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ABSTRACT

The collective oscillation of conduction band electrons in metal nanostructures, known as the

localized surface plasmon resonance (LSPR), can be engineered to absorb photons at desired wave-

length. Plasmonic nanostructures have received significant research interests not only because this

flexible optical response tailorability, but also because the hot carriers excited within plasmonic

metals after the non-radiative decay of LSPR have remarkable photocatalytic performance. There-

fore, the dynamics of hot carriers and the behavior of hot carriers at steady state are of great interest

in the field of photodetection, photocatalysis and optical power conversion devices.

In this dissertation, my study is divided into three distinct yet connected projects. In the first

project, a free-electron jellium model is used to calculate the energy distribution of non-thermal

carriers. Additionally, a theoretical framework describing tunneling phenomena of carriers in

a metal is derived. With the electric field provided by the full-wave optical simulation (FDTD

method), an asymmetric plasmonic tunnel junction is proposed and a 20% output energy efficiency

is calculated. The second project studies the Raman scattering from plasmonic metals, in which a

two-temperature anti-Stokes Raman thermometry is developed. Within this thermometry, not only

the material temperature but also a subpopulation of hot carriers with energy distribution described

by a second temperature, electronic temperature, is accurately probed. Furthermore, we proposed

that the inelastic scattering from non-thermal carriers contributes in the Stokes Raman scattering.

A good agreement between theory and experiment is achieved and the plasmon dephasing time,

which dictates the decay of LSPR, is extracted from steady state measurement. To prove the pres-

ence of hot carriers at steady state, an independent thermionic emission experiment is conducted

in the third project. Patterned gold nanostructures are fabricated using electron-beam lithography,

and a thermionic emission device consists of gold nanostructures and an ITO electrode is con-

structed. The current-voltage characteristics not only proves the presence of hot carriers but also

tells the information about the size and energy distribution of hot carriers.

The study of hot carriers at steady state is crucial in designing hot carrier devices with bet-
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ter performance. The results and analyses presented in this dissertation shall provide insightful

perspective of hot carrier behavior at steady state and broaden the horizon of hot-carrier-mediated

photocatalysis and light-harvesting applications.
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NOMENCLATURE
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Te Electronic Temperature
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h̄ Reduced Planck’s Constant h̄ = h
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1. INTRODUCTION

1.1 Overview

Similar but not the same as plasma in space, plasmon is collective movement of electrons in-

side metallic particles. The excitation of a localized surface plasmon resonance (LSPR) occurs

when incident electromagnetic radiation couples to the coherent oscillation of conduction elec-

trons in a nanostructured metal.1 Because of its exceptional ability to couple far-field radiation and

concentrate into sub-wavelength volumes well below the diffraction limit,17 and produce strong

near-fields which result in extreme electrical field enhancements,18 plasmon is becoming an essen-

tial element in nanophotonics. These excellent properties boost the novel applications including

ultrasensitive sensing,19–21 photothermal cancer therapy22,23 and improved photovoltaic devices.24

The lifetime of the coherent LSPR oscillation is very short, on the order of femtoseconds.25

LSPR oscillations dephase (decay) either radiatively, observed as photon scattering, or nonradia-

tively, observed as photon absorption.26,27 Recently, it has been proposed that the creation of a

chemical interface (i.e., chemical bonds between the metal surface and another species) also in-

fluences the optical properties of plasmonic nanoparticles, which has been referred as chemical

interface damping (CID).28–33 The electronic states associated with the interfacial bonds can be

involved in the coherent LSPR oscillation and decrease the coherent LSPR lifetime.34–37 The dom-

inant LSPR dephasing pathway is sensitive to the composition, size, geometry and environment of

the metal nanostructure.

The radiative decay channel was extensively utilized in the past years for optimization, and has

been explicitly explored for improved photovoltaic devices.24 Recently, a lot of research efforts

have been made to explore the hot carriers generated through the nonradiative decay in many exper-

iments.3,38 Through nonradiative decay channel, the LSPR decayed into excited electrons or holes.

In the situation where the energy difference between the excited electrons or holes and the Fermi

level is larger than the energy of the relevant thermal excitation, these carriers are referred to as
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hot electrons or holes. These hot carriers can be used to induce chemical reactions on the surfaces

of plasmonic nanostructures which will otherwise be very energetically demanding.39 Various ex-

periments including hydrogen dissociation,40,41 water splitting42–45 and ammonia decomposition46

have been demonstrated, thus boost the growth of this new area of plasmon-mediated photocatal-

ysis.47,48 Not only hot carrier through non-radiative decay but also the near field effect (CID) pro-

motes demanding photocatalytic reactions. Experiments have been conducted to distinguish these

two effect.49 Additionally, plasmon-mediated hot carriers also offer a novel mechanism to convert

optical energy directly to electric current,50,51 which can be used for developing alternative solar

energy harvesting device,9,16,52 or for designing efficient photo-detectors.53,54

Despite fruitful experiments of plasmon-mediated hot carrier devices, several limitations have

been identified. For efficient emission, the hot carriers are required to possess sufficient energy

compared to the potential barrier between metal nanoparticles and surrounding media, i.e., ad-

sorbed molecules or semiconductors.55,56 In addition to the injection-barrier limitation, the escape

cone restriction states that only a small amount of hot carriers with correct momentum are injected,

and the overall efficiency is strongly depended on the momentum matching criteria.5,57 Further-

more, in order to optimize the performance of plasmon-mediated hot carrier devices, it is critical

to fully appreciate the energy distribution and lifetime of hot carriers. Though the lifetime of hot

carriers is extensively studied through ultra-fast studies such as transient absorption spectroscopy,

the understanding of plasmonically generated hot carriers under conditions of steady state at rel-

atively low power continuous wave (CW) optical excitation that is more directly comparable to

sunlight are rarely explored.

In this dissertation, I adopted and modified a free-electron jellium model to calculate the hot

carrier energy distribution.7,58 The model is based on exploring the conduction electrons of the

metal as free moving electrons and then analyzing the plasmon-induced dynamics using Fermi's

golden rule. By using this model, we calculated the number of hot carriers generated per unit time

and we found out that the number and the energy distribution of these hot carriers strongly depend

on the size of plasmonic nanostructures and the material temperature. Additionally, by introducing
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quantum tunneling phenomena, we proposed a novel strategy to utilize the hot carriers even though

their energy is not sufficient to overcome the surface potential barrier.

Furthermore, we developed a Raman spectroscopy technique to quantify the size and energy

distribution of plasmonic hot carriers at steady state. An anomaly relationship between the size

and energy distribution of hot carriers is observed by this Raman thermometry. Interestingly, we

established an unambiguous connection between hot carriers and the full-range Raman spectra of

plasmonic metals. We then proposed that the inelastic light scattering is from the non-thermal car-

riers after LSPR dephasing. At last, we designed a thermionic emission devices utilizing plasmonic

hot carriers. The highly energetic hot carriers are thermionic emitted from metal nanostructures

and collected from a transparent ITO electrode. The J − V characteristics of thermionic emission

proved the presence of plasmonic hot carriers. Further collaborated with Raman spectroscopy, the

photophysics of hot carriers at steady state is revealed.

1.2 Metal Nanoparticles and Localized Surface Plasmon Resonance

Metal nanoparticle (NP) has received significant research interest for decades as the concept

of nanophotonics thrive. The potential benefits provided by metal NPs are due to the strong sub-

wavelength optical field concentration that results from the coupling of resonant oscillations of

free electrons in the metal, termed plasmons, with the incident light field. This coupling is due to

the unique dielectric constant of coinage metals. In the Drude model the conduction electrons are

treated as a free electron gas.59,60 The response to an electric field is obtained by solving the equa-

tion of motion for a single electron, and multiplying by the number of electrons per unit volume,

This yields the following expression for the dielectric constant:59,60

ε(ω) = 1−
ω2
p

ω(ω + iγb)
(1.1)

where ωp is the plasma frequency and γb is the bulk damping rate that is related to the mean free

path l of the electron by γb = vF/l where vF is the Fermi velocity. And the plasma frequency is

given by ωP = (ne2/ε0m)1/2, where n is the electron density, ε0 is the vaccum permittivity, and m
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is the effective mass of the electrons.

For noble metals like Ag and Au, the Drude model gives a good description of the dielectric

constants in the near-IR region of the spectrum, but it breaks down in the visible to near-UV region

because of interband transition.61,62 The onset of the interband transitions is at 2.4 eV for gold and

3.9 eV for silver.63 The interband transitions gives a frequency dependent damping, and can be

included in the dielectric constant by adding an extra term.62,64

ε(ω) = εib + 1−
ω2
p

ω(ω + iγb)
(1.2)

where εib(ω) is the interband contribution. Figure 1.1 shows a plot of the real (ε1) and imaginary

(ε2) components of the dielectric constant for bulk Au, where the low frequency response has been

fit to the Drude model using eq 1.1.62 It is noted that the imaginary component of the dielectric con-

stant is related to damping, and the presence of interband transitions causes a significant increase

in damping at energies greater than 2.4 eV.62,63

Figure 1.1: Real and imaginary dielectric constant data for gold. The dashed lines show a fit to
the data using the Drude model (eq 1.1). The insert shows a cartoon of the band structure of gold.
Adapted with permission from Hartland 1 . Copyright 2011 by ACS Publications.
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One of the most extensively exploited features of metallic NPs is the LSPR, which refers to the

collective oscilaltion of electrons in the metallic NPs excited by the incident photons at the reso-

nant frequency.1 LSPR is a unique properties of coinage metals and many metal nitrides, which

can be understood from dielectric constants. If we treat materials as components in an electric

circuit (Figure 1.2), then materials with positive real dielectric constant behave as capacitors and

materials with negative real dielectric constant are inductors.2 Since the imaginary dielectric con-

stant of coinage metals is not zero, the loss is represented by a resistor. Therefore, the plasmonic

material which usually has negative real dielectric constant along with its surroundings (surround-

ings usually have positive dielectric constant) may be treated as a nano LC-circuit, and the LSPR

is the resonance frequency of the nano-circuit.

Figure 1.2: A nanoparticle, with subwavelength size, when illuminated by a monochromatic op-
tical signal, can effectively play the role of a lumped optical circuit element, depending on the
dielectric constant of its material. Adapted with permission from Engheta 2 . Copyright 2007 by
AAAS.

Therefore, plasmonic NPs also offer the ability to tune their optical properties based on com-

position, shape, and size.65 The tunable light-matter interactions offer possibilities for photon har-
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vesting applications such as photodetection,23 photovoltaics,24 artificial photosynthesis,66 photo-

electrochemistry,67 and photocatalysis.68

1.3 Dephase of LSPR and Plasmon-Mediated Hot Carriers

The lifetime of the coherent LSPR oscillation is very short, on the order of femtoseconds.25

LSPR oscillations dephase (decay) either radiatively, observed as photon scattering, or nonradia-

tively, observed as photon absorption which is followed by the generation of hot carriers (Figure

1.3).3 Carriers not in thermal equilibrium with the lattice phonons in a material are frequently re-

ferred to as hot carriers. The dominant LSPR dephasing pathway is sensitive to the composition,

size, geometry, and local environment of the metal nanostructure.

Figure 1.3: Localized surface plasmons can decay radiatively via re-emitted photons or non-
radiatively via excitation of hot electrons. Adapted with permission from Clavero 3 . Copyright
2014 by Springer Nature.

In many plasmon-mediated energy conversion technologies, it has been hypothesized that sur-

face plasmons dephase to produce hot carriers in the metal, which migrate to interfaces and then

transfer to the surrounding environment. Based on this hypothesis, it has been suggested that small

plasmonic nanoparticles should be more efficient than large nanoparticles for certain plasmon-
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mediated photon energy conversion processes.45,69–71 This is because smaller plasmonic nanos-

tructures primarily extinct light through photon absorption, resulting in a higher density of hot

carriers compared to larger plasmonic nanostructures, where plasmon dephasing occurs primarily

due to radiative decay (Figure 1.4).8

Figure 1.4: Mie efficiency of (left) 100 nm diameter gold NP and (right) 150 nm diameter gold NP.

The dynamic of hot carriers is commonly investigated using ultrafast pump-probe studies. Ul-

trafast pump-probe measurements of plasmonic nanostructures use a high-intensity laser pulse to

excite a large number of electrons and measure the optical response as a function of time using

a delayed probe pulse.1,72 The typical signal observed in these experiments is an initial fast rise

(10− 100 fs) attributed to electron-electron scattering that converts fewer high-energy excited car-

riers into several more lower-energy carriers, followed by a slower decay (100 fs to 1 ps) attributed

to electron-phonon scattering.

Figure 1.5 schematically shows the typical electron distributions as a function of time in

such ultrafast experiments.4 This is phenomenologically described by a "two-temperature model"

(TTM) that tracks the time dependence of electronic and lattice temperatures, Te and Tl respec-

tively (eq 1.3). It should be noted that the initial excitation generates an non-thermal carrier distri-
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bution that is far from equilibrium for which temperature is not well-defined.

Ce(Te)
dTe
dt

= −g(Te − Tl) (1.3a)

Cl
dTl
dt

= g(Te − Tl) (1.3b)

where Cl is the lattice heat capacity, Ce(Te) = γTe is the temperature dependent electronic heat

capacity,59,60 and g is the electron-phonon coupling constant.73,74

Figure 1.5: Typical time scales for the excitation of hot carriers and their subsequent relaxation.
Adapted from Prineha et al. 4 .

1.4 Plasmon-Mediated Hot Carrier Applications

As discussed in section 1.3 that hot carrier generation through non-radiative dephase of LSPR

is a very promising energy conversion process. The final step of plasmon-mediated hot carrier

applications is the injection of the carriers into molecules or adjacent semiconductors to drive

chemical reactions. In this section, I review two major hot carrier injection process: solid-state

collection (metal-semiconductor interface) and molecular injection (metal-adsorbates interface).
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1.4.1 Solid-State Collection

The collection of photo-excited hot carriers over a metal-semiconductor Schottky junction, has

been studied extensively and is well-described by the Fowler theory for internal photoemission.75

The Fowler yield estimate results from a semiclassical model of electrons overcoming an energy

barrier as shown in Figure 1.6.5 Carriers with energy less than the barrier height are reflected.

For carriers that cross the barrier, only the normal component of the momentum changes at the

interface, which implies that the tangential momentum must be small enough that its kinetic energy

contribution in the semiconductor must be less than the excess energy over the barrier; carriers

with greater tangential momentum will be reflected (analogous to total internal reflection of light).

