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ABSTRACT

Deep learning techniques produce impressive performance in many natural language process-

ing tasks. However, it is still difficult to understand what the neural network learned during train-

ing and prediction. Recently, Explainable Artificial Intelligence (XAI) is becoming a popular tech-

nique to interpret deep neural networks. In this work, we extend the existing Layer-wise Relevance

Propagation (LRP) framework and propose novel strategies on passing relevance through weighted

linear and multiplicative connections in LSTM. Then we evaluate these explainable methods on a

bidirectional LSTM classifier by performing four word-level experiments: sentiment decomposi-

tion, top representative words collection, word perturbation and case study. The results indicate

that the ε-LRP-all method outperforms other methods in this task, due to its ability to generate

reasonable word-level relevance, collect reliable sentiment words and detect negation patterns in

text data. Our work provides an insight on explaining recurrent neural networks and adapting

explainable methods to various applications.
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NOMENCLATURE

AI Artificial Intelligence

XAI Explainable Artificial Intelligence

NLP Natural Language Processing

MLP Multilayer Perceptron

RNN Recurrent Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory
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ReLU Rectified Linear Units
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ε-LRP-all LRP with ε-rule and zero− one distribution

ε-LRP-relative LRP with ε-rule and relative distribution

ε-LRP-abs LRP with ε-rule and absolute distribution

β-LRP-all LRP with β-rule and zero− one distribution

abs-LRP-all LRP with abs-rule and zero− one distribution

Ri Relevance of neuron i

Ri←j Relevance message from neuron j to neuron i

zi Value of neuron i
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ε Stabilizer

Wij Weight value that connects neuron i and neuron j

bi Bias of neuron i

δ Bias factor

N Number of neurons at lower layer that connect to a neuron at
upper layer

zij Weighted connection between neuron i and neuron j

z+ij Positive connection between neuron i and neuron j

z−ij Negative connection between neuron i and neuron j

countpos Number of positive connections

countneg Number of negative connections
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1. INTRODUCTION

In this chapter, we introduce the background of Explainable Artificial Intelligence (XAI), and

point out the motivation and current challenges in this area. Next, we state our research problem

and the objectives we plan to achieve. We list the thesis outline at the end of this chapter.

1.1 Motivation

Artificial Intelligence (AI) is becoming the center of many activities in this new information era.

Among the AI technologies, machine learning techniques have achieved impressive performance

when solving complex tasks in many fields, such as medicine [6], finance [7] and management [8].

Because of their strong learning capability, we can build create the models directly from the data

by a machine learning algorithm. In other words, machine learning models have been considered

as black boxes. That is, it is difficult for people to understand how these models make their de-

cisions or how the outcomes are related to the input elements through huge number of variables.

Therefore, there is a limitation in the effectiveness and validity of machine learning.

In the recent decade, deep learning, as a subset of machine learning in artificial intelligence, has

achieved the state-of-the-art performance in many areas, e.g., self-driving vehicles [9], robotics

[10], speech recognition [11], etc. It imitates the human behaviors to process input data and fulfill

different tasks, such as recognizing visual objects and voice, making classifications and translat-

ing languages. One of the advantages of deep learning over traditional machine learning is that

deep learning is able to automatically learn features from lower level to higher level through lay-

ers of neural networks while traditional machine learning requires feature extraction and feature

engineering by experts to reduce the data complexity [12]. Moreover, deep learning is capable of

handling larger amount of data with even higher accuracy, which fulfills the human needs in the

Big Data era (Figure 1.1).

1



Figure 1.1: Comparison between deep learning and machine learning, reprinted from [1].

However, given all the advantages of deep learning, there is still concern to understand how deep

learning models can make correct decisions while the huge number of model parameters are in-

teracting with each other under iterations. For example, given a news article and a deep learning

model classifies it as sports topic, we want to know the words in the original text that directly let

the model make this decision. Therefore, there is an emerging need to understand how solutions

or decisions are achieved by deep learning models.

Recently, Explainable Artificial Intelligence, also called XAI, becomes a new technology in ex-

plaining deep learning systems. It is based on the following needs:

• First, we need to find the causality between the input and output. For example, when per-

forming a sentiment analysis task, we need to justify why a deep learning model predicts a

movie review as positive or negative. To be more specific, we need to use the model to point

out the words that have positive contributions to the final prediction. In this case, we are able

to explicit the complex data patterns that are not easily detected by human.

• Second, explainable model can increase the mutual trust between users and deep learning

systems. For example, many hospitals or medicine research centers are using deep learning

models to help diagnose diseases, such as Alzheimer’s disease [13], but so far, human doctors

still need to get involved and check the results before selecting treatment methods. If the

2



model can explain itself, both doctors and patients can understand the rationale behind its

conclusions.

• Lastly, XAI gives us a better understanding of the model, which enables us to detect model

weakness, improve model structures and even learn new insights.

In reality, XAI has already attracted attention from both industry and academia. Organizations,

such as Defense Advanced Research Projects Agency (DARPA), have launched a project of XAI

[14]. Some high-tech companies, such as Google, started People +AI Research (PAIR) project 1.

The project aims to interpret AI recommendations and predictions through interactions, examples

and displaying model confidence. Facebook has introduced a library called Captum to explain the

decisions made by deep neural networks 2. It allows researchers to understand AI decisions in mul-

timodal environment which combines text, audio, video and images. People can also use Captum

to understand the contributions of each neuron or layer to the final output. Amazon SageMaker 3,

the platform of building, training machine learning models and applying AI services, has made

solid improvement in machine learning explainability based on SHAP and there are more plans in

this crucial area.

In academia, researchers develop lots of strategies and methods to explain the model behavior,

reveal the inner structure and create visual interfaces that are understandable by users [15, 16, 17].

In deep learning area, XAI has been adapted for explaining Deep Neural Networks (DNN), includ-

ing multi-layer neural networks [18, 19, 20], Convolutional Neural Networks (CNN) [21, 22, 23]

and Recurrent Neural Networks (RNN) [24, 25, 26]. In this work, we focus on explaining RNN,

especially the Long Short-Term Memory (LSTM). RNN has been extensively used for processing

the sequential data (such as text or time-series signals), with a notable implementation in Natural

Language Processing (NLP). Although great achievements have been made in CNN and computer

1https://pair.withgoogle.com/guidebook/
2https://venturebeat.com/2019/10/10/facebooks-captum-brings-explainability-to-machine-learning/
3https://www.cmswire.com/information-management/amazons-ai-leadership-advances-at-reinvent-2019/
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vision [27, 28, 29], there are few contributions made for interpreting RNN. In general, these works

can be divided into two categories:

• Explain and understand what an RNN has learned.

• Explain and modify RNN architectures to provide new learning framework.

Among the first category, Ding et al. [30] use layer-wise relevance propagation method to study

the contribution of contextual words to any intermediate hidden state. Karpathy et al. [25] propose

a qualitative visualization method to interpret that LSTM models can learn long-range interactions

on word sequences. Besides the work explaining RNN, Arras et al. [31] explore the inner structure

of LSTM and propose a simplified LSTM that can solve the same task with less memory cells.

Given the fact that deep learning will keep developing in the next a few decades, we believe that

explaining deep learning model will become an important aspect in both industry and academia.

Moreover, there are fewer contributions in explaining RNN than CNN. It is worth studying the

interpretability of RNN and LSTM.

1.2 Challenge

In early NLP works, researchers used to build their systems based on language features or

rules, such as semantic relation, word frequency, document frequency, syntactic types, lexical

classes. These features can be easily understood by human, and we can observe the importance of

these features to explain what the NLP models can learn. However, it is rather difficult to under-

stand what is happening inside an end-to-end deep neural network. For example, when we conduct

sentiment analysis of movie reviews, we usually input the text words and go through the word

embedding layer and the recurrent neural network until we obtain the final output, e.g., positive

or negative. However, we cannot understand what happens inside the model and the rationale that

the model’s decision is based on. This requires us to open the black box, check the hidden nodes,

and propagate from output label back to the input words. Although projecting word embedding to

4



lower-dimensional space [32] and the attention mechanism [33] can explain LSTM models locally,

interpreting the entire neural network from output to input still remains a challenge.

1.3 Problem Statement

In the Natural Language Processing area, there are many well-known applications, such as

name entity recognition, speech recognition, neural machine translation and sentiment classifica-

tion. All of these basic applications have been studied with different deep learning techniques

[11, 34, 35, 36] and achieved good performance. Correspondingly, many explainable artificial in-

telligence techniques have been implemented to interpret model structures and relevance between

input and output [37, 38, 39], which makes these deep learning models more understandable and

trustworthy.

