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ABSTRACT

High integration of intermittent renewable energy sources (RES), specifically wind power, has

created complexities in power system operations due to their limited controllability and predictability.

In addition, large fleets of Electric Vehicles (EVs) are expected to have a large impact on electricity

consumption, contributing to the volatility. In this study, a well-coordinated smart charging approach

is developed that utilizes the flexibility of EV owners in a way where EVs are used as distributed

energy storage units and flexible loads to absorb the fluctuations in the wind power output in a

vehicle-to-grid (V2G) setup. Challenges for people participation in V2G, such as battery degradation

and insecurity about unexpected trips, are also addressed by using an interactive mechanism in

smart grid.

First, a static deterministic model is formulated using multi-objective mixed-integer quadratic

programming (MIQP) assuming known parameters day ahead of time. Subsequently, a formulation

for real-time dynamic schedule is provided using a rolling-horizon with expected value approximation.

Simulation experiments demonstrate a significant increase in wind utilization and reduction in

charging cost and battery degradation compared to an uncontrolled charging scenario.

Formulating the scheduling problem of the EV-wind integrated power system using conventional

stochastic programming (SP) approaches is challenging due to the presence of many uncertain

parameters with unknown underlying distributions, such as wind, price, and different commuting

patterns of EV owners. To alleviate the problem, a model-free Reinforcement Learning (RL)

algorithm integrated with deterministic optimization is proposed that can be applied on many

multi-stage stochastic problems while mitigating some of the challenges of conventional SP methods

(e.g., large scenario tree, computational complexity) as well as the challenges in model-free RL

(e.g., slow convergence, unstable learning in dynamic environment). The simulation results of

applying the combined approach on the EV scheduling problem demonstrate the effectiveness of

the RL-Optimization method in solving the multi-stage EV charge/discharge scheduling problem.

The proposed methods perform better than standard RL approaches (e.g., DDQN) in terms of
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convergence speed and finding the global optima. Moreover, to address the curse of dimensionality

issue in RL with large action-state space, a heuristic EV fleet charging/discharging scheme is used

combined with RL-optimization approach to solve the EV scheduling problem for a large number

of EVs.
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NOMENCLATURE

RL Reinfrocement Learning

SP Stochastic Programming

MIQP Mixed Integer Quadratic Program

MG Micro-Grid

T Set of time/periods in scheduling with index t.

I Set of all EVs with index i.

Ig2v(Iv2g) Set of vehicles participating in G2V (V2G).

B Set of vehicles that arrive with charge level below SOCmin.

EV t
all Set of all vehicles plugged-in during time slot [t, t+ 1].

EV t
v2g Set of vehicles in V2G plugged-in during time slot [t, t+ 1].

tarri (tdepi ) Arrival (departure) time of EV i.

T pi Plug-in period of EV i.

prt(prtf ) (Forecasted) Electricity price in ¢/kWh.

Dt Total charging demand in time slot [t, t+ 1].

W t(W t
f ) Actual (forecasted) wind production in time slot [t, t + 1] in

kWh.
P c
i (P d

i ) Maximum energy EV i can take (discharge) in ∆t (kWh).

ηci , η
d
i Charging and discharging efficiency of EV i.

SOCt
i State of battery charge for EV i at time t.

SOCinit,i Initial state of battery for EV i in kWh.

SOCcap,i Battery capacity of EV i in kWh.

SOCmin,i Minimum level of battery charge for EV i in kWh.

SOCdesired,i Desired level of battery charge for EV i in kWh.
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Tmin,i Minimum number of periods to reach SOCmin,i.

Ψi The battery degradation cost for EV i in ¢.

δ Penalty for energy curtailment in ¢/kWh.

λ Owners’ level of tolerance for battery degradation in [0, 1].

Pmax
G Maximum transmission power between microgrid and the

external grid in ∆t period.
X t
c,i Charging rate for EV i in time slot [t, t+ 1].

X t
d,i Discharging rate for EV i in time slot [t, t+ 1].

Y t
c,i Binary variable, 1 if EV i is charging in interval [t, t+ 1].

Y t
d,i Binary variable, 1 if EV i is discharging in interval [t, t+ 1].

Ωt Wind curtailment in time slot [t, t+ 1] in kWh.

Gt Energy supplied from the external grid in time slot [t, t+ 1].

J Set of planning times in dynamic modeling with index j.

∆j Planning intervals.

Ej Set of all vehicles to be planned at planning time j.

Ej
v2g Set of vehicles in V2G mode planned at planning time j.

Ej
g2v Set of vehicles in G2V mode planned at planning time j.

Ereq
i Remaining required energy for EV i.

T remi Remaining parking periods for EV i.

τ jmax End of the planning (rolling) window planned at time j.

LC
{j}
i (LD

{j}
i ) The (dis)charging rate in the period previous to time j.

Rv2g Ratio of vehicles participating in V2G.

Dt
f Charge demand for unknown future arrivals in time slot [t, t+

1].
N̂ t
j Estimated number of vehicles arrived after time j and

plugged-in at time t.
P k
a,b The transition probability from wind state a to b in k time

steps.
S State Space in MDP formulation.
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A Action Space in MDP formulation.

D Memory buffer.

F Minibatch of transitions.

Nmax Maximum capacity of the parking lot.

Nch,t Number of EVs in charge mode at time t.

Ndc,t Number of EVs in discharge mode at time t.
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1. INTRODUCTION AND OVERVIEW

In recent years, there has been a significant interest in integrating renewable energy sources

(RES) into the power system motivated by their positive environmental impact, low carbon emission,

and low production costs. However, high integration of these resources creates complexities in the

operations of the power system due to the intermittent nature of these energy sources and could

lead to energy curtailments. For instance, wind and solar energy account for more than 80% of

total renewable installation in California as of February 2020 (1), and the level of wind and solar

energy curtailments in February 2020 was more than 100,000 MWh.

Among all renewable resources, the focus of this dissertation is on wind power integration

as wind energy is of special interest due to its recent improvements in technology, and its low

generation cost. Wind power is intermittent in nature and has limited controllability and predictability,

and hence, it poses challenges to the quality of power, reliability of the system and the power

system scheduling. Without a well-defined control process, wind power may need to be curtailed

to balance the supply and demand.

On the other hand, an increasing number of electric vehicles (EVs) are coming on the roads

every year. Although the EVs have no tailpipe emissions, the electricity production has emissions

if it is from conventional power generators. High penetration of EVs also creates challenges in

power system operations as the peak-demand increases, and the EV charging demand and driver

behaviors are unpredictable.

One approach to accommodate the high penetration of RES and to alleviate the unpredictability

of EV charging demand is vehicle-to-grid (V2G) technology. V2G is classified into unidirectional

and bidirectional V2G. Unidirectional V2G, which is also referred as Grid-to-Vehicle (G2V), refers

to a situation when the EV can only charge from the electrical grid. In bidirectional V2G, the EV

battery can not only charge but also discharge energy back to the grid. Advances in smart grids have

enabled EV to be a good potential as a distributed energy storage unit and as a flexible dynamic

load that can be managed by system operators. When connected to a charging station (plugged-
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in mode), EV can charge power from the grid as well as send power back to the grid whenever

needed. If the charging process is not controlled, it only adds an uncertain load element into the

power system operation, but given the recent advances in smart grid and grid technologies, the

question is how can the EVs potentially benefit their owners and the electrical grid together.

EV penetration is growing exponentially as it is projected that EVs are going to account for

35% of all new vehicle sales in the US by the year 2040. Vehicles are parked 95% of the time, but

only require a few hours to recharge, so the remaining time can be used as the available flexibility to

support renewable energies. For instance, if vehicles are parked during nighttime or at a workplace

for 7-8 hours, the charging process can be shifted to the time when renewable production is high

or when the demand (or electricity price) is low.

This dissertation focuses on real-time charge/discharge scheduling of the EVs to support the

integration of wind energy in the power system. This problem is studied in the context of an

aggregator who decides for all the EVs in the fleet. The aggregator receives information about

available renewable energy, future wind and price forecasts, and the data related to the status of

the EVs, and their owners’ preferences. Then, the aggregator runs a scheduling algorithm and

determines when to charge or discharge the EVs. The scheduling problem is modeled as a multi-

objective optimization problem to minimize the wind curtailment as well as the charging cost for

the owners while satisfying the owners’ charging requirements. People participation in V2G has

been reported to be limited as it is perceived that allowing system operators to modify the charging

rate and frequent cycling of the battery will significantly reduce the lifespan of the battery. Another

major impediment in participation is that the owners feel insecure for urgent needs when the battery

might not have the desired energy level to reach the destination. Not considering the battery

degradation cost and user discomfort will adversely impact the owners decision to participate

in V2G. Motivated by these factors, the challenges of people participation in V2G are studied

and addressed. The day-ahead scheduling problem is formulated as a deterministic problem with

known EV demand, wind generation, and price signals. Then, the real-time scheduling problem

is solved using a dynamic scheduling approach with mean-value optimization and rolling horizon.
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In the dynamic model, the aggregator schedules the EV fleet charge/discharge strategy in real-time

based on the availability of EVs as well as the wind and price forecasts in the future.

In the presence of uncertainty, this dynamic scheduling is a classic multi-stage stochastic

problem (SP). However, conventional SP approaches may not be suitable for this problem due to

the presence of large number of random variables. The other main challenge is to construct accurate

models for the random variables and the system model. Unlike SP approaches that are model

based, Reinforcement learning (RL), is potentially a model-free algorithm that does not require

models for uncertain parameters and can be applied in complex stochastic environments. The RL

agent learns the model dynamic explicitly through interacting with the environment in a trial-and-

error fashion. Some RL methods are also capable of learning off-line from experiences. Thus,

rather than finding a sufficiently accurate distributions for the uncertain elements, a simulation

of the environment from historical data should provide the mechanism for the agent to learn the

optimal strategy (i.e., policy). However, in large-scale dynamic environments with large state-

action spaces, RL approaches suffer not only from slow convergence, but also they may approach

a local optima rather than a global optimal solution.

With the curse of dimensionality of multi-stage SP approaches as well as the slow convergence

and local-optimal trapping of RL methods, there is a need for a better approach to solve the

scheduling problem. This motivated the development of an integrated RL-optimization algorithm

that mitigates the slow convergence issue and increases the chance of reaching the global optima

while learning from past experiences in a modified model-free RL approach.

In this dissertation, a comprehensive literature review on recent approaches to accommodate

high integration of wind power generation is provided in Chapter 2. Next, Chapter 3 focuses on EV

charge/discharge scheduling for the deterministic case. First, the case in which the wind profile and

electricity price is determined ahead of schedule are explored. This problem is divided into two

separate problems. In the first problem, the EV related information, such as arrival and departure

time, the initial state of the battery, and battery capacity are assumed to be known. This is referred

to as the deterministic static problem. In the deterministic static model, the EV owners provide
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the arrival time, departure time, and the desired level of battery charge prior to the scheduling day.

Then the aggregator determines the charge/discharge schedule for the planning day. In the second

problem, a more realistic model referred to as the deterministic dynamic model is studied. In this

model, the EV owners input their departure time and the desired level upon arrival. The aggregator

batches all the vehicles that have arrived during a period t and plan for their charging schedule at the

end of the period. With updated information regarding the arriving EVs, the grid electricity price,

and the renewable energy generation, the aggregator runs the scheduling algorithm for the current

set of EVs and assigns appropriate charging time to the EVs. For all the cases, the performance of

the models for both unidirectional and bidirectional V2G are examined.

Chapter 4 considers the uncertainty of all the stochastic elements. First, a rolling-horizon

mean-value optimization algorithm is proposed for the charge/discharge schedule. Then, a model-

free RL algorithm combined with the deterministic optimization is proposed to formulate the

charge/discharge scheduling of a small number of EVs without requiring any prior system model

information. Finally, a heuristic scheme is used in combination with the RL-optimization method

to solve the scheduling problem for a large number of EVs.

In summary, the remaining chapters of this dissertation are as follows. In chapter 2, a review

of literature on the effects of high wind integration in the power system, and recent approaches

used to accommodate these effects are provided. Chapter 3 focuses on the optimization of EV

charge/discharge schedule in the deterministic case. In chapter 4, we expand the optimization

problem to the stochastic case in which wind generation, drivers’ behavior, and electricity price are

unknown stochastic parameters. Figure 1.1 shows the hierarchy of the models that are investigated

in this dissertation.
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Figure 1.1: Schema hierarchy
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2. HIGH WIND POWER INTEGRATION

2.1 Introduction

High penetration of renewable energy sources (RES), predominantly wind energy, into the

grid has created complexity in the operation of power systems due to the intermittent nature

of these sources. A large number of research studies has been conducted to accommodate the

integration of wind energy in power systems, including the incorporation of energy storage devices,

demand response tariffs, smart charging with Vehicle-to-Grid(V2G) technology, and stochastic unit

commitment. This chapter provides a review of the effects caused by uncertainty and unpredictability

of wind energy on power systems, and recent approaches to mitigate these effects. We also review

the different storage systems incorporated with wind energy into the power system, and discuss

the advantages and limitations of each system. Moreover, different demand response programs

and their benefits and barriers are explored. A brief review of V2G technology for RES integration

support is also provided. Finally, various optimization methods developed for optimal scheduling

under wind power uncertainty are reviewed.

With the ever increasing concern over global climate change and the need for environmental

protection, renewable sources that are naturally replenished, such as power from wind energy

and solar, have been given a significant amount of consideration owing to their zero greenhouse

gas emissions (2; 3). Among all renewable resources, power from wind energy, the main focus

of this chapter, is of special interest due to its recent improvements in technology, and its low

generation cost (4). The United States aims to provide 20 percent of the electricity supply from

wind generation by the year 2030 (5). However, high penetration of wind energy presents challenges

to the power systems operations. Wind generation is inherently difficult to predict and causes

problems to maintain system reliability (6). The unpredictability of renewable energy generations

can be translated into more production volatility and an increase in the reserves (7). In the

literature, various approaches have been proposed to accommodate the high integration of wind
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energy, including the incorporation of energy storage devices, demand response programs (DRP),

vehicle-to-grid technology, improving wind forecasting, and stochastic unit commitment (UC) (8).

These approaches play an important role in providing support in integrating wind energy into the

grid.

Wind power output is not fully controllable, and thus, it poses challenges to the quality of

power, reliability of the system and the scheduling of a power system. Without any control process,

in order to balance the supply and demand, wind power may need to be curtailed, meaning system

operators may have to dispatch electricity power less than what is generated from wind turbines.

One way to control the wind output is to install Energy Storage Systems (ESS) (9). The main

function of ESS is to mitigate the intermittency of wind power output by storing or discharging

electricity when there is an excess or shortfall of the actual output compared to the forecast wind

power generation and load, respectively (10). By controlling wind power output, ESS can provide

greater support in the penetration of wind generation into the power system. Ignoring the technical

aspects of different storage systems, this chapter attempts to review the literature in finding the

appropriate ESSs incorporated into the wind integrated grid. Technical features of various storage

systems are discussed in (11; 12).

Another efficient approach in mitigating wind power uncertainty is to apply demand response

(DR), which is also known as load management. DR can help balance power generation and

load by managing end-use consumers’ electricity consumption via price-based and incentive-based

programs benefiting both retail customers and the market (13). When wind power output is higher

than the forecast, DR can help consume excessive wind energy by lowering the price or by offering

incentives. On the other hand, it can reduce the peak-load by increasing the price. Some papers

such as (6; 14), have found that DR can accommodate wind power output uncertainty by reducing

the amount of reserves.

Unit Commitment (UC) is the process of finding the optimal electricity generation schedule

while satisfying a set of operating constraints. With respect to uncertainty in model parameters,

UC is categorized into deterministic UC and stochastic UC models (15). Traditionally, the UC
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uncertainty originates from the load forecast error. Failure in generators, transmission lines, and

other devices are other sources of UC uncertainty, which are considered in security constrained UC

(SCUC) models. In deterministic UC, load forecasts are treated as a known parameter defined by

single point estimates. To manage uncertainty, recent UC optimization techniques tend to seek the

optimal solution by taking into account the stochastic nature of wind power. With the increased

level of wind farm integration, the necessity for stochastic UC has grown even stronger due to

the high generation forecasting errors. Various optimization approaches have been developed to

solve UC problems, including stochastic programming (SP), robust optimization (RO), chanced-

constrained optimization, and stochastic dynamic programming (SDP). In this chapter, we focus

only on mathematical formulations and numerical optimization algorithms. The reader is referred

to (16) for other UC approaches in literature including numerical and heuristic methods. The recent

optimization approaches to mitigate the negative effects of wind power forecasting errors (WPFE)

in power system scheduling are provided.

The remainder of this chapter is organized as follows. First, a review of the impact of high

wind penetration on system reliability and operations is provided in Section 2.2. In Section 2.3,

various energy storage devices incorporated with RES are explored. Section 2.4 demonstrates the

concepts behind a demand response program and how it mitigates the negative effects of wind

power. In Section 2.5, vehicle-to-grid technology for RES support is reviewed. In section 2.6,

different optimization methods for UC under uncertainty are reviewed. Finally, the summary of

chapter 2 is provided in Section 2.7.

2.2 Effects of Wind Energy on Power System Operations

Identifying and analyzing the impacts of wind power on system operations is the first step to

increase its level of penetration. The effects of wind power depend on two factors: penetration

level and system flexibility. With the increased level of penetration, the impact on power systems

operation will continue to increase. On the other hand, highly flexible systems tend to accommodate

wind energy more easily (17). We elaborate on these two factors below.
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2.2.1 Effects of High Wind-Integrated Grid

In a wind power integrated grid, system operators and planners encounter a new set of challenges

due to the high volatility of wind power. Wind power fluctuates based on wind speed, which varies

significantly both spatially and temporally. In other words, wind speed fluctuates depending on

the geographical location, and also at a specific location, the amount of wind varies over time

(18). Thus, forecasting the wind power generation is challenging and extensive research has been

done on this topic (19; 20; 21; 22). Although significant advances have been made in forecasting

wind power generation, there still exists a serious uncertainty with its forecast. In (23), the

authors analyze the effects of different sources on the uncertainty of wind power forecast. These

uncertainty sources include weather conditions, power curve, input data, and various prediction

algorithms. It is concluded that probabilistic wind power forecasting compared to single-point

estimate improves the solution quality of dispatch optimization problem in terms of reducing the

operations cost and the reserve capacity; hence, improving the integration of wind power in the

grid.

General impact of intermittent wind power on other conventional generators’ efficiency, system

reliability, transmission outages, voltage, and reactive powers are discussed in (18). Even though

wind farms have low generation cost compared to the other fuel power plants, its impact on

power systems and other conventional generators may cause increase in the operations cost at

the system level (24). Fluctuating wind power causes the other conventional generators to perform

in a sub optimal manner. A conventional power plant can adjust the power output to follow the

demand, known as load following power plant. However, since the energy generated from RES

does not follow the load and has a higher priority, conventional generators need to adjust their

output based on both load and RES generation, and thus, will result in sub-optimal solutions for

economic dispatch scheduling. Wind power may also cause transmission and distribution losses,

increase in the amount of reserves, and discarded energy that the system cannot absorb (17). High

penetration of wind energy requires expansion of more complex transmission networks resulting

in more transmission losses. Furthermore, since wind farms are usually located in remote areas
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far from cities, long-distance transmission lines are required. The long distance between the wind

sites and the load can result in transmission congestion as well (10; 18).

One of the main issues that system operators are facing is the provision of system reserves.

Several research studies, such as in (25; 26; 27), confirm that as wind power integration increases,

the amount of reserve needs to be increased over longer periods of time in order to maintain system

reliability. However, in (25), the authors propose that with fast acting reserves, the impact of wind

power over short time frames is trivial due to the small variation of wind power in a short time

scale.

Previous studies have concluded that voltage stability is more jeopardized in systems with wind

power integration (28; 29). Also, with high integration of wind energy, maintaining frequency

stability of power systems is also a challenge. This is due to the fact that maintaining the balance

of supply and load demand is more difficult in case of high volatility of supply, and hence, leads to

frequency deviation from the normal range (30). Moreover, increasing penetration of wind power

leads to utilizing fewer number of flexible conventional generators, which are used to adjust the

frequency of the power system (31).

Wind farms aggregation has also been analyzed by many researchers. In an international

collaboration study (32), it was concluded that geographically-spread wind farms could result in

lower forecasting errors. The study in (18) also confirms that increased number of wind turbines

in a farm and spatial spread of wind farms can help reduce the volatility of wind power. In (33),

the authors present a method for an optimal allocation of wind farms in a given region that reduces

the wind power fluctuations significantly.

Traditionally, with all electricity supply from thermal units, or in other words, with low penetration

of wind farms into the grid, the variation mainly results from load forecast errors. Some researchers

have developed methods to solve unit commitment under the uncertainty of load (34; 35). However,

with wind power integration, a significant stochastic element of power generation is added to the

system. Thus, finding an optimal schedule under uncertainty is more challenging. Numerous

attempts have been devoted to solve unit commitment considering wind power uncertainty, which
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is further discussed in Section 2.6.

2.2.2 System Flexibility

A general approach to accommodate the impacts of wind energy on system operations is to

build a flexible system. The flexibility of a system can be enhanced through generation flexibility

(36), incorporating demand response programs (37), usage of storage systems (38), exploiting

vehicle-to-grid (V2G) technology and system scheduling for near real-time planning horizons (32).

Flexible or fast-responding generators can follow sudden changes in demand and wind supply, thus

mitigating the negative effects of wind and load volatility. Storage devices are used to mitigate the

fluctuation in supply by charging excessive power that would be curtailed in the absence of storage,

and discharge the power back to the grid when needed. Demand Response, on the other hand, aims

to change the consumer electricity usage to smooth out the load fluctuation. With a large fleet

of electric vehicles (EV), V2G technology enables the system operators to exploit the vehicles

as storage devices as well as flexible loads that can smooth out the electricity demand. Storage

system, demand response, and V2G are discussed in the following sections. Moreover, the study

in (32) has shown that the system operation with intra-day or intra-hour planning horizon helps to

reduce the effects of forecast errors substantially compared to day-ahead planning.