Therefore, only carriers in an "escape cone" around normal incidence can cross the barrier, and the

angle of this cone increases with carrier energy starting from zero for carriers with the threshold

energy to cross the barrier.

Figure 1.6: (a) Internal photoemission band diagram for hot electrons emitted from a metal into
an n-type semiconductor. (b) Schematic of isotropic distribution of hot electron momentum on a
sphere in momentum space with a limited escape cone. Adapted with permission from Leenheer
et al. 5 . Copyright 2014 by AIP Publishing.

The collection of plasmonics hot carriers has been demonstrated in insulators as well as semi-

conductors, and the built-in electric fields in the Schottky junction assist in the collection of the

emitted hot carriers.23,76,77 Fowler theory remains qualitatively valid regardless of the band struc-

ture of the semiconductor or insulator,78,79 but the magnitudes can differ substantially for materials
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with high density-of-states (DOS) near the band edges. Experimentally, roughened surfaces can

overcome "escape-cone" restrictions by providing tangential momentum for the carrier injection.54

1.4.2 Molecular Injection: Plasmon-Enhanced Catalysis

Hot carriers generated by plasmon decay can also inject directly into molecules adsorbed at

the surface, directly driving chemical reactions for photochemical energy conversion. Surface

photochemistry, chemical reactions driven by photoexcited carriers at metal surfaces, has been

well studies in many contexts including solar energy conversion and atmospheric chemistry.80,81

In particular, "semiconductor-free" water-splitting devices using only plasmonic hot carriers have

been demonstrated recently.82

The basic proposed mechanism for plasmon-driven chemistry involves the injection of an elec-

tron from the metal into an anti-bonding state of an adsorbed molecule, causing either desorption

or the dissociation of a bond in the adsorbate as shown in Figure 1.7.83,84 Variants of this mech-

anism can explain the observed chemical activity of various metal nanostructures, as discussed in

detail in a recent review article.6 The adsorbate forms a transient ion strongly coupled to the plas-

monic particle, and the relevant potential energy surface is that of an excited state of the adsorbate-

plasmonic particle complex. Theoretical calculations of the excited-state energy landscape using

first-principles beyond-ground-state electronic structure methods are therefore essential for pre-

dicting such mechanisms.

A second class of possible mechanisms involves plasmonic enhancement of transitions between

states localized on the adsorbate.85,86 Here, the involved excited states are primarily those of the

adsorbate, and the metal nanostructure serves to enhance the matrix element for the transition by

plasmonic enhancement of the surface electric field. Both types of mechanisms require low-lying

molecular orbitals on the adsorbate, but the second class does not rely on alignment of adsorbate

levels with those of the metal or on hot carrier transport in the metal.
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Figure 1.7: (a) Thermal activation for the dissociation of a diatomic molecule. (b) Electron-driven
dissociation of a diatomic molecule. (c) At high photon flux, subsequent electron injections can
occur before the molecular vibration has fully dissipated. (d) Electron-driven reactions (top), for
example on plasmonic metal nanoparticles, can potentially target certain chemical reaction path-
ways that are otherwise unselective in purely thermal reactions (bottom). Adapted with permission
from Linic et al. 6 . Copyright 2015 by Springer Nature.

1.4.3 Outlook

Generation of hot carriers in plasmonic nanostructures is a very promising energy conversion

mechanism, and it has found interesting applications in photovoltaic and photocatalytic devices.

Four steps are identified in a plasmonic hot carrier driven processes: plasmon excitation, hot car-

rier generation (non-radiative decay), carrier transport and collection, which builds a complete

microscopic picture.

Hot carriers generated by plasmon decay are limited by the photon energy. A given energy-

conversion process is usually associated with a characteristic energy, for instance, semiconductor

band gap in photovoltaics, such that lower-energy photons are incapable of driving the process,
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while the excess energy of higher-energy photons is wasted. The efficiency of solar energy conver-

sion could be improved by harvesting the energy of these higher and lower energy photons. The

important link between hot carrier dynamics and the overall performance of hot carrier devices is

the energy distribution of hot carriers at steady-state, which is rarely explored. The development

of new techniques to investigate the energy distribution of hot carriers at steady-state is therefore

important to optimize plasmon-mediated hot carrier applications.
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2. QUANTUM TUNNELING PHENOMENON OF NON-THERMAL CARRIERS

2.1 Plasmon-Mediated Non-Thermal Carrier Generation

As discussed in Chapter 1 that hot carriers are generated through non-radiative decay of LSPR.

Although direct excitation of hot carriers on metal surfaces is possible and has since long been

exploited in the field of surface femotochemistry,87 the utilization of surface plasmon decay to

increase the efficiency of the hot carrier generation process is relatively novel. The basis for this

dramatic enhancement is the large plasmon-induced field enhancement and the dramatically en-

hanced light harvesting capability of the collective plasmon excitation.18 However, in order to

exploit these advantages we need to understand the physical process of plasmon-induced hot car-

rier generation. In this section, we will review a simple model that describes the generation of

plasmon-induced hot carriers in metal NPs.7,69 *

The theoretical framework previously developed by Manjavacas et al. 7 and Govorov et al. 69 is

a jellium model which described the conduction electrons of the metals as free particles and then

analyzed the plasmon-induced dynamics using Fermi's golden rule.88

Γe(εf , ω) =
4

τ
f(εi)[1− f(εf)]{

|Mfi(ω)|2

(h̄ω − εf + εi)2 + h̄2τ−2
+

|M∗
if(ω)|2

(h̄ω + εf − εi)2 + h̄2τ−2
} (2.1)

where f is the Fermi-Dirac distribution function, in which for simplicity is commonly assumed

at zero temperature, τ is the plasmon dephasing time, Mfi =
∫
drV (r, ω)ρfi(r) is the transition

matrix element, and a factor of 2 to account for the spin is included. ρfi(r) = eΨ∗
f (r)Ψi(r) where

e is the elementary charge, subscript i and f stand for initial and final states, and V (r, ω) is the

plasmon-induced potential. It is noted that eq 2.1 contains two Lorentzian functions of width τ−1,

which is further discussed in Chapter 3.

The model presented here involves two approximations: (i) the electrons are assumed to remain

*Section 2.3 is adapted with permission from Wu, S.; Sheldon, M. T., Optical Power Conversion Via Tunneling of
Plasmonic Hot Carriers. ACS Photonics 2018, 5 (6), 2516-2523. Copyright 2018 ACS Publications.
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in their ground state even when a plasmon is excited; and (ii) the plasmon is assumed to lose only

a single plasmon quantum during each hot carrier generation process. These assumptions are

realistic given the short lifetime (≈ 10 fs) of the plasmon excitation, the large cross section for

plasmon excitation that results in plasmons being excited to high quantum numebrs n, and the

sequential nature of nonradiative plasmon decay.

Figure 2.1(b) shows the total number of hot electrons generated per unit of time and volume as

a function of the frequency of the external illumination. As expected, the generation rate follows

the absorption profile of silver nanosphere (Figure 2.1(c)). The results plotted with red lines in

Figure 2.1(b) have been obtained using the free electron wave functions and energies (eq 2.1).

Interestinly, the inclusion of many-body interactions (blue lines) using density functional theory

(DFT) only has a minor impact. Therefore, the exchange-correlation effects can be ignored at the

present level of approximation. One expects to find even better aggrement in materials with larger

workfunctions and smaller plasmonic energies, for which the relevant electronic states lay deeper

in the potential well.

Keep in mind that in order to optimize the hot carrier applications, it is equally important

to investigate the total number of carriers generated at a certain frequency, but also their energy

distribution. This is shown in Figure 2.2, where the energy of the hot carriers generated in gold

nanoparticles with different diameters are analyzed.8 It turns out that the size of nanoparticles

plays a crucial role in hot carrier generation. In this case, larger diameters produce less energetic

carriers and vice versa. The origin of this behavious can be traced to the density of electronic states

of these systems. Specifically, systems with a finite number of electrons have a finite number of

energy levels and therefore, a discrete density of states.

Furthermore, since the total amount of energy dissipated in the carrier generation is fixed by the

optical absorption of the nanoparticle, situations in which hot carriers are generated with energies

close to the Fermi level must be associated with larger production rates. Similarly, high energy

non-thermal carriers are generated in smaller numbers. This is clearly corroborated by the results

shown in Figure 2.2.
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Figure 2.1: Plasmon-induced hot electron production in a silver nanoparticle. (a) Schematic rep-
resentation of the system under study. (b) Number of hot electrons generated per unit of time and
volume as a function of the frequency of the external illumination. (c) Normalized absorption for
the silver nanoparticle calculated in the quasi-static limit. Adapted with permission from Manjava-
cas et al. 7 . Copyright 2014 by ACS Publications.

2.2 Modeling Non-Thermal Carrier Generation in Gold Nanocubes and Films

2.2.1 Modeling Framework

Since the jellium model discussed in previous section is a free-electron model, the wavefunc-

tion of electrons in gold nanocubes is approximated as particles in 3D box. The Schrödinger

equation of electron state is described by three quantum numbers (nx, ny, nz) and the correspond-

ing energy is written as

Ψ(x, y, z) = (
23

LxLyLz

)1/2 sin(
πnxx

Lx

) sin(
πnyy

Ly

) sin(
πnzz

Lz

) = ψnx(x)ψny(y)ψnz(z) (2.2a)

E(nx, ny, nz) =
h̄2π2

2m
(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

) (2.2b)

where Lx, Ly and Lz are dimensions of plasmonic nanocubes in x, y and z directions.

Before we move to the jellium model (eq. 2.1), we need to closely investigate the density of
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Figure 2.2: (a) Calculated distribution of excited electrons and holes in the Fermi sea of a nanopar-
ticle. (b) Closer look at the plateau region with the hot electrons generated by quantum surface-
assisted transitions. Adapted with permission from Hartland et al. 8 . Copyright 2017 by ACS
Publications.

states (DOS) simulated from eq. 2.2, which is shown as blue bars in Figure 2.3. Expectedly, the

quantized DOS (blue bars) for D = 10 nm gold nanocube agrees well with the classical-calculated

DOS (red line).60 One may imagine that as the dimension of gold nanostructures increases, the

quantized DOS shall approach the classical result, which is another example of Bohr correspon-

dence principle. Additionally, the Fermi energy of D = 10 nm gold cube is slightly greater than

bulk gold (5.5 eV),89 which is due to the discreteness nature of quantum mechanics.

Keep in mind that the key component in eq 2.1 is the transition matrixMfi =
∫
drV (r, ω)ρfi(r).

Since the dimension of plasmonic nanocube under study is smaller compared to the wavelength

of incident illumination, we can assume the quasi-static condition that the induced electric field

is uniform and does not vary spatially inside the plasmonic nanocube. Therefore, the induced

potential V can be found by
−→
E (ω) = −∇V (r, ω) or V = r

−→
E .

With the information of induced potential, either calculated using the quasi-static assumption
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Figure 2.3: Quantized DOS (blue bars) of D = 10 nm gold nanocube and Classical DOS of bulk
gold.

or simulated through a electromagnetic solver (Finite Element Method or Finite-Difference-Time-

Domain method), one may find the non-thermal carrier generation rate of plasmonic nanocubes is

(see Appendix for details):

⟨Ψ∗
f |eV (r)|Ψi⟩ =

2nx,iLx

−→
E

π2(n2
x,f − n2

x,i)
δny,i,xy,f

δnz,i,xz,f

[
1

(nx,f + nx,i)
(1− cos(π(nx,f + nx,i))) +

1

(nx,f − nx,i)
(1− cos(π(nx,f − nx,i)))] (2.3)

It should be noted that the selection rule states that ∆nx = nx,f − nx,i must be an odd number,

otherwise eq 2.3 returns a zero production rate.

2.2.2 Size-Dependence and Temperature-Dependence of Non-Thermal Carrier Generation

In this section, we choose to investigate the non-thermal carrier production in gold nanocubes

under 532 nm (2.3 eV) CW illumination to ensure most of excitation is intraband transition. The

Au cube has a permittivity adopted from Johnson and Christy61 and the dephasing time τ can be

different from the Drude damping rate h̄γ, however with an upper bound of h̄γ.89 Since its value

is not known from experiments, we make a conservative choice of τ being equal to the Drude
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damping rate of bulk gold.

Figure 2.4 shows the major results of non-thermal carrier production rate of two gold nanocubes

with D = 5nm and D = 10 nm. As expected, we found the same size-dependence in agreement

with Manjavacas et al. 7 that larger nanosystems produce less energetic carriers and vice versa

(Figure 2.4(c,d)). The ’kinks’ in Figure 2.4 is due to the discreteness nature of quantized states.

Therefore, it is a "win-win" situation to exploit smaller plasmonic nanostructures for hot carrier

application: (i) Smaller nanoparticles favors non-radiative decay which excite hot carriers more

efficiently, (ii) Non-thermal carriers have greater energy and thus have the potential to drive more

energy-demanding chemical reactions.

Figure 2.4: Non-thermal carrier production rate of gold nanocubes with (a) D = 5nm, (b) D =
10 nm and corresponding zoom-in view of hot electrons in (c), (d).

The jellium model eq 2.1 has been applied in many plasmonic nanostructures, including nanosphere,

nano-star, nanorod, etc.90,91 However, since the exact wavefunction of the jellium model is re-
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quired, the computation cost increase cubically with the size of nanosystem. Realistically, it is

more interested to investigate the non-thermal carrier generation in film-like structure, i.e. quan-

tum well which only one dimension is restricted. If we assume the restricted dimension is x (Figure

2.5 inset), the state energy ε is then written as ε = εy,z + εx where εy,z is the state energy in y and

z directions. By using smallest energy step h̄2π2/2m as defined in eq 2.2b, we are able to capture

the non-thermal carrier production rate of film-like structure. Figure 2.5 presents the calculated

results of non-thermal carrier generation in gold film under 532 nm (2.3 eV) illumination.

Figure 2.5: Non-thermal carrier production rate of gold films with different thickness d.

Agreed with Govorov and Zhang 89 , the non-thermal carrier production of gold film con-

tains two components: Drude like carriers (close to Fermi level) and high-energy excited carriers

(dashed rectangle). It is noted that even only x axis is restricted, the same size-dependence is

observed. Thinner gold film produce more high-energy excited carriers and vice versa. One can

imagine that as the thickness d increases, the energy of non-thermal carrier distribution approaches

a Lorentzian function.