In this work, we interpret the decisions of a deep learning system in sentiment classification task.

We use Layer-wise Relevance Propagation (LRP) framework with different strategies to explain

the relevance between output label and input words. The relevance of a word is used to indicate

to what extent it contributes to an output label. We also systematically evaluate different LRP

strategies on linear connections and multiplicative connections in LSTM. Thus, the problems are

two-fold:

• How is each input word related to an output label?

• If we use different explaining strategies, what are the impacts they have on the word rele-

vance distribution?
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1.4 Objectives and Contributions

One thing we need to notice that the explainable method (i.e., Layer-wise Relevance Propa-

gation) should be implemented on a well-trained model. Otherwise, it is difficult to distinguish

whether the bad results come from the model itself or the explainable method. Thus, given the

problem statements, the objectives of this work are:

• Train a recurrent neural network with bidirectional LSTM and achieve acceptable perfor-

mance.

• Explain the relationship between input words and predictions in sentiment classification task.

• Evaluate the influence of different explainable methods on these explanations.

Our contributions are two-fold:

• Extend the LRP framework and propose novel methods to back-propagate relevance through

weighted linear connections and multiplicative connections.

• Provide an insight on explaining recurrent neural networks by presenting the performance of

the proposed methods in sentiment classification task.

1.5 Thesis Outline

The remaining part of this thesis is organized as follows. In Chapter 2, we demonstrate the

basic theories and discuss the work related to the explainable artificial intelligence, especially in

natural language processing. Chapter 3 introduces the model structure of sentiment classification

task, and different LRP strategies on linear connections and multiplicative connections in LSTM.

In Chapter 4, we first present the sentiment model performance. Then we visualize the relevance

of each input word to the output label, and evaluate the performance of different LRP strategies.
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2. BACKGROUND AND RELATED WORK

In this chapter, we first introduce the background knowledge in deep learning, such as neural

network and recurrent neural network. Next, we give an overview of traditional methods and ap-

plications in natural language processing. Then we present the current trend in natural language

processing using deep learning techniques. Finally, we look into the explainable techniques that

are used to interpret the deep neural network.

2.1 Deep Learning

Deep learning is a sub-field of machine learning in artificial intelligence that are inspired by

imitating human brain functions in learning data for decision making. According to Dr. Andrew

Ng 1, the co-founder of Google Brain, the main purpose of deep learning is two-fold:

• Making learning algorithms more efficient and easier to implement.

• Making revolutionary advances in machine learning and artificial intelligence field.

Given the improvement of computers and the outburst of data volume, it is the right time for deep

learning to take off in our life. There are mainly two advantages of deep learning over the tradi-

tional machine learning: scalability and hierarchical feature learning.

For the traditional machine learning algorithms, their performance will reach a plateau when the

data size is getting larger. As we can see in Figure 2.1, the deep learning algorithms can signif-

icantly increase performance with more data. That is to say, if we feed more and more data into

deep learning model, its performance keeps getting better. Besides, deep learning allows us to

build bigger model, such as larger deep neural networks, for learning from bigger data. Dr. Dean,

from Google Brain, has pointed out that the results of neural networks can get better with more

1https://www.youtube.com/watch?v=n1ViNeWhC24
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data, bigger model and more computations [40].

Another benefit of the deep learning scalability is that deep learning has a strong capability of

learning both structured data and unstructured data. Traditionally, machine learning can only pro-

cess data in tabular formats. For example, we have a list of weather data, each of which contains

location, temperature, wind speed and humidity, and then we can train a machine learning model

(e.g., random forest) to predict its temperature by inputting location, wind speed and humidity.

However, deep learning can process not only data in traditional format but also analogue data,

such as images, audios and text documents. Various studies have proved that deep learning al-

gorithms have outperformed machine learning algorithms in both supervised and unsupervised

learning [41, 42, 43].

Figure 2.1: Relationship between performance and data quantity for Machine Learning and Deep
Learning algorithms, reprinted from [2].

Moreover, deep learning is also capable of performing automatic feature extraction from raw data.

In traditional machine learning, we need domain experts to extract features from data manually,

since feature engineering can improve the model performance. Deep learning eliminates the hu-

man intervention and execute the feature extraction by itself. To be more specific, deep learning
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methods can learn data features hierarchically from low-level to high-level [44]. This feature ab-

straction allows a deep learning system to learn complex mapping from input data to output data,

without the need of human-extracted features. For example, when we perform face recognition,

deep learning models can automatically extract a person’s nose, eyes and cheeks and gradually

combine them into new features at higher levels.

Due to these advantages, modern deep learning is getting increasing attentions in both industry

and academia. At current stage, the most popular algorithms are Multilayer Perceptron Networks

(MLP), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). In the

next two sub-sections, we focus on the neural networks that are most related to this research: MLP

and RNN.

2.1.1 Multilayer Perceptron Network

Multilayer Perceptron Network (MLP) is one of the fundamental models in deep learning. It

consists of numerous interconnected artificial neurons that pass data among them. These neurons

are connected linearly with weights and bias, which are optimized in the network training process,

and then transformed through activation functions to outputs.

Neuron is the basic structure of neural network, which works like a neuron in the human brain.

A neuron can be seen as a basic processor in the neural network. It receives information from the

upper layer, process the information and output to the next layer. One thing we need to point out is

that deep learning has nothing to do with biology, although neurons imitate the function of those

in a human brain. Instead, it is a mathematical framework for learning representations from data.

Figure 2.2 illustrate how a single neuron works. As we can see, the neuron receives informa-

tion from three input neurons x1, x2 and x3 through three edges. Next, each of these three neuron

values is multiplied by an edge weight plus a bias individually. We then apply an activation func-
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tion on the sum of these values as output and pass it to a neuron in the next layer. This rule is

generalized in Equation 2.1, where w is the weight vector, b is the bias vector, f(·) is the activation

function. xi, wi and bi represent the neuron value, edge weight and bias applied on each input

neuron.

Figure 2.2: A single neuron structure, reprinted from [3].

z = f(w � x+ b) = f(
∑
i

wi · xi + bi) (2.1)

Different weights represent different importance of features at each layer. When we train a deep

learning model, both weights and biases are updated according to the user-defined criterion. The

resulting set of these values is able to catch meaningful representations of data at different layers.

The activation function transforms the linear production of inputs to the outputs, which will be

passed as the input to the neurons at next layer. Several common activation functions are Sigmoid

function (Equation 2.2), Rectified Linear Units (ReLU) function (Equation 2.3) and Tanh function

(Equation 2.4). Note that using different activation functions can achieve different effects in deep

neural networks. For example, Sigmoid function gives a smooth range of input values between 0

and 1, and it is differentiable across its domain. However, Sigmoid function is usually not used in

intermediate layers due to the vanishing gradient problem. ReLU function has a constant deriva-
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tive for all inputs greater than zero, which can speed up the training of neural networks. Tanh has

similar effect as Sigmoid function. The difference is that it outputs values between -1 and 1.

σ(z) =
1

1 + ez
(2.2)

ReLU(z) = max(z, 0) (2.3)

tanh(z) =
ez − e−z

ez + e−z
(2.4)

In multilayer perceptron networks, there are different numbers of neurons at each layer. A typical

MLP structure is presented in Figure 2.3. We can see that each neuron is connected with neurons

in neighboring layers by weighted edges.

Figure 2.3: Multilayer Perceptron Network.

Generally, layers can be divided into three categories: input layer, output layer and hidden layer.

Input layer receives the original data assigned by human, such as image and digits, while output

layer presents the final results, such as image recognition outcomes. Hidden layers perform spe-

cific tasks on the incoming data and pass the output generated to the next layer. They are trained

to extract different levels of data representations as the model goes deeper.
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Before training, we need to define a loss function to measure the quality of a candidate solution

(i.e., a set of weights and bias). Common loss functions are Mean Square Error (MSE) and Cross-

entropy loss. The MSE loss function is used to evaluate the average squared distance between

predicted values and true values, while the Cross-entropy loss is used in binary-class or multi-class

classification problems. These classes are one-hot encoded and the predictions are a set of proba-

bility distributions regarding each class. Note that we should choose suitable loss function for each

problem in order to train the model correctly.

Given the loss function, the learning problem is then transformed to an optimization problem.