2.3 Storage Systems

Energy Storage Systems (ESS) are considered a critical factor to accommodate variation of

wind power generation by controlling the power generators output, and thus, empowering the

integration of wind energy into the grid. The capability of ESS to smooth out wind farm output

results from its ability to charge and discharge electricity when power supply differs from the

electricity demand (10).

Both technical and economic benefits of energy storage have been studied extensively (15; 39;

40). The study in (15) discusses the potential benefits of bulk storage by considering an ideal

storage system, in which there are no energy losses, no up and down ramps, and there is instant

power charge/discharge. Ideal storage units can lead to a significant integration of RES, reduction
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in power curtailment, improved operation of the conventional generators by reducing the number

of shut-downs and start-ups, and improving the system reliability by providing real-time support

to balance the supply and demand. By considering more realistic features of ESS, the study in

(39) lists the benefits of ESSs and their desired characteristics. The paper also addresses how

different set of characteristics are used to handle the issues imposed by the volatile generation

of RES, such as, power quality, unit commitment, and load following. ESS can also provide

economic benefits by reducing the system reserves and mitigating power failure costs associated

with electricity outages and short-term fluctuations (40).

Despite the apparent advantages of storage technologies, there is a need to improve energy

storage technologies to overcome their barriers and limitations. The primary barrier is the actual

initial cost per kW of storage devices. For instance, in 2016, the installation cost of compressed-air

energy storage (CAES), Lithium titanate, and other Li-ion batteries was estimated at 53 USD/kWh,

473-1,260 USD/kWh, and 200-840 USD/kWh, respectively (41). Besides the high capital cost,

there are other barriers to the broad implementation of storage units in the grid. The study in (39)

discusses external factors, such as mineral availability and geographical restrictions that may affect

high deployment of some storage technologies. A 2013 Sandia National Laboratories report (42)

discusses market and policy barriers to widespread usage of storage technologies.

Various energy storage technologies are used in the wind integrated power system. Pumped

hydro energy storage (PHES) (43) and CAES (44) are the two most widely implemented technologies

for large-scale electricity storage. The former stores energy in the form of water by pumping water

between upper and lower reservoirs, while the latter stores energy as compressed air. There are

many other storage technologies, including batteries (45), flow battery (46; 47), superconducting

magnetic energy storage (SMES), flywheel energy storage (FES) (48; 49), and supercapacitors

(50; 51). Each of these energy storage technologies has its own characteristics. Some of the main

features of ESSs, which are the critical factors in determining proper storage technologies for wind

integration, are described below.

Energy Efficiency or round-trip energy efficiency is the ratio of energy retrieved (in MWh)
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from a storage device to the energy stored (MWh). Response time is the time needed for the

storage device to provide the power output. Power density (W/L) is the amount of power per unit

volume. Energy storage capacity (kWh) is the maximum amount of energy that can be stored by a

device. Charge/discharge duration is the time needed to fully charge/discharge.

The characteristics of storage technologies have been investigated for wind power integration

support (9; 39; 40; 52). In these works, the authors reviewed the state-of-the-art ESS technologies

and discussed different applications and characteristics in selecting ESS technology for a wind-

connected grid. The study in (53) presents a comparative economic analysis of different technologies.

It is reported that CAES and PHES can provide relatively low energy costs due to their cheap

storage media, while SMES and FES pose high energy costs. However, PHES and CAES technologies

cannot be widely used due to their geographical limitations (6). In a similar study (54), the authors

provide a technical comparison between CAES, SMES, FES, and hydrogen-based energy storage

systems (HESS), and their impact on the grid are analyzed separately. It is concluded that all these

storage devices are capable of smoothing out the wind power output. However, FES and SMES

are designed to improve the power quality due to their fast response and low discharge duration,

while CAES has higher storage capabilities compared to others. The study in (11), presents a

comparison between PHES, different types of batteries and fuel cells considering different factors

in selecting ESS for RES integration such as economic viability, efficiency, and life span. It is

reported that PHES is a fully matured technology while it is highly limited to the areas with

available hydro resources. It also has the largest lifetime close to 50 years compared to the fuel

cells and batteries, which have lifespans ranging from 5 to 15 years. Moreover, fuel cells pose the

highest investment cost while having low efficiency, which makes it economically unsuitable for

wind power application.

There is a large body of literature trying to study the potential applications of ESSs in wind

power integrated grid (9; 53; 55). Load following, power quality, spinning reserves, peak shaving,

and voltage control are among the wind power related applications. Load following is simply

regarded as adjusting electricity generation in order to meet the actual demand throughout the
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day. Power quality refers to specific features such as sags, spikes, voltage/frequency of electricity

supply. Peak shaving is the capability to store electricity in off-peak demand (overnight) and

provide power during on-peak demand. Voltage support provided by storage devices is vital, since

a sudden reduction in a wind farm output causes a substantial deviation from normal designed

frequency/voltage of an equipment, which can result in equipment damage. Different energy

storage technologies perform differently in each of these applications; for instance, HESS is well

suited in the load following applications. SMES, FES, batteries, and super-capacitors enhance

the power quality supplied into the system by charging the excessive power generated by wind

turbines and discharging at low wind speed (40). FES, SMES, and batteries are suitable for

frequency/voltage support owing to their fast response to the unpredictable changes in wind speed

(53).

Table 2.1 (55) summarizes a comprehensive comparison between different storage technologies,

their main characteristics and applications. As seen in Table 2.1, and as a common conclusion

among papers cited here, there is no single technology that outperforms others in all applications

and meets all the requirements. However, technologies with high power density, fast response and

high energy efficiency, such as L/A batteries, SMES, and FES have better potential in dealing with

volatile wind power output; while, systems like PHSS and CAES posses low cost. Hence, it is

strongly believed that further developments are needed in storage systems to achieve systems with

low costs and high efficiency.

The optimal location of storage devices are studied by several researchers (56; 57; 58). In these

works, optimal ESS site is obtained with the objective of minimizing power losses and generation

costs while considering the randomness of wind power output. In another thread of research,

optimal operation and sizing of storage systems are analyzed (52; 59; 60; 61; 62). In (59; 60),

optimal operational strategy of a combined wind-hydro pumping storage is obtained. In more

recent studies (63; 64), optimal operations of energy storage systems is obtained by considering

ESS as an independent unit, which is not co-located with wind farms.
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Table 2.1: Characteristics and Applications of Storage Technologies. Reprinted with permission from (55)

Characteristics L/A battery Li-ion battery NaS battery VRB flow
battery

Super
Capacitors SMES FES PHES CAES

Energy storage capacity
(kWh)

≤ 100 ≤ 10 ≤ 100 20-50 ≤ 10 ≤ 10 1-25 ≥ 150 ≥ 10

Energy density (Wh/L) 50-80 200-500 150-250 16-33 2-10 0.2-2.5 20-80 0.5-1.5 3-6
Power density (W/L) 10-400 0 0 0 100,000 1000-4000 1000-2000 0 0.5-2
Discharge duration Hours Minutes-hours Hours 2-8 h Seconds Hours Seconds-

minutes
Several hours Hours

Charge duration Hours Minutes-hours Hours 2-8 h Seconds ≤Seconds 15 minutes Several hours Hours
Response time <Seconds seconds Milliseconds <Seconds Seconds <Milliseconds Seconds Seconds-

minutes
Minutes

Lifetime (years) 3-10 10-15 15 5-20+ 5-20 5-20 20 25+ 20+
Lifetime (cycles) 500-800 2000-3000 4000-40,000 1500-15,000 50000 > 50, 000 100,000 > 50, 000 > 10, 000
Round-trip efficiency 70-90 85-95 80-90 70-85 90 > 90 85-95 75-85 45-60
Capital cost per discharge
($/kW)

300-800 400-1000 1000-2000 1200-2000 1500-2500 2000-13,000 2000-4000 1000-4000 800-1000

Power quality No No Yes Yes Yes Yes Yes Yes No
Transient stability Yes No No No Yes Yes Yes No No
Regulation No Yes Yes Yes Yes Yes Yes No No
Spinning reserves Yes Yes Yes Yes No No No Yes Yes
Voltage control No Yes Yes Yes Yes No Yes No No
Load following Yes Yes Yes Yes No Yes Yes Yes Yes
Firm capacity No No No No No No Yes Yes No
Congestion relief Yes Yes Yes Yes No No No Yes Yes
Advantages Low cost, High

recycled content
High efficiency,
high energy
density

High energy
density, quick
response,
efficient cycles

High depth of
discharge, high
cycling tolerance

Rapid response
time, high power
density

High efficiency Rapid response
time, low
maintenance,
high cycles

Rapid response
time, large
capacity

Rapid response
time

Disadvantages Low energy
density, large
footprint, limited
discharge depth

Cost prohibitive,
overheats,
limited
discharge depth

Safety issues Low energy
density, low
efficiency

Cost prohibitive Cost prohibitive,
low energy
density

Cost prohibitive,
tensile strength
limitations

Geographically
constrained

Low efficiency,
geographically
constrained

15



2.4 Demand Response

Reliable operation of the power system requires a steady balance between supply and demand.

With the increasing penetration of renewable energy, maintaining the system reliability and balance

has been even harder, since both supply and demand are volatile and uncertain. Although storage

can reduce this imbalance, high investment cost is a serious barrier in grid-level storage applicability.

Traditionally, the power supply follows the power demand using the fast-responding, load-following

power plants. However, in the last two decades, power grid operators have attempted to find a way

that the power demand follows the supply, so that the demand can chase after the more economical

energies of wind and solar generations. This is where DR comes into play to reduce the need for

expensive flexible generators like gas fired plants.

Incorporating DR into the grid can accommodate high penetration of wind energy by managing

the end-use customer’s electricity consumption. Unlike storage devices, which can provide support

in mitigating fluctuation from the supply side, DR is designed to change the customer electricity

consumption pattern to minimize the demand fluctuation and the system imbalance.

DR can be defined as changes in electricity consumption by end-use customers in response to

price changes over time or to incentivize payments designed to reduce power consumption during

peak-demand periods (65). DR approaches are classified into two main programs: price-based

programs (PBP) and incentive-based programs (IBP) (13). The former provides dynamic price

rates throughout the day with the objective to equalize the demand curve by raising the electricity

price during peak periods and lowering price in off-peak periods, while the latter encourages

customers to participate in DR by providing incentives to reduce their load at critical periods.

Some examples of PBPs include Time of Use (ToU) (66), Critical Peak pricing (CPP) (67), and

Real-Time pricing (RTP) programs. In the most basic DRP, the ToU program, price rates vary in

different blocks of time; most commonly, it has two blocks; peak and off-peak demand. CPP is

very similar to ToU, but the only difference is that it is only applied on some specific days called

‘event days’. In the more complicated program, RTP implements smart metering to provide real-

time pricing based on the real cost of electricity delivery for customers to reduce their use at peak-
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demand (68; 69). RTP is considered the most economically efficient program for a competitive

electricity market (70). Further classification of PBPs and IBPs is discussed in (68).

If implemented properly, DR programs can provide a vast amount of benefits to the system.

Earlier works presenting benefits of DR are available in (65; 68; 69). Some of DR benefits

highlighted in these works include customers bill savings, market price reduction, environmental

benefits, market efficiency impacts, and reliability boosts. By diminishing electricity usage during

peak-demand periods, DR can reduce the need for generator cycling or building new power plants

to balance wind power fluctuation, which also leads to environmental benefits. According to the

Federal Utility Regulatory Commission, DR can lessen the peak demand by 20 percent in the US

(71). It is suggested that the CPP program is the most effective program in reducing peak load for

residential electricity use in North America by utilizing the technology to curtail loads on special

days (72). Cutting down the electricity demand leads to high market price reduction. This is due

to the fact that with the production near maximum generation capacity, which is likely to occur

in peak periods, the generation cost rises exponentially; thus, even a small reduction in electricity

demand can lead to a considerable decrease in price.

In (73), DR benefits are categorized as operating, planning, and economic benefits. The

operating benefits of DR mainly result from the ability to reduce reserve needs which leads to

reducing the use of conventional generators. Moreover, the system operators will have more

options and resources to match supply and demand; thus, maintaining system reliability in a wind-

connected grid. Concerning the planning, load shifting ability of DR that can balance wind power

fluctuation will result in reducing the need for high investment in flexible power plants. Economic

benefits from DR programs include electricity bill savings for customers and reduction in price

volatility.

There are numerous studies dedicated to investigating the effect of DR in a wind-connected

grid (66; 69; 74; 75; 76; 77). In the study (69), different time interval uncertainties posed by wind

power and the ancillary services required for DR programs to accommodate these uncertainties

are discussed. For instance, frequency deviation requires an immediate response in demand, while
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for power regulation and to prevent unplanned outages, demand should be managed for the 5-10

min horizon. In such emergency cases, customers enrolled in DR programs proactively reduce

their electricity consumption for rewards of financial incentives, or the system operator shut downs

some preselected electric devices with the customers’ permission. In (66), the impact of RTP

program on wind integration is evaluated and it is shown that by implementing real-time pricing

program, the wind utilization increases up to 11% and as a result, reduces the amount of wind that

has to be curtailed, since it allows the demand to increase in high wind generation days. Besides,

RTP may lower the use of expensive transmission systems. Other PBPs can also mitigate the

wind generation uncertainty and can reduce the operational cost by reducing the amount of reserve

provided by conventional generating units (77).

The load control can be done in both direct and indirect manners. In the former, system

operators or utilities directly modify the customer’s energy consumption by, for instance, turning

off their devices during high-load periods. In contrast, the latter allows the customers to decide on

their reaction to the price changes. The work in (74) evaluates the effects of both direct and indirect

controls for demand management, and different DR programs are compared. The total operating

cost reduction to the energy market by both options is highlighted. That is because fewer thermal

units are used for reserve. Besides, with high wind generation during low demand periods, DR

could cause no wind curtailment. DR programs can also provide ancillary services to the system

such as voltage control, frequency support (78; 79) and spinning reserve (77; 80).

Besides the benefits offered by DR, there are some challenges in implementing wide-use DR.

Some of the main barriers for DR are discussed in (65; 73) including lack of knowledge of

regulators and policy makers regarding the benefits of DR, improper market or regulatory structure,

uncertainty about the economic and performance of new technologies and tariffs, and limited and

uncertain response to the price changes. Moreover, the lack of experience in this field leads to

challenges in modeling and assessing DR approaches. A 2009 study of DR experience in Europe

(81) concludes that lack of knowledge of DR potentials in power system and high-cost estimates for

DR technologies and frameworks are the reasons behind the slow development of DR in European
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electricity markets. Moreover, the lack of real-time price information to customers and relatively

small incentives are highlighted as reasons to limited response to the electricity demand. However,

recent advances in smart grid have enabled better communication between the operators and users;

thus, more real-time cost information is available to customers. A recent study in 2018 (82) shows

that with smart grid technology, DR limitations tend to diminish, enabling large-scale wind power

integration.

2.5 Electric Vehicles and Vehicle-to-Grid

As discussed in sections 2.3 and 2.4, high capital cost of ESSs as well as challenges in DR

limit the incorporation of these two techniques in the power system. Advances in smart grids have

enabled electric vehicle (EV) to be a good potential option as a distributed energy storage unit and

as a flexible dynamic load that can be managed by system operators (83). When connected to a

charging station (plugged-in), an EV can charge using power from the network as well as send

back power to the grid whenever needed. The exchange of energy between EV and the grid known

as Vehicle to Grid (V2G) technology, can improve the power system operations in many ways. In

this dissertation chapter, we only focus on the benefits of V2G in support of RES integration. The

reader is referred to (84) for an extensive review of the benefits and challenges of V2G technology.

V2G can be classified into two groups: Unidirectional and bidirectional V2G. In the former,

the flow of energy is in one direction in which EVs can only be charged from the grid without any

discharge capabilities. The latter provides a two-way power exchange between the grid and EV.

Both techniques are able to absorb the fluctuation in the output of the RES.

System operators can utilize unidirectional V2G to smooth out the demand volatility by charging

EVs on off-peak demand periods. The studies in (85; 86) have considered the load shifting and

peak shaving potentials of the V2G technology. In (85), it is shown that V2G can reduce the peak

load by 30% with EV adoption rate of 15%. The authors in (87) study demand-side management

approaches for different scheduling models of EV charging that lead to lower demand in peak-

load periods and an increase in demand for RES. With the focus on maximizing RES integration,

many researchers have attempted to find the optimal scheduling for EV charging (88; 89; 90). The
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authors in (88) have found that by utilizing the flexibility of EV drivers in charging their vehicles,

V2G can lead to a high integration of wind power. An optimization study in (90) proposes that

with the overnight charging of a large number of plug-in hybrid electric vehicles (PHEVs), the

utilization of wind energy can increase significantly. The work in (86) shows that smart charging

of EVs can shift its load toward the high RES generation periods, thus, increasing the share of

RES.

On the other hand, bidirectional V2G provides additional benefits for RES integration, as it can

absorb the excessive power supplied by wind power or other RES with charging while discharging

electricity back to the electric grid during peak demand or low wind generation periods. EV drivers

that participate in V2G service can sell their excessive power to the grid with a price higher than

the purchase price in high-peak demand periods when electricity price is high. Feeling insecure for

urgent needs and the battery degradation of their vehicles that frequently charge and discharge in

bidirectional V2G technology, many EV owners are reluctant to participate in bidirectional V2G.

Therefore, system operators must provide financial incentives, and the incentives need to be clearly

and sufficiently stated to encourage their participation. Compared to the unidirectional V2G,

there are fewer number of research studies devoted to finding the optimal charging/discharging

scheduling (bidirectional V2G). The study in (91) evaluates the impact of V2G service on wind

integration for different scenarios. It is shown that wind utilization can reach 89% with a coordinating

charging and discharging strategy under the assumption of an EV for each household. The work

in (92) shows that a large fleet of EVs can be used as distributed storage units that help to integrate

the RES generation by providing the load following. The authors in (93) propose a controlled

charging/discharging model for large number of EVs in an intelligent parking lot that provides

financial incentives for the EV owners as well as satisfying technical operation goals.

2.6 Unit Commitment under Wind Uncertainty

Unit commitment (UC) is known as the decision-making process of finding an optimal schedule

and operation of power generation units in a given set of operating and security constraints. UC

decisions contain both the day-ahead decision of commitment status of all generation units as
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well as the real-time economic dispatch (ED) decision. The objective of a generic UC is to

minimize operational cost while satisfying the ramping limits, minimum up/down time constraints,

power balance, and system reliability constraints (94; 95; 96). The on-off status of units are

formulated as binary variables, the generation levels are considered as continuous variables, and

energy generation cost curves are non-linear. Hence, the UC problem is often formulated as a

mixed-integer nonlinear optimization problem (97).

The literature in this field can be categorized into basic UC and security-constrained UC, in

which the latter considers the security constraints such as the transmission line and generator

outages, while the former ignores these constraints. For addressing the data uncertainty, UC is

divided into deterministic and stochastic approaches. To compare the two approaches, we first

need to identify different sources of uncertainties.

2.6.1 Uncertainties in Power System

Uncertainties in the power system can be categorized into two classes: forecasting errors and

component failures (7). Forecasting errors are simply the difference between the prediction and

the actual value of an uncertain parameter. The two main forecasting errors in power system

operations are associated with load and generation. With all the power supplied from conventional

generators, the production is assumed to be fixed, and the load forecast error is the primary

source of uncertainty (34; 35). However, the presence of wind generation adds another source of

uncertainty to the system, which is known to be much greater than the load uncertainty (98). The

other sources of uncertainty resulting from equipment failures include transmission and generator

outages.

With no power generated from RES, the supply of conventional generators can be treated as

a deterministic element, and the load forecast errors are captured by the downward and upside

reserve (99). Traditionally, the deterministic UC considers the point forecast of the load and supply

as the actual parameters in finding the optimal schedule. In this technique, the primary goal is

to determine the optimal reserve level to balance the supply and demand. In the deterministic

approach, the future situation is assumed to be precisely known (single point prediction value for
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wind power output and load), and it attempts to find the level of reserve requirements that protects

the power system from unpredictable changes in demand or generator outages. So deterministic

approaches differ in the way they formulate the reserve constraint. For instance, a traditional

UC expresses the reserve constraint in a way that the minimum amount of spinning reserve is

constrained to be at least the capacity of the largest generator (100).

However, with the increased penetration of wind power, the deterministic approach suffers

from low efficiency and high cost, due to the inability to capture the variation and sudden changes

in wind power output (101). Thus, with the volatile supply of wind farms, the need to improve

forecasting tools as well as UC approaches to accommodate the uncertainty has increased significantly.

2.6.2 Wind-Forecasting Tools

Traditional forecasting tools predict the wind power generation as a single point estimator or

a conditional expectation of wind power output, which do not take the prediction uncertainty into

account (102). There are several methods developed to predict the wind speed as a probabilistic

framework. The recent forecasting techniques and the challenges associated with wind prediction

are reviewed in (19; 103). The prediction approaches include numeric weather predictors (NWP),

statistical or machine learning methods (e.g. artificial neural network (ANN) (104; 105) and time-

series models (106)), and hybrid models(107; 108).

Short-term and long-term predictions are required for managing the operation of the power

system. Short-term prediction, which ranges roughly from 30 minutes to 6 hours, is utilized

in ED planning and load management decisions. Long-term forecast, e.g, one day to one week

ahead, is applied to UC decisions (109). Capacity planning needs generation forecasts for years

ahead. Classification of prediction tools on different time scales is provided in (23). In this work,

it is shown that probabilistic wind power forecasting compared to a single value estimation can

reduce the spinning reserve capacity and operating costs of power system substantially. The review

study in (19) also confirms that probabilistic forecasting and scenario-based forecasting perform

better than single point prediction of wind. Despite recent progress in wind power forecasting,

as very recent studies show that short-term wind speed forecasting can reach more than 90%
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accuracy (110), high-accuracy for long-term wind power forecasting is still a topic of interest.

