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ABSTRACT

Healthcare plays a significant role in promoting and maintaining health, preventing and man-

aging disease, reducing health disability and premature death, and educating a healthy lifestyle.

However, healthcare information is well known for its big data that is too vast and complex to

manage manually. The healthcare data is heterogeneous, containing different modalities or types

of information such as text, audio, images, and multi-type. Over the last few years, the Deep

Learning (DL) approach has successfully solved many issues. The primary structure of DL lies

in the Artificial Neural Network (ANN). It is also known as representation learning techniques as

these approaches can effectively identify hidden patterns of the data without requiring any explicit

feature extraction mechanism. In other words, DL architectures also support automatic feature ex-

traction. It is different than machine learning techniques, where there is no need to extract features

separately in DL.

In this dissertation, we proposed three DL architectures to handle multiple modalities data

in healthcare. We systematically develop prediction models for identifying health conditions in

several groups, including Post-Traumatic Stress Disorder (PTSD), Parkinson’s Disease (PD), and

PD with Dementia (PD-Dementia). First, we designed the DL framework for identifying PTSD

among cancer survivors via social media. After that, we apply the DL time series approach to

forecast PD patients’ future health status. Last, we build DL architecture to identify dementia in

diagnosed PD patients. This work is motivated by several medical theories and health informatics

perspectives. We have handled multimodal healthcare data information throughout these years,

including text, audio features, and multivariate data. We also carefully studied each disease’s

background, including the symptoms and test assessment run by healthcare. We explored the

online social media potential and medical applications capability for disease diagnosis and a health

monitoring system to employ the developed models in a real-world scenario.

The DL for healthcare can become very helpful for supporting clinician’s decisions and im-

proving patient care. The leading institutions and medical bodies have recognized the benefits it

ii



brings, and the popularity of the solutions are well known. With support from a reliable compu-

tational system, it could help healthcare decide particular needs and environments and reduce the

stresses that medical professionals may experience daily. Healthcare has high hopes for the role of

DL in clinical decision support and predictive analytics for a wide variety of conditions.
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1. INTRODUCTION1

1.1 Social Computing for Healthcare

Nowadays, most people have more interaction with people in the virtual world than in the real

world. Especially during the current world Coronavirus Disease of 2019 (COVID-19) pandemic,

it has affected many of us worldwide. This situation has forces many people to work remotely

from home to stop the spread. Many work and services are transferred to a virtual environment to

reduce physical interaction and contact with others. This situation has immediately changed our

daily work and routine, which now we are spending a lot of time more on screen than before.

Social computing uses technology information to allow its users or netizen to create unlimited

online communities and content. A netizen describes an internet user or a person who actively

participates in online communities or the internet [2]. The virtual environment is used widely for

many activities, including entertainment, economy, education, politics, healthcare, etc. It shows

that this technology is more convenient and efficient in many ways for most people. It improves

the collaboration, communication, and interaction among participants in communities.

In healthcare, social computing applications started to receive more attention to promote better

services to medical professionals, patients, and the public. It has become a landmark in providing

health information to society [3]. Many users choose to rely on this platform to track their health

status and seek more health information. The healthcare social computing applications can pro-

vide the doctor’s decision regarding the patient’s health condition and allow two-way interaction

between doctor and patient to help patients make decisions.

Examples of social computing applications that applicable for healthcare purposes are online

social media, mobile health applications, blogs, podcasting for education, and social knowledge

sharing [4]. Figure 1.1 presents examples of social computing applications for healthcare. Social

media is one of the most popular internet activities with a high number of user engagement rates.

1Part of this chapter is reprinted with permission from “Social Media and Psychological Disorder” by Nur Hafieza
Ismail, Mengnan Du, and Xia Hu, 2019, In: Bian J., Guo Y., He Z., Hu X. (eds) Social Web and Health Research.
Springer, Cham., Pages 171-192, doi.org/10.1007/978-3-030-14714-3_9, Copyright 2019 by Springer, Cham.
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By requiring limited internet knowledge from users, social media has offered a better way of

connecting with people than conventional approaches [5]. For example, Facebook can create a

“page” for any purpose and allow other users to be members. For patients, social networks supply

a pleasant environment for information seeking, socializing, and getting support from others who

were currently facing similar issues [6]. It also builds online communities for patients affected by

diseases, their families, and medical experts.

Figure 1.1: The examples of social computing applications for healthcare

Mobile health applications or mHealth apps are mobile communications technology that pro-

vides healthcare services. Smartphone devices become popular in healthcare settings, contributing

to the rapid growth in the development of medical software applications for these platforms [7]. For

example, for tracking the patient’s health status, providing diagnostic treatment, clinical decision-

making, communications and consulting, and enhancing medical education [8]. Thus, mHealth

application usage can help prevent and manage chronic health conditions such as heart disease,

diabetes, mental illnesses, neurological diseases, and obesity.

A blog is an online site with postings, date entries, and comments section for two-way inter-

action. The postings typically include text, audio, video, and link managed by content creators or

blog owners. Blogs that run bu hospitals have also become part of the treatments. Patients can gain
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extra information from a blog to understand their disease and health tips to improve outcomes [9].

In turn, it helps the hospital improving its services from the given comments. A podcast is a digital

audio content that can be download to a computer or smartphone. The podcast users gain informa-

tion by listening to the recorded speeches. The research presented that health information delivered

via podcast shows more significant positive effects weight loss journey to the participants [10]. It

shows that the podcast’s potential growth as a healthcare tool can be beneficial for users.

Social knowledge sharing or wikis is a collection of digital medical encyclopedias regarded as

quality information [4]. The ability to offer reliable content and interaction is the main advantage

of this approach. The wikis health-related contents are more trustworthy than others because each

of the published articles come with references. The writing is also more transparent and systematic,

adding several sub-sections containing a detailed explanation of the discussed topic. In conclusion,

social computing as healthcare tools shows many positive impacts on target users in understanding

diseases and health status. Hopefully, in the future, this technology has enhanced the ability to

provides reliable virtual early diagnosis to the patients based on the reported symptoms. This

thesis presented three approaches to identifying three different diseases via social media, health

applications, and health records.

1.2 Deep Learning for Healthcare

DL is part of machine learning that involves multiple processing layers to learn data represen-

tations. It can be categorized as supervised, semi-supervised, and unsupervised learning, in which

the models learned to do data classification and identification from the dataset during the experi-

ment phase. For traditional machine learning approaches, the essential features will be identified

by an expert to decrease the data complexion and make the extracted features easier for algorithms

to learn for prediction. Figure 1.2 visualizes the differences of tasks involved in machine learning

and DL. DL methods such as Multilayer Perceptron (MLP), Convolutional Neural Network (CNN),

and Recurrent Neural Network (RNN) are frequently used in many applications. These methods

require a significant amount of data to perform well for classification. DL has shown promising

results in Natural Language Processing (NLP) and RNN that can handle sequential data, including
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Figure 1.2: The overview of tasks involved in machine learning and DL

text and speech [11].

DL, also known as hierarchical learning, uses a layered algorithmic architecture to analyze

data [12]. DL able to solves the problems that were unsolvable with traditional machine learning

techniques. Data is filtered through multiple layers during training, with each layer using the output

from the previous layer as an input to be processed. DL architecture is based on the way biological

neurons connect to process information in the brains. In artificial neural networks, the basis for

DL models, each layer may be assigned a specific portion of a transformation task, and input data

travel through the layers several times to produce the optimal output. These “hidden” complex

layers will perform the mathematical functions that turn raw input data into a meaningful output

that can be understood by a human. DL can increase the computational work and provide accurate

results in most cases [13]. The models can become more accurate as they process more data by

learning from previous results to enhance their ability to make connections and correlations.

DL advanced technologies are revolutionizing various industries such as retail, finance, man-

ufacturing, including healthcare. Medical experts are continually trying to implement new tech-

nologies to accurately describe the patient’s symptoms, as health is a priority field. In healthcare,
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DL has increasingly become revolutionary for healthcare, offering the opportunity to interpret data

more efficiently and precisely. DL could help medical professionals and researchers to discover

hidden opportunities in data and better serve the healthcare industry. It provides doctors the analy-

sis of any disease accurately and helps treat the patients, resulting in better medical decisions. The

DL technology analyzes based on the patient’s current symptoms and medical history to provides

the best treatments. Moreover, this technology is gaining insights from patient symptoms/signs

and tests. Healthcare organizations are highly interested in DL’s ability to support better patient

care while reducing costs and improving efficiencies.

1.3 Multiple Modalities Data in Healthcare

DL collects a large amount of data, including patient records and medical reports, and then uses

its neural networks to process it. These health records are stores in multiple data formats, such as

text, numbers, audio, and images. Applying DL technology to health data, hidden information,

and clinical data patterns can be uncovered to help physicians better treat their patients. Besides

being precise, the DL tools are also fast. DL is constantly finding its way into innovative devices

that have practical applications in the real-world clinical environment. Figure 1.3 illustrates the

various data-type in healthcare.

DL and neural networks are already building many NLP tools that have become popular for

dictating documentation and translating speech-to-text [14]. Neural networks for NLP are designed

commonly for classification, and they can identify individual linguistic or grammatical elements

by “grouping” similar words together and mapping them to one another. DL helps the network

understand the complex meaning of semantics. But the task is complicated by the variety of daily

conversation and communication. For example, words that always appear next to each other in

phrases daily may have meant something very different from when the same words appear in a

different context. While the acceptably accurate speech-to-text capability of dictation tools has

become relatively common, generating reliable and responsive insights into medical text data anal-

ysis is significantly more challenging. Unlike images of defined rows and columns of pixels, the

text of clinical notes in Electronic Health Records (EHRs) is notoriously messy, incomplete, and
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Figure 1.3: Multiple modalities data in healthcare

inconsistent.

Medical imaging, including Magnetic Resonance Imaging (MRI) scans, Computed Tomogra-

phy (CT) scans, and Electrocardiography (ECG), are used to diagnose chronic diseases such as

heart disease, cancer, and stroke. DL is particularly well-suited to analyzing medical images [15].

DL is designed with the assumption that they will be processing images, allowing the networks

to operate more efficiently and handle larger images. The result indicates that the DL technique

is approaching or even surpassing human diagnosis precision when identifying images’ critical

features. Thus, it helps doctors to analyze the disease better and provide patients with the best

treatment.

Alzheimer’s and Parkinson’s are progressive diseases, where the symptoms gradually worsen

over several years. In its early stages, memory loss is not critical, but individuals will lose the

ability to continue a conversation and respond to their surroundings during late-stage diseases.

These neurodegenerative diseases are incurable and debilitating conditions that result in progres-

6



sive degeneration and death of nerve cells [16]. These most common neurodegenerative diseases

are the most significant challenges that the medical industry faces because there is no cure for these

diseases or a way to stop its progression [17]. The doctors have to keep monitoring the patients’

progress in treating the symptoms. DL time-series technique can detect neurodegenerative disease

at an early stage by analyzing the patients’ records. This technique is also used to understand the

condition and help patients living with the disease and their caregivers coping with symptoms and

improve quality of life.

Researchers have confirmed that finding patterns among multi-modal data can increase the ac-

curacy of diagnosis, prediction, and overall learning system performance. However, multi-modal

learning is challenging due to the heterogeneity of the data [18]. Accessing enough high-quality

data to train models accurately is also problematic. Data that is biased or skewed towards particular

age groups, ethnicities, or other characteristics could create models that are not equipped to assess

a wide variety of real-life patients in a real environment accurately. Still, DL represents the most

promising pathway forward into reliable analytics applications. The DL tool improved the accu-

racy of traditional approaches for identifying unexpected hospital readmissions, predicting length

of stay, and forecasting inpatient mortality [19]. This predictive performance was achieved without

the manual selection of variables deemed necessary by an expert, similar to other DL applications

to EHR data. Thus, the healthcare industry has high hopes for DL’s role in clinical decision support

and predictive analytics for a wide variety of conditions.

1.4 Dissertation Major Contributions

This dissertation addresses three primary scientific needs toward disease diagnosis. (1) How

to employ the DL approach for text classification in identifying the individual with a history of

cancer and currently struggles with negative emotions and mental illness from text posting on

social media? (2) DL can learn complex structures from multiple inputs and outputs for time series

forecasting purposes. How to remotely monitor PD patients’ disease progression from speech

information using the DL time series approach? (3) DL approach works very well in complex data

such as NLP, image classification, and speech recognition but infrequently apply for multi-type
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Figure 1.4: Summary of the contributions of this dissertation

data. How to perform effective and efficient DL in identifying dementia in PD patients?

Figure 1.4 illustrates the significant contributions of this dissertation. We propose a series

of DL network settings and frameworks to model real-world healthcare information for different

diseases. Using DL, we developed a classification system for healthcare and the patients to monitor

progression of health status and identify the disease’s new symptoms. The developed models would

be a guideline for developing other healthcare diagnosis applications. Our key contributions can

be summarized as follows:

• From text information, we proposed a framework to identify specific cancer survivors that

have PTSD on Twitter. We formally define the problem of data crawling and filtering tech-

niques to obtained tweets that represent the target group. We stream the data using cancer

as a keyword to filter the tweets with cancer-free and use PTSD related keywords to reduce

the time spent on the annotation task. The proposed CNN learns the input representations to

identify cancer survivors with PTSD.

• For time series speech data, we aim to provide a monitoring system for PD patients and

clinicians to observe the symptoms’ progression remotely. We developed a framework of

multivariate multi-step time series approach to monitoring the voice impairment in different

future time-frame based on voice features. We develop multivariate multi-step time series

forecasting model with observed multiple input variables to forecast multiple future time

8



steps. We construct a multi-channel CNN network setting for time series to be applied to the

PD speech telemonitoring dataset.

• Using multivariate healthcare data, we propose a framework in detecting dementia among

untreated PD patients that were diagnosed for two years or less to decrease the PD-dementia

risk. We design a DL architecture to identify the dementia symptoms from non-motor infor-

mation. The Montreal Cognitive Assessment (MoCA) total scores have been used as a scale

in classifying the PD-Dementia status. The trained model can be used as an alarm tool for

detecting PD-Dementia.

• We evaluate the effectiveness and efficiency of the proposed DL architectures of text classi-

fication, time series, and multivariate data carefully.

1.5 Dissertation Organization

This dissertation is organized into five chapters. This dissertation aims to develop a series of

DL frameworks in handling multiple modalities data in healthcare to present alternative options

for diagnosis tools within different diseases. In Chapter 2, we used text postings from Twitter

to identify cancer survivors with PTSD on social media. In Chapter 3, we used PD patients’

telemonitoring speech data to forecast future disease progression and applied the DL time series

approach. In Chapter 4, we propose work in identifying dementia status in PD patients. In Chapter

5, we conclude the dissertation and present several potential topics as future work.
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2. TEXT CLASSIFICATION USING A DEEP LEARNING APPROACH FOR

IDENTIFYING CANCER SURVIVORS LIVING WITH POST-TRAUMATIC STRESS

DISORDER ON TWITTER1

2.1 Introduction

PTSD is a psychological disorder that occurs in some people after witnessing or experiencing

traumatic events [20]. People who have suffered from war, a severe accident, a natural disaster, a

sexual assault, and medical trauma are potentially at risk of developing PTSD. Almost half of the

cancer fighters are diagnosed with a psychiatric disorder, with the majority of them having chronic

depression [21]. Cancer diagnosis, treatments (chemotherapy and radiation), post-treatment care,

and recovery could affect the patients’ psychological condition and cause anxiety or trauma. Un-

stable mental health among cancer survivors is hazardous because they are at high risk of self-

destruction and may also harm others once they lose self-control of their behaviors [22].

The diagnostic procedure for mental illness is different from physical illnesses. Traditional

mental illness diagnosis begins with patients’ self-reporting about unusual feelings and caregivers’

perception of the patients’ behavior to the doctor. To diagnose a patient, a doctor will conduct a

physical examination, order lab tests, and perform a psychological evaluation that requires a period

of observation of the symptoms. The psychological assessment will be conducted by a psychiatrist

who has an extensive breadth of knowledge and experience not only in mental health but also in

general medicine. This process of making a diagnosis is not easy, and it takes a lot of time and

effort to find effective treatments. Thus, in this work, we want to capture the presence of PTSD

symptoms in cancer survivors from online social media postings so they can have an early meeting

with a doctor and receive immediate treatment to calm the stress.