The target is to minimize the loss function by updating the weights in neural network. The com-

monest approach is Gradient Descent. Its main idea is that if a function F (x) is differentiable in the

neighboring region of a point u, then F (x) decreases fastest in the direction of its negative gradient

at point u. Equation 2.5 gives the general formula of the gradient descent method, where L is loss

function, wt−1 and wt are the weights at time step t − 1 and t, respectively. η is the learning rate

which is used to control the step at each optimization iteration. We need to take appropriate step at

each iteration in order to reach global minimum point within limited time.

wt = wt−1 − η
∂L

∂w
|wt−1 (2.5)

When the training data size gets bigger, it is inefficient to calculate gradient for each training sam-

ple. Thus, in order to increase the efficiency, several stochastic gradient descent (SGD) techniques

have been developed, such as mini-batch SGD, AdaGrad, RMSProp and Adam. The difference be-

tween these SGD techniques lie in the usage of gradient and momentum when updating weights.

More details can be found in [45, 46].
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2.1.2 Recurrent Neural Network

2.1.2.1 Vanilla RNN

Traditional neural networks flow only in one direction, from input layer to output layer, which

means all the inputs are independent with each other. However, when it comes to sequential data

(e.g., text and video), there is an issue: the output from previous time step affects the input in the

current time step. For example, when we read an article, we understand the content based on our

understanding of previous words, and we may also have an idea about what the next paragraph

will be. This is because we keep our memory while reading instead of thinking about each word

individually.

Recurrent Neural Network (RNN) is used to address this issue. It is not only a feedforward neural

network, but also contains connections pointing backward. The left hand side of Fig .2.4 shows

a basic recurrent neuron: receiving input xt, producing an output hidden state ht and sending ht

back to itself for the next time step. The right hand side of Figure 2.4 presents the vanilla RNN

unrolled through time, which illustrates how the RNN loop operation works in sequential order.

Figure 2.4: Structure of a vanilla RNN, reprinted from [4].

When we train an RNN on long sequences, we need to build a very deep network and run it over

many time steps. Similar to any other neural network, it may suffer from the vanishing or ex-

ploding gradients problem. The vanishing/exploding gradients problem can be briefly explained

as follows: consider the case where an individual gradient of a hidden state with respect to the
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previous one is less than one (i.e., ∂ht

∂ht−1
< 1). As we back-propagate across multiple time steps,

the product of these gradients get smaller and smaller, leading to the vanishing gradients. On the

other hand, if the gradient is larger than one (i.e., ∂ht

∂ht−1
> 1), then the product of gradients get

bigger and bigger, leading to exploding gradients.

There are several solutions to alleviate the these problems, such as proper initialization of pa-

rameters, non-saturating activation functions, batch normalization, gradient clipping, truncation of

sequence length. However, they can neither improve the training speed nor keep the long-term

dependency, when we deal with long sequences. In this work, we use Long Short-Term Memory

(LSTM) to address these issues.

2.1.2.2 LSTM

Vanilla RNNs are able to consider the recent information when performing tasks at current time

step. For example, a language model predicts the next one word based on previous words. Given

a sentence "students take classes in", it is obvious that the next word is "school", and we notice

that we don’t need more context in the previous sentence. In this case, vanilla RNNs can handle

this problem, since the gap between the relevant context and the prediction spot is small. However,

when the gap is getting larger, there is a problem that RNN may not be able to connect the relevant

information far from the prediction spot.

LSTM is used to address this issue. It is a variant of RNN that is able to detect long-term dependen-

cies in the sequential data [47]. Basically, LSTM implements recurrence with four fully-connected

layers interacting in a way such that the proper part of long-term and short-term memory can be

kept when performing current task. Figure 2.5 presents the structure of a typical LSTM cell. It

consists of two states (i.e., short-term state ht and long-term state ct), and three gates (i.e., forget

gate, input gate and output gate).
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Figure 2.5: Structure of a LSTM cell.

Forget gate is used to control what information should pass. The information is collected from the

input xt at current step and hidden state ht−1 from previous step. Equation 2.6 is the formula of

forget gate. We notice that there is a sigmoid function that are used to make this decision. The

closer the output ft is to zero, the more information we should forget.

ft = σ(Wxf · xt +Whf · ht−1 + bf ) (2.6)

Input gate is used to update the cell state ct. Equations 2.7 present the flow of input gate. First, we

pass the current input xt and previous hidden state ht−1 to a tanh function for regulation. Then we

multiply gt with another gate value it to decide what information we should keep. After that, we

combine this retained information with the previous cell state ct−1 to get the current cell state ct.

it = σ(Wxi · xt +Whi · ht−1 + bi)

gt = tanh(Wxg · xt +Whg · ht−1 + bg)

ct = ft � ct−1 + it � gt

(2.7)

Output gate is used to decide the hidden state ht at the current step. It uses a gate neuron ot

to decide how much information ht should keep according to the current cell state ct. The new

hidden state and new cell state is then passed to the next step.
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ot = σ(Wxo · xt +Who · ht−1 + bo)

ht = ot · tanh(ct)
(2.8)

Note that in equations 2.6, 2.7 and 2.8, Wx∗,Wh∗ are weights connected to current input xt and

hidden state ht−1 at previous step. b∗ is the bias term.

2.1.2.3 Bi-directional LSTM

Standard LSTM is uni-directional. This means that it always reads the sequential data from

left to right. For example, given a sentence "I am a student", the uni-directional LSTM receives

input in the following order: "I", "am", "a", "student". However, future words may also have

influence on predicting the current word. Bi-directional LSTM is able to include features from

both past and future at current step. It has been proved that Bi-LSTM has outperformed the state-

of-the-art models in many natural language processing tasks, such as speech recognition [48] and

sequence tagging [49]. Figure 2.6 presents the structure of a bi-directional RNN, where each

neuron represents an LSTM cell. The network consists of a forward LSTM and a backward LSTM,

which receive the input from two directions. Then they generate a set of forward hidden states (
−→
ht )

and backward hidden states (
←−
ht ), concatenate ([

−→
ht ,
←−
ht ]) and pass them to the next step.

Figure 2.6: Structure of a bi-directional RNN, reprinted from [5].
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2.2 Natural Language Processing

In this section, we introduce the conventional techniques in Natural Language Processing

(NLP) that are related to our work. These techniques include Bag of Words, word embedding

and their applications in sentiment analysis.

2.2.1 Bag of Words

The Bag-of-Words (BoW) model is a simple representation that is commonly used in natural

language processing and information retrieval area. It collects the frequency of each word within

a sentence or document, so that each document can be described as a vector. The elements in this

vector represent the occurrence of each word in the document. In this model, we disregard the

information about semantics, syntax and word orders, and just use word occurrence as the text

feature. One advantage of BoW is that it is easy to implement and compare documents if they

have similar content. Previous studies have proved its effectiveness in many NLP fields, such as

document categorization [50], machine translation [51] and fraud detection [52].

However, when we have documents with huge vocabularies, each vector becomes highly sparse.

This could cause memory storage issue and increase the complexity of further operations. Another

issue is that BoW may contain words with high frequency but useless information, such as "the".

Thus, the way to solve this word frequency issue is TF-IDF [53], where TF stands for term fre-

quency and IDF stands for inverse document frequency. In doing this, words with high document

frequency is penalized, while meaningful words are benefited with more weights.

2.2.2 Word Embedding

Word embedding is a learned representation that maps words to vectors consisting of real num-

bers. It includes a suite of techniques where each word is represented as a sparse or dense vector

space. The basic form of word embedding is One-hot encoding. It uses a large sparse binary vector
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to represent a word, where all of its elements are zero except one position k (k is the position of

this word in vocabulary). Although the one-hot encoding approach is easy to use and understand,

it still suffers from the curse of dimensionality once we have a huge vocabulary. Moreover, it is not

able to cluster the words with similar meanings and include the sequential information in sentences.

One of the advanced word embedding techniques that preserve semantic relationships between

words is Co-occurrence Matrix. It counts the frequency of two or more words that occur together

in documents. More specifically, it calculates count(wnext|wcurrent), where wcurrent and wnext are

the current word and its next neighbor. Thus, we can repeat this process for each word in vo-

cabulary and the resulting matrix is the co-occurrence matrix, where each row represents a word

vector. Although it provides more accurate word representations, it still fights with the curse of

dimensionality, since each word vector has a huge dimension. The idea to solve this issue is using

neural networks to represent words in denser vectors.