The forecasting information is used as input to UC and ED problems.

2.6.3 Uncertain UC Optimization Approaches

Different optimization approaches have been proposed to solve the UC and dispatch planning

with the advances in recent forecasting tools. They differ in the way in which they represent future

uncertainty. These include two-stage SP, multi-stage SP (111), interval-based robust optimization

(112), and chance-constrained optimization (113). These optimization approaches can be classified

into two main categories: stochastic and robust optimization. Next, we describe each of these

methods separately.

2.6.3.1 Stochastic programming:

• Two-stage stochastic programming:

In SP, the uncertain parameters are represented as scenarios in which the underlying distributions

are assumed to be known, or they can be estimated. In a scenario-based SP, a number of

scenarios represent the uncertainty. Each scenario describes a possible future realization of

the uncertain parameter. SP often uses a two-stage formulation, where in the first stage,

some actions are taken to minimize or maximize the expected value of a desirable function

(e.g., minimize cost) given the probability distribution of random future events, and in the

second stage after the realization of random variables, a recourse decision is made to exploit

the choices of the first stage better.

The two-stage nature of UC motivates the use of SP in which it has a similar two-stage

procedure (94). In the first stage, in the day-ahead market, system operators attempt to find

the commitment status of generating units in order to minimize the expected operations cost,

given the scenario set of random variables (load and wind power), while in the second stage

after the realization of the actual load and supply, a real-time dispatch decision will be made.

In the scenario-based stochastic programming approach, uncertain parameters are assumed

to have a specific probability description. In literature, electrical load is often assumed
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to follow a normal distribution (14; 114; 115; 116). WPFE is modeled as normal (114;

115), or truncated normal distribution (117). Unit generation and transmission outages are

modeled by discrete event scenarios (118), fuzzy sets (119), monte-carlo simulation (120),

and/or independent Markov processes (121). Therefore, a great challenge of the scenario-

based approach is to develop an appropriate probability distribution or weights on scenarios.

Besides, probability distributions usually fail to represent the actual uncertain parameter. For

instance, wind production is a nonlinear and non-stable process; hence, WPFE may not fit

into any known probability distributions (23).

On one hand, a large number of scenarios are required to capture the uncertainty associated

with the system, thus improving the quality of the solution. On the other hand, the computational

time is limited to the planning horizon (few minutes for ED or few hours for UC), which can

be violated with a high number of scenarios and required solution time for the corresponding

problems. This limits the application of SP to a large-scale power system. To address this

issue, Bender’s decomposition approach is used to cut down the computational burden of SP.

Since the scenarios in the second stage are not correlated, the problem can be decomposed

to smaller optimization problems that can be solved faster. However, this technique is

delicate to scenario generation and is usually used when the second-stage problem is a

linear program with continuous variables. However, the second-stage problem includes some

integer variables, e.g. commitment status of power plants. The most common algorithm in

two-stage SP is dual decomposition (or Lagrangian Relaxation) approach, which decomposes

the UC problem into smaller and simpler sub-problems by dualizing the coupling constraints

(see (122; 102; 123)).

Besides, various scenario generation/reduction techniques have been employed by researchers

to overcome the computational burden of the stochastic programming while improving the

quality of the solution (see (114; 115; 124)).

• Multi-stage SP: In the second stage of two-stage models, future uncertainties are observed
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only once. However, in power systems, information on realized uncertain parameters is

updated frequently on an hourly or sub-hourly basis. In this situation, a multi-stage framework

can take advantage of more disclosing uncertainties over time to adjust the commitment

status as well as dispatch decisions dynamically. In general, multi-stage models perform

better for longer time-horizon and capture the dependencies between different stages. In

particular, when generators can start-up or shutdown frequently, the commitment decisions

can be adjusted in different stages (125). However, constructing the scenario tree and

assigning probabilities to different trajectories are complicated. Moreover, as the number

of stages increases, the number of possible scenarios grows exponentially, resulting in a

more computationally intensive problem to solve (101). That is why this approach has not

gained much attention in recent optimization frameworks for UC.

• Chance-Constrained Optimization: Chance-constrained programming is another approach

to represent the uncertainty in a power system in which constraints are forced to be held

with a presumed level of probability. For instance, the reserve requirement constraint is

often modeled as a chance constraint in which the load must be satisfied to a certain level,

referred to as loss-of-load probability (LOLP) (117). In addition, the transmission line

overload (also see (121)) and wind curtailment (see (126)) due to uncertainty is restricted by

small predefined probabilities. That guarantees high utilization of wind power output. The

main driving factor to this approach is to increase the robustness of the solution in SP. By

properly assigning the probability that the constraints should be satisfied, system operators

can provide a trade-off between cost effectiveness and reliability of the model. Moreover,

this approach reduces the computing complexity of a scenario-based SP method.

Since chance-constrained method fails to model the uncertainty by itself, a combined chance-

constrained stochastic optimization is proposed to solve UC in which the two-stage stochastic

optimization is used to capture the uncertainty of load/wind production (127; 128; 126). For

instance, in (127), the load and WPFE are modeled by scenario-based stochastic optimization,

while the chance constraints restrict the loss of load by a small probability.
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In literature, a sample average approximation (SAA) model is often utilized to solve a

chance-constrained stochastic program (126; 128; 129). Also, chance-constrained UC model

can be transformed into an equivalent mixed integer linear deterministic problem (117; 121).

However, transforming a chance constraint into equivalent deterministic constraints suffers

from some challenges and only some limited forms of chance constraints can be converted

to deterministic constraints (130).

2.6.3.2 Robust Optimization:

Another approach to address uncertainty is the interval-based robust optimization (RO) approach,

which has gained more attention in recent years compared to SP, since it does not posses the main

challenges of SP for large-scale power system problems. Unlike the SP approach, RO does not

require the probability distribution for future uncertainties. When the parameter uncertainty is not

stochastic or if the distributional information is hard to obtain, instead of assigning probabilities

to the scenarios, the robust optimization approach attempts to find a solution that is feasible for

all realization of the parameter in a given set. Also, RO guarantees the best solution under the

worst-case scenario (131). In that sense, it may yield to conservative solutions in which they

can cause higher operating costs to the system in the absence of the worst-case scenario. Thus,

the worst-case scenario should be chosen precisely to provide a robust solution to the uncertain

system as well as low scheduling cost. Computational tractability is a primary motivation behind

the use of RO. A considerable number of robust optimization formulations have been proposed

to handle wind power uncertainty in UC. The UC problem is formulated as a robust mixed-

integer programming problem, and Benders’ decomposition algorithm is often used to solve these

problems (6; 132; 133). Similar to SP, RO can be formulated in two-stage (132; 134) or multi-stage

structures (135).

2.6.3.3 Other Optimization Techniques:

Besides SP and RO, there have been attempts to solve unit commitment using other optimization

methods such as fuzzy optimization(119), stochastic dynamic programming (136; 137), and risk-
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based optimization (138). Moreover, many heuristics and meta-heuristic techniques such as particle-

swarm optimization (115), priority list (139; 140), and simulated annealing (141) have been presented

by researchers to find an optimal schedule in the presence of wind energy. In (16), the authors list

all the methods used for UC such as mathematical and heuristic approaches. A review work in

(142) provides an extensive comparison between different numerical optimization approaches to

UC including SP, RO, and SDP.

Table 2.2, (adopted from (142)) provides a comparison between common UC models discussed

in this section. All the references covered in Section 2.6 consider the uncertainty of wind power

output, while only some of them take the load forecasting errors and system outages into account.

For instance, the authors in (21) only focus on wind power uncertainty; other uncertainties (e.g.,

load variations, and forced generation outages) are ignored; while the study in (118) takes all

sources of uncertainties into account.

2.7 Summary

As the integration of intermittent wind power grows, the effects on power system operations

increase. This results in an increasingly unreliable system since both wind speed and wind power

curve pose a high degree of volatility. On the other hand, forecasting information is used as

input to scheduling problems such as UC and ED. Thus, robust forecasting tools are essential

in the integration of wind energy into the power system. Despite the recent sign of progress

in the accuracy of statistical methods such as artificial intelligence models and support vector

machines, the need for more accurate forecasts in all forecasting horizons, especially long-term, is

high. Given the fact that wind uncertainty and prediction error is inevitable, one general approach

to accommodate wind uncertainty is to build a flexible system. This goal can be achieved by

incorporating DR programs and energy storage systems into wind-integrated power grids. ESSs

and DRPs seek to smooth out the variable wind power output by modifying the electricity supply

and demand, respectively. ESSs have been a successful approach in recent years with the development

of different storage technologies, each of which has its own applications and characteristics. However,

further research studies should be carried out toward low-cost and efficient storage devices.
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Table 2.2: Numerical Optimization Techniques for UC Under Wind Power Uncertainty. Adapted

with permission from (142)

UC optimization models Advantages Disadvantages
Two-stage SP • Minimize total expected cost; easier to understand (and

compute) than minimizing the worst-case cost.

• Various decomposition and sampling-based algorithms
already existed with convergence and performance guarantees.

• Can address robustness issues using risk measures.

• Can provide expected value of perfect information (EVPI)
and value of stochastic solution (VSS).

• Need to assign probabilities for scenarios.

• Computationally demanding for large number of scenarios.

• Difficulties in dealing with integer variables in the second
stage.

• Static assumption of the uncertainties.

Multi-stage SP • Truly a decision-making model (as opposed to "what-if"
analysis) over multiple time periods under uncertainty.

• Ability to model the dynamic process of uncertainties and
decisions.

• Useful for systems with generators that can reschedule
quickly.

• Curse of dimensionality, and hence computationally very
expensive.

• Need explicit scenario trees and random paths’ probabilities.

• Even more difficult with integer variables present in all
stages.

Two-stage chance-constrained • Computationally not as expensive as other SP models.

• Can provide a balance between cost effectiveness and
robustness of the solution.

• Only some forms of chance constraints can be transformed
into deterministic constraints.

• There exists no general solution approach in the case where
decision variables cannot be decoupled.

SDP • Can handle multi-stage stochastic problems with relatively
low computational burden.

• Can model closed-loop systems (such as real-time pricing).

• Convergence to optimal solutions may be difficult to
establish.

• Integer variables may present difficulties in general.
Two-level and multi-level RO • Do not need probability distribution.

• Guarantee the optimal solution for the worst-case scenario.

• Computationally not as expensive as stochastic
programming.

• May yield over-conservative solutions.

• Need expertise and rationale on uncertainty set construction.

• Need to use different algorithms for different types of
uncertainty sets.

The recent developments toward smart grids and the ability for communication among system

participants enable DR programs to be adopted more effectively in modifying end-use customers’

electricity demand to maintain system reliability. Further developments of smart grid technologies

are needed to facilitate the communication among electricity producers and consumers, yielding

improved consumer participation and thus, more effective adoption of DR.

In the last decade, with increasing uncertainty in power system operations caused by the volatile

load and renewable power outputs, the need for optimization techniques that take the stochastic

characteristic into account has grown significantly. Stochastic optimization is widely used in

literature by considering different scenarios. However, computational intensiveness of SP has

limited this approach for large-scale UC problems. Also, scenario reduction techniques should be

developed to decrease the computational burden of SP. Another topic of interest is the utilization
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of uncertainty analysis and probabilistic prediction in UC problems. Robust optimization, on the

other hand, performs superior to SP regarding computational time. However, this approach also

suffers from conservative and high-cost solutions. In recent years, some different approaches have

been applied to UC problem, such as SDP and fuzzy optimization. These methods are in their

early stages, and limited research has been done in using these techniques to this problem domain.

Therefore, there is a need for more research studies on the application of specialized optimization

algorithms to large-scale power systems scheduling.

The development in the smart grid can facilitate the communication between the users and

system operators to exploit the flexibility of consumers, e.g., residential electricity users and EV

drivers. This requires a well-built infrastructure to communicate and control power consumption

and provide suitable incentives for customers to participate in these programs. For instance,

motivating EV drivers to join in V2G and connect their vehicles during peak demand by ensuring

that their V2G revenue is significantly higher than the cost of battery degradation. Another example

is to encourage residents to provide their load profile ahead of time and get incentives for shifting

their load from high peak to off-peak periods. Moreover, demand-side management approaches

will be more practical if consumers have real-time information about electricity costs to react

correctly or system operators should be able to control some smart electric devices in case of

emergency.

Although a relatively large number of research groups have performed research studies on

the scheduling of EV charging (143; 144; 93), only a few have focused on the objective of the

maximizing RES integration, especially for the bidirectional class of V2G. For instance, the authors

in (93) propose a controlled charging/discharging model for a large number of EVs in an intelligent

parking lot that provides financial profits for the EV owners as well as satisfying technical operation

goals. However, the source of power is not considered in their paper. This is an exciting area

of research, as the importance of sustainable energy and the integration rate of EVs both grow

dramatically in the next few years. Furthermore, if EVs are plugged in when they are not driven,

the vehicle charging optimizer can make sure the lowest possible cost for their owners as well as

29



spreading the charging demand more evenly throughout the day. This, however, requires a lot of

public charging infrastructure options compared to the scenario that EVs are charged only when at

home.

Moreover, the literature is lacking optimization algorithms for charge/discharge schedules in

which real-time interactions between EV owners, aggregators, and system operators are taken into

account. In most cases, studies only rely on average statistics of EV, such as the state of charge

(SOC), battery capacity, the number of EVs connected to the grid during a specific time of the day,

and the duration of connection (145). However, in reality, these parameters can vary by the day and

by EV. This information can be collected from each EV users separately in real time by advanced

sensors and smart grid control techniques.

For a framework to be successfully applied, the participation barriers should be appropriately

addressed. The major obstacle to V2G participation is battery degradation since frequent cycling

of the EV batteries will significantly reduce their lifespan. Almost all research papers in this

domain propose scheduling algorithms in which either the charging rate is changed frequently,

or the charging process is paused/stopped often. This leads to high battery degradation cost that

discourages the EV owners from allowing a third-party (e.g., aggregator) control their charging. In

the next two chapters, charge/discharge optimization algorithms are proposed to address the issues

discussed above that are considered to be missing in the literature.
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3. DETERMINISTIC MODELING *

3.1 Introduction

In recent years, several countries are committing to reduce their carbon emissions. An integral

part of this effort is to reduce fossil fuel consumption. To this end, renewable energy sources (RES)

are vital to replace or reduce the dependence on existing gas and coal power plants. However,

volatility of RES generation affects the reliability of power systems. Since wind generation does

not necessarily follow the load pattern, during periods of high generation and low demand, wind

energy is curtailed to maintain the demand-supply balance (146). While the grid can absorb

some RES generation, complete dependence on these intermittent sources requires massive grid-

scale energy storage. High initial cost of storage units has been a barrier to their grid-level

implementation. A commonly used approach to accommodate wind penetration in power system is

to adjust the consumers’ energy consumption through demand response programs so that demand

can follow supply from wind sources (147).

As another solution to cut emission, countries are attempting to electrify the transportation

sector as it accounts for a large amount of carbon emissions (20-25% share) (148). EVs look more

promising than ever to replace the traditional internal combustion engine vehicles in the future

since they could achieve zero emission if the electricity used is generated from RES. However,

the increasing adoption of EVs may cause a potential problem for the electric grid because of

the unpredictable charging schedules. With an unplanned charging process, the increase in EV

penetration will lead to an increase in electricity demand and a significant change in the shape

of the demand curve. This is likely to result in higher demand variability and impact electricity

infrastructure, and make it difficult to accurately predict the load. Peak demand determines the

system capacity requirements. Increasing the peak demand will affect the electricity infrastructure

of the power system (145). Most importantly, uncoordinated charging of EVs adds a stochastic

*Reprinted with permission from "Leveraging owners’ flexibility in smart charge/discharge scheduling of electric
vehicles to support renewable energy integration", by Pouya Sharifi, Amarnath Banerjee, Mohammad J. Feizollahi,
2020. Computers & Industrial Engineering, 149, 106762, Copyright 2020 by Elsevier.
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element to the power system, which complicates the planning and operation of power systems.

Considering the volatility of RES generation and unpredictable driving habits of EV owners and

their charging demand, it is expected that the system operators encounter even more complexity

and uncertainty in unit commitment problem, which result in sub-optimal solutions.

To address this problem, many have proposed the vehicle-to-grid (V2G) concept to integrate

future EVs into the grid successfully. The V2G concept sees the EVs as a distributed generation/storage

system as well as dynamic flexible load which could be utilized to balance the electricity supply

and demand (83). A large number of EVs can add a great deal of flexibility in controlling the output

of wind energy by storing the excess production in their batteries, and sending power back to the

grid when needed. Moreover, they can provide load-related flexibility such as load reduction, peak

shaving, load shifting, and load following (149; 150). A group of EVs can act as storage units and

play a role in demand response if managed properly. Therefore, in this dissertation, both charge and

discharge capabilities of EVs are considered in a bidirectional V2G. By considering the discharge

capability of EVs, the amount of wind curtailment can be reduced by storing the excessive energy

in the batteries of the EV fleet. This chapter proposes an approach to leverage the flexibility of

a large number of EVs to determine a charge/discharge schedule that can benefit the owners and

the grid. The general idea is that by aggregating a large fleet of EVs that are plugged in to smart

chargers for several hours (e.g., during nighttime or at the workplace) and they only require a few

hours to recharge, the charging process can be scheduled to utilize more wind energy. Also during

periods of low wind generation, the charging can be delayed or some EVs can provide energy by

discharging their batteries.

In the literature, many authors have studied the schedule of EV charging to benefit the power

system. The V2G technology can improve the power system operations along several services,

such as frequency/voltage regulation, spinning reserve, peak shaving, and RES integration support

(151). For instance, the work in (86) presents a game-theoretic approach in load management

strategy for EV charging to reduce peak load considering dynamic behavior of EV drivers as well

as electricity price. However, intermittent generation of RES is not considered in this work. The
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number of research studies on EV charge/discharge scheduling with the focus on maximizing

RES integration has been limited. In (90), the authors formulate the optimal charging schedule

in charge-only mode and find that charging EVs overnight can absorb the excess power generated

by wind power; thus, increasing the RES utilization. In (152), the authors present an optimization

algorithm for the charging schedule problem to minimize energy cost from the grid based on a

queuing model that does not require any information or prediction about the wind production, EV

charging request, and electricity price. The study in (153) formulates the EV charging schedule as

a mixed integer programming (MIP) problem maximizing the RES integration for the day-ahead

problem assuming perfect generation forecast and known EV demand for the planning horizon.

However, these works only consider the unidirectional V2G (G2V) and the discharge capability of

EVs in a V2G setup is not considered. There are some articles in this domain that have considered

the bidirectional V2G in which the EVs are also capable of providing discharge. In (154), the

authors developed a MIP problem to maximize the utilization of renewable energy while satisfying

EV and household demand, assuming known future trips as well as EV and household loads in a

day-ahead scheduling framework. Likewise, the authors in (91) propose an energy management

system to maximize the utilization of wind energy assuming known wind and load. In their work,

the storage capability of EVs in the context of a distributed feeder with primary wind resource is

examined. The distributions for arrival and departure times are assumed to be known and only

one generic type of vehicle is considered. In (93), the authors propose an intelligent scheduling

algorithm with the objective of maximizing owners’ profit under the assumption of known day-

ahead arrival and departure times. The work in (92) proposes to utilize the storage capability of a

large fleet of EVs that can be used as distributed storage units to help keep the grid frequency within

a certain limit in the presence of intermittent RES generation in a distributed grid framework. In

a recent work (155), a coordinating day-ahead scheduling is proposed in the presence of uncertain

wind power to minimize the curtailment of the wind power as well as the emission. However,

the arrivals of EVs and their charging requirements are known day ahead of scheduling. A multi-

objective stochastic optimization approach is used in (156) to minimize the operating cost as well as
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the wind curtailment. In this work, the wind power uncertainty is modeled by a known distribution

(i.e., Weibull), and the EV arrivals are assumed to be known.

There are some gaps in the literature, which are addressed here. First, the assumptions of

known day-ahead wind generation, and/or known drivers’ commuting behavior which is common

in many articles, produce unrealistic results. In the literature, the day-ahead scheduling problem

is usually solved assuming known EV characteristics, such as the arrival and departure times,

the charging requirements, the power rates, and the battery capacities (155; 154; 156). If not

deterministically known, the stochastic EV characteristics are modeled only by a few known

scenarios (91; 157; 158). This is impractical in reality since not only there are many different types

of EVs and each one has different charging power and battery capacity, but also the commuting

behavior of users and initial SOC are highly unpredictable and varies significantly on different days

depending on several factors, such as traffic conditions, and randomness in commuting behavior

of drivers (159). Thus, it seems that the underlying distributions for all EV-related parameters are

impossible to achieve. Moreover, assuming known departure time and desired level without users’

feedback may cause great discomfort for the users. For instance, in the case that the owners need

high charging level in a short time, but the optimal charging process determines to postpone the

charging or impose discharging in the beginning of plug-in period since the actual departure time

and users’ needs are unknown. The user feedback and discomfort is taken into account in none

of the works mentioned above. Motivated by the above issues, this dissertation proposes a real-

time optimization framework in which the EV characteristics and charging requirements, which

unlike other research studies, are only known upon vehicle arrivals, not a day ahead of scheduling.