Information about the user’s online activities has been used to identify several health problems

1Part of this chapter is reprinted with permission from “Using Deep Neural Network to Identify Cancer Survivors
Living with Post-Traumatic Stress Disorder on Social Media” by Nur Hafieza Ismail, Ninghao Liu, Mengnan Du, Zhe
He and Xia Hu, The 5th International Workshop on Semantics-Powered Data Mining and Analytics (SEPDA 2019),
Paper 12. Copyright 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0)
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in the previous work [23]. The growth of social media sites in recent years has made it a promising

information source for investigating issues on mental health. For example, Twitter has a large user

base with hundreds of millions of active users [24]. It has simple features that allow users to share

their daily thoughts and feelings [25]. The online activities, especially postings on the timeline,

may present an insight into emotional crash towards significant incidents that happened in life.

Related studies have shown the potential of Twitter for detecting the early symptoms of mental

illness [26].

Previous works in mental illness on social media aimed to examine the attitude of self-declared

mentally ill patients based on their interactions with others and social aspects from their written

comments and postings [27, 28]. The study conducted by De Choudhury et al. [26] used crowd-

sourcing to access Twitter users who have been diagnosed with major depressive disorder by a

psychiatrist. The Linguistic Inquiry Word Count (LIWC) was used to characterize linguistic styles

in tweets. Most of the previous studies only focus on identifying mental illness in social media

users generally. In addition, some experimental procedures such as crowd-sourcing, Twitter Fire-

house, manual labeling, and LIWC are expensive and time-consuming. Data collection, data pre-

processing, and analysis are challenging due to the following reasons. First, there are no available

techniques that can verify if a tweet contains elements about both cancer-free and PTSD. Second,

the extracted information related to mental health is not fully utilized in developing psychological

screening tools for cancer survivors.

To tackle these challenges, we propose a technique to classify cancer survivor and PTSD re-

lated tweets. To identify PTSD in cancer survivors, we first crawl the tweets using “cancer” as a

keyword. After that, we use a set of cancer survivor and PTSD keywords to filter out irrelevant

tweets, which can reduce the time required for manual labeling. To create a ground truth dataset

for this work, we make an effort to check the extracted tweets again manually. The primary pur-

pose of the manual checkup is to make sure that the extracted tweets are correctly labeled as to

whether the tweet contained a genuine statement of a cancer survivor with PTSD diagnosis. In

this work, we used the Deep Neural Network (DNN) approach that learns to extract meaningful
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representations of texts and identify key features from the input dataset. Specifically, we present a

framework that can automatically identify PTSD from cancer survivors based on their tweets. The

major contributions of this work can be summarized as follows:

• We formally define the problem of data crawling and extracting techniques for retrieving the

tweets that represent the cancer survivors with PTSD.

• We present a framework and training the proposed CNN to identify cancer survivors living

with PTSD based on phrases on Twitter.

• We evaluate the model’s prediction performance by producing a label with associated prob-

ability for new tweets.

2.2 Related Work

Researchers from diverse backgrounds, such as psychology and medical informatics, have pro-

posed early models for detecting mental health issues. They explored different types of dataset, fea-

ture extraction approaches, and modeling methods to develop a reliable model. The physiological

features, such as facial expression, vocal acoustic, blood flow, and nervous system responses can

indicate the presence of a person’s current emotions [29]. Various sensor measurements in medi-

cal examination results such as ECG, Electroencephalography (EEG), Electromyography (EMG),

functional Magnetic Resonance Imaging (fMRI), and respiratory transducer have been used to

identify emotional changes in PTSD diagnosis [30]. Besides, some experts also consider speech

audio, interview video, and questionnaire, in both formal and informal ways [31, 32]. Nevertheless,

collecting this information with these techniques is time-consuming and labor-intensive.

The alternative approach is to crawl the public online postings on social media, which are

accessible, expeditious, and provides boundless access to a broader population. Almost 60% of

adults use online resources for searching and sharing information about health [33]. Compared

to asking doctors or friends, people feel more open to communicate and ask questions on social

media. They can also have a conversation with people with a similar background and those who are

currently facing the same health concerns on the forums. Previous work has shown that text posts,
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votes, and comments on Reddit, a popular online discussion board, can reveal early symptoms of

mental health conditions [33]. In a previous study on public health, Paul and Dredze [25] showed

that Twitter has a capability to show the linguistic style of the users from their tweets. These

previous studies have motivated us to use Twitter data to grasp the implicit and explicit information

behind the language used by PTSD patients with a cancer history.

Cured cancer patients are often concerned about cancer recurrence, which can be even more

stressful and upsetting compared to first time diagnosis [34]. Patients reported that it is harder to

decide the treatment, the side effects are more serious, and the fears of pain increase [35]. This

psychological impact that may lead to PTSD problems is one of the most significant concerns in

clinical oncology [36]. Receiving immediate attention to PTSD can help to improve the quality of

life. Nevertheless, the lack of quantifiable data for PTSD is one of the main obstacles for making

reliable diagnoses and providing effective treatment [37]. These issues have been our second

research motivation to collect data for cancer survivors living with PTSD.

There are several techniques applied to uncover essential features from mental health datasets.

Commonly, medical experts who conduct similar research analyze the collected dataset using sta-

tistical methods, such as t-test, chi-square tests, correlations, linear regression, and logistic re-

gression [38, 39, 40]. The dataset for mental health is gathered using a questionnaire to collect

sociodemographic information, clinical variables, medical comorbidity, and self-reported depres-

sion to identify mental illness signs or symptoms. The analyses report the characteristics of each

item in the percentage or scale value. From there, they can identify the most correlated factors for

mental health diagnosis.

Numerous analytical methods and techniques, including supervised and unsupervised learning

algorithms, have been applied for monitoring mental health symptoms. Regression analysis and

the Support Vector Machine (SVM) [41, 42, 43], decision tree, and ANN [44] performed well with

a high diagnostic accuracy. For the unsupervised models, a linear discriminant analysis model can

generate the topics found in engagement content on social media to investigate the engagement

implication on mentally ill people [45]. DNN, a deep belief network model, was trained to extract
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PTSD features from a speech dataset using a transfer learning approach [46]. The DNN has shown

promising results in NLP. In this work, we developed a model using the DNN approach that can

learn from different levels of representation of text input. This approach can learn from the input

data and has been used widely to make predictions in various areas of automatic speech recog-

nition, image recognition, and NLP. DNN automatically learns the representations from the input

data and uses them for classification [47]. In comparison, traditional machine learning requires

labor-intensive feature engineering that may result in a biased set of features.

2.3 Methods

In this section, we will introduce the problem statements and the proposed framework, in-

cluding feature extraction, knowledge transfer, and CNN architecture. Then, in the experiments

section, we will explain the data preparation process.

2.4 Problem Statement

We present the problem and goal of our proposed work in detail below:

• Problem: We consider a relation exists in n tweets with m characteristics of cancer survivors

living with PTSD. Each relation between a tweet ti and characteristics pj is represented as

eij = (ti, pj). In particular, in our setting, a relation is composed of textual information

related to the tweet ti with characteristics of cancer survivors living with PTSD pj . Also,

we assume that each tweet is associated with a label L(ti) = 1 if the tweet belongs to cancer

survivor living with PTSD, otherwise L(ti) = 0. In this work, we will use italic characters x

for scalars, bold characters h for vectors, and bold capital characters W for matrices.

• Goal: We aim to actively explore the cancer survivors living with PTSD on Twitter. In

particular, given a tweet containing characteristics of cancer survivors living with PTSD E

= {eij=(ti, pj)}, our goal is to produce a prediction L̂(ti) ∈ [0, 1] for each tweet and its

probability score si.
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2.5 The Proposed Framework for Classifying Tweets about Cancer Survivors Living with

PTSD

Figure 2.1 presents our proposed framework on classifying tweets about cancer survivors living

with PTSD using CNN model. It involves two central parts. First, we extract a set of particular

lexicons that are frequently mentioned by sufferers from previous studies on depression, which

relates to PTSD. Second, the extracted lexicons are then used to capture tweets that contain PTSD

symptoms in the cancer survivors dataset. The detailed process of our proposed framework will

be explained in three subsections: (1) feature extraction, (2) knowledge transfer, and (3) CNN

architecture.

Figure 2.1: The overview of our proposed framework for classifying tweets about cancer survivors
living with PTSD using CNN model

2.5.1 Feature Extraction

Feature extraction, also known as variable selection, aims to discover a small amount of valu-

able information that can best represent the whole large dataset. This process requires specific
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methods of extraction to be applied to the input data to create an accurate prediction model. The

top section of Figure 2.1 shows the overview of previous studies related to predicting depression on

social media [26]. The crowd-sourcing approach has been employed to identify written postings,

whether they are depression positive or depression negative.

Next, they used LIWC, a text analysis tool, to perceive the characteristics of linguistic style in

both groups. It employed to count the psychological expression lexicon in the tweets and assess the

proportions of words used in several linguistic categories. The given comprehensive list produced

by the tool will automatically present the most frequently used lexicon by depressed people, and

statistical methods are applied to visualize the analysis results. Table 2.1 shows the depression

lexicon.

2.5.2 Knowledge Transfer

In this part, knowledge transfer can be interpreted as a task that uses depression lexicon in

developing our PTSD positive dataset. This approach is similar to the transfer learning method in

which the pre-trained models are used to reduce training time and to increase the performance of

the model. Depression and PTSD often co-occur. Almost all PTSD patients also have a presence

of depression in clinical and epidemiological samples. This co-occurrence reflects overlapping

symptoms in both types of mental disorders [48]. The word “cancer” is strongly correlated to

negative emotions such as mortality, fear, and stigma [49]. The definition of PTSD in our context

is a failure to recover from a traumatic event of cancer. Thus, any expression of negative sentiment

related to cancer in a tweet posted by cancer survivor is considered as PTSD. Even though there

is no existing PTSD lexicon available, we could use the depression lexicon as a proxy to remove

irrelevant tweets. We first used the depression lexicon to labeled our ground truth. To ensure

labelling accuracy, we manually reviewed these tweets to make sure they indeed represent cancer

survivors with PTSD symptoms. Thus, we opted to utilize the depression lexicon taken from

previous work to identify PTSD tweets.

The lower section of Figure 2.1 presents our proposed framework to identify cancer survivors

with PTSD. We crawled the raw dataset using “cancer” as a keyword through Twitter’s Application
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Programming Interface (API) in a period of three months from August 2019 - October 2019. We

conducted the extraction process in two steps using two sets of keywords. First, we created the

cancer survivor dataset using related hash-tags and terms such as “cancer survivor”, “cancer-free”,

“I had cancer”, “post-cancer”, “survive from cancer”, and “free from cancer”. Second, we used

the depression features from Table 2.1 to filter out tweets that are unrelated to PTSD signals. Next,

in the annotation task, we checked the tweets manually to make sure the extracted tweets are

correctly identified. The extraction process helped us save lots of time for the annotation task. The

total data has decreased from 900,000 to only 5,000 after we conducted the extraction process and

the annotation task. Also, we added the word “PTSD” in the Symptoms category to capture the

word PTSD in tweets. Next, the extracted tweets were fed into CNN algorithms in the modeling

phase.

Table 2.1: The depression lexicon

Category Unigrams
Symptoms anxiety, withdrawal, severe, delusions, adhd, weight, insomnia,

drowsiness, suicidal,appetite, dizziness, nausea, episodes, attacks,
sleep, seizures, addictive, weaned, swings, dysfunction, blurred,
irritability, headache, fatigue, imbalance, nervousness, psychosis,
drowsy, PTSD

Disclosure fun, play, helped, god, answer, wants, leave, beautiful, suffer, sorry,
tolerance, agree,hate, helpful, haha, enjoy, social, talk, save, win,
care, love, like, hold, cope, amazing, discuss

Treatment medication, side-effects, doctor, doses, effective, prescribed,
therapy, inhibitor,stimulant, antidepressant, patients,
neurotransmitters, prescriptions, psychotherapy, diagnosis, clinical,
pills, chemical, counteract, toxicity, hospitalization, sedative, drugs

Relationship and life home, woman, she, him, girl, game, men, friends, sexual, boy,
someone, movie, favorite, jesus, house, music, religion, her, songs,
party, bible, relationship, hell, young, style,church, lord, father,
season, heaven, dating
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2.5.3 CNN Architecture

The architecture of our proposed CNN model is inspired by [50] for sentiment analysis of the

text. We adopted one convolutional layer during network configuration for cancer survivors with

PTSD tweets classification, as displayed in Figure 2.2 adapted from [1]. We trained the CNN with

the embedding layer. It requires specifying the vocabulary size, the size of the real-valued vector

space, and the maximum length of words in input tweets. For convolutional feature maps, we

used word embedding with 200-dimension for text representation. Thirty-two filters were applied

by referring to the conservative setting for word processing, with a kernel size of 8, and with

a rectified linear unit (ReLU) activation function. Followed by a pooling layer, the filters will

generate feature maps and reduce the output by half. The last layer uses a sigmoid activation

function to output a boolean, i.e., positive and negative, in the tweets based on the concatenation

of the previous vectors. Then, the extracted model is saved for later evaluation. The following

subsections present the critical elements involved during network configuration.

Figure 2.2: The CNN architecture to classify tweets posted by cancer survivors living with PTSD
adapted from [1]
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2.5.3.1 Text Representation

After the data cleaning process, we applied the embedding layer that is initialized with random

weights. It learned an embedding for all of the words in the training dataset. The first step embeds

the vocabulary file V to check the validity of the tokens in tweets. Each input tweet is presented

as a sequence of individual word tokens: [t1, . . . , tn] where n denotes the total number of tokens

in the tweet. Tokens are represented by one-hot vectors t ∈ R1×d to look up word embeddings

T ∈ Rd×|V |. For every input tweet s, we built a string of words matrix S ∈ Rd×|s|, where every

single column i represents a word embedding ti of position i in a string. The CNN applies multiple

configurations to the input string of words matrix S using convolution, non-linear activation, and

pooling operations. It learns how to capture and to reconstruct features of individual tokens in a

given tweet from word embeddings into higher-level concepts.

2.5.3.2 Convolutional Feature Maps

The purpose of convolutional layer is to extract meaningful patterns from the input dataset

using a number of filters. During convolutional operation, the input matrix s ∈ R1×|s| and a filter

F ∈ Rd×m of the same dimensionality d with width m will produce a new vector of c ∈ R|s|+m1,

where each function is computed as follows:

ci = (S ∗ F)i =
∑
k,j

(S[:i−m+1:i] ⊗ F)kj, (2.1)

where ⊗ is the element-wise multiplication and S[:i−m+1:i] is a matrix slice with m size along with

the columns. From the Figure 2.3, we can see that the filter overlays across the row vectors in

the dimension table of S, producing a vector c ∈ R|s|−m+1 as the output. Each component ci

is the result of computing an element-wise product between a row slice of S and a filter matrix

F, which is then summed up to obtain a single value. To grab more features and to form richer

representation from the dataset, a series of filter F ∈ Rn×d×m overlays the sentence matrix S and

produces a feature map matrix C ∈ Rn×|s|−m+1.
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2.5.3.3 Activation Functions

After the convolution step, we applied ReLU activation defined as max(0, x), which is the

simplest non-linear activation function α() on the hidden layers. It has a lot of advantages. For

example, it can generate a good result in a short time by reducing the training time for large

networks.

2.5.3.4 Pooling

The output from the convolutional layer with ReLU activation function will be passed to the

pooling layer. The goal of pooling is to control the overfitting by combining the information and

reducing the spatial size of the representation. In our model, we use max pooling to get the

maximum value. It operates on columns of the feature map matrix C and returns the largest value:

pool(ci): R|s|+mn−1 → R.