2.2.2.1 Word2Vec

One of the most popular neural network based word embedding is Word2Vec [54, 55]. Word2Vec

is able to map each unique word in vocabulary to a low-dimension dense vector space (typically

hundreds of dimensions). It trains shallow neural networks, i.e., Continuous Bag-of-Words model

(CBOW) and Continuous Skip-Gram model, to construct the linguistic context of words. Both

models can preserve the semantic and syntactic relationships by predicting a word with its nearby

words. The difference is that CBOW predicts word by its context while the skip-gram model pre-

dicts its context by the target word. The resulting word vectors can cluster the words that share

common contexts in the corpus. One of the interesting characteristics of this word embedding

method is that it can capture word similarities, such that similar words can be found by vector

arithmetics, e.g., king - man + woman = queen. Due to this property, Word2Vec has now been

implemented in many researches, such as text classification [56], named entity recognition [57]

and sentiment analysis [58].
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2.2.2.2 GloVe

Another well-known embedding technique is GloVe [59]. Unlike Word2Vec, GloVe uses co-

occurrence statistics to relate similar words while distancing unrelated words. Thus, GloVe is

basically a count-based model, where we first construct a big co-occurrence matrix and then per-

form dimensionality reduction on it. After factorization, each row vector in the resulting lower-

dimensional matrix is used to represent each word in vocabulary. This process is achieved by train-

ing a log-bilinear regression with an objective of minimizing a reconstruction loss. It is known that

GloVe combines the benefits of global statistics using matrix factorization and local statistics using

context-window methods.

The core idea of GloVe is to decide the relative relation between three words by using the ratio

of co-occurrence probabilities. For example, there are three words wi, wj and wk. Now suppose

wk appears more frequently in the context of wi than wj . Thus, the ratio of co-occurrence P (wk|wi)
P (wk|wj)

should be large. If wk appears more frequently in the context of wj than wi, the co-occurrence ratio

P (wk|wi)
P (wk|wj)

should be small. If wk appears frequently both in the context of wj and wi, or it appears

rarely in both context, then the co-occurrence ratio should be close to one. In doing this, we are

able to differentiate the relevant words with irrelevant words. The resulting word representations

show an interesting linear property in the vector space, such that the difference between vectors

can capture the meaning specified by parallel of two words [59].

In addition, GloVe is easier to train with more data due to its parallelization. Therefore, given

all these advantages, GloVe has obtained the most attention in deep learning, especially in the

recurrent neural network field. Such researches as name entity recognition [60], emotion classifi-

cation [61] and speech detection [62] have all reached improved performance with GloVe.

In this work, we use pre-trained GloVe as the initialization of the word embedding layer in our

Bi-LSTM sentiment analysis model.
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2.2.3 Sentiment Analysis

Sentiment analysis is one of the fundamental tasks in natural language processing. The ob-

jective is to identify and extract the subjective information from texts. Typically, in a sentiment

analysis task, we classify the expressed opinions or affective states from a given document or

sentence as positive, negative or neutral. Several examples are given below:

• Input: It is one of the greatest family - oriented, fantasy - adventure movies ever.

Output: Positive.

• Input: If you sometimes like to go to the movies to have fun, wasabi is a good place to start.

Output: Positive.

• Input: It becomes gimmicky instead of compelling.

Output: Negative.

Moreover, there are also other type of affective states, such as emotion (i.e., joyful, sad, angry,

fearful), mood (i.e., cheerful, gloomy, irritable, depressed) and personality traits (i.e., nervous,

anxious, hostile, humble) [63].

Sentiment analysis is widely applied in customer reviews, survey responses and many other data

in healthcare, social media and marketing. Given the outburst of data volumes, sentiment analysis

is really helpful to process different types of data at scale, identify issues in real-time and create

consistent criteria. It has also been proven to be a valuable technique in recommender systems that

recommend products to users based on their perferrence [64, 65, 66].

Sentiment analysis is one of the most challenging tasks due to its inability to perform well in

every domain and incapability to handle complex sentence structure (e.g., double negation). Ex-

isting methods to sentiment analysis can be divided into categories: knowledge-based approaches,

statistical approaches and hybrid approaches.
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Knowledge-based approaches define a set of rules that are collected from domain-based facts

[67, 68]. Then we use these facts to perform sentiment analysis by inference. The advantage

of these approaches is that it can provide explanation to its local thinking process, which makes

the system more reliable. However, collecting these facts itself can be cumbersome.

On the other hand, statistical approaches implement machine learning techniques. Typical methods

are Naive Bayes [69], logistic regression [70], support-vector machine (SVM) [71] and K-Nearest

Neighbors [72]. Although these methods can reach higher accuracy than traditional knowledge-

based approaches, we need to manually extract features, such as word frequency, in order to achieve

reliable results. With the arrival of deep learning, many researchers start to focus on the implemen-

tation of neural network on sentiment analysis. Convolutional neural networks (CNN) and recur-

rent neural networks (RNN) are the two well-known techniques [36]. Liao et al. [73] designed a

simple convolutional neural network model to extract sentiment information from massive Twitter

texts, which outperformed conventional SVM and Naive Bayes methods. Li et al. [74] used LSTM

to classify emotion of sentences, and they proved that the LSTM can achieve better performance

than the vanilla RNN. Wang et al. [75] combined CNN and RNN for sentiment classification for

short texts, and the results are better than the state-of-the-art on benchmark datasets.

Hybrid approaches join both the machine methods and knowledge-based methods. They first ex-

tract lexicon features from raw documents and then feed these features to machine learning models

[76, 77, 78].

In this work, we build the recurrent neural network based on Bi-LSTM. Due to the lack of explain-

ability in deep learning models, we use explainable methods to interpret the relevance between its

decision and input words.
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2.3 Explainable Artificial Intelligence

In this section, we introduce Explainable Artificial Intelligence (XAI). First, we give an overview

about what XAI is and its contributions. Second, we discuss about the understandable models in

conventional machine learning field. Then, we introduce different types of explainable approaches

based on local regions and global behaviors. Lastly, we discuss the related works in XAI that have

been adapted in natural language processing.

2.3.1 Explainability of Artificial Intelligence

Traditionally, when people design an expert system, they mainly focus on defining a set of

complicated rules. These rules, which are most commonly used as knowledge representation, are

usually defined in an "if-then" structure [79]. For example, a doctor may make the right decision

on diagnosis through an expert system, given a set of typical symptoms. As we can see, these

rules can be easily understood by human. Thus, the entire expert system is also easy to explain.

However, modern systems based on artificial intelligence are totally different with the conventional

rule-based systems. The system rules are now defined in terms of a huge number of parameters that

are trained through many iterations. Although the performance of these systems has been largely

improved, it is difficult for us to understand the reason behind model decisions.

For the time being, there is still no consensus on understanding what the explainability is, but many

studies on explainable models and techniques have enriched the meaning of explainability. Gun-

ning et al. [14] define XAI as a set of machine learning techniques that can let human understand

and trust AI systems. Doran et al. [80] give another concept of explainability - an AI system that

can automatically reason its decision without any post intervention by human. However, whether

the explanations are understandable by human is totally dependent on the audience themselves.

Thus, Arrieta et al. [81] propose that given an audience, XAI is able to justify model’s decision

by clarifying its functioning and making it easy to understand. Generally, it is easy for us to un-
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derstand simple models, such as linear classifier (especially in two dimension), while complicated

models, such as CNN and RNN, are difficult to understand because of their nonlinear structures

and optimization iterations. In this study, we regard the explainability of a deep learning system as

the ability to explain the reason behind its decision that is acceptable and understandable by human.

With the arrival of deep learning and big data era, deep neural network is becoming a common

technique to build AI systems. Thus, it is in great need that we should explain these models in a

human-understandable way. The main contributions of XAI are listed as follows [17]:

• Trustworthiness: Modern AI systems are treated as black boxes. That is, people can only

interact with the inputs and outputs, but they cannot check what is happening during the

decision making process. In some area such as medical diagnosis, it is important for re-

searchers to justify the decisions of the system, since the model does not understand human

symptoms. Thus, XAI can increase the mutual trust between human and systems.

• Model improvement: In most studies, people usually directly implement existing deep

learning models to their applications, such as speech recognition and machine translation.

Nevertheless, this methodology may reach a performance plateau due to the limitations of

neural networks. Through explaining these models, we can modify their structures and

achieve better results.

• New insights acquisition: Since deep neural networks can learn rules that human cannot

understand. They may generate new insights to real events in our life. For example, AI

systems outperform human chess players, so they may have applied new strategies that are

previously not known to human. In this sense, we can extract these special strategies from

XAI and apply them in games between human.

• Legal compliance: XAI also has a great impact on legal issues, since the black box models

now cannot justify the reason to problems about human rights. One example is whether a
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criminal is allowed to be paroled. With XAI, we can provide the justification that is accepted

by the public.

2.3.2 Interpretable Machine Learning Models

A model is regarded as interpretable if it is understandable without human intervention. Many

existing machine learning models are interpretable models. For example, logistic regression model

assumes a linear relationship between predictors and target. Many studies have used different tech-

niques to analyze the soundness of logistic regression model [82, 83, 84].