To simplify calculation, many researchers assumes absolute zero when using eq 2.1 to calculate

the energy of non-thermal carriers. In real world, however, materials are measured far above
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absolute zero given that photo-thermal effect of external illumination is inevitable. Thus we further

investigate the temperature-dependence of non-thermal carrier generation to complete the puzzle.

Figure 2.6(a) shows the temperature-dependence non-thermal carrier generation rate of d = 5nm

gold film under 532 nm (2.3 eV). It is noted that the area under curve in Figure 2.6(a) is constant

for each temperature to ensure energy conservation. Interestingly, we found that the number of

high-energy excited carriers decreases as the ratio of Drude-like carrier (blue region) and high-

energy excited carriers (green region) increases with temperature (Figure 2.6(b)).

Figure 2.6: (a) Non-thermal carrier production rate of gold films calculated assumed different
temperature and (b) Temperature-dependence of ratio of Drude-like carrier (blue region) and high-
energy excited carriers (green region).

To recapitulate, we have used the jellium model to calculate the energy distribution of non-

thermal carriers in plasmonic nanocubes. We have also expanded the model to a more realistic

scenario: larger nanosystem and finite temperature. The insight provided in this section is believed

to provide essential guidence in plasmon-mediated hot carrier photocatalysis under steady state.

2.3 Quantum Tunneling of Plasmon-Mediated Non-Thermal Carriers

Though the lifetime of non-thermal carrier is extremely short that they exchange energy quickly

through electron-electron scattering (10 − 100 fs),25 it is believed that a small fraction of non-
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thermal carriers are present under steady state. Recently, Reddy et al. 92 conducted a single-

molecule transport measurement and confirmed the presence of plasmon-mediated non-thermal

carriers under steady state. It is therefore possible to extract the highly energetic non-thermal

carriers before they annihilated with each other to drive chemical reactions.

As discussed in Chapter 1 that a major limitation of plasmon-mediated hot carriers devices is

that carriers are required to possess sufficient energy compared to the potential barrier between

metal nanoparticles and surrounding media. Several strategies have been investigated to address

this challenge, i.e. surface engineering by introducing low workfunction material to reduce poten-

tial barrier.16 In this section, we exploit a novel strategy, named quantum tunneling, to address the

injection-barrier limit and improve the injection efficiency of plasmon-mediated carriers.

The central idea of quantum tunneling is summarized in Figure 2.7. Classically, an electron

with smaller energy compared to barrier height is reflected. Quantum mechanically, however,

the wavefunction is not diminished inside the classically forbidden region. Therefore, there is a

probability for an electron to ’tunnel’ through the barrier and be injected into surrounding media.

Figure 2.7: Scheme of quantum tunneling.

Tunneling will occur with a probability defined by the transmission coefficient P(E) when the
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energy E is less than the barrier height U (see appendix for details).

P(E) = e−(2/h̄)s
√

2m(U−E) (2.4)

Here, s is the thickness of barrier and m is the electron mass. It is noted that thermionic emission

(discussed in Chapter 4) and photo emission occur with unity efficiency, P(E) = 1, when electrons

have sufficient thermal energy or energy from absorbed photons, respectively, to overcome the

barrier height.

To illustrate how it is possible to more fully utilize the electrical carriers excited in a metal

during optical absorption by taking advantage of tunneling transport phenomena, we envisioned a

plasmonic tunneling junction (Figure 2.8(a)) with a strong asymmetry in the optical response on

opposite sides of a junction. This asymmetry can promote optical absorption that results in both

uneven photothermal heating and unbalanced optically excited electron distributions on opposite

sides of a nanoscale gap.

To tell the story, we first modeled the electron distribution in a metal as:60

n(v)dvxdvydvz =
2m3

h3
f(E)dvxdvydvz (2.5)

Here, n is the electron density, v is electron velocity, vx, vy, vz are electron velocity in the x, y, z

directions, respectively, m is electron mass, h is Planck’s constant, and f(E) is the Fermi-Dirac

distribution function at energy E.

For simplicity, we consider electron transport in the x direction and we rewrite eq 2.5 in terms

of vx:

n(vx) =
2m3

h3

∫ ∫ ∞

−∞
f(E)dvydvz =

2πm2

h3

∫ ∞

0

f(E)dEr (2.6)

where v2r = v2y + v2z , Ex =
1
2
mv2x and Er = E − Ex =

mv2r
2

.

The electron flux, Nl→r, from left to right, can be calculated by integrating the product of eq
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2.6 with electron velocity vx and emission probability P(E) for all possible electron energies.

Nl→r =

∫ ∞

0

vxn(vx)P(Ex)dvx =
1

m

∫ ∞

0

n(vx)P(Ex)dEx (2.7)

In this section, we analyzed a Au− Vacuum− Au junction, where the barrier height U =

4.6 eV corresponds to the work function of gold.89 We also considered an Au− TiO2 − Au with

U = 1 eV based on the interfacial metal-semiconductor Schottky barrier height.93

Since electrons can be transmitted across the plasmonic junction from left to right and vice

versa, the net current density J needs to account for electron transport in both directions.

J = e(Nl→r −Nr→l)/S (2.8)

Here, e is elementary charge, S is the active area of the junction interface, and we defined positive

current flowing from left to right. Eq 2.8 indicates that if the plasmonic tunneling junction has

identical electron distributions on both sides, the electron flux transmitted from left to right would

cancel out the electron flux transmitted from right to left, resulting in zero net current density.

We consider how plasmonic absorption in the metal can break the symmetry of the junction in

order to promote a net current density. We analyze electron transport that results from temperature

differences across the junction due to uneven photothermalization and, separately, uneven non-

thermal carrier generation via differences in photoexcitation on opposite sides of the junction.

Both effects redistribute electron density n(vx) asymmetrically across the junction, thus resulting

in a net current density. A temperature variation results in a different Fermi-Dirac distribution for

electrons on either side of the junction. The hot side of the junction has more electrons occupying

higher energy states and thus has greater probability for tunneling, even if the thermal energy is

too small to provide a significant current for thermionic emission.

Optical absorption is a local quantity that can be calculated by integrating the product of fre-

quency ω, the electric field strength |
−→
E |2, and the imaginary part of the dielectric permittivity over

the full volume of the nanostructure. During steady-state illumination, uneven optical absorption

23



on opposite sides of the plasmonic tunneling junction can be promoted by tailoring the optical re-

sponse of each metallic nanoelectrode. This uneven absorption can provide a temperature gradient

across the junction affecting all electrons, as well as a steady-state subpopulation of photoexcited

electrons, which are in the process of thermalizing via electron-electron and electron-phonon scat-

tering. Although both effects correspond to different stages of the same microscopic relaxation

process, for simplicity we first analyze the transport behavior of the thermally distributed electrons

separated from the transport behavior of photoexcited electrons. Both consequences of optical ab-

sorption can significantly modify the electron distribution on one side of the junction compared to

the other, and both thermal and non-thermal electrons are expected to contribute to the net electrical

current across an illuminated tunnel junction.

Once a thermal gradient is established, electrons that are not photoexcited are distributed in en-

ergy based on Fermi-Dirac distribution described by the local temperature. More electrons occupy

higher energy states on the hot side of the junction and thus have greater tunneling probability. Fig-

ure 2.8 shows a summary of the transport calculations of plasmonic junctions with 1 nm tunneling

gap subject only to a temperature gradient. Our calculation probed temperature differences that

were varied between 0 and 10K (Figure 2.8(a)), which is consistent with temperature differences

that were experimentally maintained in similar nanoscale thermophotovolatic power generator de-

vices.94,95

A nonzero short-circuit current density, Jsc, is observed that flows from the hot to the cold

nanoelectrode. In addition, a voltage Vbias is calculated that was applied opposite the current di-

rection, corresponding to a circuit load. The output power density Poutput provided by the junction

is determined by the product of the applied voltage and the current density. The minimum applied

voltage that completely canceled the tunneling current corresponds to the open-circuit voltage,

Voc, of the illuminated junction. In addition to modeling a Au− Vacuum− Au junction, we also

calculated the transport behavior of a Au− TiO2 − Au junction. Titanium dioxide (TiO2) is a

thermally stable, transparent, wide band gap insulator that is commonly used as an electrode for

plasmonic hot electron devices, because fast electron injection over the interface Schottky barrier
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Figure 2.8: (a) Scheme of the envisioned plasmonic tunneling junction subject to a thermal gradi-
ent, ∆T = T1−T2. (b)J−V (blue) and P −V (red) curve of the Au− TiO2 − Au junction when
Tl = 310K and Tr = 300K. J −V map as a function of Tl and applied bias with fixed Tr = 300K
for (c) a Au− Vacuum− Au junction and (d) a Au− TiO2 − Au junction. The dashed trace
shows the open-circuit voltage at a given Tl and the unit in colorbar is mA/cm2. Adapted with
permission from Wu and Sheldon 9 . Copyright 2018 by ACS Publications.

and good carrier collection are reported when TiO2 is contacted to plasmonic metals.96

Figure 2.8(c, d) shows the current-voltage (J − V ) characteristics of both modeled plasmonic

junction in a temperature range near 300K. The short-circuit current density increases with larger

temperature difference across the junction. More electrons are thermally activated on the hot side

into states that have a higher probability of tunneling, so there is a net tunneling current. A current

density up to 350µA/cm2 and an open-circuit voltage of 170µV for a maximum power density of

0.0015µW/cm2 is predicted for the Au− Vacuum− Au tunneling junction. It should be noted

that this power density is solely attributed to electron tunneling, since there is negligible thermionic

emission in this temperature range. The open-circuit voltage is comparable to the thermoelectric
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potential of Au based on the Seebeck coefficient of Au of 6.5µV/K.97 Although similar in design,

the power density provided by this tunneling junction is smaller than typical thermionic emission

devices.98 However, the calculated current density is orders of magnitude larger than comparable

thermionic devices operating at such a low temperature range. Typical thermionic devices are op-

erated at much higher temperature above 1000K, and the emitting metal surface is usually treated

with cesium vapor to decrease the work function barrier height to about 1.6 eV.98 Since the tun-

neling probability is also limited by the dependence on the barrier height, i.e., the work function

of Au in eq 2.4, we also compared these results with a shallower tunnel barrier of 1 eV, defined by

the Au− TiO2 Schottky barrier height (Figure 2.8(d)). A significant enhancement of short-circuit

current to 2.446× 105mA/cm2 is calculated, as well as an increase of the open-circuit voltage to

420µV with a power density of 25mW/cm2 at the maximum temperature gradient (∆T = 10K),

as depicted in Figure 2.8(b). Even for the Au− TiO2 − Au tunneling junction, such a high cur-

rent density and power output are solely attributed to electron tunneling, because there is negligible

thermionic emission at this temperature.

Upon illumination, direct photoexcitation of a subpopulation of electrons occurs, in addition

to the photothermal heating of all electrons analyzed above. The calculated rate of nonthermal

carriers is discussed in previous section (Figure 2.5). Due to the quantum confinement effects, non-

thermal carriers generated in small gold nanostructures tend to display a wider energy distribution

than photoexcited bulk metal, with a significant population of electrons across the rangeEF±hν.69

We expect that this large non-thermal carrier energy distribution can facilitate a more energetic

imbalance in the electron population in one nanoelectrode compared to the other, resulting in

larger current densities compared with pure thermal gradients.

To quantify how hot electron generation can enhance unidirectional electron transport, we first

analyzed the idealized device geometry depicted in Figure 2.9. This scenario assumes the maxi-

mum possible asymmetry of absorption with only one of the gold nanoelectrodes is illuminated.

Intuitively, optically induced photothermal heating of the entire electron gas occurs after the non-

thermal electrons are excited and then thermalized.99,100 Therefore, if all non-thermal electrons
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are collected via tunneling before relaxation, we would expect no photothermal heating of the

metal. However, we anticipate that both mechanisms of electron excitation (thermal and nonther-

mal) would be present in the steady state for a real device because of imperfect collection of all

non-thermal electrons before they relax. The resulting asymmetric steady-state temperature profile

is expected to have a complex dependence on the incident optical power, the thermal conductivity

of the materials and other heat transfer channels present in the system, in addition to the hot car-

rier collection efficiency. For simplicity, our calculation analyzed the same temperature gradients

studied above (∆T ranges from 0 to 10K near 300K), and the non-thermal effect of electron pho-

toexcitation is analyzed as an independent perturbation in addition to a temperature gradient that

results from asymmetric optical absorption. For comparison, we also analyzed the system perfor-

mance at an elevated temperature (500 to 510K) corresponding to temperature gradients achieved

in solar concentrator schemes.101

Figure 2.9: Idealized geometry of (a) Au− Vacuum− Au junction and (d) Au− TiO2 − Au
junction subject to a thermal gradient and imbalanced photoexcitation. J − V map as a function
of Tl and applied bias with fixed at (b,e) Tr = 300K and (c,f) Tr = 500K. The unit in colorbar is
mA/cm2. Adapted with permission from Wu and Sheldon 9 . Copyright 2018 by ACS Publications.
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Figure 2.9 shows the J − V profile of Au− Vacuum− Au and Au− TiO2 − Au plasmonic

junctions at two temperature ranges (300 to 310K and 500 to 510K) when only one gold na-

noelectrode is illuminated by 1000W/m2 532 nm monochromatic light. We note that this is a

nonideal measurement of the device power conversion efficiency, because it does not account

for how much optical energy is required to maintain the thermal gradient. As discussed above,

greater current density and open-circuit voltage are observed for a Au− TiO2 − Au plasmonic

junction due to the reduced energy barrier in comparison with an Au− Vacuum− Au junction.

Near room temperature (300 to 310K), a significantly increased Voc and Jsc is predicted for

both a Au− Vacuum− Au and Au− TiO2 − Au tunneling junction compared with the purely

thermally mediated tunneling discussed in Figure 2.8. Furthermore, while the range of ∆T is

the same, significantly enhanced Jsc and Voc are obtained at elevated temperature (500K) com-

pared to room temperature. Specifically, there is a 100% increase of Voc at 500K vs 300K

for an Au− Vacuum− Au junction (from 220µV to 440µV) and a 60% increase of Voc for a

Au− TiO2 − Au junction (from 400µV to 640µV). Thus, electron thermalization interacts co-

operatively with non-thermal excitation mechanisms in this device.

