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ABSTRACT 

 

To accommodate autonomous vehicles (AVs) and make them perform at their capacity, the 

current roadway infrastructure should be upgraded. However, upgrading the entire 

infrastructure cannot be conducted at once since it is time-consuming and costly. 

Therefore, evaluating alternative solutions to enhance or maintain traffic safety is critical, 

especially when primarily employing AVs. Among the roadway network components, 

intersections are one of the critical locations since they are proportionally experiencing 

more crashes, and signalized ones result in the majority of the fatal intersection related 

crashes. Hence, this dissertation examines the safety effects of various non-infrastructure 

variables at a signalized intersection in mixed traffic environments. To this aim, different 

levels of signal cycle length, speed limit, and left-turn (LT) signal phasing were considered 

under seven AV market penetration rates (MPRs). In addition, the safety effects of AV size 

were analyzed. A micro-simulation program was employed to develop and run 3,850 

simulation runs that were developed using a full factorial design. Eventually, the traffic 

safety of the scenarios was analyzed from various aspects, including 1) 15 longitudinal 

driving volatility measure, 2) 15 lateral driving volatility measure, and 3) three machine 

learning (ML) regression models using the percentage of jerks. The results showed that: 1) 

increasing the AV MPR improved the majority of the lateral volatility measures, 2) larger 

AV size is associated with higher longitudinal and lower lateral volatility measures, 3) 

each volatility model is different, and each model could be implemented according to the 

objective of a study, 4) the ML models for total jerks, AV jerk, and regular vehicles (RVs) 

jerk consistently indicated that higher speed limits and permitted LT phasing results in the 
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lower percentage of jerks, 5) increasing the AV size reduces the percentage of AV jerks 

and meanwhile has a negative effect on the RV jerks, but the benefit is higher, and 6) 

decreasing the cycle length reduces the number of jerky driving maneuvers for AVs. 

Eventually, the total and rear-end conflicts using the surrogate safety assessment model 

(SSAM) were compared to the number of jerks and indicated they could not be used 

interchangeably. 
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CHAPTER I 

INTRODUCTION 

 

This chapter introduces a general overview of traffic safety and the development of 

autonomous vehicles, explains the problem statement, discusses the objectives of the 

dissertation, and lastly provides the dissertation outline.  

 

1.1. Introduction 

Cities have experienced several transformations and growth over time, and 

transportation systems have been an integral part of the transformations (1). The growth in 

population and commercial areas in urban environments leads to significant traffic 

congestion. Traffic congestion causes delays, air pollution, the stress of drivers, fuel 

consumption, and noise (2). Traffic congestion resulted in a $160 billion loss in the United 

States in 2014 (3). Also, evaluating 471 urban areas in the U.S. indicated that drivers lose 

6.9 billion years and 3.1 billion gallons of fuels in traffic jam each year (4).  

In addition to the foregoing drawbacks, the growth of cities and traffic congestion 

contributes to roadway crashes, injuries, and fatalities. Based on the World Health 

Organization (WHO), nearly 1.35 million people died in roadway crashes in 2018, while 

injury due to crashes is the 8th leading cause of death for the entire world. These statistics 

make the roadway safety a major concern (5). The United States statistics indicate that 

there were 37,133 and 40,000 fatalities due to the roadway crashes in 2017 and 2018, 

respectively (6, 7). 
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Since the conventional solutions cannot fully solve the traffic safety concerns, due 

to the cost and space limitations, there is a need to implement an innovative solution to 

alleviate traffic congestion and overcome its consequences, including safety concerns, 

traffic delay, air pollution, fuel consumption, and noise level. As about 94% of all crashes 

in the U.S. involve human error, including fatigue, alcohol, or drug, eliminating or 

reducing the effect of the human factor can reduce the risk of roadway collisions (2, 8, 9). 

Vehicle automation is one solution that is widely recognized for its expected ability 

to minimize reliance on the human element. Over the past few years, the development of 

technologies also affects the automobile industry and leads to growth by bringing in 

computerization (10). In fact, by integrating sensing technology and wireless 

communication in the traffic systems, autonomous vehicle technology has been developing 

significantly and is expected to revolutionize the vehicle industry (1, 11, 12). Autonomous 

vehicles (AVs), also known as automated or self-driving cars, can drive themselves on the 

roadway networks and navigate through various types of roadways and environments 

without any interference of human control (10). Table 1 represents six levels of vehicle 

automation defined by the Society of Automotive Engineers (SAE) (13): 
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Table 1. SAE Levels of Vehicle Automation. Reprinted from (13) 
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AVs can address important concerns in transportation, including (8, 14–16):  

1) improving roadway safety by eliminating the human element; 
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2) providing mobility for everyone, including abled and disabled people, and all 

age groups who are not capable of driving; 

3) saving time by reallocating commute time to another task; 

4) shortening travel time by eliminating the required time to find a parking spot; 

5) reducing parking cost; 

6) increasing roadway capacity by reducing the headway/gap due to the 

improved safety features, Figure 1; and 

7) saving fuel and decreasing emissions. 

 

 

Figure 1. Gap in the AV Environment vs. Conventional Vehicle Environment. 

Reprinted from (8) 

 

The major social impacts of AVs are estimated to be $2,000 per vehicle per year, 

considering crash saving, fuel consumption, travel time reduction, and parking benefits. 

This cost reaches up to $4,000 when accounting for comprehensive crash costs (10). 

Automated driving illustrates the potential to improve safety in addition to the 

traffic operation by gradually reducing the human-driven vehicles (17). AVs improve 

traffic safety by restraining the leading cause of the roadway crashes that are drivers’ errors 
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(18). The safety of the AV transportation networks can be promoted due to the embedded 

sensors, cameras, lasers, and radars in the AV system, as depicted in Figure 2. This 

equipment is to monitor the vehicle and its surrounding environment and prompt either 

vehicle or driver to react to the risky situations to avoid a collision (19). 

 

 

Figure 2. Concept of the Automated Cars. Adapted from (17, 20) 

 

However, there are also concerns associated with AVs, such as loss of awareness of 

the drivers and overreliance on automation that can cause critical issues in the case of 

complex traffic situations (21). Furthermore, due to the lack of real-world data, the exact 

impact of AVs cannot be determined and confirmed thoroughly (22). Therefore, evaluating 

the safety impacts of AVs is critical, but meanwhile, it is a challenge due to the 

unavailability of the real-world data.  (22). 
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1.2. Problem Statement 

As mentioned earlier, human factors and driving behaviors are known as the 

leading causes of traffic crashes (23–26). Therefore, replacing human-driven vehicles by 

AVs could promote both traffic safety and operation. But, due to the lack of data, very few 

research studies have been performed to examine the safety effects of AVs, especially in 

mixed traffic environments. In addition, different countries and cities provide different 

road infrastructures and regulations, which makes it challenging for AVs to perform before 

standardizing the infrastructures and regulations (27). However, with the rapid 

advancement of AV technology, AVs are expected to operate on the current roadway 

infrastructure in the near future. For AVs to operate properly, there are studies that indicate 

the necessity of providing smart roadways to communicate with vehicles and improve 

pavement structures (28, 29). In fact, to achieve a smart city and develop autonomous 

intelligent vehicles, cooperating intelligent transportation systems and infrastructure should 

be further developed (30). Therefore, it is important to evaluate AVs’ safety and consider 

promoting the existing infrastructure components to safely accommodate AVs. However, 

since it is costly and time-consuming to upgrade the entire infrastructure at once, it is 

beneficial to primarily evaluating and determining how altering non-infrastructure 

components can change traffic safety. 

Although it is crucial to address the roadway crashes, injuries, and fatalities for the 

entire roadway network, network screening should be conducted to prioritize the locations 

based on their hazardousness. In addition, limitations in funding sources prevent the 

chance of promoting safety for the entire network at once. Among the roadway network 

components, signalized intersections are heavily traveled locations, complex due to having 
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several conflicts points, associated with more severe vehicular and pedestrian-involved 

crashes, and experience more crashes than segments given the length of the transportation 

network  (31–33). More importantly, signalized intersection related crashes tend to be 

more severe compared to the other types of intersections. In fact, 30% of the intersection 

related fatal crashes occur at signalized intersections, while only 10% of the intersections 

are signalized (33). Also, analyzing the location of the crashes in the AV test conducted in 

California, Figure 3, indicated that 88% of the AV involved crashes happened at 

intersections, and 54% of the incidents occurred at the signalized intersections (34).  

Therefore, it is critical to give the signalized intersection the priority for safety 

considerations. Therefore, traffic signal cycle length, left-turn (LT) signal phasing, and the 

speed limit are such non-infrastructure variables at signalized intersections that could be 

assessed to determine how they affect traffic safety in mixed traffic environments. In 

addition, the effect of AV size will be evaluated along with the abovementioned non-

infrastructure variables.  

 

 

Figure 3. Location of the AV-Involved Crashes. Adapted from (34) 
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In summary, this dissertation focuses on evaluating the effects of non-infrastructure 

variables on the safety of signalized intersections under various AV MPRs. To accomplish 

this objective, the effects of various LT signal phasing, signal cycle length, speed limit, 

and vehicle size will be evaluated under various AV MPRs. The safety will be investigated 

through developing safety models based on the percentage of jerks for each vehicle type as 

well as determining how the study variables change different driving volatility measures.  

 

1.3. Research Objectives 

The primary purpose of this research is to evaluate the effects of various non-

infrastructure variables on the safety of signalized intersections under various AV MPRs. 

The targeted objectives are as follows: 

1) Assess the effects of AV size and various MPRs of AVs on the safety of 

signalized intersections; 

2) Evaluate the impacts of different non-infrastructure variables, including 

signal cycle length, LT signal phasing, and the speed limit on the safety of 

signalized intersections; 

3) Determine how the study variables affect various longitudinal and lateral 

driving volatility measures, and therefore, traffic safety; 

4) Develop various machine learning models to estimate the safety of signalized 

intersections when implementing AVs at various levels of MPRs; and 
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5) Lastly, determine the relationship between the number of jerky driving 

maneuvers and the number of Surrogate Safety Assessment Model (SSAM) 

conflicts. 

 

1.4. Research Contributions 

The majority of the studies have considered an ideal roadway infrastructure 

condition while evaluating the operation and safety of AVs or mixed traffic environments. 

However, to be realistic, it is impractical, costly, and time-consuming to upgrade the entire 

infrastructure for AVs at once, especially for low AV MPRs. In addition, another concern 

is the lack of rich literature on the safety performance of AVs and/or mixed traffic 

environments. Hence, this dissertation, as a pioneer research study, evaluates the effects of 

economical and rapid non-infrastructure solutions, including adjusting signal cycle length, 

LT signal phasing, and the speed limit on traffic safety at signalized intersections under 

various AV MPRs. Also, the effect of AV size on traffic safety in mixed traffic 

environments is assessed to be used as a guideline for AV manufacturers to contribute to 

reducing the total number of crashes while employing AVs.  

 For the safety evaluation, this dissertation conducts comprehensive analyses to 

assess all the safety aspects of mixed traffic environments. The safety analyses are 

categorized as follows: 

1) Analyzing longitudinal and lateral driving volatility measures: as a common 

practice, traffic safety has been assessed by analyzing only longitudinal 

movements of the vehicles, while the lateral movements have been neglected. 

However, to comprehensively measure the safety of the mixed traffic 
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environments, this dissertation, for the very first time, not only evaluates the 

safety of longitudinal movements but also thoroughly assesses the lateral 

safety through lateral driving volatility measures. In this dissertation, 

simulation outputs are utilized to, first, analyze various longitudinal and 

lateral driving volatility measures, and second, assess how all the study non-

infrastructure variables influence each driving volatility measure. Hence, in 

addition to evaluating 30 different longitudinal and lateral driving volatility 

measures, the effects of four non-infrastructure variables under seven AV 

MPRs are also analyzed. 

2) Developing machine learning algorithms to predict the percentage of the total, 

only AV, and only regular vehicle (RV) jerks: generally, to evaluate safety 

through simulation models, the SSAM software program is used. However, 

since this software program is controversial, this dissertation uses a novel 

safety approach for mixed traffic environments by studying driving jerk 

events. In this approach, a machine learning algorithm has been used to 

develop various safety prediction models for the percentage of total jerks, AV 

jerks, and RV jerks and determine how the study variables affect each type of 

jerk. 

3) Comparing the calculated number of jerks and the number of conflicts from 

the SSAM: eventually, since SSAM is a controversial software program, this 

dissertation compares the number of calculated jerks and the number of total 

and rear-end SSAM conflicts to determine if they are correlated and could be 

used interchangeably. 
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In summary, this dissertation is the leading work that comprehensively evaluates 

traffic safety of mixed traffic environments from various aspects by adjusting non-

infrastructure variables at a signalized intersection. This is a critical step to ensure traffic 

safety while employing AVs, especially for low MPRs.  

 

1.5. Dissertation Outline 

This dissertation is divided into six different chapters. The first chapter is the 

current chapter, and the following chapters are presented as follows: 

1) Chapter two presents the literature review. The review covers the previous 

research studies to illustrate the safety effects of AVs and mixed traffic 

environments, determine how different surrogate safety measures (SSMs) 

have been used to evaluate the safety, and indicate if the safety effects of the 

study non-infrastructure variables have ever been analyzed. 

2) Chapter three describes the methodology. This chapter comprehensively 

explains the development of the simulation models, calibration and validation 

process, creating AV behaviors, developing simulation scenarios, extracting 

data, processing data, calculating the required SSMs, assessing safety through 

analyzing both longitudinal and lateral driving volatility measures, and 

developing safety models using machine learning algorithms. 

3) Chapter four contains primary statistical analyses of the study variables and 

the surrogate safety measures. The basic statistical analyses include 

descriptive statistics, explanatory analyses, and graphs. 
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4) Chapter five focuses on advanced statistical analyses and discussions, 

including the longitudinal driving volatility models, the lateral driving 

volatility models, and the machine learning models. This chapter describes 

the characteristics of advanced statistical models and the results of the 

modeling effort. 

5) Chapter six is the last chapter and concludes the dissertation. The conclusion 

represents a brief summary of the work and provides recommendations for 

further research. 

The next chapter covers the previous research studies that focused on the safety 

effects of AVs and various study variables as well as different methods of evaluating 

traffic safety. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter aims to review, investigate, and summarize the previous research 

studies on the safety and operational effects of AVs in mixed traffic environments; the 

influence of LT signal phasing, signal cycle length, speed limit, and vehicle size on safety; 

and the methods for assessing traffic safety. 

 

2.1. Background 

Roadway crashes, fatalities, and injuries have been one of the main concerns of 

traffic engineers for decades. Drivers’ errors are among the leading causes of roadway 

crashes (2, 8, 9). According to the World Health Organization (WHO) (5), roadway 

crashes are the 8th leading cause of deaths worldwide, and nearly 1.35 million people died 

in roadway crashes in 2018. In 2017 and 2018, the United States reported 37,133 and 

40,000 roadway crash fatalities, respectively (35, 36). Various studies evaluated traffic 

safety of roadway components (37–42). Among the various components of roadway 

networks, signalized intersections are known as high crash risk areas and contribute to 

30% of the intersection related fatal crashes, even though only 10% of the intersections are 

signalized (33, 43). “Vision Zero” that was initiated in Sweden in the 1990s has been 

focusing on increasing traffic safety by eliminating all traffic fatalities and severe injuries 

(44). Several cities in the United States have been implementing the Vision Zero approach 

to execute safety plans and enhance roadway safety. Figure 4 depicts cities in the United 

States with the Vision Zero target (45).  
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Figure 4. Vision Zero Cities in the U.S. Reprinted from (46) 

 

Generally, there are two types of safety features in vehicles to improve roadway 

safety (44): 

1. Passive safety features: these features are designed to protect victims of 

roadway crashes during and after a crash occurs when the crash is 

unavoidable. 

2. Active safety features: these features are designed to prevent crashes or 

mitigate crash severities. 

Eskandarian (44) indicated passive safety equipment reach a “point of diminishing 

returns”; however, on the other hand, the exploitation of the active safety features has been 

experiencing an upward trend. 

If an active safety paradigm is fully implemented, instead of accepting crashes as 

given and considering the consequences, the pre-crash situation can be evaluated and 

addressed to prevent crashes (44).  
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AVs have been developed to implement active safety features to prevent roadway 

crashes and improve traffic safety. AVs, as evolving technology, also limit the human 

factor and behavior from driving in order to enhance the operation and safety of the 

roadways (47). Besides the benefits associated with AVs, they can be subjected to 

uncertainties such as unaffordable initial cost, state-level licensing, and standard testing 

(rather than national-level) that lead to inconsistencies, security concerns, and undefined 

liability details. In addition, the interaction between AVs and other transportation system 

components, especially in a mixed traffic environment, remains undefined. To address 

these issues, the federal government should develop a national framework for licensing, 

security, privacy, and standard for liability (10). The following section focus on various 

aspects of AVs. 

 

2.2. Effects of AVs on Traffic Safety and Operation 

This section expands on the influence of AVs on the safety and operation of the 

roadway traffic, respectively. 

 

2.1.1. Influence of Vehicle Automation on Traffic Safety 

Many people lose their lives or get injured in roadway crashes due to human errors 

or violations of traffic laws (48). Eliminating drivers’ distraction, fatigue, inefficiency, 

health issues, and misjudgment leads to a 10-30% reduction in fatal crashes (49). 

Managing and minimizing the perception reaction time (PRT), as is the focused objective 

of vehicle automation, is a critical factor in reducing the number of fatal and severe crashes 

(49). Even after dismissing the human factor element from the AVs system, the AVs are 
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still vulnerable to the software and hardware hacking and glitches. During a course of 

testing AVs, operators activated 2,700 disengagements, including bad weather, poor 

pavement marking, potholes, and construction zones, in which the control of AVs was 

taken over by humans (50). The following section presents various studies on the safety 

effects of AVs on the roadway network and traffic. 

By equipping vehicles to the partially-automated crash avoidance features, 

including lane departure warning, blind-spot monitoring, and forward collision warning, 

the frequency and severity of the roadway crashes can be reduced because of the 

diminished effects of human errors and distracted driving. Assessing the costs and benefits 

of deploying crash avoidance features within the U.S. light-duty vehicle fleet revealed that 

the equipment could collectively prevent or reduce the severity of the crashes by 1.3 

million per year in the United States. Harper et al. (51) considered two upper and lower 

bounds of benefits, in which the upper bound is the case where all the crashes are 

prevented, and the lower bound is based on observing the insurance data. The results show 

$20 and $861 per vehicle net benefit for lower and upper bound, respectively. Even though 

the evolution of technologies improves the performance of AVs and decrease the number 

of roadway crashes and fatalities, the transition period to reach a 100% MPR takes time, 

and the interaction between AVs and conventional vehicles/regular vehicles (RVs) remains 

a challenge (50, 52). During the course of transition, AVs are at risk of colliding with 

human-driven vehicles and may even lead to a higher than anticipated rate of injury if the 

occupants are not belted or out of position (reading, sleeping, conversing, etc.) (52). To 

identify the risk associated with the failure of AVs in a mixed traffic environment, Bhavsar 

et al. (50) developed a fault-tree analysis. After disassembling the AV system into two 
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components of vehicular and transportation infrastructure, two fault tree models were 

established for each of the components separately. The results indicated a failure 

probability of about 14% resulting from the failure of the AV components, while this value 

was 158 per one million miles of travel if considering the failure of the transportation 

infrastructure in the estimations. 

Analyzing the real-world data from testing AVs in California indicated that among 

all the AV involved crashes, AVs were not at fault in any of the crashes, and the overall 

severity was lower than the conventional vehicle crashes (53). Although vehicle 

automation significantly reduces the overall number of crashes, it may cause new types of 

crashes at the same time. Figure 5 depicts the effect of automation on collision (49). 

 

 

Figure 5. Effect of Vehicle Automation on Crashes. Adapted from (49) 

 

The test that was conducted for AVs in California required the involved AV 

manufacturers to report the crashes that AVs were involved in during the test period. 