Another example is decision tree, which has a flowchart structure with nodes and branches. Thus,

it is straightforward for people to follow from root to leaf nodes and explain whether the final deci-

sion is reasonable. However, when we transform decision trees to decision forests, it may increase

the complexity if we want to explain them. Sagi et al. [85] used a set of rule conjunctions to

reduce the original decision forest into a single interpretable decision tree. It has been proved that

the reduced model can preserve the predictive capability while providing efficient explanations to

human.

Other machine learning models, such as K-Nearest Neighbors and bayesian models, are also easy

to interpret due to their structures and rationales [86, 87, 88].

2.3.3 Local Explainable Approaches

Given a well-trained model, the local explainable approaches aim to answer the question: why

does the model make a certain decision for an input instance? For example, if there is a model

trained for image classification, we want to know how each pixel of an image in the test set is

related to the predicted label. Thus, in local explainable methods, each input and prediction pair

is studied individually to explain how a model behaves. There are two types of local explainable

methods, i.e., model-aware methods and model-unaware methods, depending on whether an ex-
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plainable method uses the parameters directly from the model.

Model-aware methods utilize the parameters directly from a model. For convolutional neural net-

works, many previous works focused on CNN visualization by highlighting relevant pixels that

have large impact on the final predictions [22, 89, 90]. Although these methods can provide high-

quality visualization, they are not class-discriminative, which means that the generated images

may be very similar with respect to different classes. Another strategy is to detect objects from

images based on their class labels [91, 92, 93]. Zhou et al. [23] proposed to use class activation

maps (CAM) to highlight the objects detected by CNNs. However, this technique only applies to

CNN architecture with average-pooling before prediction. Selvaraju et al. [94] extended CAM

to Grad-CAM using gradient signal, so that it can be adapted to any CNN architecture. Bach et

al. [28] proposed the Layer-wise Relevance Propagation (LRP) technique to back-propagate the

output score to the input instance. This method can calculate contribution of each pixel in each

input image. In recurrent neural networks area, one way to explain RNN is visualizing hidden

nodes. Strobelt et al. [95] developed an interactive tool to analyze the hidden states pattern given

a pre-defined input range. This technique can also find similar patterns in large data set. Another

way to explain RNNs is analyzing the contribution of each input word to predictions. Arras et al.

[24] implemented Layer-wise Relevance Propagation method on LSTM and highlighted the words

that have positive and negative impact, respectively.

Model-unaware methods derive explanations mainly based on sensitivity. The sensitivity can be

computed as gradients used in back-propagation. Simonyan et al. [89] calculated partial deriva-

tives of class score with respect to an input image, and pointed out the most sensitive part of image.

The drawback of this approach is that we cannot distinguish whether the pixels have positive or

negative effect on the output label. Li et al. [96] extended this approach in natural language pro-

cessing. They highlighted the input neurons that have big contribution to the final classification.

Another approach is called Contextual Decomposition (CD) [97]. It separates the forward pass of
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LSTM into two parts (relevant part and irrelevant part), and combines these two hidden states to

give a relevance score of each word. The drawback is that it results high computation cost, since it

requires multiple forward passes.

2.3.4 Global Explainable Approaches

The global explainable approaches aim to answer the question: how does the model make pre-

dictions over the entire input space? Similar to the local explainable approaches, global explainable

approaches can be categorized into model-aware methods and model-unaware methods.

For model-aware methods, one way to explain neural network is analyzing the representation of

each neuron or each layer of neurons. Bau et al. [98] proposed a network dissection strategy

to measure what each hidden node represent in CNN. Consistent with the hypothesis, the results

proved that different layers in CNN represent partial features for images. Karpathy et al. [25]

visualized the functions of different cells inside LSTMs and showed that these cells can handle

different features, such as line length and quotes, when processing documents.

For model-unaware methods, there is few research about explaining models in a global sense.

Ribeiro et al. [99] proposed a novel technique to give global explanation of any model by selecting

a subset of representative examples. Although this method is flexible for many models, such as

random forest and neural network, it is not efficient when dealing with larger datasets.

2.3.5 Explainable Approach in Our Work

In this work, we use Layer-wise Relevance Propagation (LRP) technique to explain LSTMs.

LRP is previously used in CNN [28] and then extended to RNN [24]. The difference is that the

word vectors are the basic units in RNN instead of single pixels. The main idea of this approach

is quantitively visualizing the relevance of each neuron at the input layer to the final decision at
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output layer.

The LRP approach is significantly different from the attention mechanism [33]. The attention

scores are attached separately to LSTM hidden states at each time step, but not the input words

directly. This means the attention mechanism can only explain the model in local scope. In con-

trast, relevance can be used to visualize the relationship between any two neurons in the neural

networks. Another advantage of LRP over gradient-based methods is that it is invariant against the

nonlinear activations, which saves lots of computational efforts.

However, the LRP framework has not been extensively studied in RNN. In this work, we use

different methods on weighted linear connections and multiplicative connections in LSTM, and

evaluate them thoroughly in sentiment analysis. The results may provide insights on how to im-

prove LRP in the future.
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3. METHODOLOGY

In this chapter, we first introduce the Bi-LSTM-based recurrent neural network for sentiment

classification, including its architecture and detailed parameters. Next, we introduce the details

of general Layer-wise Relevance Propagation framework as well as different methods we use on

weighted linear connections and multiplicative connections in LSTM.

3.1 Bi-LSTM Model for Sentiment Classification

In this sentiment classification task, we use recurrent neural network based on bi-directional

LSTM. Figure 3.1 illustrates the model architecture.

Figure 3.1: The architecture of sentiment classification model.

Given the input sentence, the encoder first embeds each word to a real-valued vector through an

embedding layer, which is initialized with the pre-trained word embedding GloVe [59]. Then the

recurrent neural network with Bi-LSTM reads the input sentence in the forward and backward
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direction, respectively. For example, suppose we have an input sentence - "this is a fascinating

movie". At the first time step (t = 1), the forward encoder reads the word "this". At t = 2, it reads

the word "is" while keeping the information of word "this". The forward encoder keeps reading

until the end of this sentence. Similarly, the backward encoder reads the sentence in the reverse

order: "movie fascinating a is this". In doing this, the model captures the information from both

past words and future words at each time step.

As a result, we obtain a set of forward hidden states (
−→
ht = f(

−→
h t−1, xt)) and backward hidden

states (
←−
ht = f(

←−
h t−1, xt)), where f(·) represent the Bi-LSTM encoder. In the next step, we use the

forward hidden states and backward hidden states at the last time step, each of which go through

a linear layer respectively. Finally, we add the resulting two states together to get the probability

distribution of each label. We predict the sentiment label with the largest probability value.

3.2 Layer-wise Relevance Propagation for Bi-LSTM

The Layer-wise Relevance Propagation (LRP) was first introduced by Bach et al. [28] on

convolutional neural networks. Here we extend this framework on LSTM and compute neuron-

level relevance from output layer to input layer. We use a simple three-layer neural network shown

in Figure 3.2 to illustrate how the LRP works.

Figure 3.2: A simple three-layer neural network for illustrating LRP.
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As we discussed in Chapter 2, the LRP redistributes the relevance from the neurons of output layer

back-propagate to the neurons of input layer. We notice in Figure 3.2 that there are two neurons in

each layer. Starting from the left, u1, u2 are input neurons, v1, v2 are hidden neurons and y1, y2 are

output neurons. In this example, we use Ri←j to represent the relevance message from neuron j to

neuron i. Ri is the relevance score of neuron i. W (m)
ij is the weight connection between neuron i

and neuron j of different layers. For example, W (1)
12 is the weight between neuron u1 and neuron

v2. Rv1←y2 is the relevance message passing from neuron y2 to neuron v1. Ru1 is the total relevance

received by neuron u1. In the following, we present how LRP pass relevance from each neuron of

output layer to input neurons.

First, LRP redistribute the relevance from output neurons to hidden neurons. In the example case,

it sends a message from neurons y1, y2 to neurons v1, v2. We can calculate the relevance message

from y1 to v1 and v2 as follows:

Rv1←y1 =
W

(2)
11 · v1

W
(2)
11 · v1 +W

(2)
21 · v2

Ry1

Rv2←y1 =
W

(2)
21 · v2

W
(2)
11 · v1 +W

(2)
21 · v2

Ry1

(3.1)

where Ry1 is equal to the neuron value of y1 since it is an output neuron. We also notice that the

activation functions are ignored. This is because LRP is invariant with the non-linear equations

[28]. Similarly, we can calculate the relevance message from y2 to v1 and v2 as follows:

Rv1←y2 =
W

(2)
12 · v1

W
(2)
12 · v1 +W

(2)
22 · v2

Ry2

Rv2←y2 =
W

(2)
22 · v2

W
(2)
12 · v1 +W

(2)
22 · v2

Ry2

(3.2)
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Next, the relevance can be further back-propagated to the input neurons. For example, y1 → v1 →

u1, y1 → v2 → u1 (Equation 3.3) and y1 → v1 → u2, y1 → v2 → u2 (Equation 3.4).

