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ABSTRACT 

 

 The electric power grid is undergoing sustained disturbances. In particular, the extreme 

dynamic events disrupt normal electric power transfer, degrade power system operating condi-

tions, and may lead to catastrophic large-scale blackouts. Accordingly, control applications are 

deployed to detect the inception of extreme dynamic events, and mitigate their causes appropri-

ately, so that normal power system operating conditions can be restored. In order to achieve this, 

the operating conditions of the power system should be accurately characterized in terms of the 

electrical quantities that are crucial to control applications. Currently, the power system operat-

ing conditions are obtained through SCADA system and the synchrophasor system. Because of 

GPS time-synchronized waveform sampling capability and higher measurement reporting rate, 

synchrophasor system is more advantageous in tracking the extreme dynamic operating condi-

tions of the power system. 

 In this work, a phasor parameter calculation approach is proposed to accurately character-

ize the power system operating conditions during the extreme electromagnetic and electrome-

chanical dynamic events in the electric power grid. First, a framework for phasor parameter cal-

culation during both electromagnetic and electromechanical dynamic events is proposed. The 

framework aims to satisfy both P-class and M-class PMU algorithm design accuracy require-

ments with a single algorithm. This is achieved by incorporating an adaptive event classification 

and algorithm model switching mechanism, followed by the phasor parameter definition and cal-

culation tailored to each identified event. Then, a phasor estimation technique is designed for 

electromagnetic transient events. An ambient fundamental frequency estimator based on UKF is 

introduced, which is leveraged to adaptively tune the DFT-based algorithm to alleviate frequency 
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leakage. A hybridization algorithm framework is also proposed, which further reduces the nega-

tive impact caused by decaying DC components in electromagnetic transient waveforms. Then, a 

phasor estimation technique for electromechanical dynamics is introduced. A novel wavelet is 

designed to effectively extract time-frequency features from electromechanical dynamic wave-

forms. These features are then used to classify input signal types, so that the PMU algorithm 

modeling can be thereafter tailored specifically to match the underlying signal features for the 

identified event. This adaptability of the proposed algorithm results in higher phasor parameter 

estimation accuracy. Finally, the hypothesis is validated through experimental testing under de-

sign and application test use cases. The associated test procedures, test use cases, and test meth-

odologies and metrics are defined and implemented. The impact of algorithm inaccuracy and 

communication network distortion on application performance is also demonstrated. Test results 

performance is then evaluated. Conclusions, contributions, and future steps are outlined at the 

end.  
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NOMENCLATURE 

 

 AC Alternating Current 

 AM Amplitude Modulation 

 AWGN Additive White Gaussian Noise 

 CVT Capacitor Voltage Transformer 

 CT Current Transformer 

 CWT Continuous Wavelet Transform 

 dBm decibels referenced to one milliwatt, also known as, dBmW 

 DFT Discrete Fourier Transform 

 DTFT Discrete-time Fourier transform 

 DWT Discrete Wavelet Transform 

 EKF Extended Kalman Filter 

 EMTP Electromagnetic Transient Program 

 EMS Energy Management System 

 FE Frequency Error 

 FFT Fast Fourier Transform 

 FM Frequency Modulation 
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 𝑓0 nominal frequency in Hz 

 ∆𝑓DFT DFT bin in Hz, or DFT resolution 

 ∆𝜔DFT DFT bin in rad/s, or DFT resolution 
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 𝜔0 nominal frequency (= 2𝜋𝑓0) in rad/s 

 𝑓in fundamental frequency of the sinusoidal signal input in Hz 

 GPS Global Positioning System 

 IEC International Electrotechnical Committee 

 IED Intelligent Electronic Device 

 IEEE Institute of Electrical and Electronics Engineers 

 i.f.f. if, and only if 

 IpDFT Interpolated Discrete Fourier Transform  

 IRIG-B Inter-Range Instrumentation Group time code, format B 

 LMA Levenberg-Marquardt Algorithm  

 l.h.s. left hand side 

 MMSE Minimum Mean Square Error 

 𝑁 data window length in number of samples 

 NIST National Institute of Standards and Technology 

 PDC Phasor Data Concentrator 

 PLC Programmable Logic Controller 

 PMU Phasor Measurement Unit 

 PPS Pulse Per Second 

 PT Potential Transformer 

 r.h.s. right hand side 

 RMS Root-Mean-Square value 

 ROCOF Rate of Change of Frequency 

 RTU Remote Terminal Unit 
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 SCADA Supervisor Control and Data Acquisition 

 SMIB Single Machine Infinite Bus 

 SNR Signal-to-Noise Ratio 

 STFT Short-Time (Term) Fourier Transform 

 SOC Second of Century 

 TAI Temps Atomique International, International Atomic Time 

 TOR Time Occurrence Rate 

 TVE Total Vector Error 

 UTC Temps Universel Coordonné, Universal Coordinated Time 

 UKF Unscented Kalman Filter 

 w.r.t. with respect to 

 WT Wavelet Transform  
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1. INTRODUCTION 

 

 The electric power system is a geographically distributed infrastructure constructed and 

controlled to transfer electric power from power generation (power source) to power consump-

tion (load). The power system is constantly experiencing disturbances with various levels of se-

verity. Minor disruptions, such as variations in load demand, do not interrupt normal power sys-

tem operation. Major disturbances, such as faults on transmission lines, on the other hand, may 

significantly disrupt power transfer, and cause power outages. If left unmitigated, local disturb-

ances may initiate successive outages over a large geographically distributed area, resulting in 

large-scale cascading blackout.  

 Accordingly, control applications are deployed in the power systems to mitigate the cause 

of major disturbances. These applications evaluate the level of security of current operating state 

[1]-[2], detect abnormal operating conditions [3]-[4], and take necessary actions to minimize the 

impact of disturbances [5]-[6]. In order to facilitate control applications, the operating conditions 

of the power system should be monitored with adequate accuracy and speed.  

This work contributes to the methodological approach to the characterization of power 

system dynamic operating conditions in terms of electrical quantities. In particular, this work 

proposes an algorithm that characterizes power system sinusoidal waveforms in terms of their 

corresponding phasor parameters: amplitude, phase angle, and frequency. In order to facilitate 

end-use control applications, the design of algorithms is constrained by the accuracy and compu-

tational time requirements imposed by the applications. The context of this Dissertation work is 

depicted in Figure 1. 
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Figure 1 Background of the Dissertation work 

Practically, the electrical quantities are calculated from phasor parameters, which are 

tracked by field devices (e.g. transducers, IEDs, PMUs) situated in substations, and are calcu-

lated from digitized power waveform measurements (samples). The monitoring infrastructures 

that support the provision of phasor parameters are discussed in the next Chapter. 
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2. BACKGROUND 

 

2.1 Power System Monitoring Infrastructures 

 Currently, power system operating conditions are surveilled by two monitoring infra-

structures: the SCADA system, and the GPS time-synchronized phasor measurement system. 

The properties of SCADA and synchrophasor systems are elaborated next. 

2.1.1 Properties of SCADA System 

 The SCADA system has been in use for decades. Shown in Figure 2 is the data flow in 

SCADA system. The electrical quantities, such as RMS voltage and current, frequency, and ac-

tive and reactive power are tracked by the IEDs and transducers situated in the substation control 

house and switchyard. Data from field devices are aggregated by RTUs and PLCs through data 

scanning [7]. The aggregated data collected by PLCs can be used to perform local control actions 

in substations, as described in [8]. Periodically polled by control center servers, RTUs may up-

load measurement data through radio waves, transmission lines, or other dedicated media [7]. 

The measurement data from RTUs are polled at various rates depending on the electrical quantity 

of interest, as well as the application in which the electrical quantities will be used. As regulated 

in standard [7], this measurement data rate varies from every 2-30 seconds. In the server station 

located in a control center, electrical quantity is time-stamped once it is collected by the RTUs 

installed in a widely dispersed area.  

 In SCADA, phase angle data are not directly calculated from the power system waveform 

samples in local field devices, but are estimated from the State Estimator application [1] exe-

cuted in a control center. State Estimator application relies on a nonlinear optimization approach 
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and estimates phase angle differences using unsynchronized bus voltage magnitudes, line current 

magnitudes, and active and reactive power injections retrieved from local field sensors.  

 

Figure 2 Data flow in SCADA system 

2.1.2 Properties of Synchrophasor System 

 Synchrophasor system emerged in the late 20th century, when synchrophasor technology 

was introduced, and PMU devices, as well as devices enabled with PMU functionalities*, were 

deployed in the field. In synchrophasor system, as illustrated in Figure 3, analog secondary 

waveforms from CTs and PTs/CVTs are synchronously digitized by the data acquisition modules 

of PMUs. Then, phasor parameters are calculated using waveform samples, assigned GPS-syn-

                                                

* PMUs and devices with PMU functionalities are referred to as “PMUs” hereinafter 
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chronized timestamps, then formatted, packaged, and uploaded through a dedicated communica-

tion network to PDCs. The measurement data transfer of phasor parameters is standardized in 

[10]-[11].  

Power system waveforms are synchronously sampled by the PMUs located at different 

substations. Each calculated phasor parameter is timestamped to GPS time, which is retrieved 

from substation GPS satellite-synchronized clock receivers. Since GPS satellite signals can be 

received in most parts of the world with high precision, accurate time-synchronized sampling 

and phasor parameter timestamping can be achieved at PMUs installed across a large geograph-

ically spanned area.  

 At PDC level, phasor data packets reported by various PMUs are time-aligned based on 

the timestamp inside each phasor data packet [9]-[11]. This implementation allows power system 

operators to track the snapshots of power system operating conditions associated with various 

time instants.  
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Figure 3 Data flow in synchrophasor system 

2.1.3 Shortcomings of SCADA System and Benefits of Synchrophasor Systems 

While SCADA has proven to be useful in providing measurement data input for a variety 

of monitoring and control application in the EMS, it has failed, in numerous cases [12]-[15], to 

facilitate EMS applications in terms of detecting large-scale blackouts. We analyzed previous 

catastrophic events, and summarized three primary shortcomings of SCADA, as outlined below: 

(1) Phase angle separation cannot be accurately determined. The electrical quantities of inter-

est to power system control applications are those associated with a single location, such 

as RMS voltage levels; or with multiple locations, such as phase angle separations be-

tween different buses. In the SCADA system, phase angles are not directly obtained by 

local field devices. Rather, phase angles are estimated by EMS State Estimators based on 
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RMS voltage, network parameters, real and reactive powers [16]. Acquiring phase angle 

data through state estimation is time-consuming, and results in estimation error.  

(2) SCADA measurement data are not time-aligned, resulting in inaccurate even misleading 

representation of real-time power system operating conditions. This drawback is espe-

cially harmful during extreme power system dynamic events, where a spatiotemporal de-

piction of the power system operating condition is crucial. The time-misalignment of 

SCADA measurement data is caused by (i). The fact that waveforms are not synchro-

nously captured by local SCADA transducers, and consequently, the accurate timestamps 

of calculated electrical quantities cannot be determined; (ii). Telemetry delay in commu-

nication network. Since the local RTU measurement data travel through communication 

channels with different telemetry delays, as a result, the SCADA server installed in a re-

mote location cannot accurately compensate this delay, resulting in time-misalignment. 

Due to the mentioned combined effect, when data is stamped at the control center, an in-

herent inaccuracy is inevitable. 

(3) Another limitation of SCADA system stems from its low measurement reporting rate. 

According to IEEE standard [7], RTU data are polled by control center servers at report-

ing rates ranging between 2 and 30 seconds, and it may take tens of minutes for a State 

Estimator to provide the states of the system [1],[16]. The resolution of reported measure-

ments is not adequate to facilitate real-time control applications that require precise char-

acterization of dynamic event features, and consequently, automated fast response in 

some instances. As evidenced by previous catastrophic events [12]-[15], a major blackout 

unfolds in stages, and often deteriorates with multiple regional isolated blackouts, such as 

in [12]. In each state of the cascade, there are signs indicating the deterioration of vital 
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electrical quantities, such as the continuous increase of phase angle separations between 

major buses. During these early stages, power system operators are still able to deploy 

necessary control actions to salvage the grid from further degradation. Once in its final 

stage, however, the cascading extreme dynamics in the power system may progress in a 

matter of a few seconds, leading to an irreversible blackout. With the SCADA measure-

ment data update rate, power system operators may not obtain information regarding the 

deterioration of operating conditions under extreme dynamics in a timely fashion. This 

will lead to missing opportunities to rescue the power system from cascading blackouts. 

With SCADA data alone, situational awareness of the whole power system cannot be 

achieved with required resolution, and as a result, fast and accurate control actions cannot 

be adequately and efficiently deployed.  

2.2 Time-Synchronized Waveform Sampling and its Significance  

 As discussed above, to accurately acquire the electrical quantities associated with multi-

ple locations, it is imperative that the waveforms are sampled synchronously at each field device. 

In order to achieve this, all field devices should reference to the same time source, and the time 

excursion from such reference time source should be minimized at each local sampling device. 

Synchrophasor system uses GPS receivers to extract absolute time, and assigns GPS timestamps 

to calculated phasor measurements at each local device. This strategy has proven to achieve 

time-synchronization accuracy. A survey in Section 3.2 further discusses various time-synchroni-

zation techniques.  

2.3 Conclusion 

 It has been elaborated that synchrophasor system is more suitable for monitoring of 

power system operating conditions, particularly during extreme dynamic events. This is due to 
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the adoption of (i). Accurate time-synchronized waveform sampling technique, and (ii). High 

measurement data reporting rate. Both attributes of the synchrophasor systems contribute to the 

observation of extreme power system dynamic events with adequate accuracy and resolution, 

and as a result, the improvement of control application performance in terms of fast and accurate 

response during extreme dynamic events. In the next Chapter, prior effort on the provision of 

GPS-synchronized phasor parameters, including synchronized waveform sampling techniques, 

and algorithmic approach for phasor calculation, is elaborated.  
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3. PRIOR RESEARCH 

 

3.1 Introduction  

 This Chapter reviews the state-of-the-art of GPS time-synchronized phasor parameter cal-

culation techniques. Two research areas are surveyed: time-synchronized waveform sampling 

techniques, and phasor parameter calculation algorithms.  

3.2 Time-Synchronized Waveform Sampling Techniques 

 During dynamic events, the characteristics of waveforms, described by features of electri-

cal quantities, change continuously [17]. In order to accurately characterize phasor parameters at 

various locations, it is crucial that the phasor parameters at each location are calculated synchro-

nously. This need for time synchronization among measurements prompts the necessity of a 

common time and angle reference that can be tracked by the PMUs installed across the power 

grid. Two issues are discussed in the following paragraphs: (i). The interpretation of absolute 

time by current timing systems; (ii). The dissemination of absolute time from the source to 

PMUs/PDCs. 

 The first issue is the interpretation of absolute time by various timing systems. These tim-

ing systems include TAI, UTC, and GPS time. TAI time is always ahead of GPS time by 19 sec-

onds. UTC time is aligned with TAI, but also maintains approximate agreement with Universal 

Time (UT), which is affected by the rotation of earth. Since the Earth is rotating at a decreasing 

speed, extra seconds (leap seconds) are periodically added in UTC time to compensate for this 

slowing down. Currently, TAI is leading UTC by 37 leap seconds [18]. When distributed 

through GPS satellites, absolute time is updated once a second, and is pinpointed to the rising 

edge of PPS, which is a rectangular signal generated by GPS clocks. Once a GPS clock receiver 
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receives absolute time and the corresponding PPS, fractions of second can be determined by di-

viding consecutive seconds into the desired intervals, and this is done internally in the PMU. 

 The other issue is the dissemination of absolute time from a reference time source. The 

time code is distributed via broadcasting, which is then decoded by the GPS clock receivers in 

substations. Two time code distribution strategies are further discussed: WWVB radio wave 

[19]-[20], and GPS satellite constellation [21].  

 WWVB radio station, operated by NIST, broadcasts WWVB time code through radio-

waves in Fort Collins, Colorado. Even though the UTC-synchronization accuracy at WWVB 

time source can be as high as 35ns, the WWVB receivers installed in various locations will expe-

rience various degrees of path delays determined by its distance from the WWVB time source in 

Fort Collins, Colorado. As a consequence, considering WWVB signal transmission system delay 

and path delay, the overall time-synchronization uncertainty can be as large as approximately 

30ms [19], which is around 1.5 nominal power cycles. As a result, the uncertainty level of 

WWVB time dissemination is unacceptable for the various end-use applications, such as deter-

mination of phasor angle separation. 

 In comparison, GPS time is disseminated by a satellite constellation system consisting of 

31 dedicated GPS satellites. Each satellite carries an atomic clock that ticks with a nominal accu-

racy of 1ns. In most locations on earth, at least four GPS satellites are visible, and the GPS time 

is accurate to 14ns w.r.t. UTC. Regardless, due to the delay associated with the interpretation of 

GPS signal, GPS clock receivers are accurate to 100ns. By far, GPS is the most accessible, accu-

rate, and affordable option for the dissemination of timing information over a wide geographical 

area. 
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3.3 Data Window and Window Functions 

Phasor parameters are estimated by applying signal processing techniques to a section of 

power system waveform samples, which is commonly referred to as a “data window”. The way 

of acquiring such data window is by “truncating” the original waveform with a window function. 

Another purpose of the window function is to attenuate undesired components in input 

signals while retaining as much the energy of the desired signal component, in this case, 𝑓in com-

ponent. The unwanted components in a signal may include DC components, harmonic compo-

nents, and noise.  

 Papers [22]-[23] provides an extensive analysis on the window functions and their impact 

on DFT algorithm performance. A selection of the most commonly used window functions are 

illustrated in Figure 4. 

 

Figure 4 Commonly used window functions and their spectra 

The performance metrics of a window function are its mainlobe width and sidelobe atten-

uation level. The mainlobe width is associated with FIR filter passband smoothness, and the side-

lobe attenuation concerns the stopband attenuation. Moreover, when greater sidelobe suppression 
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is preferred, data window length has to be multiplied so that mainlobe width can be compressed. 

This affects the sharpness of passband edge, i.e., the width of transition from passband to stop-

band. For instance, to achieve the same mainlobe width of 1 DFT bin, for Hann and Hamming 

windows, a two-cycle data window is needed; for Blackman-Harris window, a four-cycle data 

window is required, as shown in Figure 5. It can also be observed that, as the length of window 

function increases, the edge of the mainlobe becomes sharper. 

 

Figure 5 Window functions with window lengths adjusted and the resultant spectra 

In the context of power system, the implication of using long data windows is twofold: 

(i). More waveform samples are needed to produce a phasor parameter, and this leads to phasor 

data reporting delay; (ii). Changes in waveform features, such as abrupt amplitude changes in the 

waveforms during faults, are attenuated or smoothed out, and this may lead to mischaracteriza-

tion of extreme dynamic events. There is no standardization on the choice of window functions 

in phasor parameter calculation. Documents [9], [10] and [17] offer recommendations on the de-

sign of window functions.  
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3.4 Phasor Parameter Calculation Algorithms for Electromagnetic Dynamic Events 

To adequately capture and characterize electromagnetic dynamic events, a fast computa-

tional speed is desirable. Due to their fast computational speed and easy implementation, DFT 

and FFT-based phasor parameter calculation algorithms are widely studied in prior work. In this 

section of the survey, we focus on the fundamentals of DFT, and a widely used DFT-based algo-

rithm, known as the Interpolated DFT (IpDFT). 

3.4.1 Fundamentals of Discrete Fourier Transform 

 DFT and FFT interpret a section of sampled waveform with a discrete frequency profile 

representation. The definition of DFT is shown as [24]-[25]: 

 𝑋(𝑘) =
√2

𝑁
∑ 𝑥(𝑛)𝑒−j

2𝜋𝑘
𝑁

𝑛

𝑁−1

𝑛=0

, 𝑘 = 0,1,2… , ⌈
𝑁

2
⌉ − 1 (3.1) 

where 𝑋(𝑘) is the k-th harmonic phasor component, 𝑁 is the total number of samples in a data 

window.  

 The frequency resolution of DFT is determined by 2𝜋/𝑁 (rad), which is derived from,  

2𝜋 (
1

𝑇
)

1

𝑓𝑠
≡

2𝜋

𝑁
 

where 𝑓𝑠  is the sampling frequency, and 𝑇 is the data window length.  

 The DFT definition in Equation (3.1) is essentially a trigonometric interpolation calcula-

tion [26], and this can also be observed in inverse DFT (IDFT). 

 𝑥(𝑛) =
1

√2
∑ 𝑋(𝑘)𝑒j

2𝜋𝑘
𝑁

𝑛

⌈
𝑁
2
⌉−1

𝑘=−⌊
𝑁
2
⌋

, 𝑛 = 0,1,… , 𝑁 − 1 (3.2) 

where 𝑋(𝑘) is the k-th harmonic phasor component, and 𝑁 is the total number of samples in a 

data window. 
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 Equation (3.2) is an expression for signal synthesis, where the synthesized signal 𝑥(𝑛) is 

the linear combination of 𝑁 harmonic components. Each complex signal 𝑒j
2𝜋𝑘

𝑁
𝑛

 is weighted by 

the corresponding DFT coefficient 𝑋(𝑘). In DFT signal modeling, it is assumed that all the fre-

quency components are steady-state sinusoidal signals, whose frequencies fall exactly on 𝑘/𝑇 

(Hz), 𝑘 = 0,1,… , 𝑁 − 1. 

3.4.2 Calculation of Fundamental Frequency Phasors  

 The most commonly used approach is the “Interpolated DFT” (IpDFT) technique. In the 

IpDFT approach, the fundamental frequency component in the waveform is estimated using the 

highest three DFT bin values. The location of the peak of DFT amplitude spectrum is estimated, 

and is taken as the fundamental frequency. Since the spectrum of a sinusoidal signal is highly 

nonlinear at its peak, local linearization near the peak of the spectrum is applied. Once the funda-

mental frequency is estimated, the “true” value of fundamental frequency phasor is calculated 

through compensating for the spectrum leakage due to frequency mismatch [27]-[31].  

 The benefit of IpDFT is that it inherits the computational and implementation efficiency 

of DFT. The caveat of IpDFT is that, in complex plain, the peak of a DFT spectrum does not 

necessarily correspond to the actual signal fundamental frequency [32]. This can be observed in 

Figure 6. The red and blue dashed curves represent the positive and negative spectra of rectangu-

lar function (i.e., the “asinc” function) displaced by the actual signal frequency. The black solid 

line represents the continuous DTFT of the signal, and the DFT are DTFT sampled at DFT bin 

frequencies, denoted by black dots. Using three DFT samples with largest values, IpDFT can es-

timate the maxima of DTFT, which clearly deviates from the actual frequency deviation.  
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Figure 6 DTFT and DFT spectra of a single-tone sinusoidal input 

3.5 Phasor Parameter Calculation Algorithms for Electromechanical Dynamic Events 

 During electromechanical dynamic events, electrical quantities appear to be slowly un-

folding. Calculated phasor parameters should reflect this slow-evolving feature in the waveform 

in the signal modeling. The most commonly adopted approach for modeling slow-varying phe-

nomena is by using polynomial curve-fitting [34]-[40].  

 In this method, the input signal is modeled as: 

 𝑥(𝑡) = 𝑎(𝑡) cos[2𝜋𝑓0𝑡 + 𝜙(𝑡)] 

(3.3)  = 𝑎(𝑡) cos𝜙(𝑡) cos(2𝜋𝑓0𝑡 ) − 𝑎(𝑡) sin 𝜙(𝑡) sin(2𝜋𝑓0𝑡 ) 

 = 𝐑𝐞[𝑝(𝑡)] cos(2𝜋𝑓0𝑡 ) − 𝐈𝐦[𝑝(𝑡)] sin(2𝜋𝑓0𝑡 ) 

where 𝑝(𝑡) ≜ 𝑎(𝑡)𝑒 j𝜙(𝑡) = 𝑎(𝑡) cos𝜙(𝑡) + j𝑎(𝑡) sin𝜙(𝑡) is the corresponding phasor represen-

tation. 

 𝑝(𝑡) can be expanded at an arbitrary time instant 𝑡 = 𝑡𝑐 using polynomials [40]: 
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 𝑝(𝑡) = 𝑎(𝑡) cos𝜙(𝑡) + j𝑎(𝑡) sin𝜙(𝑡) ≈ ∑𝑑𝑖(𝑡 − 𝑡𝑐)
𝑖

𝑛

𝑖=0

 (3.4) 

where 𝑑𝑖 = 𝑐𝑖 + j𝑠𝑖 =
1

𝑖!
𝑝(𝑖)(𝑡)  

 Using the identities 𝐑𝐞[𝑝(𝑡)] = [𝑝 + 𝑝̂]/2 and 𝐈𝐦[𝑝(𝑡)] = [𝑝 − 𝑝̂]/2, where 𝑝̂ denotes 

the complex conjugate of 𝑝, both the real and imaginary parts of 𝑝(𝑡) can be expanded using pol-

ynomials: 

𝐑𝐞[𝑝(𝑡)] = 𝑎(𝑡) cos 𝜙(𝑡) ≈
1

2
[∑𝑑𝑖(𝑡 − 𝑡𝑐)

𝑖

𝑛

𝑖=0

+ ∑conj(𝑑𝑖) ∙ (𝑡 − 𝑡𝑐)
𝑖

𝑛

𝑖=0

] (3.5) 

𝐈𝐦[𝑝(𝑡)] = 𝑎(𝑡) sin𝜙(𝑡) ≈
1

2
[∑𝑑𝑖(𝑡 − 𝑡𝑐)

𝑖

𝑛

𝑖=0

− ∑conj(𝑑𝑖) ∙ (𝑡 − 𝑡𝑐)
𝑖

𝑛

𝑖=0

] (3.6) 

 It may be further simplified as: 

 𝐑𝐞[𝑝(𝑡)] ≈ ∑𝑐𝑖(𝑡 − 𝑡𝑐)
𝑖

𝑛

𝑖=0

≝ 𝑞(𝑡) (3.7) 

 𝐈𝐦[𝑝(𝑡)] ≈ ∑𝑠𝑖(𝑡 − 𝑡𝑐)
𝑖

𝑛

𝑖=0

≝ 𝑟(𝑡) (3.8) 

 And therefore: 

 𝑥(𝑡) = 𝑞(𝑡) cos(2𝜋𝑓0𝑡) − 𝑟(𝑡) sin(2𝜋𝑓0𝑡) (3.9) 

 Linear curve-fitting and regression techniques, e.g., least square method [34]-[39], can be 

used to calculate parameters 𝑐𝑖 and 𝑠𝑖. From Equations (3.4)-(3.9), it can be further derived that: 

 𝜙(𝑡) = arctan [−
𝑟(𝑡)

𝑞(𝑡)
] , 𝑓(𝑡) =

d

d𝑡
𝜙(𝑡) (3.10) 
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 The curve-fitting based algorithms are able to accurately approximate the slow-varying 

phenomena in signal amplitude and phase angle. However, fast changing phenomena, such as ab-

rupt voltage drops commonly observed in faults, are not reflected in such signal modeling. Con-

sequently, curve-fitting based algorithms in such cases result in large calculation errors with the 

presence of harmonics, abrupt changes, and noise in input signal. Furthermore, the choice of pol-

ynomial order may cause issues. As demonstrated in [41] and [42], increasing the order may im-

prove calculation to an extent, but over-fitting problem occurs when the polynomial order is ex-

cessively high so that the algorithm model begin to fit noise components. The order of polyno-

mial should be determined empirically, and in most literature, is set to quadratic terms [36],[38], 

[42]. 

3.6 Fundamental Frequency Estimation Methods 

 The frequency of the power grid is essentially established by the rotating speed of syn-

chronous machine rotors. During normal operation, the synchronous machines in an intercon-

nected power grid operate at slightly different speeds yet around nominal frequency. Under dy-

namic conditions, there can be significant rotating speed mismatch among the machine rotors in 

the power grid. In both scenarios, the waveform measured by a substation transducer/PMU is the 

superposition of the sinusoidal signals with different frequencies. This superposition results in an 

apparent modulation on amplitude and frequency of the signal [25].  

 Frequency is a well-defined intrinsic feature of a sinusoidal signal [43]-[45]. For exam-

ple, in paper [43], instantaneous frequency is defined as: 

 𝑓(𝑡) =
1

2𝜋

d

d𝑡
[2𝜋𝑓0𝑡 + 𝜙(𝑡)] =

1

2𝜋

d

d𝑡
arg[𝑥(𝑡) + jℋ[𝑥(𝑡)]] (3.11) 
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where 𝑥(𝑡) follows the definition in Equation (3.3), ℋ(∗) is the Hilbert Transform [46], and 

arg (∗) denotes the argument of a sinusoidal signal.  

 As pointed out by [43], the definition shown as Equation (3.11) is problematic when the 

input signal is not mono-component. Since harmonic components are prevalent in power system 

signals, the calculation of instantaneous frequency using Equation (3.11) incurs large error. Fur-

thermore, during extreme dynamic conditions, abrupt changes in waveforms and phase angles 

result in extremely large values in frequencies calculated by Equation (3.11) [32],[47], which is 

not reasonable since frequency in the power system reflects rotor speed [48]-[49], and is strictly 

controlled within a narrow range. 

 The other prevalent approach is to estimate frequency parameter as a signal parameter, 

embedded in cosine or sine functions [32],[50]-[52]. For example, frequency may be considered 

as one of the state variables, such as in Kalman filter-based approaches [51], and recursively cal-

culatedly. Nevertheless, solving for an embedded parameter in a nonlinear model can be time-

consuming and may cause convergence issues.  

3.7 Conclusion 

In this Chapter, prior work of phasor parameter calculation algorithms is surveyed. 

Phasor parameters are associated with the characteristics of sinusoidal signals, i.e., amplitude, 

phase angle, and frequency. To reflect the features of waveforms, various signal modeling strate-

gies are proposed, leading to algorithms such as IpDFT, polynomial curve fitting, and Kalman 

filter-based methods. It is observed that each algorithm is designed to match the signal properties 

manifested in the corresponding dynamic events. As a result, if an algorithm is specifically de-

signed to match its signal modeling with one type of event waveform, high accuracy is expected 

for that type of event. 
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It is also known that the signal properties vary among different types of dynamic events. 

Consequently, an algorithm based on the waveform modeling associated with a single event in-

evitably leads to algorithm inaccuracy for other types of events, due to the signal modeling mis-

match. For instance, DFT-based algorithms cannot adequately track the slow-varying nature of 

electrical quantities commonly observed in electromechanical dynamic event waveforms, and 

polynomial fitting algorithms cannot effectively mitigate the waveform distortions caused by 

harmonic and noise components, as commonly seen in electromagnetic dynamic event wave-

forms.  

Summarizing prior work, a phasor parameter calculation approach that can maintain ade-

quate accuracy for various dynamic scenarios is needed. This improved algorithmic approach 

needs to incorporate different signal modeling corresponding to different types of dynamic 

events, and this approach is further discussed in the next Chapter. 
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4. PROBLEM STATEMENT 

 

4.1 Introduction 

 In this Chapter, the focus of the Dissertation is first addressed. Then, the hypothesis lead-

ing to a solution to the problem is proposed. The hypothesis validation approach is then de-

scribed. Expected outcomes of the Dissertation work and the organization of this Dissertation are 

also outlined. 

4.2 Focus of This Dissertation 

 This Dissertation is focusing on developing a new approach that accurately captures the 

signal waveform features of the extreme dynamic events in the electric power system. This is 

done by applying signal processing techniques to extract the properties of the event waveforms, 

specifically, in terms of phasor parameters.  

With the new approach, phasor parameter calculation is expected to be accurate for all 

kinds of dynamic waveforms, which cannot be achieved by other surveyed techniques. Moreo-

ver, care will be taken to satisfy both the accuracy and computational time requirements of dif-

ferent control applications. Finally, the hypothesis validation through algorithm testing and result 

analysis is discussed. 

4.3 Hypothesis  

 It is proposed that a new phasor parameter calculation algorithm should be designed so 

that phasor parameters can be characterized with adequate accuracy and speed for a variety of 

control applications. In order to achieve this, it is hypothesized that both the phasor parameter 

definitions and phasor calculation algorithms should be tailored and optimized according to the 

type of input signal and associated waveform features. To elaborate, 
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(1) The definition of phasor parameters in various dynamic operating conditions should 

match the features of power system waveforms associated with various dynamic events; 

(2) The hypothesis is that if multiple signal models are adopted in the algorithm, each signal 

model can be tailored to match the corresponding waveform associated with a dynamic 

event. In order to achieve this, the type of dynamic event should be identified first. It is 

proposed that features of waveforms should be analyzed and leveraged to classify various 

types of dynamic signal models; 

(3) In order to accurately determine the phase angle values at different locations in the power 

system, synchronized waveform sampling technique should be adopted. 

4.4 Hypothesis Validation Approach 

 The hypothesis validation is conducted via algorithm testing. To achieve this, (i). Ade-

quate PMU algorithm should be designed and implemented; (ii). Novel test procedures, method-

ologies and metrics should be defined, and test results should be analyzed. The approach is out-

lined as follows: 

(1) Investigate the mechanisms of power system dynamic events, and characterize their 

waveform manifestations in terms of mathematical formulations. This is discussed in 

Chapter 5; 

(2) Develop a phasor calculation algorithmic framework that is accurate and computationally 

efficient under both electromagnetic and electromechanical dynamic events. This frame-

work is able to distinguish electromagnetic transients from electromechanical dynamics, 

and adaptively apply the most suitable PMU algorithm to measure their features. This is 

discussed in Chapter 6; 
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(3) Develop a phasor parameter calculation approach for electromagnetic transients. The pro-

posed approach should satisfy the P-class PMU requirements [10] and support the perfor-

mance of applications design for electromagnetic transient mitigation, such as fault loca-

tion application. This is discussed in Chapter 7; 

(4) Develop a phasor parameter calculation approach for electromechanical dynamics. The 

proposed approach should satisfy the M-class PMU requirements [10] and ensure the per-

formance of applications design for electromechanical dynamics mitigation, such as os-

cillation detection application. This is discussed in Chapter 8; 

(5) Two types of algorithm testing should be conducted. The algorithm should be evaluated 

against relevant IEEE/IEC standard [10] in the design test use cases. Then, the hypothesis 

should be validated in the application test use cases, where the impact of algorithm inac-

curacy and communication channel distortion on application performance is demon-

strated. In order to do so, application test use cases, comparison metrics, and comparison 

methodologies are specified. Hypothesis validation strategy and test results are elaborated 

in Chapter 9. 

4.5 Expected Outcomes 

The expected outcomes of this Dissertation work are: 

(1) Design a new phasor parameter calculation algorithm. The distinctive attribute of the 

new algorithm is that the algorithmic framework enables event waveform classification, 

and adaptive signal model tuning capability. By doing so, the most apt signal modeling 

approach is applied for the identified dynamic event; 
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(2) Hypothesis is validated under the design test use cases. Under the design test use cases 

specified in [10], the proposed algorithm is able to achieve higher accuracy than the sur-

veyed algorithms; 

(3) Hypothesis is validated under the application test use cases. The test protocol, test meth-

odology, and test metrics of application test use cases are specified. Selected control ap-

plications show better performance when using the phasors calculated by the proposed 

algorithm, than the phasors calculated by the reference algorithms. 

4.6 Organization of the Dissertation 

 The rest of the Dissertation is organized as follows. A discussion on the extreme power 

system events and their waveform manifestations is conducted in Chapter 5. The framework of 

the proposed algorithmic tools and their interactions is discussed in Chapter 6. In Chapter 7, a 

phasor parameter calculation method for electromagnetic transients is proposed. Chapter 8 pro-

poses a phasor parameter calculation approach for electromechanical transients. The perfor-

mance of proposed approach is evaluated and demonstrated, and the results are discussed in 

Chapter 9. Conclusions and future works are outlined in Chapter 10. References and Appendices 

are attached at the end. 