The convolutional layer utilizes the activation function, and the pooling layer acts as a non-

linear feature extractor. Given that multiple feature maps are used in parallel to process the input,

CNN can build rich feature representations of the data. The output of the convolutional and pooling

layers are passed to a fully connected sigmoid layer. The main reason for using a sigmoid function

is that it pushes the output to be between 0 and 1. Since the likelihood of any class exists only

between the range of 0 and 1, sigmoid is appropriate for this setting.

2.6 Experiment

We conducted the experiments to evaluate the proposed framework for classifying cancer sur-

vivor with PTSD diagnosis from tweets. First, we briefly describe the experiment setting and the

dataset preparation process. Second, we introduce the baselines methods. Third, we report the

experimental performances. Finally, we discuss our findings.

2.6.1 Experiment Settings

In these experiments, the dataset with PTSD positive represents the diagnosed group, while

PTSD negative represents the control group. For the diagnosed group, we retrieved tweets from
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users who publicly stated that they survived cancer and had PTSD symptoms. To construct the

PTSD negative group, we mixed the tweets posted by cancer survivors with positive sentiment and

tweets from the Kaggle dataset. We made use of tweets from the “Twitter User Gender Classifica-

tion” dataset from the Kaggle website 2.

We used this dataset because we want to make sure that the PTSD negative dataset not only

contains about cancer survivors with positive sentiment tweets but also other topics. Both groups

have the same total number of five thousand tweets to create balanced datasets. The data prepara-

tion phase has three steps: (1) applying 5-fold cross-validation for MLP, CNN, and CNN n-gram

algorithms; applying Term Frequency–Inverse Document Frequency (TD-IDF) for naive bayes

and SVM algorithms; (2) cleaning the dataset to remove punctuation, stop words, and numbers;

(3) defining a vocabulary of preferred words from a training dataset by stepping through words

and keeping only tokens with minimum occurrences of five. This setting reduces the vocabulary

size because we want to use only frequent tokens that appear in the dataset. We used Keras API

running on Tensorflow to train DNN models. All the models were trained with ten epochs through

the training data. The efficient Adam implementation of stochastic gradient descent was used. We

keep track of performance in addition to loss during training. Table 2.2 shows the details of our

CNN network setting.

Table 2.2: CNN network setting

Layer(type) Output Shape Param #
embedding_1&_2 (Embedding) (None, 20, 200) 84000
conv1d_1 (Conv1D) (None, 13, 32) 51232
max_pooling1d_1&_2 (MaxPooling1D) (None, 6, 32) 0
flatten_1&_2 (Flatten) (None, 192) 0
dense_1 (Dense) (None, 10) 1930
dense_1 (Dense) (None, 1) 11

2https://www.kaggle.com/crowdflower/twitter-user-gender-classification#gender-classifier-DFE-791531.csv
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2.6.2 Baseline Methods

We present baseline methods used for evaluate our proposed algorithm. The input of our dataset

was in a text format with positive and negative labels. Therefore, we chose four baselines that are

capable of handling text dataset: naive bayes [51], SVM [52], MLP [53], and CNN n-gram [54].

Naive bayes and SVM are considered as traditional machine learning algorithms. While MLP,

CNN, and CNN n-gram are the DL algorithms.

2.6.2.1 Naive Bayes

Naive bayes is based on the Bayes Theorem. For text classification, it will predict the mem-

bership probabilities for each class label, such as the probability that tweet belongs to a particular

class label. The chosen class will have the highest probability value compared to other classes.

2.6.2.2 SVM

SVM is an algorithm that determines the best boundary between vectors that belong to a given

group label and vectors that do not belong to the group. This technique can be applied to any

vectors that encoded any data. Thus, for SVM text classification, we first must transform the texts

into vectors.

2.6.2.3 MLP

The MLP is a feed-forward neural network that is frequently used for prediction models. The

MLP used Bag-of-Words (BoW) to represent tweets. This technique can extract features from the

text by measuring the occurrence of words within the documents. However, the BoW model suffers

from sparse representation, which may have effects the space and time complexity. Moreover, it

looses semantics of the input sentences by ignoring the word order and grammar.

2.6.2.4 CNN n-gram

The kernel size in convolutional layer defines the number of tokens that act as a group of the

parameters. We set a model with two input channels for processing bi-grams and tri-grams of

text in tweets due to the short length of words used in each tweet. This algorithm involves using
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multiple versions of the standard model with differently sized kernels for tweet classification. This

setting allows tweets to be processed at different number of contiguous words sequence, while

the model learns how to integrate these interpretations best. The output from both channels was

concatenated into a single vector and processed by a dense layer and an output layer.

2.6.3 Experimental Results

We ran the experiments using five different network settings. Our results indicate that CNN

can effectively identify cancer survivor with PTSD. Experimental results in Table 2.3 show the

91.29% accuracy for CNN, which is higher than other baselines. We ran the experiments multiple

times for MLP, CNN, and CNN n-gram algorithms due to the stochastic nature of DNN to get the

reasonably accurate result.

Table 2.3: Experiment results of identifying cancer survivors with PTSD

Data Setting Method Accuracy (%)
TD-IDF Naive bayes 86.50

SVM 49.00
MLP 49.99

5-Fold Cross Validation CNN n-gram 63.28
CNN 91.29

Figure 2.3 presents the time taken during the DNN training process with MLP and CNN n-

gram, which took slightly less time compared to CNN. Figure 2.4 shows the loss values in the

training set of all models, where CNN and CNN n-gram display low losses. A model with the low-

est loss value is better because loss value indicates errors made for examples during training. To

test the CNN performance, we ran the experiment using only depression-lexicon as features. The

experiment result is much worse, with 67.03% accuracy compared to our model. The results show

that the model performed better with our set of vocabulary compared to a set of depression-lexicon

taken from previous work. Even though we used depression-lexicon to help us to filter out unre-

lated tweets; however, our cancer survivor and PTSD tweets still contained unique characteristics

and have different linguistic-style compared to depression users.
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Figure 2.3: The learning time taken

Figure 2.4: The loss values
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2.7 Case Study

We constructed a simple prediction system using the CNN model. It will identify cancer sur-

vivors as either PTSD positive or PTSD negative together with probability value on new tweets.

The tweet samples and the output results are shown in Table 2.4. Surprisingly, the system was able

to classify tweets correctly. For example, the second tweet is a statement that consists of negative

sentiment but not related to the cancer survivor, and the system classified it as a PTSD negative.

The right labeling with high probability value is essential for the diagnosis.

Table 2.4: Predictions for new tweets

Tweet: “I have had more difficulty post cancer than during my active treatment.
To me it is a neverending path (hate the word journey).”
POSITIVE (100.000%)
Tweet: “I hate myself, I don’t feel like living anymore.”
NEGATIVE (99.831%)
Tweet: “I got a gold MacBook that only use for music and homework.
Still keep it in apple box.”
NEGATIVE (99.949%)

Meanwhile, Table 2.5 shows two examples of misclassified tweets. To test the model reliability,

we replaced the word “cancer” with “tumor” and “cyst”, which are highly correlated to cancer.

Unfortunately, the model failed to detect the presence of cancer-free and PTSD in both tweets. For

example, the first tweet contains self-mention about having a bladder tumor and feel depressed,

but our system classified it as a PTSD positive, which is wrong. This is because our model should

detect the presence of PTSD symptoms in someone who is currently free from cancer. However,

the prediction outcome that has a probability rate lower than 90% thus is less convincing and can

be ignored for diagnosis.

Misclassified tweets may occur due to several reasons. First, it may be because the words

“tumor” and “cyst” occasionally appeared in the dataset. Second, a small number of participants

from this group were active in social media. To alleviate this problem, we need a larger dataset for
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Table 2.5: Predictions for new tweets (misclassified)

Tweet: “I have bladder tumor. I am totally heartbroken.”
POSITIVE (86.548%)
Tweet: “I am not a superwoman but I survived this pancreatic cyst.
Time to enjoy with my family again!”
POSITIVE (86.548%)

training to leverage cancer-free with PTSD lexicon. Moreover, our model also should contain the

information of diverse cancer types so the system will able to recognize them as a part of cancer

rather than treating them as unknown words. To get special insights, we should make an effort to

gather data from multiple sources. To the best of our knowledge, this is the first work that deployed

the extracted model of cancer survivors living with PTSD into a prediction system that is capable

of evaluating new tweets. The experimental results showed a high potential of a low-cost text

classification technique that can be directly applied to other medical conditions that might affect

patients’ mental health.

2.8 Discussion and Conclusion

PTSD is one of the severe anxiety disorders that could affect individuals who are exposed to

traumatic events, including cancer. Cancer survivors are at risk of short-term or long-term effects

on physical and psycho-social well-being. Therefore, the evaluation and treatment of PTSD are

essential parts of cancer survivorship care. In this work, we demonstrated that Twitter could be

used to identify PTSD among internet users who had cancer. We propose a prediction model

that can produce promising results in cancer survivors with PTSD diagnosis. Experimental results

demonstrated that CNN is capable of capturing important signals from texts. The social media

users with cancer history who suffer from PTSD will benefit from the prediction system. It will

act as an alarming system by detecting the PTSD presence based on users’ postings.

Essentially, we hope that our proposed data collection approach can facilitate current trauma

screening questionnaire-based methods instead of replacing them. With the high rise of social

media and a massive number of active users around the world, we hope to encourage more un-
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treated cancer survivors that affected by PTSD to seek medical attention immediately. Moreover,

the World Health Organization (WHO) stated that psychological disorder is the second largest of

disability in the world population. However, only 10% of them obtained proper treatment.

Furthermore, we identify a cancer survivor who experienced PTSD only with one tweet. In

this work, we did not use historical tweets because cancer is so daunting that some of the cancer

survivors are even afraid to say “the C word” [55]. Many aspects of cancer events can lead to

PTSD, such as various diagnostic testing, stressful waiting periods, the moment of bad news, and

the painful treatments. For cancer survivors, PTSD can be triggered by continuous monitoring,

follow-up visits, sudden physical pain, death of a public figure due to cancer, and fear of cancer

recurrence. The traumatic event of cancer might not be as clear as a life-threatening car crash, but

it can completely change someone’s life. They may feel grief for possible lost future opportunities

and may impact self-esteem because of disfigurements due to their disease. Because of that, we

can spot tweets with negative sentiment related to cancer history when they express saddens, fear,

stress, and enraged in their posting. Moreover, from our experience, when we went through their

timeline, we noticed that they do not always express how they feel every day. This situation has

made it hard for us to identify PTSD after cancer cases using historical tweets.

On the other hand, our model was trained to solely utilize the textual postings. The users’

contextual information, such as gender, ages, etc., is not considered in this work. To better improve

our model in the future, additional main keywords that represent “cancer-free” such as “cyst” and

“malignant tumor” should be included during data crawling. From the case study, we can conclude

that our proposed model cannot provide the right diagnosis when we replaced the word ‘cancer’

with “cyst” and “tumor” in the sentence. It is important because those words are highly correlated

with “cancer”. Hence, we also want to identify developing conditions such as suicidal ideation

and the side effect of PTSD treatment. Besides, we plan to explore another modality in uncovering

PTSD indicators such as audio, image, or combination of both, for better diagnosis.

PTSD can also affect cancer survivors’ caregivers. Witnessing a loved one having cancer and

watching the little one in pain are traumatic events that caregivers have to face. The Cancer.Net
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website reported that almost 20% of families of childhood cancer survivors had a parent who was

suffering from PTSD. They also found that this anxiety disorder is common among parents of

children receiving cancer treatment to develop PTSD symptoms. Thus, we believe that our work

also can be utilized to identify PTSD in cancer survivors’ caregivers. However, we must formally

define the problem and identify the implicit and explicit characteristics of caregivers because some

of them may have a difficult time admitting they are depressed.
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3. MULTIVARIATE MULTI-STEP DEEP LEARNING TIME SERIES APPROACH IN

FORECASTING PARKINSON’S DISEASE FUTURE SEVERITY PROGRESSION1

3.1 Introduction

PD is a long-term, progressive, and incurable neurodegenerative disorder that slowly damaging

the nerve cells that produce dopamine located in the brain. Dopamine is a neurotransmitter, which

is one of the chemicals responsible for transmitting signals between the nerve cells (neurons) of

the brain. Deficiency of dopamine production affects the motor function, which leads to body

movements issues. Consequently, patients will begin to experience difficulty in completing simple

tasks and conducting other daily routines. PD characteristics may include tremor, bradykinesia

(slowed movement), rigid muscles, impaired posture and balance, loss of automatic movements,

writing changes, and speech changes. Patients also tend to develop non-motor symptoms such

as mood disorder, cognitive changes, behavioral disorders, and dementia. These symptoms will

gradually get worse over time, resulting in increased disease severity in patients [56].

The changes in patients’ voice and speech patterns are the early and common PD symptoms

that can be captured by audio sound recording software or device. The reason is that patients’ voice

tends to stutter and progressively becomes affected by time. Speech disability can affect several

parts of verbalization state such as the production of spoken language (dysprosody), voice produc-

tion (disphony), and articulation/pronunciation (dysarthria). Each patient recorded speech contains

a set of multiple features that could reveal an abnormality in each patient speech elements [57].

The speech impairment characteristics of PD patients are tremor, silent voice, hoarseness, soft and

monotonous speech, imprecise pronunciation, and breathiness [58]. Approximately 90% of the

early PD patients show speech impairments. Thus, it can be a strong indicator in developing reli-

able PD diagnosis [59]. Previous work reported that the speech symptoms have a strong association

1Part of this chapter is reprinted with permission from “Multivariate Multi-step Deep Learning Time Series Ap-
proach in Forecasting Parkinson’s Disease Future Severity Progression” by Nur Hafieza Ismail, Mengnan Du, Diego
Martinez, and Zhe He, BCB ’19: Proceedings of the 10th ACM International Conference on Bioinformatics, Compu-
tational Biology and Health Informatics, Pages 383-389. https://doi.org/10.1145/3307339.3342185, Copyright 2019
by Association for Computing Machinery.
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with PD severity as the disease progresses. From their observation, speech dysfunctional due to

advanced PD became more apparent with the speech severity progression from a low-volume with

a monotone voice to a certain extent where the patient’s voice slowly faded and disappeared [58].

Usually, diagnosed patients are required to attend routine check-up and need to be present in

the clinic. PD monitoring procedure is quite different from other diseases. PD symptoms evalu-

ation mainly rely on human expertise [60]. For example, the patients’ reading performance and

speech rate will be observed by medical staffs. Moreover, traditional tracking PD symptoms pro-

gression often uses the Unified Parkinson’s Disease Rating Scale (UPDRS). This procedure is

time-consuming because it requires the motor skills examinations assisted by trained medical staff.

Thus, symptoms monitoring also quite costly and logistically inconvenient for both sides (patient

and clinical staff).

Since PD patients usually present particular characteristics in speech, voice recording data is

feasible for diagnosis. Cellphones or smartphones can be a portable recording device which is con-

venient in monitoring patients’ health remotely. Plus, the majority (95%) of US adults population

owns a mobile phone and thus the remote PD monitoring can be implemented in real life [61].

The audio waveform of recorded speech can be transformed into several voice parameters such as

subtle changes in voice frequencies (jitter), voice cycle-to-cycle magnitude difference (shimmer),

volume (amplitude), vocal cord opening pressure, etc. In previous PD speech analysis, patients

usually have a short maximum time of phonation, high rate of jitter and shimmer, reduced pitch

range and higher phonation threshold pressure [62].

To tackle these challenges, we propose a monitoring framework that is able to forecasts PD

progression of 16 speech features and UPDRS scores in the week/s period. We develop multivariate

multi-step time series forecasting using DNN methods to observed multiple input variables and

forecast multiple future time steps. We design a multichannel CNN network setting for time series

to be applied to the PD speech telemonitoring dataset. The developed model’s performance is

compared with baseline models. We summarize our contributions as follows:

• We propose a framework of multivariate multi-step time series approach to monitoring the
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voice impairment in several different future time-frame based on previous and current knowl-

edge of speech features.

• We design the DNN architecture to train the time series forecasting model using 16 features

of speech signals and UPDRS.