Among the 26 reported crashes, the majority of them were rear-end crashes where the AV 

was hit from the back. Moreover, 94% of human-driven vehicle crashes were related to 

human errors (14). 
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By implementing an Advanced Driver Assistance System (ADAS), the semi and 

fully AVs are growing. This advancement develops a mixed traffic condition in which 

equipped and unequipped vehicles use the same infrastructure (11). California PATH (54) 

evaluated and indicated the advantage of implementing platoons using Cooperative 

Adaptive Cruise Control (CACC) to reduce the time gap to 0.6- 1.5 sec and improve 

roadway capacity. Gouy et al. (11) evaluated the effect of AVs time headway (THW) on 

the THW of human-driven vehicles. As AVs are accompanied by small-time headways, the 

results indicated that manually-driven vehicles adjust the THW in accordance with the 

THW of their adjacent AV platoon. In fact, they spent most of the time keeping THW 

below the safety threshold that threatens their safety that indicates the negative impacts of 

providing a mixed traffic environment.  

In addition, a few studies have implemented micro-simulation models for analyzing 

the safety and operational impacts of AVs on traffic. Morando et al. (8) evaluated the 

safety impacts of two different scenarios of signalized intersection and roundabout under 

various AV penetration rates using micro-simulation software. The results indicated that 

AVs improve traffic safety significantly under higher MPRs. The number of conflicts 

decreased by 20% to 65%, with a statistically significant p-value of less than 0.05, with the 

AV penetration rates of 50% to 100% for the signalized intersection. For the roundabout 

scenario, a 29% to 64% reduction was observed in the number of conflicts. Papadoulis et 

al. (22) confirmed the benefit of implementing connected and automated vehicles (CAVs) 

on the safety of the motorways, even at a low MPR. Mousavi et al. (55) compared the 

safety effect of a fully conventional vehicle environment vs. a fully AV environment near 

an unsignalized intersection. The results proved the significant benefit of AVs to traffic 
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safety. Fagnant and Kockelman (10) estimated that 90% AV MPR is associated with a 

saving of 4.2 million dollars due to crash reduction, and 21,700 dollars resulted from 

fatality reductions per year. In another study, Kockelman et al. (56) simulated four MPRs 

of 25%, 50%, 75%, and 100% for 4-leg intersections. The results of their study using 

Time-To-Collision (TTC) as the SSM indicated that by increasing the AV MPR, the 

number of conflicts decreased 4%, 31%, and 77% for three of the studied intersections; 

however, a 17% increase was observed for another intersection.  

Arvin et al. (57) also evaluated an intersection located in Ann Arbor, Michigan, 

under various MPRs of level three and level four AVs, including 0%, 7%, 15%, 40%, 60%, 

80%, and 100% (for MPR 100%, different combinations of AV level three and AV level 

five were used). This study demonstrated that by increasing the level three and level five 

AV MPR from 0% to 100%, the number of conflicts decreased from nine to zero. 

Moreover, by considering only level five AV and human-driven vehicles in the simulation 

environment, the number of conflicts increased from nine to 10 at low AV MPR, which is 

below 40%; however, by increasing the MPR to 100%, the number of conflicts reduced to 

zero. Another study by Arvin et al. (58) proved that the baseline intersection with fully 

RVs experienced an average of 9.43 conflicts. However, by increasing the MPR of low-

level AV (LAV) and high-level AV (HAV), a 90.1% improvement was observed. 

Additionally, with having a fully HAV environment, the intersection became conflict-free. 

Furthermore, Virdi et al. (59) examined the safety impacts of 11 CAV MPRs, 

starting from 0% until reaching to 100% for each 10% increment, at a signalized 

intersection in Australia. The results indicated that for the first 20% of the MPR, there was 

a 22% increase in conflicts, while there was a 48% reduction in the number of conflicts at 
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MPR of 90%. Another study, conducted by Jeong (60), developed a micro-simulation 

model to evaluate the effect of an optimization process, which minimizes the overall crash 

risk by focusing on vehicle maneuvering control parameters on a freeway traffic stream 

under different MPRs of automated driving systems (ADS). Two different approaches 

were considered: 1) vehicle safety-based maneuvering (VSM), and 2) traffic safety-based 

maneuvering (TSM). The former one considers the crash risk of an equipped vehicle and 

its surrounding vehicles, while the latter one examined the overall crash risk of the traffic 

stream. The results suggested significant reductions in the rear-end crash risks for both 

VSM and TSM (60). 

In summary, this section has indicated that providing partially AVs can improve 

traffic safety. Moreover, the results of the majority of the simulation-based studies showed 

high AV/CAV MPR enhances the safety of the roadways significantly. 

 

2.1.2.  Influence of Vehicle Automation on Traffic Operation 

One of the expected operational effects of AVs is the increase in the capacity of the 

roadways as a result of shorter headways due to the enhanced safety features of the AVs 

(8). Aria et al. (21) assessed the impacts of AVs on the traffic network by developing two 

simulation scenarios of 100% AVs and 100% RVs. The results revealed that AVs 

positively impacts the network operation, especially when the network is congested (e.g., 

peak period). The AV scenario suggested improvements in the roadway capacity, average 

travel speed, and travel time of the network. Hoogendoorn et al. (16) analyzed the effect of 

vehicle automation on the traffic flow efficiency and indicated that although AVs influence 

traffic flow in the future, the effect of other roadway users should not be neglected. 
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Additionally, depending on the level of automation, the behavior of the drivers of both 

AVs and RVs in the vicinity of the AVs impact the performance of the AVs and as a 

consequence the traffic flow. 

Considering the effect of vehicle automation on the capacity of the freeways, 

Karaaslan et al. (61) indicated that a substantial improvement could occur through 

implementing automated platooning, compare to 1,800-2,200 vphpl for manually driven 

vehicles. Vanderwerf et al. (62) also confirmed the effect of automation on a considerable 

capacity increase of the freeways. The capacity can be increased from 2,100 vphpl to 2,900 

vphpl by implementing 20% Adaptive Cruise Control (ACC), 60% CACC, besides 20% 

manual driven vehicles. The effect of combining different MPRs of connected vehicles 

(CVs) and AVs with a flat 10% RVs on the fundamental diagram indicated that as long as 

the number of AVs is more than CVs, the scatter in a fundamental diagram is negligible. 

However, by increasing the number of connected vehicles, the scatter of the fundamental 

diagram increases dramatically (63, 64).  

A few studies evaluated the effect of dedicating a lane to CAVs.  Ye and 

Yamamoto (65) assessed the impact of dedicating a lane to CAVs under different MPRs. 

The results indicated that allocating a lane for CAVs improves the traffic throughput only 

for the medium density range of traffic volume. Laan and Farokhi Sadabadi (66) also 

showed that in case of allocating a lane to AVs on the multilane freeways, the overall 

performance of the freeways improves when the MPR is increased to 30%, 40%, or 50% 

depending on the other AV behavioral factors and assumptions. Another study indicated 

that the MPR of AVs, as well as the lane policies on accommodating AVs, RVs, or both, 

affect the capacity of the roadways (67).  
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Nilsson et al. (68) focused on the lane change of AVs. They developed an 

algorithm for lane change maneuvers to find an appropriate inter-vehicle traffic gap and 

time instance for AVs. The results indicated the capability of the proposed algorithm to 

improve traffic operation. Sun et al. (69) proposed an intersection operation algorithm, 

called maximum capacity intersection operation scheme with signals, in which intersection 

capacity will be maximized by using all the available lanes simultaneously in addition to 

optimizing signal green time dynamically. The results indicated that this approach could 

double the capacity of an intersection. A study evaluated the effect of conventional, 

connected, and automated vehicles on the operation of an isolated signalized intersection. 

Various total flows, demand ratios, and MPRs were simulated, and the performances were 

compared to an actuated signal control algorithm. Eventually, an algorithm was proposed 

for connected vehicles. Based on the results, the total delay and number of stops showed an 

evident decrease and improved performance of the intersection (70). Mousavi et al. (71) 

also assessed the performance of AVs in the proximity of an unsignalized intersection and 

indicated that AVs have a superior capability in relieving traffic congestion significantly in 

the vicinity of a driveway in moderate LOS. 

To improve the operation of automated vehicles at freeway merging areas, Letter and 

Elefteriadou (72) developed an algorithm to search for the best and optimized route for AVs 

to follow to perform the merging maneuver. The results of evaluating a simulated merging 

segment indicated that the algorithm enhances traffic, compared to RVs situation, by 

reducing travel time and increasing travel speed for AVs, and under the congested situation, 

it provides safe merging of the vehicles. The results of Talebpour and Mahmassani (1) 

revealed that CAVs improve string stability and increase throughput under certain MRRs. 
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Also, it is indicated that the vehicle automation performs better in preventing shockwave 

formation.   

Although the AVs are known to be beneficial and influence daily travel significantly, 

many studies speculate that the system-level effects at low MPRs will be minimal. Talebpour 

et al. (73) explored the effect of reserving a lane for AVs on travel time reliability and traffic 

flow dynamics. Evaluation of three different scenarios, including 1) mandatory use of the 

reserved lane by AVs, 2) arbitrary use of the reserved lane by AVs, and 3) limiting AVs to 

operate autonomously in the reserved lane, indicated that the optional use of the reserved 

lane for AVs without imposing any limitation could improve the operation of the network 

and reduces traffic congestion. 

In summary, the literature has explored the operational benefits of AVs from various 

aspects. The results indicated that AVs are capable of improving roadway capacity and 

throughput compared to the CVs, especially at higher AV MPRs and congested traffic 

conditions. However, the effects of other roadway users in mixed traffic environments 

should not be neglected. 

 

2.3. Effects of LT Signal Phasing on Crash Risk 

LT movements are known as the highest-risk movement at the intersections (74). 

The safety concerns arise from three different sources of potential conflicts, including 

opposing through, the same direction through, crossing vehicles, and pedestrians (75). In 

addition, performing a left-turning maneuver requires the evaluation of both available gaps 

and the speed of the opposing through vehicles. These complications make the left turn 

movements as one of the most critical maneuvers at signalized intersections that need 
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special attention and management (76).  The Manual on Uniform Traffic Control Devices 

(MUTCD) (77) indicates that there are four designs for left-turning movements at a 

signalized intersection, including protected, permitted, protected/permitted, and variable 

mode. Determining an appropriate LT signal phasing is dependent upon various factors 

such as turning traffic volume, opposing through volume, number of lanes, approach 

speeds, pedestrian crossing, sight distance, and crash experience (75). 

Amiridis et al. (76) indicated that even though the protected only left-turning signal 

provides the highest level of safety, it also can increase delay and congestion. Federal 

Highway Administration (FHWA) (74) conducted a before-and-after study for three 

signalized intersections by converting the permitted LTs to protected-permitted LTs. The 

results indicated that the total number of crashes decreased by 32 percent, while the head-

on crashes declined by 84 percent. However, Chen et al. showed that converting permitted 

LT signal phasing to protected-permitted does not result in a significant reduction in the 

number of crashes, but protected LT signal phasing reduces LT crashes and pedestrian 

crashes significantly (78).  

 

2.4. Effects of Speed Limit on Crash Risk 

Speed plays an important role in traffic safety as it influences both crash occurrence 

and crash severity (79, 80). The speed limit is known as one of the factors that are fed into 

a driver’s speed choice (81). Previous studies focused on the impacts of increasing the 

speed limit on the crash severity and consistently reported that higher speed limits result in 

more severe crashes (82, 83). In addition, Islam and El-Basyouny studied residential areas 

and reported that decreasing the speed limit improves traffic safety in these areas (84). In 
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general, there are not many studies that assessed the effects of the speed limit on the crash 

risk in urban areas, and specifically at signalized intersections. 

 

2.5. Effects of Vehicle Size on Crash Risk 

The effects of vehicle size on the safety of roadways have not been assessed 

extensively. National Highway Traffic Safety Administration (NHTSA) (85) report on the 

passenger vehicle occupant fatality rates indicated that by decreasing the vehicle size, the 

fatality rate increases. While compact cars have the highest fatality rate, large vans are 

associated with the lowest fatality rate. Kahane (86) reported consistent results and showed 

that a reduction in the weight and size of passenger cars leads to an increase in the fatality 

rate. 

 

2.6. Effects of Cycle Length on Crash Risk 

The effects of cycle length on the safety and number of crashes has not been 

studied in detail. Stevanovic et al. (78) suggested optimizing signal length in order to 

improve traffic safety. However, on the other hand, the impact of cycle length on the traffic 

operation, including delay and queue spillback, has been evaluated in several research 

studies (87–89).  In this research, the effects of cycle length will be analyzed on the safety 

of conventional and AVs. 

 

2.7. Detecting Safety-Critical Events in Simulation Environments 

Generally, traffic simulation models do not result in any crashes. However, there are 

SSMs that could be implemented to determine the number of risky driving maneuvers in a 
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simulation environment, and hence assess the overall level of safety. The following two 

sections cover the two general categories of SSMs that could be used to assess the safety of 

the simulation scenarios. 

 

2.7.1. Driving Volatility Measures 

More recently, a new term has been introduced as the drivers’ volatility that 

captures the aggressiveness of the drivers (90–94). Driving volatility captures the variation 

in instantaneous driving decisions on a roadway segment or at an intersection (95, 96). 

Wali et al. (91) and Khattak and Wali (93) proved that volatility in instantaneous driving 

maneuvers represent unsafe traffic situations and could potentially result in 

incidents/crashes. Various studies introduced and evaluated different driving volatility 

measures, including standard deviation, coefficient of variation, percent of events over a 

threshold for speed, acceleration/deceleration, and positive/negative jerk events (58, 91, 

93, 95). Moreover, the volatility measures could be used for both longitudinal and lateral 

driving movements (90–93); however, most of the studies have more focused on the 

longitudinal movements of the vehicles, rather than the lateral driving volatilities. 

Previously conducted studies indicated that high driving volatility measures are associated 

with a lower level of traffic safety (58, 93, 97). 

 

2.7.2. Driving Jerk 

Recently, several studies have sought to use driver behavior on roadway segments 

as an explanatory variable for crash frequency, e.g. (98, 99). Rates of change of 

deceleration (i.e., “jerks”) are one of the potential SSMs to detect roadways black spots 
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(100, 101). Previous studies indicated that the higher rate of jerk events are associated with 

a higher number of crashes on both segments and signalized intersections (7, 38, 43, 73, 

98, 99). Studying jerk is advantageous over acceleration/deceleration because incidents 

with milder braking reactions (low deceleration and high rate of change of deceleration) 

occur more frequently than the events with a high deceleration (zero or small jerk), which 

enables detecting crash-prone locations earlier with a higher level of accuracy (101).  

Bagdadi and Varhelyi (98) used 10 Hz GPS data from 166 private vehicles to 

analyze jerks. By using a critical jerk threshold of -32.4 ft./ s³ (-9.9 m/s³), the results 

indicated that drivers with more jerk events above the threshold are more likely to have a 

history of self-reported crashes. Bagdadi conducted another study to develop a method for 

detecting crash-prone locations by using -1 g/s as the critical jerk threshold (102). Pande et 

al. (100) studied an uninterrupted traffic flow and proved that there is a high correlation 

between the number of jerky maneuvers and the total number of crashes on quarter-mile 

segments. In addition, Mousavi et al. (43, 101) and Wolshon et al. (97) conducted a 

segment-based analysis on multiple drivers on the segments of interrupted traffic flow 

roadways. By using a lower jerk threshold of -2.5 
𝑓𝑡

𝑠3⁄  on 3 Hz GPS data, they indicated 

that segments with a higher number of jerks over the threshold were experiencing a higher 

crash rate as well.  

 

2.7.3. Surrogate Safety Assessment Model (SSAM) as an SSM 

The safety of any roadway network and facilities is often evaluated through 

tracking and analyzing the historical crash data. Due to the infrequency and random nature 

of crashes, it takes a longer time to obtain a reasonable sample size and find crash-prone 
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locations that need remedies (101, 103). Therefore, there are various SSMs available to 

detect the potential conflicts of the vehicles on a roadway before numerous crashes, 

fatalities, and injuries occur. Time-to-collision (TTC), gap time (GT), deceleration rate 

(DR), the proportion of stopping distance (PS.D.), and post encroachment time (PET) are 

such variables (8). 

TTC can be an indicator of the crash risk and is defined as the required time to 

collide if two vehicles continue moving on the same path at the same speed (104, 105). 

Therefore, low TTC associates with a higher risk of crashes, and high TTC represents a 

lower crash risk (105). Equation (1) demonstrates how to calculate TTC mathematically 

based on Figure 6 (106).  

A vehicle on a section of a roadway only has one TTC value. However, the TTC on 

a junction is calculated based on one or more vehicles coming from the arms of the 

intersection (105). 

 

 

Figure 6. Time-To-Collision Definition and Variables. Reprinted from (8) 

 

SSAM is a software that is used for analyzing SSMs obtained from various micro-

simulation models to identify the number of potential conflicts (107, 108). SSAM is 
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capable of detecting three different types of conflicts, including rear-end, lane-changing, 

and crossing. Figure 7 depicts the angle diagram used by SSAM to distinguish different 

types of conflicts (108). 
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Where: 

1v  and 2v : vehicle speeds; 

1l  and 2l : vehicle lengths; 

1w  and 2w : vehicles widths; 

1X  and 2X : vehicle positions;  

1d  and 2d : distance to conflict areas. 

 

 



 

30 

 

 

Figure 7. SSAM Conflict Angle Diagram. Reprinted from (108) 

 

Several previous studies implemented SSAM to identify either the total number of 

conflicts or a specific type of conflict for traffic simulation models (8, 22, 56, 109–111). 

 

2.8. Chapter Summary 

This chapter has summarized the literature on related research topics. It indicates 

that overall, AVs are capable of improving traffic safety and operation. However, not many 

research studies have extensively evaluated the traffic safety of mixed traffic 

environments. 

Moreover, as indicated, there are very few studies that assessed the safety effects of 

the speed limit, LT signal phasing, and signal cycle length. Still, none of them considered 

AVs and mixed traffic environments. In addition, although the safety of vehicle size for 
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RVs has been evaluated, the safety effect of AV size has been neglected.  In fact, AV size 

is a crucial factor to be evaluated before extensively employing AVs. 

Lastly, various SSMs, including jerk, longitudinal driving volatility measures, 

lateral driving volatility measures, and SSAM, were explained to indicate how they have 

been implemented in the previous research studies. Although jerk and longitudinal driving 

volatility measures have been studies, lateral driving volatility measures need more 

investigations. In other words, none of the research studies determined how various non-

infrastructure variables influence these SSMs. The next chapter describes the methodology 

used for this dissertation. 
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CHAPTER III 

METHODOLOGY 

 

This chapter describes the development of the simulation environment, designing 

various scenarios, processing simulation results, analyzing data, conducting safety analyses 

by assessing longitudinal and lateral driving volatility measures, and developing safety 

prediction models using machine learning. Lastly, the implementation of the SSAM is 

explained to find the number of conflicts, compare them with the number of jerks, and 

determine if there is an associative relationship.  

 

3.1. Introduction 

As mentioned in Chapter 1, analyzing the safety performance of mixed traffic 

environments at a signalized intersection before employing AVs in the real world is 

crucial. Since this analysis is infeasible due to the lack of real-world data, VISSIM 10.00 

(112), as a micro-simulation software, was used to simulate and replicate an existing 

signalized intersection located in College Station, TX. In addition to assessing various AV 

MPRs, the effects of several other non-infrastructure variables, including speed limit, LT 

signal phasing, and signal cycle length, as well as AV size were evaluated. The following 

sections expand on the methodology, including developing and running the simulations 

scenarios, assessing the safety of each scenario using various driving volatility measures 

and jerks, and comparing the number of SSAM conflicts and jerks. 
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3.2. Traffic Simulation Design and Development 

VISSIM 10.00 (112) was used as a micro-simulation platform to develop the 

simulation environments for assessing the objectives of the study. The followings provide 

details on the process of establishing the scenarios. 