The uncertainty of wind and price forecasts as well as future EV arrivals are also considered. It

is proposed that by frequently optimizing the charge schedule based on updated wind forecast,

electricity price, and EV arrivals, the aggregator can make up for the sub-optimal decisions made

in previous time slots; thus, reducing the effect of uncertainty significantly. Moreover, the level

of user discomfort and EV-related uncertainty are reduced by designing an interactive mechanism

where the users can input the time of departure and their required energy level upon arrival. A
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dynamic rolling-horizon algorithm is developed for the aggregator to determine EV charging and

discharging schedule. This work is similar to (144), where the authors have considered the dynamic

behavior of EV owners in an optimal charge/discharge scheduling of EVs using a rolling horizon

optimization method; however, the intermittent generation of RES is not considered in their work.

To evaluate the proposed dynamic scheduling, we first model the optimal schedule for a day-ahead

static scenario, where commuting schedule of all EVs as well as wind power output are assumed

to be known day ahead of time. The results of the dynamic model is then compared to this static

model. A summary of the recent articles on wind-EV integrated power system is provided in Table

3.1.

Table 3.1: Summary of literature in EV charge/discharge scheduling. Reprinted with permission

from (160)

Reference User Discomfort Uncertainty Modeling V2G Type Planning Time Objectives

(153) No Perfect generation forecast Unidirectional Day-Ahead Wind integration
(161) No Perfect wind forecast, known distribution for arrivals Bidirectional Day-Ahead Energy loss (curtailment)
(158) No Perfect wind forecast, known distribution for arrivals Bidirectional Day-Ahead Operation Cost
(162) No Known scenarios for wind and EV Bidirectional Real-time Wind Integration
(157) No Known scenario distribution for Wind and EV arrivals Bidirectional Day-Ahead Operation Cost
(91) SOCmin Perfect wind forecast, Known scenarios for arrivals Bidirectional Real-time Wind Integration

(154) No Perfect wind forecast, Known EV parameters Bidirectional Day-Ahead Conventional generation
(155) No Distribution of Wind forecast error, known EV arrivals Bidirectional Day-Ahead Wind Curtailment, Emission
(156) No Known scenario for wind, Known EV arrival Bidirectional Day-Ahead Operation Cost, wind curtailment

Second, as shown in Table 3.1 most articles focus only on grid-related objectives, such as

minimizing operation cost or maximizing RES integration. The EV owners’ benefits in terms of

revenue and low charging cost are not considered comprehensively in the literature. Rather than

only focusing on maximizing wind utilization (WU), this optimization framework is based on a

multi-objective problem in which both wind utilization and charging cost (and revenue) are taken

into account.

Finally, user discomfort has not been considered in many of the mentioned articles. Even

though EV in V2G technology is a promising approach to add demand flexibility, people participation

has been limited. There are three main challenges in V2G that need to be addressed before applying
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it to the real-world. 1) Battery degradation has been reported as the major impediment in people

participation in V2G (163). An average automotive lithium ion battery lasts between 2000-3000

charging cycles (55); hence, cycling them daily will significantly reduce their lifespan. 2) Low

efficiency and round trip power losses of all EV components make V2G a less efficient method

to store electricity compared to other energy storage methods (e.g., pumped hydro storage) (164).

Comparing to other methods of energy storage (e.g., pumped hydro storage 85-95%), V2G as

an energy storage system might lose more in transaction. 3) Feeling insecure for urgent needs

discourages an EV owner to allow a third party to directly control their charging process (151).

In this work, all the aforementioned V2G challenges are addressed and unlike many of the

previous studies, the proposed algorithm does not attempt to start/stop charging EVs frequently,

which contributes to battery degradation. The approach here is based on optimal scheduling of

a large number of EVs depending on the availability of EVs and a mechanism to capture the

preferences, needs and flexibility of their owners.

The main contributions of this work are summarised below:

• Design an interactive mechanism where EV owners can input their preferences in terms of

charging requirement and the departure time.

• Address the main challenges for people’s participation and reduce the user discomfort level.

• Propose a scheduling algorithm where aggregators can leverage the flexibility of EV drivers,

and the V2G technology to support integration of intermittent wind energy into the power

system.

• Propose a rolling-horizon dynamic model that frequently optimizes charge/discharge schedule

based on updated wind and price forecast, reducing the effect of forecast uncertainty.

• Develop a multi-objective optimization method where both the owner and the grid can benefit

from participating in V2G (i.e., low charging cost and high wind integration).

The smart charge/discharge scheduling problem where an aggregator can modify the charge/discharge

rate in discrete time intervals, is studied for both static and dynamic models and the performance of
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the proposed models are compared with the "Business-as-usual" (BAU) case, where the EVs start

charging immediately upon arrival at full speed until reaching full charge. Moreover, the benefits

of participating in bidirectional V2G is evaluated compared to unidirectional V2G, also known as

grid-to-vehicle (G2V).

The remainder of this chapter is structured as follows. In Section 3.2, an overview of our system

model and the proposed approach is provided. In Section 3.3, the optimal scheduling problem of

the static model is formulated, while the dynamic model is discussed in Section 3.4. Section 3.5

discusses the simulation results. Finally, the concluding remarks of the chapter is presented in

Section 3.6.

3.2 Approach and System Model Overview

Smart energy metering and advanced controls have enabled real-time communication in the

smart grid (83). Consider a smart grid with real-time communication between its participants,

and an aggregator who is responsible to offset the fluctuation of RES (e.g., wind energy) with the

optimal charging/discharging schedule of EVs. A schematic of the relationship is shown in Fig.

3.1. The aggregator, which can be a utility company or a third party, gets information (forecasts)

about available renewable energy, market electricity price, and data related to the status of EVs,

the charging requirements, and their owners’ preferences. Also, suppose that there is a set of EV

owners who want to charge their vehicles with renewable energy as much as possible to address

carbon footprint and sustainability concerns. They may also have an economic motivation to pay

less for charging their vehicles. The EVs are connected to the smart chargers, where the real-time

EV information can be obtained by metering devices and sent to the aggregator.

3.2.1 Electricity Generation and Consumption Model

This dissertation chapter and the following chapter study a Micro Grid (MG) with wind power

as primary resource and local parking lots as consumers. EV charging in parking lots are the only

demand for wind generation and there is no storage unit in the system other than the vehicles’

batteries. Since wind energy has near zero marginal generation cost and because of the support
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Figure 3.1: Smart grid communications. Reprinted with permission from (160)

policy from the government, it is assumed that wind energy production has no cost. The MG

is connected to the external grid via transformer for back-up power, so that if charging demand

exceeds the available wind energy, the remaining energy is purchased from the grid at the real-

time electricity price. EV owners can participate in either unidirectional or bidirectional V2G. The

former, also referred to as G2V, is when the EV can only consume energy from the electrical grid.

However, in bidirectional V2G, the EVs can inject energy to the MG by providing discharge. In

the context of this problem, V2G is referred to bidirectional flow of energy between power source

and vehicle. It is assumed that the discharge energy is only used for charging other EVs, and is

not sold to the external grid. The EV discharge energy is sold at a price slightly less than that of

real-time wholesale market price. This ensures that EVs are making revenue from selling their

stored energy and also other EVs are paying less compared to the market price. The maximum

charging power for an EV in one hour interval is calculated as min(ARi, CP i), where ARi is the

maximum power the EV can take, and CPi is the maximum charging power of the outlet that EV

i is connected to. Thus, the maximum energy EV i can take in each ∆t decision period is defined

by P c
i = min(ARi, CPi) × (∆t/1hour). Another assumption is that charging and discharging
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powers are the same (P c
i = P d

i ).

Local consumers in the MG are the EV owners parking their vehicles in residential places or in

workplace parking lots. The electricity consumption for households is excluded from the model,

since in case of known or close to known household demand, that would not add value to our

optimization problem.

3.2.2 Interactive Mechanism

User discomfort seems to be the main impediment in people participation in demand response

programs (i.e., V2G), as the value of electricity for the users is much higher than its price. This

implies that users are willing to pay more for the electricity rather than sacrificing their comfort

for a lower electricity bill (165). EV owners’ willingness to participate in V2G is low due the fact

that by allowing a third party (aggregator) to modify the charge/discharge rate, the vehicles might

not have the desired level of charge at the time of their departure. Moreover, the aggregators might

schedule the charging for frequent charge/discharge cycles that contribute towards significant

battery degradation. To address these issues, the aggregator needs to know the owners’ preferences

and requirements, and take battery degradation into account.

Suppose, there is a simple web/mobile application where EV owners can input their needs and

preferences upon arrival using their smart phones or computers. Such web/mobile applications

(apps) are common today in a wide variety of application areas. Aggregators and third party

vendors can easily develop a customized and easy to use app for the EV owners using a convenient

front-end and tie the app and the collected data with the aggregator’s back-end data repository. The

specifications and interface of such an app can vary depending on the level of desired customization

and the user interface. The required input information includes departure time (Tdep), desired level

of battery at departure (SOCdesired), minimum required level of charge (SOCmin), and whether

they want to participate in V2G or G2V. Knowing these parameters not only enhance the level

of comfort for the EV owners, but also decrease the level of uncertainty in EV scheduling. The

minimum required SOCmin is to restrict the amount of discharge at any point in time during the

plug-in period, so that in case of urgent need, where the owner wants to depart earlier than the
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prespecified departure time, the vehicle has sufficient charge level to reach the destination. A

schema of different battery-related parameters and their methods of detection is depicted in figure

3.2. Most smart chargers and current EVs have sophisticated sensors embedded in the system and

provides almost real-time status information. This information is assumed to be available to the

aggregator using existing communication technology, which is ubiquitous. The sensor technology

in smart chargers and EVs and communication technology are all expected to keep improving.

The aggregator receives the information from the web application and smart chargers and schedule

for the EVs in a way that satisfies the user requirements. It is assumed that the communication

infrastructure is fast and robust, and does not contribute towards the uncertainty and cost of energy

purchased from the grid.

Figure 3.2: Battery-related parameters. Reprinted with permission from (160)

Since EVs are idle about 90% of the time and they only require a few hours to recharge, the

goal is to use the flexibility of EVs and their drivers to absorb the fluctuations in the output of RES,

while satisfying owners’ requirements and concerns. The hypothesis is that the EVs charge their

batteries mostly with energy from RES and discharge energy during low wind generation periods.

Also, in case where there is insufficient wind to meet the demand during the whole plug-in period,

the EV charging process should be shifted to low electricity price periods whenever possible.
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3.2.3 Battery Degradation Model

Researchers in (163) have found that the maximum annual profit for an EV is very limited if

considering the battery degradation cost, and without considering this cost, the profit is exaggerated

in many studies. Moreover, battery degradation is a challenging factor in people participation,

so the cost of battery degradation in the charge/discharge process is studied to reduce the total

charging cost (TCC) for the owners. Finding exact battery degradation cost is out of scope for

this dissertation. Here, two models for battery degradation found in the literature are used. The

first model considers a quadratic function, which consists of two terms, one for charge/discharge

rate and the other term captures the cost of degradation for fluctuation in energy rate (presented in

equations (3.5)-(3.6)) (144). The robustness of our solution is evaluated with a second degradation

model adopted from (163; 166), which models the battery wear cost as a linear function of battery

replacement cost and percent of battery used. The laboratory measurements in (163) predicted a

cost of 4.2 ¢/kWh for a battery pack with $5,000 replacement cost. Equations (3.1)-(3.2) define

the degradation cost of EV i in the second model.

Ψi =
∑
t∈T p

i

4.2× Cbat,i
5, 000

× (percent of battery used)t (3.1)

(percent of battery used)t =
Pc,iX

t
c,i − Pd,iX t

d,i

SOCcap, i
(3.2)

In the formulation, the battery degradation cost is penalized in the objective function so that

the optimal solution reduces the frequency of changes in the charge rate.

3.3 Static Scheduling Optimization

A scheduling algorithm is proposed for the aggregator that determines the day ahead EV

(dis)charge schedule. In the static model, the following assumptions are made:

• The EV owners are obligated to provide their arrival time, departure time, the desired level

of charge, and minimum level of charge, a day ahead of scheduling.

• The initial state of charge and the EV characteristics, such as battery capacity, and acceptance
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rate are known.

• The wind production and grid energy price for the next day are predicted with perfect

accuracy.

Given the information input by the owners, the aggregator determines the charging schedule for

the next planning horizon (e.g., next day). The planning horizon is evenly divided into discrete

time intervals (∆t). This smart scheduling is determined to maximize WU, minimize consumption

from the grid supply, and minimize TCC for EV owners. Although the assumptions made in

this deterministic case are unrealistic, this model provides the global optimal solution for the case

where all model parameters are known. The results of the static model will be used later to evaluate

the performance of the dynamic model.

3.3.1 Modeling & Mathematical Formulation

The EV charging and discharging schedule is studied for the planning horizon that is evenly

divided into time intervals of ∆t minutes. The aggregator finds the optimal charge/discharge rate

for all EVs in each period t. Throughout this chapter, the time slot [t, t+ 1] is referred to as period

t (Figure 3.3). It is assumed that grid electricity price and charge/discharge rate remain constant

for the entire interval of ∆t. Wind power availability in ∆t time interval is known and is utilized

to charge the EV fleet during that interval.

Figure 3.3: Illustration of difference between time and period. Reprinted with permission from
(160)

The decision variables used in the model are described as follows. X t
c,i and X t

d,i are continuous
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variables between 0 and 1 that determine the charge and discharge rate of EV i in period t with

a value of 1 meaning full-speed charging/discharging, and 0 meaning remaining untouched. The

state of charge for EV i at time t is captured by SOCt
i . Gt and Ωt are grid supply and wind

curtailment in period t, respectively. Finally, Zi, Y t
c,i, and Y t

d,i are auxiliary binary variables.

The objective function is to minimize a linear combination of the charging cost of energy

purchased from the electric grid, the battery degradation cost, and the wind curtailment penalty

cost.

min
Xc,Xd

∑
t∈T

prtGt +
∑
i∈I

λiΨi +
∑
t∈T

δΩt (3.3)

The variable Gt is the energy supplied from the external grid (conventional generators). When the

charging demand exceeds the sum of available wind energy and discharged energy, the remaining

energy is purchased from the external grid. Thus, it can be defined by inequality (3.4) and non-

negativity constraint (3.27).

Gt ≥
∑

i∈EV t
all

(Xt
c,iP

c
i )−

∑
i∈EV t

v2g

(Xt
d,iP

d
i )−W t, ∀t ∈ T (3.4)

It should be noted that Gt is the maximum of zero and the total net charging demand (the

difference between charged and discharged energy) minus the wind energy in any period. Inherited

in the first term of the objective function, the problem attempts to minimize the charging cost for

EV owners that is purchased from the grid. Also, imposing charging cost for the grid energy causes

the demand to seek cheap wind energy and increases WU.

The next term in the objective function is the sum of the battery degradation costs multiplied

by λi, which is input by the owner indicating the level of tolerance for their battery degradation.

Value of λi = 1 means no tolerance for the owner while λi = 0 sets the degradation cost to zero.

Battery degradation is calculated using a quadratic function as defined in (3.5)-(3.6) (144).

Ψi =
∑
t∈T p

i

α(ηciP
c
i (X t

c,i −X t−1
c,i ))2

+β(ηciP
c
iX

t
i )

2, ∀i ∈ Ig2v

(3.5)
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Ψi =
∑
t∈T p

i

α[ηciP
c
i (X t

c,i −X t−1
c,i )]2 + β[ηciP

c
iX

t
c,i]

2

+α[P d
i /η

d
i (X

t
d,i −X t−1

d,i )]2 + β[(P d
i /η

d
i )X

t
d,i]

2, ∀i ∈ Iv2g

(3.6)

The equation (3.5) measures the degradation cost for the vehicles in G2V. The first term

measures the degradation cost caused by fluctuations in the charging rate throughout the plug-

in period, while the second part measures the cost of degradation associated with the charge rate.

Constraint (3.6) is for vehicles in V2G mode and is quite similar to (3.5) except for the fact that it

also takes the discharge rate into account.

In the third term in (3.3), a penalty δ is considered for wind curtailment. The wind curtailment

denoted by Ωt is the maximum of zero and wind production minus the charging demand at each

period. Ωt = max{0,W t −Dt} (see constraint (3.7)).

Ωt ≥ W t +
∑

i∈EV t
v2g

(X t
d,iP

d
i )−

∑
i∈EV t

all

(X t
c,iP

c
i ), ∀t ∈ T (3.7)

Note that the demand for wind energy in period t can be easily calculated byW t−Ωt. It is worth

mentioning that in each time interval t, at most one of Ωt and Gt can be positive. Since the EV

charge load is the only demand for wind energy, minimizing wind curtailment implies maximizing

WU. Similar to λ, δ is a hyper-parameter that determines the weight for wind curtailment penalty.

Considering a small value for δ, this term comes into play only when there is enough wind

production, and it ensures to reduce the wind curtailment by charging the vehicle to their full

battery capacity instead of the user specified desired level.

Assuming a linear charging behavior for the batteries, the state of charge is initialized and
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updated by constraints (3.8)-(3.10).

SOC
tarri
i = SOCinit,i, ∀i ∈ I (3.8)

SOCt
i = SOCt−1

i + ηciP
c
iX

t−1
c,i , ∀i ∈ Ig2v, ∀t ∈ T

p
i (3.9)

SOCt
i = SOCt−1

i + ηciP
c
iX

t−1
c,i

−P d
i X

t−1
d,i /η

d
i , ∀i ∈ Iv2g, ∀t ∈ T pi (3.10)

Constraint (3.8) sets the initial state of battery charge upon arrival to the state of charge at arrival

time (SOCtarri
i ). SOC at each time is updated in constraints (3.9)-(3.10) by adding the charging

energy for the vehicle in the current period to the charge level of the previous time. Constraint

(3.11) limits the total grid supply by the transformer’s capacity denoted by PG
max.

Gt ≤ PG
max ∀t ∈ T (3.11)

The next two constraints (3.12)-(3.13) guarantee that if the vehicle cannot reach the desired

level in its designated charging period, the vehicle is charged with full speed for the entire plug-in

period. The auxiliary variable Zi takes a value of 1 if the vehicle cannot reach the desired level,

hence, constraint (3.13) imposes charge with full speed (X t
c,i = 1).

SOCinit,i + P c
i η

c
i (t

dep
i − tarri ) ≥ SOCdesired,i −MZi (3.12)

X t
c,i ≥ Zi, ∀t ∈ T pi (3.13)

On the contrary, if the vehicle can reach the desired level, Zi becomes zero, and constraint

(3.14) ensures that the final state of charge (SOC at departure time) is at least as much as the

desired level of battery charge requested by the owner.

SOC
tdepi
i ≥ SOCdesired,i −MZi (3.14)
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Constraint (3.15) limits the state of charge at any time to the battery capacity (SOCcap) of an

EV.

SOCt
i ≤ SOCcap,i, ∀t ∈ {tarri , ..., tdepi } (3.15)

The next group of constraints sets a minimum level of charge for all vehicles. Constraint 3.16

restricts the state of charge by the minimum required value if the vehicle starts with an initial SOC

higher than the SOCmin. If a vehicle arrives with a charge level less than the minimum level

(∀i ∈ B), then it has to charge with full speed to get to the minimum level for the first Tmin periods

(equation (3.17)). After reaching the minimum state of charge, the SOC should never drop below

SOCmin (constraint (3.18)).

SOCt
i ≥ SOCmin,i ∀i ∈ I \B, ∀t ∈ {tarri , ..., tdepi } (3.16)

X t
c,i = 1, ∀i ∈ B, ∀t ∈ {tarri , ..., tarri + Tmin,i} (3.17)

SOCt
i ≥ SOCmin,i ∀i ∈ B, ∀t ∈ {tarri + Tmin,i, ..., t

dep
i } (3.18)

Tmin,i denotes the minimum number of periods that EV i has to charge with full speed to reach

SOCmin,i, and is calculated by (3.19).

Tmin,i =

⌈
SOCmin,i − SOCinit,i

ηciP
c
i

⌉
(3.19)

Constraints (3.20)-(3.21) set the charge/discharge rates to zero for the period prior to arrival.

X
tarri −1
c,i = 0 ∀i ∈ Ig2v (3.20)

X
tarri −1
c,i +X

tarri −1
d,i = 0 ∀i ∈ Iv2g (3.21)

Constraints (3.22)-(3.24) ensure that in any period during plug-in time, the vehicles in V2G mode

can either charge, discharge, or do nothing. The variables Yc,i and Yd,i take value of 0 if the vehicle

is charging and discharging, respectively. The constraint 3.24 dictates that at least one of the
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charging and discharging rate has to be zero.

X t
c,i ≤ 1− Y t

c,i ∀i ∈ Iv2g, ∀t ∈ T
p
i (3.22)

X t
d,i ≤ 1− Y t

d,i ∀i ∈ Iv2g, ∀t ∈ T
p
i (3.23)

Y t
c,i + Y t

d,i = 1 ∀i ∈ Iv2g, ∀t ∈ T pi (3.24)

Finally, constraints (3.25)-(3.27) specify the binary and non-negativity constraints for the decision

variables.

0 ≤ X t
c,i ≤ 1 ∀i ∈ I, ∀t ∈ T pi (3.25)

0 ≤ X t
d,i ≤ 1 ∀i ∈ Iv2g, ∀t ∈ T pi (3.26)

Gt,Ωt ≥ 0 ∀t ∈ T (3.27)

Although, the assumptions made in this deterministic case were somewhat impractical, this

model provides the global optimal solution for the case where all model parameters are known.

It also provides a baseline for the dynamic model which is described in the next section. In the

dynamic model case, some of the impractical aspects of the static model are relaxed.

