box sensitivity test which used the 

Niño 3.4 index to hold the EP region degrees of freedom constant. The coordinates of the final 

NDI options and a map showing the MC boxes locations are presented in table 6 and figure 35, 

respectively. 
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6.4. Supplemental analysis of the two degrees of freedom search 

 

Correlation maps similar to the figures shown in section 6b. are presented in figures 66 

and 67, where the only difference is that the box search domain has been expanded eastward into 

the EP region. The correlation maps give us a better understanding of how the correlation 

gradients behave outside of the MC region.     

The correlations for SST box sizes 10° lon by 10° lat and 30° lon by 18° lat are calculated 

using the residuals from linear regression of GP PC 1 with the Niño 3.4 index. Slope values of 

the respective box options and residuals are overlaid. The figures show a correlation and slope 

gradient increasing to zero from west to east towards and past the dateline (Figures 36-37). The 

box options become uncorrelated with the residuals near or in the Niño 3.4 SST region in JJA, 

SON and DJF, which is what we expect since the boxes begin to overlap with the Niño 3.4 SST 

region. The western MC region is negatively correlated with the residuals in JJA and SON; 

however, it is positively correlated with the residuals in DJF and MAM (Figures 36-37). This 

indicates that the western MC region isn’t a suitable area to place an additional SST box to 

monitor ENSO in DJF and MAM since the boxes are positively correlated with the residuals, as 

outlined in our box selection methods in section 6b. This suggests that the eastern MC region is 

most suitable to place a SST box to use in conjunction with the Niño 3.4 SST box to monitor 

ENSO since the correlations with the residuals are negative in all four standard seasons (Figures 

36-37). Also, this shows what we expect by implementing linear regression used to find suitable 

MC boxes for our NDI candidates east of our defined MC region. 

Next, raw correlations of a 30° lon by 18° lat box size with the Niño 3.4 SST box in the 

EP and MC regions show a region of high positive correlations east of the dateline for all 
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standard seasons, as expected (Figure 38). However, a region of negative correlations becomes 

straddled between regions of high positive correlations in DJF and MAM covering all latitudes 

for box centers between longitudes 140°E and 160°E. This further supports that it is likely better 

to place a MC box in the eastern MC region since we want a MC box that has the opposite sign 

of the EP box in all seasons for the NDI. Thus, we hypothesize that NDI options three and four, 

chosen using TROP PC 1, will be the best NDI candidates since their MC boxes are centered in 

the eastern portion of the MC region at 149°E. This observation will be tested in the next section, 

where we correlate all NDI options with different atmospheric ENSO metrics and compare it to 

the Niño 3 and Niño 3.4 index to determine whether any NDI options improve upon the one-box 

SST method.  
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7. CORRELATIONS OF FINAL NDI OPTIONS WITH ENSO INDICES AND METRICS  

 

Next, we calculate correlations of the final six NDI options and the Niño 3/3.4 index with 

different ENSO metrics to determine whether any of the NDI options have a stronger 

relationship with atmospheric responses to ENSO than the Niño indices. All three SST datasets 

(ERSSTv5, COBE, HadISST) are included to determine whether these correlations are robust. 

One metric we use to determine whether any of the six NDI options is an improvement 

over a single box method is correlations with GP PC 1 (Tables 7-9). It is noteworthy that the 

Niño 3 index has weaker correlations with GP PC 1 than the Niño 3.4 index for all seasons. Also, 

Barnston et al. 1997 also shows that the Niño 3.4 index has stronger correlations with the SOI 

than the Niño 3 index for almost all rolling seasons (Table 10). Since the NDI choices evaluated 

in this section use the Niño 3.4 index in the box selection process, we choose to compare our 

NDI options with only the Niño 3.4 index from this point forward. The correlation of GP PC 1 

and the NDI options robustly improve upon the Niño 3.4 index only in SON (Tables 7-9). NDI 

options one and two have weaker correlations than the Niño 3.4 index in JJA, DJF, and 

especially MAM. NDI option three has a slightly stronger correlation with GP PC 1 in JJA, while 

having a slightly weaker correlation in DJF. In MAM, this NDI option has a weaker correlation 

than the Niño 3.4 index using ERSST and COBE SST data; however, the correlations are nearly 

identical using HadISST data. NDI option four has nearly identical correlations with the Niño 3.4 

index in JJA. In DJF, the correlations are slightly weaker than the Niño 3.4 index. In MAM the 

correlations are weaker than the Niño 3.4 index. NDI options five and six have slightly stronger 

correlations than the Niño 3.4 index using all three SST datasets in JJA; however, they have 

weaker correlations than the Niño 3.4 index and NDI options three and four in DJF and MAM. 
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 Variance explained is compared between the Niño 3.4 and the six NDI options with the 

CP OLR index data (Tables 11-14). All NDI options have higher variance explained in SON 

compared to the Niño 3.4 index, with NDI options three and four having the largest difference. 

NDI options one and two explain less of the variance in the CP OLR index data than the Niño 

3.4 index in JJA, DJF and MAM for all SST datasets.  NDI options three and four have a higher 

variance explained for all SST datasets than the Niño 3.4 in JJA, and DJF. In MAM, the variance 

explained is roughly equivalent to the Niño 3.4 index. NDI options five and six have roughly 

equivalent variance explained in JJA and DJF months for all SST datasets; however, in MAM it 

has a weaker relationship to the CP OLR index data compared to the Niño 3.4 index. 

 Correlations of SOI GPCP length (1979-2019) data with the Niño 3.4 index and final 

NDI options are also compared (Tables 15-17). Since the correlations between all NDI options 

and the Niño 3.4 index are negative, we interpret NDI options correlations with a higher absolute 

value as ones that have a stronger relationship to this ENSO index. In JJA, SON, and DJF almost 

all NDI options have a stronger correlation with the SOI GPCP length than the Niño 3.4 index 

for all SST datasets. The only exception is NDI option one, where in SON the correlation 

strength is nearly identical compared to the Niño 3.4 index for all SST datasets and in MAM it 

has a weaker correlation using ERSSTv5 data. For DJF, NDI options two through six have 

nearly identical correlation strength compared to the Niño 3.4 index for all SST datasets.  

 Correlations of SOI data spanning from 1900-2019 with the Niño 3.4 index and the final 

NDI options are included. This helps us to further evaluate how our final NDI options perform 

over a longer time period since most of our NDI options were chosen using data that spans the 

satellite era. Since there are only minor differences in the correlation values for each SST dataset 

using SOI GPCP length data and SOI full length, only correlations using ERSSTv5 are included 
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(Table 18). In JJA, all NDI options except for option one have stronger correlations with the SOI 

than the Niño 3.4 index. For SON, NDI option one has a weaker correlation while NDI option 

six has a stronger correlation than Niño 3.4 index data. NDI options two through five have 

roughly similar correlations. For DJF, NDI option one has a much weaker correlation than the 

Niño 3.4 index while NDI options two through six have slightly weaker correlations. In MAM, 

all NDI options have weaker correlations with the Niño 3.4 index. NDI options three through six 

have the strongest correlations out of all NDI options with SOI 1900-2019 data for this season. 