 

3.2.1. Base Simulation Environment 

Since the purpose of the dissertation is to evaluate and compare the effectiveness of 

various non-infrastructure treatments, only one complicated intersection was selected for 

the analyses. Figure 8 depicts the base signalized intersection scenario that was developed 

using VISSIM 10.00. This signalized intersection replicates an existing intersection in 

College Station, TX, and has been selected due to its complexity of being facilitated with 

exclusive right-turn (RT) and LT lanes for all the approaches. In addition, this intersection 

has various speed limits along each approach. 

The simulated signalized intersection is a four-leg intersection. The major road has 

three through lanes in addition to a single exclusive LT lane and an exclusive RT lane for 

each approach. The minor road is facilitated with two through lanes as well as a dual LT 

lane and a single RT lane for each approach. The speed limit was set to 40 mph for the 

eastbound and westbound approaches of the intersection, 45 mph for the southbound leg, 

and 25 mph for the northbound leg. 
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Figure 8. Signalized Intersection Scenario in VISSIM 

 

3.2.2. Input Traffic Volume 

The next step in establishing the simulation environment is to input the traffic 

volume by each movement at the intersection. For the purpose of this dissertation, the peak 

hour traffic volume data were used. In fact, during the peak hour period, the highest 

number of risky driving maneuvers is expected because of the high level of traffic 

exposure. Due to the lack of traffic volume per movement for 2019, the collected data in 

2015 were used to estimate the 2019 traffic volume data for each movement. To do so, the 

flat growth rate, presented in Equation (2), was applied to the 2015 traffic data: 

 

𝐴𝐷𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐴𝐷𝑇𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠(1 + 𝑖)𝑛 (2) 

 

Where, 
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𝐴𝐷𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =   ADT for the year 2019 

𝐴𝐷𝑇𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 =   ADT for a previous year (in this case, it is 2015) 

𝑖 =  Growth rate (defined in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝟑)) 

𝑛 =  Number of years 

 

The value of the growth rate, 𝑖, was calculated from the previous years' overall 

traffic volume data, regardless of the per movement distribution, using Equation (3).  

 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒 =  

(𝐴𝐷𝑇𝑛 − 𝐴𝐷𝑇𝑛−𝑚)
𝐴𝐷𝑇(𝑛−𝑚)

× 100

𝑛 − 𝑚
 

(3) 

 

Where, 

𝐴𝐷𝑇𝑛 =   ADT for present 

𝐴𝐷𝑇𝑛−𝑚 =   ADT for past 

 

Eventually, the traffic volume for every movement at the intersection in 2019 was 

calculated and used as the input volume data for the VISSIM scenario. 

 

3.2.3.  Driving Behaviors 

VISSIM offers two car-following models of Wiedemann 74 and Wiedemann 99. 

Wiedemann 74 is implemented to replicate driving behaviors in urban environments and 

merging areas, while Wiedemann 99 is used for freeway segments with no merging area 

(112, 113). Therefore, since the study intersection is located in an urban environment, the 
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behavior of RVs was modeled using the Wiedemann 74 car-following model with the 

default values for the predefined parameters.  

VISSIM 10.00 does not offer AV as a predefined vehicle class. Therefore, different 

lateral and longitudinal controls of Wiedemann 74, including average standstill distance, 

additive part of safety distance, and multiplicative part of safety distance, were adjusted to 

replicate the behavior of the AVs (112). It is notable that due to the time constraints and 

since it was out of the dissertation’s scope, a sensitivity analysis was not conducted to 

determine how the results would change by modifying the AV parameters. Table 2 

presents the driving behaviors that were adjusted to reflect AVs (112). It is notable that 

AVs in this study are only automated and not connected; therefore, there is no 

communication between the vehicles. 

 

Table 2. Wiedemann 74 Driving Behavior Parameters 

Driving Behavior AV Value 

Average Standstill Distance 1.0 

Additive Part of Safety Distance 1.5 

Multiplicative Part of Safety Distance 0.0 

 

3.2.4. Calibrating and Validating the Base Scenario 

Now, with having the input traffic volumes and driving behaviors, the base 

simulation scenario with fully RVs (i.e., AV MPR of 0%) should be calibrated and 

validated. The calibration and validation are required to ensure the acquisition of the best 

possible match between the simulation performance and the field measurements (114). The 

base scenario that replicates the real-world signalized intersection has protected LT signal 
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phasing, the cycle length of 135 seconds, AV MPR of 0%, and different speed limits for 

each approach, as indicated in section 3.2.1.  

The variable that was used to calibrate the model was travel time. As recommended 

by the VISSIM calibration guidelines (115), an acceptable error of 15% between the actual 

and simulated travel times was considered. To this aim, travel time data were collected at 

the study intersection for ten runs during the peak-hour period to calibrate the base 

scenario. Since the intersection is located nearby the campus of Texas A&M University 

(TAMU), College Station, TX, the class schedules affect the traffic pattern and peak-hour 

time. At TAMU, Tuesdays and Thursdays follow similar class schedules, and the rest of 

the weekdays follow another plan. Hence, to ensure accuracy, the travel time data were 

collected on a similar day of the week as the traffic volume data were collected. 

Ultimately, the average collected travel time was used to calibrate and validate the 

based simulation model with AV MPR of 0%. It is worth mentioning that due to the 

unavailability of the crash data, the base model’s number of SSMs (jerks, conflicts, etc.) 

could not be compared to the number of crashes to calibrate the model further. Eventually, 

the calibrated and validated model was further used to develop other scenarios to represent 

different LT signal phasing, signal cycle lengths, speed limits, and AV sizes. Each model 

was also considered at seven different AV MPRs, starting from 0%, representing an 

entirely conventional vehicle environment (base model), up to 100%, representing a fully 

AV environment. The next section provides various levels of the study variables that were 

simulated. 
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3.2.5. Simulated Variables and the Associated Levels 

Abovementioned, in addition to the various AV MPRs, other variables, including 

different speed limits, LT signal phasing, signal cycle lengths, and AV sizes, were 

evaluated. It is worth mentioning that the speed limit is a surrogate for the operating speed, 

geometry of the intersection approaches, and the level of traffic congestion. Table 3 

presents the various levels of each simulated variable that were used to develop different 

simulation models. 

 

Table 3. Defining Levels of the Simulated Variables 

Variable Levels Details and Descriptions 

Signal Cycle Length 

Shorter 75 seconds 

Actual 135 seconds 

Longer 193 seconds 

Speed Limit 

Lower1 

EB and WB: 35 mph  

SB: 40 mph  

NB: 20 mph 

Actual2 

EB and WB: 40 mph  

SB: 45 mph  

NB: 25 mph  

Higher3 

EB and WB: 45 mph  

SB: 50 mph  

NB: 30 mph 

AV Size 
Smaller 13.00 ft 

Larger 15.1 ft 

LT Phasing 

Protected (Actual) All the LTs are protected 

Protected-Permitted All the LTs are protected-permitted 

Permitted All the LTs are permitted 

AV MPR 

0% Fully RV environment 

20% AV MPR of 20% 

40% AV MPR of 40% 

60% AV MPR of 60% 

80% AV MPR of 80% 
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Table 3 Continued 

Variable Levels Details and Descriptions 

 
90% AV MPR of 90% 

100% Fully AV environment 
1In the graphs, this speed limit is indicated as 32.5 mph. 

2In the graphs, this speed limit is indicated as 37.5 mph. 

3In the graphs, this speed limit is indicated as 42.5 mph. 

 

3.2.6. Number of Runs per Each Simulation Scenario 

One of the critical considerations in managing simulations runs is defining the 

minimum number of runs per each scenario. In fact, since simulations models are 

stochastic in nature, each scenario should be run more than once with various random 

seeds to ensure the accuracy and reliability of the outputs and results. To this aim, 

Equation (4) was used to determine the minimum required number of runs that should be 

conducted to reach to a 95% confidence interval as well as an acceptable error rate of 10%  

(115): 

 

𝑛 =  ( 
𝑆 ×  𝑍

µ ×  ℰ
 )

2

 (4) 

 

Where, 

𝑛 = minimum sample size ; 

𝑆 = standard deviation of a sample data;  

𝑍 = z − statistic, which is 1.96 for a 95% confidence interval; 

µ = mean of the sample data;  
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ℰ = acceptable error rate. 

 

To determine the number of runs, the variable travel time was used. The travel time 

data were measured from the point where vehicles entered the west-bound leg and went 

towards the west leg until exiting the network. Five sample runs were conducted on the 

calibrated and validated base case scenario with travel times of 57, 47, 37, 49, and 45 

seconds; mean of 47 seconds; and a standard deviation of 7.21 seconds. The following 

shows the calculation to find the minimum required number of runs: 

 

𝑛 = ( 
𝑆 ×  𝑍

µ ×  ℰ
 )

2

=  ( 
7.21 × 1.96

47 × 0.1
 )

2

= 9.04 ≈ 10 𝑟𝑢𝑛𝑠 

 

Therefore, ten iterations were required for each scenario to be able to reach a 95% 

confidence interval and an error rate of 10%. Also, each simulation iteration was run for 70 

simulation minutes, considering the first 10 minutes as the warm-up period.  

It is notable that the time step was set to 10 data points per second, i.e., 10 Hz, to 

capture the movements of the vehicles in more detail, especially for AVs that have shorter 

headways and quicker reaction times (8). 

 

3.2.7. Full Factorial Design of the Simulation Scenarios 

By defining all the levels of the study variables and the required number of runs per 

each scenario, the full factorial design was adopted to develop the VISSIM scenarios. By 

full factorial design, all the possible combinations of all the levels of the study variables 
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were investigated throughout a complete replicate (116). Figure 9 depicts the full factorial 

design of the simulation scenarios. 

As indicated in the figure, each and every level of the study variables was evaluated 

in combination with all possible levels of the other variables. Every developed 

combination was run at seven AV MPRs of 0%, 20%, 40%, 60%, 80%, 90%, and 100%. In 

addition, each scenario was run ten times to account for the stochastic nature of the 

scenarios. This full factorial design resulted in a total of 3,850 simulation runs. Eventually, 

the outputs were investigated and assembled for further analyses. The following section 

covers the data manipulation and preparation process. 

 

3.3. Data Cleaning and Processing 

After developing and running all the 3,850 simulation runs, the output data were 

cleaned and manipulated to acquire the final dataset for calculating the required variables 

as well as conducting statistical analyses.  

As the first step, the VISSIM output files for each simulation run were merged to 

have vehicle type, location, and time information in one single file to calculate speed and 

acceleration/deceleration using Equation (5) and Equation (6), respectively.  

 

𝑣 =  
𝑑𝑥

𝑑𝑡
 (5) 

𝑎 =  
𝑑𝑣

𝑑𝑡
 (6) 
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Figure 9. Overview of the Full Factorial Micro-Simulation Model
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Where, 

𝑣 = speed (
ft

s
); 

𝑑𝑥 = change in location between successive observations (ft); 

𝑑𝑡 = change in time between two successive observations (second); 

𝑎 = acceleration/deceleration (
ft

s2
); 

𝑑𝑣 = change in speed between successive observations (
ft

s
); 

 

The abovementioned variables were calculated for each 0.1 second time interval 

(i.e., data frequency of 10 Hz) and every single vehicle separately. 

Since the study site was an intersection at which the vehicles were making turning 

maneuvers frequently, further data investigations were required to ensure the accuracy of 

the data. In other words, if a vehicle made any turning maneuvers, the calculated speed, 

acceleration, and deceleration values were erroneous due to the abrupt change in location 

coordinates. Therefore, the incorrect points were removed from the dataset. Each variable 

was monitored separately to be able to only keep the acceptable range of values.  

By having the final dataset, the variable jerks and other driving volatility measures 

could be calculated to develop safety models. The following sections consider the 

calculations of the driving volatility measures and jerks as well as developing the safety 

models.  

 

3.4. Driving Volatility Measures 

Driving volatility measures are a comprehensive set of variables that thoroughly 

quantify traffic safety by considering various aspects. This section covers the methodology 
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that was implemented to calculate various driving volatility measures to be used for 

evaluating traffic safety as well as quantifying safety through developing models. 

 

3.4.1. Calculating Driving Volatility Measures 

To quantify the safety of the simulation scenarios, various measures of volatility 

were calculated. The driving volatility measures that were considered include standard 

deviation (S.D.), coefficient of variation (C.V.), and percent of values over a threshold for 

any variable. 

Standard deviation represents variation in a dataset, and the coefficient of variation 

is a measure of dispersion. Also, the percent of values over a threshold shows the number 

of observations beyond a common threshold, which is calculated and defined based on 

each dataset and for each variable (117). Although these measures are frequently used 

variables, the implications in the field of traffic safety is not a common practice (58). In 

this dissertation, the driving volatility measures were calculated for speed, acceleration, 

deceleration, positive jerk, and negative jerk separately.  

In general, vehicles have two types of movements, longitudinal and lateral. Since 

longitudinal movements are more critical, lateral movements have been neglected from 

traffic safety analyses. However, this dissertation is one of the leading works that considers 

both longitudinal and lateral movements simultaneously to evaluate traffic safety. Hence, 

all the driving volatility measures were calculated for both lateral and longitudinal speed, 

acceleration, deceleration, positive jerk, and negative jerk. Eventually, there were a total of 

30 driving volatility measures for the final analyses. 
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Table 4 was used to calculate the measures of volatility for each variable and every 

single vehicle (91, 117). The marked cells represent the driving volatility measures that 

were calculated and investigated.  

After calculating the driving volatility measures for each vehicle, the network-level 

aggregated values for every simulation run was calculated and determined for the safety 

analyses, regardless of the driving behaviors of single vehicles. It is notable that since at 

signalized intersections vehicles come to a full stop frequently due to the presence of a red 

signal phase, the data with speed equal to zero were removed from the volatility measure 

analyses to avoid wrong results. 

 

Table 4. Measures of Driving Volatility 
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%𝑂𝐿 =  
𝐶𝑜𝑢𝑛𝑡(𝑥𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝑛
 × 100 

 

(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜇̅  ± 2𝑆𝑑) 

 

× × × × × 

Sp: Speed (ft/s); Acc: Acceleration (ft/s2); Dec: Deceleration (ft/s2); Pos Jerk: Positive 

Jerk (ft/s3); Neg Jerk: Negative Jerk (ft/s3) 
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3.4.2. Developing Driving Volatility Measure Models 

After calculating the aggregated network-level driving volatility measures by 

merging the measures over each simulation run, these measures were used to develop 

safety models. The Generalized Linear Model (GLM) regression was implemented to 

develop safety models and determine how the simulated variables affect each driving 

volatility measure. Also, Equation (7) was used to calculate the goodness of fit for each 

model (118, 119).  

 

𝑀𝑜𝑑𝑒𝑙 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑖𝑡 = 1 −  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒
 (7) 

 

Where,  

𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

= 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 ℎ𝑜𝑤 𝑤𝑒𝑙𝑙 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑜𝑛𝑙𝑦 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒  

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡; 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

= 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 ℎ𝑜𝑤 𝑤𝑒𝑙𝑙 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑎𝑙𝑙 𝑡ℎ𝑒  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠. 

 

In summary, these driving volatility measures cover a wide range of traffic safety 

aspects by considering both the longitudinal and lateral movements of the vehicles. 
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3.5. Developing Safety Models Based on Jerks Using ML Algorithm 

To develop more advanced statistical models, jerk was used as the dependent 

variable in ML safety models. As mentioned earlier, the literature has indicated that the 

frequency of jerky driving maneuvers at a segment/location is highly correlated with its 

frequency of the crashes (100, 101). The previous research studies also proved that jerk is a 

promising SSM in detecting crash-prone locations (98, 102). Hence, the percentage of 

jerks could be used as an SSM to determine safety. The following section explains the 

process of calculating jerk.  

 

3.5.1. Calculating Jerk 

The final dataset containing speed, acceleration, and deceleration values was used 

to calculate jerk using Equation (8).  

 

𝑗 =  
𝑑𝑎

𝑑𝑡
 (8) 

 

Where, 

𝑗 = jerk, defined as the rate of change of acceleration/deceleration (
ft

s3
) 

𝑑𝑎 = change in acceleration between two successive observations (
ft

s2
) 

 

As for the speed, acceleration, and deceleration, the jerk was also calculated for 

every 0.1 second time interval and every single vehicle separately.  
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To implement the jerk as an SSM, a jerk threshold should be defined to distinguish 

between normal and jerky driving maneuvers. As the literature indicates, various studies 

implemented different jerk thresholds to detect risky driving maneuvers; however, the 

most similar research study with GPS data at a rate of 10 Hz, used 1 
𝑔

𝑠⁄  (≈ 32.17 
𝑓𝑡

𝑠3⁄ ) 

as the jerk threshold (98, 102). Hence, due to the similarity in the frequency of the data, 

32.17 
𝑓𝑡

𝑠3⁄  was used as the jerk threshold to determine jerky driving maneuvers in this 

dissertation. 

 

3.5.2. Developing the ML Algorithm 

Eventually, by having the final dataset, including the jerk values, the ML algorithm 

could be applied using the GLM to develop safety models and evaluate the safety effects of 

the simulated variables. The percent of total jerky driving maneuvers, percentage of AV 

jerks, and percentage of RV jerk were considered as the dependent variables. 

It is worth noting that the percentage of the total number of jerky driving 

maneuvers and the percentage of negative jerks over a threshold in the previous section are 

different. In fact, in this section, a global jerk threshold was used to determine jerky 

driving maneuvers for all the simulation runs; however, in the previous section, each 

simulation run had its jerk threshold according to its dataset using the equation represented 

in Table 4. 

 Figure 10 represents the ML approach to develop a model. The flow chart 

illustrates that the available data should be divided into two categories of training and test 

datasets.  
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 Figure 10. ML Methodology  

 

The training dataset will be utilized to train the model, and the test dataset will be 

used for tuning the model and verifying its quality and accuracy by evaluating the error 

associated with it. 

To determine the error term, the loss function is used. The overall objective is to 

minimize the error term to be able to predict any sets of data as accurately as possible. The 

general form of the loss function is shown in Equation (9), in which the difference between 

the actual and estimated Y values is of interest: 

 

𝐿 (𝑌 − 𝑓𝑤̂(𝑥)) (9) 

 

For the regression model, there are three types of loss functions with different 

complexities, including: 
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a) Mean Square Error (MSE): This function only considers the average magnitude of 

the error irrespective of the direction, Equation (10).  

 

𝑀𝑆𝐸 =
∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑦̂𝑖)

2

𝑛
 

(10) 

 

Where, 

𝑦𝑖 = actual value; 

𝑦̂𝑖 = predicted/estimated value;  

𝑛 = number of data points. 

 

b) Mean Absolute Error (MAE): This loss function also calculates the magnitude of 

the error and disregards the direction, Equation (11). However, compared to the MSE, it 

needs linear programing to measure the error.  

 

𝑀𝐴𝐸 =
∑ | 𝑦𝑖

𝑛
𝑖=1 −  𝑦̂𝑖|

𝑛
 

(11) 

 

c) Mean Bias Error (MBE): The MBE is less common and the least accurate loss 

function. However, using this loss function can indicate the direction of the bias.  

 

𝑀𝐵𝐸 =
∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑦̂𝑖)

𝑛
 

(12) 
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Eventually, the ML algorithm looks for the best fit with the minimum error that 

represents the final function. Lastly, the test set was used to evaluate the tuned model. The 

final algorithm to estimate the number of potentially risky driving events at the signalized 

intersection was presented in the form of:  

 

𝑦𝑖 =  𝑤0̂ + 𝑤1̂(𝑥1) +  𝑤2̂(𝑥2) + 𝑤3̂(𝑥3) + ⋯ +  𝑤𝑛̂(𝑥𝑛)  + 𝑤𝑛+1̂(𝑥1)(𝑥2)

+ ⋯   +  𝑤𝑛+2̂(𝑥𝑛)(𝑥𝑛−1) +  ℰ 

(13) 

 

Where, 

𝑦𝑖 = estimated y value (dependent variable);  

𝑤0̂, 𝑤1̂, 𝑤2̂, … ,  𝑤𝑛̂ = coefficients or weights; 

𝑥1, 𝑥2, … , 𝑥𝑛 = predictors (independent variables); 

(𝑥1)(𝑥2), … , (𝑥𝑛)(𝑥𝑛−1) =  interaction terms;  

ℰ = error term. 