3.4 Dynamic Scheduling Optimization

In a more realistic scenario, the assumption for the obligation of providing perfect information

a day ahead by the EV owners is relaxed. In this dynamic model, EV owners input their needs and

preferences (departure time, desired level of battery charge, minimum required level of charge)

upon arrival. The smart chargers automatically detect the necessary EV characteristics, such as

battery capacity (SOCcap), acceptance rate, and state of charge (SOC). At any planning time

j, the aggregator batches all the vehicles that have arrived during the [j − 1, j] time slot. The

aggregator also considers those vehicles that have not departed from the previous periods and are

still in charging. With updated information regarding the number of EVs and their requirements,

the renewable energy generated, and the price of electricity, the scheduling algorithm (discussed
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in 3.4.1) optimizes the charging schedule for the current planning window (rolling window). The

planning window is defined by the period from time j till the time that all vehicles in setEj departs.

Ej is the set of vehicles considered in planning at time j. This schedule is called dynamic because

it can be updated as wind production forecast, the electric price forecast, and EV availabilities are

updated. Also, note that the charging schedule of all vehicles gets updated frequently at each

planning time until they depart, thus minimizing the effect of uncertainty in wind generation

and electricity price. The uncertainty of wind generation forecast and electricity price forecast

is considered in section 3.5.2.3, but for now, the assumption is that the forecasts are perfectly

accurate, which provides the baseline model that will be used for performance evaluation.

3.4.1 Algorithm

Considering 1-hour planning intervals ∆j, a day is divided equally into 24 intervals so that

planning times are at each exact hour of the day. For ease of notation, j + 1 denotes the next

planning time, which is one hour after current planning time j. However, to be consistent with

the notation of our decision periods t, which increment by one every ∆t = 15 minutes, another

variable is defined φj = 4j. For instance, j = 0 =⇒ φj = 0 denotes planning at time 12:00 AM,

and j = 1 =⇒ φj = 4 denotes the next planning time at 1:00 AM.

At any planning time j, there is a set of EVs that arrived during time slot [j − 1, j], called Aj .

Vehicles in Aj are added to the set Ej , which accounts for the vehicles that need to be planned

at time j. The aggregator also batches those vehicles that have already arrived and planned in the

previous period j − 1 (vehicles in set Ej−1) if the vehicle remains plugged-in after time j. Based

on the owners’ input, the aggregator determines the planning window, which is from time j to the

time the last vehicle departs, denoted by τ jmax. It is defined as τ jmax = max{tdepi | i ∈ Ej}. As an

example, consider planning for EVs at j = 8 (8:00 AM). In Fig. 3.4, arrival and departure times

for vehicles {1,2,3} are shown by down arrows and up arrows, respectively. Set A8 = {1, 2, 3}

is the set of EVs arriving in period j = [7:00 AM, 8:00 AM]. Assuming that there are no arrivals

before 7:00 AM, set E8 is equal to A8. The end of planning window, τ 8max, is defined by τ 8max =

max{tdepi | i ∈ E8}. The last departure is when vehicle 2 departs at 2:00 PM (tdep2 = 56). Thus,
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the planning window is from φ8 = 32 to τ 8max = 56.

Figure 3.4: Illustration of planning (rolling) window in system with three arrivals. Reprinted with
permission from (160)

Since the arrivals after j are unknown, the average charge demand of future arrivals for the

current planning window should be estimated. To estimate the amount of charge, one needs to

calculate the average number of EVs in each ∆t period, the average charge required, and the

average plug-in period by analyzing the historical data.

E[Dt
f ] =

ÊR · N̂ t
j

P̂ T
(3.28)

where ÊR is the estimated charge required by an EV, and it can be calculated by ÊR = ˆSOCdes−

ˆSOCinit. After finding the set of vehicles to plan at time j, their state of charge, the charge/discharge

rate for the period prior to j, and the estimated future charge demand, the aggregator runs the

optimization algorithm that solves the mixed-integer quadratic programming (MIQP) problem

(described in 3.4.2) to find the optimal charging procedure for each EV. The aggregator repeats

this process for the next planning time j + 1. This repetitive algorithm will run for the planning

horizon J , which can be from a few hours to a couple of years. The steps of the rolling horizon

approach are provided in Algorithm 1.
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Algorithm 1 Rolling Horizon Algorithm

Initialize Ej = ∅, ∀j ∈ J + {0}, and set j = 1.
for j ∈ J do

Ej ← Aj

for i ∈ Ej−1 do
if tdepi > φj then

Add i to the Ej . Ej ← Ej + {i}
end if

end for
for i ∈ Ej do

Set LC{j}i , LD
{j}
i as the charge/discharge rate in the previous period.

Update the SOCinit,i as the SOC of EV i at time j.
end for
Update the uncertain parameters (W t and prt) with their recent forecast (W t

f and prtf ).
Set B = {i| i ∈ Ej, SOCmin,i > SOCinit,i}
Find the end of current planning window by τ jmax = max{tdepi | i ∈ Ej}
Calculate the expected charge demand of future arrivals from (3.28).
Run the optimization algorithm described in 3.4.2.
Charge and discharge the EVs according to optimal Xc, Xd values.

end for

3.4.2 Modeling & Mathematical Formulation

At each planning time j, the algorithm needs to solve a MIP or MIQP problem (depending on

the battery degradation model) similar to the static case. The optimization problem at planning

time j considers the following objective function:

min
∑
t∈Tj

prtfG
t +
∑
i∈Ej

λΨi +
∑
t∈Tj

δΩt (3.29)

The objective function (3.29) is similar to the static case (3.3), except for the fact that it

minimizes the cost for the planning window, which is Tj = {φj, ..., τ jmax − 1} instead of the

entire planning horizon T . Here, τ jmax is the end of planning window and is defined by τ jmax =

max{tdepi | i ∈ Ej}. Also, note that the total plug-in period (T pi ) is no longer from arrival time to
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departure time; it is from planning time j till departure. Thus, T pi is updated by {φj, ..., t
dep
i − 1}.

Ψi =

tdepi −1∑
t=φj

α(ηciP
c
i (X t

c,i −X t−1
c,i ))2

+β(ηciP
c
iX

t
i )

2,∀i ∈ Ej
g2v (3.30)

Ψi =

tdepi −1∑
t=φj

α[ηciP
c
i (X t

c,i −X t−1
c,i )]2 + β[ηciP

c
iX

t
c,i]

2 +

α[P d
i /η

d
i (X

t
d,i −X t−1

d,i )]2 + β[(P d
i /η

d
i )X

t
d,i]

2, ∀i ∈ Ej
v2g (3.31)

Gt ≥
∑

i∈EV t
all

(P ci X
t
c,i) + E[Dt

f ]−
∑

i∈EV t
v2g

(P di X
t
d,i)−W t

f (3.32)

Ωt ≥W t
f +

∑
i∈EV t

v2g

(P di X
t
d,i)−

∑
i∈EV t

all

(P ci X
t
c,i)− E[Dt

f ] (3.33)

The problem is subject to a set of constraints, most of which are similar to the static case with

a few modifications. Since planning occurs at time j, only vehicles in the set Ej from time φj

to τ jmax are included in the model. Constraints (3.34)-(3.35) restore the charging and discharging

rates for the last period prior to the planning time j.

X
φj−1
c,i = LC

{j}
i , ∀i ∈ Ej (3.34)

X
φj−1
d,i = LD

{j}
i , ∀i ∈ Ej

v2g (3.35)

The rest of the constraints are similar to the static case. One needs to consider the modifications

mentioned above and replace I with Ej .
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SOC
φj
i = SOCinit,i, ∀i ∈ Ej (3.36)

SOCt
i = SOCt−1

i + ηciP
c
iX

t−1
c,i , ∀i ∈ Ej

g2v, ∀t ∈ {φj + 1, ..., tdepi } (3.37)

SOCt
i = SOCt−1

i + ηciP
c
iX

t−1
c,i − P d

i X
t−1
d,i /η

d
i , ∀i ∈ Ej

v2g, ∀t ∈ {φj + 1, ..., tdepi } (3.38)

SOCinit,i + P c
i η

c
i (t

dep
i − φj) ≥ SOCdesired,i −MZi, ∀i ∈ Ej (3.39)

X t
c,i ≥ Zi, ∀i ∈ Ej, ∀t ∈ T pi (3.40)

SOC
tdepi
i ≥ SOCdesired,i −MZi, ∀i ∈ Ej (3.41)

X t
c,i ≤ 1− Y t

c,i, ∀i ∈ Ej
v2g, ∀t ∈ T

p
i (3.42)

X t
d,i ≤ 1− Y t

d,i, ∀i ∈ Ej
v2g, ∀t ∈ T

p
i (3.43)

Y t
c,i + Y t

d,i = 1, ∀i ∈ Ej
v2g, ∀t ∈ T

p
i (3.44)

SOCt
i ≥ SOCmin,i, ∀i ∈ Ej \B, ∀t ∈ T pi (3.45)

X t
c,i = 1, ∀i ∈ B, ∀t ∈ {tarri , ..., tarri + Tmin,i} (3.46)

SOCt
i ≥ SOCmin,i, ∀i ∈ B, ∀t ∈ {tarri + Tmin,i + 1, ..., tdepi } (3.47)

SOCt
i ≤ SOCcap,i, ∀i ∈ Ej, ∀t ∈ {φj, ..., tdepi } (3.48)

0 ≤ X t
c,i ≤ 1, ∀i ∈ Ej, ∀t ∈ T pi (3.49)

0 ≤ X t
d,i ≤ 1, ∀i ∈ Ej

v2g, ∀t ∈ T
p
i (3.50)

Y 1
c,i, Zi Binary, ∀i ∈ Ej, ∀t ∈ T pi (3.51)

Y t
d,i Binary, ∀i ∈ Ej

v2g, ∀t ∈ T
p
i (3.52)

Ωt, Gt ≥ 0, ∀t ∈ {φj, ..., τ jmax − 1} (3.53)

Considering perfect forecasts for wind and price, the problem is a deterministic mean-value

optimization in which the only uncertain element is the future EV load. This problem can also be

solved using multi-stage SP approaches. However, multi-stage SP approaches require generating

a large number of scenarios (scenario tree) and often suffer from curse of dimensionality. A two-
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stage approximation method can mitigate the curse of dimensionality by only considering the

stochastic scenarios for the next stage (t + 1) while fixing the value of uncertain parameter for

the stages t+ 2, ..., T .

3.5 Results

In this section, a set of comprehensive simulation experiments are performed to examine the

performance of the proposed controlled charge/discharge scheduling algorithm.

3.5.1 Simulation Settings

In the simulation, a day is evenly divided into 96 time intervals of ∆t = 15 minutes. The

algorithm’s goal is to decide the battery charge/discharge rate of EV i during interval t (X t
c,i, X t

d,i).

Generation & Consumption data: The variations for electricity price and wind power generation

are captured in 10 different scenarios (10 months of the year). Hourly wind power production is

simulated using the Grid Lab System Advisor Model (SAM) in northern California for a single

wind turbine based on specifications of Endurance X33 turbine with 230 kW power capacity for

10 consecutive days for all 10 scenarios (167). Hourly electricity price is collected using historical

Locational Marginal Price (LMP) data for day-ahead market at node "PLAINFLD_6_N001" from

the California Independent System Operator (CAISO) for the same days (1). The 10 scenarios

include five months in Spring and Summer seasons, and five months in Fall and Winter seasons.

Thus, the simulation consists of a total of 100 days, with each day having random arrival and

departure scenarios as well as different wind and electricity price profiles. The discharged energy

of an EV is sold with a price of 95% of the real-time electricity price. The proposed selling price

is high enough to motivate the owners to participate in V2G as they can make profit by charging

their EVs during low-price periods, and discharging when the prices are higher. Since the revenue

earned by the EV owners in discharge mode is equal to the charge cost of discharged energy for

the EVs in charge mode, the revenue term is not included in the mathematical formulation.

EV-related data: Considering a total of 100 EV trips per day, the battery and charging characteristics

of EVs are based on the specifications of different EVs available in the market in 2018 (168). The
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EV battery info is summarized in Table 3.2. The EV arrival times are captured using data from the

National Household Travel Survey (NHTS) (169). It is assumed that 50 of the EV charging occur

at workplace and the other 50 are vehicles parked at home. Vehicles are assumed to be plugged-in

as soon as they arrive. To simulate the EV fleet’s arrival times, the travel time data related to trips

with home or work purposes from NHTS is used. Figure 3.5 shows the probability of trip to home

for each hour of the day. In figure 3.6, the x-axis represents hour of the day, and the probability

of trip to workplace is on the y-axis. In each scenario of the simulation, the optimal schedule

algorithm is run for 10 days. The EV plug-in period is modeled as discrete uniform distribution

between 4 and 12 hours with a resolution of 15 minutes. The desired level of battery at departure is

modeled using uniform distribution in the range of 0.75 to 0.95 of battery capacity. A charging and

discharging efficiency of 90% is assumed. The initial state of charge is also assumed to follow a

uniform distribution between 0 and 0.65 of the battery capacity, while the minimum required state

of charge (SOCmin) for all vehicles is assumed to be 5 kWh, which in case of emergency seems

sufficient to reach a distance of approximately 25 miles. For battery degradation cost, as discussed

in (144), values of 0.05 and 0.1 ¢ are used for α and β, respectively.

Table 3.2: EV characteristics. Reprinted with permission from (160)

Vehicle
Acceptance

Rate
AR

Battery
Size

SOCcap

Charger
Capacity
CP

Battery
Cost($)

BMW i3 2017 7.4 32 7.7 4,640
Ford Focus EV 2017 6.6 33.5 7.7 4,850
Nissan Leaf S 2016 6.6 24 7.7 3,500

Tesla Model S 70 Single 9.6 70 11.5 10,150
Tesla Model S 90 Dual 19.2 90 15.4 13,000
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Figure 3.5: Distribution of arrivals at home. Reprinted with permission from (160)

Figure 3.6: Distribution of arrivals at workplace. Reprinted with permission from (160)

3.5.2 Simulation Results and Performance Analysis

To evaluate the performance of the proposed approach, the results of the dynamic charging

algorithm are compared with the static and BAU charging scenario. All models are run for the 10

scenarios mentioned above. The simulation is coded in Python 3.7 using Gurobi optimizer. The

results for optimal solutions are shown in Fig. 3.7. Comparing the results, the proposed charging
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algorithm shows significant improvement in all the objective measures including WU and TCC for

EV owners. TCC can be calculated as sum of charging cost and degradation cost minus revenue

earned from selling discharging energy. Note that charging cost consists of the cost of energy from

external grid as well as cost of energy purchased from EVs in discharge mode.

(a) Wind utilization (%)

(b) Total cost (¢)

Figure 3.7: Performance evaluation for all three charging cases. a) wind utilization, and b) total cost.
Reprinted with permission from (160)
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The results demonstrate that the dynamic model achieves a similar performance compared to

the static scheduling model. It is worthwhile to mention that the performance of the static case for

some objective metrics is worse than the dynamic case for a few scenarios due to the fact that the

problem is formulated as a multi-objective optimization. However, the total objective value for the

static case is always better than the dynamic case.

To validate our degradation model, figure 3.8 shows that considering the linear degradation

model described in section 3.2.3 leads to similar results compared to the quadratic model, which

indicates that our model is robust with respect to different degradation cost functions.

(a) Total cost

(b) Wind utilization

Figure 3.8: Comparison of the models with quadratic vs linear degradation function. Reprinted
with permission from (160)
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3.5.2.1 Discussion of Objective Function Hyper-Parameters

Considering that the scheduling problem is a weighted multi-objective optimization problem, it

is required to evaluate the performance of the model for different values of hyper-parameters. The

values of δ and λ determine the importance of the corresponding term in the objective function.

Performance evaluation under different values of δ: A constant weight for wind curtailment does

not capture the dynamics of our model well. Thus, the penalty should be relative to the electricity

price such that wind curtailment penalty and grid supply have the same ratio through all periods.

Here, δ is considered as multiplier of prt in the third term of objective function. A small value of

δ provides a small weight to wind curtailment minimization, while making sure that grid supply is

as low as possible. If a large value is assigned to δ, wind curtailment is penalized more causing to

increase WU at the cost of higher discharged energy and higher degradation cost, which results in

higher total charging cost. If WU is of top priority, then a high value should be used for δ, and vice

versa. Experimentally, a value of 0.25 seems to have the best performance among all options.

Performance evaluation under different values of λ: The value of λ indicates the tolerance of EV

owners for their battery degradation. A value of 0 means high tolerance, while value of 1 means

battery degradation cost is as important as charging cost for the owner. A low value leads to higher

WU at the cost of more degradation and TCC.

3.5.2.2 V2G Benefits

To assess the benefits of V2G in this MG, different scenarios are compared in which the

percentage of vehicles participating in V2G versus G2V varies. Different values of Rv2g are used

to evaluate the benefits of V2G to both the owner and the grid. The performance evaluation under

different values of Rv2g is shown in Fig. 3.9. In order to maintain clarity, the plots are shown

for four months (scenarios) instead of all ten scenarios. In case where all vehicles participate in

V2G, the grid benefits from increasing the WU and reducing the total energy curtailment. From the

owners perspective, the degradation cost increases as the vehicles discharge their energy; however,

TCC decreases mainly due to the fact that the energy purchased from discharged energy reduces
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the need for expensive supply from the external grid. In V2G case, the EVs store energy from wind

source and in low wind periods, they inject energy back to the system to charge other EVs.

(a) Wind utilization (%) (b) Total cost (¢)

(c) Total degradation cost (¢) (d) Energy discharged (kWh)

Figure 3.9: Performance evaluation under different values of RV 2G. a) wind utilization, b) total cost, c)
degradation cost, d) energy discharged. Reprinted with permission from (160)

3.5.2.3 Wind & Price Forecast Uncertainty

In reality, the wind and LMP forecasts for the following couple of hours are not perfect. Thus,

this section considers a model where the updated forecast is only accurate for the current planning

interval. If planning at time t, wind and LMP are known only till time t + 1 and are unknown

for periods beyond. The stochastic data ξt = {w̃t, p̃rt} is observed only at time t (Figure 3.10).

Hence, to use the stochastic programming methods when planning at time j for the rolling horizon

{j, ..., τmax}, one needs to generate scenarios for all planning times {j + 1, ..., τmax}. This leads

to an explosion in number of scenarios even if the underlying distributions of wind and price are

known. Given that wind power is a non-stable non-linear random process, it does not follow any
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known probability distribution. Thus, the mean-value optimization approach is used to handle

the uncertainty and it is believed that in the dynamic model, since the scheduling of EVs are

updated very often (every one hour), the effects of intermittent wind generation and price volatility

are significantly reduced and the model can accommodate the forecast uncertainty to a higher

degree. In other words, the aggregator can make up for the sub-optimal decisions made in previous

planning times and obtain a close to optimal solution. To prove this point, let us consider a model

with perfect forecast for the next one hour (∆j), beyond that, a discrete time Markov Decision

Process (MDP) model is applied to estimate the wind generation (170). In a simple case, the state

space for wind production is discretized into 20 states and the transition probability is estimated

based on historical (training) data. The forecasts for the next k hours are estimated by

W t+k
f =

∑
w∈Sw

P k
W t,w · w, k = {1, 2, 3, ...} (3.54)

where, the state space for wind energy is denoted by Sw, and consists of 20 scenario representatives.

The 30 days prior to the simulation start date are used as training to calculate the transition

probability matrix. The problem is optimized for the next 10 days with MDP wind forecast

(Wf ). In addition, for predicting the real-time LMP, a similar-day approach is used, which the

price in each interval of the rolling window is predicted as the average of the LMPs for the same

interval of 10 days with similar weather conditions. The results are shown in Fig. 3.11, where it is

observed that the dynamic model with imperfect forecast performs similar to the perfect forecast

model. Considering the total of 10 scenarios (100 days), the paired t-test is used to compare the

performance of models for WU and TCC metrics. It indicates that the performance of the model

with imperfect forecast is significantly better than the BAU scenario (P-value < 0.00001 for WU,

and 0.008 for TCC). For proper evaluation of the mean-value dynamic model, it is required to

measure the expected value of perfect information (EVPI). The estimate of the EVPI calculated by

the results is 0.9% for WU, meaning that in case of perfect forecast, the WU is only 0.9% higher

than the mean-value model. The EVPI estimate for TCC is less than 1000¢for 100 EVs over the
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course of 5 days. Even though solving this problem using multi-stage SP approaches might lead to

slightly better results, it requires more computational time. The value of stochastic solution (VSS)

is definitely less than EVPI value; thus, the low value of EVPI suggests that there might be very

little gain in solving the problem using the SP methods and it does not justify the need to sacrifice

the computational time for less than 0.9 WU increase. Also, note that a very simple MDP process

is used as wind forecasting tool that does not result in highly accurate forecasts. A better forecast

for wind generation (e.g., using recurrent neural network) is likely to further improve the quality

of solutions. Moreover, one can easily solve a two-stage approximation of the scheduling problem

using sample average approximation (SAA) and formulating the equivalent deterministic problem

if a sample of random vector ξ can be generated. The only concern in using the SAA approach

is the possibility that the second-stage problem is infeasible for some scenarios. However, one

can always make the second-stage problem feasible by including the infeasible constraint in the

objective function with a penalty parameter.