4.7 Conclusion 

In this Chapter, Dissertation hypothesis, hypothesis validation approach, and expected 

outcomes are discussed. It is concluded that in order to compute phasor parameters with ade-

quate accuracy and speed, phasor parameter definition and phasor parameter calculation should 

be tailored to the input waveform features. To validate the hypothesis, it is proposed that: (i). 

Features of input dynamic waveforms should be studied to differentiate different dynamic prop-

erties of the waveforms; (ii). A phasor parameter calculation algorithm should be designed and 
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implemented to accommodate the distinct waveform features; and (iii). The proposed algorithm 

should be validated in both design and application tests. These topics are elaborated in Chapters 

5 to 9. Expected outcomes and the organization of the Dissertation are also outlined. 
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5. UNDERSTANDING THE DYNAMIC EVENTS IN THE POWER SYSTEM AND 

THEIR WAVEFORM MANIFESTATIONS 

 

5.1 Introduction  

 The power system is composed of electrical and mechanical components such as trans-

mission lines (conductors), insulators, power electronics devices, and rotating masses (machine 

rotors). The physical arrangements and connections of these physical components, as well as 

their interaction through magnetic and electrical fields, ultimately determines the electrical and 

mechanical phenomena observed in the power systems.  

It is common to analyze the power system in terms of circuit components. In order to do 

so, physical components, as well as the connection among the components, are modeled using 

ideal resistance (R), inductance (L), and capacitance (C) elements. As a result of this modeling, 

power system phenomena are represented by the electrical quantities and mathematical formula-

tions in which properties of electrical quantities are embedded. In this Dissertation, the power 

system will be studied based on the RLC circuit (stationary or rotating) modeling. 

5.2 Classification of Power System Dynamic Conditions 

The electric power systems are continuously regulated and coordinated, both on a lo-

cal/wide-area scale [53], and in short-term/long-term sense [54]-[55]. Since electric power en-

ergy cannot be stored in large amount in the power grid, there is a tendency for the electric 

power system to transition to an operating condition where the electric power generation meets 

the load consumption. Ideally, the balance between power generation and power consumption is 

maintained in a “dynamic equilibrium”, where power generation dynamically “tracks” the 
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changes in load demand, and reduces the discrepancy between power generation and consump-

tion. This operating condition is considered as the “normal” or steady-state operating condition. 

The electric power system is subject to sustained disruptions, characterized by different 

levels of severity. Minor disruptions are characterized by their randomness, as well as the negli-

gible changes to the existing operating condition. For example, the perturbations caused by envi-

ronmental conditions such as wind and temperature, within a limit, do not consequentially dis-

rupt the balance between power generation and power consumption.  

Major disruptions, on the other hand, are characterized by sudden and unexpected mis-

matches between power generation and load demand. Major disruptions cannot be smoothly mit-

igated without incurring large fluctuations in electrical quantities, such as voltage levels, current 

flows, and frequencies [56]. During the transition of power system to another power equilibrium 

state, extreme dynamic events may be experienced. Major disruptions can be caused by sudden 

changes in power supply/consumption (e.g., loss of generation/load), sudden changes in power 

network topologies (e.g., opening/reclosing of circuit breakers), insulation breakdowns (e.g., 

faults and isolation of faulted components), or lack of damping in the power system (e.g., grow-

ing oscillations). Following a major disruption in the power system, the extreme dynamic events 

may be classified as electromagnetic and electromechanical dynamic events [57]-[59]. 

5.2.1 Decoupling of Electromagnetic and Electromechanical Dynamic Transients  

Following a disturbance, such as faults, fluctuations in electrical quantities and rotor me-

chanical characteristics, can be observed. Strictly speaking, the ensuing fluctuations in electrical 

and mechanical quantities unfold simultaneously. In this Dissertation, however, the dynamic 

transients are decoupled into electromagnetic and electromechanical dynamics, and this is justi-

fied because of the following reasons:   
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(1) The essential components driving the dynamics are different. Electromagnetic and elec-

tromechanical dynamic events are manifested through different component interactions in 

the power grid. Specifically, electromagnetic dynamics are solely manifested through 

RLC circuit components, and electromechanical dynamics are manifested through both 

the movable mechanical elements of the power grid (i.e., rotors), and the RLC circuit 

(e.g., rotor and armature windings, transformer windings, and electric power network). 

The underlying “participants” in electromagnetic and electromechanical dynamic phe-

nomena fundamentally indicate that these two dynamic phenomena should be modeled 

differently; 

(2) Purpose of observing the fast vs. slow dynamic events is different. Besides harmonic and 

noise components, electromagnetic transients during faults are associated with danger-

ously high fault current. And therefore, they should be identified and isolated with mini-

mum delay. The observation on electromechanical transients, on the other hand, is per-

formed in the context of tracking electrical quantities under non-emergency operating 

conditions, where there may be no imminent harm to the power grid. This distinction also 

determines that electromagnetic and electromechanical dynamic events should be charac-

terized separately; 

(3) The time constants of electromagnetic and electromechanical dynamic events, as well as 

the time constraints associated with the corresponding control applications are different. 

The time needed for the transient electrical quantities, such as fault current, to decay to 

the level of 𝑒−1 ≈ 36.8% w.r.t. 𝑡 = 0 [60]-[61] is used to measure the damping effect 

during a dynamic phenomenon. In the power system, the damping capability is deter-

mined by the RLC parameters, the configuration of the circuit (e.g., damper windings on 
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the rotors), and the rotor inertia. As illustrated in [60]-[62], the sub-transient quantities 

have the time constant within 3 cycles, and transient quantities damp out within 2 sec-

onds, and stator transients take even longer time to decay. Since protective relays operate 

in a few nominal cycles or less, given the large inertia of rotors, the rotor mechanical fea-

tures can be considered to maintain their pre-contingency conditions. 

To summarize, due to the nature of extreme dynamic events, and the time constraints of 

subsequent mitigation applications, electromagnetic and electromechanical dynamic events can 

be decoupled and studied individually.  

5.2.2 Electromagnetic Dynamic Events 

Electromagnetic transients are caused by sudden disruptions of electric circuits, which 

may be initiated by faults, lightning strikes, or opening/closing circuit breakers [56]. Electromag-

netic transients cause fast changes in voltage and current magnitudes. The dramatic changes in 

current magnitude in a short period of time are characterized by a rich profile of decaying DC 

component and harmonic components, which range from kHz to MHz [25]. The transient voltage 

sag caused by faults in its vicinity may lead to electric motor stalling, which results in machine 

overheating. The transient overcurrent creates a tremendous amount of heat, which may stress 

insulation and switchgear, cause fire, and create safety hazard to the field workers and nearby 

residents. Therefore, the causes of extreme electromagnetic transients need to be mitigated 

and/or isolated with minimal delay.  

5.2.3 Electromechanical Dynamic Events 

Unlike electromagnetic dynamic events, electromechanical dynamic events are caused by 

the relative movements of machine rotors and their impact on electrical quantities associated 

with the power grid. The interaction between an electric machine rotors and the grid is enabled 
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by the magnetic coupling between the rotating rotor RLC circuit and the stationary power net-

work RLC circuit. The movement of a machine rotor is initiated by an imbalance between me-

chanical and electrical torques exerted on the rotor, which may be provoked by sudden changes 

in electrical power output, such as loss of load; or abrupt changes in mechanical input, such as 

prime mover stalling [63].  

Once the relative movements of machine rotors begin to unfold, the equivalent circuit of 

the power network from the perspective of each machine changes as well, resulting in changes in 

electrical torque output. The interactions between electric power network and machine rotors re-

sult in modulations on electrical quantities, which may last for as long as tens of seconds [64]. In 

the extreme scenarios, electromechanical transients can cause rotor angle instability, such as loss 

of synchronism of rotors and growing oscillations of electrical quantities. Without adequate miti-

gation strategy, electromechanical oscillations will impede power transfer, provoke voltage insta-

bility, and may eventually lead to blackouts in both local and large areas [64]. 

5.3 Waveform Manifestations of Power System Dynamic Events 

5.3.1 Generic Waveform Formulation 

Power system waveforms are sinusoidal signals, which can be expressed as: 

 𝑥(𝑡) = 𝑎(𝑡) ∙ cos[𝜙(𝑡)], 𝑡 = 𝑘Δ𝑡 (5.1) 

and, 𝜙(𝑡) = 2𝜋 ∫ 𝑓(𝜏)d𝜏
𝑡

0

+ 𝜙0 (5.2) 

where 𝑎(𝑡) is amplitude, 𝜙(𝑡) is phase angle w.r.t. 𝑡 = 0, Δ𝑡 is sampling interval, 𝜙0 is the ini-

tial phase angle at 𝑡 = 0, 𝑓(𝑡) is frequency in Hz.  

 In Equation (5.2), phase angle 𝜙(𝑡) is defined as the argument of cosine function. Alter-

natively, phase angle may be defined as an offset.  
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 𝜙(𝑡) = 2𝜋𝑓0𝑡 + 𝜙𝑠(𝑡) 

(5.3) 

and, 𝜙𝑠(𝑡) = 2𝜋 ∫ Δ𝑓(𝜏)d𝜏
𝑡

0

+ 𝜙0 

where 𝑓0 is the nominal frequency. In this definition, phase angle is interpreted as the angle off-

set w.r.t. a nominal frequency cosine signal. This phase angle definition is adopted in the IEEE 

synchrophasor standards [10]. 

 In a steady-state operating condition, power system waveforms are characterized with 

constant values of 𝑎(𝑡) and 𝑓(𝑡). In the dynamic scenarios, the amplitude and frequency are con-

stantly modulated due to electromagnetic and electromechanical transients. This will be dis-

cussed in detail in the following subsections. 

5.3.2 Waveform Manifestation of Electromagnetic Dynamic Events 

 The most commonly encountered electromagnetic dynamic event is fault, which is essen-

tially shorting an energized circuit. A circuit is shorted when an unintended breakdown of insula-

tion occurs, allowing immense current to flow through the connection. According to the discus-

sion in Section 5.2.1, when characterizing the features of electromagnetic transient waveforms, it 

is assumed that the rotor speeds remain the same for the first few cycles after the fault, and there-

fore, the power system fundamental frequency maintains the pre-contingency values. As derived 

in Appendix B, also elaborated in [65], the formulation of fault current can be expressed as: 

𝑖𝑓(𝑡) =
𝐴1

𝑍1
cos(𝜔𝑡 + 𝜙1 − 𝜃1) 

+𝑒−𝑎𝑡 [
𝐸𝑑

′

𝑏𝐿
sinh(𝑏𝑡) −

𝐴1

𝑍1
cos(𝜙1 − 𝜃1) cosh (𝑏𝑡)] , i. f. f.

𝑅2

4𝐿2
>

1

𝐿𝐶
 

(5.4) 
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where, 𝑎 =
𝑅

2𝐿
 , 𝑏 = √

𝑅2

4𝐿2
−

1

𝐿𝐶
 

𝑖𝑓(𝑡) =
𝐴1

𝑍1
cos(𝜔𝑡 + 𝜙1 − 𝜃1) 

+𝑒−𝑎𝑡 {
𝐸𝑑

′

𝛽𝐿
sin(𝛽𝑡) −

𝐴1

𝑍1
cos(𝜙1 − 𝜃1) cos (𝛽𝑡)} , i. f. f.

𝑅2

4𝐿2
<

1

𝐿𝐶
 

(5.5) 

where, 𝛼 =
𝑅

2𝐿
, 𝑏 = j𝛽, 𝛽 = √−

𝑅2

4𝐿2
+

1

𝐿𝐶
 

 Note that the exact expression of fault current depends on the RLC values of a circuit, 

which determine the values of constant in Equations (5.4) and (5.5). In a transmission system, 

𝑅/(2𝐿 ) < 1/√𝐿𝐶 typically holds true. As a result, fault current is in the form of steady-state 

fault current superimposed by decaying DC and high-frequency harmonic components.  

5.3.3 Waveform Manifestation of Electromechanical Dynamic Events 

Electromechanical dynamic events are associated with the effects of rotor movements on 

electrical quantities. The magnetic coupling between the rotating rotor RLC circuit and the sta-

tionary stator RLC circuit (which is connected to the power network) is established through shar-

ing the magnetic field air gap. The time scale under study is sufficiently long so that the impact 

of the relative movement of rotors cannot be ignored. The changes in the values of rotor angle 

separation affect the electric power transfer of the power network. As indicated by the swing 

equation [59], the change on the electrical output on a rotor will eventually affect the mechanical 

behaviors of the rotor, resulting in a slow unfolding dynamic event. As discussed in Section 
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5.2.1, in the analysis of electromechanical dynamics, it is assumed that electromagnetic transi-

ents have sufficiently dissipated, so that abrupt changes in electrical quantities will not be en-

countered.  

 By mathematical analysis, the electrical torque exerted on a rotor can be decomposed into 

two quadrature components: synchronizing torque and damping torque [66]. A lack of synchro-

nizing torque leads to aperiodic loss-of-synchronism, and a lack of damping torque causes grow-

ing oscillations. These two phenomena are discussed below. 

5.3.2.1 Waveforms of Loss-of-Synchronism Dynamics 

After a major disturbance, a synchronous machine may lose synchronism with the rest of 

the system when the deceleration area is smaller than the acceleration area [59]. This happens 

when there is not sufficient synchronizing torque on the rotor. 

In the case of loss-of-synchronism, rotor speed slowly drifts from a constant value, which 

can be formulated as: 

 𝜔(𝑡) = 𝜔0 + 2𝜋 ∫(
d∆𝑓

d𝑡
) d𝑡 (5.6) 

where 𝜔0 is the initial frequency. In a short phasor parameter calculation window, it is assumed 

that rotor speed is piecewise linear. Quantity 𝑅𝑓(𝑡) ≡ d∆𝑓/d𝑡 (in Hz/s) is defined to characterize 

the rate-of-change-of-frequency, which is a constant in each calculation window.  

To summarize, the waveform manifestation in the loss-of-synchronism case can be for-

mulated as: 

 𝑥(𝑡) = 𝑎(𝑡) ∙ cos[2𝜋𝑓𝑡 + 𝜋𝑅𝑓(𝑡)𝑡
2 + 𝜙0] (5.7) 
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5.3.2.2 Waveforms of Oscillatory Dynamic Phenomena 

 The oscillation phenomena are related to the small signal stability of a synchronous ma-

chine. After a perturbation, the rotor may oscillate against the rest of the system, resulting in os-

cillatory modulations on electrical quantities. With insufficient damping torque, the oscillation 

may grow and eventually cause loss-of-synchronism. In a short phasor calculation window, it is 

assumed that the oscillation is a critical oscillation (does not grow or subside). This phenomena 

can be captured by the following representation of the waveform:  

 

𝑥(𝑡) = [1 + 𝑘AMcos (2𝜋𝑓𝑚𝑡 + 𝜙AM)] ∙ 𝐴

∙ cos[2𝜋𝑓0𝑡 + 𝑘FMcos (2𝜋𝑓𝑚𝑡 + 𝜙FM) + 𝜙0] 
(5.8) 

where parameters with subscript AM represent modulations on amplitude, parameters with sub-

script FM represent modulations on frequency; 𝑘AM and 𝑘FM are the modulation levels for AM 

and FM cases, respectively; 𝜙0 is the modulation initial phase angle, 𝑓𝑚  is the modulation fre-

quency.  

 An amplitude-modulated signal, shown in Equation (5.9), it can be shown that the wave-

form consists of three single-tone sinusoidal signals: 

 

𝑥(𝑡) = [1 + 𝑘AM cos(2𝜋𝑓𝑚𝑡 + 𝜙AM)] ∙ 𝐴 ∙ cos[2𝜋𝑓0𝑡 + 𝜙0] 

= 𝐴 ∙ cos[2𝜋𝑓0𝑡 + 𝜙0] +
𝑘AM𝐴

2
cos[2𝜋(𝑓0 − 𝑓𝑚)𝑡 + (𝜙0 − 𝜙AM)]

+
𝑘AM𝐴

2
cos[2𝜋(𝑓0 + 𝑓𝑚)𝑡 + (𝜙0 + 𝜙AM)] 

(5.9) 

 Similarly, a frequency-modulated signal can be shown to be the superposition of an infi-

nite series of single-tone sinusoids, shown in Equation (5.10). Detailed derivation of Equation 

(5.10) is shown in Appendix C as Equation (C3.7).  
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𝑥(𝑡) = cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ 𝐽0(𝑘𝑚) 

+ ∑ (−1)
𝑘
2𝐽𝑘(𝑘𝑚){cos[2𝜋(𝑓0 − 𝑘𝑓𝑚)𝑡 + 𝜙0 − 𝜙𝑚]

∞

𝑘=0,2,4,…

+ cos[2𝜋(𝑓0 + 𝑘𝑓𝑚)𝑡 + 𝜙0 + 𝜙𝑚]} 

− ∑ (−1)
𝑘−1
2 𝐽𝑘(𝑘𝑚){sin[2𝜋(𝑓0 − 𝑘𝑓𝑚)𝑡 + 𝜙0 − 𝜙𝑚]

∞

𝑘=1,3,5,…

+ sin[2𝜋(𝑓0 + 𝑘𝑓𝑚)𝑡 + 𝜙0 + 𝜙𝑚]} 

(5.10) 

 It is important to differentiate the frequency profile representations of amplitude and fre-

quency modulated waveforms, shown in Equations (5.9) and (5.10), from the Fourier representa-

tion of these two types of dynamic input signal. Both representations perceive the input signal in 

terms of the superposition of harmonic components. Nevertheless, FFT reconstructs input signal 

in terms of a predetermined fundamental frequency (i.e., the FFT frequency resolution) and its 

harmonics; whereas the frequency profile representation portraits the input signal in terms of the 

actual frequency composition. In a few words, the FFT spectral analysis on a piece of AM or FM 

waveform may not accurately represent the true spectral profile of the signal, due to picket fence 

effect [67]-[68] and spectral leakage phenomenon [67]-[68]. 

5.4 Conclusion 

 In this Chapter, the physical nature and waveform manifestation of electromagnetic and 

electromechanical dynamic phenomena are discussed. It can be summarized that electromagnetic 

and electromechanical dynamic events are fundamentally different due to the physical processes 

that drive them, which are subsequently manifested in distinct types of waveforms. Due to this 

reason, electromagnetic and electromechanical dynamics will be decoupled and studies individu-
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ally. The waveform formulation will determine the design of phasor parameter calculation algo-

rithms, particularly the underlying signal modeling, which is elaborated in the following Chap-

ters. 
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6. FUNDAMENTALS OF THE PROPOSED PHASOR PARAMETER CALCULATION 

APPROACH * 

 

6.1 Introduction  

In order to validate the Dissertation hypothesis, a particular algorithmic approach is de-

veloped to achieve accurate characterization of the waveform features that represent power sys-

tem dynamic operating conditions. The approach includes characterizing the dynamic waveforms 

and defining the corresponding phasor parameters, developing and implementing a PMU algo-

rithm, and demonstrating the accuracy of the proposed PMU algorithm. 

6.2 Fundamentals of Time-Synchronized Calculation of Phasor Parameters 

 Time-synchronized phasors, or synchrophasors, are formally defined in IEEE C37.118-

2005 [69]. In phasor representation, a complex number is assigned to the sinusoidal signal as an 

equivalent representation, where the modulus of the complex number equals the RMS value of 

the sinusoidal signal, and the argument corresponds to the phase angle of the sinusoidal signal. 

Frequency is not explicitly expressed in phasor representation, but is rather associated with the 

rate of change of phase angles. 

As defined in IEEE Standard C37.118-2005 [69] and subsequent standards [9]-[11], the 

phase angle of a synchrophasor is the relative phase angle of the sinusoidal signal w.r.t. a 60Hz 

sinusoidal signal whose peak is located exactly at a second rollover.  

                                                

* Reprinted with authors’ permission from C. Qian and M. Kezunovic, "Synchrophasor reference algorithm for PMU 

Calibration System," 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, 

pp. 1-5, May 2016. Copyright 2016, IEEE. 
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 A sinusoidal signal is defined in Equation (6.1).  

 𝑥(𝑡) = 𝐴 ∙ cos [2𝜋 ∫ 𝑓(𝜏) ∙ d𝜏
𝑡

0

+ 𝜙0] 

(6.1)  

= 𝐴 ∙ cos [2𝜋𝑓0𝑡 + 2𝜋 ∫ ∆𝑓(𝜏) ∙ d𝜏
𝑡

0

+ 𝜙0]

= 𝐴 ∙ cos[2𝜋𝑓0𝑡 + 𝜙(𝑡)] 

 𝜙(𝑡) = 2𝜋∫ ∆𝑓(𝜏) ∙ d𝜏
𝑡

0

+ 𝜙0 

where 𝜙0 is the initial phase angle, 𝑓0 is the nominal frequency, 𝑓(𝑡) is the instantaneous fre-

quency at time 𝑡, ∆𝑓(𝑡) is the frequency deviation at time 𝑡. Besides, instantaneous phase angle 

𝜙(𝑡) is defined as the total phase angle displacement w.r.t. signal 𝐴 cos(2𝜋𝑓0𝑡). 

 Phasor parameters are defined to represent the attributes of sinusoidal signal, i.e., magni-

tude, phase angle, and frequency, embedded in Equation (6.1). Conventionally, phase angle is 

defined as the entire argument of the cosine function, i.e., [2𝜋𝑓0𝑡 + 𝜙(𝑡)]. Per this definition, the 

sinusoidal signal can be recovered by Equation (6.2). 

 𝑥(𝑡) = 𝐑𝐞{√2 ∙ 𝑝1(𝑡)} 

(6.2) 

 𝑝1(𝑡) =
𝐴

√2
𝑒j(2𝜋𝑓0𝑡+2𝜋 ∫ ∆𝑓(𝜏)∙d𝜏

𝑡
0

+𝜙0) 

 Acknowledging that phase angle is in fact a relative “angle displacement” from an arbi-

trary angle reference, we may define phase angle as the displacement from a nominal frequency 

sinusoidal signal. As a result, alternatively, in IEEE standard [10], for synchrophasor applica-

tions, phase angle is defined as the instantaneous phase angle 𝜙(𝑡), as shown in Equation (6.3).  

 𝑥(𝑡) = 𝐑𝐞{√2 ∙ 𝑝2(𝑡) ∙ 𝑒 j(2𝜋𝑓0𝑡)}, where (6.3) 
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 𝑝2(𝑡) =
𝐴

√2
𝑒j(2𝜋 ∫ ∆𝑓(𝜏)∙d𝜏

𝑡
0

+𝜙0) 

Evidently, both phase angle definitions are equivalent in terms of representing the same 

sinusoidal signal 𝑥(𝑡). In this Dissertation, the definition in Equation (6.3) is adopted. 

6.3 Proposed Strategy and Tools for Time-Synchronized Phasor Parameter Calculation  

 The proposed time-synchronized phasor calculation tools aims to improve control applica-

tion performance to adequately detect and mitigate extreme electromagnetic and electromechani-

cal dynamic events. As discussed in Chapter 2, electromagnetic and electromechanical dynamic 

events are distinct due to their underlying physical natures, and will be studied separately. In par-

ticular, the causes of electromagnetic dynamic events should be mitigated with minimal delay, 

whereas electromechanical dynamic events should be accurately characterized to allow tracking. 

Moreover, the phasor parameter calculation should be performed in a time-synchronized fashion 

to accurately obtain phase angle values. 

 This Dissertation proposes a framework for time-synchronized phasor parameter calcula-

tion, which aims to facilitate the emergency mitigation applications during both extreme electro-

magnetic and electromechanical dynamic events. The strategy and reasoning are further explained 

as follows. 

6.3.1 Determination of Data Window Function 

As discussed Section 3.3, the common use of window functions is to achieve attenuation 

of harmonic components and noise. It is also highlighted that a window function with sharper 

passband edge requires longer data window to narrow the mainlobe width.  

The choice of window functions has impact on PMU algorithm performance. Synchro-

phasor estimation inherently represents a notion of data filtering, and therefore, information loss 
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is inevitable. Such information loss is manifested as the inadequate characterization of changes 

in electrical quantities and signal parameters in the data window. Specifically, a longer window 

function would allow more reduction of noise interference, but would also average out more dy-

namic changes. A non-uniform window function acts as a digital filter and reduces Gibbs effect 

[23] in Fourier analysis, but will also inevitably cause longer response delay under changing dy-

namic conditions. 

The decision on the characteristics of data window function of a synchrophasor algorithm 

depends on the end-use applications. For example, a fault should be isolated within 5 cycles [56], 

considering the operation delay associated with protective relay and circuit breaker, the phasor 

calculation data window should be within 2 cycles [10]. An excessively long data window would 

fail to identify any rapid dynamic changes in the waveform which are crucial in detecting and 

isolating a fault. Conversely, for oscillation detection, an adequately long data window is desired 

in order to effectively eliminate the impacts from harmonics with filters.  

In summary, for electromagnetic transients, to achieve fast computational speed, the data 

window length should be within 2 cycles. For electromechanical transients, to achieve adequate 

computational accuracy, the window length may vary depending on the end-use application.  

6.3.2 Phasor Parameter Calculation During Electromagnetic Transients 

As previously examined, extreme electromagnetic transients, typically provoked by 

faults, should be characterized with minimal delay. DFT-based methods are by far the most com-

putationally efficient, and therefore, they should be used as the backbone of phasor parameter 

calculation under rapidly changing electromagnetic conditions.  

The major caveat of DFT-based method is spectrum leakage caused by the mismatch be-

tween the actual signal spectral profile and DFT signal modeling, which is caused by frequency 
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deviation, harmonic components, and decaying DC components in the input signal. Thus, it is 

proposed that DFT bin frequency should be adaptively tuned to align with the actual fundamental 

frequency of input signal, so that frequency leakage can be minimized. Moreover, signal proper-

ties that are not modeled in the existing DFT-based methods, such as the decaying DC compo-

nents, should be characterized in the proposed algorithm. 

The proposed strategy requires the frequency calculation to precede DFT-based phasor 

calculation. This is based on the reasoning that during the 2 cycles immediately after a fault, it 

can be assumed that machine rotors do not change their rotating speed due to large inertia. As a 

result, the frequency of the power system can be assumed to maintain its pre-contingency value.  

The schematic of this proposed approach is shown in Figure 7. As shown in Figure 7, 

Loop (a) is an independently running fundamental frequency estimator, where the most recent 

frequency estimate is stored. The phasor calculation algorithm, shown as Loop (b), retrieves the 

latest fundamental frequency value and tunes DFT-based algorithms.  
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Figure 7 Proposed phasor parameter calculation schemes for electromagnetic dynamic events 

Loop (a), fundamental frequency estimator; Loop (b), phasor parameter calculation for  

electromagnetic dynamics. Modified with permission from C. Qian and M. Ke-

zunovic, "A novel time-frequency analysis for power system waveforms based on 

“pseudo-wavelets”," 2018 IEEE/PES Transmission and Distribution Conference and 

Exposition (T&D), Denver, CO, pp. 1-9, Apr. 2018. Copyright 2018, IEEE 

6.3.3 Phasor Parameter Calculation During Electromechanical Transients 

Since the trajectories of electrical quantities during electromechanical dynamics are slow-

evolving, more time-consuming, computationally demanding techniques may be used. For exam-

ple, curve-fitting-based algorithms will be used to calculate phasor parameters during electrome-

chanical dynamic events, as these techniques have shown benefits in representing the slow-vary-

ing features in signals.  

As summarized in Chapter 3, a single algorithm cannot achieve accuracy for all types of 

electromechanical dynamic event waveforms. This is essentially due to the fact that various elec-

tromechanical phenomena are manifested in different signal formulations, and a single algorithm 

modeling strategy cannot match all types of electromechanical dynamic waveforms. Therefore, a 
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waveform type classification step is introduced to differentiate various types of electromechani-

cal phenomena, so that the most appropriate algorithm can be adaptively “switched” to perform 

phasor parameter calculation. A schematic diagram is shown in Figure 8. The proposed strategy 

for phasor parameter calculation under electromechanical dynamics is realized by incorporating 

two co-independent loops. Loop (a) and loop (b) run independently, where loop (a) performs 

waveform classification, and stores the most recent waveform classification result in its memory 

(e.g., registers); loop (b) performs phasor parameter calculation. In loop (b), an algorithm switch-

ing mechanism is deployed. This mechanism adaptively selects the most accurate algorithm ac-

cording to the identified waveform type, which is stored in the memory. 

 

Figure 8 Proposed phasor parameter calculation schemes for electromechanical  

dynamic events. 

Loop (a), waveform classification mechanism; Loop (b), phasor parameter calculation algorithm 

for electromechanical dynamics. Reprinted with permission from C. Qian and M. Kezunovic, "A 

novel time-frequency analysis for power system waveforms based on “pseudo-wavelets”," 2018 

IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO,  

pp. 1-9, Apr. 2018. Copyright 2018, IEEE 



 

44 

 

 

6.4 Interaction of the Proposed Tools 

 Figure 9 shows the framework of how the proposed phasor parameter calculation tools 

are integrated. The proposed tools serve to facilitate applications that mitigate the causes of ex-

treme electromagnetic and electromechanical dynamic events. The key features of the proposed 

technique are as follows: 

(1) During normal operating condition and electromagnetic events, the algorithm operates in 

“P-Class PMU mode”, where a 2-cycle data window is used for phasor parameter calcu-

lation. When the Event Classification tool detects an electromechanical dynamic wave-

form, the algorithm switches to “M-Class PMU mode”, where a multi-cycle data window 

is used for phasor parameter calculation.  

(2) The key modules in the proposed algorithm, which enable the aforementioned “operating 

mode switching” and accurate phasor parameter calculation in each mode, are the funda-

mental frequency estimator, and the event/waveform classification tool. 

(3) The fundamental frequency estimator tracks the power system fundamental frequency, and 

stores the latest estimation value. This step is crucial in tuning DFT-based method to alle-

viate frequency leakage effect. Then, the proposed DFT-based method is used to calculate 

phasor parameters under electromagnetic transients. A hybridization algorithmic frame-

work is adopted, which reduces the impact of exponentially decaying DC component. The 

proposed method is tailored to accurately characterize the electromagnetic dynamic wave-

forms. This way, fast response can be achieved. This technique is elaborated in Chapter 7. 
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(4) For slowly unfolding electromechanical dynamic events, the event/waveform classification 

technique are proposed to differentiate waveforms associated with various electromechan-

ical dynamic events. Then, algorithms are proposed to achieve accurate phasor parameter 

calculation for each type of dynamic waveform. This technique is elaborated in Chapter 8. 

(5) The proposed approach fundamentally integrates phasor parameter calculation for both fast 

and slow dynamic conditions in the power system without sacrificing accuracy for either 

scenario. The testing strategies and performance evaluation of proposed techniques are dis-

cussed in Chapter 9 

 

Figure 9 Hierarchical illustration of proposed algorithm design framework 

6.5 Conclusion 

 This Dissertation proposes an algorithmic framework that allows both electromagnetic 

and electromechanical dynamics in the power system to be effectively characterized in terms of 
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phasor parameters, which is devised in Section 6.4. In particular, the phasor parameter calcula-

tion method for electromagnetic transients is outlined in Section 6.3.2, and the phasor parameter 

calculation method for electromechanical transients is introduced in Section 6.3.3.  

 In the following Chapters, the individual tools in the framework will be elaborated, and 

their accuracy will be tested. 
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7. POWER SYSTEM FUNDAMENTAL FREQUENCY ESTIMATION APPROACH 

AND PHASOR PARAMETER CALCULATION DURING ELECTROMAGNETIC  

TRANSIENTS * 

 

7.1 Introduction  

The electromagnetic dynamic waveforms are formulated in Section 5.3.2, and they are 

the subject of further study in this Chapter. To enable fast mitigation actions (protective relaying) 

against extreme electromagnetic dynamic events (faults), phasor parameters should be calculated 

within two cycles. In that time frame, the proposed PMU algorithm should mitigate the impact of 

harmonics, noise, and decaying DC components on phasor calculation accuracy. 

In this Chapter, we improve the modeling of DFT-based algorithm to achieve the lowest 

computational burden while effectively eliminate the influence of decaying DC components. We 

introduce an adaptive DFT window length adjustment, as well as subsequent spectral compensa-

tion mechanisms. This approach mitigates the pitfalls of DFT-based algorithms caused by picket-

fence [67]-[68] and frequency leakage phenomenon [67]-[68]. 

                                                

* Reprinted with authors’ permission from: (1) C. Qian and M. Kezunovic, "Dynamic synchrophasor estimation with 

modified hybrid method," 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference 

(ISGT), Minneapolis, MN, pp. 1-5, Sep. 2016. Copyright 2016, IEEE. (2) C. Qian and M. Kezunovic, "Spectral inter-

polation for frequency measurement at off-nominal frequencies," 2017 IEEE Power & Energy Society General Meet-

ing, Chicago, IL, pp. 1-5, Jul. 2017. Copyright 2017, IEEE. (3) C. Qian and M. Kezunovic, "Hybridization framework 

for improved dynamic phasor parameter estimation algorithms," 2019 IEEE Power & Energy Society Innovative 

Smart Grid Technologies Conference (ISGT), Washington, D.C., pp. 1-5, Feb. 2019. Copyright 2019, IEEE. (4) C. 

Qian and M. Kezunovic, "Power system fundamental frequency estimation using Unscented Kalman Filter," 2019 

IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, 

IEEE. 
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To achieve this strategy, a fundamental frequency tracking method is proposed. Due to 

the large mechanical inertia, it is reasonable to assume that the rotor speeds maintain their pre-

contingency values for 2 cycles after a disturbance, where the phasor parameter calculation takes 

place. Accordingly, as proposed in Section 6.3.2, the fundamental frequency estimation is exe-

cuted independently from phasor calculation. In order to reduce the uncertainty caused by meas-

urement noise and to enable fast frequency tracking, UKF [70] is utilized, where signal funda-

mental frequency is built-in as a state variable. Compared to conventional frequency estimation 

algorithms, the proposed method can achieve high accuracy and computational efficiency when 

subject to low SNR condition [70].  

Then, a DFT-based phasor parameter calculation algorithm is discussed. The aforemen-

tioned fundamental frequency estimator provides an ambient real-time fundamental frequency 

value, which is leveraged to tune phasor calculation and perform spectral leakage compensation. 

To alleviate the spectral leakage caused by slow-varying decaying DC component, a hybridiza-

tion technique [71] is designed, where properties of decaying DC component are embedded in 

the algorithm signal model, and thus no longer mistakenly represented by spectral leakage com-

ponents. 

7.2 Limitations of DFT-Based Phasor Calculation Methods and Proposed Mitigation Solution  

DFT-based algorithms are extensively used in PMUs. DFT adopts a signal model where 

it is assumed that the input signal is composed of a single-tone fundamental frequency signal, as 

well as DC and its harmonic components. Correspondingly, in frequency domain, DFT models 

all the frequency components as precisely residing on the frequencies associated with DFT bins 

[68], shown as: 
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 𝑘∆𝑓DFT ≡
𝑘

𝑇
, 𝑘 ∈ (− ⌊

𝑁

2
⌋ , ⌈

𝑁

2
⌉ − 1)  

which are determined by data window length  𝑇 and data widow sample size 𝑁.  

For instance, for a data window of 16.667 ms consisting of 100 samples, the DFT bins 

range from -49×60Hz to 50×60Hz (100 bins in total) with a bin interval, i.e., the DFT resolution, 

of ∆𝑓DFT = 60Hz. Note that, theoretically, 𝑁 can be either an odd number or an even number. 

Practically, however, since DFT is calculated using FFT, to expedite computational speed, 𝑁 is 

usually chosen to be the power of 2, and thus is always an even number. This interpretation of 

input signal in terms of components on “frequency bins” is termed “picket fence effect” [67]. 