 Looking at GP PC 1 and CP OLR correlations/variance tests, NDI options one and two 

are the weakest out of all the options compared to the Niño 3.4 index, especially in MAM. The 

MC boxes for NDI options one and two were chosen using the EXP and NHP PC 1, respectively. 

It is possible that since these NDI options were chosen using remote precipitation impacts, they 

have a statistically weaker relationship to these metrics than the Niño 3.4 index since these PC’s 

are based on second order impacts due to ENSO. On the other hand, NDI options three through 

six have similar correlations compared to the Niño 3.4 index for JJA, SON and DJF; however, in 

MAM they all have weaker correlations than the Niño 3.4 index (Tables 7-9). NDI options three 

and four have higher variance explained than Niño 3.4 index in JJA, SON and DJF (Tables 11-

14). In MAM, the variance explained is nearly identical to the Niño 3.4 index. NDI options five 

and six explain nearly the same amount of variance as the Niño 3.4 index in JJA, SON, and DJF 

using CP OLR data (Tables 11-14). In MAM, the Niño 3.4 index outperforms NDI options five 

and six. Since NDI options three and four were chosen using TROP PC 1, where the first order 

response of precipitation occurs due to ENSO, it’s expected that these options have the strongest 

relationship to CP OLR data and outperform the Niño 3.4 index in most seasons. 

 The correlations of the NDI options and the Niño 3.4 index with the SOI weaken when 
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using the longer time period. Two potential reasons may explain the reduction in correlation 

strength. First, bias in the early time period (pre-WWII) of the three reconstructed SST datasets 

used to calculate the NDI options time series may affect correlation strength with the SOI. Since 

the Niño 3.4 index uses HadISST1 data to generate index values, this potential explanation 

applies to it as well. Also, it is possible that the signal for ENSO within the NDI options, the 

Niño 3.4 index, and the SOI has changed over the course of the 1900’s to the present day due to 

global warming.  

 Using CP OLR data, NDI options three and four distinguish themselves as the top NDI 

candidates. This indicates that creating a NDI option using the local response of convection to 

ENSO (TROP) measures the overall global convective response to ENSO better than using the 

remote response regions (EXP and NHP). 

  



 

 
 
 

 

42 

8. EVALUATING ENSO EVENT IDENTIFICATION OF SEASONAL PC TIME SERIES 

AND NDI OPTIONS VERSUS NIÑO 3.4 INDEX 

 

  As stated in section two, we use the seasonal PC 1 time series of precipitation in our 

selection process for NDI options because it captures the dominant ENSO signal. Figures x 

through y show the SON and DJF plots for EXP PC 1 and TROP PC 1 to compare the tropical 

vs. non-tropical PC behavior. Here, strong ENSO events are classified if the normalized PC 

value exceeds one. Note that this is just a reference point to analyze and compare the ability of 

each PC to identify OLR ENSO events since the Chiodi and Harrison papers influence our 

choice to use this metric in the NDI selection process. Additionally, these seasonal PC’s are the 

ones that were used to select NDI options one, three and four. 

In SON and DJF of TROP PC 1, the El Niño events in 1982/1983, 1997/1998, and 

2015/2016 are clearly the strongest, all three of which were OLR El Niño events (Figures 39-40). 

The 1991/1992 OLR El Niño event was just below the threshold set to define strong El Niño 

events in SON, but exceeds the threshold in DJF. This emphasizes that the reference line is by no 

means the criteria to define a strong ENSO event, but is just a proxy to evaluate the PC’s ability 

to identify strong ENSO events. Both seasons classify the four OLR La Niña events (1988/1989, 

1998/1999,1999/2000,2010/2011) with the exception of SON for the 1999/2000 event, which 

had a value that was near the threshold but did not exceed it (Figures 39-40). Also, some ENSO 

events identified by the ONI that are not OLR events are classified as strong ENSO events. For 

example, 2002/2003 is defined as a strong El Niño event although Chiodi and Harrison 2015 

does not classify it as an OLR event.  

In SON and DJF of EXP PC 1, the 1982/1983, 1997/1998, and 2015/2016 OLR El Niño’s 
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are not clearly defined as the strongest events as they are in TROP PC 1 (Figures 41-42). Also, 

more El Niño events are classified as strong than in TROP PC 1, although that can be partly 

attributed to the larger amplitude of each seasonal time series compared to TROP PC 1. In 

general, TROP PC 1 exhibits more of a non-gaussian behavior than EXP PC 1 in SON and DJF, 

(Figures 39-42). This makes sense since the tropical region experiences the strongest impacts 

during ENSO events. The region definition used for TROP PC 1 encompasses the area where the 

coupled ocean-atmosphere interaction occurs.  

We compare NDI options three and four, which were chosen using TROP PC 1, with the 

Niño 3.4 index to classify ENSO events. This analysis only includes standard season averages of 

the index values to smooth the data and to make the analysis more straightforward. MAM is not 

included since ENSO events typically decay during this season and we’re interested here in the 

NDI and Niño 3.4’s ability to identify ENSO conditions before or when the strongest 

extratropical impacts occur in DJF. This only gives an idea of the viability of our recommended 

NDI options for ENSO event identification using satellite-era data. Further research is needed 

with model data, which provides a much longer time period for analysis, to verify the utility of 

the NDI for ENSO monitoring and to set a concrete definition for event identification. The NDI 

thresholds used in this section to define ENSO events are based on the operational definition of 

the ONI, which is +/- 0.5°C for five consecutive index values. Here, an El Niño event is defined 

if the mean seasonal index value exceeds -2°C and a La Niña event is defined if the mean 

seasonal index value is less than -3°C. ENSO neutral conditions, which ranges from -2°C to -3°C 

under this definition, matches the SSTa range for ENSO neutral conditions using the ONI 

definition (1°C). Additionally, we set index thresholds for the NDI and Niño 3.4 index to classify 

strong ENSO events as an exercise to explore the NDI’s and Niño 3.4’s ability to distinguish 
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between OLR vs. non-OLR events. For the NDI, a strong El Niño event is defined if the mean 

seasonal index value exceeds -1°C and a strong La Niña event is defined if the mean seasonal 

index value is less than -4°C. For the Niño 3.4 index, a strong El Niño/La Niña event is defined 

if the mean seasonal index value exceeds +/- 1°C, respectively. 

