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ABSTRACT

Gaussian processes (GPs) are widely used in geospatial analysis, machine learning and many

application areas. We propose novel scalable methods to tackle two problems in Gaussian process

modeling for large spatial datasets.

In the first study, we focus on the ubiquitous multi-scale phenomena in geophysical and other

applications. To model the multi-scale structure, we propose a novel multi-scale Vecchia (MSV)

approximation of GPs. In the MSV method, the increasingly small scales of spatial variation can

be captured by increasingly large sets of variables, and then an accurate approximation of the

spatial dependence is obtained from very large to very fine scales. By decomposing the observed

dataset into different scales, our MSV method can visualize each scale and provide insights for the

underlying processes. We develop an algorithm for automatically choosing the tuning parameters,

and explore properties of the MSV approximation. We provide comparisons to existing approaches

based on simulated data and using satellite measurements of land-surface temperature.

The second is concerned with global spatial processes. Rapid developments in satellite remote-

sensing technology have enabled the collection of geospatial data on a global scale, and so there

is an increased need for covariance functions that can capture spatial dependence on spherical do-

mains. We propose a general method of constructing nonstationary, locally anisotropic covariance

functions on the sphere based on covariance functions for Euclidean space. We provide theo-

rems and conditions such that the resulting correlation function is isotropic or axially symmetric,

for sensible parameterizations in specific applications. For modern large datasets on the sphere,

the Vecchia approximation is applied to achieve computationally feasible inference. We provide

illustrations and comparisons in numerical studies.
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1. INTRODUCTION

Gaussian processes (GPs) are commonly used as function priors in many application areas

such as geospatial analysis and machine learning. GPs are popular because they are flexible, in-

terpretable, and naturally result in probabilistic uncertainty quantification. However, for many

modern spatial datasets of interest, there are two inference problems. The first is that direct appli-

cation of GPs is too computationally expensive as the cost is cubic in the number of observations.

Second, as satellites have enabled the collection of global data, there is an increased need for co-

variance functions that are valid on spheres. Here, we propose two projects focusing on these two

problems.

In the first project, we focus on approximations for a large number of observations of a multi-

scale GP, which is defined here as a GP whose covariance function is a sum of covariance functions

at different scales, or equivalently, as a sum of independent GPs at different scales. Multi-scale

processes are ubiquitous in many geophysical and other applications. For example, the atmosphere

is affected by micro-scale systems such as clouds and thunderstorms, but also by extratropical

cyclones that act on much larger scales (Cotton et al., 2010).

Although most of the existing GP approximation methods can be applied to multi-scale GPs, by

simply considering the marginal distribution of the data that implicitly collapses the processes or

covariance functions at different scales into one, it can be highly advantageous to exploit the multi-

scale structure explicitly and to specify a suitable approximation for each scale. We propose here

a multi-scale Vecchia (MSV) approximation for multi-scale GPs observed at point level, which es-

sentially combines suitable Vecchia approximations at each of the different scales. Roughly speak-

ing, smooth large-scale processes can be approximated well using low-rank approaches, while

non-smooth fine-scale processes often exhibit strong screening effects and thus can be approxi-

mated well by assuming conditional independence using small conditioning sets. By decomposing

the observed dataset into different scales, our MSV method can visualize each scale and provide

insights for the underlying processes. We develop an algorithm for automatically choosing the
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tuning parameters, and explore properties of the MSV approximation. Our approach also leads to

nice visualizations of the different scales, which can be highly useful in many scientific contexts.

The second project is about global spatial processes. Traditionally, geostatistical analysis relied

on approximating small or regional spatial domains as flat, as subsets of R2. However, as satellites

have enabled the collection of global data, there is an increased need for covariance functions

that are valid on spheres. Thus, our focus here is on spatial data observed on the unit 2-sphere,

S = {s̃ ∈ R3 : ‖s̃‖ = 1}.

For processes that reside on the surface of a sphere, two different measures of distance are

commonly used. The most natural distance is great-arc distance, which measures the distance

“going along the surface of the sphere”. In contrast, Euclidean or chordal distance pierces through

the sphere.