The picket fence effect does not present a major problem when the actual signal fre-

quency profile matches the DFT bin frequencies. In the real power grid operating scenarios, the 

input signal frequency profile may deviate from the DFT bin frequency values. Undesirably, 

DFT still perceives the input signal as the superposition of the harmonics of the presumed DFT 

resolution. As a result, each actual frequency component in the signal will appear to “leak” into 

the whole DFT spectrum, and this phenomenon is named “spectral leakage phenomenon” [67]-

[68]. Equivalently, due to frequency leakage, each one of the 𝑁 calculated DFT components con-

sists of the leakage portions of all of the actual frequency components in the input signal. The 

impact of frequency deviation on phasor parameter calculation is shown in Figure 10, where the 

impact of frequency leakage is quantified as TVE [10]. The spectra of five different frequency 

inputs are illustrated in Figure 10. Two-cycle data window is used in all cases, and therefore, the 

DFT resolution is 30Hz. 
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Figure 10 Frequency leakage effect with different input signal fundamental frequencies. 

(a) 60Hz, (b) 60.25Hz, (c) 59.75Hz, (d) 60.5Hz, (e) 59.5Hz 

 In a more realistic scenario, data sampling noise, such as thermal noise and electromag-

netic interference, should be taken into account. In Figure 11, four SNR cases are simulated and 

the TVE results are illustrated. It can be clearly observed that to an extent DFT is resistant to 

noise infiltration. However, when the noise level is too high (30dB in Figure 11), the deteriora-

tion of DFT performance due to noise infiltration is consistent across a wide range of frequency 

deviation level. 
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Figure 11 DFT frequency leakage impact on TVE of calculated phasors, considering white 

Gaussian measurement noise 

A variety of measures can be taken to alleviate frequency leakage, such as increasing data 

window length (to increase DFT resolution), applying window function, and compensation algo-

rithms (e.g., IpDFT). None of the existing algorithms resolves the problem of spectral leakage 

from a fundamental perspective, and that is to address the root cause of spectral leakage in the 

first place: the discrepancy between actual fundamental frequency and DFT bin frequency.  

The proposed remedy of spectral leakage is to adaptively adjust DFT bin frequency, thus 

effectively eliminate the cause of spectral leakage. This is achieved by adjusting the DFT data 

window length adaptively according to the most recent signal fundamental frequency estimate. A 

highly noise-resistant fundamental frequency tracking method based on UKF is proposed next.  
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7.3 Unscented† Kalman Filter-Based Fundamental Frequency Tracking Technique 

 In the electric power system, there are two major difficulties in the estimation of funda-

mental frequency. First, the frequency parameter is embedded in a nonlinear sinusoidal function. 

Solving a nonlinear function typically requires iterative approach, which introduces the issue of 

computational burden and divergence. Second, the transducers and data communication channels 

in a substation environment are potentially contaminated by high noise level [72]. An algorithm 

that works on such data samples should be resistant to low SNR conditions. Traditionally, Kal-

man filter and EKF [73] are used for the estimation of state variables in linear and nonlinear sys-

tem, respectively, where the noise in the dynamic system is modeled as AWGN. As later stated 

in Equation (7.13), the normal working point of the state variables is in close proximity to the 

most nonlinear section of the dynamic system equation, making both Kalman filter and EKF un-

reliable. As a result, UKF [74] is used, and is proven to be stable and accurate in frequency 

tracking. The limitations of Kalman filter and EKF and necessity for UKF are further elaborated 

in Sections 7.3.2 - 7.3.4. 

7.3.1 Fundamentals of Kalman Filter 

 Kalman filter was invented in the 1960s [74], and was widely applied in the navigation 

and control of vehicles, especially aircraft and spacecraft [75]-[81]. Kalman filtering is an algo-

rithm that uses a series of measurements from multiple sensors to jointly yield the best estimate 

of states of a dynamic system. Despite prevailing measurement noise and inherent uncertainties 

                                                

† The reason for the term “unscented” in the context of “Unscented Transform” and UKF was not explained in its 

inventors’ publications [74]. 
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in states, Kalman filtering produces the best estimate in the sense of minimizing least square er-

ror [81]-[85]. 

 In a dynamic system, the states of the system, by definition, are the smallest set of varia-

bles that completely characterizes the system [73],[85]. With states, the temporal development 

and measurement output of the system can be determined. Kalman filter is one of the approaches 

available to estimate state using the measurement output. Kalman filter can be derived from a va-

riety of scientific context, such as control theory [85], probability theory [82], etc. In Appendix 

D, the derivation of Kalman filter is based on orthogonal projection principle, in which Kalman 

filter minimizes the MMSE of state estimate [86].  

7.3.2 Caveats of Kalman Filter and EKF in Nonlinear State Estimation 

The generic formulation of a dynamic system can be expressed as: 

 𝒙(𝑛) = 𝑭[𝒙(𝑛 − 1),𝒘(𝑛)] (7.1) 

 𝒚(𝑛) = 𝑪[𝒙(𝑛), 𝒗(𝑛)] (7.2) 

 The generic formulation does not assume additivity of noise terms 𝒘(𝑛) and 𝒗(𝑛), and 

the dynamic system model 𝑭 and 𝑪 are assumed to be known.  

As can be observed from Equation D.1 in Appendix D, the Kalman filtering procedure 

uses a weighted innovation term to correct the propagation of past state-estimate. The weight is 

termed Kalman gain, which is determined by the propagated correlation matrices of past state-

estimate and past measurements. Intuitively, the correlation matrices symbolizes the “confi-

dence” in either past state-estimate or measurements.  

Conventional Kalman Filter achieves optimality in the sense of MMSE when the system 

equation is linear, and noise terms are characterized by the first two moments (mean and devia-

tion) only. In particular, when the previous step random variable 𝒙̂(𝑛 − 1|𝒴𝑛−1) is Gaussian, 
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which can be uniquely characterized by the first two moment entirely, and the dynamic system 

Equations (7.1) and (7.2) are linear, the Gaussianity of 𝒙̂(𝑛|𝒴𝑛−1) and 𝒚̂(𝑛|𝒴𝑛−1) is guaranteed. 

In this case, the random variables after propagating through a linear system can also be uniquely 

determined by their first two moments, which can be derived from the state transition matrix and 

measurement matrix. As a result, the MMSE optimality of Kalman filter in the linear dynamic 

system case is achieved essentially through orthogonal projection theorem. In particular, the best 

estimate 𝒙̂(𝑛|𝒴𝑛) is the one where uncertainty vector, 𝒙(𝑛) − 𝒙̂(𝑛|𝒴𝑛), is uncorrelated (orthog-

onal) to the state vector 𝒙(𝑛) [86].In the case of Gaussian random variables, the derivation of 

Kalman filter, as elaborated in Appendix D, guarantees such orthogonality, and thus is always 

MMSE optimal.  

In most realistic scenarios, however, the dynamic systems under study are intrinsically 

nonlinear. In the case of nonlinear system equations, the statistics of random variables after prop-

agation need not necessarily be determined by only the first two moments. As a result, with ma-

trices 𝑲(𝑛, 𝑛 − 1) and 𝑹(𝑛), the MMSE optimality of Kalman filter cannot be guaranteed. Fun-

damentally, what is needed is the a posteriori values of covariance matrix. One way is to approx-

imate the nonlinear dynamic system equations in terms of linear terms, and propagate the covari-

ance matrix as if the system is still linear, and this is the basis for EKF [87]-[88].  

The rationale for EKF is very intuitive: linearizing nonlinear system equations at the vi-

cinity of its working point using Taylor expansion, while only the linear terms are preserved. 

Linearity is a strong assumption, and the approximation of nonlinearity is only valid when the 

system equation is almost linear around the working point of the system. Otherwise, EKF will 

lead to significant estimation errors. As will be discussed in later sections, the system equation is 
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highly nonlinear around the normal working point of power system at around 60Hz, rendering 

EKF ineffective.  

The other way is to leave the nonlinear transformation as is, but rather estimate the a pos-

teriori values of sample covariance matrix by selecting samples prior to the nonlinear transfor-

mation, letting them propagate through the nonlinear transformation, and calculating the covari-

ance matrix. This procedure is described as the “Unscented Transform” [89]-[92]. 

Unlike Monte-Carlo simulation, where state samples are randomly chosen, in Unscented 

Transform, state samples, termed σ-points, are selected deterministically. In particular, the σ-

points are meticulously chosen so that the statistics of the original distribution can be preserved 

up to a number of moments determined by the user. Unscented Transform is the basis of UKF 

[93]-[98], which is discussed next. 

7.3.3 Fundamental Frequency Tracking Using UKF 

Unscented Transform provides an alternative, and usually more accurate, approach to es-

timate the a posteriori values of sample covariance matrix. The implementation of UKF is de-

scribed in Algorithm 3 in Appendix D.5. Compared to the linear Kalman filter and EKF, UKF is 

able to yield accurate estimate if the dynamic system equation is highly nonlinear, which is the 

case in this Dissertation. 

The key to UKF is the selection of σ-points. The typical assumption is that sampling 

noise is AWGN, which can be characterized by its first two moments: mean vector, and diagonal 

covariance matrix. In a variety of literature, the selection of σ-points is based on preserving only 

the first two moments of input samples.  

7.3.4 System Equations for Fundamental Frequency Estimation 

 Three consecutive samples of a single-phase waveform can be described as: 
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 𝑥𝑘 = 𝐴 ∙ cos(𝜔𝑘∆𝑡 + 𝜙0) (7.3) 

 𝑥𝑘+1 = 𝐴 ∙ cos[𝜔(𝑘 + 1)∆𝑡 + 𝜙0] (7.4) 

 𝑥𝑘+2 = 𝐴 ∙ cos[𝜔(𝑘 + 2)∆𝑡 + 𝜙0] (7.5) 

 It can thus be proven [70] that:  

 𝑥𝑘+2 + 𝑥𝑘 = 2𝑥𝑘+1 ∙ cos(𝜔∆𝑡) (7.6) 

 The electric power is transmitted through three-phase transmission system, with 120° 

electric phase angle displacement between any two phases. This phase angle displacement is de-

termined by the symmetric design of synchronous generators, and thus always holds true for nor-

mal operation.  

Denote phase A voltage as 𝑥𝑘, phase B voltage as 𝑦𝑘 , and phase C voltage as 𝑧𝑘. Then,  

 𝑦𝑘 = 𝐴 ∙ cos (𝜔𝑘∆𝑡 + 𝜙0 −
2

3
𝜋) (7.7) 

 𝑧𝑘 = 𝐴 ∙ cos (𝜔𝑘∆𝑡 + 𝜙0 +
2

3
𝜋) (7.8) 

It can be shown that 𝑦𝑘  can be conveniently expressed with phase A waveform measure-

ments, shown in Equation (7.9): 

𝑦𝑘 = 𝐴 ∙ cos(𝜔𝑘∆𝑡 + 𝜙0) cos (−
2

3
𝜋) − 𝐴 ∙ sin(𝜔𝑘∆𝑡 + 𝜙0)sin(−

2

3
𝜋) 

= 𝑥𝑘 cos (−
2

3
𝜋) +

𝑥𝑘cos(𝜔∆𝑡) − 𝑥𝑘−1

sin(𝜔∆𝑡)
sin (−

2

3
𝜋) 

(7.9) 

Similarly, 

𝑧𝑘 = 𝑥𝑘 cos (
2

3
𝜋) +

𝑥𝑘cos(𝜔∆𝑡) − 𝑥𝑘−1

sin(𝜔∆𝑡)
sin (

2

3
𝜋) (7.10) 

Besides, similar to Equation (7.6), for both phase B and phase C waveform samples: 
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 𝑦𝑘+2 + 𝑦𝑘 = 2𝑦𝑘+1 ∙ cos(𝜔∆𝑡) (7.11) 

 𝑧𝑘+2 + 𝑧𝑘 = 2𝑧𝑘+1 ∙ cos(𝜔∆𝑡) (7.12) 

 From Equation (7.6), it can be observed that, 

 𝑓 =
1

2𝜋∆𝑡
∙ cos−1 (

𝑥𝑘+2 + 𝑥𝑘

2𝑥𝑘+1
) (7.13) 

 When the sampling frequency of a field transducer is adequately high, the argument in 

the inverse cosine function is close to 1. Consequently, the working point of the nonlinear equa-

tion (7.6) is at the most nonlinear part of the inverse cosine function. As a result, the EKF-based 

method will incur large error.  

 In this Dissertation, the system state-space equation is formulated as follows; 

Choosing the states and measurement variables as follows: 

States: 𝑥1,𝑘 = 𝑥𝑘, 𝑥2,𝑘 = 𝑥𝑘−1, 𝑥3,𝑘 = 𝜔Δ𝑡 (7.14) 

Measurements: 𝑦1,𝑘 = 𝑥𝑘, 𝑦2,𝑘 = 𝑦𝑘 , 𝑦3,𝑘 = 𝑧𝑘 (7.15) 

As a result, the state update equation and measurement input equation can be expressed 

as: 

 𝑥1,𝑘+1 = −𝑥2,𝑘 + 2𝑥1,𝑘cos (𝑥3,𝑘) (7.16) 

 𝑥2,𝑘+1 = 𝑥𝑘 = 𝑥1,𝑘  (7.17) 

 𝑥3,𝑘+1 = 𝑥3,𝑘 (7.18) 

 𝑦1,𝑘+1 = 𝑥1,𝑘+1 (7.19) 

 𝑦2,𝑘+1 = 𝑥1,𝑘+1 cos (
2

3
𝜋) −

𝑥1,𝑘+1 cos(𝑥3,𝑘+1) − 𝑥2,𝑘+1

sin (𝑥3,𝑘+1)
sin (

2

3
𝜋) (7.20) 

 𝑦3,𝑘+1 = 𝑥1,𝑘+1 cos (
2

3
𝜋) +

𝑥1,𝑘+1 cos(𝑥3,𝑘+1) − 𝑥2,𝑘+1

sin (𝑥3,𝑘+1)
sin (

2

3
𝜋) (7.21) 



 

58 

 

 

Note that 𝑥3,𝑘 = 𝜔Δ𝑡 = 2𝜋𝑓Δ𝑡, where Δ𝑡 is the sampling interval. Therefore, frequency 

is estimated by: 

 𝑓 =
𝑥3,𝑘

2𝜋Δ𝑡
 (7.22) 

When only single-phase measurements are available, Equations (7.16)-(7.19) should be 

used; when additional observations of the other two phases are present, Equations (7.20) and 

(7.21) can be incorporated. Frequency is estimated using Equation (7.22) 

7.3.5 Selection of 𝜎-points 

 In UKF, sigma points are a collection of samples from the original distribution, determin-

istically chosen in such a way that the first two moments of sigma points preserve the first two 

moments of the original distributions. The sigma points are then propagated to the new distribu-

tion through the nonlinear function, where the statistics of the new distribution can be calculated 

using the propagated sigma points. The selection of sigma points is done in the following way: 

 

𝜒0 = 𝑥̅ 

𝜒𝑖 = 𝑥̅ + (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖
, 𝑖 = 1,2,… , 𝑛 

𝜒𝑖+𝑛 = 𝑥̅ − (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖
 

(7.23) 

where 𝑛 is the number of states, 𝜆 = 𝛼2(𝑛 + 𝜅), (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖
 is the ith column of the square 

root of matrix (𝑛 + 𝜆)𝑃𝑥𝑥, and can be efficiently calculated using by Cholesky decomposition 

[98].  

The sigma points are then propagated through the nonlinear function 𝛾𝑖 = 𝑓(𝜒𝑖), where 

the first two moments of the new distribution can be calculated as follows: 
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 𝑦̅ = ∑𝑊𝑖
(𝑚)

𝛾𝑖

2𝑛

𝑖=0

 (7.24) 

 𝑃𝑦𝑦 = ∑ 𝑊𝑖
(𝑐)[(𝛾𝑖 − 𝑦̅)(𝛾𝑖 − 𝑦̅)𝑇]

2𝑛

𝑖=0

 (7.25) 

where weights 𝑊𝑖
(𝑚)

 and 𝑊𝑖
(𝑐)

 are defined as follows: 

 𝑊0
(𝑚)

=
𝜆

𝑛 + 𝜆
, 𝑊0

(𝑐)
= 𝑊0

(𝑚)
+ (1 − 𝛼2 + 𝛽) (7.26) 

 𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

=
1

2(𝑛 + 𝜆)
, 𝑖 = 1,2,… , 𝑛 (7.27) 

In Equations (7.23)-(7.26), factors 𝛼 and 𝜅 are used to provide fine-tuning of the “spread” 

of sigma points around the mean 𝜒0 = 𝑥̅. Parameter 𝛽 is used to incorporate information about 

higher moments of the original distribution. There is no uniform method to select sigma points, 

and the available approaches are described in detail in [99]-[101]. 

7.4 DFT-Based Phasor Parameter Calculation Algorithm with Fundamental Frequency Tuning 

Adaptability 

 The calculated signal fundamental frequency can be effectively leveraged to mitigate 

spectral leakage effect in DFT calculation. Specifically, by changing data window length accord-

ing to actual signal fundamental frequency, DFT bin frequencies can be adaptively tuned to 

match the actual harmonic frequency profile of input signal. Regardless, since the data window 

size can only take discreet values of multiples of the sampling interval, perfect matching between 

DFT bin frequencies (determined by window length) and input frequency profile may not always 

be feasible. As a result, spectral compensation may still be necessary. The spectral compensation 

approach is discussed in detail next. 
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7.4.1 Effect of the Sampling Rate on Adaptive Window Sizing Method 

 As aforementioned, by tracking the actual fundamental frequency, and subsequently ad-

justing the data window size, spectral leakage in DFT calculation will be alleviated and even 

avoided. The resolution of such window length adjustment, which fundamentally determines the 

performance of such technique, depends solely on sampling frequency. Intuitively, the higher the 

sampling frequency is, the more flexible and accurate such adjustment can be. A MATLAB sim-

ulation is conducted to show that it is impractical to rely on increasing sampling frequency to 

achieve alleviation of spectral leakage. 

 

Figure 12  Effect of sampling frequency on TVE when adaptive window sizing is adopted 

 As shown in Figure 12, if it is desired to compensate for spectral leakage with increasing 

sampling frequency alone, the sampling frequency need to be higher than 15kHz. Among the 
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current commercial PMU models manufactured by Schweitzer Engineering Laboratories (SEL), 

the typical sampling rate is 960Hz (16 samples/cycle) and 7680Hz (128 samples/cycle), and only 

one model samples above 15kHz (30.72kHz, or 512 samples/cycle). It is thus asserted that in-

creasing sampling rate alone is not adequate to mitigate spectral leakage within a practical con-

text, and as a result, additional compensation is needed. 

7.4.2 Formulation of Spectral Leakage Compensation Technique 

7.4.2.1 Key Definitions 

𝑘: input harmonic order 𝑚: DFT bin number 

𝐾: highest harmonic order +1 𝛼𝑘 ≡ 𝑘𝑓input/𝑓sampling 

𝑁 ≡ ⌊
𝑓sampling

𝑓input

⌋ : total number of samples in a cycle 

𝑎𝑘
𝑚 ≡ 2𝜋𝛼𝑘 −

2𝜋𝑚

𝑁
 𝐴𝑘

𝑚 ≡ 𝑒j
𝑎𝑘

𝑚(𝑁−1)
2

sin (
1
2 𝑎𝑘

𝑚𝑁)

𝑁 ∙ sin (
1
2𝑎𝑘

𝑚)
 

𝑏𝑘
𝑚 ≡ −(2𝜋𝛼𝑘 +

2𝜋𝑚

𝑁
) 𝐵𝑘

𝑚 ≡ 𝑒j
𝑏𝑘

𝑚(𝑁−1)
2

sin (
1
2𝑏𝑘

𝑚𝑁)

𝑁 ∙ sin (
1
2𝑏𝑘

𝑚)
 

7.4.2.2 Relationship Between Leakage Frequency Components and DFT Bin Frequencies 

When spectral leakage occurs, each frequency component, 𝑘th harmonic, in the actual 

signal leaks into all frequency bins. Equivalently, the component at frequency bin 𝑚 consists of 

the leakage contribution originated from each actual 𝑘th harmonic component. It can be shown 

that once the fundamental frequency is determined, there is a deterministic relationship between 

the 𝑘th harmonic component and the 𝑚th DFT bin component. The 𝑚th DFT bin component can 
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be conveniently acquired, and thus the “true” phasor associated with the 𝑘th harmonic compo-

nent can be derived.  

The input signal can be expressed in terms of the superposition of harmonic components: 

 

𝑥(𝑛) = ∑ 𝐴𝑘cos(2𝜋𝛼𝑘𝑛 + 𝜙𝑘)

𝐾

𝑘=0

≡ 𝐴𝑘cos(2𝜋𝛼𝑘𝑛 + 𝜙𝑘) 

=
𝐴𝑘

2
𝑒j2𝜋𝛼𝑘𝑛𝑒j𝜙𝑘 +

𝐴𝑘

2
𝑒−j2𝜋𝛼𝑘𝑛𝑒−j𝜙𝑘 

(7.28) 

where Einstein summation convention [102]-[103] is applied to simplify the writing of equations 

throughout the rest the section.  

 Taking the DFT of 𝑥(𝑛): 

 𝑋𝑚 = 𝑋𝑘
𝑚 ≡

√2

𝑁
∑ 𝑥𝑘(𝑛)𝑒−j

2𝜋
𝑁

𝑚𝑛

𝑁−1

𝑛=0

 (7.29) 

 Substitute 𝑥𝑘(𝑛) in Equation (7.29) with Equation (7.28), we may get: 

 𝑋𝑚 =
√2

2
𝑋𝑘̂𝐴𝑘

𝑚 +
√2

2
(𝑋𝑘̂)

∗
𝐵𝑘

𝑚 (7.30) 

where (𝑋)∗ implies complex conjugate of a complex number 𝑋. Using the property 𝑋𝑘̂ ≡ 𝑋𝑘
𝑟̂ +

j𝑋𝑘
𝑖̂ , where 𝑋𝑘

𝑟̂ , 𝑋𝑘
𝑖̂ ∈ ℝ are the real and imaginary parts of 𝑋𝑘̂ , respectively. Similarly, 𝐴𝑘

𝑚 ≡

𝐴𝑘
𝑚,𝑟 + j𝐴𝑘

𝑚,𝑖
, and 𝐵𝑘

𝑚 ≡ 𝐵𝑘
𝑚,𝑟 + j𝐵𝑘

𝑚,𝑖
. Substitute the quantities in Equation (7.30) with their real 

and imaginary parts, and equate the real and imaginary parts of l.h.s. and r.h.s, there is: 

 √2𝑋𝑚,𝑟 = 𝐴𝑘
𝑚,𝑟𝑋𝑘

𝑟̂ − 𝐴𝑘
𝑚,𝑖𝑋𝑘

𝑖̂ + 𝐵𝑘
𝑚,𝑟𝑋𝑘

𝑟̂ + 𝐵𝑘
𝑚,𝑖𝑋𝑘

𝑖̂  (7.31) 

 √2𝑋𝑚,𝑖 = 𝐴𝑘
𝑚,𝑖𝑋𝑘

𝑟̂ + 𝐴𝑘
𝑚,𝑟𝑋𝑘

𝑖̂ + 𝐵𝑘
𝑚,𝑖𝑋𝑘

𝑟̂ − 𝐵𝑘
𝑚,𝑟𝑋𝑘

𝑖̂  (7.32) 

Note that, Equations (7.31) and (7.32) comply with the Einstein Notation, and the sum-

mation is w.r.t. parameter 𝑘. Rearrange in terms of 𝑋𝑘
𝑟̂and 𝑋𝑘

𝑖̂ , we get: 
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√2𝑋𝑚,𝑟 = (𝐴𝑘
𝑚,𝑟 + 𝐵𝑘

𝑚,𝑟)𝑋𝑘
𝑟̂ + (−𝐴𝑘

𝑚,𝑖 + 𝐵𝑘
𝑚,𝑖)𝑋𝑘

𝑖̂  

≜ 𝛽𝑘
𝑚𝑋𝑘

𝑟̂ + 𝛾𝑘
𝑚𝑋𝑘

𝑖̂  

(7.33) 

 

√2𝑋𝑚,𝑖 = (𝐴𝑘
𝑚,𝑖 + 𝐵𝑘

𝑚,𝑖)𝑋𝑘
𝑟̂ + (𝐴𝑘

𝑚,𝑟 − 𝐵𝑘
𝑚,𝑟)𝑋𝑘

𝑖̂  

≜ 𝛿𝑘
𝑚𝑋𝑘

𝑟̂ + 𝜀𝑘
𝑚𝑋𝑘

𝑖̂  

(7.34) 

 Reexamine the knowns and unknowns in Equations (7.33) and (7.34). On the l.h.s., 

𝑋𝑚 , 𝑚 = 0,1,… , 𝑁 − 1 are obtained by the DFT calculation of input signal; on the r.h.s., the 

quantities with hats are the unknowns, i.e., the phasors that are apropos of the “true” harmonic 

components in the input signal. Reformat Equations (7.33) and (7.34) into matrix forms: 

 

[

√2𝑋0,𝑟

√2𝑋1,𝑟

⋮

√2𝑋𝑁−1,𝑟

] = 𝜞

[
 
 
 
 𝑋0

𝑟̂

𝑋1
𝑟̂

⋮
𝑋𝐾−1

𝑟̂ ]
 
 
 
 

 

𝜞 ≡

[
 
 
 

𝛽0
0 𝛽1

0

𝛽0
1 𝛽1

1

⋯ 𝛽𝐾−1
0

⋯ 𝛽𝐾−1
1

⋮ ⋮
𝛽0

𝑁−1 𝛽1
𝑁−1

⋮
⋯ 𝛽𝐾−1

𝑁−1

𝛾0
0 𝛾1

0

𝛾0
1 𝛾1

1

⋯ 𝛾𝐾−1
0

⋯ 𝛾𝐾−1
1

⋮ ⋮
𝛾0

𝑁−1 𝛾1
𝑁−1

⋮
⋯ 𝛾𝐾−1

𝑁−1]
 
 
 

 

(7.35) 

 

[

√2𝑋0,𝑖

√2𝑋1,𝑖

⋮

√2𝑋𝑁−1,𝑖

] = 𝜟

[
 
 
 
 𝑋0

𝑟̂

𝑋1
𝑟̂

⋮
𝑋𝐾−1

𝑟̂ ]
 
 
 
 

 

𝜟 ≡

[
 
 
 

𝛿0
0 𝛿1

0

𝛿0
1 𝛿1

1

⋯ 𝛿𝐾−1
0

⋯ 𝛿𝐾−1
1

⋮ ⋮
𝛿0

𝑁−1 𝛿1
𝑁−1

⋮
⋯ 𝛿𝐾−1

𝑁−1

𝜀0
0 𝜀1

0

𝜀0
1 𝜀1

1

⋯ 𝜀𝐾−1
0

⋯ 𝜀𝐾−1
1

⋮ ⋮
𝜀0

𝑁−1 𝜀1
𝑁−1

⋮
⋯ 𝜀𝐾−1

𝑁−1]
 
 
 

 

(7.36) 

Note that, with all the aliasing components in the input signal effectively removed, the 

highest observable harmonic order is always higher than or equal to the actual existing harmonic 
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order, i.e., 𝑁 ≥ 𝐾. Therefore, least-square technique can be used to calculate the real and imagi-

nary parts of the theoretical phasors, shown in Equations (7.37) – (7.39). 

 

[
 
 
 
 𝑋0

𝑟̂

𝑋1
𝑟̂

⋮
𝑋𝐾−1

𝑟̂ ]
 
 
 
 

= 𝜞+ [

√2𝑋0,𝑟

√2𝑋1,𝑟

⋮

√2𝑋𝑁−1,𝑟

] (7.37) 

 

[
 
 
 
 𝑋0

𝑖̂

𝑋1
𝑖̂

⋮

𝑋𝐾−1
𝑖̂ ]

 
 
 
 

= 𝜟+ [

√2𝑋0,𝑖

√2𝑋1,𝑖

⋮

√2𝑋𝑁−1,𝑖

] (7.38) 

 𝑋𝑘̂ = 𝑋𝑘
𝑟̂ + j𝑋𝑘

𝑖̂  (7.39) 

where (𝑿)+ is the Moore-Penrose inverse of a matrix 𝑿 [98], and 𝑋1̂ is the desired fundamental 

frequency phasor component. 

7.5 Hybridization Framework for Phasor Parameter Calculation  

7.5.1 Signal Modeling of Proposed Algorithm 

 In this Dissertation, a hybridization framework is proposed to incorporate the benefits of 

both Fourier-based algorithms and curve-fitting based algorithms, as originally proposed in 

[104]. The significance of this hybridization framework in phasor calculation is that the slow-

varying decaying DC component can be effectively represented in signal modeling, so that it 

does not result in DFT leakage components. 

The rationale of the modeling is that both the decaying envelope and the sinusoidal pat-

tern should be captured and incorporated in the modeling of the fundamental frequency signal 

𝑥1(𝑡):  
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𝑥1(𝑡) = 𝑎(𝑡) ∙ cos [2𝜋𝑓0𝑡 + 2𝜋∫∆𝑓(𝑡) d𝑡 + 𝜙0] 

= 𝑎(𝑡) ∙ cos[2𝜋𝑓0𝑡 + 𝜙(𝑡)] 

(7.40) 

As a common practice in time domain methods [34]-[36], Equation (7.40) can be ex-

panded as: 

 𝑥1(𝑡) = 𝑞(𝑡) cos(2𝜋𝑓0𝑡 ) + 𝑟(𝑡) sin(2𝜋𝑓0𝑡 ) (7.41) 

where 𝑞(𝑡) = 𝑎(𝑡)cos[𝜙(𝑡)],  𝑟(𝑡) = −𝑎(𝑡)sin[𝜙(𝑡)].  

Note that Equation (7.40) reflects the slow variations on 𝑓0 component, represented by 

𝑎(𝑡) and 𝜙(𝑡) terms, but does not take into account any harmonic components. Based on the 

modeling of electromagnetic dynamic waveforms in Section 5.3.2, Equation (7.41) is rewritten 

so that harmonic components are reflected: 

 𝑥(𝑡) = 𝑥1(𝑡) + ∑ ℎ(𝑡; 𝑘, 𝒂)

𝐾

𝑘=2

 (7.42) 

where ℎ(𝑡; 𝑘, 𝒂) reflects harmonic terms, 𝑘 is harmonic order, 𝒂 is a vector showing the har-

monic characteristics, such as amplitude, phase angle, 𝑡 is time.  

One common process to treat 𝑞(𝑡) and 𝑟(𝑡) in Equation (7.41) is approximation using 

polynomials [34]-[36], shown in Equation (7.43): 

 𝑞(𝑡) = ∑ 𝑐𝑚𝑃(𝑡; 𝑚)

𝑀−1

𝑚=0

; 𝑟(𝑡) = ∑ 𝑠𝑚𝑃(𝑡; 𝑚)

𝑀−1

𝑚=0

 (7.43) 

where 𝑚 is the order of polynomial 𝑃(𝑡;𝑚), 𝑀 is the number of terms in the approximation. 

Most cases in literature use 𝑀 = 3. 

If we rewrite Equation (7.42), we have: 
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𝑥(𝑡) = [∑ 𝑐𝑚𝑃(𝑡;𝑚)

𝑀−1

𝑚=0

] ∙ cos(2𝜋𝑓0𝑡) + 

[∑ 𝑠𝑚𝑃(𝑡; 𝑚)

𝑀−1

𝑚=0

] ∙ sin(2𝜋𝑓0𝑡) + ∑ ℎ(𝑡; 𝑘, 𝒂)

𝐾

𝑘=2

 

(7.44) 

In polynomial methods, harmonic terms ∑ ℎ(𝑡; 𝑘, 𝒂)𝐾
𝑘=2  are neglected. In DFT-based 

methods, 𝑀 is routinely set to 1, resulting in the commonly known spectrum representation. 

Consequently, polynomial methods are susceptible to harmonic infiltration, whereas DFT-based 

methods cannot accurately capture the slow-varying waveform properties in input waveforms. 

7.5.2 Hybridization of Fourier and Polynomial Methods 

 In this Section, a hybrid method is proposed, which combines the merits of both Fourier-

based methods and polynomial curve-fitting methods [40]. Specifically, the proposed algorithm 

is immune to harmonics and noise, and is able to mitigate the impact of slow-varying phenome-

non inside a data window, including exponentially decaying DC component. The DFT of a data 

window is expressed as: 

 𝑋0̇ = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖
2𝜋
𝑁

𝑘

𝑁−1

𝑘=0

 (7.45) 

where, 𝑥(𝑘∆𝑡) = 𝑞(𝑘∆𝑡) cos (
2𝜋𝑘

𝑁
) − 𝑟(𝑘∆𝑡) sin (

2𝜋𝑘

𝑁
)  

 Expand 𝑞(𝑘∆𝑡) and 𝑟(𝑘∆𝑡) at the center of data window, denoted by 𝑡𝑐 = 𝑁∆𝑡/2: 

𝑞(𝑘∆𝑡) ≈ 𝑐0 + 𝑐1(𝑘∆𝑡 − 𝑡𝑐) + 𝑐2(𝑘∆𝑡 − 𝑡𝑐)
2

= 𝑐0 + 𝑐1 (𝑘 −
𝑁

2
)∆𝑡 + 𝑐2 (𝑘 −

𝑁

2
)

2

∆𝑡2 

(7.46) 
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𝑟(𝑘∆𝑡) ≈ 𝑠0 + 𝑠1(𝑘∆𝑡 − 𝑡𝑐) + 𝑠2(𝑘∆𝑡 − 𝑡𝑐)
2

= 𝑠0 + 𝑠1 (𝑘 −
𝑁

2
)∆𝑡 + 𝑠2 (𝑘 −

𝑁

2
)

2

∆𝑡2 

(7.47) 

 Expand 𝑥(𝑘∆𝑡) in Equation (7.45) with Equations (7.46) and (7.47): 

𝑋0,𝑅𝑒 = 𝐑𝐞[𝑋0̇] = ∑ [𝑐0 + 𝑐1 (𝑘 −
𝑁

2
)∆𝑡 + 𝑐2 (𝑘 −

𝑁

2
)

2

∆𝑡2]

𝑁−1

𝑘=0

cos2 (
2𝜋𝑘

𝑁
) 

− ∑ [𝑠0 + 𝑠1 (𝑘 −
𝑁

2
)∆𝑡 + 𝑠2 (𝑘 −

𝑁

2
)

2

∆𝑡2]

𝑁−1

𝑘=0

sin (
2𝜋𝑘

𝑁
) cos (

2𝜋𝑘

𝑁
) 

(7.48) 

𝑋0,𝐼𝑚 = 𝐈𝐦[𝑋0̇] = ∑ [𝑠0 + 𝑠1 (𝑘 −
𝑁

2
)∆𝑡 + 𝑠2 (𝑘 −

𝑁

2
)

2

∆𝑡2]

𝑁−1

𝑘=0

sin2 (
2𝜋𝑘

𝑁
) 

− ∑ [𝑐0 + 𝑐1 (𝑘 −
𝑁

2
)∆𝑡 + 𝑐2 (𝑘 −

𝑁

2
)

2

∆𝑡2]

𝑁−1

𝑘=0

sin (
2𝜋𝑘

𝑁
) cos (

2𝜋𝑘

𝑁
) 

(7.49) 

 Organize Equations (7.48) and (7.49) in terms of 𝑐𝑖 and 𝑠𝑖 coefficients: 

𝑋0,𝑅𝑒 = 𝑐0 ∑ cos2 (
2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

+ 𝑐1 ∑ (𝑘 −
𝑁

2
)∆𝑡 ∙ cos2 (

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

+ 𝑐2 ∑ (𝑘 −
𝑁

2
)

2

∆𝑡2 ∙ cos2 (
2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

− 𝑠0 ∑ sin (
2𝜋𝑘

𝑁
) cos (

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

 

(7.50) 
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−𝑠1 ∑ (𝑘 −
𝑁

2
)∆𝑡 ∙ sin (

2𝜋𝑘

𝑁
)cos (

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

− 𝑠2 ∑ (𝑘 −
𝑁

2
)

2

∆𝑡2 ∙ sin (
2𝜋𝑘

𝑁
)(

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

 

= 𝛼0
0𝑐0 + 𝛼1

0𝑐1 + 𝛼2
0𝑐1 + 𝜆0

0𝑠0 + 𝜆1
0𝑠1 + 𝜆2

0𝑠1 

𝑋0,𝐼𝑚 = 𝑐0 ∑ sin (
2𝜋𝑘

𝑁
) cos (

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

− 𝑐1 ∑ (𝑘 −
𝑁

2
)∆𝑡 ∙ sin (

2𝜋𝑘

𝑁
)cos (

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

− 𝑐2 ∑ (𝑘 −
𝑁

2
)

2

∆𝑡2 ∙ sin (
2𝜋𝑘

𝑁
) cos (

2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

+ 𝑠0 ∑ cos2 (
2𝜋𝑘

𝑁
)

𝑁−1

𝑘=0

 

+𝑠1 ∑ (𝑘 −
𝑁

2
)∆𝑡 ∙

𝑁−1

𝑘=0

cos2 (
2𝜋𝑘

𝑁
) + 𝑠2 ∑ (𝑘 −

𝑁

2
)

2

∆𝑡2 ∙

𝑁−1

𝑘=0

cos2 (
2𝜋𝑘

𝑁
) 

= 𝜆0
0𝑐0 + 𝜆1

0𝑐1 + 𝜆2
0𝑐1 + 𝛽0

0𝑠0 + 𝛽1
0𝑠1 + 𝛽2

0𝑠1 

(7.51) 

 In Equations (7.50) and (7.51), there are two knowns (real and imaginary parts of DFT) 

and six unknown. In order to balance the numbers of known and unknown, three equally spaced 

consecutive windows are used, and the signals are approximated at 𝑡𝑐, 𝑡𝑐 + ∆𝑡, and 𝑡𝑐 + 2∆𝑡, re-

spectively. The assumption is that during the phasor calculation period (within 2 cycles) of elec-

tromagnetic transient events, the variations in electrical quantities in a data window is small 
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enough, so that curve-fitting coefficients do not change when moving windows are utilized. The 

moving window scheme is illustrated in Figure 13.  