• Our experiment results show that our model can provide forewarning to PD patients to take

immediate action in delaying the symptom progression. Plus, it is also conducive for PD

patients’ health to be monitored remotely by a clinician without having to go to the doctor

for a check up.

3.2 Related Work

Several studies have been conducted in PD to improve and maintain the patients’ quality of life.

In the medical perspective, to precise identification of PD symptoms and signs from the early stage

has become a pressing issue and has rise interdisciplinary researchers’ interest to widely explore

this topic. Even though PD is incurable, with the right medication and proper treatment, the disease

progression can be delayed [59]. To monitor disease progression, routine check-ups are essential

for patients. The main challenge is PD effects on patients often overlapping with other diseases,

making it laborious in the diagnosis procedure, especially at the early stage. Conventionally, the

medical diagnosis procedure requires a medical history of the patient, caregiver’s feedback, and

several physical tests to inspect the motor fluctuations and dyskinesia development. Moreover,

there is uncertainty regarding laboratory tests conducted on PD patients suspect, making it harder

to diagnose, especially at the beginning level of PD. Since PD commonly affects the patients’

motor skills performance, the dysfunction on physical movement and speech can be captured and

recorded using electronic devices.

In previous work, different types of motor skills of body parts have been collected, such as

typing pattern, gait disturbances in multiple walking patterns, hand movements, doing other rou-

tine activities, and speech patterns [63, 64, 65]. For fluctuation of movements on legs and arms

tremor among PD patients can be differentiated with healthy non-PD people relaxed muscle move-
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ments [66]. However, except speech data, other symptoms need to be recorded using specific

acceleration sensors wearable devices attached on body. While for speech, it can be recorded

using a noninvasive tool such as smartphones. Thus, the convenience of using smartphones has

motivated us to explore the characteristics of vocal features for this work. This simple procedure

is suitable to attain the necessity in PD symptoms progression constant monitoring by clinicians so

that they can immediately take action in dosing of medication, the side effect of drugs, and request

of further check-up for allowing patients to perform at their best.

Various statistical and machine learning techniques have been applied to different types of

PD dataset. In previous work, patients’ body movements in doing daily activities were recorded

using wearable devices. To identify the severity of motor skills, three types of dynamic learning

structure algorithms were applied. Dynamic neural networks, dynamic SVM, and hidden markov

models techniques were compared using global error rate and local error rate. The experimental

results show that the dynamic neural network algorithm achieved the best results compared to

dynamic SVM and hidden markov models [67]. The sensor system was developed to record the

kinetic information during Deep Brain Stimulation Therapy to observe PD motor symptoms such

as rigidity, bradykinesia, and tremor. This system was built using three machine learning models:

a simple decision tree, linear SVM, and fine K-Nearest Neighbors (KNN). The predicted UPDRS

scores are nearly correct using the fine KNN model [68]. The recorded PD patients’ speech data

are also vastly explored, because of abnormality in dysphonia features. A PD prediction tool was

designed using parallel feed-forward neural network due to its ability in reducing the prediction

error [69].

Furthermore, the speech symptom is also vastly explored by researchers. The recorded PD

patients’ voice signals contain several dysphonia features that are useful for classification. The au-

thors proposed a new hybrid intelligent system using a combination of pre-processing techniques

such as model-based clustering (gaussian mixture model) and multiple approaches of feature re-

duction/selection (principal component analysis, linear discriminant analysis, sequential forward

selection, and sequential backward selection). It also used three supervised classifiers, such as the
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least-square SVM, probabilistic neural network, and general regression neural network [70]. A PD

prediction tool is designed using parallel feedforward neural network due to its ability to reduce

the prediction error. The output result is then compared against a rule-based tool in handling an

imbalanced dataset for making the end decision [69]. Using a similar speech dataset, forty speech

features from PD patients were extracted and the developed model (regression and DNN) was able

to classify four severity groups (Healthy, Early, Intermediate & Advance) [71]. DNN was also

employed to PD patients’ audio voice dataset to calculate the UPDRS scores and categorize them

into either “severe" or “not severe" classes [56]. The literature shows that DNN always presents a

better performance compared to other machine learning classifier in PD diagnosis [72]. DNN has

the capability in classifying unstructured data including audio and speech signals [56]. It consists

of multiple layers of neurons that stacked together to generate reliable models for prediction or

classification.

Time series forecasting is a mathematical estimation of particular values in the future that in-

volves temporal measurements from previously observed information. The model was built based

on specific assumptions about dynamic behaviors of the underlying system using statistical and

mathematical approaches. There are numbers of available methods for forecasting, each of which

was built based on different algorithms in different environments and has distinct assumptions on

domain systems in temporal structure [73, 74]. Time series forecasting has been explored broadly

in various fields due to its ability to tackle many issues that arise in real-world situations [74].

This approach has been successfully demonstrated in many fields such as business activities [75],

financial management [76], meteorology for hurricanes and global warning [77], and healthcare

applications [78]. In medical applications, time series forecasting model is used to predict the dis-

ease progression, estimate the mortality rate, and assess the possible risk over time. For examples,

it has been used in monitoring cardiovascular diseases [74] and chronic kidney disease [79].

However, the model for time series is always challenging to handle multiple input variables

and next to predict multiple output variables in multiple time steps. It can be divided into two

types of forecasting which are short-term, intermediate-term, and long-term. Short-term is used
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to forecast future objective scenario within a minute to 24 hours and intermediate-term is within

several days to many months, while long-term is commonly predicting scenario in years from the

available dataset using intensive analysis and calculations [80]. These characteristics are suitable

in many clinical situations. For example, to forecast patient severity of illness in the Intensive Care

Unit (ICU), a multivariate time series approach with the multi-task Gaussian process were used to

evaluate the clinical data that are sparse and heterogeneous. The short-term technique was applied

in this situation where the medical doctor can monitor the patient’s next progression based on the

current state and allowed the doctor to immediately taking actions before the patient condition’s

worsen [81].

In this work, we applied multivariate multi-step time series forecasting using DNN methods

on speech features. DNN is able to automatically learn arbitrary complex mappings from inputs

to outputs and support multiple inputs and outputs. These are powerful features that offer a lot of

promise for time series forecasting, particularly on problems with complex-nonlinear dependen-

cies, multivalent inputs, and multi-step forecasting. DNN methods do provide a lot of promising

capabilities for time series forecasting, specifically the automatic learning of temporal dependence

and the automatic handling of temporary structures like trends and seasonality. Thus, Parkinson’s

telemonitoring dataset that contains weekly report is fit to apply in multichannel CNN model.

3.3 Methods

In this section, we will briefly introduce the problem statements, the proposed framework in-

cluding data preparation procedure and DNN architecture.

3.3.1 Problem Statement

We denote a multivariate time series with D variables of length T as X = (x1, x2, ..., xT )∈

RT×D, where for each t ∈ 1, 2, ..., T , xt ∈ RD represents the observations (a.k.a., measurements)

of all variables and xdt denotes the measurement of d-th variable of xt. Let st ∈ R denote the

time-stamp when the tth observation is obtained and we assume that the first observation is made

at time-stamp 0 (i.e., s1 = 0). In this paper, we are interested in time series forecasting problem,
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where we compute the overall Root Mean Squared Error (RMSE) over ten different setting weeks

and per-week RMSE for each timestep.

3.3.2 The Proposed Framework for Forecasting Parkinson’s Disease Future Progression

Accurate decision support systems could help healthcare professionals in monitoring PD pro-

gression based on patient data. A new recorded audio voice through PD application installed in

the electronic device will be saved in the PD data online storage. The current and past audio data

are converted into speech features together with UPDRS scores. This multivariate input is then fed

into the CNN time series model to forecast PD progression. The experimental output is evaluated

to identify the PD voice symptoms status for incoming week/s. If the PD symptoms are getting

worse, patients will be scheduled for a further checkup in the clinic.

Figure 3.1: The overview of our proposed framework for forecasting PD future progression

This monitoring system can be developed by DNN methods. They can utilize DNN to learn

from the past and additional current data and recognize the patterns. We trained the CNN multi-

channel model to learn the multivariate multi-step time series to forecasts the PD future progression

in incoming week/s. The general framework of the proposed model is shown in Figure 3.1. Our

proposed framework contains four main parts, which are PD dataset, data pre-processing, CNN
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multichannel model, and result evaluation.

3.3.3 Parkinsons Tele-monitoring Dataset

Table 3.1: Description of the features and UPDRS scores of the PD telemonitoring dataset

Description Label Feature label
F01 MDVP:Jitter (%)
F02 MDVP:Jitter (Abs)

Several measures of variation in fundamental frequency F03 MMDVP:Jitter:RAP
F04 MDVP:Jitter:PPQ5
F05 Jitter:DDP
F06 MDVP:Shimmer
F07 MDVP:Shimmer(dB)

Several measures of variation in amplitude F08 Shimmer:APQ03
F09 Shimmer:APQ05
F10 Shimmer:APQ11
F11 Shimmer:DDA

Two measures of ratio of noise to tonal components in F12 NHR
the voice F13 HNR
A nonlinear dynamical complexity measure F14 RPDE
Signal fractal scaling exponent F15 DFA
A nonlinear measure of fundamental frequency variation F16 PPE
Clinician’s motor UPDRS score, linearly interpolated O01 Motor-UPDRS
Clinician’s total UPDRS score, linearly interpolated O02 Total-UPDRS

The dataset used in this study contains a total of 5875 recordings from 42 subjects, which

include 14 women and 28 men. Each patient has about 200 voice recordings. Every recorded

voice has 16 vocal attributes based on traditional measurements (NHR, HNR, shimmer, Jitter) and

nonlinear dynamical systems theory (RPDE, DFA, PPE). Each subjects’ voice was recorded with

phonations of the sustained vowel/a/. The dataset also contains Total-UPDRS and Motor-UPDRS

scores. UPDRS is a standard scale used by clinicians during PD diagnosis and monitoring PD

progression. This instrument is well-establish and has been widely used by a medical professional

specializing in PD during patient’s meetings. The ranges of Total-UPDRS and Motor-UPDRS

are 0-176 (0 indicating healthy and 176 indicating total disability) and 0-108 (with 0 indicating

healthy state and 108 indicating severe motor impairment), respectively. The dataset is available in
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UCI machine learning repository [82]. Table 3.1 presents the 16 features of the dataset along with

UPDRS scores. While Figure 3.2 shows the overall data distribution based on Total-UPDRS and

Shimmer. Lastly, Table 3.3 displays the data frequency based on Total-UPDRS score.

Figure 3.2: The data distribution

3.3.4 Data Setting for Multivariate Multi-step Time Series

Multivariate time series data is data where there is more than one observation for each time step.

The Parkinson’s telemonitoring dataset is considered as multivariate time series dataset because it

describes the voice symptoms progression of early-stage of PD patients over six months. The

data were collected using the telemonitoring device and speech audio was recorded every week

in the patients’ homes. To fit the dataset for time series forecasting, we prepare ten different data

arrangement for ten different experiments. In total, we used 5042 recordings which is equal to 86%

of the dataset. We could not use the rest of the dataset because some of the subjects have recorded

their voices only up to 18 weeks. Table 3.2 presents the data setting for ten different experiments.
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Figure 3.3: The data proportion in Total-UPDRS score

Table 3.2: Data setting for ten different experiments

Experiment Input Forecast Output
01 Week01 Week02
02 Week01-02 Week03-04
03 Week01-03 Week04-06
04 Week01-04 Week05-08
05 Week01-05 Week06-10
06 Week01-06 Week07-12
07 Week01-07 Week08-14
08 Week01-08 Week09-16
09 Week01-09 Week10-18
10 Week01-10 Week11-20

3.3.5 CNN Multichannel Architecture

CNN model is feasible for time series forecasting. Many types of CNN models can be used for

each specific type of time series forecasting problem. We provide every individual one-dimensional

time series to the model as an input of every individual channel. The model employs a different
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kernel and reads each input sequence onto a different set of filter maps, substantially learning fea-

tures from time series input variables. This setting is suitable for problems that the output sequence

is some function of the observations at the steps of time ahead from several different features, in-

cluding the forecasted feature. The increase in data amount needs a more prominent and advanced

model which require more time for training. The architecture of our proposed multichannel CNN

model is inspired by [83]. Figure 3.4 shows the illustration of multichannel CNN for forecasting

PD future progression.

Figure 3.4: The architecture of multichannel CNN network for forecasting PD future progression

For the experiment, a three-stage CNN model was applied as the core building block in the

network. The total variables and timesteps (week/s) from PD dataset used as an input network.

Each feature learning consists of convolution (filter), activation, and pooling operators. After input

stage, we construct two convolutional layers with a filter size of 32, kernel size of 3, ReLU as

an activation function, followed by max-pooling with a pool size of two. Here we applied ReLU

because it could train the neural networks faster [84]. Next, we add the third convolutional layer

with a filter size of 16, kernel size of 2, ReLU, and max-pooling. The fully connected layer then

describes the features up to 100 nodes. We train the model with 70 epochs and 16 samples for batch

size. We also use the Adam optimization algorithm to estimate and update the network weights

continuously based on training dataset. This network setting performs well with our multivariate

variables. Pooling (max-pooling) reduces the resolution of input and make it robust to small vari-
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ations for previously learned features. At the end of the three-stage feature extraction, the feature

maps are flattened and fed into a fully connected layer for forecasting.

3.4 Experiment

We conducted the experiments to evaluate the proposed framework for forecasting PD future

progression from weekly dataset containing standard temporal structure. We used Keras API run-

ning on Tensorflow to train DNN models.

3.4.1 Baseline Methods

We chose two baselines that are capable of handling multivariate variables for time series: CNN

multiheaded and encoder-decoder Long Short-Term Memory (LSTM).

3.4.1.1 Multiheaded CNN

We designed the extended CNN that contain individual sub-model for all input variables, which

also called as multiheaded CNN model. For multiheaded CNN model, we established an individual

CNN model for 17 and 18 input variables for this network. The hyperparameters and total layers

are modified to fit for this model. This model can utilize the available API functions to be more

flexible. Each variable can be looped over and generate a sub-model that holds a one-dimensional

week/s sequence from data and extracts a flat vector as outputs. These outputs contain a summary

of the learned features from the input sequence. All of the extracted vectors were integrated by

concatenation to produce one lengthy vector, and then interpreted by fully connected layers to be

ready for a prediction. As we constructed the submodels, we define the inputs for the model and

utilize the stack of flattening layers in the merged layer. To fit our PD data, it required about 17 and

18 arrays as input for the network which one for each submodel. It is essential for model training,

model evaluation, and doing the forecasting with a developed model. To do that, we generate the

3D arrays that contain [samples, timesteps, 1], with one feature.
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3.4.1.2 Encoder-Decoder LSTM

LSTM is a recurrent neural network that has the ability to learn and forecast long sequences.

A benefit of LSTM in addition to learning long temporal sequences is that they can learn to make

a one-shot multi-step forecast which may be useful for time series forecasting. However, LSTMs

disadvantages are it can be complicated in the configuration process and requires a lot of prepara-

tion to get the dataset in a suitable format for learning. LSTM add the explicit handling of order

between observations when learning a mapping function from inputs to outputs, which are not

offered by MLP or CNN. This neural network includes native support for input dataset comprised

of observations’ sequences. We designed the encoder-decoder LSTM to use about 17 or 18 time

series variables to forecast the next incoming week/s of PD voice symptoms progression. All indi-

vidual one-dimensional time series were allocated as a different input sequence to the model. The

LSTM will create an internal representation of each input sequence that will together be interpreted

by the decoder. We used training epochs of 50 given the 8-fold increase in the amount of input

data.

3.4.2 Result Evaluation Metric

The forecast will be comprised of ten different time frame settings, for week/s ahead, as shown

in Table 3.2. It is common for multiple steps forecasting problems to evaluate each forecasted

temporal step individually. The units of the speech features are numerical, and it would be func-

tional to apply an error metric that employed the same units. From the literature, the RMSE and

Mean Absolute Error (MAE) are suitable format for time series. However, RMSE was frequently

used in previous work and we decided to adopt it for the experiment. Different from MAE, RMSE

allocates a high weight to forecast errors. For this work, RMSE will be used to measure the per-

formance for each lead time from week02 to week20. It is useful for summarizing the model’s

performance using an RMSE score to aid in model selection. The model’s performance is based

on multiple week/s forecasts.
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3.4.2.1 RMSE

Accuracy is often regarded as the dominant criterion for selecting a forecasting method [85].