In order to bolster our hypothesis that asymmetries in electronic excitation across tunneling

gaps can be maintained by tailoring the optical response of each metallic-nanoelectrode, we used

full wave optical simulations (FDTD method, Lumerical Inc.) to simulate the local electric field

enhancement and the corresponding photoabsorption in more realistic device geometries. Instead

of solving for the potential in these structures, the internal electric field is determined numerically,

because the relationship between the position and momentum operators allows for a matrix element

that depends on the internal electric field
−→
E only,

⟨Ψf(r)|r
−→
E |Ψi(r)⟩ =

jh̄
−→
E

m(εf − εi)
⟨Ψf(r)|p̂|Ψi(r)⟩ (2.9)

where j is the imaginary unit, and p̂ is the momentum operator. The optical power conversion

from the devices was then analyzed using the same procedure as for the idealized geometries
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studied above but with the calculated absorption profiles. The modeled devices structures and

the corresponding optical absorption spectra are depicted in Figure 2.10. The spatially integrated

spectral absorption by each individual electrode is also displayed in order to emphasize which

wavelengths of illumination preferentially excite one nanoelectrode more than the other. Since

plasmonic nanostructures have significant local electric field enhancement at sharp corners, known

as hot spots, a tunnel junction consisting of a 20 nm thick triangle-shaped gold nanoelectrode

(Au1) was selected that exhibits greater electric field concentration at the sharp tip compared with

the flat edge of a rectangular counter-electrode (Au2) separated by 1 nm. This design is optimized

to promote current flow from the region of high absorption in the sharp tip to regions of low

absorption in the rectangular counter-electrode.

Several resonant features are observed in the absorption spectra, with a red-shift and more

complex broadening observed when the structure is coated with TiO2. Our calculations of the op-

tical power conversion efficiency considered excitation wavelengths that maximized the amount of

absorption in one electrode compared to the other, in order to understand the device response under

conditions when electrons do not absorb light equally. For the Au− Vacuum− Au junction these

wavelengths are 585 nm and 785 nm, and for the Au− TiO2 − Au junction these wavelengths are

658 and 707 nm. Figure 2.10(b, f) show the local electric field enhancement at these excitation

wavelengths in the region centered on the gap. It should be noted that there is no fundamental

reason that the calculations cannot be expanded to analyze gold nanoelectrodes with larger size.

However, as discussed in previous section, that the simulation cost would increase significantly

with the increasing physical dimensions, because the matrix elements require calculations between

all two-state combinations, and the number of states increases tremendously with the volume of the

metal. It should also be noted that even though these incident wavelengths were selected because

they are absorbed preferentially by one electrode in the junction, we still observed stronger local

electric field concentration at the sharp tip of the triangular electrode regardless of the incident

wavelength, as would be preferred for broadband optical power conversion. Indeed, current flows

from the triangular electrode to the rectangular electrode for all incident wavelengths simulated.
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The optical power conversion efficiency was calculated by normalizing the maximum output

power by the incident optical power that was absorbed by the entire structure. While stronger elec-

tric field enhancement was calculated when the Au− Vacuum− Au junction is illuminated by

785 nm compared to 585 nm monochromatic irradiation, the power conversion efficiency shows

little wavelength dependence. The energy barrier for classically injection is large compared with

the energy of electrons that absorb either wavelength of light, and hence the probability of tunnel-

ing is greater for electrons excited to higher energy states with 585 nm light. The higher tunneling

probability compensates for the lower absorption rate compared with excitation at 785 nm. In con-

trast the power conversion efficiency calculated for the Au− TiO2 − Au junction at a wavelength

of 658 nm versus 707 nm (Figure 2.10(h)) indicates a strong dependence on wavelength. When

the Au− TiO2 − Au junction is illuminated by 707 nm irradiation, greater efficiency (20.2%)

is achieved compared to 658 nm illumination (16.84%). In this device the barrier height of the

Au− TiO2 − Au junction is reduced to 1 eV, which is smaller than the incident photon energy.

Therefore, rather than tunneling, a greater portion of electrons are photoemitted, and the current

density more directly indicates the local field enhancement and photoexcitation rate.

In this section, we have developed a theoretical model that accounts for electron tunneling, pho-

toemission, and thermionic emission across tunneling junctions defined by plasmonic metal nanos-

tructures that absorb light asymmetrically. The roles of photothermal heating and non-thermal

carrier excitation are analyzed separately, and our results indicate that both effects interact coop-

eratively to promote an electrical current from the electrode with greater local field concentration

to the electrode with less field concentration. When only optically induced thermal gradients are

considered, electron tunneling dominates transport across the junction near room temperature. Fur-

thermore, full wave optical simulations of more realistic device geometries show that the direction

of the induced current flow is independent of excitation wavelength across the visible spectrum.

Up to 20% power conversion efficiency is achieved in a modeled Au− TiO2 − Au device struc-

ture under 707 nm monochromatic illumination with an intensity of 1000W/m2 when the junction

is subject to a thermal gradient of ∆T = 10K. We believe these results will inform strategies for
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more efficient device implementation of optical power converters based on plasmonic absorption

in metals.

2.4 Conclusion

In this chapter, we reviewed a free-electron jellium model that calculate the non-thermal car-

rier production rate in plasmonic metals. We applied this model to gold nanocubes, where the

electronic states are fully quantized, and a more realistic scenatio, a film-like plasmonic structure.

We observed the same size-dependence as many reserachers calculated for nanostructures with

different shapes, that larger nanoparticles produce less energetic carriers and vice versa. There-

fore, smaller nanoparticles are prefered in plasmon-mediated hot carrier devices not only because

smaller nanoparticles have greater absorption efficiency but also the non-thermal carriers have

greater energy in smaller nanoparticles, thus have better catalytic performance. In addtion, the

temperature-dependece of non-thermal carriers is realized, we found that the ratio of high-energy

excited carriers and Drude-like carriers decreases with temperature.

To address the challenge that not all excited carriers are collected due to insufficient energy

compared to surface potential barrier. We developed a theoretical model which describes the quan-

tum tunneling phenomena of carriers inside a metal. Within the quantum tunneling region, we are

able to collect carriers that were otherwise wasted as heat classically. We further envisioned an

asymmetric plasmonic tunneling junction to more fully utilize both thermal- and photo- excited

plasmonic carriers. The asymmetric tunneling junction concentrates light preferentially on one na-

noelectrode than the other, both the uneven photothermal effect and non-thermal carrier generation

perturb the electron distribution asymmetrically. A 20% power conversion efficiency is predicted

for an asymmetric Au− TiO2 − Au junction under solar flux illumination. Our results provide

insights toward plasmonic carrier generation and collection, and shall guide the design of better

plasmonic carrier devices.
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Figure 2.10: (a) Schematic view of a Au− Vacuum− Au device and (b) the corresponding elec-
tric field enhancement map of the 20 nm× 10 nm junction region for illumination at 585 nm (left)
and 785 nm (right). (c) Calculated absorption spectrum (black) for the device in (a) with the spa-
tially integrated absorption by electrode Au1 (red) and electrode Au2 (blue). (d) Estimated con-
version efficiency for 585 nm illumination (left) and 785 nm illumination (right). (e) Schematic
view of a Au− TiO2 − Au device and (f) the corresponding electric field enhancement map of
the 20 nm × 10 nm junction region for illumination at 658 nm (left) and 707 nm (right). (g) Cal-
culated absorption spectrum (black) for the device in (e) with the spatially integrated absorption
by electrode Au1 (red) and electrode Au2 (blue). (h) Estimated conversion efficiency for 658 nm
illumination (left) and 707 nm illumination (right). All calculations are for an optical power den-
sity of 1000W/m2. Adapted with permission from Wu and Sheldon 9 . Copyright 2018 by ACS
Publications.
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3. RAMAN SCATTERING FROM PLASMONIC METALS AND HOT CARRIER ENERGY

DISTRIBUTION UNDER STEADY STATE

3.1 Light Emission from Plasmonic Metals

Emission from plasmonic nanoparticles has been the focus of considerable recent research10,102

because of its contribution as a broad background to surface-enhanced Raman spectra (SERS)11,103

and its possible applications in imaging104 and nanothermometry.12,105 Compared to semiconduct-

ing nanoparticles, light emission following photoexcitation of plasmonic nanostructures is more

complex due to ultrafast electron-electron and electron-phonon interactions58 as well as the in-

volvement of the collective oscillations of conduction band electrons, known as localized surface

plasmons. Nanoparticle plasmons significantly enhance the extremely low emission quantum yield

of bulk metal (quantum yield ∼ 10−10)106,107 and determine their spectral line shape.108 However,

the exact mechanism underlying plasmonic nanoparticle emission remains heavily debated. While

the enhancement by surface plasmons is well accepted, the main point of contention is the inter-

pretation of the emission as photoluminescence (PL) versus electronic Raman scattering. *

PL occurs through radiative recombination of hot carriers during their interactions with elec-

trons and phonons. The PL spectrum and intensity depend on the excitation wavelengths and on

the localized surface plasmons which act as antennas for radiation into the far-field.109 Recently,

Cai et al. 10 showed through experiments and theory that the emission of gold nanorods (AuNRs)

at the plasmon resonance is consistent with a Purcell effect enhanced hot carrier recombination of

inter-and intraband transitions (Figure 3.1). The plasmon resonance of the AuNRs increases the

photonic density of states (PDOS)110 and thus enhances the quantum yield (QY) and shapes the

emission spectrum.

The second proposed mechanism for plasmonic nanoparticle emission is based on electronic

Raman scattering.11,111 Electronic Raman scattering is the coherent inelastic scattering of light

*Section 3.2 is adapted with permission from Wu, S.; Hogan, N.; Sheldon, M., Hot Electron Emission in Plas-
monic Thermionic Converters. ACS Energy Letters 2019, 4 (10), 2508-2513. Copyright 2019 ACS Publications.
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Figure 3.1: PL in AuNRs can originate from three possible sources: (a) interband excitation (1)
and interband emission (2); (b) interband excitation (1), Auger process leading to the decay of
d-band holes and excitation of sp-band electrons (3) and intraband emission (4); or (b) intraband
excitation (5) and intraband emission (4). Adapted with permission from Cai et al. 10 . Copyright
2018 by ACS Publications.

from electrons. In a single scattering event, only one intermediate state is considered and the

emission stops after dephasing (Figure 3.4). In contrast, for PL the initially created excited state can

undergo momentum and energy changes through electron-electron and electron-phonon scattering

before a photon is emitted.112

Figure 3.2: (a) Band diagram of Au around the L point, showing absorption from d to s bands
only for ω > ωIB, intraband scattering (s− s) and inelastic light scattering (ILS). (b) Origin of
anti-Stokes scattering background produced by ILS from the thermally excited electrons above
the Fermi level (shaded red). Plasmonically coupled light excites these electrons to a virtual state
where they relax down to empty states just below the Fermi energy, emitting blue-shifted (anti-
Stokes) light. Adapted with permission from Hugall and Baumberg 11 . Copyright 2015 by ACS
Publications.
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Regardless of the microscopic mechanism, the spectral-dependent intensity of the anti-Stokes

spectrum has been established as an accurate indicator of temperature.12,105 Recently, Xie and

Cahill 12 measures the steady-state Raman spectra of gold nanodisk and they attribute the spectra

of inelastically scattered light to Raman scattering by a thermal distribution of electron-hole pairs.

Under this picture, the spectral intensity S(∆ω) (Raman signals per unit integrating time) scales

with the electron-hole occupation number (Figure 3.3)

n(∆ω) =
1

exp(−hc∆ω/kBTAu)− 1
(3.1)

where h is Plank’s constant, c is the speed of light, ∆ω is the wavenumber (negative for anti-

Stokes), and TAu is the temperature of Au nanodisk.

Figure 3.3: (a) Anti-Stokes electronic Raman scattering spectra collected from arrays of nanodisks
as a function of substrate temperature. The y-axis is the spectral density of the intensity S of
scattered light normalized by the excitation laser power. (b) Comparison between the temperature
extracted from the fit and the temperature of the heating stage. Adapted with permission from Xie
and Cahill 12 . Copyright 2016 by AIP Publishing.

Figure 3.3(b) shows the temperatures extracted from the fits of the data using eq 3.1 in compar-

ison with the temperature of the heating state. The good agreement validates the approach based

on eq 3.1. We shall see in this chapter that the Raman scattering from plasmonic metals tells the
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story of hot carrier evolution.

3.2 Anti-Stokes Raman Spectroscopy of Patterned Gold Nanoarrays and Two-Temperature

Model

3.2.1 Sample Fabrication

To prepare the nanostructures, a 5 nmCr sticking layer followed by a 150 nmAu thin film were

deposited using thermal deposition (Lesker PVD e-beam evaporator) on a commercially available

silicon TEM grid with a 50 nm Si3N4 membrane windows (Ted Pella). A layer of PMMA/MMA

9% in ethyl lactate (MicroChem) followed by a layer of 2% PMMA in anisole (MicroChem) were

spin coated to form a bilayer resist. Electron beam lithography was performed using a Tescan

FE-SEM instrument. A top Au layer was deposited followed by removal of the polymer mask in

acetone.

3.2.2 Raman Spectroscopy

Anti-Stokes Raman spectra were collected using a confocal Raman microscope (Witec RA300)

with samples in a vacuum heating microscope stage (Linkam TS1500VE) attached to a vacuum

pump. Vacuum experiments were performed at a pressure of 0.011mbar. Samples were illumi-

nated by a Nd : Yag laser at 532 nm and focused on the sample using a 20× objective with a 0.4

NA. Reflection spectra were taken by using the same stage setup with a white light source. The

measured reflection signal was normalized to the source spectrum to give the reflectance of the

surfaces.

3.2.3 Result and Discussion

Top-down lithographic techniques were used to fabricate a 90µm square array of 225 nm ×

225 nm×100 nm gold nanocubes at a pitch of 500 nm on a 150 nm thick gold film, as displayed in

Figure 3.4(b). The scanning electron microscope (SEM) and optical images are displayed in Figure

3.4(a,c). At the excitation wavelength (532 nm) there is an approximate two-fold increase in ab-

sorption compared with a gold thin film (Figure 3.4(d)) leading to increased photo-thermalization

localized in the nanocubes.
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Figure 3.4: (a) SEM image of the fabricated nanostructure. (b) Schematic of the unit cell with
l = 225 nm, p = 500 nm, and h = 100 nm on a 150 nm thick gold film. (c) Optical image
of the fabricated nanostructure. (d) Absorbance of the nanostructure (black) compared with a
smooth gold thin film with a thickness of 150 nm (red). Adapted with permission from Wu et al. 13 .
Copyright 2019 by ACS Publications.