For this analysis, we only include data that spans from 1979 to 2016 since this is the most 

recent time Chiodi and Harrison identified OLR and non-OLR events, which they define as years 

that were defined as ENSO events by the ONI but did not meet the threshold to be defined as 

OLR events, using their ENSO phase based OLR index. Although Chiodi and Harrison 2015 did 

not classify the 2015/2016 as an OLR El Niño event, it probably was one based on the high 

seasonal index values in SON and DJF for all three indices (Figures 44-45, 47-48, 50-51). Both 

NDI options identified all ENSO events that the ONI classified for this time period (Tables 19-

24). All indices identified the OLR La Niña events as strong events in 1988/1989, 1998/1999, 

1999/2000 and 2010/2011 (Tables 22-24). Also, the 1982/1983, 1997/1998, and 2015/2016 OLR 

events stand out as the strongest El Niño events in SON and DJF for both NDI options, similar to 

in TROP PC 1, as well as the Niño 3.4 index (Figures 44-45, 47-48, 50-51). From SON 1991 to 

DJF 1991/1992, the index value increases past the threshold to define strong El Niño events for 

all three indices and is one of the strongest El Niño’s using each respective index metric, which 

was classified as an OLR El Niño year by Chiodi and Harrison 2015. An interesting case is the 

1986/1987 OLR El Niño, which was followed by a non-OLR El Niño the following year. Based 

on the set index thresholds we use to define strong El Niño events, the event was classified as a 

non-OLR event in JJA and SON 1986 for all three indices (Tables 19-21). In DJF 1986/1987, the 

event becomes classified as a strong El Niño event for NDI option 3 and the Niño 3.4 index; 

however, it barely exceeds the threshold defined to categorize strong El Niño events (Figures 45, 
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51). JJA of 1987 has one of the highest values for the full length of the dataset for all three 

indices (Figures 43, 46, 49), but by DJF of 1987/1988 it becomes categorized as a moderate El 

Niño for all three indices (Figures 45, 48, 51 and Tables 19-21).  

Each event can be categorized based on ENSO “flavor”, which encapsulates the typical 

lifetime of an event and the associated location of the SST warm pool during the mature phase. 

However, the above discussion highlights that each ENSO event is unique, which can make it 

difficult to categorize certain ENSO events, like the El Niño event that persisted from 1986 to 

DJF of 1987/1988. 

Some differences exist in ENSO event identification in NDI options three and four 

compared to the Niño 3.4 index. For example, 1992/1993 is identified as an El Niño event in 

each NDI option, but not in the Niño 3.4 index (Tables 19-21). Since the NDI uses a different 

method to measure SST pattern changes in the tropical Pacific associated with ENSO, we expect 

there to be minor differences in what years are defined as ENSO events. Also, the NDI options 

indicate El Niño conditions in 2004 (2006) JJA and SON for the 2004/2005 (2006/2007) non-

OLR El Niño event; however, it is not identified in DJF 2004/2005 (2006/2007) like it is in the 

Niño 3.4 index (Tables 19-21). Additionally, NDI option four identifies the non-OLR La Niña 

events in 2000/2001, 2005/2006, and 2011/2012 as strong La Niña events, while NDI option four 

and the Niño 3.4 index do not (Tables 22-24). However, since this is a statistically small sample 

size and operational ENSO SST indices do not have thresholds to distinguish between moderate 

and strong ENSO events, this does not provide an argument that NDI option three is more 

representative of ENSO conditions than NDI option four.  

Using satellite-era data, the NDI options perform as well as the Niño 3.4 index in ENSO 

event identification; however, it does not provide an argument that the NDI is a better ENSO 
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SST index. SST indices only capture the changing SSTa’s, or the changing SST gradient in the 

case of the NDI, in certain regions of the tropical Pacific. Although these indices have been 

proven to be useful in monitoring ENSO, the Niño indices and the NDI are limited in utility by 

the geographical location (locations) of the SST box (boxes). Each provides a metric that is a 

proxy for the overall SST pattern change in the tropical Pacific during an ENSO event. The 

associated changes in the main locations of convective activity in the tropical Pacific during 

ENSO events can vary due to differences in the location of the SST warm pool.  

Based on this analysis, a hypothetical El Niño (La Niña) event definition for the NDI is 

for monthly index values to be higher (lower) than -2°C (-3°C) for four consecutive months. A 

plausible way to identify strong vs. moderate ENSO events in the future is to use the NDI in 

conjunction with the OLR El Niño and La Niña indices used in Chiodi and Harrison 2015. A 

strong El Niño or La Niña event would be identified when an ENSO event is already defined 

using the NDI and the OLR El Niño/La Niña indices from Chiodi and Harrison 2015 identify an 

OLR event under their definition.  
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9. SUMMARY AND CONCLUSIONS

ENSO causes changes to global circulation and weather patterns due to shifts in the 

location of warm SST’s in the tropical Pacific. Multiple indices exist to monitor ENSO using 

oceanic and atmospheric fields that are known to change due to the phenomenon. These indices 

measure the oceanic and/or atmospheric responses to ENSO in locations/areas where there is 

high variability of the respective field used for each index. A fundamental future of the evolution 

of ENSO events is a change in the mean zonal SST gradient. During an El Niño, the SST 

gradient weakens or reverses, whereas during a La Niña the SST gradient strengthens in the 

tropical Pacific. Warming SST’s due to climate change will likely cause changes to the mean 

SST gradient in the tropical Pacific. The NDI, the acronym for our proposed ENSO SST index, 

would be less sensitive to these changes in a future climate since it uses a two-box method to 

measure the SST gradient in the tropical Pacific. However, one-box SST methods in the Niño 

regions, such as the ONI, will need new index thresholds to define El Niño or La Niña conditions 

since different regional SST anomaly magnitudes will reflect active ENSO events due to a 

different tropical Pacific mean SST gradient. 

To narrow down the plethora of NDI options to a small subset, we used the Niño 3.4 

index and the SOI as a measure of the SST response in the EP, also known as the eastern Pacific, 

region and the atmospheric pressure response due to ENSO, respectively. Although the Niño 3.4 

index is not the operational Nino 3.4 region SST index in use to monitor ENSO, we used it in our 

research since it has a longer temporal period of data and its correlation with the ONI indicate 

that they’re nearly identical. We use these indices in tandem with the first PC for Northern 

Hemisphere precipitation, Extratropical precipitation, and Tropical precipitation to identify NDI 
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options that have a strong connection to the local and/or remote response of precipitation patterns 

due to ENSO. ERSSTv5 SST data is used to calculate all potential EP and MC, which is the 

Maritime Continent region, boxes to select NDI options. First, we search for NDI options across 

the EP and MC regions using all eight degrees of freedom. Then, we constrain the search to two 

degrees of freedom to select NDI options. For each selected NDI option, correlations with the 

first PC of Global precipitation, the central Pacific OLR index, and the SOI are compared to the 

Niño 3.4 index. COBE and HadISST1 SST data along with the ERSSTv5 are used to calculate 

the NDI options to test the robustness of the NDI correlations with these ENSO metrics.  

Since our methods use the Niño 3.4 index as the metric to gauge the strength of each NDI 

options relationship to ENSO, we first review important papers that analyze and discuss the 

viability of the Niño 3.4 region for use as an ENSO index. Grid point correlations of SST’s with 

SOI 1900-2019 and SOI 1979-2019 data in the EP region indicate that the Niño 3.4 region is an 

optimal area to place a SST box to monitor ENSO. This confirms what Barnston found using 

SST and SOI data spanning from 1955-1994.  