It is not trivial to build a great-arc-distance-based covariance function on the sphere because

of the curvature of S (e.g., Jones, 1963). Most well-known covariance functions are valid (i.e.,

positive definite) only when used with Euclidean distance on Rd, for some (or all) d ≥ 1. They

are not guaranteed to be valid when used with great-arc distance (e.g. Gneiting, 2013). Much of

the work on covariance functions that are valid with great-arc distance has focused on isotropic

covariance functions.

We consider here using Euclidean distance and restrict a valid covariance function in R3 to

S according to Yaglom (1987). This is guaranteed to be valid, in that we know the covariance

function is valid for points in R3, it just so “happens” that all locations now fall onto the surface of

our sphere within this space. In addition, results based on chordal and great-arc distance are often

indistinguishable (Guinness and Fuentes, 2016).

We develop nonstationary, locally anisotropic covariance functions on the sphere based on the

locally anisotropic covariance functions for Euclidean space proposed in Paciorek and Schervish

(2006). The approach is very general, and we provide theorems and conditions such that the

resulting correlation function is isotropic or axially symmetric, for sensible parameterizations in

specific applications. For large datasets, we can also apply the Vecchia approximation for scalable

2



inference.

The remainder of this dissertation is organized as follows. In Chapter 2, we derive the multi-

scale Vecchia approximations of Gaussian processes, and conduct numerical comparisons to exist-

ing approaches. We provides an application of MSV to satellite measurements of land-surface tem-

perature. In Chapter 3, we construct classes of nonstationary covariance functions on the sphere,

and provide theorems and conditions for important special cases such as isotropy and axial sym-

metry. We simulate Gaussian process realizations using various covariance functions constructed

by our method, and provide comparisons in numerical studies. Chapter 4 concludes.
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2. MULTI-SCALE VECCHIA APPROXIMATIONS OF GAUSSIAN PROCESSES

2.1 Introduction

Gaussian processes (GPs) are commonly used as function priors in machine learning (e.g.,

Rasmussen and Williams, 2006) and geospatial modeling (e.g., Cressie and Wikle, 2011). GPs

are popular because they are flexible, interpretable, and naturally result in probabilistic uncertainty

quantification. However, direct application of GPs is computationally expensive for large datasets,

as the cost is cubic in the number of observations. Some of the existing GP approximation methods

rely on sparsity (Furrer et al., 2006; Du et al., 2009; Lindgren et al., 2011); some rely on low-rank

structure (e.g., Wikle and Cressie, 1999; Quiñonero-Candela and Rasmussen, 2005; Cressie and

Johannesson, 2008; Katzfuss and Cressie, 2011); and some on a combination of the two (e.g.,

Snelson and Ghahramani, 2007; Sang et al., 2011).

We focus on approximations for a large number of observations of a multi-scale GP, which is

defined here as a GP whose covariance function is a sum of covariance functions at different scales,

or equivalently, as a sum of independent GPs at different scales. Multi-scale processes are ubiqui-

tous in many geophysical and other applications. For example, environmental processes are often

subject to diurnal, seasonal, and multi-year cycles over time (Kim et al., 2007); the atmosphere

is affected by micro-scale systems such as clouds and thunderstorms, but also by extratropical

cyclones that act on much larger scales (Cotton et al., 2010); and for soil moisture, short-range

dependence is governed by surface characteristics such as soil texture, vegetation, and topography,

while long-range dependence is due to precipitation (Skøien et al., 2003). GPs whose covariance

functions are sums of kernels at different scales are also often used in GP emulation (e.g., Ba and

Joseph, 2012), astronomy (e.g., Sobolewska et al., 2014), and machine learning (e.g., Rasmussen

and Williams, 2006; Wilson and Adams, 2013; Wilson et al., 2014). Further applications can be

found in Ferreira and Lee (2007), for example.

Most of the GP approximations described above can be applied to multi-scale GPs, by sim-
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ply considering the marginal distribution of the data, which implicitly collapses the processes or

covariance functions at different scales into one. While its name might imply differently, this

marginal approach is also the one considered in the multi-resolution approximation (Katzfuss,

2017; Katzfuss and Gong, 2020). In contrast, we will show here that it can be highly advantageous

to exploit the multi-scale structure explicitly and to specify a suitable approximation for each scale.