 

 Three different safety models were developed based on the vehicle type. The 

models considered the percentage of jerks for only RVs, the percentage of jerks for only 

AVs, and the percentage of the total jerks for both RVs and AVs, as the dependent 

variables, separately. 

 

3.6. Number of Jerks vs. Number of Conflicts Using SSAM 

SSAM has been implemented widely to evaluate the safety of simulation scenarios 

based on output trajectory files (8, 56, 109, 110, 120). However, the accuracy of this 
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software program has been controversial among researchers. The purpose of this section is 

to evaluate the correlation between the number of jerks and SSAM conflicts and determine 

if they are correlated and could be used interchangeably. 

The following parts illustrate the process of finding the number of conflicts using 

SSAM and the correlation test. 

 

3.6.1. Finding Total and Rear-End Conflicts Using SSAM 

The software SSAM uses a user-defined TTC value to find the number of near-miss 

events. In other words, the input TTC is considered as the critical TTC to detect unsafe 

situations where the actual TTC of the vehicles goes below the critical value (105). 

Various studies implemented different TTC values. Archer (121) determined a TTC of 1.5 

seconds as the critical value for conventional vehicles in urban areas; however, Horst (122) 

used 2.5 seconds. It is worth noting that the critical TTC threshold for the AVs is smaller 

due to their ability to react to different situations more abruptly compared to the human-

driven vehicles. Hence, Morando et al. (8) implemented 1.0 second as the TTC for AVs. 

Mousavi et al. (109) defined the value of AV TTC as a percentage of RV TTC according to 

the VISSIM settings. In other words, as in this dissertation, since both the following 

distance and standstill distance for AVs were two-third of RVs (112), the implemented 

TTC for AVs was reduced to two-third of RVs (109). In this dissertation, the same 

approach as Mousavi et al.’s (109) was used, and 1.5 seconds and 1.0 second were used as 

the critical TTC values for RVs and AVs, respectively. 

Since the TTC values are different for AVs and RVs, it is not practical to find an 

accurate number of conflicts for mixed traffic environments using SSAM. Also, the 
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majority of the previous research studies only used one single TTC value for mixed traffic 

environments. However, Mousavi et al. (109) came up with a solution to enable accurate 

safety analysis of mixed traffic environments by considering each conflict type separately 

and implement the correct corresponding TTC values for either AVs or RVs. For instance, 

for rear-end conflicts, if the second vehicle (which hits from the back and is at fault) is an 

RV, the TTC value of 1.5 seconds was used; and, if the second vehicle is an AV, 1.0 

second was implemented. In this dissertation, the same method was used to evaluate rear-

end conflicts, which is the most common type of conflict at signalized intersections. 

Overall, to be comprehensive, this research used two approaches to find the number 

of conflicts in SSAM and compare them with the number of jerks. The followings 

introduce the methods for the analyses: 

1) evaluating all the conflicts using 1.5 sec (commonly practiced value) as the TTC; 

and 

2) assessing only rear-end conflicts while considering different TTCs for AVs and 

RVs. 

To these aims, trajectory files that were obtained from the VISSIM outputs were 

used as inputs for SSAM. According to each method, a TTC value was determined to find 

the number of conflicts. Figure 11 provides an SSAM interface at which the trajectory data 

should be analyzed by defining an appropriate TTC value. 
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Figure 11. SSAM Interface 

 

For the first approach, the TTC value of 1.5 seconds was directly used in the 

SSAM, and the outputs were used for further analysis.  

For the second approach, since the conflicts were dependent upon the type of the 

second vehicle (vehicle in the back), more data analyses were required. Primarily, the TTC 

value of 1.0 second was used to find the number of conflicts using SSAM. Since in the 

second approach, only rear-end conflicts were of-interest, other types of conflicts were 

excluded from further analysis. In the output files, SSAM only provides the ID of the 

vehicles, and not the vehicle types, that were involved in conflicts. Therefore, the SSAM 

outputs were joined to another VISSIM output in which both vehicle type and ID were 

included. Eventually, by having the vehicle type in the SSAM outputs, the precise number 

of rear-end conflicts based on the corresponding TTC values for each vehicle type was 

determined.  
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3.6.2. Correlation Test between The Number of Jerks and Conflicts from 

SSAM 

Having the total number of jerks as well as the total number of conflicts and rear-

end conflicts from SSAM for each simulation run enabled conducting the correlation test 

to determine if these two are correlated and could be used interchangeably. 

For evaluating the correlation, Pearson’s correlation test was used, which measures 

the linear correlation between two variables, and is calculated according to Equation (14) 

(123). 

 

𝜌 (𝑥, 𝑦) =  
𝑐𝑜𝑣 (𝑥, 𝑦)

𝜎𝑥 . 𝜎𝑦
 (14) 

 

Where,  

𝑐𝑜𝑣 (𝑥, 𝑦) = covariance of x and y =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑛 − 1
  ;  𝑛 = sample size 

𝜎𝑥 = standard deviation of x; 

𝜎𝑦 =  𝑠tandard deviation of y. 

 

Various correlation tests were conducted to determine if any correlation could be 

observed between the variables. The results are presented in section 5.3. 

 

3.7. Chapter Summary 

In summary, this chapter has explained the development of the simulation 

environment and the calibration and validation process. For each study variable, including 
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signal cycle length, LT phasing, speed limit, AV size, and AV MPR, various levels were 

introduced. Eventually, the full factorial design was implemented to develop different 

simulation scenarios by considering all the combinations of all the levels of all the study 

variables. Moreover, the minimum required number of runs was calculated to reach an 

acceptable error rate and confidence interval. 

 Afterward, extracting, processing, and analyzing data were illustrated thoroughly. 

For the safety analyses, three different approaches were defined: 

1) Considering all the longitudinal driving volatility measures; 

2) Analyzing the lateral driving volatility measures; and 

3) Developing safety models using ML and jerks as the dependent variable; 

Lastly, the process of calculating SSAM conflicts was explained to investigate if 

there is any correlation between the number of conflicts and jerks. 

The following chapter presents the results of descriptive statistics and explanatory 

analyses of the data. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS: DESCRIPTIVE STATISTICS 

 

This chapter describes the descriptive statistics of the simulated variables and the 

simulation outputs. Since traffic safety was analyzed from various aspects, the descriptive 

statistics were also followed a similar structure. Hence, this chapter is divided into two 

sections of driving volatility measures and ML models (which represents the jerk data). 

 

4.1. Introduction 

Each simulation scenario was run ten times to obtain the final data for conducting 

the statistical analyses. The results of the base scenario indicated that the 95% confidence 

interval for travel time is [62.51, 63.25] with a mean and standard deviation of 62.88 and 

0.60 seconds, respectively.  

With having the final dataset, the objectives of this study could be assessed to 

determine how changing the defined non-infrastructure variables affect traffic safety at the 

signalized intersection in mixed traffic environments. The following sections present 

preliminary data analyses by providing descriptive statistics of the data. 

 

4.2. Descriptive Statistics for Driving Volatility Measures 

As mentioned earlier, the driving volatility measures were calculated at the network 

level. In other words, the standard deviation, coefficient of variation, and percent of values 

over a threshold, as the measures of volatility, were calculated for speed, acceleration, 

deceleration, positive jerk, and negative jerk for each and every simulation run according 
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to Table 4. The following sections provide the descriptive statistics and explanatory 

analysis of the longitudinal and lateral driving volatility measures, respectively, using the 

R statistical package (124). 

 

4.2.1. Longitudinal Driving Volatility 

Table 5 presents the descriptive statistics for the longitudinal driving volatility 

measures (S.D., C.V., percent of values over threshold) of the study variables (speed, 

acceleration, deceleration, positive jerk, and negative jerk).  

 

Table 5. Descriptive Statistics for Driving Volatility Measures 

Measure Mean S.D. C.V. 
Percent Over 

Threshold  

Longitudinal Speed (
𝑓𝑡

𝑠⁄ ) 

Min 48.40 15.42 -2.13E+17 5.32 

Max 56.97 19.34 8.88E+16 7.83 

Median 51.57 17.66 500248.6728 6.84 

Mean 51.95 17.40 -4.59E+13 6.73 

Var 3.29 0.60 1.52E+31 0.21 

S.D. 1.82 0.77 3.90E+15 0.45 

C.V. 0.04 0.04 -84.95 0.07 

Longitudinal Acceleration (
𝑓𝑡

𝑠2⁄ ) 

Min 0.87 1.91 141.40 5.57 

Max 1.65 2.69 241.87 10.22 

Median 1.24 2.27 181.04 8.01 

Mean 1.24 2.27 186.90 7.95 

Var 0.05 0.03 667.59 0.93 

S.D. 0.22 0.17 25.84 0.96 

C.V. 0.18 0.07 0.14 0.12 

Longitudinal Deceleration (
𝑓𝑡

𝑠2⁄ ) 

Min -2.73 2.43 -138.76 6.13 

Max -1.86 3.29 -109.44 11.68 

Median -2.37 2.78 -117.56 7.71 

Mean -2.33 2.78 -119.93 7.84 

Var 0.04 0.02 45.21 1.13 
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Table 5 Continued 

Measure Mean S.D. C.V. 
Percent Over 

Threshold  

S.D. 0.21 0.16 6.72 1.06 

C.V. -0.09 0.06 -0.06 0.14 

Longitudinal Positive Jerk (
𝑓𝑡

𝑠3⁄ ) 

Min 3.93 7.16 93.89 2.16 

Max 9.01 8.48 182.14 12.09 

Median 6.28 8.19 130.52 3.33 

Mean 6.28 8.02 134.05 4.95 

Var 2.36 0.18 698.93 11.40 

S.D. 1.53 0.42 26.44 3.38 

C.V. 0.24 0.05 0.20 0.68 

Longitudinal Negative Jerk (
𝑓𝑡

𝑠3⁄ ) 

Min -10.22 8.29 -84.18 4.15 

Max -9.88 8.37 -81.23 4.78 

Median -9.97 8.34 -83.60 4.62 

Mean -9.97 8.34 -83.60 4.60 

Var 0.00 0.00 0.03 0.01 

S.D. 0.03 0.01 0.17 0.10 

C.V. 0.00 0.00 0.00 0.02 

 

To explore more details about the effect of various AV MPR on the distribution of 

the driving volatility measures, boxplots for all the driving volatility measures are provided 

in the following section. As mentioned, the driving volatility measures include S.D., C.V., 

and percent of values above the threshold for speed, acceleration, deceleration, positive 

jerk, and negative jerk. Moreover, the effects of the study variables (speed limit, signal 

cycle length, AV size, and LT signal phasing) were also graphically investigated on each 

driving volatility measure to determine if any pattern could be detected. For the depictions, 

the x-axis represents one of the study variables (speed limit, signal cycle length, AV size, 

and LT signal phasing), the y-axis shows one of the driving volatility measures, and the 

color of the boxes presents the MPR.  
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As depicted in Error! Reference source not found., the standard deviation of the 

speed indicates that by increasing the cycle length, the standard deviation of the speed 

increases. However, any increase in the AV MPRs over various cycle length decreases the 

discrepancy of the speed standard deviation. By increasing the speed limit, the standard 

deviation of the speed increases. Also, the larger AV size results in higher standard 

deviations, but increasing MPR decreases the volatility measure. Also, permitted LT 

phasing indicates to provide the lowest level of speed standard deviation since vehicles 

require to slow down and stop less frequently, compared to the protected-permitted and 

protected LT phasing. But it is noticeable that higher AV MPRs globally reduces the speed 

standard deviation, regardless of the LT signal phasing. 

As depicted in the graphs, for some variables, the negative skewness increases by 

increasing the AV MPR. In other words, at low MPRs, the driving volatility measures do 

not experience high variations, while increasing the AV MPR results in a negative 

skewness. The increase in the skewness indicates that AVs are capable of providing safer 

traffic conditions for some scenarios by having smaller driving volatility measures. In 

other words, even though the median value might be higher for some variables at higher 

AV MPRs, the higher skewness indicates the capability of AVs to provide safer traffic 

environments compared to the RVs.  

For some driving volatility measures of some study variables, bimodality or 

multimodality could be observed. This bimodality/multimodality is due to the effects of 

other non-infrastructure variables that could be captured simultaneously in the safety 

models presented in the next chapter.
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Figure 12. Boxplots of the Volatility Measures: Longitudinal Speed
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Figure 12 Continued
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Figure 12 Continued
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Moreover, the figures for the speed coefficient of variation do not provide detailed 

information. Visually comparing the effects of various study variables on the percent of 

speeding maneuvers indicate that increasing the cycle length increases the mean value of 

this driving volatility since the majority of the simulation time is allocated to the green 

signal timing and not stopped traffic. Increasing the speed limit and AV size result in 

higher speeding maneuvers. Also, protected LT signal phasing increases this driving 

volatility measure. 

The next driving volatility measure focuses on longitudinal acceleration, for which 

the depictions are provided in Error! Reference source not found.. Increasing the signal 

length decreases the standard deviation of acceleration and increases the acceleration C.V. 

Meanwhile, increasing the AV MPR increases the abovementioned volatility measures 

consistently. By providing higher posted speed limits, the standard deviation and 

coefficient of variation of the acceleration decreases. Also, any increases in the AV MPR 

results in an increase in the volatility measure. Enlarging AV size decreases the standard 

deviation and coefficient of variation of the acceleration globally. No consistent pattern 

could be detected for percent of the acceleration maneuvers over the threshold.
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Figure 13. Boxplots of the Volatility Measures: Longitudinal Acceleration 
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Figure 13 Continued  
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Figure 13 Continued  
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Error! Reference source not found. provides depictions for longitudinal 

deceleration. As indicated above, by increasing the cycle length, the S.D. of deceleration 

decreases and gets closer to zero. This is because the traffic experiences fewer red signals, 

which requires vehicles to decelerate and stop. Additionally, by increasing the AV MPR, 

the S.D. of the deceleration rate decreases. In other words, higher AV MPRs provide 

smoother traffic flow, and therefore, enhance traffic safety. Protected LT signal phasing 

results in the largest S.D. of deceleration due to the LT vehicles that need to come to a stop 

frequently until obtaining the right of way to perform their maneuver.  

Inspecting the positive jerks in Error! Reference source not found. indicates that 

by increasing the signal length, the S.D. of positive jerk decreases. Additionally, protected, 

protected-permitted, and permitted LT signal phasing results in a higher S.D. of positive 

jerk values, respectively.  

Moreover, by increasing the speed limit, the percent of values above the threshold 

does not change significantly, but there is a high fluctuation in the provided highest speed 

limit. The fluctuation could be observed in various LT signal phasing as well. 

 Last but not least, Figure  explores longitudinal negative jerk. As indicated in 

Figure , for various cycle lengths, the standard deviation of negative jerk goes up at low 

AV MPRs. However, by increasing the AV MPR, the standard deviation starts decreasing. 

The same pattern could be observed on AV size and signal LT phasing. Increasing the AV 

MPR increases the percent of negative jerk values above the threshold at all the levels of 

cycle length, speed limit, and AV size. 

Notably, the majority of the negative jerk graphs are normally distributed, and a 

noticeable skewness could not be observed.
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Figure 14. Boxplots of the Volatility Measures: Longitudinal Deceleration 
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Figure 14 Continued 
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Figure 14 Continued 
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Figure 15. Boxplots of the Volatility Measures: Positive Jerk 
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Figure 15 Continued 
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Figure 15 Continued 
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Figure 16. Boxplots of the Volatility Measures: Negative Jerk 
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Figure 16 Continued 
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Figure 16 Continued 
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4.2.2. Lateral Driving Volatility 

This section intends to assess the lateral driving volatility measures, which have not 

been studied extensively and thoroughly in the previous research studies. 

Table 6 presents the descriptive statistics for each lateral driving volatility measure, 

including speed, acceleration, deceleration, positive jerk, and negative jerk. As indicated, 

the lateral driving volatility measures experience fewer fluctuations among the simulation 

runs of the scenarios, compared to the longitudinal driving volatilities that were more 

dispersed. 

 

Table 6. Descriptive Statistics for Lateral Driving Volatility Measures 

Measure Mean S.D. C.V. 
Percent Over 

Threshold  

Lateral Speed (
𝑓𝑡

𝑠⁄ ) 

Min -0.0002 0.23 -2.13E+17 0.06 

Max 0.0002 0.39 8.88E+16 0.16 

Median 0.00006 0.33 500,248.6728 0.11 

Mean 0.00006 0.33 -4.59065E+13 0.11 

Var 0.00000 0.0008 1.52E+31 0.0003 

S.D. 0.00004 0.03 3.90011E+15 0.02 

C.V. 0.73 0.09 -84.95 0.16 

Lateral Acceleration (
𝑓𝑡

𝑠2⁄ ) 

Min 0.06 2.37 2,198.96 0.06 

Max 0.18 4.04 3,806.35 0.16 

Median 0.13 3.36 2,643.33 0.11 

Mean 0.13 3.37 2,658.79 0.1 

Var 0.0005 0.08 66,087.45 0.000 

S.D. 0.02 0.29 257.08 0.02 

C.V. 0.17 0.09 0.10 0.17 

Lateral Deceleration (
𝑓𝑡

𝑠2⁄ ) 

Min -7.62 24.36 -338.82 6.40 

Max -7.21 25.07 -325.78 6.80 

Median -7.39 24.56 -332.02 6.51 

Mean -7.40 24.57 -332.08 6.51 

Var 0.004 0.006 7.60 0.002 
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Table 6 Continued 

Measure Mean S.D. C.V. 
Percent Over 

Threshold  

S.D. 0.07 0.08 2.76 0.04 

C.V. -0.009 0.003 -0.008 0.006 

Lateral Positive Jerk (
𝑓𝑡

𝑠3⁄ ) 

Min -0.04 9.72 -48,630,858.7 0.15 

Max 0.003 12.65 33,788,442.40 0.83 

Median -0.02 11.39 -62,389.78 0.40 

Mean -0.02 11.27 -89,355.81 0.42 

Var .000 0.78 1.40E+12 0.02 

S.D. 0.006 0.88 1,183,082.015 0.14 

C.V. -0.35 0.08 -13.24 0.32 

Lateral Negative Jerk (
𝑓𝑡

𝑠3⁄ ) 

Min -135.06 405.32 -320.36 8.16 

Max -129.53 417.53 -302.32 8.83 

Median -132.47 410.19 -309.63 8.49 

Mean -132.48 410.41 -309.79 8.49 

Var 0.54 4.23 7.12 0.009 

S.D. 0.73 2.06 2.67 0.09 

C.V. -0.006 0.005 -0.009 0.01 

 

 As in the longitudinal volatility measures, to visually inspect more details about the 

lateral driving volatility measures, Error! Reference source not found. to Figure  are 

provided by having the x-axis representing the study variables, the y-axis showing the 

driving volatility measures, and the color of each box depicting AV MPRs.  

 As indicated in Error! Reference source not found., by increasing the cycle 

length, the S.D. of the lateral speed decreases because vehicles move through the 

intersection more uniformly with less mandatory stops. Hence, there is a smaller chance of 

vehicles being able to make discretionary lateral movements, e.g., lane changing 

maneuvers. Regardless of the cycle length, speed limit, AV size, and LT phasing, higher 

AV MPRs results in a lower S.D. of the lateral speed. The percent of lateral speed over the 
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threshold also indicates that higher cycle lengths and lower speed limits result in a smaller 

percent. For all the variables, regardless of the level, higher MPRs decrease the percent of 

lateral speed over the threshold almost consistently. 

 According to Error! Reference source not found., the standard deviation of lateral 

acceleration decreases by increasing the cycle length and reducing the speed limit. 