Temperature measurements during photothermalization were achieved by collecting anti-Stokes

Raman spectra under 532 nm continuous-wave (CW) laser illumination. A representative anti-

Stokes spectrum is shown in Figure 3.5(a). The signal from the nanostructure is ten times larger

than that from a gold thin film, comparable to enhancements observed in surface-enhanced Raman

studies.113 Fitting our data to eq 3.1 (Figure 3.5, red dotted) proves inadequate because there is a

large signal at high-energy Raman shifts greater than −2000 cm−1 that is not well described by the

Bose-Einstein distribution. However, by adapting the method of Szczerbiski et al. 114 our data are

readily described if additional terms are included to account for a subpopulation of hot electrons,

χ, with an energy distribution at an elevated temperature, Te.

S(∆ω) = C×D(∆ω)×
( 1− χ

exp(−hc∆ω/kBTl)− 1
+

χ

exp(−hc∆ω/kBTe) + 1

)
(3.2)
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where C is the scaling factor to account for the experimental collection efficiency that is recal-

ibrated for each measurement. In addition, the signal intensity is proportional to the density of

optical states, D(∆ω), obtained from the reflection spectrum.

Figure 3.5: (a) Measured anti-Stokes Raman signal from the nanostructure (solid black) and gold
film (solid gray) in atmosphere, both collected under 7.3×109Wm−2 532nm laser excitation. The
fit to a one-temperature model (eq 3.1, red dotted line) and a two-temperature model (eq 3.2, blue
dashed line) are shown. The one-temperature fit gives Tl = 459 k, whereas the two-temperature
fit gives Tl = 430K, Te = 10040K, and χ = 0.34%. The TTM fit for (b) lattice temperature, (c)
electronic temperature and (d) the percentage of hot electrons for the nanostructure under vacuum.
Adapted with permission from Wu et al. 13 . Copyright 2019 by ACS Publications.

The magnitude of χ in the steady state depends on both the generation rate of hot electrons

due to optical excitation and the relaxation rate as electrons equilibrate to Tl via phonon scattering.

Those carriers in thermal equilibrium with the lattice follow Bose-Einstein statistics, whereas the

high-energy tail of the Raman signal is described by Fermi-Dirac statistics.115 The fit to this two-

temperature model (TTM) (Figure 3.5(a), blue dashed line) is excellent for all optical powers

probed, spanning 107 to 1011Wm−2. However, it should be noted that the hot electron signal

is fairly weak compared with the signal from the thermalized electron bath. Eliminating other

38



sources of error and artifacts such as room lights as well as long integration times is required to

obtain a good signal. We also cannot fully discount other small effect contributing to the signal that

may result from changes in the optical response with temperature, such as shifts in the plasmon

resonances of the nanostructures, due to volume expansion.

The dependence of Tl, Te, and χ on optical power for the nanostructure was determined by

analyzing the Raman spectra using eq 3.2. Samples were measured under vacuum (0.01mbar).

The fitted data are summarized in Figure 3.5(b-d). Melting and degradation of the samples occurred

when the fitted Tl significantly exceeded ∼ 600K in vacuum. We observed a monotonic increase in

Te and Tl as the optical power increased, with Te in excess of Tl by at least an order of magnitude.

This trend is expected due to the lower heat capacity of the electron gas,116 and the values we

measure for Te and Tl are similar to those reported in transient absorption (TA) experiments111 for

comparable optical powers.

A unique capability of our experiments that cannot be readily achieved in pulsed TA studies

is the quantification of the size of the hot electron population, χ. An analysis of χ from our fitted

spectra therefore provides important new information about how the availability of hot electrons

depends on optical power and temperature under CW illumination that is more directly comparable

to operating conditions for emerging hot-electron-based technologies. Interestingly in all experi-

ments, we observe a clear inverse correlation between Te and χ as optical power increases. One

may initially expect that increases in optical power would lead to a greater rate of electronic exci-

tation and thus a larger steady-state population of hot electrons. We hypothesize that the opposite

behavior is due to the increase in electron-phonon coupling as temperature increases, providing

faster relaxation of the hot electrons that overwhelms the increase in the excitation rate. As we

shall later see in Chapter 4 that this inversely correlation between Te and χ is supported by an

independent electric current measurement.

3.3 Stokes Raman Scattering and Dephase of Localized Surface Plasmon

The coupling of light to molecular vibrations is strongly modified when they are placed near a

plasmonic metal surface, with the appearance of a strong broad continuum background in addition
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to the normal surface-enhanced Raman scattering (SERS). Similarly to anti-Stokes scattering, there

have been strong debates over the origin of the SERS signal and a variety of mechanisms for this

effect have been proposed.117–120 For instance, Barnett et al. 14 proposed that the origin of this

spectrally broad background is due to interaction of molecule on the plasmonic surface and its

image molecule as depicted in Figure 3.6. The two molecules (real and its image) interact with the

exponentially localized surface plasmon resonance to produce the Raman spectrum. The physical

picture can be thought of as two oscillators (vibrating at the frequency of their excited molecular

vibrational mode), coupled by the dipole-dipole interaction. Though the image-molecule approach

is able to explain the spectral background, there is few connections between the image-molecule

model and experimental studies. Furthermore, the image-molecule model predicts a narrow sharp

peak associated with a normal SERS line, which is not observed.

Figure 3.6: Representation of method of images approach with (a) real molecule interacting with a
plasmonic metal surface replaced by (b) a real-molecule-image-molecule interaction. (c) Dominant
molecular vibrating bond of real and image molecules now represented by dipoles. Real and image
dipoles separated by distance, 2d, and ω is the exciting laser field. Adapted with permission from
Barnett et al. 14 . Copyright 2014 by PCCP Owner Societies.

Alternatively, Otto et al. 121 proposed a very simple model allows fitting the background on both

Stokes and anti-Stokes side. The model assumes a density of electrons and holes g in a Lorentzian
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band

g(E) =
1

π

γ

(E − EF )2 + γ2
(3.3)

centered at the Fermi energy EF , and γ is the width of the Lorentzian. The values of γ can be

obtained from least-square fits to the experimental curves. The distribution of electrons and hole is

given by the Fermi-Dirac distribution f(E). Then the joint density of states J(h̄ω) of electron-hole

pairs at an energy of h̄ω is given by

J(h̄ω) =

∫
g(E)f(E)g(E + h̄ω)(1− f(E + h̄ω))dE (3.4)

Within this model the spectral yield of Raman scattering by electron-hole-pair excitation in the

metal is assumed to be proportional to J(h̄ω). We note that eq 3.3 and eq 2.1 are both a Lorentzian

distribution function, and eq 2.1 is the jellium model described the energy distribution of non-

thermal carriers, the γ is then determined by the plasmon dephasing time. We show that the energy

distribution directly after the initial excitation can be approximated using a simple Lorentzian

distribution (Figure 3.7).

Figure 3.7: Energy distribution of non-thermal carriers calculated using eq 2.1 (blue bar) and
a Lorentzian function with width τ−1 (red dashed line). The calculation is assumed a 10 nm
thickness gold slab at absolute zero.

41



Since we have shown the energy distribution of non-thermal carriers, Γ(E, τ), can be approxi-

mated using a simple Lorentzian function with width controlled by τ−1. We then attribute the elec-

tronic Raman scattering to the scattering from non-thermal carriers (Figure 3.8), which gives us the

ability to correlate plasmon dephasing information with Raman spectrum (eq 3.5a). It is noted that

the proposed model is naturally compatible with our recently developed two-temperature Raman

thermometry which assumes only a subpopulation (χ) of hot carriers is excited at Te (eq 3.5b).

J(h̄ω) = D

∫
Γ(E, τ)f(E)Γ(E + h̄ω, τ)(1− f(E + h̄ω))dE (3.5a)

J(h̄ω) = D

∫
Γ(E.τ)[(1− χ)f(E, Tl) + χf(E, Te)]

Γ(E + h̄ω, τ)(1− [(1− χ)f(E, Tl) + χf(E, Te)])dE (3.5b)

where Γ(E, τ) is a Lorentzian function describing the energy distribution of non-thermal carriers

with width controlled by the plasmon dephasing time τ , and D is the scaling factor accounts for

the collection efficiency for our setup.

Figure 3.8: Inelastic light scattering from non-thermal carriers. Density of states of the non-thermal
carriers in a metallic nanostructure (a), multiplied by the Fermi-Dirac probability of occupation by
an electron/hole (blue/red line in b), gives the populations of electrons (blue line in c) and holes
(red dashed line in c).

We then show eq 3.5 can be used to explain the experimental measured Raman scattering
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from plasmonic nanostructures, and we are able to extract both material temperature and plasmon

dephasing time.

To demonstrate the validity of proposed model (eq 3.5), a series of Raman spectra were col-

lected in thermal stage at different temperatures (Figure 3.9). A 532 nm laser is used to excite

the Raman scattering from patterned gold nanostructures with optical power density of 1.27 ×

108 W/m2. In consistent with our previous two-temperature Raman thermometry, two slopes are

observed in the anti-Stokes side indicating two temperature present in gold nanostructures. We

attributed the first slope (−700 cm−1 to −1200 cm−1) to lattice temperature Tl, and the second

slope at higher energy (−1200 cm−1 to −4000 cm−1) to electronic temperature Te. Interestingly,

the Stokes scattering decreases with temperature while the anti-Stokes scattering rises with tem-

perature. Since the Raman scattering scaled with joint density of states (eq 3.5), the decrease of

Stokes scattering indicates the reduced contribution from non-thermal carriers. Additionally, we

observed the appearance of a vibrational peak at 1580 cm−1, which is attributed to the G band of

graphite-like material, during the course of measurement (heating from 298 K to 448 K). This

is because the presence of a subpopulation of hot carrier at elevated Te plays an important role in

reducing adsorbed carbon-related molecules during the measurement.122

Since the subpopulation of Te is relatively small (∼ 1%) compared to the contribution from Tl,

we first used eq 3.5a to fit our Raman spectra (Figure 3.9(b,c)). There are three fitting parameters

in eq 3.5a, the scaling factor D, lattice temperature Tl in Fermi-Dirac distribution as well as the

plasmon dephasing time, τ . The fitting range is from −1200 cm−1 to 3000 cm−1 to capture not

only the one-temperature slope in Anti-Stokes side but also the broad Stokes background. As

shown in Figure 3.9(b,c), the three-variable fitting process yielded good agreement between theory

and experiment.

To demonstrate the fitting performance, we compared the fitted temperature with thermal stage

temperature as shown in Figure 3.10(a). The fitted lattice temperature (red dots) is consistent with

stage temperature (black dashed line) validating our proposed model. The slightly deviation from

stage temperature is due to photothermal heating. In addition to lattice temperature, another fea-
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Figure 3.9: (a) Raman spectra of patterned gold nanostructures recorded at different temperature,
and experiment (dots) and theory (solid lines) on (b) Stokes side and (c) Anti-Stokes side. To
achieve better fitting, the 1200 cm−1 to 2000 cm−1 containing the vibration peak of carbon-species
is neglected in fitting.

ture extracted from fitting is the plasmon dephasing time (Figure 3.10(b)). The extracted plasmon

dephasing time, τ , is smaller than 10 fs and is consistent with reported value in ultrafast studies.123

Furthermore, the monotonically increase of plasmon dephasing time during the course of measure-

ment is possibly due to the formation of graphite-like material on the surface, which modifies the

dephase mechanism through chemical interface damping (CID).

Another measurement is conducted to confirm that the change of plasmon dephasing time is not

only due to changed temperature but also due to the modified chemical interface. We used another

patterned gold nanostructures and recorded the Raman spectra at varied optical power density.

Since the subpopulation of hot carriers at Te is small at steady state as proved in the fitting result in

Figure 3.10. We first repeated the temperature-dependence study in the same manner with much

lower optical power density (6.4 × 107 W/m2), and we restricted our scope from −1500 cm−1

to 3000 cm−1 in order to obtain better resolution in Raman shift. We then analyzed the Raman

spectra collected at varied optical power density, and the result of both temperature and power

dependence study is shown in Figure 3.11(a,d).
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Figure 3.10: (a) Fitted temperature (red dots) and stage temperature (black dashed line), (b) Ex-
tracted plasmon dephasing time vs. stage temperature.

Figure 3.11: (a) Raman spectra of patterned gold nanostructures recorded at different temperature,
experiment (dots) and fitted equation (solid line) in (b) Stokes side and (c) Anti-Stokes side, (d)
Raman spectra of patterned gold nanostructures recorded at different optical power, experiment
(dots) and fitted equation (solid line) in (e) Stokes side and (f) Anti-Stokes side.

Since the optical power used to collect the temperature-dependence Raman spectra (Figure

3.11(a)) is much weaker than the optical power used in Figure 3.11(d), we observed no vibrational
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peaks due to formation of carbon species located at 1350 cm−1 (D band) and 1580 cm−1 (G band)

as shown in Figure 3.11(b). In contrast, the formation of carbon species in power dependence study

(Figure 3.11(e)) indicates the contribution from excited hot carriers, similar behavior is observed in

Szczerbiski et al. 114 . Using the same fitting equation, we show a good agreement between theory

and experiment (Figure 3.11(b,c,e,f)).

Figure 3.12: (a) Correlation between fitted temperature (red dots) and stage temperature (black
solid line), (b) Extracted lattice temperature vs. optical power, (c) Comparison of plasmon dephas-
ing time solely due to thermal activation (blue dots) or due to photo-excitation (red dots).

The fitted result of both temperature and power dependence study is summarized in Figure

3.12. Similar as previously fitted result, the good correlation between fitted temperature (red dots)

and stage temperature (black dashed line, Figure 3.12(a)) further validates the model. In addition,

we observed a monotonically increased lattice temperature with incident optical power (Figure

3.12(b)) expectedly. The optical power is chosen so that samples are photo-thermal heated to a

similar temperature range as in temperature-dependence study. The extracted plasmon dephasing

time is depicted in Figure 3.12(c) for both thermal-activation and photo-excitation. Since the

contribution of hot carriers is significant in power-dependence study compared to temperature-

dependence study, the appearance of D band and G band of carbon species is only observed in

power-dependence study (Figure 3.11(e)). The modified surface due to adsorbed carbon species

introduced the chemical interface damping, the directly coupling between surface plasmon and
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molecular orbitals, which resulted in a reduced plasmon dephasing time.

Figure 3.13: (a) Experiments (dots) and theory (solid line) of Raman spectra recorded at different
power, the power is increased from blue to red. (b) Background-subtracted vibrational peaks of
amorphous carbon species on surface.