Multi-scale approaches from engineering often do not result in consistent joint statistical mod-

els, and they usually work on developing coarser representations of the intersed phenomenon to

achieve computationally fast algorithms (e.g., Saquib et al., 1996; Comer and Delp, 1999). In

statistics, most existing multi-scale approaches use tree-structured models, and work on data col-

lected at different scales. For example, Zhu et al. (2004) develop a spatial model for soil data

collected at varying resolutions and accuracies, and they define the neighborhood structure by a

parent-child relationship presented in a multi-level tree. Huang et al. (2002) propose a multi-

resolution autoregressive tree-structured model for fast and resolution-consistent statistical predic-

tion for satellite data measured at different resolutions. Similar tree-structured approaches can be

found in Gotway and Young (2002) and Tzeng et al. (2005). There also exist some literature on

multi-scale time-series models (Ferreira et al., 2006), which couple standard linear models at var-

ious time scales via stochastic links across scales. Ferreira and Lee (2007) give an overview of

these multiscale models.

We propose here a multi-scale Vecchia (MSV) approximation for multi-scale GPs observed at

point level, which essentially combines suitable Vecchia approximations at each of the different

scales. The Vecchia approximation, originally proposed for the data vector directly (i.e., for a

single level) in Vecchia (1988), replaces the high-dimensional joint distribution of the entire data

vector with a product of univariate conditional distributions. The conditioning set for each univari-

ate conditional distribution consists of a small subset of previously ordered variables. This can lead

to tremendous computational savings if each conditioning set is small, which can be assumed if

the so-called screening effect holds. However, the screening effect is relatively weak when obser-

vations include a nugget or noise term. Katzfuss and Guinness (2017) and Katzfuss et al. (2020a)
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proposed a general Vecchia approach that treated the noise term separately from the continuous

covariance component, and thus showed that the screening effect can largely be restored and the

conditioning sets can be small.

Our MSV approach essentially extends the general-Vecchia idea to multiple levels: at each

level, a suitable Vecchia approximation is found for the process acting at the corresponding scale.

Roughly speaking, smooth large-scale processes can be approximated well using low-rank ap-

proaches, while non-smooth fine-scale processes often exhibit strong screening effects and thus

can be approximated well using small conditioning sets. In this context, a nugget or noise term

is the ultimate fine-scale process, which is independent over space and thus does not require any

conditioning. As shown by Katzfuss and Guinness (2017), all of these different approximations

are merely special cases of the Vecchia approach, and thus can be combined into the MSV here.

We describe how to efficiently conduct inference using the MSV, and we provide an algorithm

for automatic choice of the number of knot variables and the conditioning set size at each level.

This algorithm is also applicable and useful for one-level (Vecchia, 1988) or two-level (Katzfuss

and Guinness, 2017) Vecchia approximations. Our approach also leads to nice decompositions and

visualizations of the different scales, which can be highly useful in many scientific contexts. We

generally assume the covariance functions at the different levels to be known (e.g., from expert

knowledge, or by using existing algorithms), and focus on accurate approximation of the result-

ing spatial dependence; however, we also provide a computationally cheap approximation to the

integrated likelihood, which can be employed for parameter inference.

The remainder of this chapter is organized as follows. Section 2.2 derives the multi-scale Vec-

chia approximation, and develops an algorithm for automatically choosing the tuning parameters.

Section 2.3 contains further derivations and proofs. In Section 2.4, we perform numerical stud-

ies and comparisons to existing methods. Section 2.5 provides an application of MSV to satellite

measurements of land-surface temperature. We conclude in Section 2.6.
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2.2 Methodology

2.2.1 A multi-scale Gaussian process

Consider a Gaussian process (GP) z(·) ∼ GP (0, C) on a domain or spatial region D ⊂ Rd

with covariance function C. Assume that z(·) is a multi-scale process in the sense that z(·) =∑L
`=1 y

(`)(·), where the processes at the individual levels, y(`)(·) ind.∼ GP (0, C(`)), ` = 1, . . . , L,

are ordered from large scales to fine scales. We think of the scale of a process here in terms of

the effective range of its covariance function (i.e., the distance beyond which the correlation drops

below a small threshold, such as 0.05), and we assume throughout that y(L)(·) is Gaussian white

noise. For example, in spatial statistics, z(·) is often modeled as the sum of a large-scale, fine-scale,

and nugget or noise component. A simple toy example is shown in Figure 2.1.