The accuracy of a forecasting method is determined by analyzing the forecast error, which is

defined as the actual value minus the forecast (or fitted) value of the variable for time period t;

namely: et = At - Ft, where et is the forecast error at time t; At the actual speech features’ value

at time t; Ft the forecast speech features’ value at time t + 1. For instance, forecast optimization

typically chooses a model that minimizes RMSE, which is calculated as RMSE =
√

1
n

∑n
t=1 e

2
t .

3.4.3 Experimental Results and Discussion

We ran the experiments on three different DNN network settings which are CNN multichannel,

CNN multiheaded, and encoder-decoder LTSM. We ran the experiments approximately 1000 times

due to the stochastic nature of DNN to get a reasonably accurate result. We also conducted about

90 experiments with ten different combinations of the dataset. We applied three different variables

combinations, which are: (1) 16 speech features and motor-UPDRS for Table 3.3, (2) 16 speech

features and total UPDRS for Table 3.4, (3) 16 speech features, motor-UPDRS, and total-UPDRS

for Table 3.5. Table 3.3 displays the RMSE values of using 17 variables (16 features and motor-

UPDRS). The performance of three DNN methods were compared. Each method has ten different

data temporal setting. For example, in Table 3.3, the first column (Multichannel CNN) represents

the ten different data settings (1a-10a). The grey cells in the table present the input data in week/s

used for the experiment, while the white cells contain the RMSE values for predicted week/s. The

total number of forecasting output week/s will be the same with the total number of input week/s.

For example, the column experiment 2a used two weeks (week01-week02) as an input to forecast

the PD progression of two weeks ahead (week03-week04). From these three tables, we can see

that experiments results are better using 16 speech features and motor-UPDRS as an input. The

RMSE values are much lower in Table 3.3 compared to the other two tables. While Table 3.7 that

used 16 speech features and both UPDRS scores presents the highest RMSE values.

Figure 3.3-3.5 present the average of RMSE values for every experiment in graph format for

42



Table 3.3: The output of RMSE values in forecasting 16 speech features and motor-UPDRS

Table 3.4: The output of RMSE values in forecasting 16 speech features and total-UPDRS

Table 3.5: The output of RMSE values in forecasting 16 speech features, motor-UPDRS, and
total-UPDRS
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Figure 3.5: The average RMSE values for 16 speech features and motor-UPDRS

Figure 3.6: The average RMSE values for 16 speech features and total-UPDRS
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Figure 3.7: The average RMSE values for 16 speech features, motor-UPDRS, and total-UPDRS

better representation. The detail setting for each experiment can be referred in Table 3.2. Figure 3.5

shows the RMSE scores for all three models using 16 speech features with motor-UPDRS. Fig-

ure 3.6 shows the RMSE scores for all three models using 16 speech features with total-UPDRS.

Figure 3.7 shows the RMSE scores for all three models using 16 speech features, motor-UPDRS,

and total-UPDRS. Multichannel CNN model is the best compared to others by producing the least

RMSE values in all experiments settings. Results indicate that multichannel CNN can effectively

forecast the future progression of PD patients. Instead of mapping inputs to outputs alone, the

network is capable of learning a mapping function for the inputs over time to output.

3.5 Conclusions

PD is a neurodegenerative disorder that affects the dopamine neurons production in specific

part in the brain. PD is also recognized as the second most common degenerative nerve disorder

in the United States after Alzheimer’s disease. About 1% of the world population which estimated

7 to 10 million people after the age of 60, with an average age of 62 are PD sufferers. Every
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year, approximately 60,000 Americans are diagnosed with PD, and the researchers believe this

number will continue to grow. By providing a computational prognosis tool for PD using patients’

dataset that contains clinical PD rating scale based on speech features could alleviating the speech

changes symptom. This can help huge amount of people who want to know the progression of

unusual symptoms that they are currently facing based on previous and current recorded speech.

Remote tracking of UPDRS using voice measurements is an effective screening step before an

appointment with a clinician. Developing computational tools using DNN techniques can assist

the medical expert in forecasting PD progression for the patient faster and recognize the subjects

at an early stage. This can be a useful guide for clinical staff, following the progression of clini-

cal PD symptoms regularly. PD is often tricky in diagnosis and also time-consuming to monitor

the progress of the symptoms, but even at early stages, small vocal differences may be machine-

detectable. Using this information, it becomes possible to monitor PD using voice recordings from

potential patients.

In this work, we develop a model to forecast the motor symptoms severity progression through

voice speech features. We proposes a multi-step time series approach to forecasting the PD symp-

toms progression using DNN methods. Three different setting of DNN methods such as multi-

channel CNN, multi-headed CNN, and encoder-decoder LSTM are employed and their perfor-

mance are compared. The experimental results on available public PD dataset show that the pro-

posed multichannel CNN model remarkably helping in forecasting of PD progression in several

incoming weeks. Our proposed model can assist medical practitioners in healthcare practice for

monitoring PD symptoms severity growing. It also can be implemented as an efficient clinical

decision support system for PD treatments as it demonstrated that real PD data could efficiently

forecast PD progression.
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4. MULTIVARIATE DATA, THE NEUROPSYCHOLOGY ASSESSMENT FOR

IDENTIFYING DEMENTIA IN PARKINSON’S DISEASE PATIENTS

4.1 Introduction

Dementia is not a disease. It is a general term used to describe abnormal changes in the brain.

The characteristics of dementia are memory difficulties, problem-solving, language, and thinking

abilities, which can interfere with daily life and independent function. It eventually will affect

the emotions, feelings, behavior, and relationships with others. Dementia is more synonymous

with Alzheimer’s disease caused by brain cell damage and destruction. The damage cells will

interfere with brain activity and neuron connection. However, in most cases, PD patients will

eventually experience dementia as their disease progresses at least a year after the diagnosis. In

the early years, the symptoms start slowly and gradually get worse in the following years. The

previous studies reported that about 50-80% of PD patients experience dementia [86]. PD is a

progressive neurodegenerative disease that affects 1–2% of people older than 60. Although PD has

long been considered a motor disorder predominantly, its frequent association with dementia has

recently gained increasing recognition. Patients with PD have an almost sixfold increased risk of

developing dementia compared with age-matched individuals without PD. In a 12-year population

study of patients with PD, the cumulative incidence of dementia increased steadily with age and

disease duration reaching 80–90% by age 90. Dementia contributes significantly to the morbidity

and mortality of PD. The factors commonly associated with PD-Dementia are declining years,

severe stage of parkinsonism (rigidity, postural disturbance, and gait disorder), and psychiatric

symptoms (depression, anxiety). It also includes trouble interpreting visual information, memory

loss, sleep disorder, low concentration, and judgment, and Mild Cognitive Impairment (MCI) [87].

Until today, there are still no available treatments to cure or stop the damage of brain cells

caused by PD-Dementia. However, the drug and non-drug treatments could help ease and improve

the symptoms suffered by PD-Dementia patients. Thus, if the PD patients start to experiencing
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poor memory, thinking trouble, or other dementia symptoms, they are advised to seek the doctor

treatments as soon as possible to determine the cause. The diagnosis could help patients in receiv-

ing the optimum benefits of early available therapies. Dementia cannot be determined with only

one test, but a combination of tests and guidelines are required for the diagnosis. The medical

procedures needed in detecting dementia are neuropsychological and cognitive tests, psychiatric

evaluation, brain scans, laboratory tests, and genetic tests.

Thus, to prolong and reduce the dementia risk, we propose a framework in detecting demen-

tia among PD patients using neuropsychological assessment. We classify the samples using the

MoCA scores as a guideline during the preprocessing stage. We classify them into three different

categories, which are No dementia, PD-MCI, and PD-Dementia. In this study, we used the Parkin-

son’s Progression Markers Initiative (PPMI) dataset, which available upon request from the Image

Data Archive (IDA) website that was maintained by the University of Southern California (USC).

We design a DNN architecture specific for analyzing electronic health records for PD-Dementia

detection. We summarize our contributions as follows:

• We propose a framework of monitoring the neuropsychological progression symptoms among

PD patients.

• We design the DNN architecture to train the dementia detection model using non-motor

information of PD patients.

• Our experiment results show that the trained model can be used as an alarm tool in detecting

PD-Dementia. Plus, the model is reliable in monitoring the patients’ health status remotely.

4.2 Related Work

Many dementia studies have been conducted in diagnosis, management, and treatment of this

condition. Continuous research exploration on this topic is essential to identify the symptoms and

prevent it from getting worse. Early detection will help patients face any physical and emotional

changes that distract them from everyday lives. Various diseases correlated to dementia such as

Alzheimer’s Disease (AD), Frontotemporal, Lewy Body (LB), Vascular, Huntington, and PD. The
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overlap symptoms of multiple dementia have made it harder to received an accurate diagnosis.

Plus, there are only a few dementia works done in PD. Even though the PD-Dementia cases are

small compared to other related brain diseases, but PD patients are at high risk of getting demen-

tia. Plus, the PD patients with dementia symptoms are at increased risk of morbidity and mortality.

Thus, we take the initiative of conducting this study so that PD-Dementia patients will appropri-

ately be treated.

Usually, healthy people will be experiencing brain cells losses as they age, but for dementia

patients, the losses are far more significant that affect a person’s functioning. During the severe

phase, patients with dementia will entirely rely on other family members to conduct necessary

daily activities. Some older people with dementia cannot control their feelings and emotions.

Thus, it will affect their usual behavior and personalities. Neuropsychological studies reported

that cognitive capacities deficit is associated with dementia. The neuropathological characteristics

were prominent among PD-Dementia patients [88]. PD-Dementia has its own medical profile and

neuropathology characteristics, differentiated from other diseases with dementia.

In the previous work, non-motor symptoms such as Rapid Eye Movement (REM) sleep behav-

ior disorder and Korean MoCA were used as the leading indicator to distinguish PD-Dementia and

AD with Dementia (AD-Dementia). 110 PD-Dementia and 118 AD patients with age at least 60

years involved in this work [89]. The patients’ profile was analyzed to develop the PD-Dementia

detection model. In the other work done by [90], the visual measures and retinal thinning have

shown vital risk factors of dementia development in PD. These features were used in the experi-

ment because the human eye structure linked with dopaminergic layers in which dopamine defi-

ciency is one of the PD-Dementia symptoms. About 146 participants contributed to the study, with

112 PD patients and others being healthy.

Additionally, the PD patients’ historical data, including demographic, age, behavior, current

health status, and dopaminergic treatment, were considered in the research conducted by [91].

85 PD-Dementia and 444 PD patients data used for the experiments. The results proved that the

psychiatric and cognitive features contribute the most in identifying dementia in PD patients. In
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other similar work done by [92], about 140 PD patients were involved in the study to examine

the neuropathological substrates of cognitive deficits, which contributes to PD-Dementia. All the

participants are either having a stable cognitive function or dementia symptoms for two or more

years. The results show that 92 of PD patients developed dementia while the 48 remained cog-

nitively intact. 542 PD patients were involved in the with 46 had PD-Dementia, 64 had LB with

Dementia (LB-Dementia) [93]. The experiment analysis shows that the overall incidence rate of

PD-Dementia is higher than LB-Dementia. The incidence rate also increased progressively with

age.

Earlier, much statistical analysis and data mining techniques have been used widely by re-

searchers in developing accurate dementia detection models. The examples of methods used for

the experiments are latent class analysis, logistic regression, kruskal-wallis, mann-whitney, deci-

sion tree, and random forest [94, 91, 95]. In the last five years, DL has shown phenomenal growth

in disease diagnosis [96]. DL applies representation learning techniques that beneficially the hid-

den new knowledge from the input data without requiring manual features extraction from that

data. It is because the network will automatically learn to extract features during the training pro-

cess [63]. Thus, in this work, we explored the neuropsychological assessment and current age to

detect the dementia signs in PD patients. We construct a DNN model that effectively identify these

essential groups, PD-MCI and PD-Dementia.

4.3 Methods

This section will introduce the proposed framework, including PPMI neuropsychological as-

sessment, data preprocessing, and MLP architecture.

4.3.1 The Proposed Framework for Identifying Dementia in Parkinson’s Disease Patients

from Neuropsychological Assessment

Figure 4.1 shows our proposed framework in identifying the dementia status in PD patients.

This proposed framework contains four main parts, which are EHR database, data preprocessing,

DL for neuropsychological assessment inputs, and result evaluation. The PD patient’s information
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and their progression of health status saved in the database. We extracted the patient’s neuropsy-

chological information from the record and labeled them into three categories: No Dementia,

PD-MCI, and PD-Dementia. In this preprocessing phase, the labeling process has conducted the

dataset using MoCA scores information that we retrieved from the same database. After that, the

preprocessed data then fed as an input into the DL algorithm for training. To check the model reli-

ability in classifying the PD patient’s current status, we evaluate the model using several establish

evaluation metrics. From the model, if the level shows as PD-MCI or PD-Dementia, the patient

will see a doctor for further checkups. The doctor may suggest changing the medication or provide

a new treatment to ease the symptoms.

Figure 4.1: The overview of our proposed framework for identifying dementia in PD patients using
DL model

4.3.2 PPMI Neuropsychological Assessment

PPMI is a repository for observational clinical study containing various types of medical imag-

ing, biospecimen information, clinical observation, and behavioral evaluation to identify PD pro-

gression biomarkers to get a better understanding of the disease [97]. Data used in the preparation

of this work were obtained from the PPMI database (www.ppmiinfo.org/data). For up-to-date in-

formation on the study, visit www.ppmiinfo.org. The data was downloaded on March 16th, 2020.
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The data stored in PPMI was contributed by 21 clinical sites that followed the publicly available

standardized data protocols through the PPMI website. The institutional review board approved

the study conducted by PPMI at each clinical site, and the participants provided written informed

consent. The supplement information of the PPMI study has published a few years back [97].

In this study, we used PD patients’ information about the non-motor assessment of neuropsy-

chological tests. The neuropsychological tests that we used for the experiments are semantic flu-

ency and MoCA. We used the non-motor assessment to identify PD-Dementia because it is a com-

monly reported symptom among PD patients. Plus, it is often unremarkable in medical practice.

Conversely, PD diagnosis is usually determined based on motor symptoms [98]. However, patients

with PD show common non-motor conditions when they started developing dementia-related dis-

abilities in daily life [99].

The example of non-motor assessment is cognitive and neuropsychological tests. These tests

will measure language skills, memory, visual ability, and other brain functioning abilities. Neu-

ropsychological testing usually is time-consuming and needs a proper introduction to the patients.

This session requires special monitoring from the neuropsychologist. Nevertheless, if the patient

reported having cognitive impairment, their doctor can conduct a quick test during checkups. The

suspect dementia patient will undergo a MoCA test to assess their cognitive status. The MoCA

screening test investigates orientation, memory, and attention and the ability to recognize items,

follow verbal and written instructions, and reproduce a complex shape. Plus, MoCA has better

sensitivity and specificity than a famous Mini-Mental State Examination (MMSE) [100]. Another

neuropsychological test used in this work is semantic fluency. The goals were to examine the

quantitative for word generation and qualitative for grouping and switching categories in verbal

fluency.

The participants were 403 PD patients diagnosed with PD for two years or less who are not

taking PD medications and 64 PD patients who do not show evidence of a dopaminergic deficit.