Another major reason behind using the mean-value approach instead of SP methods is the

computational time. Since the problem is a real-time scheduling problem, computational time is

of importance and in case of a large number of scenarios, the problem becomes computationally

very expensive and thus, not suitable for real-time scheduling. The average solving time for all the

simulation scenarios is around 5 seconds running the algorithm using Gurobi Optimizer in Python

3.7 on a 64-bit operating system with a 2.80GHz processor. Tested on a problem with 200 EV trips

per day and two wind turbines with the same characteristics, it takes about 11 seconds to solve the

problem, which is acceptable.
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Figure 3.10: Uncertainty realization when planning at time t. Reprinted with permission from
(160)

3.6 Conclusion

In this chapter, an optimization algorithm for EV charge/discharge scheduling is proposed to

support wind energy integration using a rolling horizon optimization method. The problem is

formulated as a MIQP and the results show significant improvement compared to the BAU case

in terms of TCC, WU, and demand from conventional generators. The main contribution here

is to design the scheduling algorithm that aggregators can leverage the presence of advanced

communication technology in smart grid, flexibility of EV drivers, and the V2G technology to

support high integration of intermittent wind energy into the power system. To mitigate the barriers

in people participation in V2G, the battery degradation, minimum required level of charge, and/or

financial incentives for the EV drivers are considered. The financial incentive for the owners

is that they can make charge their EVs with cheap wind power and make revenue by selling

the excessive energy. Furthermore, in this work, a multi-objective optimization is considered

to maximize WU, minimize the demand from conventional generators, and minimize TC while

satisfying the drivers’ requirements. A simulation of the proposed algorithm for different scenarios

of EV characteristics, arrivals, departures, and charging requirements are performed to check the

quality of solutions and schedules. The results show that the proposed model leads to significant

improvement in all metrics, and benefits both the owner and the grid. Moreover, the results indicate

that frequent updates of wind power forecast (and LMP) in the deterministic problem significantly
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(a) Wind utilization (%)

(b) Total cost (¢)

Figure 3.11: Comparison of dynamic models with perfect forecast vs imperfect forecasts.
Reprinted with permission from (160)

reduce the effects of forecast uncertainty. Future research is needed to consider a large-scale grid

with multiple generators and consumers with the presence of battery storage and demand side

management for residential load to evaluate the users flexibility in the power system. A financial

incentive framework should also be developed to encourage a larger participation in V2G.
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4. STOCHASTIC MODELING

4.1 Introduction

As discussed in the previous chapter, obtaining an optimal schedule for real-time charge/discharge

of EVs is challenging due to the high degree of uncertainty in the power system, such as wind

forecast, electricity price forecast, commuting behavior of EV drivers, and different EV characteristics

and owners’ requirements.

Let us take a look at the scheduling problem from a stochastic optimization perspective. At each

planning time, a decision should be made followed by a set of observations of uncertain parameters,

which are revealed over time. If planning at time j, wind and LMP are known till time j + 1 and

they are unknown for periods beyond. Moreover, the arrivals of future EVs, their charging demand,

and the characteristics of EVs (i.e, power rate, departure time, desired level) are also unknown at

time j. The stochastic data ξj = {w̃j, p̃rj, Ej, {Ereq
i , P c

i , SOCcap,i, t
dep
i ∀i ∈ Ej}} is observed

only at time j (Figure 3.10). Ereq is the the remaining energy required to reach the desired level

and is calculated by Ereq = SOCdesired − SOC. Other notations are already defined in Chapter 3.

This scheduling problem is a classic example of a multi-stage stochastic problem, where at

each planning time (stage) a decision needs to be made given the uncertainty in the future time

steps or stages. To use conventional stochastic programming (SP) approaches for obtaining the

optimal scheduling of EVs at time j, one needs to generate scenarios of all stochastic elements

for all decision periods {j + 1, ..., τ jmax}. In the scenario-based SP approach, uncertain parameters

are assumed to have a specific probability description. For instance, wind power forecast error

(WPFE) is usually modeled as normal (114; 115), or truncated normal distribution (117). Note

that other than intermittent uncertain wind power, the greatest uncertainty in EV scheduling is the

commuting behavior of the drivers as well as the vehicles characteristics. Therefore, a significant

challenge of the scenario-based approach is to develop an appropriate probability distribution

or weights on scenarios. Besides, probability distributions usually fail to represent the actual
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uncertain parameter (random variables) as is the case for wind production because wind power

is a nonlinear and non-stable process that does not fit into any known probability distribution

(102). Moreover, considering the heterogeneity and different patterns of commuting behavior of

EV owners (102; 159), scenario generation for EV arrivals and EV-related characteristics is also

really challenging if not impossible.

Even if the distribution of uncertain parameters are known, the number of scenarios increases

significantly with the number of stages considering the multi-stage nature of the problem. Assuming

the rolling horizon containing K stages, N possible scenarios for each of the uncertain parameters

at any stage, and M uncertain parameter, a total of KN×M scenarios needs to be generated. Thus,

generating a scenario tree for a K-stage stochastic problem with multiple uncertain parameters

suffers greatly from the curse of dimensionality. In addition, SP approaches suffer from high

computational time and in the case of real-time scheduling, where decisions need to made every

few minutes, SP might be computationally too expensive to be practically acceptable (e.g., decision

periods are every 15 minutes).

In summary, the model-based SP approaches are not suitable for such real-time scheduling

problem due to the following reasons:

• Setting up a model-based method includes selecting accurate models and estimating the

model parameters. Given the heterogeneity of the EV driving patterns and the EV-related

features, each EV might need a different model and model parameters to capture the uncertainty.

• Determining the underlying distribution of wind and electricity price is very complex due to

the high volatility of real-time price and nonlinear, non-stable nature of wind speed.

• Even if the underlying distributions are known, since there are so many uncertain elements,

constructing the scenario tree for the multi-stage problem and assigning probabilities to

different trajectories are complicated.

• SP methods suffer from curse of dimensionality and hence are computationally very expensive,

which makes them impractical for real-time scheduling.
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There are some approaches to solve multi-stage SP that makes it less computationally expensive

and tractable. As a simple solution to solve a multi-stage stochastic problem, deterministic optimization

approaches that are based on point forecasts of uncertain elements (e.g., mean-value or expected-

value problem) can be used. However, deterministic mean-value (MV) optimization do not result

in global optimal charging strategy. Another approach is two-stage approximation (TSA) with

rolling horizon, where only the second-stage uncertainty is modeled using generated scenarios, and

for stages after that the uncertain elements are assumed to be known (e.g., mean value). Generally,

if the scenarios are properly constructed, then TSA reaches a better solution than MV problem at

the cost of higher computational time. However, neither TSA nor MV result in a global optimal

charging strategy.

The deterministic approach implemented in Section 3.5.2.3 was developed based on the expected

value or mean value of the uncertain parameters. As stated before, the deterministic approach is

easy and quick to solve, but might be far from the optimal solution of the true stochastic problem.

In this chapter, the goal is to develop an approach that gives better results than a MV problem and

can be applied in real-time settings without having to generate a large number of scenarios.

In contrast to model-based approaches, model-free Reinforcement Learning (RL) methods are

based on pure trial-and-error without the need for a model of the system. Recent advancements in

the field of Artificial Intelligence (AI) have made model-free RL a great approach to solve complex

problems. The number of research articles on applying RL to power system scheduling, specially

demand response problems, has increased significantly in recent years (165). However, standard

RL methods (i.e., Q-learning) suffer from slow convergence and curse of dimensionality when

applied to a large-scale problem with large state/action space, hence require a large number of trials

to converge. Moreover, there is a chance that Q-learning converges and gets trapped into a local

optimal solution, rather than the global optimal. Inspired by these issues, this chapter proposes

an approach that uses the forecasts of exogenous data (wind and price) as well as the results of

the MV optimization problem, to improve the performance of RL. The proposed approach also

mitigates some of the challenges of the RL approach, such as large state space, large action space,
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feature engineering, and high-variance reward (cost) in dynamic environments by smoothing the

learning process for the RL agent using the results of deterministic MV optimization to estimate the

action-value function. The proposed approach, which is referred to as combined RL-optimization

method, can be applied in many other multi-stage stochastic optimization problems, where building

an accurate model and/or a scenario tree to capture all the uncertainties in the system is challenging

and conventional SP methods are computationally unacceptable.

The structure of this chapter is as follows. First, the background in RL and literature review of

RL in EV charge/discharge scheduling are provided in Section 4.2. The problem formulation and

the proposed approach are presented in Section 4.3. The combined RL-optimization algorithm and

the experimental results are presented in Section 4.4. Section 4.5 provides a heuristic approach

in conjunction with the proposed RL-optimization method to solve a large-scale EV scheduling

problem. Section 4.6 discusses the application of the proposed approach in online learning and

further ideas to improve the approach. Finally, a conclusion of this chapter and future research are

discussed in Section 4.7.

4.2 Background & Literature Review

This section presents the background in RL and briefly reviews the literature on application of

RL in EV charge/discharge scheduling.

4.2.1 Reinforcement Learning

Reinforcement Learning is an AI algorithm in which an agent learns the optimal policy that

can maximize long-term additive reward through interacting with the environment (171). The

interaction between the agent and the environment in RL is usually formalized by a Markov

Decision Process (MDP) containing a tuple of elements (S,A,P ,R), where S is the set of environment

states, A is the set of actions, P(st+1|st, at) : S × A × S → R ∈ [0, 1] is the transition

probability between the states, and R(s, a) : S × A → R is the immediate reward of taking

action a at state s. A policy π determines the way the learning agent is behaving at a given

state. In other words, π is a mapping from states to actions (π : S → A) and the goal of a RL
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agent is to learn the optimal policy that maximizes the discounted accumulated rewards over long

run π∗ = arg maxπ Eπ{
∑∞

t=0 γ
trt}. γ is the discount factor determining the trade-off between

the current and future rewards. While r (i.e., R) is the immediate reward the agent receives by

executing an action in the current state, the action-value function (Q value function), on the other

hand, determines how good an action is in the long run when in state s. The Q value can be

expressed as Qπ(s, a) = Eπ[
∑∞

τ=t γ
τ−trτ |st = s, at = a].

When the transition probabilities P are known, iterative approaches can be used to find the

optimal solution. According to the Markov property, Q value can be recursively calculated with the

Bellman equation: Qπ(s, a) = Es′ [r + γEa′∼π(s′)[Qπ(s′, a′)]], where s′ and a′ are state and action

in the next time step. Then, the optimal policy can be derived from π(s) = arg maxaQ
π(s, a).

RL can also be applied to problems where the system dynamics and transition probability

between states are unknown. Model-free RL methods are learning explicitly from trial and error

and they do not require any knowledge of the environment (system). Thus, RL is advantageous

when applied to complex decision-making problems where the real challenge is to construct an

adequately precise system model. Most model-free approaches attempt to estimate the Q value

function and among those, Q-learning (172) has gained a lot of interest due to its simplicity and

effectiveness. Q-learning is an off-policy algorithm, meaning that to update the Q values, there

is no need to follow a policy as they are updated using the maximum Q-value in the new state

s′. That is an advantage of off-policy Q-learning over on-policy methods (e.g., SARSA), which

enables learning from historical data collected where the actions are not selected based on any

specific policy. In simple problems with discrete state-action spaces, the Q values can be stored in

a Q table with the values being updated by:

Q(s, a)← Q(s, a) + α[r(s, a) + γmax
a
Q(s′, a)−Q(s, a)] (4.1)

where α is the learning rate.

However, for problems where the number of state-action pairs is too large or the state/action
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space is continuous, a function estimator can replace the Q table to address the curse of dimensionality.

Simple linear regression or complex neural network can be used for function approximation.

Neural networks have been widely used in RL due to its ability to capture non-linearity and

complex interactions between the state features. The Q-learning algorithm combined with deep

neural network resulted in its excellence on the growing applications in the Atari Games (173).

This combined algorithm was further developed by the authors in (174) and is termed as deep Q-

network (DQN). The DQN algorithm addressed the instability issue of traditional RL methods in

which both inputs and targets change constantly. In DQN, the target value q̂ = r+γmaxaQ(s′, a′; θ′)

is calculated based on a target network with parameters θ′. The target network is different from

the online network Q(s′, a′; θ). The parameters in target network (θ′) are copied from the online

network every fixed number of steps. This makes the learning process similar to supervised

learning in a sense that the targets are kept fixed for a number of steps. The algorithm then attempts

to minimize the loss function, which is usually defined as the mean squared error (MSE) on (q̂,

Q(s, a; θ)).

The authors in (174) propose the idea of experience replay in DQN, which was first presented

in (175). Identified as another import factor of DQN, experience replay has been demonstrated

to lessen the correlation among consecutive states. In experience replay, the set of transitions

(sl, al, rlsl+1) of past episodes are stored in a replay memoryD, and the network at any iteration is

trained on a mini-batch of transitions F sampled uniformly from the memory D. Another benefit

of using experience replay is the data efficiency as each transition is possibly used multiple times to

update the Q network parameters, instead of being used only once and then discarded. Therefore,

the MSE loss function in DQN with experience replay at iteration i is defined by:

Li(θi) = Es,a,r,s′∼ U(D)[(q̂i −Q(s, a; θi))
2] (4.2)

Double deep Q network (DDQN) is another variant of DQN proposed in (176) and further

improves the DQN algorithm by mitigating the issue of Q value overestimation. In DDQN, the
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target is redefined by: q̂ = r + γQ(s′, arg maxa′ Q(s′, a′; θ); θ′). The effectiveness of DDQN has

attracted a lot of attention in power system applications (177; 178; 179; 180). This chapter builds

upon the existing DDQN method and contributes to the application of RL in the charge/discharge

scheduling problem. The possible challenges of using standard DDQN, which makes that approach

inefficient for this scheduling problem and possibly other multi-stage decision problems, are investigated

and the solution to alleviate each issue is provided. Since the charge/discharge scheduling is a

minimization problem, hereafter, the term "cost" is used instead of "reward" and all the "max"

operators are replaced by "min".

4.2.2 Literature Review

In recent years, model-free RL has gained much attention due to its ability for self learning

from historical data, and the number of research articles in applying RL to power system scheduling

(e.g., demand response) has increased significantly (181; 182; 183; 184; 185; 186). Many researchers

formulated the EV scheduling problem using MDP with known transition probability (i.e., model-

based). The model-based approaches achieve good results when the uncertain parameters and the

environment have known underlying distributions (187; 188). The more the number of random

variables, the more challenging it is to obtain an accurate model of the system. Very few articles

have used model-free RL methods in EV charge/discharge scheduling problems. Some of the

research studies done in this domain consider finding the optimal action for individual EVs that

can take actions independent of other EVs (189; 190; 159). For instance, the authors in (189)

develop a RL-based charging method that minimizes the charging cost for an individual EV based

on forecasted price. In a similar study, the authors in (159) propose a model-free RL approach

using DDQN to find the optimal schedule that minimizes the charging cost for individual EVs in

the presence of uncertain price and EV commuting behavior. They use LSTM on past price data to

extract features that are useful in capturing the price dynamics. The number of possible actions in

this study is seven different charge rates for an EV. The only source of uncertainty in these works

is the price signal.

In the absence of coupling constraints, the action space is small. The decoupling of EVs is
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possible in case where the goal is to minimize the charging cost and the price is independent

of the EV demands. However, by considering wind energy curtailment, the decoupling is not

possible since the actions of EVs should be dependent of each other to minimize the curtailment of

wind. When considering a centralized charging schedule for EV fleet, the curse of dimensionality

becomes a significant factor as the action space gets large. The authors in (191) considered a

centralized scenario where an aggregator is responsible for purchasing the electricity in a day-

ahead market and dispatching the power in real-time to the EVs, with the goal of minimizing the

charging cost. To deal with the large action space, the authors proposed a heuristic scheme for

EV fleet charging. However in their work, the EVs are only capable of charging, and the wind

uncertainty is not taken into consideration.

Most research studies focus on minimizing the charging costs of the EVs under stochastic

prices. However, in this work, both charging cost and wind integration is considered under uncertain

price and wind power. Moreover, in the literature, a double deep Q-network (DDQN) application

in real-time EV scheduling has not been reported. Also, the comparison between simple mean-

value optimization and RL is not provided elsewhere. The summary of the contributions of this

chapter is as follows:

1. The real-time EV scheduling problem is formulated as an MDP with unknown transition

probability under stochastic wind energy and price.

2. A DDQN RL approach combined with optimization is proposed to learn the optimal charge/discharge

schedule.

3. The challenges of RL such as large action-space, feature engineering, and slow convergence

are addressed.

4. A heuristic EV fleet charging/discharging scheme is developed in conjunction with a double-

agent RL to address the curse of dimensionality issue when considering large number of

EVs.
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4.3 Proposed Approach

The charge/discharge EV scheduling problem studied here is the same as in Chapter 3. A

deterministic optimization approach based on the mean value or expected value of the uncertain

parameters was developed in Section 3.5.2.3. Alternatively, one could use point forecasts of

exogenous variables, such as wind production and real-time electricity price. In this chapter, the

deterministic problem is referred to as the mean-value (MV) problem.

The approach to this dynamic stochastic programming problem is based on a combined RL-

optimization method. The optimal solution from the MV is incorporated into the RL algorithm in

order to further facilitate the agent task in finding the optimal policy and achieve faster convergence.

The RL agent learns the dynamics of the system through interaction with the environment and

achieves a solution close to the global optima. The scheduling problem is formulated as a Markov

Decision Process (MDP) with unknown transition probabilities, and a DDQN method is used to

estimate the optimal action-value function. To evaluate the proposed RL-optimization approach,

the combined RL-optimization method is compared with the standard DDQN approach.

4.3.1 Problem Formulation

An MDP framework is used to formulate the scheduling problem. The objective of the RL agent

is the same as the optimization objective 3.3. At each time step, the agent, which is the decision

maker aggregator, needs to decide whether to charge or discharge the EVs for the future action

periods based on the available information. The MDP is defined by the 4-tuple (S,A,P(S,A), C(S,A))

with state space (S), action space (A), the unknown state transition probability (P), and cost

function C. The details of the MDP are provided below.

4.3.1.1 State:

The agent needs to learn the state transitions by interacting with the environment, executing

action a in state s and observing the cost c. The states can be any information available to the agent

that might help to make a decision. The system state space contains time-dependent information

Xtime, EV requirements and availability Xev, and wind and price information Xwp.
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S = Xtime ×Xev ×Xwp (4.3)

The time-dependent component,Xtime, consists of information regarding the exact time step or

the quarter of the day Xq and the day of week Xdow. The time-related information helps the agent

capture the system dynamics since the EV arrivals, wind production, and price usually follow a

daily pattern or a weekly trend.

Xtime = Xq ×Xdow (4.4)

Xev contains information about whether the EV is plugged-in or not (U ), the remaining energy

requirement of each EV (Ereq), and the remaining parking time of each EV (T rem). U,Ereq and

T rem are all vectors of dimensionNmax, whereNmax is the maximum number of EVs that arrive in

the parking lot in a day or one can think of it as the parking lot capacity at any time. Each element

of the vector corresponds to an EV connected to a smart charger.

Moreover, the vector of optimal actions of the MV optimization problem (a∗opt) is also included

in the state space. The hypothesis is that by knowing the optimal solution to the forecast model,

the agent can better learn how to make decisions given the optimal solution, and other available

information.

Xev = U × Ereq × T rem × a∗opt (4.5)

Since the outcome of the next step for real-time price and wind energy depends on their current

values to some degree, the current values (W, pr) need to be included in the state space. The

state description for uncontrollable wind and price state is defined by Xwp. Moreover, the optimal

solution depends on future realization of uncertain parameters, thus good forecast of uncertain

parameters further aid the agent to make a decision in the current state. Different forecasting tools

can be used, but in this chapter, the same forecasting techniques discussed in chapter 3 (MDP for

wind and similar day approach for wind) are used. Therefore, Xwp is split into four components as
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follows:

Xwp = W × pr ×Wforecast × prforecast (4.6)

4.3.1.2 Action:

For each vehicle, the set of actions contain full charge (a = 1), full discharge (a = −1),

or remaining untouched (a = 0). Thus, the action space for the aggregated EVs is defined by

A = {a ∈ RNmax | ai ∈ {−1, 0, 1}, i = 1, ..., Nmax}. Given Nmax vehicles in the parking lot,

the total number of actions is 3Nmax . The action space becomes quite large with a large number

of vehicles and makes it challenging for the RL algorithm to estimate action-value function for

all state-action pairs. Moreover, our optimization problem has some constraints that need to be

satisfied. One way of addressing the large state-action pairs, is to limit the set of possible actions

denoted by A(s) based on the constraints of the optimization model as well as the feasibility of the

action. For instance, if Ui = 0, the only possible action for EV i is ai = 0. If the state of charge

for an EV is going to exceed the battery capacity by charging, then the feasible actions are either

to discharge or remain untouched. Moreover, if the only way to get to the desired level of charge

is to charge the EV in all remaining steps, then the action should always be 1 (full charge) so as

not to violate the charging requirements. Also, if the EV has SOC less than the SOCmin, it should

charge with full speed until it reaches that level. A complete set of states and the corresponding

possible actions are provided below. With this approach, we reduce the size of action-state pairs

significantly for each state, where the agent only explores the possible actions instead of the whole
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action space, thus making it easier and faster to approximate the action-value function Q.

Ui = 0 =⇒ A1(s) = {a ∈ A|ai = 0} (4.7)

SOCi − P d
i < SOCmin,i =⇒ A2(s) = {a ∈ A|ai ∈ {0, 1}} (4.8)

SOCi < SOCmin,i =⇒ A3(s) = {a ∈ A|ai = 1} (4.9)

SOCi + P c
i T

rem
i < SOCdesired,i =⇒ A4(s) = {a ∈ A|ai = 1} (4.10)

(SOCi − P d
i )× (T remi − 1) < SOCdesired,i =⇒ A5(s) = {a ∈ A|ai = 1} (4.11)∑

i∈Et

P c
i −Wt > PG

max =⇒ A6(s) = {a ∈ A|
∑
i∈Et

ai × P c
i <= PG

max} (4.12)

Equation 4.8 ensures that the SOC level of the EVs never drops below the SOCmin, while

Equation 4.9 enforces full-speed charging when the vehicle arrives with SOC level less than

SOCmin. Equation 4.10 checks if the vehicle cannot reach the desired level even with full-speed

charge during the whole parking period. In that case, the EV has to be charged (a = 1). Moreover,

if discharging an EV will cause violating the charging requirement, discharge is not a possible

action (equation 4.11). Equation 4.12 makes sure that the total charging from the external grid

does not exceed the transmission capacity PG
max.