Allowing all eight degrees of freedom to vary in the EP and MC region, we select the ten 

thousand NDI options that have the strongest correlation with the SOI and first PC of 

Extratropical precipitation for each one-month lead and standard season. After plotting the data 

as heat maps, there was no clear consensus for satisfactory NDI options. The areas with the 

highest overlap between different EP and MC box grid points for the NDI would change 

locations amongst the one-month and standard seasons. However, most one-month lead and 

standard seasons clearly placed our second box, which we hypothesized to be located in the MC 

region, in different areas of this region to use in conjunction with an EP box. This confirms that 

the MC region is a good location to place a second box to measure the SST gradient in the 
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tropical Pacific. A shortcoming of the heat maps is that they did not provide any information on 

the sizes of NDI boxes plotted, making it a sub-optimal method to select strong NDI candidates 

for further testing.  

We then narrow the search down to two degrees of freedom, allowing latitude and 

longitude to vary for the MC or EP region. This allows us to plot spatial correlation maps to 

easily identify strong MC/EP box candidates. First, MC box options are selected. For this search, 

two degrees of freedom are held constant in the MC region by using different prescribed box 

sizes and all four degrees of freedom are held constant in the EP region by using the Niño 3.4 

index. Linear regression of the Niño 3.4 index with four cases, the first PC’s of Extratropical 

precipitation, northern hemisphere precipitation, and tropical precipitation, as well as the SOI, 

identify the relationship between this ENSO SST index and the atmospheric responses to ENSO. 

Correlations of the residuals, which is the difference between the original PC/SOI time series and 

the linearly regressed PC/SOI time series, with all SST boxes in the MC region are plotted. This 

allowed us to evaluate which MC box locations for a two box method may have a stronger 

connection to the atmospheric response due to ENSO compared to the Niño 3.4 index, a one box 

method.  

After the MC box options are chosen, we search across the EP region and select EP boxes 

for each respective MC box to finalize our small set of NDI options for further testing. All four 

degrees of freedom in the MC region are held constant by using the previously selected MC box 

options. Since we use the Niño 3.4 index to help select our MC boxes, we constrain the EP box 

size to 50° lon by 10° lat, the same box size used to calculate the Niño 3.4 index, to hold two 

degrees of freedom constant in the EP region. Since the purpose of the NDI is to measure the 

tropical Pacific SST gradient by taking the difference between an EP box and a MC box, 
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correlations of the NDI options with each case used in the MC box search are calculated. As 

expected, the final NDI options chosen use an EP box that mirrors or is very close to the Niño 

3.4 region.  

We then verify the eastern meridian used to define our MC region for our NDI search is 

sensible. The MC region used for our MC box option selection process is expanded eastward 

from the dateline to 140°W, overlapping with the Niño 3.4 region. Using the same type of 

analysis as was done in our two degrees of freedom MC box selection process, the correlations 

of the residuals with the box option candidates trend to zero east of the dateline for all standard 

seasons. This shows what we expected since the Niño 3.4 index is used to hold the EP region 

constant for this analysis. Also, it verifies that our original MC region definition is viable.  

To determine whether any of the selected NDI candidates will be recommended for 

future work, we compare the Niño 3.4 index and each candidates correlations with different 

metrics that measure the atmospheric response due to ENSO. Using global precipitation PC 1 

and the central Pacific OLR index correlations, NDI options three and four perform the best. In 

JJA, SON and DJF, these options have stronger or roughly equivalent correlations than the Niño 

3.4 index; however, in MAM, the Niño 3.4 index has stronger correlations. There is no clear NDI 

candidate looking at SOI correlations, although it is interesting to note that NDI options two 

through six perform better than the Niño 3.4 index in all seasons during the satellite-era (1979-

2019) except in DJF, where correlations are roughly equivalent. On the other hand, the Niño 3.4 

index performs better than the NDI options in DJF and MAM using SOI data going back to the 

beginning of the twentieth century (1900-2019). In JJA, NDI options two through six have 

stronger correlations than the Niño 3.4 index and roughly equivalent correlations in the SON.  
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Since we use the convective response to ENSO, which was the motivation of creating the 

OLR El Niño and La Niña index in the Chiodi and Harrison papers, we recommend NDI options 

three and four for future work. NDI option three has an MC box center located at 0° and 149°E 

that is 30° longitude in width and 18° latitude in height. The EP box center is located at 0°, 

145°W and is 50° longitude in width and 10° latitude in height, which is the same box size and 

location used to calculate the ONI. NDI option four has an MC box center located at 4°S and 

149°E that is 10° longitude in width and height with the same EP box as NDI option four. While 

NDI options three and four’s correlations with global precipitation PC 1 had statistically 

negligible differences compared the Niño 3.4 index, their correlations with the central Pacific 

OLR index identify them as a potentially stronger ENSO index than the Niño 3.4 index. We used 

variance to calculate the difference between the NDI options and the Niño 3.4 index. In JJA and 

SON, NDI options three and four explained seven to eleven percent more of the variance in 

central Pacific OLR index values than the Niño 3.4 index using all three SST datasets. In DJF, 

these NDI options explained roughly three to four percent more variance than the Niño 3.4 index 

across all SST datasets while in MAM their variance explained was roughly equivalent.  

 To analyze the ability of the recommended NDI options to identify ENSO events leading 

up to and during the traditional mature phase of ENSO in DJF, standard season time series of 

NDI options three, four and the Niño 3.4 index are generated and evaluated. The ENSO event 

threshold definition for the ONI is used for the Niño 3.4 index, and an ENSO event definition is 

created for the NDI based on the definition of the ONI. Additionally, an additional threshold is 

set to identify strong El Niño’s/La Niña’s since we compare moderate vs. strong ENSO events 

under our definitions identified for these indices with OLR vs. non-OLR ENSO events identified 

by Chiodi and Harrison 2015. Both NDI options and the Niño 3.4 index identified all OLR/non-
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OLR ENSO events from Chiodi and Harrison 2015. Although there are some differences 

between the classification of moderate vs. strong ENSO events for given seasons between the 

Niño 3.4 index and the NDI options, the analysis displayed that the NDI performs as well as the 

Niño 3.4 index; however, it does not provide any evidence that the NDI is a better ENSO SST 

index than the Niño 3.4. Additionally, only satellite-era data is used for this analysis since 

reliable OLR data becomes available in 1979. This is a statistically small sample size of data, 

thus it only provides an idea of how the NDI performs compared to the Niño 3.4 index. 