Ru1←y1 =
W

(1)
11 · u1

W
(1)
11 · u1 +W

(1)
21 · u2

Rv1←y1

+
W

(1)
12 · u1

W
(1)
12 · u1 +W

(1)
22 · u2

Rv2←y1

(3.3)

Ru2←y1 =
W

(1)
21 · u2

W
(1)
11 · u1 +W

(1)
21 · u2

Rv1←y1

+
W

(1)
22 · u2

W
(1)
12 · u1 +W

(1)
22 · u2

Rv2←y1

(3.4)

We can follow the similar procedure to calculate Ru1←y2 and Ru2←y2 .

Lastly, we collect all the relevance messages for each neuron and obtain its total relevance re-

ceived. Take neuron u1 for an example:

Ru1 = Ru1←y1 +Ru1←y2

+
W

(1)
11 · u1

W
(1)
11 · u1 +W

(1)
21 · u2

Rv1

+
W

(1)
12 · u1

W
(1)
12 · u1 +W

(1)
22 · u2

Rv2

(3.5)

where Rv1 = Rv1←y1 +Rv1←y2 and Rv2 = Rv2←y1 +Rv2←y2 .

We can find out that the total relevance in each layer satisfies the conservation property. In this

case,

Ru1 +Ru2 = Rv1 +Rv2 = Ry1 +Ry2 (3.6)

Therefore, we can define the general rule of LRP as follows. Suppose Rj is the relevance received

by neuron j in layer l + 1 and Ri is the relevance received by neuron i in layer l. Then the
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relationship between Ri and Rj is:

Ri =
∑
j

Ri←j =
∑
j

zi ·Wij∑
i zi ·Wij

Rj (3.7)

where zi is the value of neuron i, Wij is the weight between neuron i and neuron j.

As we notice in the Bi-LSTM model (Figure 3.1), there are a set of neurons at the output layer,

each of which stands for the probability of a class label, such as positive or negative. In this work,

we only keep the output neuron with highest value and mask out the rest (i.e., setting to zero). In

doing this, we can visualize the relevance of each input word to the predicted label.

According to the LSTM formulas (equations 2.6, 2.7, 2.8), there are two types of connections:

multiplicative connections and weighted linear connections. In this work, we use different strate-

gies for each type of the connections and evaluate their impacts on the generated explanations.

3.2.1 Multiplicative Connection

For the multiplicative connection, it has a typical form:

zj = zg � zs (3.8)

where zj is the output neuron, zg the gate neuron and zs is the source neuron. In this work, we use

three different strategies to distribute the relevance of neuron zj to gate neuron and source neuron:

relative distribution, absolute distribution and zero-one distribution.

3.2.1.1 Relative distribution

For the relative distribution, we pass the relevance of output neuron based on the relative values

of gate neuron and source neuron. This strategy was first proposed by [30] and implemented in
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explaining a neural machine translation application. It has a typical form:

Rg =
zg

zg + zs + ε · sign(zg + zs)
Rj

Rs =
zs

zg + zs + ε · sign(zg + zs)
Rj

(3.9)

whereRj is the relevance of output neuron j,Rg andRs are the relevance of gate neuron and source

neuron, respectively. We notice that there is a stabilizer ε added on the denominator. Typically,

ε is a small positive number (i.e., 0.001) avoiding zero division. However, this term can cause

numerical instability [38]. In this work, we eliminate this stabilizer by applying a sigmoid function

on both gate neuron and source neuron (Equation 3.10). Recall that the gate neuron is the output

of a sigmoid function. Thus, by using this strategy, the denominator can never reach a value that is

extremely close to zero.

Rg =
σ(zg)

σ(zg) + σ(zs)
Rj

Rs =
σ(zs)

σ(zg) + σ(zs)
Rj

(3.10)

3.2.1.2 Absolute distribution

The absolute distribution is similar to the relative distribution. The difference is that we pass

the relevance of output neuron based on the absolute values of gate neuron and source neuron. In

this work, we also apply a sigmoid function on both of them. The typical form is as follows:

Rg =
σ(|zg|)

σ(|zg|) + σ(|zs|)
Rj

Rs =
σ(|zs|)

σ(|zg|) + σ(|zs|)
Rj

(3.11)
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3.2.1.3 Zero-one distribution

The zero-one distribution was first proposed by [24]. It passes all the relevance of the output

neuron to the source neuron (Equation 3.12). The intuition behind this method is that the gate

neuron is used to determine the fraction of information should contribute to the lower layer. Thus,

the gate contribution has already been included when we pass the relevance flow to the source

neuron.

Rg = 0

Rs = Rj

(3.12)

3.2.2 Weighted Linear Connection

The weighted linear connection has a typical form:

zj =
∑
i

zi ·Wij + bj (3.13)

where zi is the lower-layer neuron, zj is an upper-layer neuron, wij and bj are the weight and bias,

respectively. In this work, we use three different strategies to distribute the relevance of upper-layer

neuron zj to lower-layer neuron zi: ε− rule, β− rule and abs− rule.

3.2.2.1 ε− rule

The ε− rule is most frequently used in CNN and RNN [24, 39, 100]. It follows the general rule

(Equation 3.7) and add a stabilizer on the denominator (Equation 3.14):

Ri←j =
zi ·Wij + δ · (ε · sign(zj) + bj)/N

zj + ε · sign(zj)
Rj (3.14)

where zj =
∑

i zi ·Wij , N is the number of neurons at lower layer that connect to zj , δ is a bias

factor to determine whether bias should be considered, ε is a small stabilizer that prevents zero

division. In this work, we set ε = 0.001. The drawback of this method is that it does not perfectly
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satisfy the conservation property due to the stabilizer ε, and the stabilizer can cause numerical in-

stability [101].

3.2.2.2 β− rule

The β− rule was first initialized by [28] and implemented on CNN, but there is little research

studying this method on RNN. The main idea of this method is handling positive connections

(activator) and negative connections (inhibitor) separately. More specifically, for each weighted

connection zij , it passes the relevance as follows:

Ri←j = ((1 + β) ·
z+ij
z+j
− β ·

z−ij
z−j

)Rj (3.15)

where z+ij = max(0, zij), z−ij = min(0, zij). β is a pre-defined parameter (β ≥ 0). There are two

drawbacks:

• It does not satisfy the conversation property for any β value. For example, suppose we have

a fully connected layer with all three positive connections. If we set β to be 1, we actually

double the relevance from the neuron of upper layer.

• To the best of author’s knowledge, it is still an unknown whether there is an optimal β that

produces the best performance of LRP in RNN.

In this work, we propose a new strategy to assign β value based on connections. In other words,

we use different β values to different sets of connections (Equation 3.16).

β =
countneg

max(countpos + countneg, 1)
(3.16)

where countpos and countneg are the number of positive connections and negative connections,

respectively. We use a max function in the denominator to avoid zero division.
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3.2.2.3 abs− rule

An alternative method we propose in this work is passing the relevance based on absolute

connections (Equation 3.17). In this way, we pass positive message to lower-layer neurons only if

the relevance of upper-layer neuron is positive. Otherwise, we pass negative message.

Ri←j =
|zij|
|zj|+ ε

Rj (3.17)

3.2.3 Method Naming Convention

In this work, we combine different strategies on multiplicative connections and weighted linear

connections. We name our combined methods in the following format:

[linear method] - LRP - [multiplicative method].

For example, "ε − LRP − relative" represents using ε-rule on linear connections and relative

distribution on multiplicative connections, while "β −LRP − abs" represents using β-rule on lin-

ear connections and absolute distribution on multiplicative connections. Moreover, we label the

zero-one distribution as "all". Thus, "ε−LRP − all" represents using ε-rule on linear connections

and zero− one distribution on multiplicative connections.

3.3 Sensitivity Analysis

As a reference, we implement gradient-based sensitivity analysis in this work. Similar to LRP,

the sensitivity analysis method produces a relevance distribution for each word in a sentence [37,

89]. The difference is that these relevances are obtained by squared partial derivatives (Equation

3.18):

Ri =

(
∂f(x)

∂xi

)2

(3.18)
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4. RESULTS AND DISCUSSION

In this chapter, we present the results in our work. First, we introduce the dataset for training

and test, and present the performance of Bi-LSTM model. Next, we decompose the sentiment to

input words and visualize the words that have positive relevance and negative relevance. Then

we present the representative words for each class label using different methods on multiplicative

connections and linear connections. In addition, we perform word perturbation experiments to

validate the rationality of relevance distribution among these methods. Lastly, we focus on single

classification cases by adding negations or double negations, in order to explain the model behav-

ior in different semantic environment.