For an action to be feasible, all the constraints have to be satisfied, thus, the set of possible

actions A(s) is the intersection of A1, ..., A6. However, there is a chance that no feasible action

exists in a given state. In that case, a random action can be taken but the penalty for violation of

the constraint should be included in the cost function. For instance, the penalty of not reaching the

desired level can be added.

4.3.1.3 Cost Function:

In the model-free system, the agent interacts with the environment continually and observes

the immediate cost associated with its actions. The immediate cost signal the agent receives is a

function of current state and current action as Ct = fc(at, st). The goal is to minimize the charging

cost for EVs as well as the wind curtailment while taking the battery degradation into account.
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Thus, the cost in RL is the same as the objective function of the optimization model but only for

the current time step, which is the weighted sum of wind curtailment cost, the charging cost, and

the battery degradation. The penalty for not reaching the desired level is also added. The difference

between the desired charge level and the SOC level at departure determines the energy deficiency,

and a penalty factor ν determines the per kWh cost of energy deficiency. Thus, the cost function

can be expressed as follows:

ct =
∑
i

(ai,tP
c
i −W t)prt + δ(W t −

∑
i

ai,tP
c
i ) +

∑
i

Ψi +
∑

i∈{i|tdepi =t}

ν(SOCdesired,i − SOCt
i )

(4.13)

where Ψi is cost of battery degradation and can be calculated using equation 3.6. In the above

equation, the charging and discharging efficiencies are removed for simplicity.

4.3.1.4 System Dynamics:

The state transition from state st to st+1 depends not only on the current action at, but also

on the randomness of uncontrollable states (wind, price, and arrivals). The state transition for

Xev state depends only on the current action, and the system dynamics for EV-related states are

described by:

Ereq
i,t+1 = Ereq

i,t − ηci ai,t P c
i (4.14)

T remi,t+1 = T remi,t − 1 if Ui,t = 1 (4.15)

where P c is the maximum charging power of the EV in each action period (∆t) and ηc is charging

efficiency. The state Ui is partially controllable, meaning that when Ui,t equals to 1 and the

remaining parking time is more than one time period, then Ui,t+1 is also 1. However, when Ui,t

= 0, the arrival of EV is not known and the state transition is influenced by randomness ωt. For

uncontrollable states Xwp, the state transition depends on current state and the random disturbance

ω. Using the notations, we have Xwp,t+1 = f(Xwp,t, ω
t). Defining an accurate model for the
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random disturbance parameter is difficult since it depends on many external factors, such as,

volatile electricity load, the bidding market, wind speed, commuting behavior, etc. This is the

main reason behind using model-free RL.

4.3.1.5 Action-Value Function:

The quality of charge/discharge action in any state is evaluated by the action-value function,

which is the expected total cost starting from state s, taking action a and following policy π

afterwards (Equation 4.16).

Qπ(s, a) = Eπ[
T∑
k=t

γk−tck|st = s, at = a] (4.16)

where π is the scheduling policy mapping each state to an action. A policy determines how the

agent should act at a given state. A discount factor γ ∈ [0, 1], is used to weight the immediate costs

and future step costs. The RL agent attempts to find the optimal policy that results in minimum

action-value function.

4.4 RL-Optimization Algorithm

The proposed algorithm is an extension to the DDQN algorithm with experience replay (176)

using the forecast of the wind and price and the optimal results from the MV problem.

This scheduling problem was first solved using standard DDQN with ε-greedy action selection,

and it was observed that the Q-values do not converge to a good solution and are probably trapped

in a local optimal solution. The results will be shown later in section 4.4.2.1. The two main reasons

for the inferior quality solution are perceived to be high variance cost and inefficient exploration.

High Variance Cost: The DDQN and other RL approaches perform well on problems with static

environments. In static environment problems, the agent seeks to maximize the total reward

where the total reward of the optimal policy does not vary between episodes. However, in the

EV scheduling problem, the environment is highly dynamic and the cost significantly changes for

different scenarios of wind, price, and EV arrivals. The wind and price profiles vary significantly

daily and seasonally, potentially causing a change in the underlying distribution. Changes in the
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underlying distributions result in high variance in cost estimation.

To better understand this, let us consider two different scenarios. In the first scenario, wind

energy is low, a high number of EVs arrive at the parking lot at the same time, and they remain

plugged in for short periods. To satisfy the charging demand, a lot of energy needs to be purchased

from the external grid, thus the total cumulative cost will be high. In the second scenario, however,

there is enough wind energy generated and the LMP is low. Even if the actions in the first scenario

are optimal, the cost might be much higher compared to the second scenario. This is true even in

the case where sub-optimal actions were taken by the agent in the second scenario. This implies

that the cost signal is not significantly affected by the scheduling algorithm. As a result, the agent

has a difficult time determining if the cost is associated with the change in the environment or

the actions it has taken. When the agent observes a low cost, it cannot determine whether it was

because of a better action or because of a change in environment. In the literature, some authors

have proposed the idea of regretted reward (cost) to alleviate high variance reward estimation (192).

The regretted cost is calculated as the expected difference between the sum of estimated cost for

the optimal policy and the cost collected by the agent. The regret can somehow measure the gap

between the current policy and the optimal policy. It should be noted that the optimal policy is not

known, and it is difficult to obtain an estimate for the optimal policy. However, by solving the MV

optimization problem, a close-to-optimal cost can be achieved. Even though it is not the optimal

policy, it might be close enough to measure the changes in the dynamic environment and reduce

the variance in cost. The regretted cost at time t can be approximated by:

c̃t = ct − c∗t (4.17)

where c∗t is the optimal cost obtained from solving the MV problem at time t. The regretted cost

replaces the original cost signal.

Inefficient Exploration:

Exploration and exploitation trade-off is an important topic in RL as the agent interacts with the
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environment and improves its actions in a trial and error fashion. The exploitation phase is about

taking the actions that result in minimum total expected cost in the future (minimum Q-value).

However, since there is always uncertainty about the estimates for action-value function, the agent

needs to explore other possible actions. This implies non-greedy actions should be selected using

ε-greedy action selection. In a standard RL approach, the non-greedy actions are taken randomly.

Generally speaking, in sequential decision-making problems with uncertainty in the future,

when the agent is exploring at first, the random actions can lead to costs that is far from the

minimum cost obtained by the optimal policy. To give an example, an EV during its parking time

requires charging more often than discharging to reach the desired level. However, by random

exploration, the agent charges and discharges with the same probability, leading to violating the

charging requirement or the minimum SOC constraints. A rare combination of actions would

result in a cost better than the MV problem. Thus, when actions are chosen randomly, there is a

very small chance that the agent takes that rare combination of actions. As a result, by random

exploration, the agent may never try actions that lead to a lower total cost than the MV solution.

It would be preferable to select random actions based on their potential to be actually an optimal

action (171). Thus, in the proposed approach, the actions are taken based on how close they are

to the optimal actions of the MV problem. This implies that in the exploration phase, the actions

that are optimal to the MV problem are chosen more frequently than other possible actions. This

is another way to incorporate the results of the optimization model in the RL approach. More

precisely, non-greedy actions are taken proportional to the inverse of the absolute difference from

the optimal action. For instance, if the optimal action to the forecast model for an EV at time t

is 1, then in the exploration phase, action 1 should be picked with a higher probability compared

to action 0, or -1. In the exploration phase, non-greedy actions are taken based on the stochastic

policy stated below.

π(ai|s) =
( 1
|ai−a∗i |+ε

)∑
a∈{−1,0,1}(

1
|a−a∗i |+ε

)
∀ai ∈ {−1, 0, 1} (4.18)

where a∗i is the optimal solution to the MV problem and a small value of ε is added to avoid 0
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denominator values. Like the regretted cost, this action selection method reduces the variance in

Q-value estimation. It also ensures that the cost of exploration is not very high, which makes

this approach more desirable for online learning settings. In the exploitation phase, however, the

actions are taken using a greedy approach based on the action-value estimate Q̂(s, a).

a∗ = arg min
a∈A(s)

Q̂(s, a) (4.19)

4.4.1 Training Algorithm

The training of the neural network (NN) used to estimate the Q-value function is provided in

Algorithm 2. The parameters of the online and target NN are denoted by θ and θ′, respectively.

The inputs of the NN are the state S in equation 4.3. The algorithm outputs the parameters of the

online Q network (θ).

First, the parameters θ and θ′ are initialized with random values (e.g., 0) everywhere on S ×A

(lines 1,2). Assuming starting with no vehicles in the parking lot, each episode starts when the first

EV arrives, and ends when there is no vehicle in the parking lot. For each episode, the following

process repeats. At any time step t, the MV problem is solved and the optimal action and cost for

the current action period are stored in a∗opt,t and c∗t . Then, forecasts of future wind and price are

updated and added to the state vector. If forecasts are not provided, one can replace the forecast

with the estimate or expected value of wind and price. Then, at is selected based on the ε-greedy

approach, where the actions are selected based on equations 4.7-4.12 with probability ε, and from

the Q network with probability 1− ε (equation 4.18). After executing the action at, the immediate

cost ct and the new state st+1 are observed. After that, the regretted reward is calculated using

equation 4.17 and the transition tuple (st, at, c̃t, st+1) is stored in replay memory D. A minibatch

of stored transitions are randomly chosen to update the parameter θ. First, target values ql are

measured as in line 14 of the algorithm. Then, the network parameters θ are updated by performing

gradient descent (or any other optimization method) on MSE, which is the error between the target

value ql and the Q value estimated from NN (Q̂(s, a; θ)). The MSE loss is defined by:
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L(θ) =

#F∑
l=1

[ql − Q̂(sl, al; θ)]2 (4.20)

The gradient descent parameter update is according to:

θ ← θ − α∆θL(θ) (4.21)

where ∆θL(θ) is the gradient of the MSE loss with respect to the parameter θ, and α is the learning

rate. After a specific number of time steps (B), the parameters θ′ are copied from θ. The process

keeps repeating until the convergence of Q-values is reached.

Algorithm 2 Combined DDQN-Optimization Algorithm

1: Randomly initialize Q̂ weights (θ) everywhere on S ×A. ∀s ∈ S,∀a ∈ A(s).
2: Set θ′ = θ.
3: for each episode do
4: for t = 1, ..., T do
5: Update the wind forecast and price forecast for the next few hours.
6: Run the MV optimization model and find the optimal solution for the planning horizon

and find the current optimal action a∗opt,t and optimal cost c∗t .
7: Update st with the forecasts and optimal action a∗t (Equations 4.5 , 4.6).
8: Limit the set of possible actions based on model constraints (Section 4.3.1.2)
9: With probability ε select an action based on optimality potentials (Equation 4.18). with

1− ε probability select greedy action (Equation 4.19).
10: Observe immediate cost ct and the next state st+1.
11: Calculate the regretted reward. c̃t = ct − c∗t .
12: Store transition (st, at, c̃t, st+1) in D.
13: Sample random minibatch of transitions F from D. F = {(sl, al, c̃l, s′l}#Fl=1 .
14: ql → c̃l + γQ̂(s′, arg mina′∈A(s′l) Q̂(s′l, a′; θ); θ′) l = 1, ...,#F
15: Use MSE loss on (ql, Q̂) on the minibatch F and perform gradient descent to update

parameters θ.
16: Copy θ′ from θ every B steps.
17: end for
18: end for

It is worth stating that one can replace the results of the MV problem with TSA. This would
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result in faster convergence if scenarios are generated properly.

Once the NN of Q values is trained using Algorithm 2, the Q network is used for real-time

scheduling. The implementation of real-time EV charge/discharge scheduling is straightforward.

The aggregator, at each time step, gathers the state information of the environment (s) which

includes all the forecast information, time-related features, and EV-related data. Then, a feed-

forward in the Q network measures the action-value Q(s, a) for all possible actions in A(s). After

that, the action with minimum Q value is taken: at = arg mina∈A(s)Q(st, a; θ).

4.4.2 Experiments

This section evaluates the performance of the proposed approach and compares it to the standard

DDQN method. The results of the proposed approach is also compared with the solutions of the

benchmark problems, such as MV and static day-ahead problems.

4.4.2.1 Simulation Setting:

For the simulation, the problem in Chapter 3 with a few modification is studied here. A total

of 4 EV arrivals (instead of 100) for a day is considered. The arrival data is generated on a daily

basis using the National Household Travel Survey (NHTS) for work trips. The energy required for

an EV is modeled using uniform distribution between 75% to 95% of the battery capacity, and the

parking time is randomly generated between 20 to 44 action periods (time steps). Hourly price data

is collected using real-time LMP data from the California ISO (CAISO). Wind data is simulated

using the Grid Lab System Advisor Model (SAM) with the same specifications as in Chapter 3.

However, wind data is scaled down by a factor of 25 since the number of EVs in this experiment

is 4 compared to 100 EVs in the simulation settings of Chapter 3. All EVs are assumed to have

a battery capacity of 40 kWh and the maximum charge power is 9.2 kW. One year data for wind

and price (365 days) is split into training (300 days) and testing (65 days). In other words, the

training environment is simulated using the data from the first 300 days of the year and the testing

environment is built upon the data from the next 65 days. Using the training environment, the

proposed combined DDQN-optimization algorithm is used to train and learn the optimal schedule,
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then the trained Q network is applied on test days, which was previously unseen by the agent.

It is worth noting that if the distribution of wind and price was available, one could randomly

draw scenarios from the distribution to simulate the environment. However, the aforementioned

assumption is that the underlying distributions are unknown; thus, the historical data is used to

simulate the environment. The training is simulated in Python using PyTorch 9.2.

4.4.2.2 Q Network Architecture & Hyper-parameters:

A five-layer fully-connected NN with three hidden layers of size 64, 256, 128 is used as the Q

network (Figure 4.1). The input layer is a 47-dimensional state vector and the output layer is of size

34, which is the size of the action space. A value of 0.98 is set for γ factor so that the agent takes the

future costs into consideration. The parameters of the target network is copied from the Q-network

every B = 2000 number of steps. A minibatch of size 32 is randomly sampled from the memoryD

at each time step to update the parameters. Each episode starts when the first EV arrives, and ends

when the last EV leaves the parking lot. When starting the training process, exploration is needed

to estimate the Q values, then exploitation is used to take the greedy action with minimum Q value.

A value of ε = 1 ensures pure exploration and ε = 0 is pure exploitation. In this simulation setting,

the ε reduces from 1 to 0.1 using equation 4.22 moving from pure exploration to exploitation 90%

of the time.

ε(x) = 0.1 + 0.90 ∗ e−
x

200 (4.22)

where x is the current episode in training.

4.4.2.3 Performance Evaluation on Training Data:

To evaluate the performance of the proposed approach, the total cost (battery degradation plus

the charging cost and curtailment cost) is plotted for each epoch in training. Each epoch in Figure

4.2 is 300 days (episodes) of training. The cost from the proposed approach is benchmarked

against the solutions from the MV problem, and the static day-ahead problem. The static problem

is the day-ahead optimization problem with a perfect forecast of wind and data and known future
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Figure 4.1: Q-Network

arrivals, which was discussed in Section 3.3. Figure 4.3 shows how the ε changes during the

training process.

To assess the performance of the proposed algorithm, a standard DDQN algorithm with the

same NN architecture and same hyper-parameters as the DDQN-Optimization is used. Two versions

of the standard DDQN are considered. In the first version, referred to as DDQN-1, the forecasts

of exogenous data is not added into the state space, and the penalty of violating the constraints

is added to the cost function. Figure 4.4 shows the changes in total cost for the DDQN-1 during

the training process. As seen here, this method results in a poor and unstable performance mainly

due to inefficient exploration and high-variance cost discussed in the previous section. Since the

penalties of violating the constraints are added without restricting the set of possible actions A(s),

when the agent explores with random actions, there is a high chance of violating the constraints

leading to very high cost compared to the proposed approach. Even though the choice of penalty
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Figure 4.2: Changes in the total cost of proposed approach during the training

Figure 4.3: Average ε used during the training
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factor influences the performance, similar unstable performance was observed with different penalty

factors. Compared to the proposed approach, the DDQN-1 does not converge to the optimal

solution even with a lot more training epochs (600 vs. 105). This makes the approach unsuitable

specially in on-line learning, where the agents needs to learn quickly.

Figure 4.4: Changes in the total cost of DDQN-1 during the training

Another version of the standard DDQN (DDQN-2) is also examined in which the forecasts are

added to the state space and the constraints are dealt by restricting the set of possible actions as in

Section 4.3.1.2. The difference between DDQN-2 and the proposed DDQN-Optimization is that

the results of the MV problem is not used for action selection and for measuring regretted cost. As

shown in the Figure 4.5, it is observed that the proposed approach converges faster to the optimal
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solution compared to the standard method. Also, it is observed that the cost in DDQN-2 method

oscillates more than the proposed method, which is caused due to the high-variance cost. In other

words, integrating the MV problem’s solution in DDQN resulted in more stable, lower variance Q

value approximation.

Figure 4.5: Changes in the total cost for proposed approach and DDQN-2 during the training.

Comparing the performance of DDQN-2 to DDQN-1, the results demonstrate that by restricting

the set of possible actions at each state and by adding the forecast of exogenous variables into the
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state space, the agent is able to learn the optimal policy in a more efficient and stable manner.

4.4.2.4 Performance Evaluation on Test Data:

Even though the proposed method performs well on the training data, there is a need to further

investigate the performance on the test data to see how well the approach can generalize on unseen

data. To do so, the learned Q network from training is used to generate charge/discharge schedule

solutions over the test days. The cumulative cost of the proposed approach and the benchmark

solutions is plotted in figure 4.6. It is observed that the proposed approach leads to lower total cost

compared to the deterministic MV problem. Another point to note is that quality MV solutions

rely heavily on the forecast accuracy of the uncertain parameters. However, the proposed approach

does not require such accurate forecasts.

Figure 4.6: Cumulative cost of the proposed solution over test days benchmarked against MV and
static solutions.
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4.4.2.5 Discussion on Effect of Large Action/State Space:

The action that the agent takes at each time step consists of actions for each of the EVs plugged

in to the smart chargers. Thus, considering only 3 possible actions for each EV (charge, discharge,

and do nothing), the action space is of size 3Nmax . As the number of EVs, Nmax increases, the

action space grows exponentially making it more challenging for the agent to learn the optimal

policy. To investigate the effect of action space, another training of the proposed approach in a

setting with Nmax = 6 is performed. Proportional to the increase in Nmax, the wind data is scaled

up with 1.5 factor and the size of hidden layers in Q network were also increased proportionally.

The results of the training for 200 epochs is plotted in Figure 4.7. Comparing the solutions with the

previously studied problem (Nmax = 4), as one would expect, the agent is having a more difficult

time to converge to the optimal solution. The cost of the training epoch even after 200 epochs is

just slightly better than the MV solution. Even though with more training epochs the agent can

reach better solutions, the number of required trials to converge increases significantly with large

number of vehicles.

Figure 4.7: Changes in the total cost of proposed approach during the training for the problem with
Nmax = 6.
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The curse of dimensionality issue for large action space leads us to the next section of this

chapter, where this issue is addressed by using a heuristic approach along with the proposed RL-

optimization.

4.5 Heuristic with RL-Optimization Approach

The proposed approach in the previous section demonstrated a great performance compared to

the MV problem and some of the challenges of the standard DDQN were addressed. However,

there is still the issue of curse of dimensionality when considering a large number of EVs (e.g.,

Nmax = 50→ |A| = 7.17× 1023). This section introduces a compact action-space representation

as well as a heuristic scheme that is applied in conjunction with the RL-Optimization method to

deal with large action space.

4.5.1 Proposed Approach

The general concept behind the proposed approach is to reduce the action space to a lower

dimensional action space from which the agent can learn more quickly. Then, by using a heuristic

method, the RL actions are mapped into the original action space, referred to as control actions.

Let us consider the scheduling problem from a slightly different perspective. At any decision

period, there are three possible actions for each vehicle. Given N t
ev EVs parked at time t, the

aggregator needs to determine which vehicles to charge, discharge, and remain untouched. The

number of possible combinations to do so is 3N
t
ev . The already proposed approach attempts to

determine the best action among the 3N
t
ev possible actions that results in minimum cumulative

cost. However, if the agent was supposed to determine the number of vehicles to charge (Nch) and

number of EVs to discharge (Ndc), then the number of possible actions would be less than Nmax
2

since both Nch and Ndc are bounded by Nmax. This would result in much lower action space.

For instance, considering 50 EVs, the size of the action space reduces from 7.17 × 1023 to less

than 2500. Once the aggregator knows how many to charge and discharge, a heuristic function

can be applied to assign each EV into one of the three groups of "charging", "discharging", and

"untouched", based on their charging priorities. The charging priority of an EV can be measured
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based on how much charge it requires (Ereq), and how many more periods it remains plugged-in

(T rem). Then, the Nch EVs with the highest charging priority can be charged, and Ndc EVs with

the lowest charging priorities or highest discharge potentials are assigned to the discharge group.

To further reduce the action space, a double-agent RL framework is proposed in which two

separate Q networks are used to learn the optimal policy. The first Q network, referred to as Qch,

attempts to learn the Q values associated with the number of EVs in charge mode (Nch), and

another network, referred to as Qdc, is used to learn the optimal number of EVs in discharge mode

(Ndc). The possible values for Nch is {0, ..., Nmax}. The same applies to Ndc. Thus, the output

layers of the Qch and Qdc networks are of size Nmax + 1.

4.5.2 Heuristic Scheme

At any time step t, the agents of the two networks take actions using action-selection (i.e., ε-

greedy). The actions here are not the control actions that define the charge/discharge schedule for

the EV fleet. The actions only tell the aggregator the number of vehicles to charge and discharge.

To determine the control actions, a heuristic approach is used. To use the heuristic scheme, the

charging priorities and discharging capability of EVs need to be determined. The charging priority

of EV i can be measured by variable τ chi defined as:

τ chi =
Ereq
i

T remi ∗ P c
i

(4.23)

The variable τ ch measures the level of flexibility in charging. When τ ch = 1, it indicates that

the vehicle should be charged with full-speed for all the remaining parking periods to reach the

required level. τ ch > 1 implies that the vehicle will not have the required level of charge upon

departure. When the battery is charged more than the desired level, Ereq is negative, thus τ ch < 0.