Similarly, by increasing the AV MPR, S.D. decreases, regardless of the levels of the 

variables. In addition, the data dispersion increases by reducing the cycle length and 

increasing the speed limit. 

 Error! Reference source not found. depicts the lateral deceleration. As indicated, 

the deceleration S.D., as well as the percent of deceleration over the threshold, are not 

sensitive to any levels of the study variables. However, increasing the AV MPR increases 

lateral deceleration.  

 The graphs for the C.V. of all the study variables, except for the AV size, show a 

consistent pattern while increasing the AV MPR. In fact, by raising the AV MPR, the 

variations in the C.V. increases. Since the S.D. graphs do not present any skewness, this 

means that all the fluctuations are dependent upon the mean values.   

 Evaluating lateral positive jerk, presented in Error! Reference source not found., 

indicates that increasing the cycle length decreases the S.D. of the lateral positive jerk 

noticeably. Moreover, the change in AV MPR does not impact the S.D. of lateral jerk 

noticeably. No significant variation could be detected in the C.V. Also, the percent of 

values over the threshold presents no uniform pattern for the variables. 
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 Lastly, Figure  shows that at all the levels of cycle length, speed limit, and LT 

phasing, any increase in the AV MPR increases the S.D. of the lateral negative jerk as well 

as the percent of values over the threshold.
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Figure 17. Boxplots of the Volatility Measures: Lateral Speed 
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Figure 17 Continued 
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Figure 17 Continued 
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Figure 18. Boxplots of the Volatility Measures: Lateral Acceleration 
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Figure 18 Continued 



 

87 

 

Lateral Acceleration 

P
er

ce
n
t 

O
v
er

 T
h
re

sh
o
ld

 

  

  

Figure 18 Continued 
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Figure 19. Boxplots of the Volatility Measures: Lateral Deceleration 
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Figure 19 Continued 
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Figure 19 Continued 
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Figure 20. Boxplots of the Volatility Measures: Lateral Positive Jerk 
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Figure 20 Continued 
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Figure 20 Continued 
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Figure 21. Boxplots of the Volatility Measures: Lateral Negative Jerk 
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Figure 21 Continued 
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Figure 21 Continued 
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4.3. Descriptive Statistics for the ML Data 

This section provides descriptive statistics of the final dataset that was implemented 

to develop the ML safety models, at which different jerks were considered as the 

dependent variables. 

After using the defined jerk threshold to determine jerky driving maneuvers, the 

descriptive statistics of the jerks and the associated non-infrastructure variables of each 

simulation run were calculated. The outputs of the analysis were then combined so that 

each simulation run has a row representing its jerk information. Primarily, the merged 

dataset consisted of NA values that were produced from either the fully AV or RV 

scenarios, at which there were no RV jerks or AV jerks, respectively. Table 7 summarizes 

the descriptive statistics of the simulated variables and their associated histograms, 

indicating their distributions before manipulating the NA values. 

 

Table 7. Descriptive Statistics of the Simulated Variables 

Variable 
Missing 

Values 
Mean S.D. Min P 25th Median P 75th Max  Histogram 

Total Number of 

Jerks for AVs 
0 1216.85 759.98 0 511 1374 1883 2701  

Total Number of 

Jerks for AVs 

(*100) 

0 12.17 7.60 0 5.11 13.74 18.83 27.01  

Percent of AV 

Jerks 
3 58.19 34.49 0 24.50 65.10 91.07 100  

Average AV 

Jerk Value 
523 -50.29 1.08 -53.93 -50.98 -50.33 -49.63 -45.51  

AV Jerk S.D. 523 20.43 1.99 11.79 19.14 20.33 21.69 27.42  

Total Number of 

Jerks for RVs 
0 823.60 672.79 0 188 749 1332 2677  

Total Number of 

Jerks for RVs 

(*100) 

0 8.24 6.73 0 1.88 7.49 13.32 26.77  

Percent of RV 

Jerks 
3 41.45 34.36 0 8.57 34.48 75.10 99.94  
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Table 7 Continued 

Variable 
Missing 

Values 
Mean S.D. Min P 25th Median P 75th Max  Histogram 

Average RV 

Jerk Value 
523 -50.38 1.62 -61.49 -51.22 -50.27 -49.41 -43.72  

RV Jerk S.D. 523 21.34 2.65 8.70 19.72 21.24 23.00 32.88  

Total Number of 

Jerks (*100) 
0 20.40 3.00 0 17.56 21.12 22.69 28.48  

MPR 3 0.56 0.35 0 0.2 0.6 0.9 1  

AV Size (ft) 3 14.03 1.09 12.95 12.95 12.95 15.125 15.125  

Speed Limit 

(mph) 
0 37.32 4.04 32.5 32.5 37.5 42.5 42.5  

Signal Length 

(min) 
0 2.24 0.82 1.25 1.25 2.25 3.22 3.22  

 

 To develop the ML regression model, missing values should be removed or 

imputed. One of the most common practices is to use the average value of a column to 

replace the missing values from the same column (125). Moreover, the nearest neighbor is 

another method that could be implemented. However, for the purpose of this dissertation, 

if either the mean or the nearest neighbor is utilized for the missing jerk values, wrong 

information will be produced. For instance, in a fully AV environment, the jerk for RVs is 

nonexistent and cannot be replaced by any other values rather than zero. It is the same 

situation for a fully RV environment. Therefore, all the NA values should be replaced by 

zero to demonstrate that there is no jerk associated with that specific vehicle type in those 

scenarios. Table 8 presents the descriptive statistics after replacing the NAs with zero. 

As indicated in Table 8, AVs are committed to a higher number of jerky events 

compared to RVs, means of 1,217 and 824 for AVs and RVs, respectively. One reason for 

the higher number of AV jerks is the distribution of the AV MPRs. In other words, since 

AV MPRs of 0%, 20%, 40%, 60%, 80%, 90%, and 100% were examined, on average, 

55.71 of the vehicles for all the scenarios were AV and 44.29 were RVs.  
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Table 8. Descriptive Statistics of the Simulated Variables after Replacing NAs 

Variable 
Missing 

Values 
Mean S.D. Min P 25th Median P 75th Max 

Histogra

m 

Total Number of 

Jerks for AVs 
0 1216.85 759.98 0 511.00 1374.00 1883.00 

2701.0

0  

Total Number of 

Jerks for AVs 

(*100) 

0 12.17 7.60 0 5.11 13.74 18.83 27.01  

Percent of AV 

Jerks 
0 58.14 34.52 0 24.48 65.09 91.06 100  

Average AV 

Jerk Value 
0 -43.10 17.64 -53.93 -50.87 -50.12 -49.09 0  

AV Jerk S.D. 0 17.51 7.39 0 18.24 19.99 21.44 27.42  

Total Number of 

Jerks for RVs 
0 823.60 672.79 0 188 749 1332 2677  

Total Number of 

Jerks for RVs 

(*100) 

0 8.24 6.73 0 1.88 7.49 13.32 26.77  

Percent of RV 

Jerks 
0 41.42 34.37 0 8.55 34.48 75.10 99.94  

Average RV 

Jerk Value 
0 -43.17 17.71 -61.49 -51.03 -49.99 -48.73 0  

RV Jerk S.D. 0 18.28 7.86 0 18.55 20.74 22.64 32.88  

Total Number of 

Jerks (*100) 
0 20.40 3.00 0 17.56 21.12 22.69 28.48  

MPR 0 0.56 0.35 0 0.2 0.6 0.9 1  

AV Size (ft) 0 14.02 1.16 0 12.95 12.95 15.125 15.125  

Speed Limit 

(mph) 
0 37.32 4.04 32.5 32.5 37.5 42.5 42.5  

Signal Length 

(min) 
0 2.24 0.82 1.25 1.25 2.25 3.22 3.22  

 

In addition, Table 9 confirms that there is a significant difference between the 

number of jerks for the AVs and RVs in each scenario.  
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Table 9. T-Test for Comparing the Mean Number of Jerks for AVs and RVs 

 Df Sum Sq Mean Sq F-Value Pr(>F) 

Vehicle Type 1 28,263 28,263 548.7 <0.0001 

Residuals 7,308 376,443 52   

 

 

Figure 22 graphically depicts the total number of jerks (*100) by each MPR. As 

indicated, by increasing the AV MPR, the percentage of jerks rises primarily, but it starts 

declining at AV MPR of 90%.  

 

 

Figure 22. Total Number of Jerks (*100) by AV MPR 
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To better explore jerks for each vehicle type, the average jerk values were 

compared for AVs and RVs. According to Table 8, RVs execute more abrupt braking 

maneuvers compared to AVs and, consequently, involve in more hazardous situations; the 

minimum jerk value for RVs is -61.5 with a standard deviation of 17.8 as for the AVs, 

these values are -53.9 and 17.7, respectively. Also, as indicated in Figure 23, jerk values 

for RVs experience more fluctuations and sometimes reach to approximately -60 
𝑓𝑡

𝑠3⁄  at 

AV MPR of 90%; however, based on Figure 24, the AVs jerks are more concentrated 

around a point with relatively smaller absolute values, which results in a safer traffic 

situation. 

 

 

Figure 23. Average RV Jerks by AV MPR 
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Figure 24. Average AV Jerks by AV MPR 

 

By statistically comparing the average AV jerks and average RV jerks, the results 

indicate that there is no statistically significant difference between the mean jerk values for 

AVs and RVs, as shown in Table 10.  

Figure 25 provides the distribution of the number of jerky maneuvers for AVs, 

RVs, and the sum of AVs and RVs. The depictions indicate that the number of jerks for 

AVs in the simulation runs tends to be normally distributed; however, the number of jerks 

for the RVs is more skewed to the right. It is worth noting that the scales of the graphs are 

different. 
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Table 10. T-Test for Comparing the Average Jerk Values for AVs and RVs 

 Df Sum Sq Mean Sq F-Value Pr(>F) 

Vehicle Type 1 9 9.23 0.03 0.863 

Residuals 7,308 2,282,800 312.37   

 

 

 
a. Distribution of the Total Number of Jerks/100 

  
b. Distribution of AV Jerks/100 c. Distribution of RV Jerks/100 

 

Figure 25. Distribution of the Jerk Frequency per Simulation Run for AVs vs. RVs 
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Ultimately, Figure 26 depicts the distribution of the simulated variables among the 

simulation runs. As indicated, the variables are reasonably distributed to be able to explain 

their effects on the jerk, as the response variable. 

                                    

 

Figure 26. Boxplot for the Simulated Variables 

 

4.4. Chapter Summary 

This chapter includes primary statistical analyses of the driving volatility measures, 

jerk data, and the studied non-infrastructure variables. The variables have been explored by 

providing descriptive statistics, explanatory analyses, and plots.  

Thirty different driving volatility measures for the four studied variables under 

seven AV MPRs were assessed. Overall, the results indicated that longitudinal driving 

volatility measures are more sensitive compared to the lateral measurements. However, the 
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outputs cannot be summarized in detail, and each driving volatility measure should be 

considered separately. 

Analyzing the jerks indicated that by increasing the AV MPR, the percentage of the 

total jerks increases primarily, but it starts declining at higher AV MPRs. In addition, 

overall, AVs are involved in a higher number of jerks compared to RVs, but considering 

the absolute negative jerk values indicated that RVs have larger jerky driving maneuvers, 

i.e., RVs contribute to more dangerous situations than AVs. The following chapter presents 

advanced statistical analyses. 
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CHAPTER V 

RESULTS AND DISCUSSIONS: ADVANCED STATISTICAL 

ANALYSES 

 

After conducting the descriptive statistics and explanatory analyses in Chapter 4, 

this chapter focuses on advanced statistical analyses. It describes the results of the data 

analyses by presenting how traffic safety would be affected by changing the non-

infrastructure study variables. Traffic safety was evaluated from different aspects through 

developing different safety models for longitudinal driving volatility measures, lateral 

driving volatilities, and the percentage of jerks. Ultimately, correlation tests were 

conducted to compare the number of SSAM conflicts and the number of jerks. 

 

5.1.  Driving Volatility  

The following sections present the statistical safety models for both longitudinal 

and lateral driving volatility measures, respectively, based on the non-infrastructure 

variables and AV MPR. 

 

5.1.1. Longitudinal Driving Volatility Safety Models 

By conducting a preliminary analysis of the driving volatility measures, each 

volatility measure could be statistically evaluated to determine how the study variables 

influence the volatility measures, and hence traffic safety. The results of conducting a 

correlation test before developing safety models indicated that the variables are not 

correlated. To assess the effects of the study variables on the driving volatility measures, 
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various GLMs were developed. Table 11 provides a summary of the GLMs and their 

associated goodness of fit values. 

 

Table 11. Regression Models for the Longitudinal Driving Volatility Measures 

 
Estimate Std. Error t value Pr(>|t|) 

Speed S.D. 

(Intercept) 14.275 0.102 140.148 <0.0001 

MPR -0.002 0.000 -11.808 <0.0001 

Signal Cycle Length 0.003 0.000 22.634 <0.0001 

speed 0.030 0.002 19.476 <0.0001 

AV Size 0.062 0.006 11.169 <0.0001 

LT Protected 1.482 0.014 103.336 <0.0001 

LT Protected-Permitted 1.142 0.015 75.626 <0.0001 

Model Fit: 0.7786 

Percent of Speed Over Threshold 

(Intercept) 3.672 0.097 37.928 <0.0001 

MPR -0.002 0.000 -10.327 <0.0001 

Signal Cycle Length 0.002 0.000 17.657 <0.0001 

speed 0.057 0.001 38.838 <0.0001 

AV Size 0.035 0.005 6.548 <0.0001 

LT Protected 0.303 0.014 22.220 <0.0001 

LT Protected-Permitted 0.341 0.014 23.742 <0.0001 

Model Fit: 0.419 

Acceleration S.D. 

(Intercept) 2.355 0.009 258.114 <0.0001 

MPR 0.003 0.000 118.271 <0.0001 

Signal Cycle Length -0.002 0.000 -137.461 <0.0001 

speed 0.003 0.000 12.126 <0.0001 

LT Protected -0.043 0.002 -20.606 <0.0001 

LT Protected-Permitted -0.012 0.002 -5.525 <0.0001 

Model Fit: 0.902 
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Table 11 Continued 

 Estimate Std. Error t value Pr(>|t|) 

Acceleration C.V. 

(Intercept) 90.567 2.129 42.542 <0.0001 

MPR 0.163 0.004 44.624 <0.0001 

Signal Cycle Length 0.375 0.003 143.524 <0.0001 

speed 0.114 0.032 3.555 0.00038 

AV Size 0.888 0.116 7.641 <0.0001 

LT Protected 35.358 0.300 117.967 <0.0001 

LT Protected-Permitted 25.894 0.316 82.007 <0.0001 

Model Fit: 0.9136 

Percent of Acceleration Over Threshold 

(Intercept) 6.6215 0.1481 44.7134 <0.0001 

MPR 0.0124 0.0004 30.0882 <0.0001 

Signal Cycle Length 0.0008 0.0003 2.6607 0.008 

speed 0.0120 0.0036 3.3252 0.0009 

LT Protected 0.1824 0.0338 5.3929 <0.0001 

LT Protected-Permitted -0.0018 0.0356 -0.0515 0.9590 

Model Fit: 0.2109 

Deceleration S.D. 

(Intercept) 2.194 0.027 81.167 <0.0001 

Signal Cycle Length -0.001 0.000 -27.175 <0.0001 

speed 0.010 0.000 24.254 <0.0001 

AV Size 0.013 0.001 8.852 <0.0001 

LT Protected 0.213 0.004 55.818 <0.0001 

LT Protected-Permitted 0.250 0.004 62.061 <0.0001 

Model Fit: 0.6188 

Deceleration C.V. 

(Intercept) -140.645 0.695 -202.401 <0.0001 

MPR -0.022 0.002 -11.261 <0.0001 

Signal Cycle Length -0.013 0.001 -9.237 <0.0001 

speed 0.457 0.017 26.939 <0.0001 
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Table 11 Continued 

 Estimate Std. Error t value Pr(>|t|) 

LT Protected 11.840 0.159 74.608 <0.0001 

LT Protected-Permitted 6.927 0.167 41.473 <0.0001 

Model Fit: 0.642 

Percent of Deceleration Over Threshold 

(Intercept) 9.286 0.162 57.298 <0.0001 

MPR 0.006 0.000 12.845 <0.0001 

speed -0.040 0.004 -9.834 <0.0001 

LT Protected -0.730 0.038 -19.166 <0.0001 

LT Protected-Permitted 0.054 0.040 1.340 0.18 

Model Fit: 0.6188 

Positive Jerk S.D. 

(Intercept) 9.407 0.050 189.350 <0.0001 

MPR 0.000 0.000 3.154 0.0016 

Signal Cycle Length -0.005 0.000 -85.186 <0.0001 

speed -0.003 0.001 -4.079 <0.0001 

AV Size -0.016 0.003 -5.909 <0.0001 

LT Protected -0.656 0.007 -93.808 <0.0001 

LT Protected-Permitted -0.455 0.007 -61.700 <0.0001 

Model Fit: 0.823 

Positive Jerk C.V. 

(Intercept) 45.172 2.132 21.188 <0.0001 

Signal Cycle Length 0.323 0.003 123.044 <0.0001 

speed 0.136 0.032 4.206 <0.0001 

AV Size 1.061 0.117 9.078 <0.0001 

LT Protected 44.981 0.301 149.199 <0.0001 

LT Protected-Permitted 33.067 0.318 104.112 <0.0001 

Model Fit: 0.4925 

Negative Jerk S.D. 

(Intercept) 8.333 0.002 3546.206 <0.0001 

MPR 0.0001 0.00001 12.456 <0.0001 

 



 

110 

 

Table 11 Continued 

 Estimate Std. Error t value Pr(>|t|) 

Signal Cycle Length -0.00004 0.000004 -10.694 <0.0001 

AV Size -0.0005 0.0002 -2.841 0.0045 

LT Protected 0.020 0.0004 49.498 <0.0001 

LT Protected-Permitted 0.010 0.0004 24.110 <0.0001 

Model Fit: 0.4284 

Negative Jerk C.V. 

(Intercept) -83.564 0.042 -1977.960 <0.0001 

MPR -0.0002 0.0001 -3.368 0.0008 

Signal Cycle Length 0.0004 0.0001 8.197 <0.0001 

speed -0.007 0.001 -10.266 <0.0001 

AV Size 0.007 0.002 2.961 0.0031 

LT Protected 0.124 0.006 20.854 <0.0001 

LT Protected-Permitted 0.113 0.006 17.971 <0.0001 

Model Fit: 0.1675 

Percent of Negative Jerk Over Threshold 

(Intercept) 4.629 0.025 181.864 <0.0001 

MPR 0.001 0.00004 12.974 <0.0001 

Signal Cycle Length 0.0001 0.00003 2.087 0.0369 

speed 0.002 0.0004 4.741 <0.0001 

AV Size -0.008 0.001 -5.579 <0.0001 

LT Protected -0.015 0.004 -4.061 <0.0001 

LT Protected-Permitted -0.083 0.004 -21.971 <0.0001 

Model Fit: 0.1762 

 

As presented in the previous table, not all the models provide a good fit to be 

implemented to estimate traffic safety. Also, it is notable that a few driving volatility 

measures were not affected by any of the study variables and were excluded from the table.  

In general, increasing the AV MPR significantly decreases the longitudinal speed 

S.D., the percent of speed over the threshold, deceleration C.V., and negative jerk C.V. On 
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the other hand, the variable MPR has a positive relationship with the rest of the driving 

volatility measures. In other words, increasing the AV MPR reduces some of the 

longitudinal volatility measures and enhances traffic safety, and at the same time, increases 

the other longitudinal volatility measures.  

The majority of the models, which provide a good fit, indicate that there is a 

positive relationship between the AV size and the longitudinal driving volatility measures, 

including speed S.D., acceleration C.V., deceleration S.D., and positive jerk S.D.  