Due to the independence assumption of the different processes, the covariance of z(·) is

C(si, sj) =
L∑
`=1

C(`)(si, sj), si, sj ∈ D. (2.1)

Assume we have n observations z = (z1, . . . , zn)> of z(·), such that zi = z(si). In general,

inference involving n observations of a GP requires O(n2) memory and O(n3) time. This is

computationally infeasible when n is in the tens of thousands or more, and so for many datasets of

interest, GP approximations are necessary.

2.2.2 Multi-scale Vecchia approximation

To obtain a fast approximation of the GP z(·), one could simply apply an existing GP approx-

imation to z(·) directly, using the “collapsed” covariance function C in (2.1). However, the main

idea of our multi-scale Vecchia (MSV) approximation is that it can often be highly beneficial to

consider each covariance C(`) separately, and tailor an approximation specifically to each of the L

levels. Simply speaking, smooth large-scale components can often be approximated well by a low-

rank process relying on a small number of anchoring points or knots, and non-smooth fine-scale

components often exhibit strong screening or conditional-independence properties (see Section
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2.2.3 below for more details), while neither approximation might work well for the sum of the two

components.

To specify the MSV, define y(`) = (y(`)(s1), . . . , y(`)(sn))> = (y
(`)
1 , . . . , y

(`)
n )> for each level

` = 1, . . . , L−1. Denote the vector of anchoring points or knots at level ` as y` = (y
(`)
1 , . . . , y

(`)
n` )>.

Stack all variables into a vector x = (y>1 ,y
>
2 , . . . ,y

>
L−1, z

>)>.

The exact distribution of the observation vector z is given by f(z) =
∫
f(x)dy1:L−1, where

f(x) =
(∏L−1

`=1

∏n`
i=1 f(y

(`)
i |y

(`)
1 , . . . , y

(`)
i−1)
)(∏n

i=1 f(zi|y1, . . . ,yL−1, z1, . . . , zi−1)
)
.

Our MSV is essentially a Vecchia approximation applied to the distribution f(x),

f̂(x) =
( L−1∏
`=1

n∏̀
i=1

f(y
(`)
i |Ny

(`)
i

)
)( n∏

i=1

f(zi|Nzi)
)
,

where for each y
(`)
i the full conditioning set y(`)

1 , . . . , y
(`)
i−1 is replaced by a subset N

y
(`)
i

, which

denotes the nearest m` variables in space to variable y
(`)
i among the previously ordered knot

variables {y(`)
1 , . . . , y

(`)
n` }. For each zi the full conditioning set is replaced by a subset Nzi =

{N (1)
zi , . . . , N

(L−1)
zi }, where N (`)

zi = {y(`)
i } for i ≤ n`, and N (`)

zi consists of the nearest m` variables

in space to variable zi among the knot variables {y(`)
1 , . . . , y

(`)
n` } for i > n`.

Thus, to specify an MSV approximation, first an ordering of the locations must be chosen,

resulting in s1, . . . , sn. Then, for each level ` = 1, . . . , L− 1, based on having selected n` and m`,

the Vecchia conditioning set for each variable consists of the nearest m` previously ordered vari-

ables among the n` knots (i.e., the variables corresponding to the first n` locations in the ordering).

For the level z, the Vecchia conditioning set for each variable consists of the nearest m` variables

among the n` knots, ` = 1, . . . , L− 1.