Future work will include working with model output to test the robustness of these 

recommended NDI options chosen in past and future climates. Over the next two years we will 

use different climate models and model runs from CMIP5 or CMIP6 to determine if the Niño 3.4 

SST box performs better than the recommended NDI options for a much larger temporal dataset 

than what is used in this paper. This will also help determine if the Niño 3.4 SST box and the 

recommended NDI options behavior changes in a future climate.  
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Correlations of Niño 
3.4 index and ONI 
JJA 0.978 
SON 0.990 
DJF 0.996 
MAM 0.980 

Table 1. Standard season correlations of the Niño 3.4 index and ONI for the period of January 
1979-February 2019. 

Zero Month 
Leads 

PC 1 JJA SON DJF MAM 

SOI 0.87 0.82 0.90 0.69 
Niño 3.4 
index 

0.90 0.94 0.95 0.90 

PC 2 JJA SON DJF MAM 
SOI 0.03 0.21 0.05 0.32 
Niño 3.4 
index 

0.19 0.08 0.02 0.27 

Table 2. Correlations between SOI/Niño 3.4 and PC 1 and 2 of global precipitation for zero 
month leads. 

One Month 
Leads 

PC 1 MJJ ASO NDJ FMA 

SOI 0.79 0.90 0.86 0.84 
Niño 3.4 
index 

0.82 0.94 0.95 0.89 

PC 2 MJJ ASO NDJ FMA 
SOI 0.13 0.17 0.05 0.18 
Niño 3.4 
index 

0.37 0.05 0.05 0.19 

Table 3. Same as in Table 2 but for one month leads. 

Correlations 
Top NDI 
option vs. SOI 

Niño 3.4 index vs. 
SOI 

JJA -0.83 -0.81
SON -0.85 -0.84
DJF -0.88 -0.90
MAM -0.69 -0.80

Table 4. Comparison of the highest correlation for the NDI in each season calculated using the 
eight degrees of freedom method and SOI vs. Niño 3.4 index. 
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Correlations 
Top NDI option 
vs. EXP PC 1 

Niño 3.4 index vs. 
EXP PC 1 

JJA 0.89 0.58 
SON 0.92 0.82 
DJF 0.92 0.89 
MAM 0.83 0.84 

Table 5. Comparison of the highest correlation for the NDI in each season calculated using the 
eight degrees of freedom method and EXP PC 1 vs. Niño 3.4 index. 

 MC box centroid      MC box size           EP box centroid             EP box size 
NDI Option 1   4°S,101°E    10° lon by 10° lat     0°,145°W        50° lon by 10° lat 
NDI Option 2   0°S,113°E    30° lon by 18° lat     2°S,145°W   50° lon by 10° lat 
NDI Option 3   0°S,149°E    30° lon by 18° lat     0°,145°W        50° lon by 10° lat 
NDI Option 4   4°S,149°E  10° lon by 10° lat     0°,145°W        50° lon by 10° lat 
NDI Option 5   4°N,130°E    60° lon by 30° lat     0°,145°W        50° lon by 10° lat 
NDI Option 6    4°S,131°E    30° lon by 18° lat     0°,145°W        50° lon by 10° lat 
Table 6.  Final NDI options coordinate details. 

ERSSTv5 corr GP vs. NDI 
Options/ Niño 3.4 index JJA SON DJF MAM 
NDI OPTION 1 0.82 0.95 0.90 0.47 
NDI OPTION 2 0.88 0.96 0.91 0.69 
NDI OPTION 3 0.91 0.95 0.95 0.83 
NDI OPTION 4 0.90 0.95 0.94 0.80 
NDI OPTION 5 0.92 0.95 0.93 0.77 
NDI OPTION 6 0.92 0.96 0.92 0.74 
Niño 3.4 index 0.90 0.94 0.95 0.90 
Niño 3 index 0.86 0.93 0.92 0.88 

Table 7. Standard season correlations between first PC of global precipitation and final NDI 
options, with Niño 3.4 as a comparison. ERSSTv5 SST data is used to calculate time series for 
NDI options.   



 58 

COBE Corr GP vs. NDI 
options/ Niño 3.4 index JJA SON DJF MAM 
NDI OPTION 1 0.85 0.96 0.89 0.63 
NDI OPTION 2 0.88 0.96 0.91 0.77 
NDI OPTION 3 0.92 0.95 0.95 0.88 
NDI OPTION 4 0.90 0.95 0.94 0.85 
NDI OPTION 5 0.92 0.95 0.93 0.82 
NDI OPTION 6 0.91 0.96 0.93 0.79 
Niño 3.4 index 0.90 0.94 0.95 0.90 
Niño 3 index 0.86 0.93 0.92 0.88 

Table 8. Same as in Table 8 except using COBE SST data. 

HadISST Corr GP vs. NDI 
options/ Niño 3.4 index JJA SON DJF MAM 
NDI OPTION 1 0.87 0.96 0.92 0.72 
NDI OPTION 2 0.89 0.95 0.92 0.81 
NDI OPTION 3 0.91 0.95 0.95 0.89 
NDI OPTION 4 0.90 0.94 0.94 0.85 
NDI OPTION 5 0.93 0.95 0.94 0.84 
NDI OPTION 6 0.92 0.95 0.93 0.82 
Niño 3.4 index 0.90 0.94 0.95 0.90 
Niño 3 index 0.86 0.93 0.92 0.88 

Table 9. Same as in Table 8 except using HadISST data. 
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Table 10. Reprinted from Barnston et al. 1997. “Comparison of correlations between Niño 3 and 
the SOI and Niño 3.4 and SOI, over the 1950-96 period for running 3-month seasons. The 
probability that the correlation difference could occur by chance is given the third column, using 
a 2-sided test based on Fisher r-to-Z transformation. The effective sample size is 47 for the 
seasonal analysis and 56 for the annual. Significant results at the 0.05 level or better are shown in 
bold. The Niño 3 versus Niño 3.4 SST correlation is also shown.” 

JJA 
NDI 
Option 1 

NDI 
Option 2 

NDI 
Option 3 

NDI 
Option 4 

NDI 
Option 5 

NDI 
Option 6 

ERSSTv5 -0.21 -0.11 0.10 0.09 0.01 -0.02
COBE -0.18 -0.09 0.09 0.09 -0.01 -0.02
HadISST -0.14 -0.05 0.10 0.10 0.04 0.01 

Table 11. Variance explained difference between the NDI and the Niño 3.4 index using CP OLR 
for JJA. Positive values represent where the NDI option has higher variance explained than the 
Niño 3.4 index. 