Longer signal cycle lengths significantly reduce acceleration S.D., deceleration 

S.D., deceleration C.V., and negative jerk S.D. The reductions in the S.D.s indicate that the 

traffic flow is smoother as the vehicles do not need to come to a full stop frequently (and 

conduct abrupt driving maneuvers) due to the red signal. The results also suggest that the 

average speed limit of the legs of the intersection significantly influences the driving 

volatility measures. For instance, increasing the average speed limit results in a significant 

reduction in the percent of deceleration above the threshold, positive jerk S.D., and 

negative jerk C.V. On the other hand, increasing the speed limit raises the other driving 

volatility measures, e.g., the speed S.D. increases when the speed limit increases, which is 

expected since the difference between the highest speed of the vehicles and the vehicles 

that slow down at the signalized intersection increases. 

Eventually, LT signal phasing is another significant variable in the driving 

volatility models. In the models, the permitted LT signal phasing was considered as the 

base scenario, and protected-permitted and protected LT phasing were compared to the 

base condition. For instance, the speed S.D. model indicates that the speed S.D. increases 

by 1.48 and 1.14 when providing protected LT phasing and protected-permitted LT 
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phasing compared to the permitted LT phasing, respectively, if keeping the rest of the 

variables constant.   

In summary, since various safety models for the longitudinal driving volatility 

measures were developed, the studied variables presented different effects on each 

volatility measure. Hence, each given model could be implemented according to the 

purpose of the safety analysis to predict each volatility measure based on the given non-

infrastructure variables. 

 

5.1.2. Lateral Driving Volatility Safety Models 

This section intends to assess the lateral driving volatility measures, which have not 

been studied extensively and thoroughly in the previous research studies. 

By conducting a preliminary analysis of the lateral driving volatility measures, 

statistical modeling could be conducted to determine how the non-infrastructure variables 

influence each lateral driving volatility measure. To do so, various GLMs were developed. 

Table 12 summarizes the results of GLMs with their goodness of fit provided alongside 

each model to indicate how well the independent variables predict each lateral driving 

volatility measure.  

 

Table 12. Regression Models for the Lateral Driving Volatility Measures 

 
Estimate Std. Error t value Pr(>|t|) 

Speed S.D. 

(Intercept) 0.411 0.004 95.383 <0.0001 

MPR -0.0001 0.00001 -17.146 <0.0001 

Signal Cycle Length -0.0004 0.00001 -78.119 <0.0001 

speed 0.001 0.0001 13.098 <0.0001 
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Table 12 Continued 

 Estimate Std. Error t value Pr(>|t|) 

AV Size -0.003 0.0002 -11.868 <0.0001 

LT Protected -0.018 0.001 -29.735 <0.0001 

LT Protected-Permitted -0.023 0.001 -35.770 <0.0001 

Model Fit: 0.6942 

Percent of Speed Over Threshold 

(Intercept) 0.167 0.003 61.051 <0.0001 

MPR -0.0001 0.000005 -17.975 <0.0001 

Signal Cycle Length -0.0003 0.000003 -83.258 <0.0001 

speed 0.001 0.0000 13.293 <0.0001 

AV Size -0.002 0.0001 -12.195 <0.0001 

LT Protected -0.012 0.0004 -31.755 <0.0001 

LT Protected-Permitted -0.015 0.0004 -35.955 <0.0001 

Model Fit: 0.7171 

Acceleration S.D. 

(Intercept) 4.238 0.045 94.756 <0.0001 

MPR -0.001 0.0001 -17.557 <0.0001 

Signal Cycle Length -0.004 0.0001 -78.655 <0.0001 

speed 0.009 0.001 13.125 <0.0001 

AV Size -0.029 0.002 -12.060 <0.0001 

LT Protected -0.189 0.006 -29.974 <0.0001 

LT Protected-Permitted -0.239 0.007 -36.105 <0.0001 

Model Fit: 0.6975 

Acceleration C.V. 

(Intercept) 1757.914 44.980 39.082 <0.0001 

MPR 1.215 0.077 15.726 <0.0001 

Signal Cycle Length 3.429 0.055 62.087 <0.0001 

speed -8.059 0.677 -11.904 <0.0001 

AV Size 40.225 2.455 16.382 <0.0001 

LT Protected 147.617 6.333 23.310 <0.0001 

LT Protected-Permitted 222.177 6.672 33.302 <0.0001 
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Table 12 Continued 

 Estimate Std. Error t value Pr(>|t|) 

Model Fit: 0.6103 

Percent of Acceleration Over Threshold 

(Intercept) 0.167 0.003 61.051 <0.0001 

MPR -0.0001 0.000005 -17.975 <0.0001 

Signal Cycle Length -0.0003 0.000003 -83.258 <0.0001 

speed 0.001 0.00004 13.293 <0.0001 

AV Size -0.002 0.0001 -12.195 <0.0001 

LT Protected -0.012 0.0004 -31.755 <0.0001 

LT Protected-Permitted -0.015 0.0004 -35.955 <0.0001 

Model Fit: 0.7171 

Deceleration S.D. 

(Intercept) 24.4605 0.0202 1212.8152 0 

MPR 0.0005 0.00003 15.3654 <0.0001 

Signal Cycle Length 0.0002 0.00002 7.0521 <0.0001 

speed -0.0009 0.0003 -2.8039 0.0051 

AV Size 0.0047 0.0011 4.2978 <0.0001 

LT Protected 0.0171 0.0028 6.0182 <0.0001 

LT Protected-Permitted 0.0422 0.0030 14.1205 <0.0001 

Model Fit: 0.1234 

Deceleration C.V. 

(Intercept) -303.803 0.438 -693.207 <0.0001 

Signal Cycle Length 0.002 0.001 4.034 <0.0001 

speed 0.011 0.007 1.700 0.0891 

AV Size -2.073 0.024 -86.262 <0.0001 

LT Protected 0.264 0.062 4.256 <0.0001 

LT Protected-Permitted -0.038 0.065 -0.579 0.563 

Model Fit: 0.6755 

Percent of Deceleration Over Threshold 

(Intercept) 6.537 0.011 587.563 <0.0001 

MPR 0.0002 0.00002 9.304 <0.0001 
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Table 12 Continued 

 Estimate Std. Error t value Pr(>|t|) 

Signal Cycle Length 0.0001 0.00001 7.814 <0.0001 

speed -0.0005 0.0002 -2.832 0.0046 

AV Size -0.003 0.001 -4.547 <0.0001 

LT Protected 0.009 0.002 5.641 <0.0001 

LT Protected-Permitted 0.021 0.002 12.836 <0.0001 

Model Fit: 0.0884 

Positive Jerk S.D. 

(Intercept) 14.230 0.071 200.632 <0.0001 

MPR 0.0003 0.0001 2.620 0.0088 

Signal Cycle Length -0.011 0.0001 -124.270 <0.0001 

speed -0.005 0.001 -4.515 <0.0001 

AV Size -0.036 0.004 -9.187 <0.0001 

LT Protected -1.494 0.010 -149.591 <0.0001 

LT Protected-Permitted -1.106 0.011 -105.145 <0.0001 

Model Fit: 0.9174 

Negative Jerk S.D. 

(Intercept) 8.333 0.002 3546.206 <0.0001 

MPR 0.0001 0.00001 12.456 <0.0001 

Signal Cycle Length -0.00004 0.000004 -10.694 <0.0001 

AV Size -0.0005 0.0002 -2.841 0.0045 

LT Protected 0.020 0.0004 49.498 <0.0001 

LT Protected-Permitted 0.010 0.0004 24.110 <0.0001 

Model Fit: 0.4284 

Percent of Negative Jerk Over Threshold 

(Intercept) 7.947 0.021 384.077 <0.0001 

MPR 0.001 0.00004 14.281 <0.0001 

Signal Cycle Length -0.0004 0.00003 -16.376 <0.0001 

speed 0.004 0.0003 12.793 <0.0001 

AV Size 0.026 0.001 23.118 <0.0001 

LT Protected 0.065 0.003 22.230 <0.0001 
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Table 12 Continued 

 Estimate Std. Error t value Pr(>|t|) 

LT Protected-Permitted 0.101 0.003 32.813 <0.0001 

Model Fit: 0.3738 

 

 As for the longitudinal volatility measures, not all the models in Table 12 for lateral 

volatility measures provide a good fit. However, the outputs could be used to determine the 

overall statistical influences of the variables on each lateral volatility measure. The models 

for speed S.D., percent of speed over the threshold, acceleration S.D., acceleration C.V., 

percent of acceleration over the threshold, deceleration C.V., and positive jerk S.D. have a 

good model fit and could be implemented to evaluate the lateral safety of the mixed traffic 

environments accurately, given the independent variables. 

 According to the models, increasing the AV MPR reduces the lateral speed S.D., 

percent of speed over threshold, acceleration S.D., and the percent of acceleration over 

threshold significantly. The majority of the models with an acceptable goodness of fit 

value show a negative relationship between the cycle length and the lateral driving 

volatility measures. In fact, increasing the cycle length reduces the lateral driving volatility 

measures. Moreover, increasing the AV size reduces the overall lateral driving volatility 

measures significantly. Lastly, the average speed limit shows different behaviors on each 

driving volatility measure.  
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5.2. Evaluating Traffic Safety through ML Regression Models 

After evaluating safety models for 30 lateral and longitudinal driving volatility 

measures, this section develops and assesses three SSM models in more detail by 

conducting ML analyses. 

The analyses include data processing for ML as well as developing the ML safety 

models using different jerks as the response variables. 

 

5.2.1. Preprocessing Data to Develop ML Algorithms 

The first step to develop an ML algorithm is to check the structure of the variables. 

ML regression does not correctly analyze non-ordinal categorical variables; therefore, any 

non-ordinal categorical variables should be converted to several binary variables according 

to the number of classes of the categorical variables. 

One-hot encoding (dummy variable) can be used to convert categorical variables 

into a series of binary variables (126). It is notable that just replacing the categories of a 

categorical variable with numbers may not result in a meaningful output, especially if the 

variable is not ordinal. Hence, variable LT signal phasing, which was a categorical 

variable, was converted to a series of dummy variables for further analysis using one-hot 

encoding. 

A correlation test was done as the next step before conducting the algorithm 

development. Figure 27 depicts the correlation test to examine the correlation between the 

predictors.  
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Figure 27. Correlation Test for the Predictors of the Regression Models 

 

As indicated, for the predictors, only “LT protected” and “LT permitted” are highly 

correlated, with a Pearson’s correlation value of -0.79. Therefore, all variables could be 

included in the ML models simultaneously without dealing with any interaction terms. The 

following section expands on the development of the ML algorithm.  
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5.2.2. ML Algorithms 

To evaluate safety at signalized intersections under various AV MPRs and the 

study variables, three different backward elimination ML models were developed 

considering the following variables as the dependent variables in each model, separately: 

a. Percentage of the total jerks; 

b. Percentage of the AV jerks; and 

c. Percentage of the RV jerks. 

In each model, the primary dataset was split into a training set and a test set based 

on the dependent variable. The training set, consisting of 75% of the original data, was 

used to train the model. Also, the test set, the remaining 25% of the original dataset, was 

used to evaluate the performance of the model. AV size, signal cycle length, speed limit, 

LT signal phasing, and AV MPR were used as predictors. 

It is worth mentioning that even though the scenarios replicated the peak-hour 

traffic condition, the speed limit was still an influencing factor on the speed distribution of 

the vehicles, as indicated in Table 13. As depicted, by increasing the speed limit along the 

legs of the intersection, the mean operating speed of the vehicles increased as well. 

Statistical comparison was also conducted and confirmed that the means of the operating 

speeds of the vehicles were statistically different for the different speed limits. Therefore, 

the speed limit could be considered in the safety models to determine if it played a role in 

causing jerky driving maneuvers. 
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Table 13. T-Test for Comparing the Operating Speed by Speed Limit 

 Df Sum Sq Mean Sq F-Value Pr(>F) 

Vehicle Type 2 1.749 ×107 8,743,552 29,697 <0.0001 

Residuals 7,483,644 2.203 ×109 294   

 
 

The x-axis of the graph: 

• Speed Limit 32.5 mph → EB and WB: 35 mph, SB: 40 mph, NB: 20 mph 

• Speed Limit 37.5 mph → EB and WB: 40 mph, SB: 45 mph, NB: 25 mph 

• Speed Limit 42.5 mph → EB and WB: 45 mph, SB: 50 mph, NB: 30 mph 

 

 

By having all the study variables, models for each dependent variable could be 

developed. The following sections cover the models. 

 

5.2.2.1. ML Model with Percentage of Total Jerks 

In the first model, the percent of the total jerks (considering both AVs and RVs) 

was set as the dependent variable, and the other variables were included as the regressors 

in a GLM. Table 14 provides the results of the ML model.  
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Table 14. ML Algorithm for the Percentage of the Total Jerks 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 22.635 0.413 54.850 <0.0001 

Speed Limit -0.131 0.010 -12.484 <0.0001 

MPR 2.173 0.122 17.843 <0.0001 

LT Protected 3.926 0.092 42.857 <0.0001 

LT Protected-Permitted 2.122 0.138 15.381 <0.0001 

AIC= 12,129, Model Fit= 0.459 

 

As indicated, the overall percentage of jerky driving maneuvers increases by 

increasing the AV MPR. As depicted in Figure 22, the total number of jerks increases for 

AV MPRs of up to 80% due to the interactions between the AVs and RVs; however, this 

percentage starts declining from AV MPR of 90%. Moreover, the results of the descriptive 

statistics indicated that although the number of jerky driving maneuvers is higher for the 

AVs, the absolute jerk values are smaller than RVs. It should be noted that jerky driving 

maneuvers not necessarily result in a crash, but they could be a good representative of 

risky traffic situations. 

For LT signal phasing, the permitted LT phasing was considered as the base 

scenario, and the safety of protected and protected-permitted LT signals was compared to 

the base condition. Hence, as presented, permitted LT signal phasing results in the lowest 

number of jerky driving maneuvers. It is worth noting that this does not consider the 

number of conflicts between left-turning vehicles and opposing through vehicles, but it 

discusses jerky driving maneuvers. In fact, although protected LT signal phasing makes the 

vehicles to come to a full stop and results in a higher number of jerks, it should enhance 

the overall safety by reducing the chance of left-turning and opposing through conflicts. To 

compare the total number of conflicts for different LT signal phasing, SSAM was used 
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according to section 3.6.1, and the results are given in Table 15. As indicated, even though 

protected LT signal phasing results in the highest number of jerks, it is associated with the 

lowest number of SSAM conflicts. 

 

Table 15. Effects of LT Signal Phasing on the Number of SSAM Conflicts 

 Df  Sum Sq  Mean Sq  F value Pr(>F)  

LT Signal Phasing 2 17,309,394 8,654,697 461.1 <0.0001 

Residuals 3,536 66,376,013 18,771   

 

  

It is worth noting that the cycle length had a significant p-value in Table 14, but 

conducting a sensitivity analysis indicated that this variable does not influence the overall 

performance of the model significantly, and hence excluded from the model to satisfy the 

simplicity. Also, the Akaike Information Criterion (AIC) of the model is 12,1229, which is 

an in-sample prediction error estimator (127, 128). 

Lastly, Equation (15) represents the final form of the regression model, with a root 

mean square error (RMSE) of 2.329 for the test dataset. This equation could be used to 
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estimate the percentage of the total number of jerky driving maneuvers, given the study 

variables. 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝐽𝑒𝑟𝑘𝑠

=  22.635 − 0.131(𝑆𝐿) + 2.173(𝑀𝑃𝑅) + 3.926(𝐿𝑇𝑃𝑟𝑜)

+ 2.122(𝐿𝑇𝑃𝑟𝑜−𝑃𝑒𝑟) 

(15) 

 

Where, 

𝑆𝐿= Speed limit (mph); 

𝐿𝑇𝑃𝑟𝑜= Binary variable for protected LT phasing (value of 1 if protected LT, 0 

otherwise) 

𝐿𝑇𝑃𝑟𝑜−𝑃𝑒𝑟= Binary variable for protected-permitted LT phasing (value of 1 if 

protected-permitted LT, 0 otherwise) 

 

5.2.2.2. ML Model with Percentage of AV Jerks 

The next ML regression model that was developed considers the percentage of AV 

jerks as the dependent variable using the ML. The results of the regression model are given 

in Table 16. 

As presented, increasing the AV size and speed limit improves traffic safety by 

decreasing the percentage of jerky driving maneuvers for AVs. Analyzing the lane 

changing maneuvers in Table 17 indicates that by increasing the AV size, the number of 

lane-changing maneuvers decreases significantly. In other words, for the same scenarios 

with only having different AV sizes, the scenario with larger AVs experiences a fewer 
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number of lane-changing maneuvers. In the scenario with the smaller AV size, vehicles 

can find adequate gaps easier to make lane-changing maneuvers. Therefore, this results in 

a higher number of jerky driving maneuvers since the following vehicles might require to 

decelerate abruptly to keep an appropriate heading and prevent any conflict and/or crash. 

 

Table 16. ML Algorithm for the Percentage of the AV Jerks 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 4.271 0.523 8.169 <0.0001 

AV Size -0.111 0.028 -3.946 <0.0001 

Signal Cycle Length (min) 0.236 0.046 5.149 <0.0001 

Speed Limit -0.099 0.008 -11.919 <0.0001 

MPR 21.134 0.096 219.277 <0.0001 

LT Protected 2.401 0.074 32.594 <0.0001 

LT Protected-Permitted 1.454 0.120 12.119 <0.0001 

AIC= 10,856, Model Fit= 0.947 

 

It is worth mentioning that the reasons that this is not in line with the previous 

model in section 5.1.1 are: a) this model only considers AV jerks while the previous model 

included both AV and RV jerks, b) the previous model just considered the actual volatility 

values while the current model evaluates the percentage of jerks, and lastly, c) the model 

on the frequency of negative jerk values over a threshold, in the previous section, did not 

provide a good fit to be reliable for implementation.  

As before, protected LT signal phasing is the most dangerous LT signal phasing, 

even for only AVs that are machine-driven vehicles. Increasing the cycle length also 

increases the jerky maneuvers. Although higher cycle lengths provide smoother traffic 

flow, it increases the LT cycles simultaneously, which results in more risky maneuvers. 

Moreover, as expected, raising the AV MPR increases the frequency of the AV jerks but 
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meanwhile decreases the average jerk values, as indicated in Figure 24. Although higher 

AV MPRs increase the AV jerks, that does not necessarily cause a crash as AVs are 

capable of reacting to the situations abruptly. Moreover, AV jerks are not as harsh as RV 

jerks, as indicated in Table 8. 

 

Table 17. T-Test for the Mean Number of Lane Changing Maneuvers for 

Different AV Sizes  

 Df Sum Sq Mean Sq F-Value Pr(>F) 

AV Size 1 3,290,900 3,290,900 23.83 <0.0001 

Residuals 3,650 504,015,078 138,086   

 
 

The results of testing the developed model on the test set indicated that the RMSE 

is 1.714. Lastly, Equation (16) represents the model for estimating the percentage of AV 

jerks. 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝐴𝑉  𝐽𝑒𝑟𝑘𝑠

=  4.271 − 0.111(𝐴𝑉 𝑆𝑖𝑧𝑒) + 0.236(𝐿𝐶𝑦𝑐𝑙𝑒) − 0.099(𝑆𝐿)

+ 21.134(𝑀𝑃𝑅) + 2.401(𝐿𝑇𝑃𝑟𝑜) + 1.454(𝐿𝑇𝑃𝑟𝑜−𝑃𝑒𝑟) 

(16) 

 

Where,  

𝐴𝑉 𝑆𝑖𝑧𝑒 = Length of AVs (ft)Length of AVs (ft) 

𝐿𝐶𝑦𝑐𝑙𝑒 = 𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ (min)  

 

5.2.2.3. ML Model with Percentage of RV Jerks 

Another ML regression model was developed to predict the percentage of RV jerks, 

and the results are given in Table 18. 