2.2.3 Examples of covariance approximations

Many types of covariances can be approximated very well using special cases of the Vecchia

approximation. We give some examples here, mostly with isotropic covariance functions, which
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Figure 2.1: A simple toy example of (a) observations z of a multi-scale process obtained as the sum of components
(colored dots and lines) with (b) squared exponential, (c) exponential, and (d) nugget covariance, respectively, on a
one-dimensional domain D = [0, 10]. Posterior means (black solid lines) and 95% intervals (black dashed lines) for
levels 1 and 2 were obtained using MSV as discussed in Section 2.2.4.3. Knot sets and conditioning set sizes were
computed using Algorithms 1 and 2 and led to a virtually exact approximation, so that the approximate posterior
summaries are basically identical to those obtained using the exact GP.
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are specified as functions of the distance r = ‖si − sj‖ between two locations. However, our

approach does not require isotropy. We discuss the polynomial covariance function, squared ex-

ponential covariance function, exponential covariance function, Matérn covariance function and

nugget examples:

• Polynomial: Consider a polynomial y(`)(s) = p(s)>β as a function of location s with p coef-

ficients β ∼ Np(0,Σβ), which is often used to capture a large-scale trend term in spatial

applications. Such a polynomial can be approximated exactly using a Vecchia approximation

with n` = m` = p (see Proposition 2 in Section 2.3.3). For example, in two-dimensional

space, we might set p(s) = (1, s1, s2, s
2
1, s

2
2, s1s2)> for s = (s1, s2)> and thus p = 6.

• Squared exponential: The squared exponential covariance function, C(`)(r) ∝ exp(−r2/λ2),

leads to covariance matrices with exponentially decaying spectrum. Thus, the resulting co-

variance matrices are approximately low-rank. A process of rank n` can be approximated

using Vecchia with a coarse grid of n` knots over D, and by conditioning on all previous

variables in the knot set (i.e., m` = n`).

• Exponential: Covariance matrices based on the exponential covariance, C(`)(r) ∝ exp(−r/λ),

have a slowly decaying spectrum, and so a good approximation requires the knot set to be

essentially equal to the set of observed locations (i.e., n` ≈ n). However, the inverse of the

covariance matrix (i.e., the precision matrix) is typically approximately sparse, meaning that

a strong screening effect holds. In the context of a Vecchia approximation, this allows us to

choose the conditioning set to consist of only a small number m` of nearby locations. For

example, in one dimension one can achieve an exact approximation by ordering locations

from left to right and only conditioning on the m` = 1 previous variable.

•Matérn: The Matérn class of covariance functions has a smoothness parameter ν, with realiza-

tions being k times differentiable if ν > k. It includes the exponential (ν = 0.5) and squared

exponential (ν = ∞) covariance as special cases on (almost) opposite ends of the smooth-

ness spectrum. For covariance functions in between these extreme cases, we generally need
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fewer and fewer knots but (relatively) larger and larger conditioning sets (i.e., smaller n` but

larger m`
n`

) as ν increases.

• Nugget: A spatially independent noise term, also called a nugget, is the ultimate fine-scale pro-

cess with covariance function C(`)(r) ∝ 1[r=0]. Due to the independence, the knot set has to

be equal to the observed locations (i.e., n` = n), but Vecchia is exact even if m` = 0.

2.2.4 Inference

2.2.4.1 Matrices needed for inference

Similarly to Proposition 1 in Katzfuss and Guinness (2017), we can write the MSV as

f̂(x) =
L−1∏
`=1

( n∏̀
i=1

N
(
y

(`)
i |B

(`)
i N

y
(`)
i
, D

(`)
i

))( n∏
i=1

N (zi|B(L)
i Nzi , D

(L)
i )
)

= Nn+
∑L−1
`=1 n`

(x|0, Ĉ),

where Ĉ−1 = UU>, Cov(y
(`)
i , y

(`)
j ) = C(`)(si, sj), and for ` = 1, 2, . . . , L− 1,

B
(`)
i = Cov(y

(`)
i , N

y
(`)
i

)Cov(N
y
(`)
i
, N

y
(`)
i

)−1,

D
(`)
i = Cov(y

(`)
i , y

(`)
i )−B(`)

i Cov(N
y
(`)
i
, y

(`)
i ), (2.2)

and for ` = L,

B
(L)
i = Cov (zi, Nzi)Cov (Nzi , Nzi)