4.1 Bi-LSTM Model Performance

4.1.1 Data

We use the Stanford Sentiment Treebank (SST) dataset in this sentiment classification task.

It contains 8,544 sentences in the training set, 1,101 sentences in the validation set and 2,210

sentences in the test set. The class labels are positive, negative and neutral. The following sentences

are two examples in the training set:

• "Positive": the rock is destined to be the 21st century’s new "conan" and that he’s going to

make a splash even greater than arnold schwarzenegger, jean - claud van damme or steven

segal.

• "Negative": if the tuxedo actually were a suit , it would fit chan like a $99 bargain - basement

special.

4.1.2 Performance

In this three-class sentiment classification task, we build the model using bi-directional LSTM.

It consists of one embedding layer, one hidden layer of bi-LSTM and two linear layers, as shown in
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Figure 3.1. The embedding layer is initialized with 300-dimensional pre-trained GloVe embedding.

The number of hidden units in bi-LSTM is 256. We train the model 100 epochs with a learning

rate of 1× 10−4 and a dropout probability of 0.35. The test accuracy is 61.2%. We break down the

recall to each class label, as is listed in Table 4.1.

Table 4.1: The breakdown of recall on each class label in test data.
Label Total sentences Correct classifications Recall (%)

Positive 909 637 70.1
Negative 912 587 64.4
Neutral 389 128 32.9

4.2 Sentiment Decomposition

In order to illustrate the ability of explainable methods, we visualize the relevance distribu-

tions via heat-maps over "positive" sentences (Figure 4.1) and "negative" sentences (Figure 4.2).

In these heat-maps, we decompose the sentiment onto each word in a sentence, where positive

relevance is mapped to red and negative relevance is mapped to blue. To this end, we conduct

the decomposition experiment using the following explainable methods: sensitivity analysis (SA),

ε-LRP-all, ε-LRP-relative, ε-LPR-abs, β-LRP-all and abs-LRP-all.

From the observation of these heat-maps, we first notice that SA is not able to distinguish the

words that have positive or negative contributions to the predicted label. SA distributes a rela-

tively high relevance to words that express negative sentiment, such as "melodramatic" (positive

example 1), "difficult" (positive example 2), "not", "odd" (positive example 3), while the output

label is "positive"; or assigns a high relevance to positive words, such as "funny" and "provocative"

(negative example 2), while the output label is "negative".

On the other hand, LRP is capable of recognizing the positive or negative words according to

predictions. We notice that different LRP methods can generate different relevance distributions
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for a sentence. From our investigation, ε-LRP-all produces the most reliable relevance distribu-

tion among these methods. It can successfully detect the words expressing positive sentiment,

such as "effective", "thoughtful", "honesty", "beauty", "good", "funny" and "entertaining", and the

words indicating negative sentiment, such as "difficult", "odd", "stupid", "maudlin", "dull", in dif-

ferent semantic environment. Another interesting property we observe is that ε-LRP-all method

can recognize the sentiment negation. For example, in positive example 3, it discerns the opposite

sentiment between "not" and "classic". In negative example 2, it highlights "neither" and "nor"

as positive relevance while featuring "funny" and "provocative" as negative relevance towards the

prediction.

Moreover, ε-LRP-relative and ε-LPR-abs produce confusing relevance distributions that are not

consistent with human intuition. β-LRP-all and abs-LRP-all perform better than ε-LRP-relative

and ε-LPR-abs, but a bit worse than the ε-LRP-all method. We notice that both β-LRP-all and

abs-LRP-all can recognize the negation (positive example 3 and negative example 2), but fail to as-

sign a negative relevance to "melodramatic" in positive example 1. Another issue is that β-LRP-all

falsely considers "effective" as a negative word in sentence 1 of positive examples.

Figure 4.1: Heat-maps of explainable methods for "positive" sentences.
(Red color represents positive relevance, and blue color represents negative relevance.

Color intensity is normalized based on absolute relevance values.)
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Figure 4.2: Heat-maps of explainable methods for "negative" sentences.
(Red color represents positive relevance, and blue color represents negative relevance.

Color intensity is normalized based on absolute relevance values.)

40



4.3 Representative Words

In order to evaluate the performance of explainable methods, we collect the representative

words of each class label over the entire test dataset. Similar to the decomposition experiment, we

apply the following six methods on all test sentences: sensitivity analysis (SA), ε-LRP-all, ε-LRP-

relative, ε-LPR-abs, β-LRP-all and abs-LRP-all.

4.3.1 "Positive" Label

For the test sentences classified as "positive" label, we use the explainable methods to compute

relevance score of each word. Then we sort these words in the descending order of their relevance

scores. Table 4.2 and Table 4.3 present the top ten most relevant words and least relevant words

identified by these explainable methods for the positive label. From the word list of sensitivity

analysis, we can see that the most relevant words are not directly expressing a positive attitude,

while the least relevant words are mostly stop words, such as "the", "is", "that". On the other hand,

from the LRP word list, the explanations behave differently if we use different strategies. Compar-

ing to the zero-one distribution on multiplicative connections, the "relative" and "absolute" method

cannot capture the words with strong positive sentiment effectively. One possible reason to this

phenomenon is that the gate neuron is used to determine what fraction of information in source

neuron should be passed to the next time step. If we back propagate the relevance to both gate

neuron and source neuron, we actually pass redundant relevance message to the lower-layer neu-

rons. Thus, the input neurons receive disturbing relevance and cannot capture the words that are

correctly associated with the target label.

Moreover, from the least relevant word lists of ε-LRP-all, β-LRP-all and abs-LRP-all, we can

observe that only the ε-LRP-all method can capture the words that are strongly against the "posi-

tive" sentiment, while the other two methods have disturbing symbols, such as question mark ("?")

and ellipsis ("...").
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Table 4.2: Ten most relevant words identified by the explainable methods over all test sentences
for "Positive" label.

SA ε-LRP-all ε-LRP-relative ε-LRP-abs β-LRP-all abs-LRP-all
authentic authentic and well deliciously ingenious

feels space drama for ingenious deliciously
sounds invigorating based of elegant soulful
zippy happy - a wonderful captivating
movie enjoyable well love refreshingly wonderfully

counterculture refreshing on and pleasing spectacular
60s imaginative of based refreshing refreshingly
of heartwarming george hilarious captivating pleasing

flourishes fun the on astonishing resourceful
imaginative rhythm better shot spectacular astonishing

Table 4.3: Ten least relevant words identified by the explainable methods over all test sentences
for "Positive" label.

SA ε-LRP-all ε-LRP-relative ε-LRP-abs β-LRP-all abs-LRP-all
that undermines of ya tadpole ol
to numbing it a bravura comedy
of convenient as story ol terrible
, furious story touching lrb schmaltzy

the depressing often tender lazy suspenser
- feels is films hilarious adultery
at clueless true , or .
a forgettable , shines ? ...
is whiny touching often presents movie

with lacking tender true . ?

4.3.2 "Negative" Label

Similar to the "positive" label, we follow the same procedure to extract the representative words

across all the test sentences, but now we only consider the "negative" predicted label. Table 4.4

and Table 4.5 present the top ten most relevant words and least relevant words identified by these

explainable methods for the negative label. Based on the observation, we can reach similar con-

clusions: SA cannot capture the words effectively that most related or least related to the negative

sentiment. Besides, the relative and absolute strategies perform worse than the zero-one strategy

on the multiplicative connection. However, in the least relevant word list (Table 4.5), we notice that
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β-LRP-all and abs-LRP-all are now able to capture the words that express "positive" sentiment,

such as "best", "enjoy", "excellent", "brilliant", "hilarious" and "compelling".

Table 4.4: Ten most relevant words identified by the explainable methods over all test sentences
for "Negative" label.

SA ε-LRP-all ε-LRP-relative ε-LRP-abs β-LRP-all abs-LRP-all
mothman trite film the stupid lifeless

prophecies futile cute that lifeless stupid
trite lifeless ideas idea flimsy flimsy
unk overproduced too incoherent waste incoherent

psychological slip stupid a shoddy shoddy
difficult formulaic be dreary bomb waste
ramble incoherent surrounding potter pile unfocused
makers patchwork few arts lousy bomb
divine inconsequential to imagine incoherent mess

someone soggy although for mess lousy

Table 4.5: Ten least relevant words identified by the explainable methods over all test sentences
for "Negative" label.