 

Table 18. ML Algorithm for the Percentage of the RV Jerks 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 18.583 0.400 46.447 <0.0001 

AV Size 0.073 0.023 3.251 0.0012 

Speed Limit -0.038 0.006 -6.007 <0.0001 

MPR -18.970 0.073 -259.716 <0.0001 

LT Protected 1.556 0.055 28.248 <0.0001 

LT Protected-Permitted 0.792 0.082 9.674 <0.0001 

AIC= 9,328.0, Model Fit= 0.962 

 

The sign of the variable speed limit is consistent with the previously developed 

models and indicates that the percentage of RV jerks decreases by increasing the speed 

limit. As expected, the number of RV jerks declines by increasing the AV MPR, but the 

median value of the RV jerks increases, as depicted in Figure 23. The effect of LT signal 

phasing is in line with the previous models and indicates that the permitted LT phasing is 
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associated with the highest level of safety, while protected LT phasing results in the 

highest number of RV jerks.  

Ultimately, the test dataset was used to determine how well the model could 

perform. The RMSE resulted from applying the developed model to the test dataset was 

1.483. Therefore, this model is well representing and estimating the percentage of RV 

jerks. Equation (17) could be used to calculate the percentage of RV jerks, given the study 

variables. 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓𝑅𝑉  𝐽𝑒𝑟𝑘𝑠

=  18.583 + 0.073(𝐴𝑉 𝑆𝑖𝑧𝑒) − 0.038(𝑆𝐿) − 18.97(𝑀𝑃𝑅)

+ 1.556(𝐿𝑇𝑃𝑟𝑜) + 0.792(𝐿𝑇𝑃𝑟𝑜−𝑃𝑒𝑟) 

(17) 

 

5.3. Comparing Jerk and SSAM Outputs 

As mentioned earlier, SSAM is another SSM that is implemented to assess the 

safety of micro-simulation scenarios using TTC. In this section, the relationship between 

the number of jerky driving maneuvers and the number of conflicts using SSAM will be 

calculated to determine if they are correlated and could be used interchangeably. The 

following sections consider the total number of conflicts and only rear-end conflicts vs. 

number of jerks, respectively. 

 

5.3.1. Total Number of SSAM Conflicts vs. Number of Jerks 

As mentioned in the methodology chapter, the total number of SSAM conflicts was 

calculated using the TTC value of 1.5 seconds. The total number of conflicts was then 
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compared to the total number of jerky driving maneuvers, the number of AV jerky driving 

maneuvers, and the number of RV jerks to determine if there is any correlation between the 

variables. 

 Pearson’s correlation test was conducted in R, and the results are presented in 

Table 19. As indicated, the correlation value is -36.58% for the total number of jerks, 

which means that the total number of conflicts and the total number of jerks are not highly 

correlated. This value is -11.45% and -34.9% for only AV jerks and only RV jerks, 

respectively. 

 

 

Table 19- Pearson's Correlation Coefficient Test: Total Number of SSAM Conflicts 

vs. Number of Jerks 

Variable 1 Variable 2 Pearson Correlation Value 

Total number of jerks Total Conflicts from SSAM -0.3658 

Number of AV Jerks Total Conflicts from SSAM -0.1145 

Number of RV Jerks Total Conflicts from SSAM -0.349 

 

 In the next section, the correlation test will be conducted on the number of jerks 

and only rear-end conflicts from SSAM. 

  

5.3.2. Number of Rear-End SSAM Conflicts vs. Number of Jerks 

As mentioned earlier, for mixed traffic environments, there is not any single value 

for TTC to consider both RVs and AVs at the same time. In other words, if a TTC is 

selected according to the RVs, the number of AV near-miss events would be overestimated 
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by increasing the AV MPR. Similarly, if the critical TTC is chosen based on the 

performance of AVs, the number of conflicts would be underestimated for RVs. 

Hence, to overcome this issue, only rear-end conflicts were calculated and 

compared with the number of jerks. In fact, for the rear-end conflicts based on the current 

traffic law, the vehicle which hits from the back is at fault. Therefore, if the faulty vehicle 

was an RV, 1.5 seconds was used as the TTC; otherwise, 1.0 second was implemented. 

The extracted number of rear-end near-miss events from SSAM was compared to 

the number of jerk events using Pearson’s correlation test. Table 20 summarizes the results 

of the Pearson’s correlation coefficient tests. As indicated, compared to the total number of 

SSAM conflicts, the correlation values have been improved for AV jerks and RV jerks; 

however, the performance of Pearson’s correlation test for the total number of jerks vs. 

rear-end conflicts deteriorates. 

 

Table 20- Pearson's Correlation Coefficient Test: Number of SSAM Rear-end 

Conflicts vs. Number of Jerks 

Variable 1 Variable 2 Pearson Correlation Value 

Total number of jerks Rear-end Conflicts from SSAM -0.1411 

Number of AV Jerks Rear-end Conflicts from SSAM -0.3243 

Number of RV Jerks Rear-end Conflicts from SSAM -0.4295 

 

 As indicated, the number of jerks and SSAM total conflicts or rear-end conflicts 

were not highly correlated to be used interchangeably. However, this does not imply that 

one is superior over the other. Each SSM has advantages and disadvantages and could be 

selected for implementation accordingly. For instance, although TTC (through SSAM) is 

objective and easy to implement for simulation outputs, it fails to distinguish responders 
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from initiators, and it does not serve as a proxy for all types of crashes (129). On the other 

hand, although implementing jerks for simulation outputs is complicated and time-

consuming, and there is no software program available to calculate these events 

automatically, they are known as a promising SSM to detect crash-prone locations 

accurately (13, 38, 43, 98, 101, 102). Hence, according to the objective of a study and the 

available resources, different SSMs could be implemented. 

 

5.4. Chapter Summary 

To conclude, this chapter has comprehensively evaluated the safety of a signalized 

intersection considering various SSMs and using different non-infrastructure variables in 

mixed traffic environments. Traffic safety was analyzed from different aspects, including 

longitudinal driving volatility measures, lateral driving volatility measures, and jerks. 

 Considering both longitudinal and lateral driving volatility measures, a total of 30 

models were developed to explore how the study variables affect each volatility measure, 

and hence traffic safety. The results indicated that longitudinal driving volatility measures 

are more sensitive to the changes of the study variables. Overall, depending on the purpose 

of the study, each longitudinal and lateral model could be implemented to evaluate traffic 

safety. 

For the ML models using jerks, three dependent variables were considered 

separately, including the percentage of the total jerks, the percentage of AV jerks, and the 

percentage of RV jerks. For all the models, MPR, speed limit, and LT signal phasing were 

significant variables, while in the AV model and RV model, other variables were also 

significantly affecting the performance of the models. Increasing the speed limit and 
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providing permitted LT phasing resulted in the lowest percentage of jerks for all the 

models. It is notable that although protected LT phasing is associated with the highest 

number of jerky driving maneuvers, it results in the lowest number of SSAM conflicts. 

Therefore, LT-opposing should be evaluated separately and thoroughly using the number 

of conflicts, especially at low AV MPRs, where the majority of the vehicles are RVs and 

controlled by human judgments. 

 Ultimately, the number of jerks were compared with the total and only rear-end 

SSAM conflicts. The results indicated that there is no correlation between the variables, 

and they could not be used interchangeably. 

 The next and the last chapter provides a summary of the work and concludes the 

dissertation. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 

This chapter wraps up the dissertation by providing a summary of the dissertation, 

conclusion, and further research. 

 

6.1. Summary of Work 

Transportation networks, as an integral part of urban areas, have been experiencing 

several transformations and growths over time (1). The growth in transportation networks 

results in significant traffic congestion, air pollution, fuel consumption, traffic delay, and, 

most importantly, deterioration in traffic safety (2). Based on the WHO, roadway crashes 

contributed to nearly 1.35 million fatalities worldwide in 2018 (5). The U.S. also reported 

400,000 fatalities in 2018 (6). 

 The roadway crashes, fatalities, and injuries make public and private agencies to 

explore various solutions to enhance traffic safety. However, conventional solutions 

(including widening the roadways, widening shoulders, etc.) are not capable of fully 

addressing the concerns anymore, due to space and funding limitations. Hence, 

transportation agencies have been focusing on innovative technologies instead. AVs are 

one of the recent technologies that are expected to solve traffic safety concerns 

significantly as they are eliminating human factors from the driving task, which are 

contributing to 94% of the crashes (2, 8, 9). However, it should be noted that for AVs to 

reach their full capacity, upgrading the current infrastructure is required. But, upgrading 

the entire infrastructure at once is time-consuming and costly. Therefore, this research 
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aimed to determine how changing the non-infrastructure variables can influence traffic 

safety in mixed traffic environments. 

 Meanwhile, intersections proportionally experience more crashes than segments, 

and the signalized ones result in the highest number of intersection-related fatality crashes. 

Therefore, this dissertation focused on signalized intersections. Thus, speed limit, signal 

cycle length, LT signal phasing, and AV size were considered as non-infrastructure 

variables at signalized intersections, and their effects on traffic safety were analyzed under 

various AV MPRs. The results could be used to enhance safety by adjusting the non-

infrastructure variables without imposing any extra costs, especially at low AV MPRs. 

 A full factorial design was implemented to combine all the levels of all the study 

variables to develop the simulation scenarios. Eventually, 3,850 simulation runs were set 

and run. The output data were then extracted, merged, and cleaned for further statistical 

analyses. 

 Traffic safety analyses of the simulation runs and the effects of the study variables 

were investigated from various aspects: 

1) Evaluating various longitudinal and lateral driving volatility measures, including 

S.D., C.V., and percentage of values over a threshold for speed, acceleration, 

deceleration, positive jerk, and negative jerk: 

• For the first time, this study extensively explored both lateral and 

longitudinal driving volatility measures to evaluate safety. The lateral and 

longitudinal driving volatility measures were analyzed to determine how the 

non-infrastructure study variables influence each of them.  
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• The results indicated that the longitudinal driving volatility measures are 

more sensitive than lateral movements. By increasing the MPR, some of the 

longitudinal measures decreased while the others increased. However, the 

majority of the lateral driving volatility measures improved by increasing 

the AV MPR. 

• Increasing the AV size increased the majority of the longitudinal driving 

volatility measures while decreased most of the lateral volatility measures.  

• Higher signal cycle length improved most of the lateral volatility measures. 

• Depending on the driving volatility measures, the speed limit and LT signal 

phasing showed different effects on both lateral and longitudinal measures. 

• Since 30 different longitudinal and lateral driving volatility measures were 

considered, the results cannot be summarized thoroughly. Hence, according 

to the objective of a study, an appropriate model could be implemented. 

2) Developing safety models using ML and considering the percentage of jerky 

driving maneuvers for AVs, RVs, and both AVs and RVs as the dependent 

variables: 

• The results of the analyses using the ML algorithm indicated that in mixed 

traffic environments, the percentage of the total number of jerks could be 

reduced by increasing the speed limit. In fact, by increasing the speed limit, 

more vehicles can pass through the intersection without experiencing red 

signals, which requires them to come to a full stop and sometimes brake 

abruptly. The effects of increasing the speed limit on the AV jerks and RV 

jerk presented the same results. 
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• All the models indicated that protected LT signal phasing is associated with 

the highest percentage of the total jerks, AV jerks, and RV jerks because the 

vehicles require to come to a full stop more frequently. But meanwhile, 

considering the SSAM conflicts indicated that the total number of conflicts 

decreases while providing protected LT signal phasing. In fact, protected 

LT signal phasing avoids/significantly reduces the left-turning and opposing 

through conflicts. 

• Increasing the size of AVs also illustrated that the larger the size, the fewer 

the number of AV jerks. The reason is that larger AVs have fewer 

opportunities to conduct lane-changing maneuvers because of the difficulty 

in finding gaps with adequate size. 

Eventually, the number of jerks were compared to the SSAM conflicts through 

conducting multiple Pearson’s correlation coefficient tests. Both total SSAM conflicts and 

only rear-end conflicts were examined. The results indicated that the jerks and SSAM 

total/rear-end conflicts are not correlated and cannot be used interchangeably. However, 

this does not imply that one outperforms the other. Depending on the purpose of a study 

and the availability of the resources, an appropriate SSM could be implemented. 

 

6.2. Conclusions 

In summary, it is not practical to upgrade the entire infrastructure at once before 

implementing AVs, especially at low AV MPRs. Therefore, this dissertation evaluated the 

effects of altering the non-infrastructure variables on the safety of mixed traffic 

environments at a signalized intersection. 
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Quantifying the safety of non-infrastructure variables was conducted on various 

surrogate safety measures, including different longitudinal and lateral driving volatility 

measures and the percentage of the jerks. 

Each longitudinal and lateral driving volatility measure was influenced by a 

different combination of the non-infrastructure variables. Hence, each model could be 

evaluated and implemented individually according to the purpose of a study. For instance, 

the signal cycle length had a negative relationship with the majority of longitudinal and 

lateral driving volatility measure, most of the longitudinal driving volatility measures 

increased by increasing the speed limit, AV size had a negative relationship with the 

majority of the longitudinal measures and positive relationship with most of the lateral 

measures, and the effects of LT signal phasing were different on each model. 

By only considering the percentage of jerks, the results indicated that the 

percentage of the total jerk increased by increasing the AV MPR. It is notable that 

although the percentage of jerky driving maneuvers increased by raising the AV MPR, the 

absolute jerk values decreased. In addition, providing permitted LT signal phasing could 

reduce the percentage of total jerks, the percentage of AV jerks, and the percentage of RV 

jerks, but meanwhile increases the total number of SSAM conflicts. Therefore, LT and 

opposing through conflicts should be evaluated in further detail. Although increasing the 

AV size reduced the percentage of AV jerks and increased the percentage of RV jerks, the 

benefit outweighed the loss (by having a larger coefficient in the AV model). Therefore, by 

increasing the AV size, the number of AV jerks could be reduced significantly. 

Moreover, increasing the approach speed limit consistently reduced the percentage 

of the total jerks, percentage of AV jerks, and percentage of RV jerks. It is notable that the 
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speed limit is a surrogate for the operating speed of the network, the geometry of the 

intersection legs, and the traffic congestion level. Hence, where the geometry of the legs of 

an intersection allows, the approach speed limits could be increased. However, the impacts 

of increasing the speed limit on pedestrians and bicyclists should not be neglected. In fact, 

although increasing the speed limit significantly reduces the various percentage of jerks, it 

could result in more severe pedestrian/bicyclists-involved crashes. Therefore, where 

pedestrians and bicyclists are actively involved, the approach speed limits should be 

increased cautiously (if not, putting a ceiling on 

the limit based on the characteristics of the land use or policy used for setting speed limits 

by the transportation agency). Moreover, by increasing the AV MPR, the effects of 

increasing the speed limit become less perceptible since AVs follow the posted speed 

limits and result in a more uniform speed distribution.    

 In general, when it is impractical to upgrade the infrastructure to safely 

accommodate AVs, especially at the first deployment of AVs, the best practice is to adjust 

the speed limit. To reach a higher level of safety, the approach speed limits could be 

increased according to the geometry of the roadways and activities of 

pedestrians/bicyclists. Although the positive effect of increasing the approach speed limits 

is more visible in an RV dominant environment, it could result in a more vulnerable 

environment for pedestrians and bicyclists as RVs have a larger reaction time and tend to 

drive over the speed limits. In addition, permitted LT signal phasing results in the lowest 

percentage of jerky driving maneuvers and the highest number of SSAM conflicts. 

Therefore, for low AV MPRs, permitted LT signal phasing is not the safest choice.  
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 Similar to low AV MPRs, for the medium AV MPRs, the best practice is to adjust 

the approach speed limits and LT signal phasing. Moreover, to reach a safer environment, 

the signal cycle length could be modified according to the type of LT signal phasing to 

control the jerky driving maneuvers of AVs. 

When reaching a fully AV environment, if the infrastructure is still not designed 

properly to safely accommodate AVs, the safety could be enhanced by adjusting the signal 

cycle length, speed limit, LT signal phasing, and AV size. Decreasing the cycle length, 

increasing the speed limit (with constraints), and providing permitted LT signal phasing 

could improve traffic safety significantly at high AV MPRs. It is worth noting that in a 

fully AV environment, despite the RV environments, the permitted LT signal phasing 

could be the safest option since AVs are machine-driven vehicles and capable of detecting 

their environments with minimal, if not without any, errors as well as reacting to the 

situations abruptly. Moreover, the benefit of increasing the speed limit at high AV MPRs is 

not as noticeable as for the low MPRs; but, the negative impacts on the safety of 

pedestrians and bicyclists are lower as AVs analyze and react to the situations abruptly. 

Lastly, if manufacturers provide AVs in larger sizes, the number of jerky driving 

maneuvers will be reduced significantly at high AV MPRs. 

 

6.3. Recommendations for Further Research  

Traffic safety of mixed environments has not been explored extensively, and yet 

there are many aspects that could be examined and analyzed before employing AVs.  

This dissertation defined various levels/categories for the studied non-infrastructure 

variables (speed limit, cycle length, and AV size) to be simulated and evaluated. For future 
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research, more levels could be introduced and assessed. Moreover, other easy-to-

implement infrastructure variables, such as the density of driveways nearby a signalized 

intersection, could be examined to determine how the safety of mixed traffic environments 

would be affected. 

In each simulation scenario of the dissertation, all the AVs had the same size. For 

future research, the safety effects of various combinations of different AV sizes could be 

explored. 

This dissertation increased or decreased the current and actual speed limits of the 

intersection legs with the same rate for all the legs. However, future studies can evaluate 

the safety effects of uniform speed limits along all the legs. 

While analyzing the safety of the simulation scenarios could be conducted using 

SSMs, implementing the real-world crash data is worth investigating. Where available, the 

real-world crash data could be compared to the results of jerks and also SSAM conflicts to 

determine how they are related. To this aim, other models, such as negative binomial and 

Poisson models, could also be implemented and assessed. 

It is worth investigating the turning maneuvers at signalized intersections in more 

detail. SSAM could be implemented to find and evaluate turning conflicts since this 

software program is capable of providing the number of rear-end, lane-changing, and 

crossing conflicts. However, as mentioned earlier, the TTC should be selected cautiously 

to avoid overestimating/ underestimating the number of conflicts. 