Each patient took the neuropsychological tests multiple times with a least approximately one year

gap for every test. The total data used for this study is 2873. Table 4.1 presents 34 features of
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Table 4.1: Description of the features of neuropsychological assessment from PPMI dataset

Description Type Label Feature label
Numerical VLTANIM Total number of animal
Numerical VLTVEG Total number of vegetable

Semantic Fluency Numerical VLTFRUIT Total number of fruits
Numerical DVS SFTANIM Derived-Sem. Fluency - Animal scaled score
Numerical DVT SFTANIM Derived-Sem. Fluency - Animal T-score
Numerical MCATOT MoCA total score
Numerical MCASER7 Attention - Serial 7s
Numerical MCAVFNUM Verbal Fluency - Number of words
Numerical MCASNTNC Sentence repetition
Numerical MCAABSTR Abstraction
Categorical MCAALTTM Alternating trail making
Categorical MCACUBE Visuoconstructional skills (cube)
Categorical MCACLCKC Visuoconstructional skills (clock cont)
Categorical MCACLCKN Visuoconstructional skills (clock num)
Categorical MCACLCKH Visuoconstructional skills (clock hands)
Categorical MCALION Naming - Lion
Categorical MCARHINO Naming - Rhino
Categorical MCACAMEL Naming - Camel

MoCA Categorical MCAFDS Attention - Forward digit span
Categorical MCABDS Attention - Backward digit span
Categorical MCAVIGIL Attention - Vigilance
Categorical MCAVF Verbal Fluency
Categorical MCAREC1 Delayed Recall - Face
Categorical MCAREC2 Delayed Recall - Velvet
Categorical MCAREC3 Delayed Recall - Church
Categorical MCAREC4 Delayed Recall - Daisy
Categorical MCAREC5 Delayed Recall - Red
Categorical MCADATE Orientation - Date
Categorical MCAMONTH Orientation - Month
Categorical MCAYR Orientation - Year
Categorical MCADAY Orientation - Day
Categorical MCAPLACE Orientation - Place
Categorical MCACITY Orientation - City

Age Numerical AGE ASSESS Age at assessment

semantic fluency and MoCA tests together with the patients’ age. Eleven features are numerical

type, and the remaining 23 features are categorical.

Figure 4.2 shows the data proportion for each group. The total instances for each group are;

No dementia is 1716, PD-MCI is 1108, and PD-Dementia is 52. Figure 4.3 presents the overall
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Figure 4.2: The data proportion in three classes

Figure 4.3: The proportion of the data
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data distribution based on the MoCA and age of the participants.

4.3.3 Data Preprocessing

We classified each of 2873 data samples into three different labels: No dementia, PD-MCI, and

PD-Dementia. The label is based on MoCA scores defines by The Health Navigator New Zealand

website, a non-profit community. The website goals are to provide reliable, trustworthy health

information and self-care resources to the public. Table 4.2 presents the MoCA scores for three

different labels.

Table 4.2: MoCA scores range interpretation

Dementia Stage MoCA Score Cognitive Status
No Dementia 26 - 30 No cognitive impairment
PD-MCI 18 - 25 A mild but noticeable decline in cognition
PD-Dementia 0 - 17 Definite cognitive decline & impairment

4.3.4 MLP Architecture for Multivariate Data

This study used the classical type of neural network, MLP algorithm with backpropagation,

which will automatically learn to map from inputs to outputs. It’s network settings are flexible

and has shown excellent performance in a broad range of problems. MLP works very well with

tabular datasets for classification prediction tasks and regression prediction problems. Our MLP

contains simple architecture with four layers with a different number of nodes. Figure 4.4 shows

the overview of our MLP. The input layer includes 34 neurons, represents the same total of 34

input features. The two hidden layers have 100 neurons and 80 neurons with ReLu as an activation

function. Lastly, the output layer contains three neurons with three labels that we want to pre-

dict: No dementia, PD-MCI, and PD-Dementia. MLP able to supports multi-class classification

by adopting a softmax activation function in the output layer. MLP model supports multi-label

classification in which a sample can belong to more than one class. For each class, the raw output

passes through the logistic function. Values larger or equal to 0.5 are rounded to 1, otherwise to
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0. For a predicted outcome of a sample, the indices where the value is 1 represent the sample’s

assigned classes. MLP trains using some form of gradient descent, and the gradients calculated

using backpropagation. It will minimize the cross-entropy loss function and produce a vector of

probability value that will estimate the probability of the sample’s class for classification purposes.

We also used the Adam optimization algorithm to continuously evaluate and update the network

weights based on the training dataset. We have tried several different network settings to produce

the best and reliable MLP architecture for our problem.

Figure 4.4: The MLP architecture

4.4 Experiment

We conducted experiments to evaluate the proposed network settings for identifying dementia

in PD patients. We applied a 10-fold cross-validation setting to train and test all the models. We

briefly introduce the baselines methods. After that, we report the experimental performances, and

we discuss our findings.

4.4.1 Baseline Methods

We present the baselines to evaluate our proposed MLP architecture. The input of our dataset

was in a Comma-Separated Values (CSV) format that uses a comma to separates each value. Row
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in the file represents data record in which each record consists of several fields that are also sepa-

rated by commas. Therefore, we chose five baselines frequently used for machine learning, such

as decision tree, random forest, naive bayes, KNN, and SVM.

4.4.1.1 Decision Tree

Decision tree is a simple supervised learning algorithm that is frequently used for classification

and regression purposes. It learns from data to approximate a sine curve with a set of if-then-else

decision rules. The deeper the tree, the more complex the decision rules, and the fitter the model.

The decision tree creates a model in a tree structure form. It will break down a dataset into smaller

and smaller subsets, and at the same time, an associated decision tree is incrementally developed.

The final result is a tree with decision nodes that could have two or more branches. The leaf node

represents a classification or decision. The topmost decision node in a tree which corresponds to

the best predictor called the root node. Decision trees can handle both categorical and numerical

data.

4.4.1.2 Random Forest

Random forest is an ensemble learning method generally used for classification and regres-

sion tasks. This algorithm contains a large combination of multiple decision trees, which tree is

constructed during the training process. When developing individual trees, an arbitrary subset of

attributes is drawn (hence the term “Random”), from which the best feature for the split is selected.

The final model is based on the majority vote from individually developed trees in the forest.

4.4.1.3 Naive Bayes

A fast and straightforward probabilistic classifier based on bayes’ theorem with the assumption

of feature independence. This supervised algorithm has been used in a wide variety of classification

tasks. Naive bayes is a classification algorithm suitable for binary (0 and 1) classification and

multi-class classification problems.
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4.4.1.4 K-Nearest Neighbor

The KNN is a simple non-parametric, and supervised machine learning algorithm that records

all instances during the training process and will classify new samples based on similarity measures

such as distance functions. A sample is classified by a majority vote of its neighbors, with the

sample being assigned to the class most common amongst its K nearest neighbors measured by

a distance function. It searches for “k” closest training examples in feature space and uses their

average as the prediction.

4.4.1.5 SVM

SVM is a supervised machine learning algorithm that can be employed for classification and re-

gression tasks. It separates the attribute space with a hyper-plane, maximizing the margin between

the instances of different classes or class values. The technique often yields supreme predictive

performance results.

4.4.2 Experimental Result and Discussion

Table 4.3: Evaluation results

Model AUC Accuracy F1 Precision Recall
Decision Tree 0.498 0.597 0.446 0.356 0.597
SVM 0.708 0.698 0.636 0.773 0.698
KNN 0.917 0.841 0.837 0.842 0.841
Naive Bayes 0.976 0.902 0.904 0.908 0.902
Random Forest 0.989 0.969 0.968 0.968 0.969
MLP 0.995 0.975 0.975 0.975 0.975

We ran the experiments using six different methods. Our results indicate that our proposed

MLP effectively can identify the current health status of PD patients. We compared each method’s

experiment results with five different evaluation metrics such as Area Under the ROC Curve

(AUC), accuracy classification score, F1-measure, precision, and recall. It is crucial to better un-

derstand the trade-off in performance for different threshold values when interpreting probabilistic
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predictions. Experimental results in Table 4.3 shows our MLP has the highest accuracy value of

97.5%. It also has the highest AUC, F1, precision, and recall values compared to other mod-

els. These results indicate that our MLP performed better and the most reliable model to identify

dementia in PD patients.

Table 4.4: The proportion of predicted instances using our MLP

Predicted
PD-Dementia PD-MCI No Dementia Total

PD-Dementia 85.4% 1.5% 0 52
Actual PD-MCI 14.6% 96.2% 1.3% 1108

No Dementia 0 2.3% 98.7% 1716
Total 41 1123 1712 2876

Additionally, Table 4.4 shows the proportion of the corretly predicted instances in percentage.

For the PD-Dementia, about 85.4% or 35 instances were correctly classified by our MLP. While,

for the PD-MCI, about 96.2% or 1080 instances were predicted correctly. Lastly, about 98.7% or

1690 instances were labeled correctly for No Dementia.

Table 4.5: Description of the added brain features to the dataset

Description Type Label Feature label
Decimal CAUDATE_R Right caudate

DATScan Decimal CAUDATE_L Left caudate
Decimal PUTAMEN_R Right putamen
Decimal PUTAMEN_L Left putamen

We extend the experiment by using dataset with added brain features. The description of four

Dopamine Transporter Scan (DATScan) information are show in Table 4.5. DATScan is a scanning

tool used to determine the diagnosis of PD. This dataset contained 1480 samples. Table 4.6 shows

the proportion of correctly predicted instances with brain features. We using the same network

setting to analyzed the new instances. The table shows that the percentages values are dropped
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Figure 4.5: The data proportion with added brain features in three classes

Figure 4.6: The distribution of the data with added brain features
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for all classes especially for the PD-Dementia. It is because the limited instances of this label.

However, we believe that the prediction value would improved if we could include more instances

in this experiments. Figure 4.5 shows the total data with added brain features in three different

classes. While Figure 4.6 presents the data distribution with added brain features based on the

MoCA and age of the participants.

Table 4.6: The proportion of predicted instances using our MLP with added brain features

Predicted
PD-Dementia PD-MCI No Dementia Total

PD-Dementia 78.6% 1.7% 0 21
Actual PD-MCI 21.4% 95.3% 2.5% 562

No Dementia 0 3.1% 97.5% 872
Total 14 590 876 1480

From this presented proportion, we can conclude that our proposed MLP is reliable and can be

trusted to monitor the PD patients’ health status for the dementia task. Surprisingly, for the PD-

Dementia group, the MLP has no miss-classified instances for No Dementia. It is a good sign that

the model will not miss-diagnose the PD patient with dementia as No Dementia. Error in diagnosis

is an unwanted situation that we have to avoid. This situation is dangerous because the patients will

be ignored for treatment and will continue to suffer from progressive dementia. If this situation

continues, we afraid that it will be too late to treat the symptoms. The model also presents high

correctly classify instances proportion for PD-MCI. PD-MCI phase is a transitional conditional

between mild PD state and dementia state. PD-MCI patients could get suitable treatment to reduce

the risk of getting dementia.

4.5 Conclusions

PD is a progressive neurodegenerative disease that affects 1–2% of people older than 60. Al-

though PD has long been considered a motor disorder predominantly, its frequent association with

dementia has recently gained increasing recognition. Patients with PD have an almost sixfold in-

creased risk of developing dementia compared with age-matched individuals without PD. In a 12-

61



year population study of patients with PD, the cumulative incidence of dementia increased steadily

with age and disease duration reaching 80–90% by age 90. Dementia contributes significantly

to the morbidity and mortality of PD. Key risk factors or correlates consistently associated with

PD-Dementia are older age, more severe parkinsonism (incredibly rigidity, postural instability, and

gait disturbance), specific psychiatric symptoms (depression, psychosis), and MCI [87].

PD causes physical symptoms at first, including tremor on some of the body parts. Over time,

PD patients might start to experience cognitive function impairment, such as concentration prob-

lems and forgetfulness. As the disease gets worse with time, many PD patients develop dementia.

PD-Dementia can cause permanent memory loss and affect social relationships with others. PD-

Dementia reduced the self-care ability in patients. The medical experts are still unable to uncover

the concrete answers to why dementia often occurs in PD patients. Until today, there is no available

treatment to cure PD and PD-Dementia. The current treatment by healthcare only helps patients to

prolong or delay the symptoms. Thus, scheduled monitoring and early diagnosis are essential to

detect dementia in PD patients. The sufferers could get the proper treatment to help them ease the

symptoms.

In this work, we proposed an MLP architecture to identify dementia symptoms in PD patients.

We used non-motor features such as semantic fluency and MoCA information to train our model.

We also run an experiment using a dataset with additional features of brain information, which

is DATScan. Both results are compared, and we conclude that the model performed very well

in identifying dementia even though we trained the model without DATScan. This result shows

that we can virtually conduct an early diagnosis, which will help patients save cost and time. For

healthcare, they can improve operations activities because they can reduce time on unnecessary

appointments.

In the future, we believe that by including the other biomarkers such as brain images and motor

features as input, it will be a more useful indicator in developing PD-Dementia prediction models

in the future [89]. We are unable to use brain images due to the limited number of a dataset.

However, we believe in the future more brain information will be added to the PPMI database.
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5. CONCLUSION AND FUTURE WORK1

5.1 Conclusion

DL, a subfield of machine learning, has seen a dramatic resurgence in the past few years,

primarily driven by increases in computational power and the availability of massive new datasets.

The field has witnessed striking advances in machines’ ability to understand and manipulate data,

including images, language, speech, and multivariate input. Healthcare and medicine stand to

benefit immensely from DL because of the high volume of data being generated and the increasing

proliferation of electronic medical devices and digital record systems.

The future of healthcare has never been more exciting. Not only do Artificial Intelligence (AI)

and present an opportunity to develop solutions that cater to particular needs within the industry,

but DL in healthcare can become incredibly powerful for supporting clinicians and improving

patient care. While DL in healthcare is still in the early stages of its potential, it has already seen

significant results. The leading institutions and medical bodies have recognized the benefits it

brings, and the popularity of the solutions are well known. The future of healthcare still lies in the

hands of medical professionals. However, with support from a reliable computational system, it

could help healthcare decide particular needs and environments and reduce the stresses that they

experience daily. Healthcare has high hopes for the role of DL in clinical decision support and

predictive analytics for a wide variety of conditions.

In this dissertation, we proposed a series of DL algorithms to handle multiple modalities data in

healthcare. We systematically develop three prediction models for identifying diseases, including

PTSD, PD, and PD-Dementia. They are motivated by different theories in medical and compu-

tational perspectives. We have handled multimodal healthcare data information throughout these

years, including text, speech information, and multi-type data. We also carefully studied each dis-

ease’s background, including the symptoms and test assessment run by healthcare. Thus, with the

1Part of this chapter is reprinted with permission from “Social Media and Psychological Disorder” by Nur Hafieza
Ismail, Mengnan Du, and Xia Hu, 2019, In: Bian J., Guo Y., He Z., Hu X. (eds) Social Web and Health Research.
Springer, Cham., Pages 171-192, doi.org/10.1007/978-3-030-14714-3_9, Copyright 2019 by Springer, Cham.
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underlying special properties of each disease that we discovered, our developed models could be

employed in a real-world scenario. Besides, we have explored the online social media and medical

applications capability and potential in disease diagnosis and a health monitoring system.

For example, online social media and forum discussion sites contain a significant amount of

information. The popularity of social media, advanced NLP systems, and excellent text classifica-

tion methods have opened up a vast opportunity for researchers to explore more about linguistic

style in virtual life. The hidden knowledge behind the written text is very precious in several cases,

including mental health problems and threat cases (bomb threats, school threats, etc.). For mental

health issues, an early depression identification with an alarming system will inform the social

media users to seek the doctor immediately for diagnosis and treatments. Based on our work and

the previous report, we can conclude that the DL algorithms have shown promising results as in-

novative tools with high-value applications in the real-world medical environment. This research

will broadly impact fields such as information retrieval, social computing, and health informatics.

5.2 Future Research Direction

While performing research on DL architecture for healthcare for multiple modalities data, I

have not only accumulated several rewarding but also challenging research questions at the same

time. They could be categorized into two directions, i.e., interpretable DL models for healthcare

and drug discovery precision medicine.