SON 
NDI 
Option 1 

NDI 
Option 2 

NDI 
Option 3 

NDI 
Option 4 

NDI 
Option 5 

NDI 
Option 6 

ERSSTv5 0.04 0.04 0.10 0.09 0.05 0.05 
COBE 0.05 0.05 0.11 0.09 0.06 0.06 
HadISST 0.04 0.06 0.09 0.07 0.06 0.05 

Table 12. Same as Table 11 except for SON 

DJF 
NDI 
Option 1 

NDI 
Option 2 

NDI 
Option 3 

NDI 
Option 4 

NDI 
Option 5 

NDI 
Option 6 

ERSSTv5 -0.08 -0.04 0.04 0.03 -0.01 -0.02
COBE -0.08 -0.05 0.04 0.03 -0.01 -0.02
HadISST -0.05 -0.05 0.04 0.02 -0.01 -0.02

Table 13. Same as Table 11 except for the DJF 
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MAM 
NDI 
Option 1 

NDI 
Option 2 

NDI 
Option 3 

NDI 
Option 4 

NDI 
Option 5 

NDI 
Option 6 

ERSSTv5 -0.45 -0.24 -0.01 -0.01 -0.10 -0.13
COBE -0.30 -0.16 0.01 0.02 -0.06 -0.10
HadISST -0.17 -0.05 0.05 0.01 0.01 -0.04

Table 14. Same as in Table 11 except for the MAM 

ERSST corr NDI 
Options/ Niño 3.4 
index and SOI JJA SON DJF MAM 
NDI OPTION 1 -0.85 -0.82 -0.86 -0.73
NDI OPTION 2 -0.89 -0.87 -0.87 -0.84
NDI OPTION 3 -0.88 -0.87 -0.90 -0.82
NDI OPTION 4 -0.89 -0.88 -0.90 -0.83
NDI OPTION 5 -0.90 -0.88 -0.89 -0.83
NDI OPTION 6 -0.91 -0.88 -0.87 -0.85
Niño 3.4 index -0.81 -0.84 -0.90 -0.79

Table 15. Standard season correlations between SOI GPCP length (1979-2019) and final NDI 
options, with Niño 3.4 as a comparison. ERSSTv5 SST data is used to calculate time series for 
NDI options.   

COBE corr NDI 
Options/ Niño 3.4 
index and SOI JJA SON DJF MAM 
NDI OPTION 1 -0.85 -0.84 -0.87 -0.80
NDI OPTION 2 -0.87 -0.88 -0.89 -0.83
NDI OPTION 3 -0.87 -0.85 -0.90 -0.82
NDI OPTION 4 -0.88 -0.86 -0.90 -0.83
NDI OPTION 5 -0.87 -0.88 -0.90 -0.84
NDI OPTION 6 -0.89 -0.88 -0.90 -0.85
Niño 3.4 index -0.81 -0.84 -0.90 -0.79

Table 16. Same as in Table 15 except using COBE SST data 
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HadISST corr NDI 
Options/ Niño 3.4 
index and SOI JJA SON DJF MAM 
NDI OPTION 1 -0.86 -0.83 -0.86 -0.82
NDI OPTION 2 -0.88 -0.87 -0.89 -0.84
NDI OPTION 3 -0.88 -0.86 -0.91 -0.81
NDI OPTION 4 -0.88 -0.88 -0.91 -0.81
NDI OPTION 5 -0.88 -0.88 -0.90 -0.82
NDI OPTION 6 -0.90 -0.88 -0.89 -0.84
Niño 3.4 index -0.81 -0.84 -0.90 -0.79

Table 17. Same as in Table 15 except using HadISST SST data. 

ERSSTv5 corr NDI 
Options/ Niño 3.4 
index and SOI JJA SON DJF MAM 
NDI OPTION 1 -0.64 -0.72 -0.76 -0.50
NDI OPTION 2 -0.71 -0.76 -0.80 -0.57
NDI OPTION 3 -0.69 -0.75 -0.83 -0.59
NDI OPTION 4 -0.70 -0.76 -0.82 -0.56
NDI OPTION 5 -0.72 -0.77 -0.83 -0.61
NDI OPTION 6 -0.76 -0.78 -0.82 -0.61
Nino 3.4 index -0.66 -0.76 -0.85 -0.66

Table 18. Correlations between SOI full length (1900-2019) and final NDI options, with Niño 
3.4 index as a comparison. ERSSTv5 SST data is used to calculate time series for NDI options. 
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NDI	Option	3	
OLR/Non-OLR	
EN	

JJA	 SON	 DJF	
1979	 1979	 1979/1980	
1980	
1982	 1982	 1982/1983	
1983	
1984	

1986**	 1986**	 1986/1987	
1987**	 1987**	 1987/1988	

1990	 1990/1991	
1991	 1991**	 1991/1992	
1992	 1992/1993	
1993	 1993	
1994	 1994	 1994/1995	
1997	 1997	 1997/1998	
2001	

2002**	 2002	 2002/2003	
2003	
2004	 2004	
2005	
2006	 2006	
2009	 2009	 2009/2010**	
2012	
2015	 2015	 2015/2016	

Table 19. List of years where the mean index values for a given season meet the criteria to be 
defined as an El Niño event for NDI option 3. A moderate El Niño event is defined when the 
mean index values for a given season exceeds -2°C and a strong El Niño event is defined when 
the mean index values for a given season exceeds -1°C. Red text (gray highlighted boxes) 
indicate defined OLR (non-OLR) events from Chiodi and Harrison 2015. Black (red) stars 
indicate when a defined OLR (non-OLR) El Niño event was labeled as a moderate (strong) El 
Niño event based on our NDI event definition. Included years that are plain black text and don’t 
have a highlighted box are years that meet the event definition criteria for the NDI but are not 
OLR or non-OLR events from Chiodi and Harrison 2015. 
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NDI	Option	
4	OLR/Non-
OLR	EN	

JJA	 SON	 DJF	
1979	 1979	
1980	
1981	
1982	 1982	 1982/1983	
1983	
1984	

1986**	 1986**	 1986/1987**	
1987**	 1987**	 1987/1988	

1990	 1990	
1991	 1991**	 1991/1992	
1992	 1992	 1992/1993	
1993	 1993	

1994**	 1994	 1994/1995	
1997	 1997	 1997/1998	
2001	

2002**	 2002	 2002/2003	
2003	

2004**	 2004	
2005	
2006	 2006	
2008	
2009	 2009	 2009/2010	
2012	
2014	
2015	 2015	 2015/2016	

Table 20. Same as in Table 19 except for NDI option 4. 
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Niño	3.4	
index	OLR	vs.	
Non-OLR	EN	

JJA	 SON	 DJF	
1979/1980	

1982**	 1982	 1982/1983	
1986**	 1986/1987	

1987**	 1987**	 1987/1988	
1991**	 1991**	 1991/1992	

1994	 1994/1995**	
1997	 1997	 1997/1998	
2002	 2002**	 2002/2003**	

2004	 2004/2005	
2006	 2006/2007	

2009	 2009**	 2009/2010**	
2014	 2014/2015	

2015	 2015	 2015/2016	
Table 21. Same as in Table 19 except for Niño 3.4 index. 
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NDI	Option	3	
OLR/Non-OLR	
LN	