SA ε-LRP-all ε-LRP-relative ε-LRP-abs β-LRP-all abs-LRP-all
with sisters trying moviegoers roles .
unk imax mystery martial warmed excellent

a guessing incoherent the enjoy brilliant
... definitely chuckles of are capture

which refreshing , ideas peace hilarious
hours blend satire - reconciliation roles

on delicate several film lrb documentary
of captures and cute capture peace
for vibrant has some best compelling
two enjoyed a fate documentary best

43



4.3.3 "Neutral" Label

Table 4.6 and Table 4.7 list the ten most relevant and the ten least relevant words for the "neu-

tral" label, respectively. We notice that none of the explainable methods can capture the neutral

words properly. We speculate that the possible reasons for this phenomenon are three-fold: neu-

trality is difficult to define; there are limited number of words in the test dataset; both positive

words and negative words may appear in one sentence to express neutrality. Thus, we can either

use a larger dataset or build a more robust model in order to capture the neutral words.

Table 4.6: Ten most relevant words identified by the explainable methods over all test sentences
for "Neutral" label.

SA ε-LRP-all ε-LRP-relative ε-LRP-abs β-LRP-all abs-LRP-all
version birot sensual it or or
mgm preciousness abbass sensual gangs undercover

rethink intentions performance the what bet
object numbers the ’s bet gangs
films damn it difficult undercover birot

excellent guard drama drama passably passably
madcap terrible story of largely .

nazi mediocre her contemporary ozpetek views
women constantly rapidly beyond deviant largely

cult solid good get ha ha

Table 4.7: Ten least relevant words identified by the explainable methods over all test sentences
for "Neutral" label.

SA ε-LRP-all ε-LRP-relative ε-LRP-abs β-LRP-all abs-LRP-all
, young artists flimsy. fairly really
- explosion whose the what it

female rethink too , remember fairly
to fresh teasing abbass too there
it still its to you i

third excellent but from claude no
is paved lrb a no leave

four genre flimsy performance we we
about artistically rrb lrb yes like
the twinkle from rrb i what
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4.4 Word Perturbation Experiemnt

In this section, we perform a word perturbation experiment in order to validate the word-level

relevance of explainable methods. In these experiments, we only consider sentences with length

greater or equal to 10 words in the test dataset. This results in 1,880 sentences in total. For each of

these sentences, we delete up to 5 words according to their relevance scores. Here when we delete a

word in a sentence, we set its word embedding to a zero vector in the input sentence representation.

After deleting words, we re-input the sentences to the bi-LSTM model, and obtain their sentiment

classifications. The intuition behind this experiment is that an explainable method should reveal

the words that are important to the model’s decision. Therefore, if we delete the words based on

their relevance scores, the model may predict different labels. For example, suppose we have a

sentence "it never fails to be a great movie" and the model classifies it as "positive". If we remove

the word "fails", the model may change its decision and predict "negative".

We perform the word deletion experiment on two categories of sentences. For those sentences

that are initially correctly classified, we delete words in the descending order of their relevances.

The idea behind this approach is that words with higher relevances should have more positive

contributions on the predictions. If we delete these words sequentially, the model may change its

prediction at some point. For those sentences that are falsely classified, we delete words in the

descending order of their relevances as well. The intuition is that the model may focus on inappro-

priate words when it classifies a sentence incorrectly. That is, the model assigns a high relevance

score to the word that is not supposed to be important to its decision.

Moreover, we conduct a random deletion experiment as comparison. That is, we randomly delete

words for each test sentence, and re-predict via the bi-LSTM model. For each number of deletion,

we average the results over 8 runs.

Figure 4.3 presents the classification accuracy with respect to the number of deleted words. As we
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Figure 4.3: Effect of word deletion on initially correctly (left) and falsely (right) classified sen-
tences using different LRP rules.

expected, the classification accuracy decreases as we delete more relevant words on the initially

correct sentences (Figure 4.3 left), while the classification accuracy increases as we delete more

disturbing words (Figure 4.3 right). According to our intuition, a steeper curve of accuracy repre-

sents a better relevance distribution. We observe that the ε-LRP-relative and ε-LRP-abs methods

perform closely with the random strategy. This indicate these two explainable methods fail to

identify the words that should be important to the model’s decision. It also justifies their poor

performance when capturing the representative words for different classes. Moreover, we notice

that the ε-LRP-all, β-LRP-all and abs-LRP-all methods perform better than the gradient-based

sensitivity analysis. Among these three methods, ε-LRP-all performs the best in this sentiment

classification task. However, we need to point out that explainable methods may have different be-

haviors when applied on different model architectures. Bharadhwaj [39] reported that β-LRP-all

outperforms ε-LRP-all on RNN, while Arras et al. [102] showed that the ε-rule performs better on

CNN.

46



4.5 Case study

In this section, we focus on two classification cases and use explainable method to interpret the

model behavior under different circumstance. Here we use the ε-LRP-all method, since it has the

best performance in this task.

Figure 4.4 illustrates the heat-maps of two sentences, where color with high intensity represents a

high absolute relevance score. For sentence 1, the model successfully capture the word "funny" as

the most relevant word for positive sentiment. Then we add three negation words or phrases to the

left of the sentence, i.e., "fail to be", "not", "never". Surprisingly, only "fail to be" and "not" turn

the sentiment into negative (1-a, 1-b), while the model does not consider "never" as a negation (1-

c). The underlying reason is that the model does not treat "never" as a strong negative word, such

that the strong positive word "funny" overshadows the word "never". Next a double negation is

added in front the sentence (1-d). We can see that the model fails to transform the double negation

into the positive sentiment. We speculate that the model regards "fail" as a much stronger negative

word than "not", so that it makes the decision only based on "fail" and "funny".

For sentence 2, the model labels it as positive mainly based on "daring", "mesmerizing" and "hard

to forget". However, if we only input "exceedingly hard to forget" (2-a), the model falsely classified

it as negative, because the model is inefficient in handling double negation. Then we change "hard"

and "forget" to "easy" and "remember" respectively (2-a ~2-d), and re-predict via the model. We

find out that the model can successfully treat "forget" as negative word and "remember" as positive

word in different scenarios. The problem lies in the word "hard". We notice that the model cannot

handle "hard" correctly when it is followed by "forget" and "remember" (2-a, 2-b). In contrast, it

can distinguish the meaning of "easy" under different semantic environment (2-c, 2-d).

Both cases illustrate the complex mechanism involved in semantic decomposition. Due to the

limited data, the model may have a bias towards the training sentences. In other words, the model
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makes its decision completely depending on its own knowledge.

Figure 4.4: Test sentences (1, 2) and manually modified sentences (1-a ~1-d, 2-a ~2-d).
(red: positive relevance, blue: negative relevance)
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work, we propose novel techniques to explain the recurrent neural network with LSTM.

Considering the weighted linear and multiplicative connections in LSTM, we extend the existing

Layer-wise Relevance Propagation (LRP) framework with different strategies on the two types of

connections. For the weighted linear connections, we use ε-rule, β-rule and abs-rule. Specifically,

we propose a new approach to determine the β value based on each set of linear connections in

β-rule, and a new abs-rule that passes the relevance only depending on the absolute weighted con-

nections. For the multiplicative connections, we distribute the relevance of output neuron back to

gate neuron and source neuron using relative distribution and absolute distribution. Moreover,

we implement the "zero-one" distribution on the multiplicative connections.

Next, we build a Bi-LSTM model for the sentiment classification task. The model is trained on

the SST movie review dataset, and the test accuracy reaches 61.2%. Then we implement these ex-

plainable methods on the Bi-LSTM model. The methods we tested are: gradient-based sensitivity

analysis (SA), ε-LRP-all, ε-LRP-relative, ε-LPR-abs, β-LRP-all and abs-LRP-all.

There are four word-level experiments we perform to evaluate our explainable methods: senti-

ment decomposition, top representative words collection, word perturbation and case study. The

results reveal that the ε-LRP-all method outperforms the other methods in the sentiment analysis

task. More specifically, comparing to the other methods, ε-LRP-all is able to decompose a rea-

sonable relevance distribution onto each input word, detect negation patterns in text data, collect

reliable representative words for each class label, and explain the Bi-LSTM model in a human

understandable way.
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Moreover, we need to point out that these explainable methods may have different behaviors in

different neural network architectures. Therefore, it is a good practice for researchers to adapt the

explainable methods to their specific applications.

5.2 Future Work

Our future work includes the following three directions:

• Extend the β-rule and propose strategies to assign the β value to each set of linear connec-

tions.

• Evaluate the explainable methods on different NLP applications, such as question-answering

and speech recognition.

• Optimize the architecture of LSTM to reach better model performance.
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