 

Figure 13 Illustration of overlapping windows and hop size. 

Reprinted with permission from C. Qian and M. Kezunovic, "Dynamic synchrophasor estimation 

with modified hybrid method," 2016 IEEE Power & Energy Society Innovative Smart Grid 

Technologies Conference (ISGT), Minneapolis, MN, pp. 1-5, Sep. 2016. Copyright 2016, IEEE. 

 For the second window, sampling indices are from 1 to 𝑁, and the DFT of waveform: 

 𝑋1̇ = ∑ 𝑥[(𝑘 + 1)∆𝑡]𝑒−𝑖
2𝜋
𝑁

𝑘

𝑁−1

𝑘=0

= ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖
2𝜋
𝑁

(𝑘−1)

𝑁

𝑘=1

 (7.52) 

or, 𝑋1̇𝑒
−𝑖

2𝜋
𝑁 = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖

2𝜋
𝑁

𝑘

𝑁

𝑘=1

 (7.53) 

 Similarly, for the third window, where the sample indices are from 2 to 𝑁 + 1, the DFT 

of waveform can be calculated: 

 𝑋1̇𝑒
−𝑖

2𝜋
𝑁

∙2 = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖
2𝜋
𝑁

𝑘

𝑁+1

𝑘=2

 (7.54) 

 The rest of the derivation is similar to Equations (7.46)-(7.51). Note that the left-hand 

sides of Equations (7.53) and (7.54) correspond to recursive DFT, where the instant phase angle 
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of sinusoid with nominal frequency is considered as the reference angle. Recursive DFT is essen-

tially an angle adjustment, which can be done conveniently in practice. The r.h.s. of Equations 

(7.52) and (7.53) have the same structure as Equations (7.45), and the only difference is the indi-

ces of summation, which does not increase any computation complexity.  

 The fitting coefficients can be computed as follows: 

 𝛼𝑚
𝑛 = ∑ (𝑘 −

𝑁

2
)

𝑚

∆𝑡𝑚cos𝑚

𝑁+𝑛−1

𝑘=𝑛

(
2𝜋𝑘

𝑁
) (7.55) 

 𝛽𝑚
𝑛 = ∑ (𝑘 −

𝑁

2
)

𝑚

∆𝑡𝑚sin𝑚

𝑁+𝑛−1

𝑘=𝑛

(
2𝜋𝑘

𝑁
) (7.56) 

 𝜆𝑚
𝑛 = − ∑ (𝑘 −

𝑁

2
)

𝑚

∆𝑡𝑚sin (
2𝜋𝑘

𝑁
) cos (

2𝜋𝑘

𝑁
)

𝑁+𝑛−1

𝑘=𝑛

 (7.57) 

where 𝑚, 𝑛 = 0,1,2…, the superscript on coefficient denotes the number of windows, and the 

subscript indicates the order of corresponding polynomial. In order to construct a solvable matrix 

equation, max(𝑚) = max (𝑛) needs to be satisfied. 

In the case where max(𝑚) = max(𝑛) = 2, the matrix equation is as follows, 

 

[
 
 
 
 
 
 
 

𝐑𝐞[𝑋0̇]

𝐑𝐞[𝑋1̇𝜃]

𝐑𝐞[𝑋2̇𝜃
2]

𝐈𝐦[𝑋0̇]

𝐈𝐦[𝑋1̇𝜃]

𝐈𝐦[𝑋2̇𝜃
2]]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝛼0

0 𝛼1
0 𝛼2

0

𝛼0
1 𝛼1

1 𝛼2
1

𝛼0
2 𝛼1

2 𝛼2
2

𝜆0
0 𝜆1

0 𝜆2
0

𝜆0
1 𝜆1

1 𝜆2
1

𝜆0
2 𝜆1

2 𝜆2
2

𝜆0
0 𝜆1

0 𝜆2
0

𝜆0
1 𝜆1

1 𝜆2
1

𝜆0
2 𝜆1

2 𝜆2
2

𝛽0
0 𝛽1

0 𝛽2
0

𝛽0
1 𝛽1

1 𝛽2
1

𝛽0
2 𝛽1

2 𝛽2
2]
 
 
 
 
 
 

[
 
 
 
 
 
𝑐0

𝑐1
𝑐2

𝑠0
𝑠1

𝑠2]
 
 
 
 
 

 (7.58) 

where 𝜃 ≡ 𝑒−𝑖
2𝜋

𝑁  is the rotating factor which does not change the amplitude of the phasor and ro-

tate the phase angle clockwise by one sampling angle interval. Note that Equation (7.58) is a lin-
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ear matrix equation, where the matrix on the right-hand side is fixed, whose inverse can be calcu-

lated and stored beforehand. As a result, solving the fitting coefficient is just a matrix multiplica-

tion. 

 Traditionally, frequency is calculated using the differentiation of consecutive angle val-

ues. This method may perform well under simulation conditions with noiseless test signals. 

However, when noise is presented in real measurements, differentiation will inevitably magnify 

computation uncertainties. Instead, two matrices are constructed for frequency deviation and 

ROCOF estimation using acquired fitting coefficients. 

 Taking the derivative of 𝑝(𝑡) = 𝑎(𝑡)𝑒 j𝜙(𝑡): 

 𝑝′(𝑡) = 𝑎′(𝑡)𝑒j𝜙(𝑡) + j𝑝(𝑡)𝜙′(𝑡) (7.59) 

 Separating the real and imaginary parts of Equation (7.49), there is: 

 𝐑𝐞[𝑝′(𝑡)] = 𝑎′(𝑡) cos𝜙(𝑡) − 𝑠(𝑡)𝜙′(𝑡) = 𝑐1 (7.60) 

 𝐈𝐦[𝑝′(𝑡)] = 𝑎′(𝑡) sin𝜙(𝑡) + 𝑐(𝑡)𝜙′(𝑡) = 𝑠1 (7.61) 

Or equivalently expressed: 

 [
𝑐1

𝑠1
] = [

cos𝜑(𝑡) −𝑠0

sin 𝜑(𝑡) 𝑐0
] [

𝑎′(𝑡)

𝜙′(𝑡)
] (7.62) 

 Solving Equation (7.62), frequency deviation can be acquired: 

 ∆𝑓(𝑡) =
𝜙′(𝑡)

2𝜋
 (7.63) 

7.5.3 Generic Hybridization Framework for Linear Algorithms 

 The hybridization example in Section 7.5.2 can be generalized to a generic framework 

[71]. The purpose of this generalization is to provide a platform so that the merits of multiple al-

gorithms can be exploited simultaneously. The assumption of this framework is that each candi-
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date algorithm is based on linear model. This means in each candidate algorithm, the signal is de-

composed by projecting the signal onto preselected vector space, and thereafter interpreted as the 

coefficient on each basis vector. For example, both DFT and polynomial fitting algorithm fit into 

this criterion. The proposed algorithm hybridization framework is illustrated in Figure 14. 

 

Figure 14 Proposed hybridization framework for two algorithms. 

Reprinted with permission from C. Qian and M. Kezunovic, "Hybridization framework for im-

proved dynamic phasor parameter estimation algorithms," 2019 IEEE Power & Energy Society 

Innovative Smart Grid Technologies Conference (ISGT), Washington, D.C., pp. 1-5, Feb. 2019. 

Copyright 2019, IEEE. 

Instead of directly estimating phasor parameters, the proposed framework acknowledges 

that neither algorithm alone will yield satisfactory results. Algorithm A in this framework is lev-

eraged as a filter with which some of the undesired features are removed from the input. The 

principle is, when the reconstructed waveform x′ is a desirable replica of input waveform x, the 

same output from Algorithm A (filter) should be expected. Candidate methods from either fre-

quency domain or time domain are selected for a simple demonstration of the proposed frame-

work.  

7.5.3.1 Monomial Fitting Method Used for Reconstruction 

 In this case, input signal measurement vector 𝑥(𝒕) are projected onto monomial basis, 
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𝜸𝑖 ≝ 𝒕𝑖cos (2𝜋𝑓0𝒕), 𝑖 = 0,1,2,…𝑀 − 1 

𝜹𝑖 ≝ 𝒕𝑖sin (2𝜋𝑓0𝒕), 𝑖 = 0,1,2,…𝑀 − 1 

 Denote 𝑥′(𝒕) as the reconstructed waveform measurement vector in M-dimensional vec-

tor space 𝕄 = span{𝜸𝑖 , 𝜹𝑖}, 𝑖 = 0,1,2,…𝑀 − 1. Then 𝑥′(𝒕) can be expressed in terms of the ba-

sis: 

 𝑥′(𝒕) = 𝐻𝒄 (7.64) 

where, 

 

𝐻 = [𝜸0, 𝜹0, 𝜸1, 𝜹1, 𝜸2, 𝜹2, … , 𝜸𝑀−1, 𝜹𝑀−1] 

𝒄 = [𝑐0, 𝑠0, 𝑐1, 𝑠1, 𝑐2, 𝑠2, … , 𝑐𝑀−1, 𝑠𝑀−1]
T 

(7.65) 

Monomial fitting method represented in Equations (7.64) and (7.65) captures the slow 

varying dynamics in waveform envelopes with high accuracy, and therefore, we may assume 

𝑥(𝒕) = 𝑥′(𝒕) = 𝐻𝒄 with acceptable fitting error. On the other hand, harmonic terms can be fil-

tered out using Algorithm A (DFT in this case). Therefore, if waveform 𝑥′(𝒕) contains all the de-

sired information in a particular application, using Algorithm A to filter either waveform 𝑥(𝒕) or 

waveform 𝑥′(𝒕) should yield the same results.  

For Algorithm A, DFT calculation can be defined as: 

 𝑋(𝒌) = 𝑊𝑥(𝒕) (7.66) 

where 𝑊 is the DFT matrix, whose elements are determined by: 

 𝑊𝑚,𝑛 =
1

√𝑁
𝜔𝑚𝑛 , 𝜔 ≡ 𝑒−j

2𝜋
𝑁 ,𝑚, 𝑛 = 0,1,2, … , 𝑁 − 1 (7.67) 

𝑥(𝒕) = 𝑠(𝒕) + ℎ(𝒕) 

where 𝑠(𝒕) is the harmonic free signal, and ℎ(𝒕) st the harmonic terms. 



 

74 

 

 

From the mathematical expression, it can be seen that each row of matrix 𝑊 extracts one 

frequency component from input waveform. Due to the restriction of Nyquist theorem, up to half 

the sampling frequency can be extracted, the positive and negative images are actually complex 

conjugate pairs. Matrix 𝑊 can be rearranged as shown in Equation (7.68): 

 

𝑊 = [
𝐴
𝑊′] 

𝐴 =
1

√𝑁
[

1 𝜔𝑝 𝜔2𝑝 ⋯ 𝜔(𝑁−1)𝑝

1 𝜔𝑁−𝑝 𝜔2(𝑁−𝑝) ⋯ 𝜔(𝑁−1)(𝑁−𝑝)
] 

(7.68) 

where 𝑝 is the number of nominal cycles in an observation window. Since the only frequency 

components of interest are ±60Hz, only two rows associated with ±60Hz of matrix 𝑊 are used, 

stored in matrix 𝐴.  

Applying Fourier analysis 𝑊 on 𝑥(𝒕): 

 𝑊𝑥(𝒕) = [
𝐴
𝑊′] [𝑠(𝒕) + ℎ(𝒕)] = [

𝐴𝑠(𝒕) + 𝐴ℎ(𝒕)

𝑊′𝑠(𝒕) + 𝑊′ℎ(𝒕)
] (7.69) 

The expression 𝐴𝑥(𝒕) = 𝐴𝑠(𝒕) + 𝐴ℎ(𝒕) yields the Fourier spectrum components of 

±60Hz, which are in fact, complex conjugate. Since ℎ(𝒕) does not contain any ±60Hz compo-

nents, 𝐴ℎ(𝒕) ≡ 0. For the sake of simplicity, only ±60Hz component will be analyzed. As a re-

sult, matrix 𝐴 instead of 𝑊 is used for Fourier analysis.  

As discussed before, Fourier analysis is performed on both the original waveform 𝑥(𝒕) 

and the reconstructed waveform 𝑥′(𝒕), and the results should be the same when reconstruction is 

assumed to be accurate. Thus, the following simple identity holds. 

 𝐴𝑥′(𝒕) = 𝐴𝐻𝒄 ≅ 𝐴𝑥(𝒕) = 𝐴𝑓(𝒕) ≔ 𝒃 (7.70) 
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where 𝐴 is the DFT matrix extracting real and imaginary parts of ±60Hz components, 𝐻 is de-

fined in Equation (7.65). 𝑥(𝒕) is input waveform sample vector, 𝒃 is the equivalent real and im-

aginary parts of ±60Hz complex conjugate components, 𝒄 is the unknown vector of interest. 

Equation (7.70) is the theoretical justification of proposed hybrid method where DFT is 

essentially used to reject harmonics. The same logic can also be applied when DFT is used as re-

construction function, as discussed in the following section. 

7.5.3.2 DFT Used for Reconstruction 

It should be noted that DFT is a curve fitting method as well, where the basis vectors are 

in fact harmonic components. Therefore, the formulation of this scheme should be essentially the 

same as in Section 7.5.3.1.  

Consider reconstructed waveform 𝑥′(𝒕) with three frequency components, shown in 

Equation (7.71): 

 𝑥′(𝒕) = 𝑀𝒄 (7.71) 

where,  

 

𝑀 = [𝒎𝟎, 𝒏𝟎, 𝒎𝟏, 𝒏𝟏,𝒎𝟐, 𝒏𝟐] 

𝒎𝒊 ≔ cos(2𝜋𝑓𝑖𝒕) 

𝒏𝒊 ≔ −sin(2𝜋𝑓𝑖𝒕) 

𝒄 ≔ [𝑐0, 𝑠0, 𝑐1, 𝑠1, 𝑐2, 𝑠2]
T 

(7.72) 

where 𝑓𝑖 are pre-selected frequencies that can be the output of spectrum analysis of input wave-

form. The case of three frequency components are selected here as an example. Polynomial fit-

ting method is used as the filtering algorithm. 

Similarly, we have: 
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 𝒅 ≔ 𝐻+𝑥(𝒕) ≅ 𝐻+𝑀𝒄 (7.73) 

where 𝐻+ ≡ (𝐻T𝐻)−1𝐻T denotes pseudo-inverse of matrix 𝐻, as defined in Equation (6.73). 

Note that the column space of 𝐻 is incomplete, since limited terms are used for expansion. 

To demonstrate how to improve the accuracy of Equation (7.73), an analogous example 

in three-dimension is illustrated, shown in Figure 15. Assume vector 𝒂 (blue arrow) is the “true” 

waveform vector in 3-D, which is practically observed and thus approximated in 2-D space 𝕊 =

span{𝒊, 𝒋}}. Note that, since 𝒂 ∉ 𝕊, approximation error from projection is inevitable. The effect 

of neglecting the rest of the basis in a complete space is discussed. 

Denote the neglected base vector as 𝒌1 (red arrow), then the accurate projection of vector 

𝒂 should be: 

𝒂 = (𝒊, 𝒋, 𝒌1) ∙ (𝑖1, 𝑗1, 𝑘1)
T 

When least square is used, an orthogonal complementary vector of 𝕊, denoted as 𝒌2, is 

assumed instead, and the resultant projection would be: 

𝒂 = (𝒊, 𝒋, 𝒌2) ∙ (𝑖2, 𝑗2, 𝑘2)
T 

Besides the error from vector space truncation when forming 𝐻 matrix, more errors are 

introduced when utilizing a non-orthogonal fitting vector space. 
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Figure 15 Illustration of least square approximation error. 

As a result, it is important to find a vector space whose complementary space is orthogo-

nal to it, and has the same column space as 𝐻. This is effectively done by QR factorization 

[105]-[106], expressed in Equation (7.74). 

 𝐻 = 𝑄𝑅 = [𝑄̂ ⋮ 𝑄2] [
𝑅̂
𝟎
] (7.74) 

where matrices 𝑄̂ and 𝐻 have the same column space, which is orthogonal to the column space 

of matrix 𝑄2, and 𝑄−1 = 𝑄T. From this point, matrix 𝑄̂ will be used instead of 𝐻.  

Rewrite Equation (7.73), since, 

 𝑥(𝒕) = 𝐻𝒅 = [𝑄̂, 𝑄2] [
𝑅̂
𝟎
] 𝒅 = [𝑄̂, 𝑄2] [

𝑅̂𝒅
𝟎

] (7.75) 

Therefore, 

 [𝑅̂𝒅
𝟎

] = ([𝑄,̂ 𝑄2])
−1𝑥(𝒕) = ([𝑄̂, 𝑄2])

𝑇𝑥(𝒕) = [
𝑄̂𝑇

𝑄2
𝑇] 𝑥(𝒕) (7.76) 

Neglecting orthogonal complementary subspace 𝑄2, and rewrite Equation (7.73): 
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 𝑅̂𝒅 = 𝑄̂𝑇𝑥(𝒕) = 𝑄̂𝑇𝑀𝒄 (7.77) 

Note that vector 𝒅 is implicit, and does not need to be calculated. By utilizing QR factori-

zation of fitting matrix 𝐻, extra approximation error from least square calculation is avoided. 

7.6 Simulation Results  

7.6.1 Fundamental Frequency Estimation 

The proposed technique is implemented in MathWorks Simulink software. Sampling fre-

quency is 6kHz. In order to evaluate the states at each time step, both EKF and UKF are used. 

Three sets of simulations are conducted to demonstrate better performance of UKF-based ap-

proach over EKF-based approach in the frequency estimation problem: EKF using three-phase 

measurements, UKF using three-phase measurements, UKF using single-phase measurement. 

The performance of the three cases are evaluated through metrics including optimality/bias, and 

sensitivity toward initial values. 

7.6.1.1 Test Scenarios and Evaluation Metrics 

To test the performance of the proposed approach in various power system operating con-

ditions, both steady-state and dynamic-state waveforms are used in the simulation, including 

pure sinusoidal signals, steady-state signals with harmonic infiltration, amplitude-modulated sig-

nals, phase-modulated signals, and frequency ramping signals. Test signal parameters are deter-

mined based on IEEE standard. AWGN is added to pure sinusoidal signals, where the SNR is ei-

ther 20dB or 40dB. The SNR is defined as: 

 SNR = 10 ∙ log10 (
𝜎signal

2

𝜎noise
2 ) = 20 ∙ log10 (

𝐴signal

𝐴noise
) (7.78) 

where 𝜎2 is the variance, 𝐴 is the RMS amplitude. Practically, 𝐴noise  is the standard deviation of 

noise, i.e., 𝜎noise.  
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As discussed before, since the system equation is highly nonlinear, neither EKF nor UKF 

will attain optimality in terms of achieving MMSE solutions. This sub-optimality condition will 

result in bias between estimated fundamental frequency and “true” theoretical frequency. Be-

sides, the initial conditions consist of current step sample, previous step sample, and angular in-

crement over one sampling interval (proportional to angular frequency). Depending on the initial 

conditions for states, the nonlinearity of state equations may lead to undesirable though mathe-

matically valid solutions, if not causing divergence. Thus, the sensitivity to initial conditions 

should also be evaluated.  

7.6.1.2 Simulations with 40dB AWGN Input 

In this test scenario, 40dB SNR is associated with the signal uncertainty characterized by 

a standard deviation of 1% of the signal amplitude. The test signal is shown in Figure 16 (a) and 

(b).   
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Figure 16 Test Waveforms: 59.5Hz pure cosine wave with noise infiltration.  

(a). Sinusoidal wave with 40dB AWGN. (b). Local Zoom-in of the Waveform in (a). (c). Sinus-

oidal wave with 20dB AWGN. Orange curves are noiseless signals. 

Reprinted with permission from C. Qian and M. Kezunovic, "Power system fundamental fre-

quency estimation using Unscented Kalman Filter," 2019 IEEE Power & Energy Society Gen-

eral Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, IEEE. 

 Frequency estimation bias: 

Test results are shown in Table 1. It can be observed that highly accurate frequency esti-

mation results can be achieved by using either single-phase or three-phase waveform measure-

ments.  

Table 1. Summary of Frequency Estimation for Input with 40dB AWGN 

Reprinted with permission from C. Qian and M. Kezunovic, "Power system fundamental fre-

quency estimation using Unscented Kalman Filter," 2019 IEEE Power & Energy Society Gen-

eral Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, IEEE. 

Case Details UKF-Single Phase UKF-Three Phase 

Steady-state unbalanced < 5×10-7 Hz < 5×10-7 Hz 

Steady-state harmonics < 5×10-7 Hz < 5×10-7 Hz 

Amplitude modulation < 5×10-7 Hz < 5×10-7 Hz 

Phase modulation < 5×10-7 Hz < 5×10-7 Hz 

Frequency ramp < 5×10-7 Hz < 5×10-7 Hz 
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 Sensitivity to initial conditions: 

As aforementioned, state 𝑥3 is proportional to angular frequency 𝜔 = 2𝜋𝑓, and its initial 

value is set to be nominal. States 𝑥1 and 𝑥2 are related to instantaneous sample values, and can-

not be predicted, and thus are set arbitrarily to 1 p.u. In the test, the selected initial values may 

deviated from the “true” starting point of the system states in either frequency or amplitude. Fun-

damental frequency of input test signal ranges from 55Hz to 65Hz, with 1Hz increment. Besides, 

the amplitude deviation between selected initial conditions and “true” amplitude may be any-

where between -100% and 100%. EKF approach is tested as well to show the comparison. Test 

results are shown in Table 2. 

Table 2. Summary of Sensitivity to Initial Conditions for Input with 40dB AWGN 

Reprinted with permission from C. Qian and M. Kezunovic, "Power system fundamental fre-

quency estimation using Unscented Kalman Filter," 2019 IEEE Power & Energy Society Gen-

eral Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, IEEE. 

Case Details EKF-Three Phase UKF-Three Phase 

Frequency deviation ±1Hz to ±5Hz Converge Converge 

Amplitude deviation ±50% Diverge Converge 

Amplitude deviation ±25% Diverge Converge 

Amplitude deviation ±10% Converge Converge 

 

As can be observed, EKF-based approach may diverge when the selected initial values 

deviate more than 25% off the true values. In practice, this essentially means that the conver-

gence depends on when the waveform samples are taken. There is at least 75% chance that EKF-

based method may diverge. On the other hand, proposed UKF-based method will always con-

verge.  



 

82 

 

 

7.6.1.3 Simulations with 20dB AWGN Input 

In this test case, 20dB SNR is associated with the signal uncertainty characterized by a 

standard deviation of 10% of the signal amplitude. As can be seen in Figure 16 (c), the noise 

causes visibly significant distortion.  

 Frequency estimation bias: 

Test results are tabulated in Table 3. Compared to the 40dB noise input case, higher noise 

level increases frequency estimation bias by at least 10 times. Three-phase measurements im-

prove estimation accuracy than single-phase measurements. Regardless, the estimation accuracy 

is still sufficiently high. 

Table 3. Summary of Frequency Estimation Bias for Input with 20dB AWGN 

Reprinted with permission from C. Qian and M. Kezunovic, "Power system fundamental fre-

quency estimation using Unscented Kalman Filter," 2019 IEEE Power & Energy Society Gen-

eral Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, IEEE. 

Case Details UKF-Single Phase UKF-Three Phase 

Steady-state  

unbalanced 
< 1×10-5 Hz < 5×10-6 Hz 

Steady-state 

harmonics 
< 1×10-6 Hz < 1×10-6 Hz 

Amplitude 

modulation 
< 5×10-6 Hz < 2×10-6 Hz 

Phase modulation < 1×10-6 Hz < 1×10-6 Hz 

Frequency ramp < 1×10-6 Hz < 1×10-6 Hz 

 

 Sensitivity to initial conditions: 

As shown in Table 4, similar to the 40dB noise input case, EKF-based approach is sensi-

tive to the initial values of states 𝑥1 and 𝑥2. Consequently, there is at least 75% chance that EKF-

based method does not converge.  
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Table 4. Summary of Sensitivity to Initial Conditions for Input with 20dB AWGN 

Reprinted with permission from C. Qian and M. Kezunovic, "Power system fundamental fre-

quency estimation using Unscented Kalman Filter," 2019 IEEE Power & Energy Society Gen-

eral Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, IEEE. 

Case Details EKF-Three Phase UKF-Three Phase 

Frequency deviation ±1Hz to ±5Hz Converge Converge 

Amplitude deviation ±50% Diverge Converge 

Amplitude deviation ±25% Diverge Converge 

Amplitude deviation ±10% Converge Converge 

 

7.6.1.4 Influence of Sigma Point Selection on Estimation Bias 

Due to the nonlinearity of state equations, the frequency estimation based on UKF will 

inevitably result in sub-optimal solutions, i.e., estimation biases. The tuning of UKF procedure, 

namely, the selection of parameters 𝛼, 𝛽, and 𝜅 in Equations (7.23)-(7.27) will affect frequency 

estimation results. This is summarized in Table 5. UKF-three phase test is used in this simula-

tion, where this nominal frequency is 60.5Hz. The value shown in the table is the maximum esti-

mation bias in all types of tests.  

Table 5. Influence of Sigma Point Selection on Biases in Frequency Estimation 

Reprinted with permission from C. Qian and M. Kezunovic, "Power system fundamental fre-

quency estimation using Unscented Kalman Filter," 2019 IEEE Power & Energy Society Gen-

eral Meeting (PESGM), Atlanta, GA, USA, pp. 1-5, Aug. 2019. Copyright 2019, IEEE. 

Case Details 20dB Noise 40dB Noise 

𝛼 = 1 × 10−3 

𝛽 = 2, 𝜅 = 0 
5×10-4 Hz 5×10-4 Hz 

𝛼 = 0.1 

𝛽 = 2, 𝜅 = 0 
< 5×10-7 Hz < 5×10-7 Hz 

𝛼 = 0.1 

𝛽 = 4, 𝜅 = 0 
1.5×10-6 Hz 5×10-7 Hz 

𝛼 = 0.1 

𝛽 = 2, 𝜅 = 2 
5×10-7 Hz 5×10-7 Hz 
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It can be concluded that sigma points should be carefully selected to achieve lowest esti-

mation uncertainties. Even though 𝛼 = 1 × 10−3 is recommended in papers [93]-[95], it can be 

seen that this choice does not provide best estimation result in the context of power system fre-

quency estimation. In practice, measurement noise may not necessarily be Gaussian. As a result, 

𝛽 parameter should be tuned accordingly. 

7.6.2 Phasor Parameter Calculation 

7.6.2.1 Computational Time 

 The program is executed on an SEL-3355 substation computer, which is equipped with 

two quad-core CPUs operating at 2.1GHz. Totally 300,000 simulations are conducted, 100,000 

for each phase. The computational times are recorded, and summarized in the histogram Figure 

17. 

 

Figure 17 Histogram of phasor parameter calculation computational time. 
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As can be observed in Figure 17, over 90% of the computation can be completed within 

0.35ms, which is less than 1/40 of the nominal cycle. 

7.6.2.2 Computational Accuracy 

The DFT-based method introduced in Section 7.4 and monomial fitting method are used 

in the demonstration of algorithm hybridization framework. In this test, waveforms containing 

both harmonics and slow amplitude transients are used as test waveforms. The sampling fre-

quency is 6kHz, and hop size is 5 samples, and therefore data window length is one cycle plus 10 

samples. 10% harmonic level is used. 

 Curve Fitting Method Used for Reconstruction  

In this case, slow transients are modeled directly while Fourier method is used to filter 

out harmonics. The results are shown in Table 6. 

Table 6. Waveform Approximation Accuracy for Strategy I 

Reprinted with permission from C. Qian and M. Kezunovic, "Hybridization framework for im-

proved dynamic phasor parameter estimation algorithms," 2019 IEEE Power & Energy Society 

Innovative Smart Grid Technologies Conference (ISGT), Washington, D.C., pp. 1-5, Feb. 2019. 

Copyright 2019, IEEE. 

TVE fAM = 1Hz fAM = 2Hz fAM = 5Hz 

2nd Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

5th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

10th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

30th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

50th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

 

It can be observed that at a certain amplitude modulation frequency level, the accuracy is 

not affected by harmonic order, which is expected since the harmonic components are filtered 
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out in the DFT-based method. The estimation errors are only from curve fitting procedure. Add-

ing more terms in Equation (7.58) may improve the accuracy, but may also cause overfitting 

problem. 

 Fourier Method for Used Reconstruction 

In this simulation, besides N DFT harmonic components, two extra frequencies, 55Hz, 

65Hz, are added to model the sidebands from amplitude modulation. The slow varying transients 

are further modeled in six monomial terms shown in Equation (7.58). The results are shown in 

Table 7. 

Table 7. Waveform Approximation Accuracy for Strategy II 

Reprinted with permission from C. Qian and M. Kezunovic, "Hybridization framework for im-

proved dynamic phasor parameter estimation algorithms," 2019 IEEE Power & Energy Society 

Innovative Smart Grid Technologies Conference (ISGT), Washington, D.C., pp. 1-5, Feb. 2019. 

Copyright 2019, IEEE. 

TVE 2nd Harmonic 13th Harmonic 35th Harmonic 

fAM = 1Hz 1.6×10-2% 5×10-3% 5×10-3% 

fAM = 2.3Hz 6×10-2% 2×10-2% 2×10-2% 

fAM = 3.4Hz 0.1×10-2% 2×10-2% 2×10-2% 

fAM = 4.5Hz 5×10-2% 1×10-2% 1×10-2% 

fAM = 5Hz 0 0 0 

 

Since harmonics are still not completely filtered out, the estimation errors come from am-

plitude modulation sidebands. Because 55Hz and 65Hz only exactly model the sidebands at fAM 

= 5Hz, estimation error cannot be completely eliminated otherwise. To alleviate the effect from 

sidebands, more frequencies in the vicinity of 60Hz can be potentially added in the Fourier 

model.  



 

87 

 

 

7.7 Conclusion 

 In this Chapter, the Dissertation tackles the problem of phasor parameter calculation un-

der electromagnetic transient conditions. In order to mitigate the inherent limitations of DFT-

based methods, i.e., frequency leakage and picket-fence effect, which happen when the actual 

signal fundamental frequency falls between DFT bins, we propose an UKF-based fundamental 

frequency estimator. With sufficient computational efficiency, the frequency estimator runs in 

the background of phasor parameter estimation, and provides the most recently system funda-

mental frequency update.  

 Then, a DFT-based algorithm that leverages the latest fundamental frequency value to 

adaptively tune its window size is proposed. The resultant phasor parameter calculation error 

caused by spectral leakage is further compensated. In order to mitigate the slow-varying process 

in electromagnetic waveforms, we propose a hybridization framework that incorporates the mer-

its of both DFT- and curve-fitting-based phasor parameter calculation algorithms. The algorithm 

accurately captures 60Hz phasor parameters, while mitigating the impact of slow-varying decay-

ing DC as well as harmonic infiltration on algorithm accuracy. The performance of the phasor 

parameter calculation algorithm is validated in MATLAB simulations.  
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8. POWER WAVEFORM CLASSIFICATION TOOL AND PHASOR PARAMETER 

CALCULATION DURING ELECTROMECHANICAL TRANSIENTS * 

 

8.1 Introduction 

In the electric power system, synchronous machine rotors do not rotate strictly at the 

same speed. In the power network, as a result, the features of the power signals, e.g., electrical 

quantities, appear to be modulated.  

Under normal operating conditions, the mismatch among synchronous machine speeds is 

small, and the variations in electrical quantities appear to be randomized and tolerable. A large 

disturbance in the power grid, on the other hand, may cause significant excursions of vital elec-

tric properties of the power grid, such as phase angle separation [15],[107], frequency [108], ac-

tive/reactive powers [12]-[13]. This abnormal deviation may end up in catastrophic results, such 

as large scale blackouts [13]-[14]. The properties of the modulation phenomena depends on the 

dynamic mechanical behavior of rotors, i.e., acceleration, deceleration, rotor speed drifting, etc. 

The interaction among rotors is established via magnetic coupling between rotor magnetic fields 

and electric network circuits. 

                                                

* Reprinted with authors’ permission from: (1) C. Qian and M. Kezunovic, "Synchrophasor reference algorithm for 

PMU Calibration System," 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, 

TX, pp. 1-5, May 2016. Copyright 2016, IEEE. (2) C. Qian and M. Kezunovic, "Dynamic synchrophasor estimation 

with modified hybrid method," 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference 

(ISGT), Minneapolis, MN, pp. 1-5, Sep. 2016. Copyright 2016, IEEE. (3) C. Qian and M. Kezunovic, "A novel time-

frequency analysis for power system waveforms based on “pseudo-wavelets”," 2018 IEEE/PES Transmission and 

Distribution Conference and Exposition (T&D), Denver, CO, pp. 1-9, Apr. 2018. Copyright 2018, IEEE. (4) C. Qian 

and M. Kezunovic, "A power waveform classification method for adaptive synchrophasor estimation," in IEEE Trans-

actions on Instrumentation and Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 
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The electromechanical dynamic events and their waveform characterizations are intro-

duced in Chapter 5. It is shown that electromechanical dynamic waveforms are event-dependent. 

In order to effectively characterize electromechanical dynamic events, it is imperative that the 

features manifested in each event is represented in signal modeling accordingly [109].  