JJA	 SON	 DJF	
1983	 1983/1984	
1984	 1984/1985	

1985/1986	
1988**	 1988	 1988/1989	

1989	
1995	 1995/1996	
1996	 1996/1997	
1998	 1998/1999	

1999**	 1999/2000	
2000	 2000/2001	
2005	 2005/2006	

2007**	 2007/2008**	
2008	 2008/2009	

2010**	 2010	 2010/2011	
2011	 2011/2012	

Table 22. List of years where the mean index values for a given season meet the criteria to be 
defined as a La Niña event for NDI option 3. A moderate La Niña event is defined when the 
mean index values for a given season is lower than -3°C and a strong La Niña event is defined 
when the mean index values for a given season is lower than -4°C. Blue text (gray highlighted 
boxes) indicate defined OLR (non-OLR) events from Chiodi and Harrison 2015. Black (blue) 
stars indicate when a defined OLR (non-OLR) La Niña event was labeled as a moderate (strong) 
La Niña event based on our NDI event definition. Included years that are plain black text and 
don’t have a highlighted box are years that meet the event definition criteria for the NDI but are 
not OLR or non-OLR events from Chiodi and Harrison 2015. 
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NDI	Option	
4	OLR/Non-
OLR	LN	

JJA	 SON	 DJF	
1980/1981	
1983/1984	
1984/1985	
1985/1986	

1988**	 1988	 1988/1989	
1995	 1995/1996**	
1996	 1996/1997	
1998	 1998/1999	

1999**	 1999/2000	
2000	 2000/2001**	

2005/2006**	
2007**	 2007/2008**	

2008	 2008/2009	
2010**	 2010	 2010/2011	

2011	 2011/2012**	
Table 23. Same as in Table 22 except for NDI option 4. 
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Niño	3.4	
index	OLR	vs.	
Non-OLR	LN	

JJA	 SON	 DJF	
1983	 1983/1984	

1984	 1984	 1984/1985**	
1985	 1985	 1985/1986	
1988	 1988	 1988/1989	
1989	

1995	 1995/1996	
1998**	 1998	 1998/1999	
1999**	 1999	 1999/2000	

2000	 2000	 2000/2001	
2005/2006	

2007**	 2007/2008**	
2008/2009	

2010**	 2010	 2010/2011	
2011	 2011/2012	

Table 24. Same as in Table 22 except for Niño 3.4 index. 
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Figure 1. DJF spatial variability map of the leading two modes of variability for EXP (Remote 
Precipitation) using PC analysis. 
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Figure 2. DJF spatial variability map of the leading two modes of variability for NHP (Remote 
Northern Hemisphere Precipitation) using PC analysis. 

Mode 1 (30.2%)

   0°    45°E   90°E  135°E  180°   135°W   90°W   45°W    0°  
  30°S 

   0°  

  30°N 

  60°N 

  90°N 

Mode 2 (19.3%)

   0°    45°E   90°E  135°E  180°   135°W   90°W   45°W    0°  
  30°S 

   0°  

  30°N 

  60°N 

  90°N 

DJF Northern Hemisphere Precipitation EOF Maps

N
or

m
al

iz
ed

 A
m

pl
itu

de

-1.5

-1

-0.5

0

0.5

1

1.5



 70 

Figure 3. DJF spatial variability map of the leading two modes of variability for TROP (Local 
Precipitation) using PC analysis. 
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Figure 4. DJF spatial variability map of the leading two modes of variability for GP using PC 
analysis.  
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Figure 5. Reprinted from Ashok et al. 2007. “Top four EOF modes of tropical Pacific SSTA 
(1979-2004) multiplied by respective standard deviations of the principal components; units in 
°C.” 

Figure 6. Reprinted from Ashok et al. 2007. “Composite SSTA in °C during strong positive El 
Niño Modoki events averaged over (a) seven boreal summers, namely, JJAS seasons of 1986, 
1990, 1991, 1992, 1994, 2002, and 2004, and (b) 8 boreal winters, namely, DJF seasons of 1979-
1980, 1986-1987, 1990-1991, 1991-1992, 1992-1993, 1994-1995, 2002-2003, and 2004-2005. 
Significant values above 95% confidence level from a two-tailed Student’s t test are shaded.” 
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Figure 7. Reprinted from Trenberth 1997. “Histograms of the distribution of SST anomalies for 
Niño 3 and 3.4 from 1950 to March 1997 relative to the mean for the entire period. The 
contribution from the post-1979 period is shown by the stippled areas. Also given is the 
corresponding normal distribution with the same variance.” 
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Figure 8. Reprinted from Barnston et al. 1997. “(a) The field of correlation between local SST 
and the SOI for all four regular 3-month seasons for 1950-1979. (b) As in (a), except for 
January-February periods (part of the northern winter-to-spring period when mature ENSO 
episodes often occur) for 1950-1979.” 
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Figure 9. Reprinted from Barnston et al. 1997. “Correlation skill field for CCA predictions of 
Jan.-Feb.-Mar. tropical Pacific SST using global sea level pressure, tropical Pacific SST and 
subsurface sea temperatures as predictors. Forecast skill is shown for lead times of (a) 0, (b) 1 
and (c) 2 seasons, where 0 season lead implies a 3-month target season that begins at the time the 
forecast is made (i.e., using data through the end of December for a Jan.-Feb.-Mar. forecast). 
Predictions for the 1957-1994 period are included.” 
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Figure 10. Reprinted from Barnston et al. 1997. Grid point correlations of DJF local SST’s and 
DJF SOI for the time period 1955-1994. 

Figure 11. DJF grid point correlations of ERSSTv5 SST and SOI data that spans from 1900-
2019. 
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Figure 12. DJF grid point correlations of ERSSTv5 SST and SOI data that spans from 1979-
2019, the length of the satellite era. 
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Figure 13. DJF correlations of ERSSTv5 SST and SOI data using a 50w by 10h SST box in the 
EP region for the time period of 1979-2019. 
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a) 

b) 

c) 

d) 

Figure 14. Heat maps of preferred boxes for EP and MC regions for the NDI in MJJ-MAM.  
Color shading shows the relative frequency that certain latitude-longitude grid points were 
included in the 10,000 NDI definitions having the strongest negative correlations to the SOI. 
Panels a and b: One-month and zero-month lead correlations with JJA SOI. Panels c and d: 
Correlations with SON SOI.  Panels e and f: Correlations with DJF SOI.  Panels g and h: 
Correlations with MAM SOI. 
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e) 

f) 

g) 

h) 

Figure 14. (continued) 

NDJ Heat map of SOI top 10,000 box options
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a) 

b) 

c) 

d) 

Figure 15. Same as in Figure 14 except for using EXP PC 1. 
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e) 

f) 

g) 

h) 

Figure 15. (continued) 