5.2.1 Interpretable DL Models for Healthcare

Although the field of DL technologies for healthcare is advancing rapidly, there are still lots of

future work needed to promote this field’s progress further. (1) The detection algorithms are often

regarded as black-boxes and criticized by their lacking of interpretability [101]. The necessity for

interpretable computational systems is strong as DL becomes more common in healthcare. More

interpretable models are on-demand to increase the acceptance of users for detection models. (2)

Accurate prediction requires an analysis of a massive amount of factors, including demographic

information, medical history, lifestyle, and other information that could contribute to diseases. (3)
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Using Automated Machine Learning (AutoML) [102] in the medical field is possible and suitable

because it provides techniques and methods for non-machine learning experts without having to

code. AutoML can also process a significant amount of data, identify the critical features, and

extract patterns for modeling that are more accurate and work faster than classic models. These

characteristics are essential in disease diagnosis, which requires precise prediction in a real-time

manner on online social media and healthcare applications.

The need for interpretable and reliable computational healthcare systems for patient’s monitor-

ing grows along with the popularity of DL applications used in many other fields. Explainable DL

systems aim to provide self-explanation about the meaningful reasoning behind system decisions

and predictions. Precisely, explainable algorithms can control and monitor adverse or unwanted

effects, such as bias in decision-making or treatment. DL explanations could help healthcare in

many ways, such as improving patient’s care and confidence in diagnosis while relying on DL

decisions.

The model explanation can be designed using several different of output formats for different

user groups [103]. Visual explanations apply visual elements to describe the reasoning behind

the develop models. Attention maps and visual saliency in the form of saliency heatmaps [104]

are examples of visual explanations that are widely used in previous work. Verbal explanations

describe the model or output analysis with natural language. This kind of explanations are popular

for question-answering applications and recommendation systems.

5.2.2 Drug Discovery and Precision Medicine

Machine learning was applied in drug discovery about 30 years ago, and several tools have been

developed for this purpose. However, unlike traditional machine learning, DL has unique criteria

that make it very popular and influential, flexible in its architecture. This exciting characteristic

has made it possible to custom-tailored the DL network for a particular problem. Thus, drug de-

velopment and precision medicine are also necessary fields that need to be explored using the DL

approach. These tasks require computational processing of heterogeneous information of genomic,

clinical, and population-level data. The goal is to identify previously unknown relations between
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genes, pharmaceutical products, lifestyle, and living environments. DL is an ideal approach for in-

terdisciplinary researchers and pharmaceutical organizations to reveal new patterns or key features

in these datasets. It is because many precision medicine researchers are still ambiguous about what

they should be looking for.

Genetic medicine is one of the medicine branches involving integration and application tech-

nologies for data collection in the population-level study to understand diseases and genetics affect

drug response. It is a new field to be explored, so the new unforeseen discoveries can be exciting

for researchers and the medical community because it has a high potential to improve patients care

and reduce the drug side effects. Moreover, the combination of predictive analytics and molecular

modeling will hopefully uncover new insights into how and why certain cancers or diseases form in

individual patients. By leveraging the dataset combination such as EHR data, clinical guidelines,

and real-time monitoring data set using DL, it may be possible to reduce the number of unneces-

sary biopsies that are performed due to suspicious findings in the mammograms. The advanced

DL technologies can accelerate the process of analyzing data and shrinking the processing time.

66



REFERENCES

[1] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint

arXiv:1408.5882, 2014.

[2] A. Mxoli, N. Mostert-Phipps, and M. Gerber, “Risks and benefits of social computing as a

healthcare tool,” Society and Information Technologies: ICSIT, 2016.

[3] J. Sarasohn-Kahn, “The wisdom of patients: Health care meets online social media,” Cali-

fornia HealthCare Foundation Oakland, CA, 2008.

[4] Y. Punie, W. Lusoli, C. Centeno, G. Misuraca, and D. Broster, “The impact of social com-

puting on the eu information society and economy,” JRC Scientific and Technical Report,

JRC IPTS, EUR, vol. 24063, 2009.

[5] N. H. Ismail, M. Du, and X. Hu, “Social media and psychological disorder,” in Social Web

and Health Research, pp. 171–192, Springer, 2019.

[6] P. E. Kummervold, D. Gammon, S. Bergvik, J.-A. K. Johnsen, T. Hasvold, and J. H.

Rosenvinge, “Social support in a wired world: use of online mental health forums in nor-

way,” Nordic Journal of Psychiatry, vol. 56, no. 1, pp. 59–65, 2002.

[7] S. Wallace, M. Clark, and J. White, “‘it’s on my iphone’: attitudes to the use of mobile

computing devices in medical education, a mixed-methods study,” BMJ Open, vol. 2, no. 4,

2012.

[8] C. L. Ventola, “Mobile devices and apps for health care professionals: uses and benefits,”

Pharmacy and Therapeutics, vol. 39, no. 5, p. 356, 2014.

[9] R. Atkinson, T. Hare, M. Merriman, and A. Vogel, “Therapeutic benefits of expressive writ-

ing in an electronic format,” Nursing Administration Quarterly, vol. 33, no. 3, pp. 212–215,

2009.

67



[10] G. Turner-McGrievy, S. Kalyanaraman, and M. K. Campbell, “Delivering health informa-

tion via podcast or web: Media effects on psychosocial and physiological responses,” Health

Communication, vol. 28, no. 2, pp. 101–109, 2013.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–

444, 2015.

[12] X. Du, Y. Cai, S. Wang, and L. Zhang, “Overview of deep learning,” in 2016 31st Youth

Academic Annual Conference of Chinese Association of Automation (YAC), pp. 159–164,

IEEE, 2016.

[13] M. Morchid, “Neural networks for natural language processing,” Ph.D. Thesis of Avignon

Université, 2019.

[14] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based

natural language processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3,

pp. 55–75, 2018.

[15] K. Suzuki, “Overview of deep learning in medical imaging,” Radiological Physics and Tech-

nology, vol. 10, no. 3, pp. 257–273, 2017.

[16] H.-M. Gao and J.-S. Hong, “Why neurodegenerative diseases are progressive: uncontrolled

inflammation drives disease progression,” Trends in Immunology, vol. 29, no. 8, pp. 357–

365, 2008.

[17] E. Esposito and S. Cuzzocrea, “New therapeutic strategy for parkinson’s and alzheimer’s

disease,” Current Medicinal Chemistry, vol. 17, no. 25, pp. 2764–2774, 2010.

[18] S.-F. Zhang, J.-H. Zhai, B.-J. Xie, Y. Zhan, and X. Wang, “Multimodal representation

learning: Advances, trends and challenges,” in 2019 International Conference on Machine

Learning and Cybernetics (ICMLC), pp. 1–6, IEEE, 2019.

[19] N. Flaks-Manov, M. Topaz, M. Hoshen, R. D. Balicer, and E. Shadmi, “Identifying patients

at highest-risk: the best timing to apply a readmission predictive model,” BMC Medical

Informatics and Decision Making, vol. 19, no. 1, p. 118, 2019.

68



[20] A. Alkan, Z. G. Guc, F. C. Senler, T. Yavuzsen, H. Onur, M. Dogan, E. Karci, A. Yasar,

E. B. Koksoy, O. Tanriverdi, et al., “Breast cancer survivors suffer from persistent post-

mastectomy pain syndrome and posttraumatic stress disorder (orthus study): a study of the

palliative care working committee of the turkish oncology group (tog),” Supportive Care in

Cancer, vol. 24, no. 9, pp. 3747–3755, 2016.

[21] T. Akechi, T. Okuyama, Y. Sugawara, T. Nakano, Y. Shima, and Y. Uchitomi, “Major de-

pression, adjustment disorders, and post-traumatic stress disorder in terminally ill cancer

patients: associated and predictive factors,” Journal of Clinical Oncology, vol. 22, no. 10,

pp. 1957–1965, 2004.

[22] N. C. C. for Mental Health (UK and Others, Post-traumatic stress disorder: The manage-

ment of PTSD in adults and children in primary and secondary care. Gaskell, 2005.

[23] M. De Choudhury, S. Counts, and E. Horvitz, “Social media as a measurement tool of

depression in populations,” in Proceedings of the 5th Annual ACM Web Science Conference,

pp. 47–56, ACM, 2013.

[24] M. De Choudhury, S. Counts, and E. Horvitz, “Major life changes and behavioral markers

in social media: case of childbirth,” in Proceedings of the 2013 Conference on Computer

Supported Cooperative Work, pp. 1431–1442, ACM, 2013.

[25] M. J. Paul and M. Dredze, “You are what you tweet: Analyzing twitter for public health,” in

Fifth International AAAI Conference on Weblogs and Social Media, 2011.

[26] M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz, “Predicting depression via social

media,” in Seventh International AAAI Conference on Weblogs and Social Media, 2013.

[27] G. Coppersmith, C. Harman, and M. Dredze, “Measuring post traumatic stress disorder in

twitter,” in Eighth International AAAI Conference on Weblogs and Social Media, 2014.

[28] G. Coppersmith, M. Dredze, and C. Harman, “Quantifying mental health signals in twitter,”

in Proceedings of the Workshop on Computational Linguistics and Clinical Psychology:

From Linguistic Signal to Clinical Reality, pp. 51–60, 2014.

69



[29] S. R. Krothapalli and S. G. Koolagudi, “Characterization and recognition of emotions from

speech using excitation source information,” International Journal of Speech Technology,

vol. 16, no. 2, pp. 181–201, 2013.

[30] S. Balters and M. Steinert, “Capturing emotion reactivity through physiology measurement

as a foundation for affective engineering in engineering design science and engineering

practices,” Journal of Intelligent Manufacturing, vol. 28, no. 7, pp. 1585–1607, 2017.

[31] S. Latif, R. Rana, S. Younis, J. Qadir, and J. Epps, “Cross corpus speech emotion

classification-an effective transfer learning technique,” arXiv preprint arXiv:1801.06353,

2018.

[32] J. Gideon, S. Khorram, Z. Aldeneh, D. Dimitriadis, and E. M. Provost, “Progressive neural

networks for transfer learning in emotion recognition,” arXiv preprint arXiv:1706.03256,

2017.

[33] M. De Choudhury, M. R. Morris, and R. W. White, “Seeking and sharing health information

online: comparing search engines and social media,” in Proceedings of the 32nd Annual

ACM Conference on Human Factors in Computing Systems, pp. 1365–1376, ACM, 2014.

[34] U. Fischer, O. Zachariae, F. Baum, D. von Heyden, M. Funke, and T. Liersch, “The influ-

ence of preoperative mri of the breasts on recurrence rate in patients with breast cancer,”

European Radiology, vol. 14, no. 10, pp. 1725–1731, 2004.

[35] F. M. Lewis and L. W. Deal, “Balancing our lives: A study of the married couple’s experi-

ence with breast cancer recurrence,” Oncology Nursing Forum-Oncology Nursing Society,

vol. 22-6, pp. 943–956, 1995.

[36] M. L. Stuber, A. E. Kazak, K. Meeske, L. Barakat, D. Guthrie, H. Garnier, R. Pynoos, and

A. Meadows, “Predictors of posttraumatic stress symptoms in childhood cancer survivors,”

Pediatrics, vol. 100, no. 6, pp. 958–964, 1997.

[37] J. M. Salsman, S. C. Segerstrom, E. H. Brechting, C. R. Carlson, and M. A. Andrykowski,

“Posttraumatic growth and ptsd symptomatology among colorectal cancer survivors: a 3-

70



month longitudinal examination of cognitive processing,” Psycho-Oncology: Journal of the

Psychological, Social and Behavioral Dimensions of Cancer, vol. 18, no. 1, pp. 30–41,

2009.

[38] C. M. H. Chan, C. G. Ng, N. A. Taib, L. H. Wee, E. Krupat, and F. Meyer, “Course and

predictors of post-traumatic stress disorder in a cohort of psychologically distressed patients

with cancer: A 4-year follow-up study,” Cancer, vol. 124, no. 2, pp. 406–416, 2018.

[39] E. Moschopoulou, I. Hutchison, K. Bhui, and A. Korszun, “Post-traumatic stress in head

and neck cancer survivors and their partners,” Supportive Care in Cancer, vol. 26, no. 9,

pp. 3003–3011, 2018.

[40] J. James, Y. T. Harris, I. M. Kronish, J. P. Wisnivesky, and J. J. Lin, “Exploratory study

of impact of cancer-related posttraumatic stress symptoms on diabetes self-management

among cancer survivors,” Psycho-Oncology, vol. 27, no. 2, pp. 648–653, 2018.

[41] S. M. Brown, A. Webb, R. Mangoubi, and J. Dy, “A sparse combined regression-

classification formulation for learning a physiological alternative to clinical post-traumatic

stress disorder scores,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[42] E. Sharma and M. De Choudhury, “Mental health support and its relationship to linguistic

accommodation in online communities,” in Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems, p. 641, ACM, 2018.

[43] S. Dutta, J. Ma, and M. De Choudhury, “Measuring the impact of anxiety on online social

interactions,” in Twelfth International AAAI Conference on Web and Social Media, 2018.

[44] D. Vergyri, B. Knoth, E. Shriberg, V. Mitra, M. McLaren, L. Ferrer, P. Garcia, and

C. Marmar, “Speech-based assessment of ptsd in a military population using diverse fea-

ture classes,” in Sixteenth Annual Conference of the International Speech Communication

Association, 2015.

[45] S. K. Ernala, T. Labetoulle, F. Bane, M. L. Birnbaum, A. F. Rizvi, J. M. Kane, and

M. De Choudhury, “Characterizing audience engagement and assessing its impact on so-

71



cial media disclosures of mental illnesses,” in Twelfth International AAAI Conference on

Web and Social Media, 2018.

[46] D. Banerjee, K. Islam, K. Xue, G. Mei, L. Xiao, G. Zhang, R. Xu, C. Lei, S. Ji, and J. Li,

“A deep transfer learning approach for improved post-traumatic stress disorder diagnosis,”

Knowledge and Information Systems, vol. 60, no. 3, pp. 1693–1724, 2019.

[47] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, “Using recurrent neural network models

for early detection of heart failure onset,” Journal of the American Medical Informatics

Association, vol. 24, no. 2, pp. 361–370, 2016.

[48] J. D. Flory and R. Yehuda, “Comorbidity between post-traumatic stress disorder and major

depressive disorder: alternative explanations and treatment considerations,” Dialogues in

Clinical Neuroscience, vol. 17, no. 2, p. 141, 2015.

[49] A. Leano, M. B. Korman, L. Goldberg, and J. Ellis, “Are we missing ptsd in our patients

with cancer? part i,” Canadian Oncology Nursing Journal, vol. 29, no. 2, p. 141, 2019.

[50] B. Cui, Y. Li, Y. Zhang, and Z. Zhang, “Text coherence analysis based on deep neural

network,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management, pp. 2027–2030, ACM, 2017.

[51] S. Raschka, “Naive bayes and text classification,” Retrieved from sebastianraschka.

com/Articles/2014_naive_bayes_1. html, 2014.

[52] M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, “A novel active learning method using

svm for text classification,” International Journal of Automation and Computing, vol. 15,

no. 3, pp. 290–298, 2018.

[53] A. Padia, A. Roy, T. W. Satyapanich, F. Ferraro, S. Pan, Y. Park, A. Joshi, T. Finin, et al.,

“Umbc at semeval-2018 task 8: Understanding text about malware,” in Proceedings of In-

ternational Workshop on Semantic Evaluation (SemEval-2018), 2018.

72



[54] N. Majumder, S. Poria, A. Gelbukh, and E. Cambria, “Deep learning-based document mod-

eling for personality detection from text,” IEEE Intelligent Systems, vol. 32, no. 2, pp. 74–79,

2017.

[55] M. Wess, “Bringing hope and healing to grieving patients with cancer.,” The Journal of the

American Osteopathic Association, vol. 107, no. 12 Suppl 7, p. ES41, 2007.

[56] S. Grover, S. Bhartia, A. Yadav, K. Seeja, et al., “Predicting severity of parkinson’s disease

using deep learning,” Procedia Computer Science, vol. 132, pp. 1788–1794, 2018.

[57] T. Khan, J. Westin, and M. Dougherty, “Classification of speech intelligibility in parkinson’s

disease,” Biocybernetics and Biomedical Engineering, vol. 34, no. 1, pp. 35–45, 2014.