Furthermore, the theory we developed is able to not only resolve the plasmon dephasing in-

formation at steady state but also subtract the continuum background on Stokes side to reveal the

vibrational fingerprint of chemical species, thus is useful in monitoring chemical reactions in situ

using SERS application. For instance, by subtracting the fitted curve (solid line, Figure 3.13(a)),

the vibrational peaks of D and G bands of carbon species is easily resolved (Figure 3.13(b)).

3.4 Conclusion

In this chapter, we discussed the debate over the origin of light emission from plasmonic met-

als. The anti-Stokes scattering proved unambiguous temperature-dependence and thus has been

used as a thermometer to probe local temperature. The deviation from Bose-Einstein statistics at

the high-energy anti-Stokes shift is attributed to a separate temperature, electronic temperature Te.

Importantly, the improved anti-Stokes Raman thermometry not only probed the electronic temper-

ature but also the subpopulation of hot carriers, χ.

Additionally, we developed a theoretical model which hypothesizes the Raman scattering is

from non-thermal carriers. The model is naturally compatible with previously developed two-

temperature anti-Stokes Raman thermometry. Both material temperature and surface plasmon de-
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phasing information can be extracted from a Raman spectrum using our model. Remarkably, we

showed the consistency between extracted lattice temperature and stage temperature. Furthermore,

the power-dependence study reveals the potential of using our model to correlate the plasmon de-

phasing information with chemical species adsorbed on metal surface. We believe these results

will inform strategies to monitor chemical reactions using SERS application and improve the per-

formance of plasmon-mediated photocatalytic reactions.

48



4. HOT ELECTRON EMISSION IN PLASMONIC THERMIONIC CONVERTERS

4.1 Thermionic Emission for Energy-Conversion Processes

Electron emission from a material surface occurs through three main possible processes; pho-

toemission, thermionic emission, and field emission.15 Photoemission occurs when an electron ab-

sorbs photonic energy allowing the electron to emit above the vacuum level. Thermionic emission

is a process where thermal energy causes a broadening of the electron distribution such that some

higher energy electrons will emit into vacuum. Field emission (quantum tunneling) is a quantum

mechanical process in which electrons are able to tunnel through the surface barrier under high

electric fields as discussed in Chapter 2. Figure 4.1 depicted a general energy diagram highlighting

the three types of electron emission in which ϕ refers to the work function, which is the energy that

an electron must gain above the Fermi energy (EF) in order to emit into vacuum. In this chapter,

we mainly focus on the thermionic emission from plasmonic nanostructures.*

Figure 4.1: Energy diagram for electron emission from metals. Adapted from McCarthy et al. 15 .

Research on thermionic emission dates back to 1853, when Becquerel 124 first detected electri-

*Adapted with permission from Wu, S.; Hogan, N.; Sheldon, M., Hot Electron Emission in Plasmonic Thermionic
Converters. ACS Energy Letters 2019, 4 (10), 2508-2513. Copyright 2019 ACS Publications.
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cal current passing between two platinum wires, one hot and one cold, kept in a variety of gases.

Many others contributed to the understanding of thermionic emission in the late nineteenth century,

Guthrie 125 published his work on the relationship between heat and static electricity in 1873. Later

in the nineteenth century, Angrist 126 investigated sealed devices in which electric current was gen-

erated between two electrodes, one hot and one cold, measured utilizing an electrometer. While

research on thermionic emission continued through the ensuing decades, many of the significant

advances in thermionic emission, dedicated toward energy generation, occurred in the 1950s. In

1956, Murphy and Good Jr 127 published a rigorous study of thermionic and field-emission theory,

which includes the well-known Richardson-Dushman equation.

JT =
mek2B
2π2h̄3

T 2
l exp(

−ϕ
kBTl

) (4.1)

where JT is the current density of thermionic emission, m is the electron mass, e is the elementary

charge, kB is Boltzmann’s constant, h̄ = h/2π is reduced Planck’s constant, and mek2B
2π2h̄3 is commonly

noted as Richardson’s constant to simplify calculation. The full derivation of eq 4.1 is shown in

appendix, and we shall see that the Richardson-Dushman equation can be derived the same manner

as the quantum tunneling model established in Chapter 2.

Figure 4.2 depicted how thermionic emission current density JT responses to temperature and

the work function, ϕ, of a material. For most plasmonic metals, the work function is around

5 eV. For example, the work functions of gold and silver are 5.1 eV128 and 4.7 eV,129 respectively.

Therefore, in order to extract substantial thermionic emission current from plasmonic nanostruc-

tures, a high temperature ∼ 2000K is required. However, such a high temperature is not practical

for most metals, as the melting point is typically around 1200K.130 Therefore, strategy to reduce

work function of the material is commonly applied. For instance, Cesium vapor is usually used in

the practical thermionic emission devices,131 not only because Cs has low electron affinity and is

able to reduce the work function, but also Cs can effectively remove the space charge effect during

electron emission.131
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Figure 4.2: Relationship between thermionic emission current density JT and temperature as a
function of work function ϕ.

During the electron emission process, we usually have more than one mechanism occurs. For

example, Schwede et al. 16 innovated a photo-enhanced thermionic emission (PETE) mechanism

as depicted in Figure 4.3. Within the PETE scheme, the incident photons are more utilized as the

heat produced by imperfect absorption can further redistribute carriers and facilitate emission.

Inspired by the PETE mechanism as well as our preliminary Raman study (Chapter 3) that the

subpopulation of hot carriers is non-trivial and the electronic temperature is sufficient to promote

thermionic emission from patterned gold nanostructures.

4.2 Thermionic Emission from Patterned Gold Nanostructures

4.2.1 Thermionic Emission Device and Electrical Measurement

For the measurement of the hot electron thermionic emission current density, a pair of parallel

electrodes composed of nanostructured gold patterns and an ITO glass slide was constructed (Fig-

ure 4.4(a)). A 200µm spacer separating the two electrodes was made of Kapton tap (attached to

ITO glass) and copper tape (attached to the substrate of gold nanostructures) to ensure good electri-

cal contact. The assembled electrode were placed in the same thermal stage (Linkam TS1500VE)

used in Raman study to measure the thermionic emission current under vacuum (< 10−5 torr).
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Figure 4.3: (a) Energy diagram of the PETE process. Photoexcitation increases the conduction-
band population, leading to larger thermionic currents and enabling the device to harvest both
photon and heat energy. (b) One possible implementation of a parallel-plate PETE converter.
Photons impinge on a nanostructured cathode and excite electrons, which then emit into vacuum
and are collected by an anode. Unused heat from the PETE cycle is used to drive a thermal engine.
Adapted with permission from Schwede et al. 16 . Copyright 2010 by Springer Nature.

The electrodes were connected to a source measure unit (Keithley 2450) in order to measure the

current at varying bias voltage. The light from a CW diode laser emitting at 532 nm was used for

the photoexcitation, which was focused on the gold nanostructures through a 50× objective to a

focus spot on the sample with a beam diameter of ∼ 5.6µm. The thermionic emission current was

measured with a lock-in amplifier (Stanford Research Systems, SR830) by chopping the excitation

light at 47Hz. For each power density used, the bias voltage was swept from −0.2V (accelerating

bias) to 1V (retarding bias).

4.2.2 Result and Discussion

To demonstrate that the hot electrons excited at steady state can perform work, we constructed

a thermionic power converter using the same nanostructure in Raman study (Chapter 3) as an

emitter with an indium tin oxide (ITO) counter-electrode as a collector (Figure 4.4(a)). The current

density, J , was measured via a lock-in amplification scheme from parallel electrodes separated by

200µm during 532 nm CW illumination under vacuum (0.01mbar). The power-generation region

of the current-voltage (J−V ) response is depicted in Figure 4.4(c). The open-circuit voltage (Voc)
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reported here represents the retarding bias at which the current density reaches the noise level for

the lock-in amplifier (Figure 4.4(b)). The downward curvature of the J − V response indicates the

presence of space charge effects during the measurement.132

Figure 4.4: (a) Schematic of thermionic emission measurement. (b) Lock-in phase vs. applying
bias, the abrupt ’jump’ indicates the open-circuit voltage Voc. (c) J − V response measured at
different optical powers. (d) Measured Jsc (square) and Voc (circle) versus the calculated tempera-
ture according to a one-temperature model. The vertical dashed lines indicate the discrepancies in
calculated temperature based on Jsc (red) or Voc (blue). Adapted with permission from Wu et al. 13 .
Copyright 2019 by ACS Publications.

The thermionic emission current density is conventionally described using Richardson-Dushman

equation (eq 4.1), which we adapted to accommodate the two-temperature model. Because only

a fraction of hot electrons, χ, at temperature Te provide a non-negligible contribution to the
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thermionic current,

J = χAT 2
e e

−(ϕ+ϕbias)/kBTe (4.2)

where A = 1.2017× 107Am−2K−2 is the Richardson’s constant, ϕ = 5.1 eV is the work function

of gold,128 ϕbias is the external potential with the positive sign indicating a retarding bias. If we

analyze our data assuming a one-temperature model, then the short-circuit current at zero bias, Jsc,

and the Voc measured from the J−V response are inconsistent with a unique extracted temperature

(Figure 4.4(d)). However, for each optical power probed there is a unique combination of Te and

χ that can be input into eq 4.2 to accurately reproduce both the experimentally measured Jsc and

Voc as summarized in Figure 4.5.

Figure 4.5: (a)-(e) Determination of electronic temperature and hot electron population using eq
4.2 (blue lines and red lines are iso-lines of Jsc and Voc respectively). (f) Extracted electronic
temperature (circle) and percentage of hot electrons χ (square) according to the two-temperature
model of eq 4.2. Adapted with permission from Wu et al. 13 . Copyright 2019 by ACS Publications.

We find that Te monotonically increased with optical power, with the same inverse relation-

ship between χ and Te measured in the Raman study. We note that the relationship between Te
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and χ may be different at even lower optical power regimes depending on the full temperature

dependence of the electron-phonon coupling. Furthermore, the magnitude of χ is consistent with

the Raman fitting under the same optical powers, although the extracted Te based on the device

response is somewhat lower. Several factors could give rise to this discrepancy, and we hypothe-

size that the largest source of error may be due to the more complex geometry of the space charge

for electrons emitted by the nanostructure surface in comparison with the parallel plate geometry

assumed in Langmuir’s space charge theory.132 In particular, the sharp corners of the nanostructure

may generate a significantly larger fraction of vacuum-emitted electrons if emission is more likely

where the optical field is locally concentrated. The result would be a greater space charge field

near corners compared with a smooth surface. As an important point of comparison, we observed

no measurable current under any optical power when a gold thin film was used as the emitter. This

difference is likely due to a three-fold increase, at a minimum, in suitable escape cones for hot

electrons in the nanocubes and highlights how momentum constrains are relaxed in the plasmonic

nanostructure. Whereas we expect that the size of the nanostructures may play a crucial role in

the generation rate and efficiency of hot electron emission, based on recent computational studies,

we expect that the dynamics of the hot electrons for both the nanostructures and the thin film are

dominated by surface scattering processes.

To demonstrate the potential of this strategy for solar power conversion, an additional sample

was prepared that minimized losses due to conduction. The nanostructure was fabricated on a

50 nm thick Si3N4 membrane. Focused ion beam etching was used to perforate the membrane and

thermally isolate a 6 × 6µm section of the array (Figure 4.6(a)). In vacuum, the device achieved

optical power conversion efficiency between 10−8 and 10−7% under 4× 106 to 2.1× 107W ·m−2

(Figure 4.6(c)). This optical power range is comparable to that employed in solar-thermal con-

version schemes, where solar concentration factors are commonly between 1500× and 4000×.

Whereas the sample showed no evidence of thermal degradation, the seemingly low efficiency is

due to the large work function of gold, ϕ = 5.1 eV. It is common practice during thermionic device

operation to include rarified Cs metal vapor to both decrease ϕ via surface adsorption and minimize
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Figure 4.6: (a) SEM image of a thermally isolated gold nanostructure. (b) J − V response of
thermally-isolated gold nanostructures. (c) Measured optical power conversion efficiency. (d)
Experimentally determined Te vs. optical power and the extrapolation (red trace), ensuring zero
incident power gives Te = 300K. (e) Experimentally determined χ vs. optical power and ex-
trapolation (red trace) ensuring that zero incident optical power gives χ = 100% and (f) Projected
optical power conversion as a function of solar concentration factor, assuming a decreased work
function, ϕ = 1.6 eV. The blue and red vertical dashed lines denote the range of low and high
optical powers, respectively, probed experimentally in panels b and c. Adapted with permission
from Wu et al. 13 . Copyright 2019 by ACS Publications.

space charge effects. Gold surfaces with submonolayer cesium have a reported work function of

ϕ = 1.6 eV.131 At low current density, the emitted electrons do not remove enough energy from

the system to significantly perturb the electronic and lattice temperature, similar to a theoretical

scenario in which no current is emitted and all optical power goes to photothermalization. Thus

the J − V response (Figure 4.6(b)) we measured provides a calibration that relates both the elec-

tronic temperature and the population of hot electrons at a given incident optical power (Figure

4.6(d,e)). Assuming that the presence of Cs does not significantly alter the plasmonic response

of the absorber when the decreased work function is present, a maximum conversion efficiency of

74.9% is predicted to occur at 190× solar concentration based on the trade-off between Te and χ as
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shown in Figure 4.6(f). If practically achievable, such high efficiency for collecting hot electrons

would significantly decrease the optical energy that is available to promote heating of the lattice

through electron-phonon coupling, further promoting the stability of the emitter. For comparison,

state-of-the-art solar-thermal conversion strategies commonly achieve ∼ 30% efficiency at lattice

temperature greater than 1000K.133

4.3 Conclusion

In this chapter, three distinct mechanisms are identified: photoemission, thermionic emission

and field emission (quantum tunneling). And we thoroughly discussed thermionic emission from

plasmonic metals. This is inspired by the electronic temperature Te and the subpopulation of hot

carriers χ from previous Raman study. We constructed the thermionic power converter based on

patterned gold nanostructures to demonstrate the potential of this strategy for solar power conver-

sion.

The electrical measurements have demonstrated a new optoelectronic power conversion mecha-

nism that uses plasmonic nanostructures to decouple electronic temperature and lattice temperature

during the steady-state optical illumination of a thermionic emitter. Our results show an inverse

relationship between the temperature and the population of the hot electron gas. When integrated

into thermionic devices, the plasmonic cathodes provide optical power conversion efficiency con-

sistent with the electronic temperature while maintaining significantly lower lattice temperatures.