In this Chapter, it is proposed that phasor parameters should be individually defined for 

different electromechanical dynamic events, so that the features of electrical quantities can be ef-

fectively reflected for each type of dynamic event. Besides, the signal models in algorithms 

should be tailored to match the corresponding waveform of dynamic events, so that the accuracy 

of curve-fitting can be maximized. In order to achieve such adaptive matching between algo-

rithms and dynamic waveform, it is proposed that dynamic events should first be classified based 

on the time-frequency dynamic features of their waveform manifestations. 

8.2 Overview on Time-Frequency Analysis Techniques 

The classification of waveforms and corresponding dynamic events are accomplished by 

labeling the waveform measurements based on their features on both time and frequency scales.  

8.2.1 General Discussion on Time-Frequency Analysis on a Waveform 

A generalized notion is that signals carry information, which can be extracted and identi-

fied using signal processing techniques, such as shown in applications [110]-[113]. In this Dis-

sertation, waveform features are leveraged to differentiate and classify waveforms, so that more 

accurate phasor parameter calculation algorithms can be subsequently switched for each dynamic 

waveform. Discussed below is how the selection of feature relates to the physical phenomena of 

power system. 
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In the electric power system, various types of electromechanical dynamic events are de-

termined by the patterns in the movement of rotors and electrical quantities. For example, the os-

cillatory behavior between groups of synchronous machine rotors due to lack of damping torque 

is manifested as modulations on signal magnitude and/or signal frequency. In other words, what 

differentiates various types of dynamic events is the differences in the features of electrical quan-

tities manifested in a duration of time.  

Furthermore, since the electric power energy is generated through the rotation of syn-

chronous machine rotors, the repetition of patterns, i.e., periodicity, is an inherent property of 

power system waveforms. Periodicity is conventionally represented by frequency, which is de-

fined as the number of times a pattern repeats itself in unit time. Frequency can also be consid-

ered as a scaling factor, by which a 1Hz waveform pattern, e.g., mother wavelet, is “compressed” 

or “stretched”. In this sense, frequency is perceived as a scaling factor. For example, when the 

“frequency” of a signal is 60Hz, it can be practically considered as compressing a 1Hz sinusoidal 

signal by a factor of 60. This notion is depicted in Figure 18.  
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Figure 18 Illustration of the interpretation of scaling in lieu of frequency in  

sinusoidal waveforms 

It is worth noting that, 1Hz (=1/1second) is not necessarily associated with 1 second of 

sinusoidal signal, but rather any kind of arbitrary pattern, e.g., “mother wavelet”. Therefore, 

scaling factor may be used as a generalized term for frequency.  

To summarize, the scale is used interchangeably with frequency, when the unit scale is 

defined in reference to a 1Hz pattern. Accordingly, in the analysis of power system waveforms, 

the pattern as well as the corresponding scale should also be incorporated in describing the fea-

tures of a power system waveform, as generalized in Equation (8.1): 

 𝛾: [𝒕, 𝑥(𝒕)] ↦ 𝛾[𝒕, 𝑎; 𝜓𝑎(𝒕)] (8.1) 

where 𝛾 is the quantified feature, vector 𝒕 is the duration of time under analysis, 𝜓𝑎(𝒕) is the ar-

bitrarily defined pattern to which the repetition of waveform is compared and referenced, 𝑎 is the 

scaling factor. Equation (8.1) denotes that an input time signal 𝑥(𝒕) is interpreted in terms of its 
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relationship with pattern 𝜓𝑎(𝒕) and scaling factor 𝑎 in time, and this interpretation is enabled by 

a mapping function 𝛾. 

The question now is how to design a pattern 𝜓𝑎(𝑡) and a mapping calculation 𝛾 so that 

the coefficients 𝛾[𝒕, 𝜓𝑎(𝒕)] are meaningful in differentiating waveform types. Among the various 

time-frequency techniques, STFT and wavelet analysis are discussed in the following sections to 

provide the background of the newly designed method. 

8.2.2 Short-Term Fourier Transforms 

STFT, defined in Equation (8.2), interprets the signal in terms of its sinusoidal compo-

nents and the progression of those sinusoidal components w.r.t time [68],[114]-[115].  

 STFT{𝑥[𝒏];𝑤[𝒏]}(𝑚, 𝑘): 𝑥[𝒏] ⟼ 𝑋(𝑚, 𝑘) 

(8.2) 

 𝑋(𝑚, 𝑘) = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−j
2𝜋
𝑁

𝑘𝑛

∞

𝑛=−∞

, for 𝑘 ∈ (− ⌊
𝑁

2
⌋ , ⌈

𝑁

2
⌉ − 1) 

where 𝑥[𝒏] is the discretized input waveform data window, 𝑤[𝒏] is the window function, 

𝑋(𝑚,𝜔) represents the STFT results, 𝑚 is the shift index, 𝑘 is the harmonic order w.r.t. to DFT 

fundamental frequency, 𝑁 is the number of samples in a DFT calculation, and 𝑁 ≤ dim(𝑥[𝒏]).  

 In the calculation of STFT, the input data window will first be truncated into frames. The 

samples associated with each frame, characterized by shift index, will then be analyzed by 

DFT/FFT, resulting in spectrum 𝑋(𝑚, 𝒌). With multiple shift indices in the calculations, the re-

sultant vectors will be added to a matrix, 𝑋(𝒎,𝒌). Each element in the matrix, i.e., 𝑋(𝑚, 𝑘), rep-

resents the complex DFT value of the 𝑘th harmonic component in the waveform 𝑥(𝑚,𝑚 + 𝑁). 

2𝜋/𝑁 is the resolution of DFT.  

STFT is most commonly used to generate spectrograms, which is defined as: 
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 spectrogram{𝑥[𝒏]}(𝑚, 𝑘) ≡ ‖𝑋(𝑚, 𝑘)‖2
2 (8.3) 

One of the pitfalls of STFT is that time resolution and frequency resolution cannot be 

simultaneously high. Specifically, denote 𝑓𝑠  as the sampling frequency, then the frequency reso-

lution of STFT is 𝑓𝑠/𝑁 in Hz, and the time resolution is 𝑁/𝑓𝑠 . This means that it is theoretically 

not possible to observe an abrupt change in frequency composition while attaining the details of 

that frequency profile. This restriction is also characterized formally as the Heisenberg-Gabor 

limit [116]. Furthermore, STFT only allows fixed time-frequency resolution in a single STFT 

analysis. Once the STFT parameters are chosen, the time-frequency plain is gridded according to 

the predetermined time and frequency resolutions. The value of coefficient on each grid is evalu-

ated according to Fourier Transform.  

As shown in Figure 19, the STFT results with three different pairs of frequency and time 

resolution are presented. The input signal features an abrupt change in harmonic frequency pro-

file at 1 second. Before 𝑡 = 1s, the signal is composed of 60Hz, 3rd, 5th, 18th, and 20th harmonics; 

and after 𝑡 = 1s, the signal components change to 60Hz, 3rd, 7th, 15th, and 19th harmonics. Intui-

tively, the height of each horizontal stripe represent frequency resolution: the narrower the stripe, 

the more effective STFT is able to pinpoint the exact frequency component. On the other hand, 

the vertical stripe at around 1 second represents the transient period during which the frequency 

profile of input signal changes. A shorter DFT window is more effective in terms of locating the 

instant when an event occurs.  

 Figure 19 demonstrates that STFT is not able to simultaneously pinpoint an event onset 

and frequency composition. The restriction fundamentally stems from the uncertainty principal 

associated with Fourier methods.   
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Figure 19 STFT analysis on a signal with harmonic infiltration and abrupt  

amplitude change at time 1s. 

Results of various options of time-frequency resolution pairs are shown,  

as indicated on the figure. 
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8.2.3 Multiresolution Analysis and Wavelet Analysis 

With multiresolution analysis techniques, it is feasible to achieve high time resolution 

and frequency resolution in one single analysis. This is achieved, however, at the expense of re-

dundant calculation, which increases computational burden [117]-[120].  

As the name indicates, multiresolution analysis gives interpretation of a waveform on 

multiple time and frequency resolution pairs. As opposed to STFT, where the time-frequency 

resolution grid is fixed once its parameters are chosen, multiresolution analysis tools, notably the 

wavelet transforms, introduce freedom in choosing the exactly time and frequency (scale) details 

of interest.  

Multiresolution analysis is achieved by applying various types of wavelet transforms, 

such as continuous wavelet transform (CWT), discrete waveform transform (DWT), and fast 

wavelet transform (FWT) [121]-[122]. CWT is defined in Equation (8.4). In CWT, a section of 

the waveform, 𝑥(𝑡), is compared with an arbitrarily formulated wavelet signal, 𝜓(𝑡), termed 

mother wavelet. The mother wavelet has limit time support on [0, 𝑇], and thus acts as a truncat-

ing window function. The child wavelet, 𝜓𝑎,𝑏(𝑡), is derived from the mother wavelet, and is 

characterized by two independent parameters, 𝑎 and 𝑏, as defined in Equation (8.5) below. As a 

result of the linear transformation, child wavelet 𝜓𝑎,𝑏(𝑡) has support over [𝑏, 𝑏 + 𝑎𝑇]. Parameter 

𝑎 is the scaling factor. When 𝑎 > 1, mother wavelet is dilated; when 𝑎 < 1, the mother wavelet 

is contracted. Parameter 𝑏 is the time-shift factor. In a causal system, 𝑏 > 0, moving the mother 

wavelet further away from time zero. 
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CWT is an integral transform with kernel 𝜓𝑎,𝑏(𝑡). More specifically, CWT calculates the 

correlation factor between 𝑥(𝑡) and 𝜓𝑎,𝑏(𝑡) associated with parameter pair (𝑎, 𝑏), which intui-

tively quantifies the “resemblance” between the two signals. 

 ℂ𝕎𝕋(𝑥, 𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓𝑎,𝑏

∗ (𝑡)d𝑡
∞

−∞

 (8.4) 

 𝜓𝑎,𝑏(𝑡) ≝ 𝜓(
𝑡 − 𝑏

𝑎
) (8.5) 

 Since the same waveform is analyzed repeatedly with children wavelets characterized by 

multiple (𝑎, 𝑏) selections, CWT is a redundant transform. Due to this redundancy, CWT is able 

to provide much more detailed descriptions of the compositions of input waveforms. Moreover, 

the result of CWT depends on the selection of the mother wavelet. Whether a chosen mother 

wavelet can or cannot extract useful information of an input waveform should be empirically 

studied. As shown in Figure 20, Morlet wavelet [123] is used to analyze various types of wave-

form inputs. It can be observed from the figure that Morlet wavelet is not adequate in extracting 

the features that differentiate different types of waveforms. Similarly, it has been proven in lab 

simulations that the conventionally used mother wavelets are not able to facilitate the differentia-

tion of power system waveform, and a new wavelet should be designed for this purpose. 
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Figure 20 Results of continuous wavelet transform using Morlet wavelet on various inputs.  

(a) steady-state 65Hz, (b) steady-state 60Hz and 5th harmonic (arrow showing the harmonic com-

ponent), (c) Amplitude modulation, (d) Frequency modulation, (e) Frequency ramp at 1Hz/s,  

(f) Frequency ramp at -1Hz/s 

Reprinted with permission from C. Qian and M. Kezunovic, "A novel time-frequency analysis 

for power system waveforms based on “pseudo-wavelets”," 2018 IEEE/PES Transmission and 

Distribution Conference and Exposition (T&D), Denver, CO, pp. 1-9, Apr. 2018.  

Copyright 2018, IEEE. 

8.3 Proposed Multiresolution Analysis Using “Pseudo-Wavelets” 

 In this Dissertation, a novel mother wavelet is proposed [124]-[125] to more effectively 

extract time-frequency features from power system waveforms. 

8.3.1 Proposed “Pseudo-Wavelet” 

The power system waveforms, as previously stated, can be expressed as follows: 
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 𝑥(𝑡) = 𝑎(𝑡) ∙ cos [2𝜋∫𝑓(𝑡) d𝑡 + 𝜙0] + ℎ(𝑡) + 𝑢(𝑡) (8.6) 

where 𝑎(𝑡) is the instant amplitude, 𝑓(𝑡) is the instant frequency, 𝜙0 is initial phase angle, ℎ(𝑡) 

is the collective effect of (inter)harmonic components, and 𝑢(𝑡) represents uncertainty sources, 

such as noise.  

 Define mother wavelet 𝜗(𝑡)and children wavelet 𝜗𝑎,𝑏(𝑡), 

 𝜗(𝑡) = cos(2𝜋 ∙ 1 ∙ 𝑡), 𝑡 ∈ [0,1] (8.7) 

 𝜗𝑎,𝑏(𝑡) = 𝜗(
𝑡 − 𝑏

𝑎
) (8.8) 

𝜗(𝑡) is simply a single-cycle cosine wave at frequency 𝑓pw ≡ 1/𝑇pw (Hz). In order to 

differentiate from conventional mother wavelets, in this Dissertation, 𝜗(𝑡) is termed “pseudo-

wavelet”, and the parameters associated with pseudo-wavelet are marked with subscript (∗)pw.  

 Define an integral transform 𝑓(𝑥; 𝑎, 𝑏), such that, 

 𝑓: (𝑥; 𝑎, 𝑏) ↦ 𝛾(𝑥; 𝑎, 𝑏) 

(8.9) 

 𝛾(𝑥; 𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜗(
𝑡 − 𝑏

𝑎
)d𝑡

∞

−∞

 

would yield coefficients  𝛾(𝑥; 𝑎, 𝑏) that represents the time-frequency feature of 𝑥(𝑡). The trans-

form 𝑓(𝑥; 𝑎, 𝑏) is uniquely determined by factors 𝑎 and 𝑏. 

Analogous to CWT representation, 𝑎 stands for scaling factor, and 𝑏 stands for time-shift 

factor. Since mother wavelet 𝜗(𝑡) is defined in reference to a pure 1Hz sinusoidal wave, children 

wavelet 𝜗𝑎,𝑏(𝑡) with scale 𝑎 can be equivalently interpreted in terms of frequency.  

 𝜗𝑎,𝑏(𝑡) = cos (2𝜋
1

𝑎
𝑡 −

2𝜋𝑏

𝑎
) (8.10) 
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 This is equivalent to defining the children wavelet 𝜗𝑎,𝑏(𝑡) in terms of frequency and 

phase angle.  

 𝜗(𝑡; 𝜏, 𝑓pw) = cos(2𝜋𝑓pw𝑡 + 𝜏) (8.11) 

where 𝑓pw ≡ 1/𝑎, and 𝜏 ≡ −2𝜋𝑏/𝑎. 

 Given a data sample window, the lowest 𝑓pw value corresponds to the scenario when 𝜗(𝑡) 

spans exactly the entire data window. The effect of scaling factor 𝑎 is perceived in terms of fre-

quency of the sinusoidal 𝜗𝑎,𝑏(𝑡); and the phase shift of 𝜗𝑎,𝑏(𝑡) is treated as the time-shift of 

𝜗𝑎,𝑏(𝑡) w.r.t. 𝜗(𝑡). Note that 𝜗(𝑡; 𝜏, 𝑓pw) only has finite support over the range of [𝜏, 𝜏 + 𝑇pw], 

where 𝑇pw ≡ 1/𝑓pw. This scheme can be shown in Figure 21.  

 
Figure 21 Illustration of correlation intensity at time lag 0.01s.  

(a)-(c) Waveforms of 64Hz input and pseudo-wavelets at 8Hz, 21.33Hz, 32Hz, respectively. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 
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As a result, in order to more explicitly show the operation of pseudo-wavelet, equation is 

expressed equivalently as, 

 𝛾(𝜏, 𝑓pw) = ∫ 𝑥1(𝑡)𝜗(𝑡; 𝜏, 𝑓pw)d𝑡
∞

−∞

 (8.12) 

where 𝜗(𝑡; 𝜏, 𝑓pw) is the child pseudo-wavelet with frequency 𝑓pw and time-shift of 𝜏. 

8.3.2 Time-Frequency Analysis Using Proposed “Pseudo-Wavelet” 

 According to Fourier theory, any input signal 𝑥(𝑡) can be decomposed as the summation 

of an infinite number of sinusoidal waves, 

 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒j2𝜋𝑓𝑡d𝑓
∞

−∞

= lim
∆𝑓→0

∑ 𝑋(𝑘∆𝑓)𝑒j2𝜋𝑘∆𝑓𝑡 ∙ ∆𝑓

∞

𝑘=−∞

 (8.13) 

As previously discussed, in power system signals, the waveform feature of interest is the 

periodic pattern in the waveform, as well as their characteristics of progression in time. In the 

following discussion, for the sake of simplicity, the interaction between only one single-tone fre-

quency component in 𝑥(𝑡), denoted as 𝑥1(𝑡), and 𝜗(𝑡) is analyzed. 𝑥1(𝑡) has frequency 𝑓1, 

which is unknown prior to analysis. Moreover, instead of moving pseudo-wavelet along the 𝑡-

axis, shown as 𝜗(𝑡; 𝜏, 𝑓pw), in the following analysis, 𝑥1(𝑡) will be moved, and this only affects 

the apparent phase angle 𝜙0. As a result, Equation (8.12) can be further simplified as, 

 𝛾(𝜏, 𝑓pw) = ∫ 𝑥1(𝑡 + 𝜏)𝜗(𝑡, 𝑓pw)d𝑡
𝑇pw

0

 (8.14) 

 The evaluation of 𝛾(𝜏, 𝑓pw) is shown as follows. Considering a particular pair (𝜏, 𝑓pw), 

𝑥1(𝑡) = cos (2𝜋𝑓1𝑡 + 𝜙1), and 𝜗(𝑡, 𝑓pw) ≡ cos (2𝜋𝑓pw𝑡). The integration  

 𝛾(𝑓1; 𝜏, 𝑓pw) = ∫ cos (𝜔1𝑡 + 𝜔1𝜏 + 𝜙1)cos (𝜔pw𝑡)d𝑡
𝑇pw

0

 (8.15) 
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where 𝜔1 ≡ 2𝜋𝑓1, 𝜔pw ≡ 2𝜋𝑓pw. Denote 𝜙1
′ ≡ 𝜔1𝜏 + 𝜙1. Using trigonometric properties, 

Equation (8.15) can be broken down as, 

 

𝛾(𝑓1; 𝜙1
′ , 𝑓𝑝𝑤) =

1

2
∫ cos[(𝜔1 + 𝜔pw)𝑡 + 𝜙1

′ ]d𝑡
𝑇pw

0

+ 

1

2
∫ cos[(𝜔1 − 𝜔pw)𝑡 + 𝜙1

′ ]d𝑡
𝑇pw

0

 

(8.16) 

 Depending on the value of (𝜔1 − 𝜔pw), the evaluation of Equation (8.16) can be dis-

cussed as follows: 

Scenario 1: 𝜔1 − 𝜔pw = 0: 

 Equation (8.16) can be simplified as: 

 
𝛾(𝜔1, 𝜏) =

1

2
[∫ cos (2𝜔1𝑡 + 𝜙1

′ )d𝑡
𝑇pw

0

+ ∫ cos𝜙1
′ d𝑡

𝑇pw

0

]

=
𝑇pw

2
cos𝜙1

′ =
𝜋

𝜔pw
cos(𝜔pw𝜏 + 𝜙1) 

(8.17) 

 The first integral is zero since 2𝜔1 ≡ 2𝜔pw and the integration on 2nd harmonic over a 

period is zero.  

Scenario 2: 𝜔1 − 𝜔pw ≠ 0: 

𝛾(𝜔1, 𝜙1
′ ) =

sin(𝜔1𝑇pw + 𝜙1
′ ) − sin𝜙1

′  

2(𝜔1 + 𝜔pw)
+

sin(𝜔1𝑇pw + 𝜙1
′ ) − sin𝜙1

′  

2(𝜔1 − 𝜔pw)
 

= [sin(𝜔1𝑇pw + 𝜙1
′) − sin𝜙1

′ ]
𝜔1

𝜔1
2 − 𝜔pw

2
 

(8.18) 

Note that 𝜔1 is unknown to the observer. 

8.3.3 Further Discussion on Wavelet Analysis Result 𝛾 

 Applying l’Hôpital’s rule [126], the limit of Equation (8.18) as 𝜔1 → 𝜔pw can be evalu-

ated. Note that, 𝜔pw𝑇pw ≡ 2𝜋:  
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lim
𝜔1→𝜔pw

𝛾 = lim
𝜔1→𝜔pw

[sin (𝜔1
2𝜋
𝜔pw

+ 𝜙1
′) − sin𝜙1

′ ] 𝜔1

𝜔1
2 − 𝜔pw

2
 

= lim
𝜔1→𝜔pw

𝜔1𝑇pw cos(𝜔1𝑇pw + 𝜙1
′ )

2𝜔1
+ lim

𝜔1→𝜔pw

sin(𝜔1𝑇pw + 𝜙1
′) − sin𝜙1

′

2𝜔1
 

 

(8.19) 

 
=

𝑇pw

2
cos𝜙1

′ = r.h.s. of equation (8.17) 

To conclude, the evaluation of (8.15) can be compactly expressed using (8.19), when the 

limit value at 𝜔1 = 𝜔pw is specified. The zeros of (8.19) are acquired by solving 

[sin(𝜔1𝑇pw + 𝜙1
′) − sin𝜙1

′ ] ∙ 𝜔1 = 0,𝜔1 ≠ 𝜔pw: 

 𝜔1 = 𝑘𝜔pw, 𝑘 = 0,2,3,4,… , 𝜔pw ≥ 𝜔spw,min ≡
2𝜋

𝑇window
 (8.20) 

or, 𝜔1 =
(2𝑘 + 1)𝜋 − 2𝜙1

𝑇pw + 2𝜏
, 𝑘 = 0,1,2,3,… (8.21) 

where 𝑇window is the length of data observation window in seconds. 𝜔pw,min corresponds to the 

situation where only one cycle of cosine wave spans the entire window length. 

 Based on Equations (8.20) and (8.21), the evaluation of integral (8.15) will be zero when 

the pseudo-wavelet frequency value 𝜔pw is zero (trivial case), or the integer fractions of the ac-

tual (unknown) signal frequency. Due to this behavior of correlation coefficient 𝛾(𝜏, 𝑓pw), when 

tracking the zeros of 𝛾(𝜏, 𝑓pw), the focus should be on the frequencies around the integer frac-

tions of 60Hz. For instance, as shown in Figure 22, is the correlation coefficient at lag 𝜏 = 0.01s. 

When the input waveform is a steady sinusoidal wave at 64Hz, correlation intensities will be 

zero at frequencies 32Hz, 21.33Hz, 16Hz, 12.8Hz, 10.67Hz, 9.14Hz, 8Hz, 7.11Hz, and 6.4Hz. In 

this case, since 10 nominal cycles of data are used, the minimal PW frequency is 6Hz. The scale 

of frequency axis is adjusted to show details at lower frequencies. 
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Figure 22 Illustration of correlation intensity at time lag 𝜏 = 0.01s, 𝛾(0.01). 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 

Moving 𝛾(𝜏, 𝑓pw) along time axis while computing the correlation intensity using Equa-

tion (8.15) w.r.t. all the pseudo-wavelet frequency component. With the values of 𝛾(𝜏, 𝑓pw) cal-

culated, a matrix 𝜞 can be thereafter formed, with its elements being 𝛾(𝜏, 𝑓pw). 

Shown in Figure 23 is a simple illustration for the aforementioned example, with time lag 

from 0 to 0.16s. Geometrically, given input signal, 𝜞 is visualized as a surface, with x-axis being 

time lag 𝜏, y-axis being  PW frequency 𝑓pw, and z-axis being the value of 𝛾(𝜏, 𝑓pw). When pro-

jected onto 𝜏 − 𝑓pw plain, correlation intensity, the absolute value of 𝜞, can be depicted as 

brightness in Figure 23 (a) and (b), or contours in Figure 23 (c) and (d). As can be seen, the re-

gions of low values of 𝜞 form distinct “zero-bands”, indicated by red dotted lines. 

It is worth mentioning that the proposed method is not designed for accurate frequency 

estimation, since the correlation integral is merely an approximation, and its accuracy depends 

on the selected sampling interval and data window length. However, the accuracy of such calcu-

lation is sufficient for the purpose of input waveform classification. In obtaining the zero-band 

frequencies, Equation (8.19) is a sufficient, but not necessary condition. As shown in Figure 22, 
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𝛾(𝜏 = 0.01, 𝑓pw) may achieve zero values at frequencies other than the integer fractions of 

64Hz. 

 

Figure 23 Pseudo-wavelet analysis result on 64Hz signal. 

(a) Intensity projection, (b) Zoomed-in intensity projection, (c) Intensity contours, (d) Zoomed-in 

intensity contours. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 

8.3.4 Matrix Formulation of Pseudo-Wavelet Transform  

 In the description of wavelet transform, it is implied that the correlation coefficients are 

calculated in an iterative manner, where γ associated with each scaling factor and time-shift is 
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calculated at each iteration. In practice, the matrix 𝜞𝑖,𝑗 = 𝛾(𝜏𝑖, 𝑓pw,𝑗) can be calculated more effi-

ciently more predefinition of pseudo-wavelets and truncated waveforms. 

Similar to STFT, the proposed PW method can be considered as performing repeated cal-

culation with hopping windows along data array. Such procedure is illustrated in Figure 24. 

Meaningful data are depicted as greyed rectangles, forming input signal matrix  𝑿input. To ena-

ble matrix multiplication, truncated data arrays are zero-padded to maintain the same lengths. 

The initialization of  𝑿input is shown in Algorithm 1 

 

Figure 24 Illustration on the matrix formation of proposed method. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 
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Algorithm 1 Initialization of matrix Xinput (hop size = 1, array size = 4) 

1:  READ input 𝑥(𝑡) 

2:  DETREND & NORMALIZE input x(t), yielding 𝑥̂(t) 

e.g.: 𝑥̂(𝑡) = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
T 

3:  CIRCULAR SHIFT 𝑥̂(t) and populate into matrix 𝑿N×N 

e.g.: 𝑿N×N = [

𝑥4 𝑥3
𝑥2 𝑥1

𝑥1 𝑥4
𝑥3 𝑥2

𝑥2

𝑥3

𝑥1

𝑥2

𝑥4

𝑥1

𝑥3

𝑥4

] 

4: CALCULATE upper triangular matrix of 𝑿N×N 

e.g.: 𝑿N×N = [

𝑥4 𝑥3
𝑥2 𝑥1

0 𝑥4
𝑥3 𝑥2

0
0

0
0

𝑥4

0

𝑥3

𝑥4

] 

5: FLIP along the center, and result in input signal matrix 𝑿input 

e.g.: 𝑿input = [

𝑥1 𝑥2
𝑥3 𝑥4

𝑥2 𝑥3 𝑥4 0
𝑥3

𝑥4

𝑥4

0
0
0

0
0

]  

 

The transformation matrix comprises of a set of pseudo-wavelets with customized fre-

quencies. When the frequencies of pseudo-wavelets are predetermined, this matrix does not up-

date, and therefore, can be generated offline. Since each pseudo-wavelet has finite time support, 

truncation of input signal is also conducted when pseudo-wavelets row vector multiplies input 

signal column vector. The values of maximum pseudo-wavelet frequency 𝑓pw,max , as well as fre-

quency resolution Δ𝑓pw are chosen empirically so that enough frequency details can be provided. 

The minimum value of pseudo-wavelet frequency pseudo-wavelets 𝑓pw,min is determined by the 

reciprocal of total data length, which is also the frequency resolution of DFT. 

8.3.5 Interpretation of Pseudo-Wavelet Analysis result 𝛤 

Any calculated value of 𝛤𝑖,𝑗 = 𝛾(𝜏𝑖, 𝑓pw,𝑗) is merely associated with a single time delay 

and a single frequency component. Since various types of electromechanical dynamic events are 
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differentiated by their distinct progression signature on both temporal and frequency composition 

levels, therefore, naturally the next step is to interpret the time-frequency analysis results, i.e., 

matrix 𝜞. Specifically, by fixing a single time instant, we get the frequency composition of the 

signal associated with a specific time, i.e., vector 𝛤𝑖,∗ = 𝛾(𝜏𝑖, 𝒇pw); similarly, the progression of 

a selected frequency component 𝑓pw,𝑗 along time is manifested by vector 𝛤∗,𝑗 = 𝛾(𝝉, 𝑓pw,𝑗). 

Determined by the settings of the algorithm, the frequency resolution, and the frequency 

range under scrutiny of pseudo-wavelet analysis together determine the number of columns of 

matrix 𝜞. It is reasonable to produce an illustrative result of the complete pseudo-wavelet analy-

sis result of the waveform, covering all the discrete values of time delays and frequencies. Nev-

ertheless, it is feasible, and often more useful, to choose certain “subsections” of frequency 

ranges instead of analyzing the whole frequency axis. In the latter case, it matters what ranges of 

frequency should be of higher priority in terms of providing more insights of the time progres-

sion of frequency components in the input signal. Since the power system fundamental frequency 

is usually within a small range around nominal frequency, and “zero-band” frequencies are theo-

retically the integer fractions of the actual fundamental frequency, it is reasonable to scrutinize 

the regions around the integer fractions of 60Hz (e.g., 10Hz, 12Hz, 15Hz, 20Hz, 30Hz, etc.) with 

higher frequency resolution. 
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8.3.6 Feature Extraction of Electromechanical Dynamic Waveforms 

8.3.6.1 Extraction of Frequency Features 

The features of the electromechanical dynamic waveforms are indicated by the progres-

sion, or intuitively, the shape, of frequency band 𝛤∗,𝑗 = 𝛾(𝝉, 𝑓pw,𝑗), which corresponds to a re-

gion in matrix 𝛤. Therefore, it is crucial to extract the signature points from matrix 𝛤 that marks 

the boundary of such frequency bands.  

As discussed in Section 8.3.3, the value of 𝛤∗,𝑗 = 𝛾(𝝉, 𝑓pw,𝑗) would theoretically be zero 

when 𝑓pw,𝑗 happens to coincide with one of the integer fractions of input signal frequency. It is 

because of this that the analysis results shown in Figure 23 contains “dark bands”. For conven-

ience, these frequencies are named “signature frequencies” of the pseudo-wavelet analysis, de-

noted by, 𝑓pwsig. 

Note that, outside 𝑓pwsig frequencies, the values 𝛤∗,𝑗 = 𝛾(𝝉, 𝑓pw,𝑗) oscillate, and yet on 

𝑓pwsig frequencies, values 𝛤∗,𝑗 = 𝛾(𝝉, 𝑓pw,𝑗) are always zero (or nearly zero, practically). There-

fore, it is easier to track the progression of frequency components using the “dark bands”. On the 

other hand, as suggested in previous paragraphs, the analysis can be performed only on the vicin-

ities of 𝑓pwsig frequencies, and with higher frequency resolution.  

As shown in Figure 23 (a) and (b), the “dark band” regions are outlined by the points of 

each bright region corresponding to the highest and lowest frequency profile. Such points are 

also mathematically described as having the smallest time derivative values. For the sake of con-

venience, these dots are termed “signature points” in this Section. 

In practice, 𝛤𝑖,𝑗 = 𝛾(𝜏𝑖, 𝑓pw,𝑗) represent contours, rather than regions, as shown in Figure 

23 (c) and (d). It is worth noting that, due to calculation errors, it is hardly possible to guarantee 
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that any single discrete raw calculation result 𝛤𝑖,𝑗 exactly equals any of the contour values in the 

figure. In practice, the contours are generated by grouping the “dots” (values of 𝛤𝑖,𝑗) within the 

vicinity of a predetermined value. By setting the margins for depicting the contour lines, areas 

that satisfy the criteria can be obtained. By carefully setting up threshold values, and criteria re-

stricting the boundaries, 𝛤𝑖,𝑗 can be visually perceived as the “thickness” of contour lines, as 

shown in Figure 25. 

As depicted in Figure 25, once the contouring parameters are chosen, the pseudo-wavelet 

analysis result matrix 𝛤 = 𝛾(𝜏𝑖, 𝑓pw,𝑗) can be effectively reduced to a matrix consisting of binary 

information, i.e., whether a particular value in the matrix, 𝛾(𝜏𝑖 , 𝑓pw,𝑗), belongs to the contour. 

From this point in the discussion, symbol 𝛤𝐵  is used to represent this matrix consisting only of 0 

and 1, in which value 1 represent that 𝛾(𝜏𝑖, 𝑓pw,𝑗) values belongs to the contour region. Intui-

tively, Figure 25 is a visualization of matrix 𝛤𝐵 , which consist of elements of 0’s and 1’s. 

 In order to locate the signature points in Figure 25, two metrics are introduced: the fre-

quency occurrence rate (FOR), and time occurrence rate (TOR).  

FOR is defined as the number of occurrence within a specifically defined frequency 

range, which is achieved by projecting 𝛤𝐵  contour onto frequency axis. Since 𝛤𝐵  consists solely 

of 0’s and 1’s, this is easily achieved by summing up the 𝛤𝐵  elements in each row. 
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Figure 25 Pseudo-wavelet analysis result for frequency ramp signal. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 

Similarly, TOR is defined as the number of 𝛤𝐵  elements in a predetermined time range, 

by projecting 𝛤𝐵  onto time axis. TOR is calculated by summing up the 𝛤𝐵  element in each col-

umn. The steep region of 𝛤𝐵  is characterized by large TOR values; on the other hand, small value 

of TOR indicates a more flat feature of the 𝛤𝐵  elements, which marks the boundary of “dark 

bands”. The points associated with the least TOR are chosen as the “signature points”. 

As shown in Figure 26 (a), the blue dots represent the extracted signature points from raw 

analysis result in Figure 26 (b). The feature of the dynamics can be acquired by outlining the en-

velope of signature points. And in the case of Figure 26, there is a clear frequency oscillation in 

the waveform.  

8.3.6.2 Extraction of Amplitude Features 

The amplitude level of each frequency component is represented by the value of 𝛤𝑖,𝑗 =

𝛾(𝜏𝑖, 𝑓pw,𝑗). Specifically, the stronger the signal is, the higher the correlation coefficient is. When 
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there is a variation in waveform amplitude, the correlation coefficients 𝛤𝑖,𝑗 will manifest such dy-

namics. Shown in Figure 27 are the PW analysis results of an amplitude-modulated signal. It can 

be seen that frequency zero-bands remain stable, while the 𝛾𝑖𝑗  values at other frequencies are os-

cillating. 

 

Figure 26 Pseudo-wavelet analysis result for frequency modulation signal. 

(a). Extracted time-frequency feature; (b). Raw analysis results showing the contour. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 

The extraction of amplitude feature is performed by pulling out the elements of matrix 𝜞 

that associate with a single frequency component, revealing the trajectory of correlation intensity 
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w.r.t. time. Practically, as long as the frequency is not zero-band frequency, oscillation patterns 

can be uncovered. 

Note that 𝛤𝑖,𝑗 values are in fact oscillating because of the periodical nature of correlation 

calculation. Hilbert Transform can be utilized in this situation to smooth out the oscillation and 

reveal the envelope of amplitude features. In order to extract values of 𝛤𝑖,𝑗 should not be the sig-

nature frequency values. As illustrated in Figure 28, the amplitude fluctuation feature can be cap-

tured for various severities of amplitude modulation scenarios. 

 

Figure 27 Illustrations of proposed analysis on amplitude-modulated signal.  

Contours, (b) 3D plot of the elements of correlation matrix 𝜞. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 

(a)  
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Figure 28 Envelope extraction using Hilbert Transform at various modulation frequencies.  

55Hz PW components are shown in solid curves, and 60Hz PW components are shown in dotted 

curves. Blue: 𝑓AM=2Hz, orange: 𝑓AM=3Hz, red: 𝑓AM=4Hz, green: 𝑓AM=5Hz. 