Lastly, this dissertation assessed 34 different SSMs to evaluate the safety of mixed 

traffic environments from various aspects. Although the majority of the SSMs are hard to 

implement on the simulation outputs, the investigation is worthy. 
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APPENDIX A 

CODING IN R 

 

A. Calculating Longitudinal and Lateral Driving Volatility Measures 

#install.packages('readr') 

library(readr) 

 

fzp <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzp" , pattern = 

".txt") 

fhz <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhz" , pattern = 

".txt") 

 

setwd('D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzp') 
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for(i in fzp) { 

  setwd('D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzp') 

  # skip: skips the rows of the txt file- sep: shows what has separated the columns 

  NewTable <- read.delim (file =  i, header = T, sep = ";" , skip = 17) 

  setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzpDone") 

  write.csv(NewTable, file = paste(i, ".csv")) 

} 

 

setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhz") 

 

for(i in fhz) { 

  setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhz") 

  NewTable1 <- read.delim (file =  i, header = T, sep = ";" , skip = 8) 

  setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhzDone") 

  write.csv(NewTable1, file = paste(i, ".csv")) 

} 

 

#install.packages('dplyr') 

library(dplyr) 

 

main_df_fzp <- list.files(path = "D:/Dissertation/VISSIM/Larger vehicle Size/3/fzpDone" , 

pattern = ".csv") 

 



 

159 

 

Veh_Type_Table <- list.files(path = "D:/Dissertation/VISSIM/Larger vehicle 

Size/3/fhzDone" , pattern = ".csv") 

 

setwd('D:/Dissertation/VISSIM/Larger vehicle Size/3/Final') 

 

#if( 

#  length(setdiff(main_df_fzp, Veh_Type_Table))>0) 

#  stop("Actually, the two directories do not have the same files") 

 

for( 

  file in main_df_fzp) { 

  varname <- substr(file, start=1, stop=nchar(file)-4) 

  main <- read.csv(file.path("D:/Dissertation/VISSIM/Larger vehicle Size/3/fzpDone", 

file)) 

  vehType <- read.csv(file.path("D:/Dissertation/VISSIM/Larger vehicle Size/3/fhzDone", 

file)) 

   

  #rename just a single column to match to the other table to be able to  left_join 

  names(main)[names(main)=="NO"] <- "VehNo" 

   

  new_table <- left_join(main, vehType, by=c("VehNo")) 

   

  #sort by time and veh # 
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  new_table <- new_table[with(new_table, order(VehNo , X.VEHICLE.SIMSEC)),] 

   

  new_table$pos_mi <- new_table$POS / 5280 

  new_table$time_hr <- new_table$X.VEHICLE.SIMSEC / 3600 

   

  #calculating speed by group 

  new_table$speed <- (ave(new_table$POS, factor(new_table$VehNo), FUN=function(x) 

c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x)))) 

   

  new_table$acc <- (ave(new_table$speed, factor(new_table$VehNo), FUN=function(x) 

c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x)))) 

   

  new_table$jrk <- (ave(new_table$acc, factor(new_table$VehNo), FUN=function(x) 

c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x)))) 

   

  # add lateral changes 

   

  new_table$speed_Lat <- (ave(new_table$POSLAT, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, 

factor(new_table$VehNo), FUN=function(x) c(NA,diff(x)))) 
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  new_table$acc_Lat <- (ave(new_table$speed_Lat, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, 

factor(new_table$VehNo), FUN=function(x) c(NA,diff(x)))) 

   

  new_table$jrk_Lat <- (ave(new_table$acc_Lat, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, 

factor(new_table$VehNo), FUN=function(x) c(NA,diff(x)))) 

 

  new_table <- new_table[ , -c(1,  8:11 , 13:17)] 

   

  write.csv(new_table, file = paste(file, "-edit.csv")) 

} 
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B. Calculating Network-Level Longitudinal and Lateral Volatility Measures 

setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/19/Final") 

 

filenames <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle Size/19/Final", 

pattern = ".csv", 

                        full.names = TRUE) 

 

for (file in filenames){ 

   

  mydata_1 <- read.csv(file) 

   

  mydata_1 <- na.omit(mydata_1) 

   

  non_zero_spd <- mydata_1[mydata_1$speed > 0,] 

  spd_avg <- mean(non_zero_spd$speed) 
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  spd_sd <- sd(non_zero_spd$speed) 

  spd_cv <- (spd_sd) * 100/spd_avg 

   

  up_thresh <- spd_avg + 2*(spd_sd) 

  dn_thresh <- spd_avg - 2*(spd_sd) 

  perc_spd <- nrow(subset(non_zero_spd , speed < dn_thresh | speed > up_thresh))*100 / 

nrow(non_zero_spd) 

   

  acc <- mydata_1[mydata_1$acc >= 0,] 

  acc_avg <- mean(acc$acc) 

  acc_sd <- sd(acc$acc) 

  acc_cv <- (acc_sd) * 100/acc_avg 

   

  up_thresh <- acc_avg + 2*(acc_sd) 

  dn_thresh <- acc_avg - 2*(acc_sd) 

  perc_acc <- nrow(subset(acc , acc < dn_thresh | acc > up_thresh))*100 / nrow(acc) 

   

  dec <- mydata_1[mydata_1$acc < 0,] 

  dec_avg <- mean(dec$acc) 

  dec_sd <- sd(dec$acc) 

  dec_cv <- (dec_sd) * 100/dec_avg 

   

  up_thresh <- dec_avg + 2*(dec_sd) 
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  dn_thresh <- dec_avg - 2*(dec_sd) 

  perc_dec <- nrow(subset(dec , acc < dn_thresh | acc > up_thresh))*100 / nrow(dec) 

   

  posjrk <- mydata_1[mydata_1$jrk >= 0,] 

  posjrk_avg <- mean(posjrk$jrk) 

  posjrk_sd <- sd(posjrk$jrk) 

  posjrk_cv <- (posjrk_sd) * 100/posjrk_avg 

   

  up_thresh <- posjrk_avg + 2*(posjrk_sd) 

  dn_thresh <- posjrk_avg - 2*(posjrk_sd) 

  perc_posjrk <- nrow(subset(posjrk , jrk < dn_thresh | jrk > up_thresh))*100 / 

nrow(posjrk) 

   

  negjrk <- mydata_1[mydata_1$jrk < 0,] 

  negjrk_avg <- mean(negjrk$jrk) 

  negjrk_sd <- sd(negjrk$jrk) 

  negjrk_cv <- (negjrk_sd) * 100/negjrk_avg 

   

  up_thresh <- negjrk_avg + 2*(negjrk_sd) 

  dn_thresh <- negjrk_avg - 2*(negjrk_sd) 

  perc_negjrk <- nrow(subset(negjrk , jrk < dn_thresh | jrk > up_thresh))*100 / 

nrow(negjrk) 
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  #lateral 

   

  latspd_avg <- mean(mydata_1$speed_Lat) 

  latspd_sd <- sd(mydata_1$speed_Lat) 

  spd_cv <- (latspd_sd) * 100/latspd_avg 

   

  up_thresh <- latspd_avg + 2*(latspd_sd) 

  dn_thresh <- latspd_avg - 2*(latspd_sd) 

  perc_latspd <- nrow(subset(mydata_1 , speed_Lat < dn_thresh | speed_Lat > 

up_thresh))*100 / nrow(mydata_1) 

   

  latacc <- mydata_1[mydata_1$acc_Lat >= 0,] 

  latacc_avg <- mean(latacc$acc_Lat) 

  latacc_sd <- sd(latacc$acc_Lat) 

  latacc_cv <- (latacc_sd) * 100/latacc_avg 

   

  up_thresh <- latacc_avg + 2*(latacc_sd) 

  dn_thresh <- latacc_avg - 2*(latacc_sd) 

  perc_latacc <- nrow(subset(latacc , acc_Lat < dn_thresh | acc_Lat > up_thresh))*100 / 

nrow(latacc) 

   

  latdec <- mydata_1[mydata_1$acc_Lat < 0,] 

  latdec_avg <- mean(latdec$acc_Lat) 
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  latdec_sd <- sd(latdec$acc_Lat) 

  latdec_cv <- (latdec_sd) * 100/latdec_avg 

   

  up_thresh <- latdec_avg + 2*(latdec_sd) 

  dn_thresh <- latdec_avg - 2*(latdec_sd) 

  perc_latdec <- nrow(subset(latdec , acc_Lat < dn_thresh | acc_Lat > up_thresh))*100 / 

nrow(latdec) 

   

  poslatjrk <- mydata_1[mydata_1$jrk_Lat >= 0,] 

  poslatjrk_avg <- mean(poslatjrk$jrk) 

  poslatjrk_sd <- sd(poslatjrk$jrk) 

  poslatjrk_cv <- (poslatjrk_sd) * 100/poslatjrk_avg 

   

  up_thresh <- poslatjrk_avg + 2*(poslatjrk_sd) 

  dn_thresh <- poslatjrk_avg - 2*(poslatjrk_sd) 

  perc_poslatjrk <- nrow(subset(poslatjrk , jrk_Lat < dn_thresh | jrk_Lat > up_thresh))*100 

/ nrow(poslatjrk) 

   

  neglatjrk <- mydata_1[mydata_1$jrk_Lat < 0,] 

  neglatjrk_avg <- mean(neglatjrk$jrk_Lat) 

  neglatjrk_sd <- sd(neglatjrk$jrk_Lat) 

  neglatjrk_cv <- (neglatjrk_sd) * 100/neglatjrk_avg 
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  up_thresh <- neglatjrk_avg + 2*(neglatjrk_sd) 

  dn_thresh <- neglatjrk_avg - 2*(neglatjrk_sd) 

  perc_neglatjrk <- nrow(subset(neglatjrk , jrk_Lat < dn_thresh | jrk_Lat > up_thresh))*100 

/ nrow(neglatjrk) 

   

  df <- NULL 

  df <- rbind(df, data.frame( spd_avg , spd_sd , spd_cv , perc_spd, 

                              acc_avg , acc_sd , acc_cv , perc_acc, 

                              dec_avg , dec_sd , dec_cv , perc_dec, 

                              posjrk_avg ,posjrk_sd , posjrk_cv , perc_posjrk, 

                              negjrk_avg , negjrk_sd ,negjrk_cv , perc_negjrk, 

                              latspd_avg , latspd_sd , spd_cv , perc_latspd, 

                              latacc_avg , latacc_sd , latacc_cv , perc_latacc, 

                              latdec_avg ,  latdec_sd , latdec_cv , perc_latdec, 

                              poslatjrk_avg , poslatjrk_sd , poslatjrk_cv , perc_poslatjrk, 

                              neglatjrk_avg , neglatjrk_sd ,  neglatjrk_cv , perc_neglatjrk 

  )) 

   

  write.csv( df , file = paste0( file , "_Volatility.csv"), row.names = FALSE) 

 

filenames <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle 

Size/19/Final/Volatility", 

                        full.names = TRUE) 



 

168 

 

my.df <- do.call(rbind, 

                 lapply(filenames, function(x)  

                   cbind(read.csv(x),  

                         name = tools::file_path_sans_ext(basename(x))))) 

 

my.df$MPR <- ifelse(grepl("_20AV", my.df$name) , "20", 

                           ifelse(grepl("_40AV", my.df$name) , "40" ,  

                                  ifelse(grepl( "_60AV", my.df$name) , "60" , 

                                         ifelse(grepl( "_80AV", my.df$name) , "80" , 

                                                ifelse(grepl( "_90AV", my.df$name) , "90" , 

                                                       ifelse(grepl("_AV", my.df$name) , "100" , "00")))))) 

 

my.df$filelocation <- "Smaller Vehicle Size/19/Final"     

 

setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/19/Final/Volatility") 

 

write.csv(my.df , "Larger vehicle Size_18.csv") 
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C. Merging Driving Volatility Measures and Adding the Studied Variables 

filenames <- list.files(path = "D:/Dissertation/VISSIM/VolatilityAll/Renamed", 

                        full.names = TRUE) 

 

import_files <- lapply(filenames,read.csv,stringsAsFactors =FALSE) 

 

my.df <- do.call(rbind, 

                 lapply(filenames, function(x)  

                   cbind(read.csv(x)))) 

 

my.df$signalL <- ifelse(grepl("Longer", my.df$Scenario) , 193, 

                        ifelse(grepl("Shorter", my.df$Scenario) , 75 , 135)) 

 

my.df$speed <- ifelse(grepl("Lower", my.df$Scenario) , 32.5, 

                       ifelse(grepl("Higher", my.df$Scenario) , 42.5 , 37.5)) 
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my.df$AVSize <- ifelse(grepl("Larger", my.df$filelocation) , 15.125, 12.949) 

 

my.df$LTphase <- ifelse(grepl("PermitProtect", my.df$Scenario) , "Protected-Permitted", 

                                ifelse(grepl( "Permit", my.df$Scenario) , "Permitted"  , "Protected")) 

 

write.csv(my.df , "Merged_Volatility.csv") 

 

D. Calculating Jerks 

#install.packages('readr') 

library(readr) 

 

fzp <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzp" , pattern = 

".txt") 

fhz <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhz" , pattern = 

".txt") 

 

setwd('D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzp') 

 

for(i in fzp) { 

  setwd('D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzp') 

  # skip: skips the rows of the txt file- sep: shows what has separated the columns 

  NewTable <- read.delim (file =  i, header = T, sep = ";" , skip = 17) 

  setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzpDone") 



 

171 

 

  write.csv(NewTable, file = paste(i, ".csv")) 

} 

 

setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhz") 

 

for(i in fhz) { 

  setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhz") 

  NewTable1 <- read.delim (file =  i, header = T, sep = ";" , skip = 8) 

  setwd("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fhzDone") 

  write.csv(NewTable1, file = paste(i, ".csv")) 

} 

 

#install.packages('dplyr') 

library(dplyr) 

 

main_df_fzp <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle 

Size/3/fzpDone" , pattern = ".csv") 

 

Veh_Type_Table <- list.files(path = "D:/Dissertation/VISSIM/Smaller Vehicle 

Size/3/fhzDone" , pattern = ".csv") 

 

setwd('D:/Dissertation/VISSIM/Smaller Vehicle Size/3/Final') 

 



 

172 

 

#if( 

#  length(setdiff(main_df_fzp, Veh_Type_Table))>0) 

#  stop("Actually, the two directories do not have the same files") 

 

for( 

  file in main_df_fzp) { 

  varname <- substr(file, start=1, stop=nchar(file)-4) 

  main <- read.csv(file.path("D:/Dissertation/VISSIM/Smaller Vehicle Size/3/fzpDone", 

file)) 

  vehType <- read.csv(file.path("D:/Dissertation/VISSIM/Smaller Vehicle 

Size/3/fhzDone", file)) 

   

  #rename just a single column to match to the other table to be able to  left_join 

  names(main)[names(main)=="NO"] <- "VehNo" 

   

  new_table <- left_join(main, vehType, by=c("VehNo")) 

   

  #sort by time and veh # 

  new_table <- new_table[with(new_table, order(VehNo , X.VEHICLE.SIMSEC)),] 

   

  new_table$pos_mi <- new_table$POS / 5280 

  new_table$time_hr <- new_table$X.VEHICLE.SIMSEC / 3600 
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  #calculating speed, acc, and jerk by group 

  new_table$speed <- (ave(new_table$POS, factor(new_table$VehNo), FUN=function(x) 

c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x)))) 

   

  new_table$acc <- (ave(new_table$speed, factor(new_table$VehNo), FUN=function(x) 

c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x)))) 

   

  new_table$jrk <- (ave(new_table$acc, factor(new_table$VehNo), FUN=function(x) 

c(NA,diff(x))))/(ave(new_table$X.VEHICLE.SIMSEC, factor(new_table$VehNo), 

FUN=function(x) c(NA,diff(x)))) 

 

  new_table <- new_table[ , -c(1, 4:5, 7:11 , 13:15)] 

  #match(Table$SecondVID, Veh_Type_Table$Veh, incomparables = F) 

 

  #new_table <- new_table[ , c(1:43 , 49)] 

   

  write.csv(new_table, file = paste(file, "-edit.csv")) 

} 
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E. Regression Using Machine Learning 

#https://www.machinelearningplus.com/machine-learning/caret-

package/#35howtopreprocesstotransformthedata 

 

#install.packages("lattice") 

library(lattice) 

 

#install.packages("ggplot2") 

library(ggplot2) 

 

#install.packages("caret") 

library(caret) 

 

#install.packages("MASS") 

library(MASS) 

 

#install.packages("ggplot2") 

library(ggplot2) 
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setwd("C:/Users/maryam.mousavi/Google Drive/Dissertation 

(11.30.19)/Analysis/MachineLearning") 

 

# 1. Loading data 

 

raw_data <- read.csv("MachineLearning(01.20.20)_csv.csv") 

 

#since changing NAs for 0 for avg_jrk does not make any difference, we make NAs zero 

to calculate the avg jrk 

raw_data[is.na(raw_data)] <- 0 

 

#for converting values a specific value in a column with another value 

##raw_data$LTPhasing[raw_data$LTPhasing == "Actual"] <- "Protected" 

   

#sum(is.na(raw_data$Avg_AV_Jrk)) 

#sum(is.na(raw_data$Avg_CV_Jrk)) 

 

raw_data$total_jrk <- raw_data$AV_cnt + raw_data$CV_cnt 

raw_data$avg_jrk <- (raw_data$Avg_AV_Jrk + raw_data$Avg_CV_Jrk)/2 

raw_data$avg_pr <- (raw_data$AV_pr + raw_data$CV_pr)/2 

 

# 2. getting descriptive stats for variables 
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#install.packages('skimr') 

library(skimr) 

 

write.csv(skim(raw_data , SignalLength_num , AVSize_num, AvgSpeedLimit_num, MPR 

, AV_cnt, CV_cnt ,  

               Avg_AV_Jrk, Avg_CV_Jrk, avg_jrk, avg_pr , avg_pr, total_jrk) , "123.csv") 

 

#making training dataset just considering AVs 

##inTrain <- createDataPartition(y=raw_data$AV_pr , p=0.75, list = FALSE) 

 

##training <- raw_data[inTrain, ] 

##testing <- raw_data[-inTrain, ] 

 

#making training dataset considering both AVs and RVs (we can use either #of jerks or 

#% of jerk (because we made NAs as zero)) 

 

# 3. making training and test sets 

 

names(raw_data) 

raw_data <- raw_data[ , c('avg_jrk' , 'AvgSpeedLimit_num' , 'SignalLength_num' , 

'AVSize_num' , 'MPR' , 'LTPhasing') ] 
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set.seed(1111) 

 

inTrain <- createDataPartition(y=raw_data$avg_jrk , p=0.75, list = FALSE) 

 

training <- raw_data[inTrain, ] 

testing <- raw_data[-inTrain, ] 

 

# 4. store x and y for later use 

 

x <- training[,c('AvgSpeedLimit_num' , 'SignalLength_num' , 'AVSize_num' , 'MPR' , 

'LTPhasing')] 

y <- training$avg_jrk 

 

# 5. One-Hot Encoding 

 

# Creating dummy variables is converting a categorical variable to as many binary 

variables as here are categories. 

# we just do it for training dataset 

 

dummies_model  <- dummyVars( avg_jrk ~ ., data=training) 

 

# Create the dummy variables using predict. The Y variable (Purchase) will not be present 

in trainData_mat. 
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training_mat <- predict(dummies_model, newdata = training) 

 

# # Convert to dataframe 

training <- data.frame(training_mat) 

 

# # See the structure of the new dataset 

str(training) 

 

#now we should append the y variable 

training$avg_jrk <- y 

 

# 6. drawing featureplots 

 

featurePlot(x= training[ ,c("AvgSpeedLimit_num" , "MPR" , "AVSize_num" , 

"SignalLength_num" , 

                            "LTPhasing.Permitted" , "LTPhasing.Protected" , 

                            "LTPhasing.ProtectedPermitted")], y = training$avg_jrk , plot= 'pairs') 

 

# hist of the dependent variable 

x <- training$avg_jrk 

h<- hist(x, breaks=10, col="light blue", xlab="Average Jerk", 

     main="Average Jerk Histogram with Normal Curve") 
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xfit<-seq(min(x),max(x),length=40) 

yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) 

yfit <- yfit*diff(h$mids[1:2])*length(x) 

lines(xfit, yfit, col="red", lwd=2) 

 

# 7.Correlateion test 

 

install.packages("corrplot") 

library(corrplot) 

 

correlations <- cor(training[,1:8]) 

# create correlation plot 

corrplot(correlations, method="circle") 

 

# we also can do scatterplot matrix 

pairs(training) 

 

 

# 8. train model using training data 

 

modelFit <- train(avg_jrk ~ AvgSpeedLimit_num + SignalLength_num + AVSize_num + 

MPR + LTPhasing.Permitted + 

                  LTPhasing.Protected + LTPhasing.ProtectedPermitted , 
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                  data=training, method='glm') 

 

write.csv(coef(summary(modelFit)) , "GLMresults.csv") 

 

# 9. now, we should impute the testing data for prediction 

 

x <- testing[,c('AvgSpeedLimit_num' , 'SignalLength_num' , 'AVSize_num' , 'MPR' , 

'LTPhasing')] 

y <- testing$avg_jrk 

 

dummies_model1  <- dummyVars( avg_jrk ~ ., data=testing) 

 

# Create the dummy variables using predict. The Y variable (Purchase) will not be present 

in trainData_mat. 

testing_mat <- predict(dummies_model1, newdata = testing) 

 

# # Convert to dataframe 

testing <- data.frame(testing_mat) 

 

# # See the structure of the new dataset 

str(testing) 

 

#now we should append the y variable 
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testing$avg_jrk <- y 

 

# 10. now, predict based on test data 

 

predicted <- predict(modelFit, newdata = testing) 

head(predicted) 

 

confusionMatrix(reference = testing$avg_jrk, data = predicted, mode='everything', 

positive='MM') 
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