Thus we demonstrated how this mechanism can overcome challenges related to thermal stability

that have historically limited the use of thermionic devices for solar-thermal energy conversion. We

believe the remarkable tailorability of plasmonic nanostructures may allow further opportunities

for very efficient solar energy conversion based on this strategy.
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5. SUMMARY AND OUTLOOK

5.1 Summary

In this work, the dynamics of plasmon-mediated hot carriers have been explored. More im-

portantly, energy distribution of hot carriers at steady state, which is more suitable in a practical

scenario, is examined using variety methods. Many theoretical frameworks are proposed in this

work, providing essential insight toward designing better plasmon-mediated hot carrier devices.

In Chapter 2, we studied the first stage after the dephase of localized surface plasmon, the

non-thermal carriers. A free-electron jellium model accounting for the energy distribution of non-

thermal carriers is reviewed. We further expanded the jellium model to a cube-shape nanosystem

and a more practical scenario, e.g. plasmonic quantum-well. We observed a size-dependence of

energy distribution that smaller nanoparticles generates more non-thermal carriers at higher energy

state, which is consistent with many studies focused on different nanosystem. Furthermore, we en-

visioned an asymmetric plasmonic tunnel junction which employs quantum tunneling phenomenon

in order to address the injection-barrier limitation. We derived a theoretical model describing the

tunneling of non-thermal carriers from plasmonic metal. The optical power conversion efficiency

within the tunneling scheme is analyzed and a 20% power conversion efficiency is predicted for an

asymmetric Au− TiO2 − Au junction under solar flux illumination.

We further illustrated how the Raman measurement at steady state is able to reveal the en-

ergy distribution of hot carriers in Chapter 3. Patterned gold nanostructures are fabricated using

electron-beam lithography, and the anti-Stokes Raman signal, though the origin is still under de-

bate, is exploited to probe the local temperature of a material. The anti-Stokes Raman signal of

a plasmonic metal, however, is not adequately described using a one-temperature model. The

anti-Stokes scattering deviates from Bose-Einstein distribution at high energy Raman shift and we

attributed the second slope as the energy distribution of hot carriers described by electronic temper-

ature Te. Furthermore, we are able to extract the subpopulation of hot carriers χ from anti-Stokes
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scattering and a inverse relationship between Te and χ is observed. Additionally, we hypothesized

that the Stokes scattering scales with the size of non-thermal carriers. Preliminary studies bolster

our hypothesis and a good agreement between theory and experiment is established.

An independent thermionic emission measurement is conducted to demonstrate the possibility

to achieve optical power conversion using a novel hot-carrier-based solar-thermal technology as

discussed in Chapter 4. The hot carriers with energy distribution described by Te have sufficient

energy to overcome the work function, and are thermally emitted. The J − V response proves

the presence of these high energy hot carriers. Furthermore, the subpopulation of hot carriers χ is

proven essential to explain experimental determined Jsc and Voc, and we observed the same inverse

relationship between Te and χ as determined in Raman study. We also predicted a significantly

increased power conversion efficiency (74.9%) if a rarified Cs vapor is introduced in our thermionic

emission device. The decoupling of electronic temperature and lattice temperature revitalized the

thermionic emission power converter as it overcomes the thermal stability challenges.

5.2 Outlook

The Raman thermometry and thermionic emission experiments studied in this work are mile-

stones in understanding the energy distribution of hot carriers at steady state. Many important

physical parameters can be extracted from this work, such as electronic temperature Te, subpopu-

lation of hot carriers χ, as well as the plasmon dephasing time from Stokes Raman scattering. The

full analysis of Raman spectra of plasmonic metals can be directly applied in surface-enhanced

Raman spectroscopy (SERS) to probe the chemical reactions in situ and the connection between

photocatalytic performance and plasmon dephase mechanism is able to guide the design of better

plasmon-mediated hot carrier devices.

In terms of photocatalysis using plasmonic metals, it is crucial to distinguish the indirect carrier

injection and the direct coupling between surface plasmon and molecular orbitals (chemical inter-

face damping) as different optimization strategies are required for distinct mechanisms. Therefore,

a variety of photocatalytic reactions can be examined using the analysis established in this work as

the indirect carrier injection happens during the thermalization of hot carriers.
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APPENDIX A

FREE ELECTRON JELLIUM MODEL EXPANSION

The probability per unit time of exciting a hot electron in state f can be calculated using Fermi’s

golden rule (eq 2.1)

Γe(εf , ω) =
4

τ
f(εi)[1− f(εf)]{

|Mfi(ω)|2

(h̄ω − εf + εi)2 + h̄2τ−2
+

|M∗
if(ω)|2

(h̄ω + εf − εi)2 + h̄2τ−2
} (A.1)

where f is the Fermi-Dirac distribution function, in which for simplicity we assume zero temper-

ature, Mfi =
∫
drV (r, ω)ρfi(r) is the transition matrix element, and we have included a factor of 2

to account for the spin. ρfi(r) = eΨ∗
f (r)Ψi(r) where e is the elementary charge.

The wavefunction and corresponding energy for electron in a 3D box is given in eq 2.2a and

eq 2.2b.

Ψ(x, y, z) = (
23

LxLyLz

)1/2 sin(
πnxx

Lx

) sin(
πnyy

Ly

) sin(
πnzz

Lz

) = ψnx(x)ψny(y)ψnz(z) (A.2)

E(nx, ny, nz) =
h̄2π2

2m
(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

) (A.3)

potential inside a nanocube

If the dimensions of the cube are small compared to the wavelength of the incident radiation,

we can assume that the incident electric field is uniform and does not vary spatially inside the

nanocube. The internal potential V can then be found by
−→
E (ω) = −∇V (r, ω). Or V = r

−→
E .

transition matrix element

The transition matrix isMfi =
∫
drV (r, ω)ρfi(r), another form is ⟨Ψ∗

f |eV (r)|Ψi⟩ = e
−→
E ⟨Ψ∗

f |r|Ψi⟩.

By using the quantum mechanical relationship between the position operator and the momentum
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operator p̂ = −jh̄∇, which is defined as

⟨Ψ∗
f |r|Ψi⟩ =

jh̄

m(εf − εi)
⟨Ψ∗

f |p̂|Ψi⟩ (A.4)

The transition matrix element is therefore

⟨Ψ∗
f |eV (r)|Ψi⟩ = e

−→
E ⟨Ψ∗

f |r|Ψi⟩ = e
−→
E

jh̄

m(εf − εi)
⟨Ψ∗

f |p̂|Ψi⟩

= e
−→
E

jh̄

m(εf − εi)

∫
Ψ∗

f (r)(−jh̄)(∇Ψi(r))dτ =
e
−→
E h̄2

m(εf − εi)

∫
Ψ∗

f (r)∇Ψi(r)dτ (A.5)

We assume the electric field perturbation is along the x direction, therefore we have

∇Ψi(r) = (x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
)ψnx,i(x)ψny,i(y)ψnz,i(z) = (

∂

∂x
ψnx,i

(x))ψny,i(y)ψnz,i(z) (A.6)

The derivative of the x direction component of the wave function is calculated as

∂

∂x
ψnx,i(x) =

∂

∂x
[

√
2

Lx

sin(
πnx,ix

Lx

)] =

√
2

Lx

πnx,i

Lx

cos(
πnx,ix

Lx

) (A.7)

Substitute eq A.7 in eq A.6, we have

⟨Ψ∗
f |eV (r)|Ψi⟩ =

e
−→
E h̄2

m(εf − εi)

∫
Ψ∗

f (r)∇Ψi(r)dτ

=
e
−→
E h̄2

m(εf − εi)

∫
[ψ∗

nx,f
(x)ψ∗

ny,f
(y)ψ∗

nz,f
(z)(

∂

∂x
ψnx,i(x))ψny,i(y)ψnz,i(z)]dτ (A.8)

Due to the orthonormal nature of the wave function, eq A.8 can be simplified as

⟨Ψ∗
f |eV (r)|Ψi⟩ =

e
−→
E h̄2

m(εf − εi)
δny,i,xy,fδnz,i,xz,f

∫ Lx

0

2πnx,i

L2
x

sin(
πnx,fx

Lx

) cos(
πnx,ix

Lx

)dx (A.9)
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Since

sin(x) cos(y) =
1

2
[sin(x+ y) + sin(x− y)]

Therefore

∫ Lx

0

2πnx,i

L2
x

sin(
πnx,fx

Lx

) cos(
πnx,ix

Lx

)dx =
2πnx,i

L2
x

∫ Lx

0

sin(
πnx,fx

Lx

) cos(
πnx,ix

Lx

)dx

=
2πnx,i

L2
x

∫ Lx

0

1

2
[sin(

π(nx,f + nx,i)x

Lx

) + sin(
π(nx,f − nx,i)x

Lx

)]dx

=
nx,i

Lx

[
1

(nx,f + nx,i)
(1− cos(π(nx,f + nx,i))) +

1

(nx,f − nx,i)
(1− cos(π(nx,f − nx,i)))]

Since when transition occurs, ny,i = ny,f and nz,i = nz,f , then εf − εi =
h̄2π2

2mL2
x
(n2

x,f − n2
x,i), the

transition matrix element from eq A.9 is then

⟨Ψ∗
f |eV (r)|Ψi⟩ =

2nx,iLx

−→
E

π2(n2
x,f − n2

x,i)
δny,i,xy,f

δnz,i,xz,f

[
1

(nx,f + nx,i)
(1− cos(π(nx,f + nx,i))) +

1

(nx,f − nx,i)
(1− cos(π(nx,f − nx,i)))] (A.10)

eq A.10 is exactly the eq 2.3. We note that the selection rule is that ∆nx = nx,f − nx,i must be an

odd number.
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APPENDIX B

DERIVATION OF RICHARDSON DUSHMAN EQUATION

We hereby derive the Richardson Dushman equation (eq 4.1) from the theoretical framework

we established in Chapter 2.

We also start from the electron distribution in a metal (eq 2.5)

n(v)dvxdvydvz =
2m3

h3
f(E)dvxdvydvz (A.11)

Here, n is the electron density, v is electron velocity, vx, vy, vz are electron velocity in the x, y, z

directions, respectively, m is electron mass, h is Planck’s constant, and f(E) is the Fermi-Dirac

distribution function at energy E.

For simplicity, we consider electron transport in the x direction and we rewrite eq A.11 in terms

on vx:

n(vx) =
2m3

h3

∫ ∫ ∞

−∞
f(E)dvydvz =

2πm2

h3

∫ ∞

0

f(E)dEr (A.12)

where v2r = v2y + v2z , Ex =
1
2
mv2x and Er = E − Ex =

mv2r
2

.

The electron flux, Nl→r, from left to right, can be calculated by integrating the product of eq

2.6 with electron velocity vx and emission probability P(E) for all possible electron energies.

Nl→r =

∫ ∞

0

vxn(vx)P(Ex)dvx =
1

m

∫ ∞

0

n(vx)P(Ex)dEx

=
2πm

h3

∫ ∞

0

(∫ ∞

Ex

f(E)dE
)
P (Ex)dEx (A.13)

Assume the left electrode is the emitter while the right electrode is the collector. Then the

current density J for a thermionic emission is contributed solely from electron emission from left

to right. Since only electrons have sufficient energy compared to workfunction ϕ are thermally

71



emitted and the transition probability is unity P (Ex) = 1, eq A.13 becomes

Nl→r =
2πm

h3

∫ ∞

ϕ+EF

(∫ ∞

Ex

f(E)dE
)
dEx =

2πm

h3

∫ ∞

ϕ+EF

(∫ ∞

Ex

1

e(E−EF)/kBT + 1
dE

)
dEx (A.14)

Since temperature T is extremely high (∼ 1200K) for thermionic emission to occur, the 1 in

Fermi-Dirac distribution may be dropped. Therefore

Nl→r =
2πm

h3

∫ ∞

ϕ+EF

(∫ ∞

Ex

1

e(E−EF)/kBT
dE

)
dEx = −kBT

2πm

h3

∫ ∞

ϕ+EF

1

e(Ex−EF)/kBT
dEx

=
2πm

h3
k2BT

2e−ϕ/kBT (A.15)

To get the emission current density J , we simply multiply eq A.15 by the elementary charge e.

J =
2πme

h3
k2BT

2e−ϕ/kBT (A.16)

Note that eq A.16 is exactly the Richardson Dushman equation (eq 4.1).
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APPENDIX C

MATLAB CODE IN CALCULATION

Non-thermal carriers generation in a gold slab at absolute zero

The non-thermal carriers generation rate in a 5 nm gold slab is shown in Figure C.1.

Figure C.1: (a) Schematic of gold slab, only x axis is restricted, (b) Non-thermal carrier generation
at absolute zero. The electric field of incident photons is along the x axis.

The following code is used to reproduce Figure C.1(b).