−1 ,

D
(L)
i = Cov (zi, zi)−B(L)

i Cov (Nzi , zi) . (2.3)

The upper-triangular sparse matrix U is specified by the B(`)
i and D(`)

i as detailed in Section

2.3.1.
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2.2.4.2 Likelihood

Similarly to Katzfuss and Guinness (2017), the likelihood f̂(z) =
∫
f̂(x)dy1:L−1 can be com-

puted based on U:

−2 log f̂(z) =
∑L

`=1

∑n`
i=1 logD

(`)
i + 2

∑
log Vii + z̃>z̃− (V−1Uyz̃)>(V−1Uyz̃) + n log(2π),

(2.4)

where z̃ = U>z z,W := UyU
>
y ,V = chol(W), and Uz and Uy are the matrices consisting only

of the rows of U corresponding to z and (y1, . . . ,yL−1), respectively.

This expression of the MSV likelihood can be evaluated cheaply. Thus, while we generally as-

sume model parameters (e.g., in the covariance functionsC(`)) to be fixed here, the MSV likelihood

in (2.4) allows us to carry out frequentist and Bayesian inference on unknown model parameters.

Note that there might be identifiability issues when the number of levels L is large. To avoid this,

the parameter spaces are often restricted, sometimes through prior distributions, to ensure identifi-

ability, with lower levels accounting for longer-range dependence (e.g., Ba and Joseph, 2012).

2.2.4.3 Prediction

For prediction at observed and unobserved locations, we first consider the posterior distribution

of y1:L−1 = (y>1 ,y
>
2 , . . . ,y

>
L−1)> given z. In an adaptation of the results in Katzfuss et al. (2020a),

we have

y1:L−1|z ∼ N (µ,W−1),

where µ = −(V>)−1V−1Uyz̃ and W = UyU
>
y can be computed cheaply based on U and V.

Now consider linear combinations of the form Hy1:L−1. For example, we might be interested

in inference on each scale y` = H`y1:L−1, where H` is a submatrix of the identity, for ` =

1, . . . , L− 1. Similar to Katzfuss et al. (2020a, Sect. 3.3), we have

Hy1:L−1|z ∼ N (Hµ,ΣH),
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where the covariance matrix can be computed as ΣH = (V−1H>)>(V−1H>), and its diagonal

elements are diag(var(Hy1:L−1|z)) = ((V−1H>)◦ (V−1H>))>1, where 1 is a vector of ones and

◦ denotes element-wise multiplication.

For prediction of y(`)(·) at any unobserved location s0 based on observed location set S`, we

show in Section 2.3.2 that

E(y(`)(s0)|z) = C(`)(s0,S`)U(`)U(`)>H`µ

and

var(y(`)(s0)|z) = C(`)(s0, s0)− c`(s0)>c`(s0) + c̃`(s0)>c̃`(s0),

where c`(s0) = U(`)>C(`)(S`, s0), c̃`(s0) = V−1H>` U(`)c`(s0), and U(`) is the block of U corre-

sponding to knot variables at level `. These posterior distributions are illustrated in Figure 2.1.

2.2.5 Automatic choice of knots and conditioning sets

To specify the MSV for a given dataset, for each level we need to determine the knot and con-

ditioning sets, based on a location ordering. To simplify this problem, assume that the locations

{s1, . . . , sn} are ordered using a maximum-minimum distance ordering (Guinness, 2016; Schäfer

et al., 2017), and that the variables in each y(`) = (y(`)(s1), . . . , y(`)(sn))> = (y
(`)
1 , . . . , y

(`)
n )>

are ordered accordingly. As described in Section 2.2.2, we specify the knot variables y` =

(y
(`)
1 , . . . , y

(`)
n` )> as the first n` variables in this ordering. The conditioning vector N

y
(`)
i

consists

of the nearest m` variables in space to variable y(`)
i among previously ordered variables in y`.