NDJ Heat map of Extratropical Precipitation top 10,000 box options
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Figure 16. MC and EP region definitions used for the two degrees of freedom search. Only boxes 
that fully fit within each defined region are included in the search process. The Niño SST regions 
are included in this figure for reference. 
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Figure 17. Reprinted from Kug and Kang 2006. “(a) The partial correlation of the equatorial SST 
(5°S-5°N) on the Niño-3.4 SST during November-January, after accounting for the effect of 
WISSTON. (b) Same as in (a), but for the partial correlation of WISSTON after accounting for the 
effect of the Niño-3.4 SST during November-January. The y axis denotes the calendar months of 
the ENSO developing year (year 0) and decaying year (year 1).” 
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Figure 18. Reprinted from Kug and Kang 2006. “Composites of SST anomalies for (left) the 
WISST and (right) the El Niño-only cases. Light, medium, and dark shading represent the 90%, 
95%, and 99% confidence levels, respectively. Year 0 and year 1 denote the year where an El 
Niño develops and the following year, respectively.” 
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Figure 19. Linear regression of the Niño 3.4 index with SOI (1979-2019) for box options that are 
30w by 10h in size. Correlations are between the MC box centers that fully fit within the defined 
MC region domain and the residuals for one-month lead seasons. Residuals represent what is not 
correlated with the Niño 3.4 index using SOI (1979-2019). The regions of negative correlation 
values indicate MC boxes with more information about the SOI than explained by just the Niño 
3.4 index. 
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a) 

b) 

Figure 20. Linear regression of the Niño 3.4 index with EXP PC 1 for box options that are 30w 
by 10h in size. Correlations are between the MC box centers that fully fit within the defined MC 
region domain and the residuals for one-month lead seasons. Residuals represent what is not 
correlated with the Niño 3.4 index using EXP PC 1. The regions of negative correlation values 
indicate MC boxes with more information about EXP PC 1 than explained by just the Niño 3.4 
index for a) one-month lead seasons and b) standard seasons. 
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a) 

b) 

Figure 21. Same as in figure 20 except for box options that are 10w by 10h. 
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a) 

b) 

Figure 22. Same as in figure 20 except for using NHP PC 1 for box options that are 10w by 10h. 



 90 

a) 

b) 

Figure 23. Same as in figure 20 except for using TROP PC 1 for box options that are 10w by 
10h. 
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a) 

b) 

Figure 24. Same as in figure 20 except for using SOI (1900-2019) for box options that are 30w 
by 10h. 
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Figure 25. Same as in figure 20 except for using the even years of SOI (1900-2019) for box 
options that are 30w by 18h for zero month leads. 

Figure 26. Same as in figure 20 except for using the odd years of SOI (1900-2019) for box 
options that are 30w by 18h for zero month leads. 
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a) 

b) 

Figure 27. Same as in figure 20 except for using NHP PC 1 for box options that are 30w by 10h. 
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a) 

b) 

Figure 28. Same as in figure 20 except for using NHP PC 1 for box options that are 30w by 18h. 
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a) 

b)

Figure 29. Same as in figure 20 except for using TROP PC 1 for box options that are 30w by 
18h. 
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a) 

b) 

Figure 30. Same as in figure 20 except for using SOI (1900-2019) for box options that are 30w 
by 18h. 
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a) 

b) 

Figure 31. Same as in figure 20 except for using SOI (1900-2019) for box options that are 10w 
by 10h. 



a) 

b) 

Figure 32. EP box location sensitivity testing using EXP PC 1 performed by using MC box 
center 4°S, 101°E that is 10w by 10h to hold the MC region fixed. Search across 2 degrees of 
freedom by holding EP box size constant at 50w by 10h for a) one-month lead seasons and b) 
standard seasons. Correlation values are between the NDI with each EP box that fully fits within 
the defined EP region domain and EXP PC 1. The high positive correlations represent the best 
region to place an EP box.
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a) 

b) 

Figure 33. Same as figure 32 except for using NHP PC 1 for MC box center 0°,113°E that is 30w 
by 18h to hold the MC region fixed. 
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a) 

b) 

Figure 34. Same as figure 32 except for using TROP PC 1 for MC box center 0°,149°E that is 
30w by 18h to hold the MC region fixed. 
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Figure 35. Six MC box option locations for the final NDI options 
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Figure 36. Linear regression of the Niño 3.4 index with GP PC 1. Correlations of the residuals 
and boxes that are 10w by 10h in size for standard seasons with a region domain that is extended 
eastward into the EP region. Slope values of the MC box options and the residuals are overlaid. 
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Figure 37. Linear regression of the Niño 3.4 index with GP PC 1. Correlations of the residuals 
and boxes that are 30w by 18h in size for standard seasons with a region domain that is extended 
eastward into the EP region. Slope values of the MC box options and the residuals are overlaid. 
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Figure 38. Standard season correlations of Niño 3.4 box SST’s with SST boxes that are 30w by 
18h in size. 
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Figure 39. SON time series of TROP PC 1. Strong El Niño/La Niña events are classified when 
the annual PC time series value exceeds +/-1, respectively. Strong El Niño (La Niña) events are 
labeled as filled red (blue) circles.  
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Figure 40. DJF time series of TROP PC 1. Strong El Niño/La Niña events are classified when the 
annual PC time series value exceeds +/-1, respectively. Strong El Niño (La Niña) events are 
labeled as filled red (blue) circles. For reference, DJF of 1979/1980 is labeled as the year 1980 
(x-axis). 
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Figure 41. SON time series of EXP PC 1. Strong El Niño/La Niña events are classified when the 
annual PC time series value exceeds +/-1, respectively. Strong El Niño (La Niña) events are 
labeled as filled red (blue) circles.  
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Figure 42. DJF time series of EXP PC 1. Strong El Niño/La Niña events are classified when the 
annual PC time series value exceeds +/-1, respectively. Strong El Niño (La Niña) events are 
labeled as filled red (blue) circles. For reference, DJF of 1979/1980 is labeled as the year 1980 
(x-axis). 
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Figure 43. NDI option 3 annual mean value time series for JJA. Years that meet the moderate El 
Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles.  
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Figure 44. NDI option 3 annual mean value time series for SON. Years that meet the moderate 
El Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles.  
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Figure 45. NDI option 3 annual mean value time series for DJF. Years that meet the moderate El 
Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles. For 
reference, DJF of 1979/1980 is labeled as the year 1980 (x-axis). 
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Figure 46. NDI option 4 annual mean value time series for JJA. Years that meet the moderate El 
Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles.  
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Figure 47. NDI option 4 annual mean value time series for SON. Years that meet the moderate 
El Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles.  
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Figure 48. NDI option 4 annual mean value time series for DJF. Years that meet the moderate El 
Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles. For 
reference, DJF of 1979/1980 is labeled as the year 1980 (x-axis). 
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Figure 49. Niño 3.4 index annual mean value time series for JJA. Years that meet the moderate 
El Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles.  
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Figure 50. Niño 3.4 index annual mean value time series for SON. Years that meet the moderate 
El Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles.  
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Figure 51. Niño 3.4 index annual mean value time series for DJF. Years that meet the moderate 
El Niño (La Niña) event definition criteria are denoted as red (blue) stars and years that meet the 
strong El Niño (La Niña) event definition criteria are denoted as filled red (blue) circles. For 
reference, DJF of 1979/1980 is labeled as the year 1980 (x-axis). 
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