Reprinted with permission from C. Qian and M. Kezunovic, "A power waveform classification 

method for adaptive synchrophasor estimation," in IEEE Transactions on Instrumentation and 

Measurement, vol. 67, no. 7, pp. 1646-1658, Jul. 2018. Copyright 2018, IEEE. 

8.4 Phasor Parameter Calculation During Electromechanical Transients 

 During electromechanical dynamic conditions, the modulations on electrical quantities 

should be adequately detected, captured, and characterized. This is achieved by designing signal 

models that explicitly represent the features embedded in various dynamic waveforms. Based on 

the end-use application, the waveform features of interest in electromechanical dynamics condi-

tions are summarized in Table 8. 

Table 8. Summary of Electromechanical Dynamic Conditions and  

Corresponding Control Applications 

Electromechanical  

Dynamic Conditions 
Signal Manifestation Control Applications 

Low-frequency oscillation Amplitude modulation PSS, AVR, etc. 

Sub-synchronous oscillation Frequency modulation SVC, etc. 

Rotor loss-of-synchronism Frequency ramp AVR, etc. 

 

 With the waveform switching mechanism shown in Figure 8, the signal models can be 

adaptively switched to accommodate the actual signal representation. Depending on the specific 
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empirical conditions under which phasor parameters are extracted, the signal models can be de-

signed accordingly. For example, the oscillation mode frequency information can be used to fur-

ther specify signal models. 

8.4.1 Signal Modeling 

8.4.1.1 Rotor Loss-of-synchronism 

 In the case of rotor loss-of-synchronism, in a small data observation window, it is consid-

ered that the frequency ramps linearly at a constant rate quantified as ROCOF, or 𝑅𝑓 [127]-[129].  

 𝑥(𝑡) = √2 ∙ 𝐴 ∙ cos(2𝜋𝑓0𝑡 + 2𝜋∆𝑓𝑡 + 𝜋𝑅𝑓𝑡
2 + 𝜑0) (8.22) 

 The phasor parameters of interest is: 

 𝑝(𝑡) = 𝐴𝑒 j(2𝜋∆𝑓𝑡+ 𝜋𝑅𝑓𝑡²+ 𝜑0) (8.23) 

8.4.1.2 Electromechanical Oscillations 

 During an electromechanical oscillation dynamic condition, the amplitude and/or fre-

quency of the waveform will be modulated by sinusoidal terms [130]-[132].  

 

𝑥(𝑡) = √2𝐴[1 + 𝑘𝑎 cos(2𝜋𝑓𝑚𝑡)] 

 cos[2𝜋𝑓0𝑡 + 2𝜋∆𝑓𝑡 + 𝑘𝑓cos (2𝜋𝑓𝑚𝑡 − 𝜋) + 𝜑0] 
(8.24) 

 The phasor parameters of interest is: 

 𝑝(𝑡) = 𝐴[1 + 𝑘𝑎 cos(2𝜋𝑓𝑚𝑡)]𝑒 j(2𝜋∆𝑓𝑡+𝑘𝑓cos (2𝜋𝑓𝑚𝑡−𝜋)+ 𝜑0) (8.25) 

8.4.2 Algorithmic Solutions 

 The phasor parameters of interest in the signal formulations, i.e., Equations (8.24) and 

(8.25), are embedded in the nonlinear cosine functions. To formulate the problem in terms of 

mathematical equations, consider a generalized signal equation,  

 𝑓(𝒕; 𝒑) = ‖𝒃 − 𝑥(𝒕; 𝒑)‖2
2 (8.26) 
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where 𝑓(𝒕; 𝒑) is a cost function quantifying the fitting error of predetermined signal model 

𝑥(𝒕; 𝒑) compared to measurement sample 𝒃.  

 The curve-fitting problem described as Equation (8.26) may be solved by various numeri-

cal approaches. Most notably, gradient descent algorithm and Gauss-Newton algorithm [133]. 

8.4.2.1 Gradient Descent Algorithm 

 Given Equation (8.26), where 𝑓(∗) is known, and 𝒑 is the only unknown parameter, the 

gradient descent solution to the problem can be described as: 

 𝒑(𝑘+1) = 𝒑(𝑘) + 𝛾(𝑘)𝒅(𝑘) (8.27) 

where 𝛾(𝑘) is the step size for each iteration, and 𝒅(𝑘) is the direction of the increment at each 

step given the latest estimate 𝒑(𝑘). 𝒅(𝑘) is chosen to be the direction of the most rapid decrease of 

the function 𝑓(𝒕; 𝒑), i.e., the opposite of normalized gradient of 𝑓(𝒕; 𝒑): 

 𝒅(𝑘) = −
∇𝑓(𝒕; 𝒑)

‖∇𝑓(𝒕; 𝒑)‖2
 

(8.28) 

where, ∇𝑓(𝒕; 𝒑) = [
𝜕𝑓(𝒕; 𝒑)

𝜕𝑝1
,
𝜕𝑓(𝒕; 𝒑)

𝜕𝑝2
, … ,

𝜕𝑓(𝒕; 𝒑)

𝜕𝑝dim (𝒑)

]

T

 

And the determination of the value of 𝛾(𝑘) is through searching for the 𝛾 value that satisfies: 

 𝛾(𝑘) ∈ argmin𝛾[𝑓(𝒕; 𝒑(𝑘) + 𝛾(𝑘)𝒅(𝑘))] (8.29) 

 The value of step size is allowed to change at every iteration, and can be obtained 

through line search, inexact line search, or Barzilai-Borwein method [134]. The selection of step 

size determines whether gradient descent algorithm can converge, and how fast it converges.  

 Equation (8.29) minimizes the approximation error, or curve-fitting error: 

 𝒃 ≈ 𝑥(𝒕; 𝒑(𝑘)) + ∇𝑥(𝒕; 𝒑(𝑘)) ∙ (𝒑(𝑘+1) − 𝒑(𝑘)) (8.30) 
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8.4.2.2 Newton’s Algorithm and Gauss-Newton Algorithm 

 Similar to Equation (8.27), in Newton’s Algorithm, the iteration is in the form of: 

 𝒑(𝑘+1) = 𝒑(𝑘) + (𝑯(𝑘))
−1

∙ ∇𝑥(𝒕; 𝒑(𝑘)) (8.31) 

where 𝑯(𝑘) ≡ ∇2𝑓(𝒑(𝑘)) is the Hessian matrix of 𝑓(∗) at 𝒑(𝑘). Equation (8.31) approximate 

measurement with quadratic terms: 

 

𝒃 ≈ 𝑥(𝒕; 𝒑(𝑘)) + ∇𝑥(𝒕; 𝒑(𝑘)) ∙ (𝒑(𝑘+1) − 𝒑(𝑘))

+
1

2
(𝒑(𝑘+1) − 𝒑(𝑘))

T
∇2𝑥(𝒕; 𝒑(𝑘))(𝒑(𝑘+1) − 𝒑(𝑘)) 

(8.32) 

 The elements of Hessian matrix 𝑯 are calculated by differentiating the gradient ∇𝑥: 

 𝑯 = ∇2𝑥(𝒕; 𝒑(𝑘)), 𝑯𝑖𝑗 =
𝜕2𝑥

𝜕𝑝𝑖𝑝𝑗
 (8.33) 

 In Gauss-Newton algorithm, Hessian matrix is approximated by: 

 𝑯𝑖𝑗 ≈
𝜕𝑥

𝜕𝑝𝑖
∙
𝜕𝑥

𝜕𝑝𝑗
 (8.34) 

 Thus Equation (8.31) is approximated by:  

 ∆𝒑(𝑘) = [𝑱(𝑘)T𝑱(𝑘)]
−1

𝑱(𝑖)𝑇[𝒃 − 𝑥(𝒕, 𝒑(𝑘))] (8.35) 

where  

 𝑱𝑖,𝑗
(𝑘) =

𝜕[𝒃 − 𝑥(𝒕; 𝒑)]𝑖
𝜕𝑝𝑗

 (8.36) 

8.4.3 Implementation 

 The performance evaluation of the algorithms introduced in Chapter 8 are primarily de-

termined by two factors: (i). The accuracy of signal modeling; (ii). The accuracy of numerical 

optimization method, particularly, convergence rate and divergence issues. 
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 The first issue is alleviated by incorporating a dedicated waveform type identification 

technique, which is introduced in Section 8.3. By switching the most appropriate signal model 

according to the input waveform type, the fitting error can be minimized.  

 The second issue is relevant to the nonlinear regression technique used in solving the op-

timization problem described by Equation (8.26). For example, gradient descent algorithm is 

slow near the local optimal point, and Newton’s algorithm may diverge. 

In this Dissertation, Levenberg-Marquardt algorithm (LMA) is used to solve the optimi-

zation problem in Equation (8.26) [135]. The least square solution to Equation (8.26) can be ob-

tained through an iterative process, where the increment on unknown vector 𝒑 is calculated as: 

 ∆𝒑(𝑘) = [𝑱(𝑘)T𝑱(𝑘) + 𝜇(𝑘)diag(𝑱(𝑘)T𝑱(𝑘))]
−1

𝑱(𝑖)𝑇[𝒃 − 𝑓(𝒕, 𝒑(𝑘))] (8.37) 

where  

 𝑱𝑖,𝑗
(𝑘) =

𝜕[𝒃 − 𝑥(𝒕; 𝒑)]𝑖
𝜕𝑝𝑗

  

Each iteration of solving parameter 𝒑 is associated with two parameters: direction of the 

increment, and size of the increment (step size).  

The damping factor 𝜇(𝑘) is used to achieve a trade-off between Gauss-Newton algorithm 

and gradient descent algorithm. Specifically, at the beginning of an iteration, 𝜇(𝑘) is chosen to be 

large to mimic gradient descent method so that LMA can reach local optimal point fast; then, the 

value of 𝜇(𝑘) is reduced so that LMA becomes more similar to Gauss-Newton algorithm so that 

higher accuracy and fast convergence can be reached. In particular, the two extreme cases of 

Equation (8.37): 

 ∆𝒑(𝑘) =
1

𝜇(𝑘)
𝑱(𝑖)𝑇[𝒃 − 𝑓(𝒕, 𝒑(𝑘))], 𝜇(𝑘) → +∞ (8.38) 
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 Equation (8.38) describes gradient descent algorithm,  

 ∆𝒑(𝑘) = [𝑱(𝑘)T𝑱(𝑘)]
−1

𝑱(𝑖)𝑇[𝒃 − 𝑓(𝒕, 𝒑(𝑘))], 𝜇(𝑘) ≈ 0 (8.39) 

 Equation (8.39) describes Gauss-Newton algorithm.  

8.5 Conclusion 

 In this Chapter, a phasor parameter calculation approach for electromechanical dynamic 

events is proposed. In order to improve calculation accuracy, a waveform classification mecha-

nism is designed so that the most appropriate signal model can be used for that waveform. The 

waveform classification leverages new mother wavelet, termed “pseudo-wavelet”, specifically 

designed for the time-frequency feature extraction of power system waveforms. With the result 

of waveform classification, accurate nonlinear waveform models can be designed to fit the actual 

dynamic scenarios. In order to achieve high accuracy and optimal computational burden, Leven-

berg-Marquardt algorithm is used to obtain the signal parameters from nonlinear signal models.   
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9. PERFORMANCE EVALUATION OF PROPOSED PHASOR PARAMETER  

CALCULATION APPROACH * 

 

9.1 Introduction  

9.1.1. Goal and Objective 

As stated before, the goal of the Dissertation is to present a new phasor parameter calcu-

lation algorithm. The objectives of the PMU algorithm development are: (i). Algorithm accuracy 

should comply with relevant international standard, such as IEC/IEEE 60255-118-1 [10], and 

(ii). Algorithm should ensure test performance under the non-standard waveforms coming from 

different application scenarios. This chapter is focused on the validation of the Dissertation hy-

pothesis, which is related to the algorithm performance evaluation under design tests and appli-

cation tests.  

9.1.2. Approach to Hypothesis Validation 

The hypothesis is that phasor parameter calculation accuracy can be improved by design-

ing phasor parameter calculation algorithms tailored to the waveforms associated with each type 

of electromagnetic and electromechanical dynamic event. Hypothesis validation is conducted 

                                                

* Reprinted with authors’ permission from M. Kezunovic, C. Qian, C. Seidl, J. Ren, “Testbed for timing intrusion 

evaluation and tools for lab and field testing of synchrophasor system”, IEEE International Conference on Smart 

Grid Synchronized Measurements and Analytics (SGSMA 2019), pp. 1-8, College Station, TX. May 2019. Copyright 

2019, IEEE. 
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through the assessment of algorithm accuracy using different application use cases. Three as-

pects of hypothesis validation process are discussed: test use cases, test methodology, and test 

procedure. They are illustrated in Figure 29, and further discussed below. 

 

Figure 29 Proposed approach to hypothesis validation 

9.1.2.1. Test Procedures 

The test procedure, associated with each test case, describes the physical signal connec-

tions and resulting data flows in a test. Due to the differences in the design and application test 

cases, their test procedures are different as depicted in Figure 30 and Figure 31, respectively. The 

section numbers, where the details of test procedures are discussed, are also noted.  
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Figure 30 Test procedure for design tests 

 

Figure 31 Test procedure for application tests 

9.1.2.2. Test Use Cases 

The test use cases characterize power system events resulting in selected use cases, and 

the corresponding test use case waveforms. Test use cases reflect the purpose of the test, and can 

be classified into two categories: design and application test use cases.  
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Design test use cases are aimed at evaluating whether an algorithm satisfies the perfor-

mance requirements specified in standard IEC/IEEE 60255-118-1 [10]. These requirements are 

outlined in Table 9 in section 9.2.1.  

Application test use cases are aimed at assessing whether the algorithm produces phasors 

that sufficiently meet the performance expectation of subsequent applications. This is done by 

evaluating the impact of algorithm output accuracy on the application performance, and this im-

pact is quantified in terms of the metrics defined in Section 9.3.1.4 and Section 9.3.1.5. An appli-

cation test use case is designed for a given application event, which entails the specifications of 

the dynamic event property of interest, and the test waveforms generated through simulations of 

such an event’s use case using power system models. The application test use cases are not de-

fined in the standards, and are specified in Section 9.2.2.2. 

The distortion of phasor parameters during their transfer from PMUs to PDCs may have 

negative impacts on the application performance. Such impacts should also be evaluated. In or-

der to do so, distortions caused by PDC processing and communication networks are introduced. 

The characterization of the distortions is discussed in Section 9.2.2.4. 

9.1.2.3. Test Methodology 

The algorithm assessment in design tests is utilizing the metrics to compare calculated 

values by the proposed algorithm against the reference values. This entails defining the evalua-

tion metrics, and establishing the algorithm assessment pass/fail criteria. In standard IEC/IEEE 

60255-118-1, amplitude and phase angle parameter calculation accuracies are jointly assessed 

through a comparison metric defined as Total Vector Error percentage (TVE), and frequency ac-

curacy is assessed by Frequency Error (FE). The algorithm pass/fail criteria are also elaborated 

in the standard [10], as shown in Tables 16 and 17 in Section 9.3.1.1. 
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The algorithm assessment in the application tests is defined as an impact that the algo-

rithm accuracy has on the application performance. Correspondingly, the comparison metrics 

need to evaluate the application performance when subjected to the outputs of the proposed algo-

rithm as compared to a reference algorithm. This should result in the performance ranking crite-

ria that allow evaluation of the proposed algorithm performance against the reference algorithm. 

Since application tests are not specified in the standards, both the comparison metrics and perfor-

mance ranking criterion will be defined and discussed from Section 9.3.1.2 through Section 

9.3.1.5. 

9.2. Algorithm Assessment in Test Use Cases 

The use cases in both design tests and application tests are discussed in this section. De-

sign and application test use cases are described using different terminologies, and are conducted 

using different procedures, as shown in Figure 32.  
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Figure 32 Aspects of hypothesis validation using test use cases   



 

125 

 

 

9.2.1. Design Test Use Cases  

9.2.1.1. Test Use Case Specifications 

Test use cases are specified in standard [10], as shown in Table 9. The standard defines 

two performance classes: P class and M class. P class is intended for applications that require 

fast response such as protection applications. P class requires shorter measurement latency time, 

narrower frequency bandwidth, and lower harmonic signal rejection requirement. On the other 

hand, M class is intended for applications that require higher precision but do not require mini-

mal reporting delay. M class allows for longer latencies, more sophisticated filtering for a wider 

frequency range requirement. As a result, the test use case specifications for P class and M class 

categories are different as shown in Table 9.  

Table 9. Design Test Use Case Specifications 

Test Case 
Test Conditions 

P class M class 

Signal frequency 

variation 
±2Hz around nominal ±5Hz around nominal 

Signal amplitude  

variation 
10%-200% p.u. 10%-200% p.u. 

Single harmonic 

distortion 
1% harmonic level  10% harmonic level  

Out-of-band 

interference 
None 10% interference level 

Amplitude modulation Modulation frequency 

0.1Hz to 2Hz 

Modulation frequency 

0.1Hz to 2Hz Frequency modulation 

System frequency ramp 
Ramp rate ±1Hz/s, 

ramp range ±2Hz 

Ramp rate ±1Hz/s, 

ramp range ±5Hz 

Magnitude step ±10% p.u. magnitude 

Angle step ±π/18 angle 
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9.2.1.2. Test Use Case Waveforms and Test Procedure Implementation 

Test waveforms in each test use case are generated according to the design specification 

[10]. The implementation of test use cases and algorithm performance evaluation are carried out 

using MATLAB/Simulink program with the waveform specification given in Tables 10 and 11 

for design and application tests, respectively. 

Table 10. Waveform Specifications for Design Test – Steady State Tests 

Test Case Signal Model 

Signal frequency 

and magnitude tests 

𝑥𝑎 = 𝑋𝑚cos (2𝜋𝑓in𝑡) 

𝑥𝑏 = 𝑋𝑚cos (2𝜋𝑓in𝑡 − 2𝜋/3) 

𝑥𝑐 = 𝑋𝑚cos (2𝜋𝑓in𝑡 + 2𝜋/3) 

where, 

𝑥𝑎, 𝑥𝑏, 𝑥𝑐 are the A, B, and C phase signals; 

𝑋𝑚 is the amplitude of the input signal; 

𝑓in is the input signal frequency in Hz. 

Harmonic distor-

tion test 

𝑥𝑎 = 𝑋𝑚 cos(2𝜋𝑓0𝑡) + 𝑋𝑚𝑘𝑥 cos(2𝜋𝑛𝑓0𝑡) 

𝑥𝑏 = 𝑋𝑚cos (2𝜋𝑓0𝑡 − 2𝜋/3) + 𝑋𝑚𝑘𝑥 cos(2𝜋𝑛𝑓0𝑡 − 2𝜋𝑛/3) 
𝑥𝑐 = 𝑋𝑚cos (2𝜋𝑓0𝑡 + 2𝜋/3) + 𝑋𝑚𝑘𝑥 cos(2𝜋𝑛𝑓0𝑡 + 2𝜋𝑛/3) 

where, 

𝑋𝑚 is the amplitude of the input signal; 

𝑓0 is the nominal power system frequency in Hz; 

𝑘𝑥 is the harmonic amplitude factor, and 𝑛 is the harmonic order. 

Out-of-band inter-

ference test 

𝑥𝑎 = 𝑋𝑚 cos(2𝜋𝑓in𝑡) + 𝑋𝑚𝑘𝑥 cos(2𝜋𝑛𝑓𝑖𝑡) 

𝑥𝑏 = 𝑋𝑚 cos(2𝜋𝑓in𝑡 − 2𝜋/3) + 𝑋𝑚𝑘𝑥 cos(2𝜋𝑛𝑓𝑖𝑡 − 2𝜋/3) 
𝑥𝑐 = 𝑋𝑚 cos(2𝜋𝑓in𝑡 + 2𝜋/3) + 𝑋𝑚𝑘𝑥 cos(2𝜋𝑛𝑓𝑖𝑡 + 2𝜋/3) 

where, 

𝑋𝑚 is the amplitude of the input signal; 

𝑓in is the input signal frequency in Hz;  

𝑘𝑥 is the harmonic amplitude factor, and 𝑛 is the harmonic order; 

𝑓𝑖 is interference frequency in Hz. 

Test Case 
Signal Parameters 

P Class M Class 

Signal frequency 

variation 

𝑓in values: 58Hz to 62Hz, with 

increment of 0.5Hz 

𝑓in values: 55Hz to 65Hz, with 

increment of 0.5Hz 

Signal amplitude  

variation 
𝑋𝑚 values: 0.1 p.u. to 2 p.u., with increment of 0.1 p.u. 
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Table 10 Continued 

Test Case 
Signal Parameters 

P Class M Class 

Single harmonic 

distortion 
𝑘𝑥 = 0.01  

𝑛 values: 2 to 50 

𝑘𝑥 = 0.1  

𝑛 values: 2 to 50 

Out-of-band 

interference 
None 

𝑘𝑥 = 0.1  

𝑓in values: 57Hz to 63Hz, with 

increment of 1Hz 

𝑓𝑖 values: 17.2Hz, 23.6Hz, 

26.8Hz, 28.4Hz, 29.2Hz, 

29.6Hz, 29.8Hz, 29.9Hz, 

90.1Hz, 90.2Hz, 90.4Hz, 

90.8Hz, 91.6Hz, 93.2Hz, 

96.4Hz, 102.8Hz, 115.6Hz 

 

Table 11. Waveform Specifications for Design Test – Dynamic State Tests 

Test Case Signal Model 

Measurement 

bandwidth test 

with modula-

tion signals 

𝑥𝑎 = 𝑋𝑚[1 + 𝑘𝑥cos (2𝜋𝑓m𝑡)]cos [2𝜋𝑓0𝑡 + 𝑘𝑎cos (2𝜋𝑓m𝑡 − 𝜋)] 
𝑥𝑏 = 𝑋𝑚[1 + 𝑘𝑥cos (2𝜋𝑓m𝑡)]cos [2𝜋𝑓0𝑡 − 2𝜋/3 + 𝑘𝑎cos (2𝜋𝑓m𝑡 − 𝜋)] 
𝑥𝑐 = 𝑋𝑚[1 + 𝑘𝑥cos (2𝜋𝑓m𝑡)]cos [2𝜋𝑓0𝑡 + 2𝜋/3 + 𝑘𝑎cos (2𝜋𝑓m𝑡 − 𝜋)] 

where, 

𝑋𝑚 is the amplitude of the input signal; 

𝑓0 is the nominal power system frequency in Hz; 

𝑓m is the modulation frequency in Hz; 

𝑘𝑥 is the amplitude modulation factor; 

𝑘𝑎 is the phase angle modulation factor. 

System fre-

quency ramp 

𝑥𝑎 = 𝑋𝑚 cos(2𝜋𝑓0𝑡 + 𝜋𝑅𝑓𝑡
2) 

𝑥𝑏 = 𝑋𝑚 cos(2𝜋𝑓0𝑡 − 2𝜋/3 + 𝜋𝑅𝑓𝑡
2) 

𝑥𝑐 = 𝑋𝑚 cos(2𝜋𝑓0𝑡 + 2𝜋/3 + 𝜋𝑅𝑓𝑡2) 

where, 

𝑋𝑚 is the amplitude of the input signal; 

𝑓0 is the nominal power system frequency in Hz; 

𝑅𝑓 is the frequency ramp rate in Hz/s. 
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Table 11 Continued 

Test Case Signal Model 

Step changes 

in phase and 

magnitude 

𝑥𝑎 = 𝑋𝑚[1 + 𝑘𝑥𝑢(𝑡)]cos [2𝜋𝑓0𝑡 + 𝑘𝑎𝑢(𝑡)] 
𝑥𝑏 = 𝑋𝑚[1 + 𝑘𝑥𝑢(𝑡)]cos [2𝜋𝑓0𝑡 − 2𝜋/3 + 𝑘𝑎𝑢(𝑡)] 
𝑥𝑐 = 𝑋𝑚[1 + 𝑘𝑥𝑢(𝑡)]cos [2𝜋𝑓0𝑡 + 2𝜋/3 + 𝑘𝑎𝑢(𝑡)] 

where, 

𝑋𝑚 is the amplitude of the input signal; 

𝑓0 is the nominal power system frequency in Hz; 

𝑢(𝑡) is a unit step function 

𝑘𝑥 is the magnitude step size; 

𝑘𝑎 is the phase step size. 

Test Case 
Signal Parameters 

P Class M Class 

Measurement 

bandwidth test 

with modula-

tion signals 

𝑓m from 0.1Hz to 2Hz, with incre-

ment of 0.1Hz 

𝑘𝑥 = 0.1 or 𝑘𝑎 = 0.1 

𝑓m from 0.1Hz to 2Hz, with increment 

of 0.1Hz 

𝑘𝑥 = 0.1 or 𝑘𝑎 = 0.1 

System fre-

quency ramp 
𝑅𝑓 = ±1Hz/s, ramp range ±2Hz 𝑅𝑓 = ±1Hz/s, ramp range ±5Hz 

Step changes in 

phase and mag-

nitude 
𝑘𝑥 = ±0.1 or 𝑘𝑎 = ± 𝜋 18⁄  

 

9.2.1.3. Generation of Reference Phasor Parameters 

 The reference phasor parameters are generated based on design test signal parameters 

shown in Table 12.  

Table 12. Reference Phasor Parameters for Design Test Use Cases 

Test Case Reference Phasor Parameters 

All steady-state 

test use cases 

Phasor 𝑋(𝑛𝑇) =
𝑋𝑚

√2
∠ {2𝜋∆𝑓𝑛𝑇 + 𝑝

2

3
𝜋} 

Frequency 𝑓(𝑛𝑇) = 𝑓0 + ∆𝑓 

Amplitude and 

frequency  

modulation 

Phasor 

𝑋(𝑛𝑇) =
𝑋𝑚

√2
[1 + 𝑘𝑥 cos(2𝜋𝑓m𝑛𝑇)] 

∠ {𝑘𝑎cos (2𝜋𝑓m𝑡 − 𝜋) + 𝑝
2

3
𝜋} 

Frequency 𝑓(𝑛𝑇) = 𝑓0 − 𝑘𝑎sin (2𝜋𝑓m𝑡 − 𝜋) 
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Table 12 Continued 

Test Case Reference Phasor Parameters 

System  

frequency ramp 

Phasor 𝑋(𝑛𝑇) =
𝑋𝑚

√2
∠ {2𝜋∆𝑓𝑛𝑇 + 𝑝

2

3
𝜋} 

Frequency 𝑓(𝑛𝑇) = 𝑓0 + 𝑅𝑓(𝑛𝑇) 

𝑋𝑚 is the amplitude of input signal; 

𝑇 is reporting interval; 

𝑝 = 0 for phase A; 𝑝 = −1 for phase B; 𝑝 = 1 for phase C; 

∆𝑓 is the frequency deviation of actual input frequency from nominal value; 

𝑓0 is nominal frequency; 

𝑓m is the modulation frequency in Hz; 

𝑘𝑥 is the amplitude modulation factor; 

𝑘𝑎 is the phase angle modulation factor; 

𝑅𝑓 is the frequency ramp rate in Hz/s. 

9.2.2. Application Test Use Cases  

9.2.2.1. Selected Applications  

 Two applications are selected as examples to demonstrate the procedure of application 

testing. The power system models for the test use cases are implemented in Simulink Simscape 

Power Systems. All test use cases are performed on a two-area system [136]-[137] in Simulink 

program, where application test waveforms are obtained through time-domain simulations. A 

fault location algorithm [138] and an oscillation detection algorithm [139] are chosen as the ex-

ample applications, in order to assess the impact of proposed algorithm’s performance on an ap-

plication under electromagnetic and electromechanical dynamic events, respectively. 

9.2.2.2. Test Power System and Test Use Case Specifications 

For each test use case, disturbances and subsequent dynamic events are specified and de-

scribed in Table 13. The power system model used for application simulation is shown in Figure 

33. The generators are modeled using the 6th-order state-space model [59]. The transmission line 

parameters in the test power system are shown in Table 14. 
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Figure 33 Topology of test power system and voltage/current measurement points 
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Table 13. Application Test Use Case Specifications 

Event Attributes Attribute Values 

Fault Location Application [138] – Test Use Cases 1,2,3 

Disturbance 

Specifications 

Fault 

Location 

Test use case 1 20% from Bus 1 on Line 1 

Test use case 2 50% from Bus 1 on Line 1 

Test use case 3 80% from Bus 1 on Line 1 

Fault 

Type A-B-C 

Inception 1s 

Duration 10 cycles * 

Circuit Breaker (CB) 

Operation Specs. 

CB1 
Operation 5 cycles 

Reclose 12 cycles 

CB2 
Operation 6 cycles 

Reclose 12 cycles 

Measurements 

Three phase Bus 1 and Bus 2 voltages 

Three phase Line 1 currents from sending (Bus 1) and re-

ceiving (Bus 2) ends 

Phasor reporting rate: 120Hz 

Simulation Time 2 seconds 

Oscillation Detection Application [139] – Test Use Case 4 

Disturbance 

Specifications 

Fault 1 

Location 50%, on Line 1 

Type A-B-C 

Inception 20s 

Duration 10 cycles 

Fault 2 

Location 10 km from Bus2 Area 2 

Type A-B-C 

Inception 150s 

Duration 10 cycles 

Circuit Breaker (CB) 

Operation Specs. 

CB1 
Operating 5 cycles 

Reclosing 12 cycles 

CB2 
Operating 6 cycles 

Reclosing 12 cycles 

Measurements 
Three phase Bus 1 voltages 

Phasor reporting rate: 60Hz 

Simulation Time 600 seconds 

* cycles post fault, the same hereinafter in this Table 
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Table 14. Transmission Line Parameters in Application Test Use Case Model  

Depicted in Figure 33 

Component 

Type 

Parameters 

Positive Sequence Zero Sequence Unit 

Resistance 0.01273 0.3864 Ω/km 

Inductance 0.9337 4.1264 mH/km 

Capacitance 12.74 7.751 µF/km 

Total Length 220 km 

 

9.2.2.3. Test Use Case Waveforms 

Time-domain waveforms are generated for fault location and oscillation detection appli-

cation test use cases, as illustrated in Figure 34 and Figure 35, respectively.  

Figure 34 illustrates the electromagnetic transient waveforms after the three-phase faults 

associated with the test use cases 3 in Table 13. The waveforms for test use cases 1 and 2 are 

similar in waveform attributes: voltage waveforms exhibit transient undervoltage and harmonic 

components during fault; current waveforms show overcurrent, decaying DC and harmonic com-

ponents.  

Figure 35 depicts the Phase A voltage electromechanical dynamic waveform associated 

with test use case 4 shown in Table 13. The oscillation waveform model used in the derivation of 

oscillation detection application [139] is a single-phase amplitude modulation signal as modeled 

in [10]. Therefore, in this Dissertation, a single-phase voltage waveform is used as the applica-

tion input, and Phase A measurement data are used as an example. For a clearer depiction of the 

dynamics, Phase B and C data are not shown in Figure 35. The test procedures can be replicated 

for Phase B and Phase C data as well. The simulation shows sustained electromechanical oscilla-

tion induced by faults. A closer study into signal features shows oscillations with an amplitude 
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modulation level of as much as 3% (w.r.t. mean voltage amplitude post fault), a frequency oscil-

lation around 60.15Hz with an oscillation level of 0.02Hz; both amplitude and frequency oscil-

late at a frequency of approximately 0.4Hz. 

 

Figure 34 Test voltage and current waveforms for 80% fault location application test use 

cases measured at sending (Bus 1) and receiving (Bus 2) ends 



 

134 

 

 

 

 

 

Figure 35 Phase A voltage test waveform, RMS value, and frequency for oscillation detec-

tion application test use cases  
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9.2.2.4. Characterization of Distortions in Phasor Communications 

In realistic power system scenarios, various types of distortions may occur in the commu-

nication system and related devices located between the output of phasor algorithms (PMU) and 

the input to the applications. Phasor Data Concentrator (PDC) and communication network, 

shown in Figure 3, are among the sources of such distortions. The inaccuracies in phasor data 

may propagate to downstream applications, adversely affecting application performance. There-

fore, the extent of distortion impact on application performances needs to be assessed.  

In order to demonstrate the assessment of the impact of phasor stream distortions on the 

performance of an application, arbitrary distortions are chosen in the application testing strategy. 

Two types of distortions are considered, and they are phasor data packet misalignment in PDC, 

and phasor data packet loss in communication channels. The distortions are specified in Table 

15. These two types of communication network distortion are superimposed on fault location and 

oscillation detection application test use cases, and are further described below. 

Table 15. Specification of Distortion in Calculated Phasor Parameters 

Distortion Type Specifications 

Phasor data packet time 

misalignment in PDC 

Phasor data packets are misaligned by 6 and 10 report-

ing intervals across the entire simulation time. No data 

rejection occurs. 

Phasor data packet loss 

in communication net-

work 

6 and 15 data packets per second are randomly deleted 

and replaced with zeros. The exact locations of lost 

packets are determined by a uniformly distributed pseu-

dorandom integer command in MATLAB, randi. 

 

 Phasor data packet timestamp misalignment 

Phasor packet time alignment is one of the fundamental functions of a PDC [140]. It re-

quires aggregating time synchronized data with matching timestamps from multiple PMUs or 
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PDCs. Accurate timestamp alignment is crucial to applications that rely on time-synchronized 

phasor parameters from multiple PMUs/PDCs, such as power system protection and control ap-

plications. 

Timestamp misalignment may be caused by faulty PMUs/PDCs, or distortions such as 

clock drift, and cyber-attacks. Under these distortions, a PMU’s timestamp may not match other 

PMU’s timestamps, resulting in data rejection. Two scenarios of time misalignment are dis-

cussed, as shown in Figure 36. 

 

Figure 36 Illustration of phasor packet time-misalignment 

(a) Normal phasor packets without time-misalignment; (b) Time-misalignment causing data re-

jection (rejected data in Red); (c) Time-misalignment that does not result in data rejection 
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As shown in Figure 36 (a), complying with standards [10] and [11], phasor packets are 

“expected” to be time-stamped at fractions of a second, which are equivalently multiples of re-

porting intervals. In the case depicted in Figure 36 (b), the phasor packets whose timestamps fall 

between reporting times are rejected. When the altered phasor timestamps still match other 

PMUs, as is in case depicted in Figure 36 (c), the phasor packets will not be rejected, and will be 

used by applications as they normally would. 

Since limited number of phasors are available for fault location calculation prior to circuit 

breaker operation, i.e., 2 per cycle for 5 or 6 cycles, the time misalignment in case (c) with no 

data rejection is used for use case demonstration. 

 Phasor data packet loss in communication network 

Phasor data packets may be lost in the communication network due to network uncertain-

ties, such as data transmission congestion and consequent data dropout [141].  

The impact of phasor data packet loss on oscillation detection application is studied fur-

ther. Sporadic data packet loss is simulated, as shown in Table 15. The lost data is replaced with 

zeros. 

9.3 Test Results, Evaluation and Outcomes of Hypothesis Validation 

9.3.1. The Methodology and Metrics for Result Evaluation 

9.3.1.1. Design Tests 

The performance of the algorithm is evaluated by comparing the calculated values by the 

proposed algorithm against the reference values defined by the metrics. Two metrics are used in 

the Design Test: Total Vector Error (TVE), and Frequency Error (FE), as defined in Equations 

(9.1) and (9.2) [10], respectively. 
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 𝑇𝑉𝐸(𝑛) = √
[𝑋̂𝑟(𝑛) − 𝑋𝑟(𝑛)]

2
+ [𝑋̂𝑖(𝑛) − 𝑋𝑖(𝑛)]

2

[𝑋𝑟(𝑛)]2 + [𝑋𝑖(𝑛)]2
 (9.1) 

where, 

𝑋̂𝑟(𝑛) and 𝑋̂𝑖(𝑛) are the real and imaginary PMU estimates at reporting time 𝑛; 

𝑋𝑟(𝑛) and 𝑋𝑖(𝑛) are the real and imaginary reference values at reporting time 𝑛; 

𝑛 is the reporting number representing the reporting time in a phasor stream time series 

 𝐹𝐸(𝑛) = 𝑓measured(𝑛) − 𝑓reference(𝑛) (9.2) 

where, 

𝑛 is the reporting number representing the reporting time in a phasor stream time series 

 Related TVE and |FE| expectations are specified in the standard for P-class and M-class 

PMUs, as outlined in Table 16. 