1 %%

2 % Contributor: Shengxiang Wu

3

4 %% clear workspace and close current figures

5 clear all

6 close all

7
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8

9 %% define physical constant

10 electron_charge = 1.602 .* 10 .^ (-19);

11 electron_mass = 9.1094 .* 10 .^ (-31);

12 % reduced Planck's constant, h_bar

13 h_bar = 1.0546 .* 10 .^ (-34);

14 % Fermi energy of gold, E_Fermi

15 E_Fermi = 5.5 * electron_charge;

16 % Incident photon energy, E_photon

17 E_photon = 2.3 * electron_charge;

18

19 %% Parameters

20 % dimension in x axis, Lx

21 Lx = 10 * 10 ^ -9;

22 % Energy step, E_step, the smaller step, the preciser result

23 E_step = h_bar ^ 2 * pi ^ 2 ./ (2 * electron_mass * Lx ^ 2);

24 % Plasmon dephasing time, tao

25 tao = 10 * 10 ^ -15;

26 %%

27 % possible energy of final states at absolute zero

28 E_f = linspace(E_Fermi + E_step, E_Fermi + E_photon * 2, (E_Fermi

+ E_photon * 2 - E_Fermi - E_step) / E_step + 1);

29 % possible energy of initial states at absolute zero

30 E_i = linspace(0, E_Fermi, E_Fermi / E_step + 1);

31 %%

32 % generation rate for initial states

33 Gamma_i = zeros(length(E_i), 1);
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34 % generation rate for final states

35 Gamma_f = zeros(length(E_f), 1);

36

37 %% Calculation

38 for index_f = 1:length(E_f)

39 for index_i = 1:length(E_i)

40 E_yz = linspace(0, E_i(index_i) - E_step, (E_i(index_i) -

E_step) / E_step + 1);

41 for index = 1:length(E_yz)

42 n_xi = floor(((E_i(index_i) - E_yz(index)) ./ E_step)

.^ 0.5);

43 n_xf = floor(((E_f(index_f) - E_yz(index)) ./ E_step)

.^ 0.5);

44 % selection rule is that the change of nx must be odd

number

45 if mod(abs(n_xi - n_xf), 2) ~= 0

46 M = n_xi * Lx ./ (n_xf .^ 2 - n_xi .^ 2) .* ((1 -

cos(pi * (n_xf + n_xi))) ./ (n_xf + n_xi) +

(1 - cos(pi * (n_xf - n_xi))) ./ (n_xf - n_xi)

);

47 Gamma = 4 ./ tao .* ((M .^ 2) ./ ((E_photon -

E_step .* (n_xf .^ 2 - n_xi .^ 2)) .^ 2 +

h_bar ^ 2 * tao ^ -2) + (M .^ 2) ./ ((E_photon

+ E_step .* (n_xf .^ 2 - n_xi .^ 2)) .^ 2 +

h_bar ^ 2 * tao ^ -2));

48 Gamma_i(index_i) = Gamma_i(index_i) - Gamma;

49 Gamma_f(index_f) = Gamma_f(index_f) + Gamma;
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50 end

51 end

52 end

53 end

54 %% plot energy distribution of non-thermal carriers

55 hot_energy = [E_i, E_f];

56 hot_gamma = [Gamma_i; Gamma_f];

57 figure

58 plot((hot_energy - E_Fermi) / electron_charge, hot_gamma / max(

abs(hot_gamma)))

59

60 grid on

61 set(gcf, 'Units', 'Inches', 'Position', [0, 0, 4, 3])

62 set(gca,'FontSize',16)

63 set(gca,'FontWeight','bold')

64 set(gca,'XMinorTick','on')

65 set(gca,'YMinorTick','on')

66 set(gca,'TickLength',[0.08, 0.12])

67 xlabel('$E-E_F$ ($eV$)', 'Interpreter', 'Latex', 'FontWeight', '

bold')

68 ylabel('$\Gamma$ (a.u.)', 'Interpreter', 'Latex', 'FontWeight', '

bold')

69 box on

Non-thermal carriers generation in a gold slab at finite temperature

The non-thermal carriers generation rate in a 5 nm gold slab at 300 K and 500 K is shown in

Figure C.2.

The following code is used to reproduce Figure C.2.
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Figure C.2: Non-thermal carrier generation at 300 K (blue) and 350 K (red).

1 %%

2 % Contributor: Shengxiang Wu

3

4 %% clear workspace and close current figures

5 clear all

6 close all

7

8 %% define physical constant

9 electron_charge = 1.602 .* 10 .^ (-19);

10 electron_mass = 9.1094 .* 10 .^ (-31);

11 % reduced Planck's constant, h_bar

12 h_bar = 1.0546 .* 10 .^ (-34);

13 % Fermi energy of gold, E_Fermi

14 E_Fermi = 5.5 * electron_charge;

15 % Incident photon energy, E_photon

16 E_photon = 2.3 * electron_charge;

17 % Boltzmann constant
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18 kb = 1.38064852 .* 10 .^ -23;

19

20 %% Parameters

21 % Dimension in x axis, Lx

22 Lx = 5 * 10 ^ -9;

23 % Energy step, E_step, the smaller step, the preciser result

24 E_step = h_bar ^ 2 * pi ^ 2 ./ (2 * electron_mass * Lx ^ 2);

25 % Plasmon dephasing time, tao

26 tao = 10 * 10 ^ -15;

27 % System temperature, T

28 Tl = 300;

29

30 %%

31 % possible energy of initial and final states, E_i and E_f

32 Energy = linspace(0, 5.5 + 2.3 * 2, (5.5 + 2 * 2.3) / 0.01 +1) *

electron_charge;

33 E_i = Energy;

34 E_f = Energy;

35 %%

36 % generation rate for initial states

37 Gamma_i = zeros(length(E_i), 1);

38 % generation rate for final states

39 Gamma_f = zeros(length(E_f), 1);

40

41 %% Calculation

42 for index_f = 1:length(E_f)

43 for index_i = 1:length(E_i)
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44 E_yz = linspace(E_step, E_i(index_i) - E_step, (E_i(

index_i) - 2 * E_step) / E_step + 1);

45 for index = 1:length(E_yz)

46 n_xi = floor(((E_i(index_i) - E_yz(index)) ./ E_step)

.^ 0.5);

47 n_xf = floor(((E_f(index_f) - E_yz(index)) ./ E_step)

.^ 0.5);

48 F_fl = (exp((E_f(index_f) - E_Fermi) ./ (kb .* Tl)) +

1) .^ -1;

49 F_il = (exp((E_i(index_i) - E_Fermi) ./ (kb .* Tl)) +

1) .^ -1;

50 % selection rule is that the change of nx must be odd

number

51 if mod(abs(n_xi - n_xf), 2) ~= 0

52 M = n_xi * Lx ./ (n_xf .^ 2 - n_xi .^ 2) .* ((1 -

cos(pi * (n_xf + n_xi))) ./ (n_xf + n_xi) +

(1 - cos(pi * (n_xf - n_xi))) ./ (n_xf - n_xi)

);

53 Gamma_l = 4 ./ tao .* (F_il) .* (1 - F_fl) .* ((M

.^ 2) ./ ((E_photon - E_step .* (n_xf .^ 2 -

n_xi .^ 2)) .^ 2 + h_bar ^ 2 * tao ^ -2) + (M

.^ 2) ./ ((E_photon + E_step .* (n_xf .^ 2 -

n_xi .^ 2)) .^ 2 + h_bar ^ 2 * tao ^ -2));

54 Gamma_i(index_i) = Gamma_i(index_i) - Gamma_l;

55 Gamma_f(index_f) = Gamma_f(index_f) + Gamma_l;

56 end

57 end
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58 end

59 end

60 %% plot energy distribution of non-thermal carriers

61 figure

62 hot_energy = Energy;

63 hot_gamma = Gamma_i + Gamma_f;

64 plot((hot_energy - E_Fermi) / electron_charge, hot_gamma / max(

hot_gamma))

65 grid on

66 set(gcf, 'Units', 'Inches', 'Position', [0, 0, 4, 3])

67 set(gca,'FontSize',16)

68 set(gca,'FontWeight','bold')

69 set(gca,'XMinorTick','on')

70 set(gca,'YMinorTick','on')

71 set(gca,'TickLength',[0.08, 0.12])

72 xlabel('$E-E_F$ ($eV$)', 'Interpreter', 'Latex', 'FontWeight', '

bold')

73 ylabel('$\Gamma$ (a.u.)', 'Interpreter', 'Latex', 'FontWeight', '

bold')

74 box on

Anti-Stokes Raman spectrum generated using two-temperature model

In order to fit an Anti-Stokes Raman spectrum, we use MATLAB curve fitting tool. Simply

type ’cftool’ in MATLAB command line to activate it. To use curve fitting tool, we first need

to create a function which receives input (Raman shift, lattice temperature, sub-population of hot

carriers, electronic temperature and scaling factor) and output the Raman spectrum.

The function we created for Anti-Stokes Raman spectra is shown below:
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1 function y = Raman_fit_TTM(x, a, b, c, d)

2 %% Contributor: Shengxiang Wu

3

4 %% Input variables

5 % x is only for raman shift on anti-Stokes side

6 % a is lattice temperature Tl

7 % b is hot carrier population, chi

8 % c is the electronic temperature, Te

9 % d is scaling factor

10

11 %% define physical constant

12 % reduced planck constant, h_bar

13 h_bar = 1.0546 .* 10 .^ -34;

14 % speed of light, c_light

15 c_light = 299792458;

16 % Boltzmann constant, kb

17 kb = 1.3807 .* 10 .^ -23;

18

19 %% parameters input

20 Tl = a;

21 chi = b;

22 Te = c;

23 D = d;

24

25 %%

26 raman_energy = - x .* 100 .* c_light .* h_bar .* 2 .* pi;

27 y = 1e4 .* D .* (chi .* (exp(raman_energy ./ (kb .* Te)) +1)
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.^ -1 + (1 - chi) .* (exp(raman_energy ./ (kb .* Tl)) - 1)

.^ -1);

28 end

An example of using this function is shown in Figure C.3 with the MATLAB code to generate

it.

Figure C.3: Anti-Stokes Raman spectrum. Tl = 300 K, χ = 1%, Te = 5000 K.

1 %% This script is used to plot an Anti-Stokes Raman using TTM

parameters

2 % Contributor: Shengxiang Wu

3

4 %% Clear workspace and close current figures

5 clear all

6 close all
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7

8 %% set Raman shift, from -4000 cm-1 to -500 cm-1

9 Raman_shift = linspace(-4000, -500, 3501);

10

11 %% Calculate Raman intensity assuming Tl = 300 K, chi = 0.01, Te

= 5000 K

12 Tl = 300;

13 chi = 0.01;

14 Te = 5000;

15 Raman_intensity = Raman_fit_TTM(Raman_shift, Tl, chi, Te, 1);

16

17 % Plot Raman spectrum

18 plot(Raman_shift, Raman_intensity)

19 grid on

20 set(gcf, 'Units', 'Inches', 'Position', [0, 0, 8, 6])

21 set(gca,'FontSize',24, 'FontWeight','bold')

22 xlabel('ref $\mathrm{cm^{-1}}$', 'Interpreter', 'Latex', '

FontWeight', 'bold')

23 ylabel('Intensity (a.u.)', 'Interpreter', 'Latex', 'FontWeight',

'bold')

24 set(gca,'XMinorTick','on')

25 set(gca,'YMinorTick','on')

26 set(gca,'TickLength',[0.08, 0.12])

27 set(gca, 'YScale', 'log')

Full range Raman spectrum generated using eq 3.5b

Similarly, in order to fit the full range Raman spectrum, we first create a function based on eq

3.5b. The function is shown below:
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1 function y = Raman_fit_full_range(x, a, b, c, d, e)

2 %% Contributor: Shengxiang Wu

3

4 %% Input variables

5 % x: Raman shift

6 % a: lattice temperature

7 % b: chi, subpopulation of hot carriers

8 % c: electronic temperature

9 % d: scaling factor

10 % e: Plasmon dephasing time, in fs

11

12 %% define physical constants

13 % electron charge

14 electron_charge = 1.6022 .* 10 .^ -19;

15 % reduced planck constant, h_bar

16 h_bar = 1.0546 .* 10 .^ -34;

17 % speed of light, c_light

18 c_light = 299792458;

19 % Boltzmann constant, kb

20 kb = 1.3807 .* 10 .^ -23;

21

22 %% parameters input

23 Tl = a;

24 chi = b;

25 Te = c;

26 D = d;

27 tao_fit = e * 10 ^ -15;
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28

29 %% Calculation

30 % convert Raman shift to energy

31 Energy = x .* c_light .* h_bar .* 2 .* pi .* 100;

32 % inelastic scattered energy

33 delta_E = linspace(-5, 5, 5001) .* electron_charge;

34 % joint density of states, Raman signal is proportional to

joint

35 % density of states

36 j_DOS = zeros(length(Energy), 1);

37 for index = 1:length(Energy)

38 Fermi_i = (1 - chi) .* (exp(delta_E ./ (kb .* Tl)) + 1)

.^ -1 + chi .* (exp(delta_E ./ (kb .* Te)) + 1) .^ -1;

39 Loren_i_pre = tao_fit ^ -1 .* (delta_E .^ 2 + (tao_fit ^

-1 * h_bar) ^ 2) .^ -1;

40 % Normalization, you can choose dont do normalization,

only affect

41 % the scaling factor

42 Loren_i = Loren_i_pre ./ max(Loren_i_pre);

43 Fermi_f = (1 - chi) .* (exp((delta_E + Energy(index)) ./

(kb .* Tl)) + 1) .^ -1 + chi .* (exp((delta_E + Energy

(index)) ./ (kb .* Te)) + 1) .^ -1;

44 Loren_f_pre = tao_fit ^ -1 .* ((delta_E + Energy(index))

.^ 2 + (tao_fit ^ -1 * h_bar) ^ 2) .^ -1;

45 Loren_f = Loren_f_pre ./ max(Loren_f_pre);

46 myfun = Fermi_i .* Loren_i .* (1 - Fermi_f) .* Loren_f;

47 j_DOS(index) = trapz(delta_E, myfun);
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48 end

49 % 1e24 is arbitray, just to make the scaling factor not crazy

big

50 y = 1e24 .* D .* j_DOS;

51 end

For instance, Figure C.4 shows the calculated Raman spectrum assuming Tl = 300 K, χ = 1%,

Te = 5000 K and τ = 10 fs.

Figure C.4: Anti-Stokes Raman spectrum. Tl = 300 K, χ = 1%, Te = 5000 K and τ = 10 fs.

The code to generate Figure C.4 is shown below:

1 %% This script is used to plot a Raman spectrum using eq 3.5

2 % Contributor: Shengxiang Wu

3

4 %% Clear workspace and close current figures

5 clear all

6 close all

7
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8 %% set Raman shift, from -4000 cm-1 to -500 cm-1

9 Raman_shift = linspace(-4000, 4000, 8001);

10

11 %% Calculate Raman intensity assuming Tl = 300 K, chi = 0.01, Te

= 5000 K, and plasmon dephasing time of 10 fs

12 Tl = 300;

13 chi = 0.01;

14 Te = 5000;

15 tau = 10;

16 Raman_intensity = Raman_fit_full_range(Raman_shift, Tl, chi, Te,

1, tau);

17

18 % Plot Raman spectrum

19 plot(Raman_shift, Raman_intensity)

20 grid on

21 set(gcf, 'Units', 'Inches', 'Position', [0, 0, 8, 6])

22 set(gca,'FontSize',24, 'FontWeight','bold')

23 xlabel('ref $\mathrm{cm^{-1}}$', 'Interpreter', 'Latex', '

FontWeight', 'bold')

24 ylabel('Intensity (a.u.)', 'Interpreter', 'Latex', 'FontWeight',

'bold')

25 set(gca,'XMinorTick','on')

26 set(gca,'YMinorTick','on')

27 set(gca,'TickLength',[0.08, 0.12])
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