For negative values of τ ch, the vehicle has enough energy, and there is no urgency to charge. As

τ ch increases from 0 to 1, the need for charging increases. The discharging capability of the EVs

can also be measured by τ dc.
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τ dci =
Ereq
i − P d

i

(T remi − 1) ∗ P c
i

(4.24)

Highly correlated with τ ch, the variable τ dc measures the τ ch in the next time step if the vehicle

discharges in the current time step. The average of the two variables can be a good indicator of the

charge/discharge flexibility. A low value of that variable indicates high discharging potential and

a high value implies high charging need for the EV.

Algorithm 3 presents the heuristic scheme of assigning the EVs in each of the charging vs

discharging groups. The algorithm takes Nch, Ndc, Ereq, T rem, and P c as input and outputs the

control actions for all vehicle.

Algorithm 3 Heuristic Scheme
Input: Nch, Ndc, Nev, Ereq, T rem, and P c.
Measure the τ ch and τ dc for all EVs plugged in.
Set τ = (τ ch + τ dc)/2
Set ai = 0 ∀i ∈ {1, ..., Nev}.
Esort ← Sorted EVs based on τ values in descending order.
for i = Esort1 , ..., EsortNch

do
Set ai = 1

end for
for i = EsortNmax−Ndc, ..., E

sort
Nmax

do
Set ai = -1

end for
Output: {ai| i ∈ {1, ..., Nev}}

Two similar MDP frameworks are used to formulate the double-agent RL. The state space S as

defined previously in section 4.3.1.1 can be used; however, the state feature dimension becomes too

large if the EV-related feature contains data for individual EVs. The previously defined EV-related
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features are Ereq, T rem, and U .

Ereq = {Ereq
i | ∀i ∈ {1, ..., Nmax} (4.25)

T rem = {T remi | ∀i ∈ {1, ..., Nmax} (4.26)

U = {Ui | ∀i ∈ {1, ..., Nmax} (4.27)

4.5.3 Feature Engineering

With a large number of EVs, including the above features into the state space causes scalability

issues. Thus, there is the need to reduce the state space into a compact aggregated feature space

by applying feature engineering (FE). FE is usually done for two purposes. 1) dimensionality

reduction and 2) extracting meaningful features. The latter needs a domain knowledge to know

what features might be discriminative. The dimensionality reduction can be done by handcrafting

the features or by applying principle component analysis (PCA). For instance, the work in (191)

reduces the dimension of state space by considering the total charged energy of EV fleet instead

of including the charged energy of all EVs in the state space. By converting a Nmax-sized vector

into a single scalar, a large amount of information will be lost. Moreover, two completely different

states might have the same scalar value, making the agent unable to distinguish between the two

states. To give an example, if one uses the total energy required of the EV fleet instead of the

energy required for each of the EVs, then the agent is not able to distinguish between these two

completely different states: Ereq
1 = 10, Ereq

2 = 0 vs Ereq
1 = 5, Ereq

2 = 5. Assuming both EVs have

only one decision period left before they depart, and the charging power of both vehicles is 5kW,

then the optimal schedule to the latter case must be to charge both, while charging only EV 1 in

the first case is perhaps the optimal solution. Therefore, the imperfect state information caused by

feature extraction can lead to poor performance. Inspired by this issue, careful feature extraction

is required to reduce the dimensions without losing too much information.

Instead of converting the Nmax-sized vectors to scalar values (i.e., summation over the entire

vector), we propose to reduce the vector to a M -sized array, where M << Nmax. To do so,
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the parameter (i.e., Ereq) is divided into M intervals. Then, the count of EVs in each of the M

intervals simply generates the feature vectors. For instance, the energy required Ereq for any EV

can range from 0 (EV fully charged) to max(SOCcap) (drained battery), where max(SOCcap) is

the maximum of battery capacity for the EV fleet. The interval [0,max(SOCcap)] is then divided

into M slots. The generated M dimensional vector is filled with the count of EVs with Ereq values

in each slot. For instance, consider the case where Nmax = 3 and the charging requirement vector

Ereq = {10, 0, 3}. In a very simple case, let us assume M = 2 and the two intervals are [0, 5) and

[5,∞). Two vehicles fall into the first interval and one vehicle falls into the second interval. Thus,

the reduced feature vector becomes {2, 1}. By normalizing the vector, it becomes {0.66, 0.33}.

Note that this example considered only 3 vehicles, this method will be more advantageous when

applied to the problem with a large number of EVs (e.g., >100). Also note that regardless of number

of EVs, the new generated feature has M dimensions, but can still capture the most essential

information.

4.5.4 Algorithm

Applying the above approach on EV-related features (Ereq and T rem), the state space S used

in MDP frameworks is expressed as:

S = Xwp ×Xtime ×Nev × Ereq × T rem (4.28)

where Nev is the number of EVs plugged-in, and Xwp and Xtime are defined as before.

To learn the optimal real-time schedule (i.e., optimal Q values), the combined DDQN-Optimization

can be applied with a few modifications. First, there are two Q networks here that should be

parameterized separately with each one having a target network. Second, since the actions of RL

agents are numbers to charge and discharge, the set of possible actions should change accordingly.

At each time step t, the number of EVs to charge must definitely be less than the number of EVs

plugged-in. Thus, the possible set of actions for the Qch is {0, 1, ..., N t
ev}. Once the action (Nch)

is selected from the Qch network, the total number of EVs that can be discharged is bounded by
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N t
ev−Nch. Thus the set of possible actions for theQdc network is {0, 1, ..., N t

ev−Nch}. A complete

description of the proposed approach is presented in Algorithm 4.

Algorithm 4 Combined DDQN-Optimization with heuristic

1: Randomly initialize Q̂ch and Q̂dc weights (θ1, θ2) everywhere on S ×A. ∀s ∈ S,∀a ∈ A(s).
2: Set θ′1 = θ1 and θ′2 = θ2.
3: for each episode do
4: for t = 1, ..., T do
5: Run the first stage optimization model and find the optimal solution for the planning

horizon and store the current optimal action a∗opt,t and optimal cost c∗t .
6: Update the wind forecast and price forecast for the next few hours (using forecasting

tools).
7: Update st with the forecasts and optimal action a∗opt,t.
8: Limit the set of possible actions for Qch network. ach,t ∈ {0, 1, ..., N t

ev}.
9: With probability ε select an action based on optimality potentials (Equation 4.18). with

1− ε probability select greedy action.
10: Limit the set of possible actions for Qdc network based on the action selected (ach).

adc,t ∈ {0, 1, ..., N t
ev − ach,t}.

11: Find and take the control actions using heuristic scheme 3.
12: Observe immediate cost ct and the next state st+1.
13: Calculate the approximate regretted reward. c̃t = ct − c∗t .
14: Store transition (st, ach,t, c̃t, st+1) in Dch.
15: Store transition (st, adc,t, c̃t, st+1) in Ddc.
16: Sample two random minibatches of transitions (Fch and Fdc) from Dch and Ddc,

respectively. Fch = {(sl, alch, c̃l, s′
l)}#Fch

l=1 . Fdc = {(sl, aldc, c̃l, s′
l)}#Fdc

l=1

17: qlch → c̃l + γQ̂ch(s
′, arg mina′∈A(s′l) Q̂ch(s

′l, a′; θ); θ′) l = 1, ...,#Fch
18: qldc → c̃l + γQ̂dc(s

′, arg mina′∈A(s′l) Q̂dc(s
′l, a′; θ); θ′) l = 1, ...,#Fdc

19: Measure MSE losses on (qlch, Q̂ch) and (qldc, Q̂dc) for minibatches Fch and Fdc
20: Perform gradient descent to update parameters θ1 and θ2.
21: Copy θ′1 and θ′2 from θ1 and θ2 every B steps.
22: end for
23: end for

4.5.5 Experiments

To evaluate the performance of the proposed approach, the experiments with the same settings

as in section 4.4.2 is implemented. In this experiment, the total number of EV arrivals during the

day is set to 50 (instead of 4 in the previous experiment) and the wind production data is scaled up
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proportionally. The M value for the FE (Section 4.5.3) is set to 10. The same 300 days of training

data are used to simulate the training environment, and the results is tested for the next 65 days.

Another difference from the previous setup is that the degradation cost is removed from the cost

function. The reason is that including the battery degradation cost would add more complexity

in terms of defining the proper state features. The solution from the proposed approach is again

benchmarked against the solutions from MV and day-ahead static problems. Even though using

the heuristic scheme does not guarantee optimality, the results show that our heuristic method

combined with DDQN-Optimization approach leads to close to the optimal solutions. As seen in

the Figure 4.8, the heuristic method with RL-Optimization (the proposed approach in the figure)

converges more quickly than the standard DDQN. In the standard DDQN, the features are extracted

in an aggregated sense. For instance, the sum of all the energy required for the EV fleet is used

instead of the individual EVs. However, in the proposed approach, the features are extracted based

on method discussed in Section 4.5.3. The results proves that the proposed FE method lessens the

amount of information loss and leads to better solutions. Note that the ε reduces from 1 to 0.1 and

is set to 0.1 after that (after about 80 training epochs in Figure 4.9), meaning that 10% of the time,

the non-greedy actions are taken.
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Figure 4.8: Changes in the total cost of proposed approach during the training process a benchmark
solutions.

Figure 4.9: Average ε used during the training.
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Setting ε = 0 and taking the optimal actions from the trained Q networks, Figure 4.10 shows

the performance of the proposed approach on the test days benchmarked against MV and static

day-ahead solutions. As seen, the trained Q network using the proposed algorithm generalizes

well on the test days. The RL solutions and the MV optimization solutions are very close to each

other. In details, the total cumulative costs for the proposed approach and the MV optimization are

$4, 758 and $4, 817, respectively. Since using the heuristic approach does not guarantee optimality

and also because some important information is lost by extracting features, the optimal Q values

do not result in much better solutions than the MV problem.

Figure 4.10: Cumulative cost of the proposed approach over test days benchmarked against MV
and static solutions.

4.6 Discussion

Combining RL with optimization, the proposed approach improved the performance of RL

through incorporating forecasts into the state space, modifying action-selection based upon optimality
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potential, and reducing the variance in Q value approximations by calculating the regretted reward.

Moreover, the curse-of-dimensionality issue for large-scale scheduling problem was addressed

using a heuristic scheme. This section discusses the potential of the approach in online-learning

applications, the scalability of the proposed approach, and a few ideas for further improving the

approach.

Online Learning: The experimental results presented in Section 4.4.2 indicate that the proposed

DDQN-optimization approach can converge quickly and in a stable way to the optimal solution,

while the standard DDQN shows unstable convergence with a higher chance of getting trapped

into a local optimal. The advantages of this combined approach over standard DDQN will be even

more tangible in online learning, where the agent needs to learn the optimal policy through trying

different actions in real-time. The combined approach not only converges faster but also ensures

that when the agent is exploring the environment, the real-time cost is close to the optimal cost

in MV, whereas the standard DDQN explores with random actions which results in higher cost.

However, the fact that the RL approach requires so many trials to converge limits the application

of RL in online-learning. The two main reasons RL cannot converge quickly are lack of key

discriminative features and large action-state space. The previous section attempted to address

these issues to some extent but further improvement can be achieved by better feature engineering

and further limiting the set of actions.

Feature Engineering: Generally, feature engineering has two purposes, feature extraction and

feature reduction. In RL literature, the former is usually done in a subjective way; for instance,

based on the domain knowledge, and the latter is usually handcrafted (193; 191) or is performed

using unsupervised learning methods, such as auto-encoders and principle component analysis

(PCA). Handcrafted features might cause to lose a lot of important information about the system

model. Auto-encoder and PCA, on the other hand, are unsupervised methods in which the relation

between the features and the optimal actions is not taken into consideration. Hence, there exists

the need for feature extraction in a more supervised learning way. The need for further studies

on automated feature extraction and feature reduction techniques to overcome the dimensionality
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issue has been highlighted in papers (194; 165). Since only a few articles in the demand response

domain considered applying feature reduction to reduce the dimensionality of state space, here

a method for feature engineering in a more supervised way is suggested. In order to determine

the sets of features that would help the agent learn the optimal policy, one needs to identify the

specific features that are predictive of the optimal actions. Theoretically, this means that if we had

a labeled data set with optimal actions as the response and the state features as predictors, machine

learning tools should be able to accurately predict the response. Thus, to treat the feature extraction

in a supervised way, optimization methods using historical data can provide us with a data set of

optimal actions in each state. Including all possible features as predictors, supervised feature

reduction techniques can be used to extract or reduce the set of features that are discriminative of

the optimal action.

Moreover, in the EV charge/discharge scheduling problem, since the agent needs to learn

the dynamics of the environment, important predictive features need to be extracted that can

capture the system dynamics (wind, price, future arrivals). Price signals are usually demand/time-

dependent. Assuming that no information on external grid demand is available, only time-relevant

features can be included in the state space. Price signals usually have a daily pattern, thus time-

independent information such as "time of day" and "day of week" are examples of good features.

In addition, to better capture time dependencies of wind and price, sequential recurrent neural

networks (195) (e.g., LSTM) can be trained on past data to extract more predictive features; thereby

improving the performance of RL.

Discussion on Scalability: The feature engineering technique presented in this chapter is independent

of the number of EVs, so it can be applied on larger problems as well. However, the heuristic EV

fleet charging/discharging scheme is dependent on the capacity of the parking lot. In other words,

the size of the action space for the two Q networks is Nmax + 1. Thus, considering 50 EVs there

are 51 possible values for actions Nch and Ndc. Although with enough training the agent will be

able to learn a good policy, the training process would be really slow for large number of EVs (i.e.,

1000 EVs). Since the training process needs to be done only once in a simulated environment,

100



the scalability issue is somehow alleviated. Moreover, with a small twist, the action space can

be defined independent of Nmax. Instead of deciding how many vehicles to charge or discharge,

the agent decides what percentage of EVs to charge and discharge. Thus, the interval [0, 1] can

be discretized into Np percentages, which is independent of the number of EVs. For instance,

considering a system with 10000 EVs, the percentage of EVs to charge can be chosen from the

set {0, 0.5, 1, 1.5, 2, ..., 100} with 200 possible actions. Then, simply the percentage is translated

to the number of EVs to charge by multiplying the percentage by Nev,t at any time step t. Thus,

the size of the action space is reduced significantly. The true optimal Nch,t may not be among the

possible values, but the agent can reach a very close-to-optimal solution. Increasing the size of Np,

more optimal solution can be reached with the cost of higher training time. Thus, one must find

the right compromise for the percentage discretization and the training time.

Limiting the set of actions: In this chapter, a state-dependent action space based on the feasibility

of the action was defined. However, we can further limit the set of actions by removing not only

those actions that are infeasible (e.g., violating the charging requirement), but also the actions that

are very unlikely to be optimal actions. For instance, if there is only one EV in the system with

high required energy and the available wind is high, then any action other than charging the EV

is actually a bad decision, even if all actions are feasible. The limitation of this method is that

it requires a good amount of prior knowledge about the possible optimal actions, and there is no

guarantee that a perceived bad decision is actually non-optimal. Another approach to limit the set

of actions is to use the labeled data set of optimal actions and states of past data. Then, machine

learning tools can train on this data set to determine the probability of being an optimal action

in a given state. Using the trained model, if at any state, the probability of an action to be an

optimal action is very low, that action can be removed from the set of possible actions. However,

the threshold probability to determine low-probability actions is a hyper-parameter that needs to

be tuned.
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4.7 Summary & Conclusion

In this chapter, the charge/discharge scheduling is formulated as a MDP with unknown state

transition probabilities. A combined model-free RL with mean-value optimization is proposed to

further improve the quality of solutions from the deterministic scheduling problem with the use

of information from optimal solutions in the MV optimization model. The issue of high-variance

cost in EV-wind environment is addressed by introducing the regretted cost. The action selection

method is modified based on the potential to be the optimal action. Furthermore, a state-dependent

action space is used to limit the set of actions at each state based on the model constraints and

feasibility of the action, which addresses the challenges of the RL approach with large action

space. Also, the point forecast of wind and the price is included in the state space. A combined

DDQN-optimization is applied on simulated environment using historical data to approximate the

optimal action-value function. Then, the optimal actions from the optimal action-value function is

selected for real time scheduling. The simulation results demonstrate that the proposed algorithm

outperforms the standard DDQN method in terms of convergence speed and solution quality, and

achieves a better solution than the deterministic MV optimization. The proposed combined RL-

optimization approach can be applied in other multi-stage stochastic problems, where constructing

the scenarios to model uncertainty is the real bottle-neck in solving the problem or it is computationally

too expensive to be practical for real-time implementation. Finally, a heuristic EV fleet charging/discharging

scheme is integrated with the proposed RL-optimization approach to reduce the size of the action

space that can be applied to large-scale problems. The proposed approach is tested on a scenario

with 50 EVs and demonstrated a great performance compared to benchmark solutions. Further

studies are required to evaluate the performance of this approach compared to model-based SP

approach with scenario reduction techniques in terms of quality of solutions and computational

time.
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5. SUMMARY & CONCLUSION

5.1 Summary

This dissertation focuses on the wind integration support by leveraging the flexibility of large

number of electric vehicles in the charging process. First, a review of recent approaches to

accommodate high integration of wind energy is provided in Chapter 2. In Chapter 3, optimization

algorithms for EV charge/discharge scheduling in a deterministic case are proposed to support

wind energy integration for both unidirectional and bidirectional V2G scenarios. The main contributions

of Chapter 3 are to design the scheduling algorithm that aggregators can exploit the presence

of advanced communication technology in smart grid, flexibility of EV drivers, and the V2G

technology to support high integration of wind energy into the power system. The approach

here is based on optimal scheduling of a large number of EVs depending on the availability of

EVs and preferences, needs and flexibility of their owners. To mitigate the barriers in people

participation in V2G, the battery degradation, minimum charging requirement for urgent needs,

and/or financial incentives for the EV drivers are considered. Furthermore, a multi-objective

optimization is considered to maximize wind utilization, minimize the demand from conventional

generators, and minimize charging cost while satisfying the driver needs and preferences. Simulation

of the proposed algorithms for different scenarios of EV characteristics, arrivals, departures, and

charging requirements are performed to check the quality of solutions and schedules. The results

show significant reductions in charging cost as well as wind curtailment compared to the uncontrolled

charging scenario.

The EV charge/discharge optimization problem is further extended in Chapter 4 by considering

the uncertainty in wind and price forecasts. A model-free reinforcement learning integrated with

the rolling-horizon mean-value optimization is proposed where any prior system information is not

required. Integrating the results of the mean-value problem into the RL algorithm (DDQN) enables

the agent to learn more quickly and is more stable compared to the standard RL methods. The
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simulation results in a parking lot with 4 EVs showed the effectiveness of the proposed approach

as it achieved better performance than the mean-value optimization model. However, RL suffers

from the curse-of-dimensionality as the state-action space becomes too large when there is a large

number of vehicles in the system. To alleviate this issue, a reduced action-space MDP framework is

proposed in which the reduced action space is mapped into the original action space by a heuristic

algorithm. Even though using heuristic approach does not guarantee optimality, the experimental

results show that the proposed algorithm can reach close-to-optimal solutions.

5.2 Limitations & Future Research

In this dissertation, only the flexibility of EV owners in the charging process in considered

for wind energy support. However, in the power system, the system operators have many other

flexible resources at their disposals, such as storage devices, flexible conventional generators,

demand response for multiple demand resources (e.g., HVAC systems and smart appliances), and

other options. Thus, further studies are required to quantify the potential of each of the flexible

resources (individually or integrated) for wind energy support and the cost of implementing each

resource. Moreover, another suitable and widely used renewable energy source, solar energy, is not

considered in this work. The wind and solar options have completely different generation patterns,

and further studies are required to expand the models to support integration of solar energy and

to investigate the effect of V2G on solar energy. Furthermore, different pricing mechanisms and

incentive frameworks need to be compared.

One limitation of this work is the actual EV commuting data. The arrivals of EVs are simulated

using the commuting behavior of all vehicles including ICEs. The commuting behavior and the

driving range of EVs differ from other vehicles. Moreover, the actual data on EVs parking time,

their initial state of charge, and their charging requirement was unattainable at the time of this

research. Thus, the real-life charging requirements and commuting behavior might be inconsistent

with the simulations. This can be interpreted as another advantage of the model-free RL approach

since it can adapt to different modeling mechanisms and do not rely on accurate model for the

distribution of the random variables. Moreover, this work studied a micro grid connected to an
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external grid where the flow of energy was unidirectional coming only from the external grid.

However, the micro grid can sometimes be used as reserve for the external grid and the excessive

wind energy and/or the energy discharged from the EVs can be sold to the external grid. So future

works can consider the bidirectional flow of energy between the two sources, which could result

in further reduction in wind curtailment and more revenue for the owners.

Since RL is a quickly progressing field and new RL methods are being developed every year,

it is important to investigate the application of state of the art RL algorithm in this domain. Even

though the heuristic scheme proposed in Chapter 4 is able to lower the size of the action space

significantly, the reduced action-space is still dependent on the number of EVs in the parking

lot. The performance of the proposed approach should be tested for large-scale problems and

future work should focus on developing a heuristic scheme independent of the number of vehicles.

Another approach to deal with large number of EVs could be to cluster the EV fleets into a small

set of groups based on their charging priorities. Then, the same action is taken for the EVs in each

group. The issue with that approach is that clustering is an unsupervised learning method, hence,

the number of EVs in each group is determined purely based on their charging needs, which can

result in high cost solutions. Therefore, future work to investigate the clustering approach in a

more supervised way is required.
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