[58] R. J. Holmes, J. M. Oates, D. J. Phyland, and A. J. Hughes, “Voice characteristics in the

progression of parkinson’s disease,” International Journal of Language & Communication

Disorders, vol. 35, no. 3, pp. 407–418, 2000.

[59] M. Nilashi, O. Ibrahim, and A. Ahani, “Accuracy improvement for predicting parkinson’s

disease progression,” Scientific Reports, vol. 6, p. 34181, 2016.

[60] C.-W. Cho, W.-H. Chao, S.-H. Lin, and Y.-Y. Chen, “A vision-based analysis system for gait

recognition in patients with parkinson’s disease,” Expert Systems with Applications, vol. 36,

no. 3, pp. 7033–7039, 2009.

[61] “Mobile fact sheet,” https://www.pewinternet.org/fact-sheet/mobile/, April 1, 2019.

[62] K. Chenausky, J. MacAuslan, and R. Goldhor, “Acoustic analysis of pd speech,” Parkinson’s

Disease, 2011.

[63] T. Arroyo-Gallego, M. J. Ledesma-Carbayo, Á. Sánchez-Ferro, I. Butterworth, C. S. Men-

doza, M. Matarazzo, P. Montero, R. López-Blanco, V. Puertas-Martin, R. Trincado, et al.,

“Detection of motor impairment in parkinson’s disease via mobile touchscreen typing,”

IEEE Transactions on Biomedical Engineering, vol. 64, no. 9, pp. 1994–2002, 2017.

73



[64] W. Nanhoe-Mahabier, A. Snijders, A. Delval, V. Weerdesteyn, J. Duysens, S. Overeem,

and B. Bloem, “Walking patterns in parkinson’s disease with and without freezing of gait,”

Neuroscience, vol. 182, pp. 217–224, 2011.

[65] S. Sapir, L. Ramig, and C. Fox, “Speech and swallowing disorders in parkinson disease,”

Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 16, no. 3, pp. 205–210,

2008.

[66] R. LeMoyne and T. Mastroianni, “Use of smartphones and portable media devices for quan-

tifying human movement characteristics of gait, tendon reflex response, and parkinson’s

disease hand tremor,” in Mobile Health Technologies, pp. 335–358, Springer, 2015.

[67] B. T. Cole, S. H. Roy, C. J. De Luca, and S. H. Nawab, “Dynamical learning and tracking of

tremor and dyskinesia from wearable sensors,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 22, no. 5, pp. 982–991, 2014.

[68] P. Angeles, Y. Tai, N. Pavese, S. Wilson, and R. Vaidyanathan, “Automated assessment

of symptom severity changes during deep brain stimulation (dbs) therapy for parkinson’s

disease,” in 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1512–

1517, IEEE, 2017.

[69] F. Åström and R. Koker, “A parallel neural network approach to prediction of parkinson’s

disease,” Expert Systems with Applications, vol. 38, no. 10, pp. 12470–12474, 2011.

[70] M. Hariharan, K. Polat, and R. Sindhu, “A new hybrid intelligent system for accurate de-

tection of parkinson’s disease,” Computer Methods and Programs in Biomedicine, vol. 113,

no. 3, pp. 904–913, 2014.

[71] E. Benmalek, J. Elmhamdi, and A. Jilbab, “Updrs tracking using linear regression and neural

network for parkinson’s disease prediction,” International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS), vol. 4, no. 6, pp. 189–193, 2015.

[72] R. Das, “A comparison of multiple classification methods for diagnosis of parkinson dis-

ease,” Expert Systems with Applications, vol. 37, no. 2, pp. 1568–1572, 2010.

74



[73] C. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Kong, and S. T. Bukkap-

atnam, “Time series forecasting for nonlinear and non-stationary processes: a review and

comparative study,” IIE Transactions, vol. 47, no. 10, pp. 1053–1071, 2015.

[74] C. Bui, N. Pham, A. Vo, A. Tran, A. Nguyen, and T. Le, “Time series forecasting for

healthcare diagnosis and prognostics with the focus on cardiovascular diseases,” in Interna-

tional Conference on the Development of Biomedical Engineering in Vietnam, pp. 809–818,

Springer, 2017.

[75] R. G. Hoptroff, “The principles and practice of time series forecasting and business mod-

elling using neural nets,” Neural Computing and Applications, vol. 1, no. 1, pp. 59–66,

1993.

[76] K. K. Jae, “Financial time series forecasting using support vector machines,” Neurocomput-

ing, pp. 307–319, 2003.

[77] C. W. Landsea, “Meteorology: hurricanes and global warming,” Nature, vol. 438, no. 7071,

p. E11, 2005.

[78] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling ex-

ponents and crossover phenomena in nonstationary heartbeat time series,” Chaos: An Inter-

disciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 82–87, 1995.

[79] A. Perotte, R. Ranganath, J. Hirsch, D. Blei, and N. Elhadad, “Risk prediction for chronic

kidney disease progression using heterogeneous electronic health record data and time series

analysis,” AMIA Annual Symposium Proceedings, vol. 22, no. 4, pp. 872–880, 2015.

[80] H. Al-Hamadi and S. Soliman, “Long-term/mid-term electric load forecasting based on

short-term correlation and annual growth,” Electric Power Systems Research, vol. 74, no. 3,

pp. 353–361, 2005.

[81] M. Ghassemi, M. A. Pimentel, T. Naumann, T. Brennan, D. A. Clifton, P. Szolovits, and

M. Feng, “A multivariate timeseries modeling approach to severity of illness assessment

75



and forecasting in icu with sparse, heterogeneous clinical data,” In Twenty-Ninth AAAI Con-

ference on Artificial Intelligence, 2015, February.

[82] K. Bache and M. Lichman, “Uci machine learning repository,” University of California,

School of Information and Computer Science, Irvine, CA, 2013.

[83] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy, “Deep convolutional

neural networks on multichannel time series for human activity recognition,” in Twenty-

Fourth International Joint Conference on Artificial Intelligence, 2015.

[84] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in Neural Information Processing Systems, pp. 1097–

1105, 2012.

[85] C. Lim and M. McAleer, “Time series forecasts of international travel demand for australia,”

Tourism Management, vol. 23, no. 4, pp. 389–396, 2002.

[86] J. B. Leverenz, J. F. Quinn, C. Zabetian, J. Zhang, K. S. Montine, and T. J. Montine, “Cogni-

tive impairment and dementia in patients with parkinson disease,” Current Topics in Medic-

inal Chemistry, vol. 9, no. 10, pp. 903–912, 2009.

[87] W. Poewe, S. Gauthier, D. Aarsland, J. Leverenz, P. Barone, D. Weintraub, E. Tolosa, and

B. Dubois, “Diagnosis and management of parkinson’s disease dementia,” International

Journal of Clinical Practice, vol. 62, no. 10, pp. 1581–1587, 2008.

[88] F. Boller, T. Mizutani, U. Roessmann, and P. Gambetti, “Parkinson disease, dementia, and

alzheimer disease: clinicopathological correlations,” Annals of Neurology: Official Journal

of the American Neurological Association and the Child Neurology Society, vol. 7, no. 4,

pp. 329–335, 1980.

[89] H. Byeon, “Application of machine learning technique to distinguish parkinson’s dis-

ease dementia and alzheimer’s dementia: Predictive power of parkinson’s disease-related

non-motor symptoms and neuropsychological profile,” Journal of Personalized Medicine,

vol. 10, no. 2, p. 31, 2020.

76



[90] L.-A. Leyland, F. D. Bremner, R. Mahmood, S. Hewitt, M. Durteste, M. R. Cartlidge, M. M.-

M. Lai, L. E. Miller, A. P. Saygin, P. A. Keane, et al., “Visual tests predict dementia risk in

parkinson disease,” Neurology: Clinical Practice, vol. 10, no. 1, pp. 29–39, 2020.

[91] P. Martinez-Martin, Y. M. Wan, K. Ray Chaudhuri, A. E. Schrag, and D. Weintraub, “Im-

pulse control and related behaviors in parkinson’s disease with dementia,” European Journal

of Neurology, vol. 27, no. 6, pp. 944–950, 2020.

[92] D. J. Irwin, M. T. White, J. B. Toledo, S. X. Xie, J. L. Robinson, V. Van Deerlin, V. M.-

Y. Lee, J. B. Leverenz, T. J. Montine, J. E. Duda, et al., “Neuropathologic substrates of

parkinson disease dementia,” Annals of Neurology, vol. 72, no. 4, pp. 587–598, 2012.

[93] R. Savica, B. R. Grossardt, J. H. Bower, B. F. Boeve, J. E. Ahlskog, and W. A. Rocca, “In-

cidence of dementia with lewy bodies and parkinson disease dementia,” JAMA Neurology,

vol. 70, no. 11, pp. 1396–1402, 2013.

[94] M. C. Campbell, P. S. Myers, A. J. Weigand, E. R. Foster, N. J. Cairns, J. J. Jackson, C. N.

Lessov-Schlaggar, and J. S. Perlmutter, “Parkinson disease clinical subtypes: key features &

clinical milestones,” Annals of Clinical and Translational Neurology, vol. 7, no. 8, pp. 1272–

1283, 2020.

[95] H. Byeon, “Is the random forest algorithm suitable for predicting parkinson’s disease with

mild cognitive impairment out of parkinson’s disease with normal cognition?,” International

Journal of Environmental Research and Public Health, vol. 17, no. 7, p. 2594, 2020.

[96] R. Gautam and M. Sharma, “Prevalence and diagnosis of neurological disorders using dif-

ferent deep learning techniques: A meta-analysis,” Journal of Medical Systems, vol. 44,

no. 2, p. 49, 2020.

[97] K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner, T. Simuni, C. Coffey, K. Kieburtz,

E. Flagg, S. Chowdhury, et al., “The parkinson progression marker initiative (ppmi),”

Progress in Neurobiology, vol. 95, no. 4, pp. 629–635, 2011.

77



[98] M. Salari, A. Chitsaz, M. Etemadifar, M. R. Najafi, O. Mirmosayyeb, M. Bemanalizadeh,

F. Panahi, and H. Mirzajani, “Evaluation of non-motor symptoms and their impact on quality

of life in patients with parkinson’s disease, isfahan, iran,” Iranian Journal of Neurology,

vol. 16, no. 3, p. 118, 2017.

[99] J.-H. Chen, C.-T. Hong, D. Wu, W.-C. Chi, C.-F. Yen, H.-F. Liao, L. Chan, and T.-H. Liou,

“Dementia-related functional disability in moderate to advanced parkinson’s disease: as-

sessment using the world health organization disability assessment schedule 2.0,” Interna-

tional Journal of Environmental Research and Public Health, vol. 16, no. 12, p. 2230, 2019.

[100] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead, I. Collin, J. L.

Cummings, and H. Chertkow, “The montreal cognitive assessment, moca: a brief screening

tool for mild cognitive impairment,” Journal of the American Geriatrics Society, vol. 53,

no. 4, pp. 695–699, 2005.

[101] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communica-

tions of the ACM, vol. 63, no. 1, pp. 68–77, 2019.

[102] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture search system,” in

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pp. 1946–1956, 2019.

[103] R. Yu and L. Shi, “A user-based taxonomy for deep learning visualization,” Visual Informat-

ics, vol. 2, no. 3, pp. 147–154, 2018.

[104] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

European Conference on Computer Vision, pp. 818–833, Springer, 2014.

78



APPENDIX A

PUBLICATIONS

• Nur Hafieza Ismail, Mengnan Du, Ninghao Liu, Xia Hu, and Zhe He. A Deep Learning

Approach for Identifying Cancer Survivors Living with Post-Traumatic Stress Disorder on

Twitter. BMC Medical Informatics & Decision Making. In press.

• Ismail, N. H., Du, M., Martinez, D., & He, Z. (2019, September). Multivariate Multi-step

Deep Learning Time Series Approach in Forecasting Parkinson’s Disease Future Severity

Progression. In Proceedings of the 10th ACM International Conference on Bioinformatics,

Computational Biology and Health Informatics (pp. 383-389).

• Ismail, N. H., Liu, N., Du, M., He, Z., & Hu, X. (2019). Identification of Cancer Survivors

Living with PTSD on Social Media. Studies in health technology and informatics, 264,

1468.

• Ismail, N. H., Liu, N., Du, M., He, Z., & Hu, X. (2019). Using Deep Neural Network to

Identify Cancer Survivors Living with Post-Traumatic Stress Disorder on Social Media.

• Ismail, N. H., Du, M., & Hu, X. (2019). Social Media and Psychological Disorder. In Social

Web and Health Research (pp. 171-192). Springer, Cham.

• Ahmad, F., Ismail, N. H., & Aziz, A. A. (2015). The prediction of students’ academic

performance using classification data mining techniques. Applied Mathematical Sciences,

9(129), 6415-6426.

• Aziz, A. A., Ismail, N. H., Ahmad, F., & Hassan, H. (2015). A FRAMEWORK FOR

STUDENTS’ACADEMIC PERFORMANCE ANALYSIS USING NAÏVE BAYES CLAS-

SIFIER. Jurnal Teknologi, 75(3).

• Aziz, A. A., & Ahmad, N. H. I. F. (2014, September). First semester computer science

students’ academic performances analysis by using data mining classification algorithms. In

79



Proceeding of the International Conference on Artificial Intelligence and Computer Science

(AICS 2014) (pp. 15-16).

• Aziz, A. A., Ismail, N. H., & Ahmad, F. (2013). MINING STUDENTS’ ACADEMIC

PERFORMANCE. Journal of Theoretical & Applied Information Technology, 53(3).

• Ismail, N. H., Ahmad, F., & Aziz, A. A. (2013). Implementing WEKA as a Data Mining Tool

to Analyze Students’ Academic Performances Using Naïve Bayes Classifier. In UniSZA

Postgraduate Research Conference.

80


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Social Computing for Healthcare
	Deep Learning for Healthcare
	Multiple Modalities Data in Healthcare
	Dissertation Major Contributions
	Dissertation Organization

	TEXT CLASSIFICATION USING A DEEP LEARNING APPROACH FOR IDENTIFYING CANCER SURVIVORS LIVING WITH POST-TRAUMATIC STRESS DISORDER ON TWITTER
	Introduction
	Related Work
	Methods
	Problem Statement
	The Proposed Framework for Classifying Tweets about Cancer Survivors Living with PTSD
	Feature Extraction
	Knowledge Transfer
	CNN Architecture
	Text Representation
	Convolutional Feature Maps
	Activation Functions
	Pooling


	Experiment
	Experiment Settings
	Baseline Methods
	Naive Bayes
	SVM
	MLP
	CNN n-gram

	Experimental Results

	Case Study
	Discussion and Conclusion

	MULTIVARIATE MULTI-STEP DEEP LEARNING TIME SERIES APPROACH IN FORECASTING PARKINSON'S DISEASE FUTURE SEVERITY PROGRESSION
	Introduction
	Related Work
	Methods
	Problem Statement
	The Proposed Framework for Forecasting Parkinson's Disease Future Progression
	Parkinsons Tele-monitoring Dataset
	Data Setting for Multivariate Multi-step Time Series
	CNN Multichannel Architecture

	Experiment
	Baseline Methods
	Multiheaded CNN
	Encoder-Decoder LSTM

	Result Evaluation Metric
	RMSE

	Experimental Results and Discussion

	Conclusions

	MULTIVARIATE DATA, THE NEUROPSYCHOLOGY ASSESSMENT FOR IDENTIFYING DEMENTIA IN PARKINSON'S DISEASE PATIENTS 
	Introduction
	Related Work
	Methods
	The Proposed Framework for Identifying Dementia in Parkinson's Disease Patients from Neuropsychological Assessment
	PPMI Neuropsychological Assessment
	Data Preprocessing
	MLP Architecture for Multivariate Data

	Experiment
	Baseline Methods
	Decision Tree
	Random Forest
	Naive Bayes
	K-Nearest Neighbor
	SVM

	Experimental Result and Discussion

	Conclusions

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Research Direction
	Interpretable DL Models for Healthcare
	Drug Discovery and Precision Medicine


	REFERENCES
	APPENDIX Publications