Table 16. Algorithm Accuracy Requirements for Design Tests 

Test Type 
Test 

Conditions 

TVE Limits |FE| Limits (Hz) 

P class M class P class M class 

Signal frequency variation 

See 

Table 9 

1% 1% 0.005 0.005 

Signal amplitude variation 1% 1% 0.005 0.005 

Single harmonic distortion 1% 1% 0.005 0.025 

Out-of-band interference N/A 1.3% N/A 0.01 

Amplitude modulation 3% 3% 0.06 0.3 

Frequency modulation 3% 3% 0.06 0.3 

System frequency ramp 1% 1% 0.01 0.01 

 

For step tests, additional metrics are used to characterize the algorithm’s step response 

tracking capability and transition period. This metrics are defined in [10], and shown in Figure 

37, and the requirements are outline in Table 17. 
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Figure 37 Definition of step test metrics [10] 

Table 17. Performance Requirement for Design Tests – Step Change Tests 

Test Type 
Test 

Conditions 

Error Limits 

P class M class 

RT |DT| O/U RT |DT| O/U 

Magnitude 

step See 

Table 9 

2/f0 1/(4Fs) 
5% of 

step mag. 

max 

{7/f0,7/Fs} 
1/(4Fs) 

10% of  

step mag. 

Angle 

step 
2/f0 1/(4Fs) 

5% of 

step mag. 

max 

{7/f0,7/Fs} 
1/(4Fs) 

10% of  

step mag. 

RT: Response time 

DT: Delay time 

Fs: Reporting frequency 

O/U: Max overshoot/undershoot 
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9.3.1.2. Application Tests 

The application test entails two points of comparison: a) application input phasor parame-

ters (test use case waveforms filtered by the algorithm), and b) application performance caused 

by the algorithm error impact. The reasons are outlined below: 

(1) An application waveform, produced in a software simulation, is associated with a power sys-

tem test use case. The waveform is fed to the PMU algorithm, whose output, i.e., phasor pa-

rameters, are in turn fed to an application, which produces an application outcome. It is im-

portant to make sure the synchrophasor, if corrupted after it has been passed from the source 

PMU through PDC and communication network still preserves acceptable accuracy when 

compared to the reference; 

(2) The impact of algorithm accuracy performance and phasor communication distortion on the 

outcome of an application is evaluated through a sensitivity analysis. 

(3) In both cases, a phasor calculation results from a recently published algorithm [36],[142] will 

serve as the  reference for the impact evaluation. Unlike the proposed algorithm, the refer-

ence algorithm adopts the same signal model for all types of event waveforms. 

(4) The comparison results obtained by applying the proposed metrics at both comparison points 

are summarized in Table 18 in Section 9.3.1.6. 

9.3.1.3. Test Methodology and Metrics Definition for Application Input Waveform Comparison  

Through phasor parameter estimation algorithms, the features of interest from an applica-

tion waveform 𝑥(𝑡), i.e., phasor parameters, are extracted. Therefore, phasor parameter calcula-

tion has a sense of data filtering. At the input of an application, it is important to make sure that 

the application waveform is not corrupted in the communication network. In this Dissertation, 

Average Waveform Error % is design as the metric to measure the distortion of synchrophasors 
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that are passed from the source PMU through PDC and communication network, as defined in 

Equation (9.3). Average Waveform Error % quantifies the average discrepancy of the filtered 

waveform from the original waveform throughout the entire time period under analysis. A 

smaller values indicates lower level of waveform corruption in the filtering process of an algo-

rithm. 

 Average Waveform Error % =
‖𝒙recovered − 𝒙simulation‖1/𝑁

𝑉nominal
× 100% (9.3) 

where, 

𝒙recovered is the waveform sample vector recovered from the calculated phasor parameters: 

𝒙(𝑛)recovered  = 𝑨(𝑛)calculated  cos [2𝜋𝒇(𝑛)calculated𝒕 + 𝝋(𝑛)calculated] 

𝑛 is the reporting number representing the reporting time in a phasor stream time series 

𝒙simulation is the simulated time-domain waveform sample vector 

‖𝒚‖1 is the 1-norm of vector 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑁]𝐓, defined as: 

 ‖𝒚‖1 = ∑|𝑦𝑖|

𝑁

𝑖=1

   

𝑁 is the total number of samples in the waveform 

𝑉nominal is the nominal voltage of the bus voltage, 230kV 

9.3.1.4. Test Methodology and Metrics Definition for Fault Location Application Performance 

Assessment 

This application testing strategy is intended to evaluate algorithm performance under 

electromagnetic transient conditions. Particularly, this evaluation is presented in terms of the im-

pact of the proposed algorithm’s accuracy on fault location outcomes, where the calculated 

phasor streams are subject to communication distortion, such as phasor misalignment. The fault 
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location technique in paper [138] is selected as the phasor-based application. Three fault location 

test use cases that are simulated assume faults at 25%, 50%, and 80% the line length from the 

sending end (Bus 1), respectively. 

The reference fault location is the actual fault location (in p.u.) as set up in the simula-

tions. Fault Location Error %, defined in Equation (9.4), is used to measure the accuracy of the 

fault location algorithm:  

 Fault Location Error %(𝑛) = |
𝜌calculated(𝑛) − 𝜌actual(𝑛)

Total Line Length
| × 100% (9.4) 

where, 

𝜌calculated is the calculated fault location in km 

𝜌actual  is the actual fault location in km, as set up in the simulation 

𝑛 is the reporting number representing the reporting time in a phasor stream time series 

The application outcomes using phasor streams from both the proposed algorithm and 

reference algorithm are compared to reference value, which is the actual fault location as set up 

in the simulation. A smaller Fault Location Error % value indicates better application perfor-

mance, and thus higher phasor algorithm accuracy. 

9.3.1.5. Test Methodology and Metrics Definition for Oscillation Detection Application Perfor-

mance Assessment 

This application testing strategy evaluates algorithm performance under electromechani-

cal transient conditions. 
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The oscillation detection application [139] utilizes the self-coherence spectra of the input 

waveform to estimate oscillation frequencies. The recommended algorithm use case setup sug-

gested in [139] is used. A total of 10-minute simulation data are used, with a data window length 

of 12 second and time delay of 6 second.  

There is no “absolute reference” in an oscillation detection test use case that can be di-

rectly retrieved from the test system, compared to the use case of “actual fault location” in a fault 

location application test use case. As a result, in this oscillation detection test use case, a “rela-

tive reference” should be used. The “accurate application outcome” in this case should be the ap-

plication outcome using the phasor parameters generated in the phasor-domain simulation during 

the electromechanical dynamic event. This test methodology is illustrated in Figure 38. 

 

Figure 38 Test methodology for oscillation detection application 
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The metric Self Coherence Match %, as shown in equation (9.5), represents the percent-

age at which 𝜻calculated correctly matches 𝜻actual. A higher percentage point indicates higher os-

cillation frequency detection performance, and therefore, the algorithm under test estimates 

phasor parameters with higher accuracy. 

 Self Coherence Match %(𝑛) =
𝑁{𝜻calculated = 𝜻actual}

𝑁{𝜻actual}
× 100% (9.5) 

where, 

𝜻calculated  is the self-coherence spectrum column vector calculated with phasors estimated by 

proposed algorithm or reference algorithm 

𝜻actual is the self-coherence spectrum column vector calculated with phasors produced by 

phasor-domain simulation 

𝑛 is the reporting number representing the reporting time in a phasor stream time series 

𝑁{𝜻calculated = 𝜻actual} is the number of elements satisfying 𝜻calculated = 𝜻actual  

𝑁{𝜻actual} is the number of element in array 𝜻actual 

9.3.1.6. Summary 

 The discussions in Section 9.3.1 is summarized in Table 18.   
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Table 18. Summary of Test Methodology and Metrics 

Test Category Metrics Methodology 

Design Tests 

For non-step tests: 

Total Vector Error (TVE) 

[Equation (9.1)] 

Frequency Error (FE) 

[Equation (9.2)] 

For step tests:  

Response time, delay time, 

overshoot/undershoot 

Reference 

Phasor Val-

ues 

Generated according to [10] 

Comparing 

Method 

Lower values of TVE and |FE| indicate 

higher algorithm accuracy 

Application 

Tests 

Waveform Reference 

Outcomes 
Simulation waveforms 

Average Waveform Error %  

[Equation (9.3)] 
Comparing 

Method 

Lower values of Average Waveform 

Error % indicate higher algorithm ac-

curacy 

Fault Location Reference 

Outcomes 

The actual fault location according to 

simulation setups 
Fault Location Error % 

[Equation (9.4)] 
Comparing 

Method 

Lower values of Fault Location Error 

% indicate higher algorithm accuracy 

Oscillation Detection Reference 

Outcomes 

“Accurate application outcomes” as 

shown in Figure 38. 

Self-Coherence Match % 

[Equation (9.5)] 
Comparing 

Method 

Higher values of Self-Coherence 

Match % indicate higher algorithm ac-

curacy 

 

9.3.2. Test Results Analysis and Hypothesis Validation 

9.3.2.1. Test Result Analysis and Hypothesis Validation for Design Test Use Cases  

Test results associated with design tests are tabulated in Table 19 and Table 20. 
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Table 19. Performance Requirements and Test Results for Design Tests – Non-Step Tests 

Test Type 
Performance 

Class 

Standard 

Requirement 

[TVE/|FE| (Hz)] 

Algorithm 

max TVE 

Algorithm 

max |FE| (Hz) 

Signal frequency  

variation 

P class 1%/0.005 1e-2% 1e-4 

M class 1%/0.005 1e-2% 1e-4 

Signal amplitude  

variation 

P class 1%/0.005 1e-4% 1e-3 

M class 1%/0.005 1e-4% 1e-3 

Single harmonic 

distortion 

P class 1%/0.005 0.06% 1e-4 

M class 1%/0.025 0.06% 1e-4 

Out-of-band  

interference 

P class N/A N/A N/A 

M class 1.3%/0.01 3% 1e-4 

Amplitude  

modulation 

P class 3%/0.06 1e-5% 1e-4 

M class 3%/0.3 1e-3% 1e-4 

Frequency  

modulation 

P class 3%/0.06 1e-3% 1e-2 

M class 3%/0.3 1e-3% 1e-2 

System frequency 

ramp 

P class 1%/0.01 1e-2% 1e-3 

M class 1%/0.01 1e-2% 1e-3 

 

In each type of test, test signal parameters may vary during the test, based on Table 10 

and Table 11. The values shown in Table 19 are the maximum error in each type of test. For ex-

ample, in the P-class signal frequency test, test signal frequency varies from 58Hz to 62Hz, with 

an increment of 0.5Hz, resulting in 9 “subtests”. The TVE and |FE| values are the highest calcu-

lation errors in these 9 subtests. 

 In amplitude and phase angle step test, an “interleaving procedure”, recommended in the 

standard IEC/IEEE 60255-118-1, is applied. In order to achieve a time resolution smaller than 

one reporting interval, multiple step tests are conducted. In the first step test, the step function is 

adjusted so that the time of step falls on one of the reporting times. Successive step tests are con-

ducted with step function triggered at increasing fractions of a reporting interval after the initial 

reporting time. The result of step test measurement points are interleaved by aligning all the steps 
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at the same starting point and averaging the measurements in each individual step tests. The step 

time of each individual step test is displaced by 1 sampling interval (1/6000s), thus one reported 

result at reporting rate 60Hz is an average of 100 step test results. 

Table 20. Performance Requirements and Test Results for Design Tests – Step Tests 

Test Type 

Test 

Condi-

tions 

Error Limits 

P class M class 

RT |DT| O/U RT |DT| O/U 

Magnitude 

step See 

Table 9 

2/f0 1/(4Fs) 
5% of 

step mag. 

max 

{7/f0,7/Fs} 
1/(4Fs) 

10% of  

step mag. 

Angle 

step 
2/f0 1/(4Fs) 

5% of 

step mag. 

max 

{7/f0,7/Fs} 
1/(4Fs) 

10% of  

step mag. 

Test Type 

Test 

Condi-

tions 

Test Results 

P class M class 

RT |DT| O/U RT |DT| O/U 

Magnitude 

step 

Positive 

step 

1.5 

cycle 

1.6 

cycle 
0/9.58 1.5 cycle 

1.6 

cycle 
0/9.58 

Negative 

step 

1.5 

cycle 
0 0/8.51 1.5 cycle 0 0/8.51 

Angle 

step 

Positive 

step 
0 0 0 0 0 0 

Negative 

step 
0 0 0 0 0 0 

RT: Response time 

DT: Delay time 

Fs: Reporting frequency 

O/U: Max overshoot/undershoot 
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Figure 39 Amplitude step test results 

 

Figure 40 Phase angle step test results 
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 As can be observed in Section 9.3.2.1, with the input waveform classification and adap-

tive phasor calculation algorithm switching mechanisms that we introduced, the proposed algo-

rithm can achieve high accuracy under most test cases due to customized phasor parameter defi-

nition and algorithm modeling design.  

 However, from the test result data in Table 19, it is also revealed that the proposed algo-

rithm fails to satisfy the TVE requirements in out-of-band test for M-Class tests. From Table 20, 

Figure 39 and Figure 40, it can be seen that the proposed algorithm has overshoot/undershoot in 

amplitude step tests. The reasons are discussed below. 

As suggested in [143] and [144], passband flatness is required for optimal algorithm per-

formance under the modulation tests; whereas stopband attenuation is needed for out-of-band test 

performance. As studied in Section 3.3 (window functions), in terms of FIR digital filter design, 

when the data window length is fixed, achieving optimal passband flatness and sharp transition 

from passband to stopband are contradicting requirements. The digital filter is applied at the 

front-end waveform sampling, and based on the out-of-band test result, this digital filter design 

does not achieve optimal passband attenuation.  

It is suggested in [143] and [144] that a dedicatedly designed filter should be added at the 

output of the algorithm, before phasor decimation to the reporting frequency. As pointed out in 

[144], the overshoot/undershoot problem can be caused by the negative weights in data window 

coefficients. The shape of the digital window at the front end of the algorithm should be tailored 

to lower overshoot/undershoot levels. 

 Since the proposed algorithm does not fully satisfy the standard requirement, we believe 

that it is reasonable to validate the hypothesis by demonstrating that the proposed algorithm is 

able to show improvement in algorithm accuracy when compared to existing algorithms. Such 
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improvement is demonstrated by comparing the accuracy of phasor parameter calculation against 

existing algorithms, under the tests in which the proposed algorithm does show acceptable accu-

racy. The results are shown in Tables 21 and 22, where the performance of proposed algorithm is 

compared to 2 selected existing algorithms: DFT algorithm [24] and polynomial fitting algorithm 

[36].  

Table 21. Estimation Error of Proposed Algorithm Compared to Selected Existing Algorithms  

– Max TVE 

Test Type 
Performance 

Class 

Standard TVE 

Requirement 

Algorithm TVE 

Proposed 

Algorithm 

DFT 

Algorithm 

Curve-Fitting 

Algorithm 

Signal frequency  

variation 

P class 1% 1e-2% 22.2% 100% 

M class 1% 1e-2% 53.5% 100% 

Signal amplitude  

variation 

P class 1% 1e-4% 0 0 

M class 1% 1e-4% 0 0 

Single harmonic 

distortion 

P class 1% 0.06% 0 1% 

M class 1% 0.06% 0 1% 

Amplitude  

modulation 

P class 3% 1e-5% 2.5% 1.5% 

M class 3% 1e-3% 5% 2.65% 

Frequency  

modulation 

P class 3% 1e-3% 2.5% 0.5% 

M class 3% 1e-3% 5% 0.5% 

System fre-

quency ramp 

P class 1% 1e-2% 30% 100% 

M class 1% 1e-2% 70% 100% 
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Table 22. Estimation Error of Proposed Algorithm Compared to Selected Existing Algorithms  

– Max |FE| * 

Test Type 
Performance 

Class 

Standard |FE| 

Requirement 

Algorithm |FE| 

Proposed 

Algorithm 

DFT 

Algorithm 

Curve-Fitting 

Algorithm 

Signal frequency  

variation 

P class 0.005 1e-4 5 5 

M class 0.005 1e-4 10 5 

Signal amplitude  

variation 

P class 0.005 1e-3 0 0 

M class 0.005 1e-3 0 0 

Single harmonic 

distortion 

P class 0.005 1e-4 0 0 

M class 0.025 1e-4 0 0 

Amplitude  

modulation 

P class 0.06 1e-4 0 0 

M class 0.3 1e-4 0 0 

Frequency  

modulation 

P class 0.06 1e-2 0.001 0.5 

M class 0.3 1e-2 0.002 0.5 

System fre-

quency ramp 

P class 0.01 1e-3 6 10 

M class 0.01 1e-3 12.5 10 

* All values in Hz 

 

 From Tables 21 and 22, the following can be observed: 

(1) In the design test cases where the proposed algorithm does show high accuracy, 

the selected reference algorithms do not satisfy all the test requirements; 

(2) An algorithm is able to achieve high accuracy when its assumed algorithm signal 

model reflects and matches the underlying waveform characteristics. For exam-

ple, the DFT algorithm models the input signal as a linear combination of DC and 

harmonic components of single-tone 60Hz signal. This modeling approach per-

fectly matches the test signals under signal amplitude variation and signal har-

monic distortion tests, resulting in zero calculation error. In contrast, the DFT sig-

nal modeling does not reflect the dynamic fluctuations in signal amplitude and 

frequency, resulting in deterioration in algorithm accuracy; 
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(3) By incorporating waveform classification and algorithm switching mechanisms, 

the proposed algorithm can achieve consistent accuracy of at least 2 orders of 

magnitude higher than the standard requirements 

 Thus, from the aforementioned observations, it can be concluded that hypothesis is vali-

dated under the design test use cases because of the following reasons: 

(1) The proposed algorithm’s accuracy is higher than the selected existing algorithms 

in all cases; 

(2) Higher algorithm accuracy can be achieved when the algorithm’s signal modeling 

matches the underlying waveform features 

9.3.2.2. Test Result Analysis and Hypothesis Validation for Application Test Use Cases  

Test results are discussed for each application. 

 Impact of Algorithm Accuracy on Fault Location Application Performance  

The fault location algorithm utilizes time-synchronized bus voltage and line current 

phasor streams from both the sending and receiving end to calculate the fault location. As illus-

trated in Figure 41 as an example, during normal operating conditions, fault location application 

yields negative outcome; during fault, the calculated fault location turns positive and shows the 

estimated fault location in terms of the percentage length from the sending end.  
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Figure 41 Fault location application result for 80% fault.  

No phasor packet distortion 
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Test results are summarized in Table 23 and 24.  

Table 23. Application Test Results –  

Impact of Phasor Data Packet Misalignment on Fault Location Application Performance * 

Compared 

Quantity 

Distortion 

Characteristics ** 

Average Waveform Error % 

Proposed  

Algorithm 

Reference  

Algorithm 

Waveforms 

No distortion 1.2% † 2.5% 

Misalignment by 6 

reporting intervals 
6.4% 7.4% 

Misalignment by 10 

reporting intervals 
13% 41% 

Compared 

Quantity 

Distortion 

Characteristics 

Fault Location Error % 
Actual Fault 

Location (p.u.) 
Proposed 

Algorithm 

Reference 

Algorithm 

Application 

Outcomes 

No distortion 

0.35% ‡ 15% 25% 

0.14% 0.73% 50% 

0.7% 8.8% 80% 

Misalignment by 6 

reporting intervals 

0.6% 6% 25% 

0.4% 14% 50% 

0.65% 12% 80% 

Misalignment by 10 

reporting intervals 

13% 90% 25% 

36% 68% 50% 

22% 38% 80% 

* Phasor reporting rate is 120Hz 

** Only Bus 1 measurements are distorted 

† Percentage is w.r.t. nominal line voltage 230kV 

‡ Percentage is w.r.t. to the total line length 220km 
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Table 24. Application Test Results –  

Impact of Phasor Data Packet Loss on Fault Location Application Performance * 

Compared 

Quantity 

Distortion 

Characteristics ** 

Average Waveform Error % 

Proposed  

Algorithm 

Reference  

Algorithm 

Waveforms 

No distortion 1.2% † 2.5% 

Losing 6 data pack-

ets/second 
90% 90% 

Losing 15 data pack-

ets/second 
60% 60% 

Compared 

Quantity 

Distortion 

Characteristics 

Fault Location Error % 
Actual Fault 

Location (p.u.) 
Proposed 

Algorithm 

Reference 

Algorithm 

Application 

Outcomes 

No distortion 

0.35% ‡ 15% 25% 

0.14% 0.73% 50% 

0.7% 8.8% 80% 

Losing 6 data pack-

ets/second 

1% 82% 25% 

0.25% 34% 50% 

0.45% 14% 80% 

Losing 15 data pack-

ets/second 

1.1% 83% 25% 

0.25% 27% 50% 

0.15% 9% 80% 

* Phasor reporting rate is 120Hz 

** Only Bus 1 measurements are distorted 

† Percentage is w.r.t. nominal line voltage 230kV 

‡ Percentage is w.r.t. to the total line length 220km 

 

 

From the fault location error data in Tables 23 and 24, it can be concluded that: 

(1) Compared to the reference algorithm, the proposed algorithm results in lower Av-

erage Waveform Error % values under the selected types of communication net-

work distortions. This proves that the filtering associated with the proposed algo-

rithm has lower impact on waveform distortion, compared to the reference algo-

rithm; 

(2) Compared to the reference algorithm, the proposed algorithm results in lower val-

ues of Fault Location Error %, proving that the proposed algorithm inaccuracy 
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has a lower impact on fault location application performance, despite the presence 

of selected types of communication network distortions; 

(3) Likewise, the fault location application performance is less sensitive to the se-

lected types of communication network distortions, when utilizing the proposed 

algorithm phasor stream, compared to the reference algorithm phasor stream; 

(4) And therefore, the proposed algorithm has lower impact on fault location applica-

tion performance than the reference algorithm. 

The hypothesis is thus validated for the application use case testing under electromag-

netic dynamic event. This is done by showing that, compared to the reference algorithms, the 

proposed algorithm is less sensitive to synchrophasor corruption, and its inaccuracy has lower 

impact on fault location application performance. 

 Impact of Algorithm Accuracy on Oscillation Detection Application Performance 

The oscillation detection application uses the voltage phasors streamed by the PMU on 

Bus 1 to estimate the oscillation frequency. The test results are summarized in Tables 25 and 26. 
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Table 25. Application Test Results –  

Impact of Phasor Data Packet Misalignment on Oscillation Detection Application Performance * 

Compared 

Quantity 

Distortion 

Characteristics 

Average Waveform Error % 

Proposed  

Algorithm 

Reference  

Algorithm 

Waveforms 

No distortion 2.46% 3.34% 

Misalignment by 6 

reporting intervals 
2.47% 3.24% 

Misalignment by 10 

reporting intervals 
2.47% 3.17% 

Compared 

Quantity 

Distortion 

Characteristics 

Average Self-Coherence Match % 

Proposed  

Algorithm 

Reference  

Algorithm 

Application 

Outcomes 

No distortion 98.61% 87.14%  

Misalignment by 6 

reporting intervals 
97.77% 85.85% 

Misalignment by 10 

reporting intervals 
97.43% 87.85% 

* Phasor reporting rate is 60Hz  

 

Table 26. Application Test Results –  

Impact of Phasor Data Packet Loss on Oscillation Detection Application Performance * 

Compared 

Quantity 

Distortion 

Characteristics 

Average Waveform Error % 

Proposed  

Algorithm 

Reference  

Algorithm 

Waveforms 

No distortion 2.46% 3.34% 

Losing 6 data pack-

ets/second 
7.02% 7.82% 

Losing 15 data pack-

ets/second 
12.99% 13.68% 

Compared 

Quantity 

Distortion 

Characteristics 

Average Self-Coherence Match % 

Proposed  

Algorithm 

Reference  

Algorithm 

Application 

Outcomes 

No distortion 98.61% 87.33%  

Losing 6 data pack-

ets/second 
98.63% 92.26%  

Losing 15 data pack-

ets/second 
98.11% 91.96% 

* Phasor reporting rate is 60Hz  
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As can be seen from Tables 25 and 26 the following can be summarized for the proposed 

algorithm:  

(1) Compared to the reference algorithm, the proposed algorithm results in lower Av-

erage Waveform Error % values under the selected types of communication net-

work distortions. This proves that the filtering associated with the proposed algo-

rithm has lower impact on waveform distortion, compared to the reference algo-

rithm; 

(2) Compared to the reference algorithm, the proposed algorithm results in higher 

values of Self-Coherence Match %, demonstrating that the proposed algorithm 

inaccuracy has a lower impact on oscillation detection application performance, 

despite the presence of selected types of communication network distortions; 

(3) Likewise, the oscillation detection application performance is less sensitive to the 

selected types of communication network distortions, when utilizing the proposed 

algorithm phasor stream, compared to the reference algorithm phasor stream; 

(4) And therefore, the proposed algorithm has lower impact on the oscillation detec-

tion application than the reference algorithm.  

The hypothesis is thus validated for the application use case testing under electromechan-

ical dynamic event. This is done by showing that, compared to the reference algorithms, the pro-

posed algorithm is less sensitive to synchrophasor corruption, and its inaccuracy has lower im-

pact on oscillation detection application performance. 

9.4 Conclusion 

 In this chapter, the hypothesis is validated through algorithm testing using design and ap-

plication test use cases. The specification of test use cases, test procedures, test results, and result 
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evaluation metrics and methodologies are elaborated in this chapter. It is concluded that, in de-

sign and application test use cases, the hypothesis is validated under the caveats regarding some 

algorithm inaccuracy under special use case conditions elaborated below. 

 In design tests, it is concluded that the hypothesis is validated. This is done by showing 

the improvement on algorithm accuracy compared to the selected existing algorithms in the sur-

vey, against design test algorithm accuracy requirements. The design tests revealed that the pro-

posed algorithm fails in TVE accuracy in out-of-band test (M-class) and overshoot level (ampli-

tude step) are out of the range suggested by the standard [10], but is able to achieve a consistent 

accuracy of 2 orders of magnitude or higher than the standard requirements in other tests.  

 In Application Tests, various metrics are defined to evaluate the performance of proposed 

algorithm in term of the level of synchrophasor corruption caused by communication distortions, 

and the impact of algorithm inaccuracy on application performance. It is shown in 24.  

Table 23 through Table 26 that, compared to the reference algorithm in [36], the proposed algo-

rithm is less sensitive to synchrophasor corruption, and algorithm inaccuracy has lower impact 

on both fault location and oscillation detection application performances, despite the presence of 

communication network distortions. Therefore, under application test use cases, the hypothesis is 

validated.  

 To reiterate, this Dissertation hypothesized that phasor parameter calculation accuracy 

can be improved by tailoring phasor parameter definition and phasor parameter calculation ap-

proach based on the waveform features of events in the power system. As can be concluded in 

both the design and application test uses cases, the hypothesis is validated.  

Final conclusions, a summary of the Dissertation contribution, and future work are out-

lined in the next chapter.  
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10. CONCLUSIONS 

 

The characterization of dynamic events, particularly the extreme disturbances, is of fun-

damental significance to power system operation. With the growing deployment of PMUs and 

evolving application strategies for the use of synchrophasor data in the modern power grid, GPS-

time synchronized waveform sampling and phasor parameter calculation techniques are becom-

ing increasingly important in providing unequalled capacities in detecting extreme events and 

avoiding catastrophic consequences. 

In this Dissertation, the waveform manifestations of electromagnetic and electromechani-

cal dynamic events are extensively studied. Framework and algorithm are proposed to character-

ize power system operating conditions in terms of time-synchronized phasor parameters. In hy-

pothesis validation, design test use cases are utilized to evaluate the performance of proposed al-

gorithm under standardized tests. Application test use cases, test methodologies, and test metrics 

are defined to demonstrate the impact of algorithm inaccuracy and communication network dis-

tortion on application performance. 

10.1 Summary of Dissertation Work 

 In Chapters 1 and 2, we discussed the features of SCADA system in monitoring power 

system operating conditions. We emphasized the shortcomings of SCADA system’s inadequate 

measurement data accuracy and measurement data reporting resolution for the mitigation actions 

during extreme power system dynamic events. Then, we introduced the benefits of complement-

ing SCADA system with synchrophasor system by incorporating time-synchronized waveform 

sampling technique and PMU algorithms. We concluded that synchrophasor phasor system is 

more advantageous than SCADA system in monitoring extreme dynamic events. 
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After examining and critiquing prior work of time-synchronized waveform sampling 

techniques and PMU algorithms in Chapter 3, hypothesis, as well as hypothesis validation ap-

proach, are proposed in Chapter 4. The hypothesis is that a higher phasor parameter calculation 

accuracy can be achieved through phasor parameter definition and algorithm design tailored to 

the match the features of each type of dynamic waveform.  

In order to validate the hypothesis, PMU algorithm and hypothesis validation approach 

are studied and elaborated from Chapter 5 through Chapter 9. Power system dynamic events and 

dynamic waveform modeling are discussed in Chapter 5. The tools utilized in the proposed PMU 

algorithm are introduced and discussed from Chapter 6 to Chapter 8. The hypothesis validation is 

conducted through algorithm testing in Chapter 9 under both design and application test use 

cases. The main conclusions of this Dissertation work are summarized as follows: 

(1) Defining phasor parameters and tailoring PMU algorithm modeling to reflect and match the 

features of power system waveforms improve algorithm accuracy:  

It is proposed in the hypothesis that phasor parameter definition should reflect the fea-

tures of power system waveforms, such as the variations in amplitude, angle, and frequency.  

In order to validate this, we first proposed an algorithmic framework, outlined in Figure 9 

in Chapter 6. The proposed framework enables differentiation between electromagnetic and elec-

tromechanical dynamic waveforms, and switches the algorithm between P-class and M-class 

mode as needed. By doing so, the proposed algorithm is able to achieve fast computational 

speed, as required for P-class PMUs under electromagnetic transients, and high calculation accu-

racy, as needed for M-class PMUs under electromechanical transients. 

(2) The time-frequency signature of a waveform can be used to distinguish various types of elec-

tromagnetic and electromechanical dynamic events:  
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In order to validate this, we proposed a new time-frequency analysis tool, named 

“pseudo-wavelet” in Chapter 8, which is proven effective in extracting the time-frequency signa-

tures from power system waveform samples. Such time-frequency features are then leveraged to 

detect the onset of electromechanical dynamics, categorize various types of electromechanical 

dynamic events, and enable adaptive algorithm switching mechanism.  

Once the types of dynamic event is identified, we proposed customized phasor parameter 

definition and algorithm modeling to match different types of event, so that algorithm accuracy 

can be improved, compared to the surveyed existing algorithms. This is verified under the design 

test use cases in Chapter 9, where the improvement of algorithm accuracy is illustrated. 

(3) The algorithm accuracy during electromagnetic transients can be improved by adaptive 

spectral compensation according to the fundamental frequency of the power waveform:  

In order to validate this, we proposed a fundamental frequency estimator and DFT-based 

phasor calculation algorithm. Unscented Kalman Filter is used to reduce the estimation error due 

to prevalent noise. A spectral compensation technique is proposed to alleviate the error caused 

by DFT spectral leakage. The hypothesis validation in Chapter 9 proves that this approach is able 

to achieve high frequency estimation accuracy, and eliminate the impact of spectral leakage phe-

nomenon caused by frequency deviation. 

(4) The impact of algorithm inaccuracy and communication network distortion on the end-use 

applications should be evaluated, and such impact should be used as one of the metrics of 

algorithm accuracy:  

The Dissertation discussed the approach of assessing algorithm accuracy in terms of the 

impact on the performance of applications. We designed application test use cases, and proposed 

test procedure, test methodology, and performance evaluation metrics for application testing 
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strategy. The application test results in Chapter 9 validated the hypothesis by showing better ap-

plication performance with phasors calculated using the proposed algorithm. 

(5) Time-synchronized waveform sampling is key to algorithm accuracy: The fault location ap-

plication test use case in Chapter 9 assesses the impact of phasor data time-misalignment on 

fault location application performance. It is shown that the performance of fault location ap-

plication deteriorates as time-misalignment among the phasor data increases. As expected, 

accurate time-synchronization is key to the accuracy determination of phasor parameters and 

electrical quantities associated with multiple locations in the power grid. 

To summarize, the hypothesis of this Dissertation is validated in the tests 

10.2 Dissertation Contributions 

 Compared to prior research, the Dissertation work contributions are: 

(1) The Dissertation hypothesis contributes to specification and implementation of a new algo-

rithm design framework, shown in Figure 9, which leads to a single PMU algorithm that is 

able to achieve consistent accuracy under various dynamic power system conditions. The 

proposed framework, by utilizing the input waveform detection and classification tool, adap-

tively switches the most appropriate signal modeling to match the input signal type, thus re-

sults in higher accuracy under various power system events than any single algorithm pro-

posed in the literature survey. 

(2) The Dissertation proposed framework, shown in Figure 7, fundamentally eliminates the im-

pact of frequency leakage to DFT-based algorithm accuracy. A spectral compensation tech-

nique is developed to fully compensate the phasor calculation errors attributed to spectral 

leakage. The level of spectral compensation is adaptively tuned to the actual power system 
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fundamental frequency, estimated by the proposed, noise-resistant, UKF-based frequency es-

timator. In order to model the exponentially decaying DC component that may be present in 

the input signal, the Dissertation proposes a hybridization framework that models the DC 

component in terms of polynomial terms, preventing it from leaking into the DFT bin com-

ponents. The test results in Chapter 9 shows accurate phasor parameter calculation under 

electromagnetic transient signal input. 

(3) The Dissertation also proposes a framework, shown in Figure 8, that leverages the capability 

to detect and classify the type of input signal, identified by the proposed waveform extraction 

and classification tool, to then adaptively match the signal model to the actual signal samples. 

This strategy, as shown in Chapter 9, achieves high accuracy under electromechanical dy-

namic signal input. 

(4) Moreover, the proposed algorithmic framework in this Dissertation is future-proof. With the 

integration of new technologies such as distributed energy resources, the power system is ex-

pected to experience new dynamic events manifested as waveforms not observed nowadays. 

With the proposed algorithmic framework, the accuracy of phasor parameter calculation can 

be maintained by updating the waveform detection and classification features and algorithm 

features, which is a more efficient way than designing a new algorithm from scratch. 

(5) The Dissertation also elaborated on the application testing strategy. Compared to the stand-

ardized design testing strategy, which is outlined in relevant standard such as [10], the appli-

cation testing strategy is aimed to assess the impact of algorithm inaccuracy on the perfor-

mance of end-use control applications. Application and design testing strategies together pro-

vide a more comprehensive evaluation of the PMU algorithm performance than design test-

ing strategy alone. 
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10.3 Future Work 

In design tests, the algorithm accuracy under out-of-band tests (M-class PMUs), and the 

amplitude overshoot/undershoot under amplitude step test should be further studied. As dis-

cussed in Section 9.3.2.1, the inaccuracy may stem from filter design issues. 

We would like to propose two potential strategies in future work to further improve algo-

rithm accuracy: 

(1)  Designing and tuning the digital filters in the algorithm. One pre-processing filter, i.e., data 

window, installed at the front end of the algorithm, to alleviate overshoot/undershoot in am-

plitude step tests. The other post-processing filter installed at the output of the algorithm to 

achieve phasor data decimation needs to be tuned to improve out-of-band test accuracy. 

(2) Design a waveform feature characterization and classification techniques that operates on-

the-fly. To match the input signal features with high accuracy, the algorithm could benefit 

from a specialized fast online signal feature analysis tool, such as frequency content analysis. 

The outcome of such input signal content analysis can be used to accurately select the match-

ing PMU algorithm, as well as tuning the PMU algorithm parameters on-the-fly. The impli-

cation may be that such dedicated mechanism can cause extra delay to the algorithm. There-

fore, care should be taken in assessing the usefulness of such technique in applications re-

quiring fast vs. slow response time. 
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APPENDIX B  

CIRCUIT ANALYSIS OF POWER SYSTEM DURING ELECTROMAGNETIC 

TRANSIENTS* 

 

Faults in the power system are essentially sudden interruptions of RLC circuits. Such in-

terruptions may be caused by short circuits, or open circuits. Short circuits may be the result of 

insulation flashover, and connections between phase-phase and/or phase-ground.  

B.1 Symbols and Abbreviations  

 𝐴1 amplitude of 𝑖𝑠(𝑡) 

 𝐶 equivalent capacitance of Thévenin equivalent of fault circuit 

 𝑖𝑓(𝑡) fault current 

 𝑖𝑠(𝑡) steady-state component in fault current 

 𝑖𝑡(𝑡) transient component in fault current 

 𝐿 equivalent inductance of Thévenin equivalent of fault circuit 

 𝑞, 𝑄 electric charges 

 𝑍1 modulo of the impedance of equivalent fault circuit 

 𝑅 equivalent resistance of Thévenin equivalent of fault circuit 

 𝜃1 power angle of Thévenin equivalent of fault circuit 

 𝜙1 initial phase angle of fault circuit 

                                                

* The derivation of formulas in this Appendix follows the methods in [65].  
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B.2 Equivalent Circuit Analysis 

As shown in Figure 42 (a), the electric power network is composed of passive components, 

such as transmission lines, which can be represented by RLC parameters. Within the electric power 

network, at a given location F, a Thévenin equivalent circuit can be acquired w.r.t. to the two-

terminal port F-G, shown in Figure 42 (b). During normal operating conditions, F and G are not 

electrically connect, which is represented by an open circuit at S.  

When a fault occurs at location F, the switch S closes, resulting in faulty current if. The 

dynamic phenomenon of if depends on the parameters of Thévenin equivalent circuit, and is dis-

cussed in the following sections. 

 

Figure 42 Equivalent circuit of fault in electric power network 
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B.3 Short Circuit Waveform Analysis 

Based on the equivalent circuit shown in Figure 42 (b), the dynamic phenomena of faulty 

current can be studied by analyzing the transients in the RLC circuit.  

Let, 

 𝑣eq(𝑡) = 𝐴1cos (𝜔𝑡 + 𝜙1) (B2.1) 

According to KVL, 

 𝑣eq(𝑡) = 𝐴1 cos(𝜔𝑡 + 𝜙1) = 𝑖𝑓(𝑡) + 𝐿
d𝑖𝑓(𝑡)

d𝑡
+

𝑞(𝑡)

𝐶
 (B2.2) 

Differentiate equation (B2.2) w.r.t. time,  

 𝐿
d2𝑖𝑓(𝑡)

d𝑡2
+ 𝑅

d𝑖𝑓(𝑡)

d𝑡
+

𝑖𝑓(𝑡)

𝐶
= −𝐴1 sin(𝜔𝑡 + 𝜙1) (B2.3) 

The resultant fault current consists of a steady-state component, denoted by 𝑖𝑠(𝑡), and a 

decaying transient component, denoted by 𝑖𝑡(𝑡). 

 𝑖𝑓(𝑡) = 𝑖𝑠(𝑡) + 𝑖𝑡(𝑡) (B2.4) 

where, 

 𝑖𝑠(𝑡) =
𝐴1

𝑍1
cos(𝜔𝑡 + 𝜙1 − 𝜃1) (B2.5) 

where, 

 𝑍1 = √𝑅2 + (𝜔𝐿 −
1

𝜔𝐶
)2 (B2.6a) 

 𝜃1 = tan−1 (
𝜔𝐿 −

1
𝜔𝐶

𝑅
) 

(B2.6b) 

In steady-state, according to KVL, 
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 𝐿
d2𝑖𝑠(𝑡)

d𝑡2
+ 𝑅

d𝑖𝑠(𝑡)

d𝑡
+

𝑖𝑠(𝑡)

𝐶
= −𝐴1 sin(𝜔𝑡 + 𝜙1) (B2.7) 

Compared to equation (B2.3), there is, 

 
d2𝑖𝑡(𝑡)

d𝑡2
+

𝑅

𝐿

d𝑖𝑡(𝑡)

d𝑡
+

𝑖𝑡(𝑡)

𝐿𝐶
= 0 (B2.8) 

The characteristic equation of differential equation (B2.8) is, 

 𝑟2 +
𝑅

𝐿
𝑟 +

1

𝐿𝐶
= 0 (B2.9) 

Solving the characteristic equation,  

 𝑟1,2 =
1

2
(−

𝑅

𝐿
± √

𝑅2

𝐿2
−

4

𝐿𝐶
) = −

𝑅

2𝐿
± √

𝑅2

4𝐿2
−

1

𝐿𝐶
≝ −𝑎 ± 𝑏 (B2.10) 

where, 

 𝑎 =
𝑅

2𝐿
 (B2.11a) 

 𝑏 = √
𝑅2

4𝐿2
−

1

𝐿𝐶
 (B2.11b) 

The complete solution of 𝑖𝑡(𝑡) follows the form: 

 𝑖𝑡(𝑡) = 𝐼1𝑒
𝑟1𝑡 + 𝐼2𝑒

𝑟2𝑡 (B2.12) 

Therefore, the complete fault current can be expressed by, 

 𝑖𝑓(𝑡) =
𝐴1

𝑍1
cos(𝜔𝑡 + 𝜙1 − 𝜃1) + 𝐼1𝑒

𝑟1𝑡 + 𝐼2𝑒
𝑟2𝑡 (B2.13) 

𝐼1 and 𝐼2 are constant, which is associated with the initial conditions of the circuit. Deter-

mined by the physical facts of the circuit, let initial conditions, 

 𝑖(𝑡)|𝑡=0 = 0 (B2.14a) 
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 𝑞(𝑡)|𝑡=0 = 𝑄0 (B2.14b) 

Imposing initial conditions on equation (B2.13), 

 
𝐴1

𝑍1
cos(𝜙1 − 𝜃1) + 𝐼1 + 𝐼2 = 0 (B2.15a) 

 −
𝐴1

𝑍1
sin(𝜙1 − 𝜃1)𝜔𝐿 + (𝐼1𝑟1 + 𝐼2𝑟2)𝐿 +

𝑄0

𝐶
= 𝐴1cos (𝜙1) (B2.15b) 

Solve for 𝐼1 and 𝐼2, 

 𝐼1 =
𝐸𝑑

′

2𝑏𝐿
−

𝐴1

2𝑍1
cos(𝜙1 − 𝜃1) (B2.16a) 

 𝐼2 = −
𝐸𝑑

′

2𝑏𝐿
−

𝐴1

2𝑍1
cos(𝜙1 − 𝜃1) (B2.16b) 

where, 

 

𝐸𝑑
′ ≝ 𝐴1 cos(𝜙1) +

𝐴1

𝑍1
sin(𝜙1 − 𝜃1) 𝜔𝐿 −

𝑄0

𝐶
−

𝐴1𝑅

2𝑍1
cos (𝜙1

− 𝜃1) 

(B2.17) 

As a result,  

 𝑖𝑡(𝑡) = 𝐼1𝑒
(−𝑎+𝑏)𝑡 + 𝐼2𝑒

(−𝑎−𝑏)𝑡 (B2.18a) 

 𝑖𝑡(𝑡) = 𝑒−𝑎𝑡(𝐼1𝑒
𝑏𝑡 + 𝐼2𝑒

−𝑏𝑡) (B2.18b) 

 = 𝑒−𝑎𝑡 [
𝐸𝑑

′

2𝑏𝐿
(𝑒𝑏𝑡 − 𝑒−𝑏𝑡) −

𝐴1

2𝑍1
cos(𝜙1 − 𝜃1) (𝑒𝑏𝑡 + 𝑒−𝑏𝑡)] (B2.18c) 

where, 𝑎 =
𝑅

2𝐿
 , 𝑏 = √

𝑅2

4𝐿2
−

1

𝐿𝐶
  

The dynamics manifestation of 𝑖𝑡(𝑡) depends on the value of 𝑏, and is further discussed below. 

CASE 1 
𝑅2

4𝐿2
>

1

𝐿𝐶
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In this case, 𝑏 is real, and therefore: 

 𝑖𝑡(𝑡) = 𝑒−𝑎𝑡 [
𝐸𝑑

′

𝑏𝐿
sinh(𝑏𝑡) −

𝐴1

𝑍1
cos(𝜙1 − 𝜃1) cosh (𝑏𝑡)] (B2.19a) 

CASE 2 
𝑅2

4𝐿2
<

1

𝐿𝐶
  

In this case, 𝑏 is imaginary. Let, 

 𝛼 =
𝑅

2𝐿
, 𝑏 = j𝛽, 𝛽 = √−

𝑅2

4𝐿2
+

1

𝐿𝐶
  

Therefore,  

 𝑖𝑡(𝑡) = 𝑒−𝛼𝑡 {
𝐸𝑑

′

𝛽𝐿
sin (𝛽𝑡) −

𝐴1

𝑍1
cos(𝜙1 − 𝜃1) cos (𝛽𝑡)} (B2.19b) 

CASE 3 
𝑅2

4𝐿2
=

1

𝐿𝐶
  

In this case, 𝑏 ≡ 0. Note that, 

 lim
𝑏→0

(𝑒𝑏𝑡 − 𝑒−𝑏𝑡)

𝑏
= lim

𝑏→0

(𝑡𝑒𝑏𝑡 + 𝑡𝑒−𝑏𝑡)

1
= 2𝑡  

Therefore, 

 𝑖𝑡(𝑡) = 𝑒−𝑎𝑡 [
𝐸𝑑

′

𝐿
𝑡 −

𝐴1

𝑍1
cos(𝜙1 − 𝜃1)] (B2.19c) 
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APPENDIX C 

DERIVATION OF FREQUENCY PROFILE OF FREQUENCY-MODULATED SIGNAL* 

 

C.1 Symbols  

 𝑓0 fundamental frequency  

 𝑓𝑚  modulation frequency  

 𝐽𝛼(𝑥) Bessel function of the first kind 

 𝑘𝑚 modulation level 

 𝑥(𝑛) input waveform measurements/samples 

 𝜙0 initial phase angle of fundamental frequency component 

 𝜙𝑚 initial phase angle of frequency modulation component 

C.2 Useful Trigonometric Identities  

 𝐽−𝑛(𝑥) = (−1)𝑛𝐽𝑛(𝑥) (C2.1) 

 cos(𝑧 ∙ sin𝜃) = 𝐽0(𝑧) + 2 ∑ 𝐽2𝑘(𝑧)cos (2𝑘𝜃)

∞

𝑘=1

 (C2.2) 

 sin(𝑧 ∙ sin𝜃) = 2 ∑ 𝐽2𝑘+1(𝑧)sin[(2𝑘 + 1)𝜃]

∞

𝑘=1

 (C2.3) 

 cos(𝑧 ∙ cos𝜃) = 𝐽0(𝑧) + 2 ∑(−1)𝑘𝐽2𝑘(𝑧)cos (2𝑘𝜃)

∞

𝑘=1

 (C2.4) 

                                                

* Reprinted with authors’ permission from C. Qian and M. Kezunovic, “Synchrophasor reference algorithm for 

PMU Calibration System,” 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dal-

las, TX, 2016, pp. 1-5. Copyright 2016, IEEE. 
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 sin(𝑧 ∙ cos𝜃) = 2 ∑(−1)𝑘𝐽2𝑘+1(𝑧)sin[(2𝑘 + 1)𝜃]

∞

𝑘=1

 (C2.5) 

 cos(𝛼 ± 𝛽) = cos 𝛼 cos 𝛽 ∓ sin 𝛼 sin 𝛽 (C2.6) 

C.3 Frequency Profile of Frequency-Modulated Signal  

Consider input signal: 

 𝑥(𝑡) = cos[2𝜋𝑓0𝑡 + 𝑘𝑚cos (2𝜋𝑓𝑚𝑡 + 𝜙𝑚) + 𝜙0] (C3.1) 

Apply property (C2.6) to 𝑥(𝑡): 

 

𝑥(𝑡) = cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ cos[𝑘𝑚 cos(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)]

− sin(2𝜋𝑓0𝑡 + 𝜙0) ∙ sin[𝑘𝑚 cos(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)] 
(C3.2) 

 Apply properties (C2.1) through (C2.5): 

cos[𝑘𝑚 cos(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)]

= 𝐽0(𝑘𝑚) + 2 ∑(−1)𝑘𝐽2𝑘(𝑘𝑚) ∙ cos [2𝑘(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)]

∞

𝑘=1

 

(C3.3) 

sin[𝑘𝑚 cos(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)]

= 2 ∑(−1)𝑘𝐽2𝑘+1(𝑘𝑚)sin[(2𝑘 + 1)(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)]

∞

𝑘=1

 

(C3.4) 

 Therefore: 

cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ cos[𝑘𝑚 cos(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)] 

= cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ 𝐽0(𝑘𝑚) 

+2 ∑(−1)𝑘𝐽2𝑘(𝑘𝑚) ∙ cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ cos [2𝑘(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)]

∞

𝑘=1

 

= cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ 𝐽0(𝑘𝑚) 

(C3.5) 
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+ ∑ (−1)
𝑘
2𝐽𝑘(𝑘𝑚){cos[2𝜋(𝑓0 − 𝑘𝑓𝑚)𝑡 + 𝜙0 − 𝜙𝑚]

∞

𝑘=0,2,4,…

+ cos[2𝜋(𝑓0 + 𝑘𝑓𝑚)𝑡 + 𝜙0 + 𝜙𝑚]} 

 Similarly: 

sin(2𝜋𝑓0𝑡 + 𝜙0) ∙ sin[𝑘𝑚 cos(2𝜋𝑓𝑚𝑡 + 𝜙𝑚)] 

= ∑ (−1)
𝑘−1
2 𝐽𝑘(𝑘𝑚){sin[2𝜋(𝑓0 − 𝑘𝑓𝑚)𝑡 + 𝜙0 − 𝜙𝑚]

∞

𝑘=1,3,5,…

+ sin[2𝜋(𝑓0 + 𝑘𝑓𝑚)𝑡 + 𝜙0 + 𝜙𝑚]} 

(C3.6) 

 To summarize: 

 

𝑥(𝑡) = cos(2𝜋𝑓0𝑡 + 𝜙0) ∙ 𝐽0(𝑘𝑚) 

+ ∑ (−1)
𝑘
2𝐽𝑘(𝑘𝑚){cos[2𝜋(𝑓0 − 𝑘𝑓𝑚)𝑡 + 𝜙0 − 𝜙𝑚]

∞

𝑘=0,2,4,…

+ cos[2𝜋(𝑓0 + 𝑘𝑓𝑚)𝑡 + 𝜙0 + 𝜙𝑚]} 

− ∑ (−1)
𝑘−1
2 𝐽𝑘(𝑘𝑚){sin[2𝜋(𝑓0 − 𝑘𝑓𝑚)𝑡 + 𝜙0 − 𝜙𝑚]

∞

𝑘=1,3,5,…

+ sin[2𝜋(𝑓0 + 𝑘𝑓𝑚)𝑡 + 𝜙0 + 𝜙𝑚]} 

(C3.7) 
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APPENDIX D 

DERIVATION OF LINEAR KALMAN FILTER* 

 

In Appendix D, the derivation of linear Kalman filter, is outlined.  

D.1 Symbols and Operators 

 𝜶(𝑛) observation innovation vector, N×1 

  𝜶(𝑛) ≝ 𝒚(𝑛) − 𝒚̂(𝑛|𝒴𝑛−1) 

 𝑪(𝑛) measurement matrix, N×M 

 𝜺(𝑛) a posteriori state-estimate error vector, M×1 

  𝜺(𝑛) ≝ 𝒙(𝑛) − 𝒙̂(𝑛|𝒴𝑛) 

 𝜺(𝑛, 𝑛 − 1) predicted state-estimate error vector, M×1 

  𝜺(𝑛, 𝑛 − 1) ≝ 𝒙(𝑛) − 𝒙̂(𝑛|𝒴𝑛−1) 

 𝑭(𝑛, 𝑛 − 1) state transition matrix from step 𝑛 − 1 to 𝑛, M×M 

 𝑮(𝑛) Kalman gain, M ×N 

 𝑲(𝑛) correlation matrix of 𝜺(𝑛), , ℰ[𝜺𝜺H], M ×M 

 𝑲(𝑛, 𝑛 − 1) correlation matrix of 𝜺(𝑛, 𝑛 − 1) 

  ℰ[𝜺(𝑛, 𝑛 − 1)𝜺H(𝑛, 𝑛 − 1)], M ×M 

 𝑷(𝑛) process noise covariance matrix, ℰ[𝒘𝒘H], M×M 

 𝑸(𝑛) measurement noise covariance matrix, ℰ[𝒗𝒗H], N×N 

                                                

* Reprinted with the permission from C. Qian, M. Kezunovic, “Power system fundamental frequency estimation us-

ing unscented Kalman filter,” 2019 IEEE Power & Energy Society General Meeting, Atlanta, GA. 2019. Copyright 

2019, IEEE. 
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 𝑹(𝑛) correlation matrix of 𝜶(𝑛), ℰ[𝜶𝜶H], N×N 

 𝒙(𝑛) state variable vector at step 𝑛, M×1 

 𝒙̂(𝑖|𝒴𝑘) the MMSE estimate of 𝒙(𝑖), given observation 𝒴𝑘, M×1 

 𝒗(𝑛) measurement noise, N×1 

 𝒘(𝑛) process noise vector, M×1 

 𝒴𝑛 space spanned by 𝒚(1), 𝒚(2),…, 𝒚(𝑛) 

 𝒚(𝑛) observation vector, N×1 

 𝒚̂(𝑖|𝒴𝑘) the MMSE estimate of 𝒚(𝑖), given observation 𝒴𝑘, M×1 

 〈𝑎, 𝑏〉 inner product of two scalar variables, 〈𝑎, 𝑏〉 ≝ ℰ[𝑎𝑏∗] 

 〈𝒂, 𝒃〉 inner product of two vector variables, 〈𝒂, 𝒃〉 ≝ ℰ[𝒂𝒃H] 

D.2 Basic Philosophy of Kalman Filter 

 The model of a dynamic system is described as follows: 

 𝒙(𝑛) = 𝑭(𝑛, 𝑛 − 1)𝒙(𝑛 − 1) + 𝒘(𝑛) (D.1) 

 𝒚(𝑛) = 𝑪(𝑛)𝒙(𝑛) + 𝒗(𝑛) (D.2) 

 The symbols in (4.3) are explained as follows: 

 𝑛: step number (scalar) 

 𝒙(𝑛): state vector at step 𝑛 (𝑝 × 1 vector)  

 𝒘(𝑛): process noise vector. 𝐸[𝒘(𝑛)𝒘H(𝑘)] = 𝑸(𝑛) for 𝑛 = 𝑘; 𝐸[𝒘(𝑛)𝒘H(𝑘)] ≡ 𝟎 oth-

erwise. 

 𝒗(𝑛): measurement noise vector.𝐸[𝒗(𝑛)𝒗H(𝑘)] = 𝑷(𝑛) for 𝑛 = 𝑘 ; 𝐸[𝒗(𝑛)𝒗H(𝑘)] ≡ 𝟎 

otherwise. 𝐸[𝒘(𝑛)𝒗H(𝑘)] ≡ 𝟎 for all 𝑛 and 𝑘. 

 The dynamic system described in Equations (6.4) and (6.5) can be illustrated in Figure 43. 
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Figure 43 Block diagram representation of linear, discrete dynamic system described by 

Equations (6.4) and (6.5) 

 Kalman filter is designed to minimize the MMSE of state vector 𝒙(𝑛), given all the obser-

vation data 𝒴𝑛 ≝ span{𝒚(1), 𝒚(2),… , 𝒚(𝑛)}. The best MMSE estimate of state vector 𝒙(𝑛) is ap-

proached in two steps: 

 Step 1: Prediction with prior information 

Estimate state 𝒙̂(𝑛|𝒴𝑛−1) using last step state 𝒙̂(𝑛 − 1|𝒴𝑛−1) and state transition. Estimate meas-

urement 𝒚̂(𝑛|𝒴𝑛−1) using the measurement matrix and available measurement data 𝒴𝑛−1. 

 Step 2: Correcting of predicted state by adding weighted innovations derived from meas-

urements.  

The estimation process is optimized in that the information innovation on each step 𝑛, de-

fined by 𝜶(𝑛) ≝ 𝒚(𝑛) − 𝒚̂(𝑛|𝒴𝑛−1) is orthogonal to the space spanned by the past innovation 

terms span{𝜶(1), 𝜶(2),… , 𝜶(𝑛 − 1)} ≡ 𝒴𝑛−1. The implicit Gram-Schmidt orthogonalization 

procedure guarantees that the estimate is optimal in the sense of achieving MMSE by minimizing 

the state estimate error 𝐸{‖𝒙(𝑛) − 𝒙̂(𝑛|𝒴𝑛)‖2
2}. 

The Kalman filter uses measurements {𝒚(1), 𝒚(2),… , 𝒚(𝑛)} to yield an estimate 𝒙̂(𝑛|𝒴𝑛) 

of the state 𝒙(𝑛), so that the estimator is optimal in the sense of achieving MMSE, i.e., 

minimize ‖𝜺(𝑛)‖2
2 = ‖𝒙(𝑛) − 𝒙̂(𝑛|𝒴𝑛)‖2

2 
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The logic framework of using Kalman filter to achieve an MMSE estimate is, 

 𝒙̂(𝑛|𝒴𝑛) = 𝒙̂(𝑛|𝒴𝑛−1) + 𝑮(𝑛)[𝒚(𝑛) − 𝒚̂(𝑛|𝒴𝑛−1)] (D.3) 

where 𝒙̂(𝑛|𝒴𝑛−1) is the a posteriori estimate of state 𝒙(𝑛) given measurements up to 𝒚(𝑛 − 1), 

𝒚̂(𝑛|𝒴𝑛−1) is the a posteriori estimate of measurement 𝒚(𝑛) given measurements up to 𝒚(𝑛 −

1), 𝑮(𝑛) is a weight term expressed in terms of posterior covariance matrices, as shown in Ap-

pendix C.  

 The Kalman filter is a recursive process that update the one-step forward prediction 

𝒙̂(𝑛|𝒴𝑛−1) = 𝑭(𝑛, 𝑛 − 1)𝒙̂(𝑛 − 1|𝒴𝑛−1) with the update between the latest measurement input 

𝒚(𝑛) and the predicted measurement given past observations 𝒚̂(𝑛|𝒴𝑛−1). The procedure of de-

riving the Kalman filter essentially abide by the orthogonal projection theorem, guaranteeing the 

estimator is optimal in a MMSE sense. The derivation of Kalman filter assumes a linear dynamic 

system model.  

 The derivation of 𝑮(𝑛) (Kalman gain) depending on the aforementioned available infor-

mation is the key to Kalman filtering. As shown in Section D.4, the 𝑮(𝑛) can be acquired with 

available information. 

D.3 Recursive Minimum Least Square Estimator for Scalar Random Variables 

In this section, a special case, where the state and observation are both scalar, is pre-

sented. The procedure will be generalized to vector and matrix forms in the next section. 

Assume based on a set of observations 𝒴𝑛−1 = span{𝑦(1), 𝑦(2),… , 𝑦(𝑛 − 1)}, we found 

the MMSE estimate of state 𝑥̂(𝑛 − 1|𝒴𝑛−1) of the corresponding zero-mean scalar random vari-

able 𝑥(𝑛 − 1). Suppose now a new measurement is acquired, denoted by 𝑦(𝑛), and it is desirable 

to obtain the updated the estimate 𝑥̂(𝑛|𝒴𝑛) associated with random variable 𝑥(𝑛). It is preferable 

to perform this calculation recursively, in which the update can be expressed in the form of: 
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 𝑥̂(𝑛|𝒴𝑛) = 𝑥̂(𝑛|𝒴𝑛−1) + 𝑮(𝑛)[𝑦(𝑛) − 𝑦̂(𝑛|𝒴𝑛−1)] (C.4) 

where 𝑦̂(𝑛|𝒴𝑛−1) is the prediction of random variable 𝑦(𝑛) given all the available information 

stored in space 𝒴𝑛−1, and thus the term 𝛼(𝑛) ≝ 𝑦(𝑛) − 𝑦̂(𝑛|𝒴𝑛−1) is termed “innovation”. By 

definition, 𝛼(𝑛) cannot be expressed using any combinations in space 𝒴𝑛−1, and therefore, 

 𝛼(𝑛) ⊥ 𝒴𝑛−1  or, ℰ[𝛼(𝑛)𝑦∗(𝑘)], 𝑘 = 1,2,… , 𝑛 − 1  

It is also noticeable that, since the “update” inherited within the new measurement 𝑦(𝑛) 

is denoted equivalently by 𝛼(𝑛) and 𝑦̂(𝑛|𝒴𝑛−1), therefore, it can be deduced that,  

span{𝑦(1), 𝑦(2),… , 𝑦(𝑛)} ≡ span{𝛼(1), 𝛼(2),… , 𝛼(𝑛)} 

 Note that 𝑦(1), 𝑦(2),… , 𝑦(𝑛) need not be mutually uncorrelated (orthogonal), but 

𝛼(1), 𝛼(2),… , 𝛼(𝑛) are orthogonal, since 𝛼(𝑛) ⊥ 𝒴𝑛−1 = span{𝛼(1), 𝛼(2),… , 𝛼(𝑛 − 1)}. The 

innovation 𝛼(𝑘) can be obtained from measurements {𝑦(1), 𝑦(2),… , 𝑦(𝑘 − 1)} through Gram-

Schmidt orthogonalization procedure, where, 

 𝛼(1) = 𝑦(1) (D.5) 

 𝛼(2) = 𝑦(2) −
〈𝑦(2), 𝛼(1)〉

〈𝛼(1),𝛼(1)〉
𝛼(1) (D.6) 

 𝛼(3) = 𝑦(3) −
〈𝑦(3), 𝛼(2)〉

〈𝛼(2), 𝛼(2)〉
𝛼(2) −

〈𝑦(3), 𝛼(1)〉

〈𝛼(1), 𝛼(1)〉
𝛼(1) (D.7) 

 ⋮  

 Next, define the MMSE estimate of 𝑥(𝑛) 𝑥̂(𝑛|𝒴𝑛) as the linear combination of innova-

tion terms 𝛼(1), 𝛼(2),… , 𝛼(𝑛): 

 𝑥̂(𝑛|𝒴𝑛) = ∑ 𝑏𝑘𝛼(𝑘)

𝑛

𝑘=1

= ∑ 𝑏𝑘𝛼(𝑘)

𝑛−1

𝑘=1

+ 𝑏𝑛𝛼(𝑛) (D.8) 

 𝑥̂(𝑛|𝒴𝑛) = 𝑥̂(𝑛 − 1|𝒴𝑛−1) + 𝑏𝑛𝛼(𝑛) (D.9) 
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where 𝑏𝑘  are to be determined.  

The goal is to minimize MMSE of state estimate, i.e., 𝑥(𝑛) − 𝑥̂(𝑛|𝒴𝑛). And this this 

achieved by setting coefficient 𝑏𝑘  values to the projection of 𝑥(𝑛) onto orthogonal basis 

{𝛼(1), 𝛼(2),… , 𝛼(𝑛)}: 

 𝑏𝑘 =
〈𝑥(𝑘), 𝛼(𝑘)〉

〈𝛼(𝑘), 𝛼(𝑘)〉
 (D.10) 

 Compared with equation C2,  

𝐺(𝑛) = 𝑏𝑛 =
〈𝑥(𝑛), 𝛼(𝑛)〉

〈𝛼(𝑛),𝛼(𝑛)〉
 

 Note that equation C8 is in the form of recursion, and the new estimate 𝑥̂(𝑛|𝒴𝑛) can be 

efficiently achieved by updating the most recent one-step backward value 𝑥̂(𝑛 − 1|𝒴𝑛−1) with a 

correction term that embodies the information extracted from the new measurement. This proce-

dure can be generalized to vector state and vector measurement. 

D.4 Kalman Filter for Vector Random Variables 

The special scalar random variable case discussed in the previous subsection is general-

ized to vector cases. The procedure is described in Algorithm 2.  
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Algorithm 2 Kalman Filtering Procedure 

1:  INPUT observations/measurements 𝒚 = {𝒚(1), 𝒚(2),… , 𝒚(𝑛)} 

2:  KNOWN PARAMETERS from system equation  

Transition matrix: 𝑭(𝑛, 𝑛 − 1) 

Measurement matrix: 𝑪(𝑛) 

Correlation matrix of process noise: 𝑸(𝑛) 

Correlation matrix of measurement noise: 𝑷(𝑛) 

3:  INITIAL CONDITIONS 

𝒙̂(1|𝒴0) = 𝐸[𝒙(1)] 

𝑲(1,0) = 𝐸{(𝒙(1) − 𝐸[𝒙(1)])(𝒙(1) − 𝐸[𝒙(1)])H} 

4:  COMPUTATION ITERATION for 𝑛 = 1,2,3… 

Kalman gain: 

𝑮(𝑛) = 𝑭(𝑛, 𝑛 − 1)𝑲(𝑛, 𝑛 − 1)𝑪H(𝑛)[𝑪(𝑛)𝑲(𝑛, 𝑛 − 1)𝑪H(𝑛) + 𝑷(𝑛)]−𝟏 

Innovation vector: 

𝜶(𝑛) = 𝒚(𝑛) − 𝑪(𝑛)𝒙̂(𝑛|𝒴𝑛−1) 

𝒙̂(𝑛 + 1|𝒴𝑛) = 𝑭(𝑛 + 1, 𝑛)𝒙̂(𝑛|𝒴𝑛−1) + 𝑮(𝑛)𝜶(𝑛) 

𝑲(𝑛) = 𝑲(𝑛, 𝑛 − 1) − 𝑭(𝑛, 𝑛 + 1)𝑮(𝑛)𝑪(𝑛)𝑲(𝑛, 𝑛 − 1) 

𝑲(𝑛 + 1, 𝑛) = 𝑭(𝑛 + 1, 𝑛)𝑲(𝑛)𝑭H(𝑛 + 1, 𝑛) + 𝑸(𝑛) 

 

D.5 Unscented Kalman Filter Procedure 

The UKF procedure for the dynamic system characterized by equations: 

 𝒙(𝑛) = 𝑭[𝑛, 𝒙(𝑛 − 1), 𝒖(𝑛)] + 𝒘(𝑛) (D.11) 

 𝒚(𝑛) = 𝑪[𝑛; 𝒙(𝑛)] + 𝒗(𝑛) (D.12) 

where 𝑭 and 𝑪 are time-varying vector-valued nonlinear functions. The process noise and meas-

urement noise terms are both assumed to be additive. The estimation of state vector 𝒙 using UKF 

is demonstrated in Algorithm 3.  
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Algorithm 3 Unscented Kalman Filtering Procedure 

1:  KNOWN PARAMETERS 

𝑀 = dim{𝒙(𝑛)} 

𝑁 = dim{𝒚(𝑛)} 

Parameters that determine the selections of 𝜎-points: 𝛼, 𝛽, 𝜅 

𝜆 = 𝛼2(𝑀 + 𝜅) − 𝑀 

𝑊0
(𝑚)

=
𝜆

𝑀 + 𝜆
 

𝑊0
(𝑐)

=
𝜆

𝑀 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

𝑊𝑖
(𝑚)

= 𝑊𝑐
(𝑐)

=
𝜆

2(𝑀 + 𝜆)
, 𝑖 = 1,2,… ,2𝑀 

Correlation matrix of process noise: 𝑸(𝑛) 

Correlation matrix of measurement noise: 𝑷(𝑛) 

2:  INITIALIZATION 

𝒙̂(0) =  𝐸[𝒙̂(0)] 

𝑲(0) = 𝐸{[𝒙(0) − 𝒙̂(0)][𝒙(0) − 𝒙̂(0)]H} 

3:  COMPUTATION 

3.1.  Determination of 𝜎-points 

𝝌0(𝑛 − 1) = 𝒙̂(𝑛 − 1) 

𝝌𝑖(𝑛 − 1) = 𝒙̂(𝑛 − 1) ± [√(𝑀 + 𝜆)𝑲(𝑛 − 1)]
𝑖
 

where [√(𝑀 + 𝜆)𝑲(𝑛 − 1)]
𝑖
 is the 𝑖-th column of the matrix square root. 

3.2.  Time updates 

𝝌𝑖(𝑛|𝑛 − 1) = 𝑭[𝝌𝑖(𝑛 − 1), 𝒖(𝑛)], 𝑖 = 0,1,… ,2𝑀 

𝒙̂(𝑛|𝑛 − 1) = ∑𝑊𝑖
(𝑚)

2𝑀

𝑖=0

𝝌𝑖(𝑛|𝑛 − 1) 

𝑲(𝑛|𝑛 − 1) = ∑ 𝑊𝑖
(𝑐)[𝝌𝑖(𝑛|𝑛 − 1) − 𝒙̂(𝑛|𝑛 − 1)]

2𝑀

𝑖=0

 

[𝝌𝑖(𝑛|𝑛 − 1) − 𝒙̂(𝑛|𝑛 − 1)]H + 𝑸(𝑛) 

𝒀𝑖(𝑛|𝑛 − 1) = 𝑪[𝝌𝑖(𝑛|𝑛 − 1)], 𝑖 = 0,1,… ,2𝑀 

𝒚(𝑛|𝑛 − 1) = ∑𝑊𝑖
(𝑚)

𝒀𝑖(𝑛|𝑛 − 1)

2𝑀

𝑖=0

 

3.3.  Measurement updates 

𝑲(𝑛) = 𝑲(𝑛|𝑛 − 1) − 𝑮(𝑛)𝑲𝑦𝑦(𝑛)𝑮H(𝑛) 
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Algorithm 3 Continued 

𝑲𝑦𝑦(𝑛) = ∑𝑊𝑖
(𝑐)[𝒀𝑖(𝑛|𝑛 − 1) − 𝒚̂(𝑛|𝑛 − 1)]

2𝑀

𝑖=0

 

[𝒀𝑖(𝑛|𝑛 − 1) − 𝒚̂(𝑛|𝑛 − 1)]H + 𝑷(𝑛) 

𝑲𝑥𝑦(𝑛) = ∑𝑊𝑖
(𝑐)[𝝌𝑖(𝑛|𝑛 − 1) − 𝒙̂(𝑛|𝑛 − 1)]

2𝑀

𝑖=0

 

[𝒀𝑖(𝑛|𝑛 − 1) − 𝒚̂(𝑛|𝑛 − 1)]H 

𝑮(𝑛) = 𝑲𝑥𝑦(𝑛)𝑲𝑦𝑦
−1(𝑛) 

𝒙̂(𝑛) = 𝒙̂(𝑛|𝑛 − 1) + 𝑮(𝑛)[𝒚(𝑛) − 𝒚̂(𝑛|𝑛 − 1)] 

𝑲(𝑛) = 𝑲(𝑛|𝑛 − 1) − 𝑮(𝑛)𝑲𝑦𝑦(𝑛)𝑮H(𝑛) 