Given these constraints, we only need to choose n` andm` for each level ` = 1, . . . , L−1. If we

simply set n` = m` = n, the approximation will be exact, but this choice leads to computational

infeasibility when n is large. Hence, we propose to pick the smallest n` and m` at each level such

that the improvement in accuracy by increasing n` and m` further is negligible. We consider the

Kullback-Leibler (KL) divergence between the exact distribution and approximated distribution

as a measure of accuracy. Explicit computation of the KL divergence requires O(n3) time and

is hence impractical for large n, but it turns out that we do not have to calculate it explicitly to
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(a) KL(f(y(`))||f̂(y(`))) (b)
∑n
i=1 log(D

(`)
i ) (c)

∑
i∈T log(D

(`)
i )

Figure 2.2: For the KL divergence and two computationally cheaper alternative quantities, differences for subsequent
values of the size m` of the conditioning sets, for a Matérn covariance function with range 1 and different smoothness
values ν. Numerically, we show that convergence of KL divergence as a function ofm` is equivalent to convergence of
the sum of all log conditional variances, which in turn is closely approximated by the sum of log conditional variances
for the last t = 20 locations in maxmin ordering.

implement our desired algorithm.

Theorem 1. For each level ` = 1, . . . , L − 1, the KL divergence between the true distribution

f(y(`)) and a Vecchia approximation f̂(y(`)) is

KL
(
f(y(`))||f̂(y(`))

)
=

1

2

n∑
i=1

log(D
(`)
i )− c(f(y(`)))

where D(`)
i = V ar(y

(`)
i |Ny

(`)
i

) is the conditional variance given in (2.2), and c(f(y(`))) depends

on the exact distribution f(y(`)) but is constant with respect to m`, n`.

The proof can be found in Section 2.3.4. Thus, minimizing (as a function of n` and m`) this

KL divergence at each level l = 1, . . . , L − 1 is equivalent to minimizing the sum of (or each

of) the log(D
(`)
i ) over all variables or locations. In practice, to achieve further speed-ups for large

datasets, we minimize the conditional variances for a systematically chosen subset of locations,

specifically the last t locations in the maxmin ordering, with indices T = {n − t + 1, . . . , n}.

Figure 2.2 illustrates this can be a valid approach.

The resulting proposed procedure for automatically choosing the tuning parameters n` and m`

is described in Algorithm 2, which relies on Algorithm 1 for choosing m` for a fixed n`. Note that
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Algorithm 2 can be run in parallel for each ` = 1, 2, . . . , L− 1.

Algorithm 1 chooseM: Automatic choice of m` for given n`
1: Input: Covariance C(`), tolerance ε > 0, maximum conditioning set size mmax, knot set size
n`

2: for m` = 1, 2, . . . ,min(mmax, n`) do
3: Compute D(`)

j (m`) = var(y
(`)
j |yN(`)

j
) using n`,m` for all j ∈ T

4: if ∀j ∈ T,
∣∣∣∣ logD

(`)
j (m`+1)−logD

(`)
j (m`)

logD
(`)
j (m`)

∣∣∣∣ < ε or D(`)
j (m` + 1) = NA then

5: Break
6: end if
7: end for
8: return m` and corresponding D(`)

j∈T

In Algorithm 1, for given n`, we choose m` based on
∣∣∣∣ logD

(`)
j (m`+1)−logD

(`)
j (m`)

logD
(`)
j (m`)

∣∣∣∣, which is the

relative difference of the logarithm of conditional variance D(`)
j for j ∈ T . In practice, we choose

the size of T as min{1000, n}. Note that, especially for large m`, Cov(y
N

(`)
j
,y

N
(`)
j

) can become

numerically singular, in which case we have D(`)
j = NA. But this would also imply that enlarging

the conditioning set does not result in any improvement in the conditional variance, and so the

algorithm will stop. Similarly, we also terminate the algorithm if D(`)
j is extremely small (smaller

than some specified threshold ε).

In Algorithm 2, we start with n` = 1, and compute D(`)
j∈T using Algorithm 1. To speed up the

algorithm, we double the step size of n` and compute the corresponding D(`)
j∈T until n` reaches the

data size n or the relative difference of logarithm of conditional variance for each location in T

converges.

We illustrate Algorithms 1 and 2 for a Matérn covariance in Figure 2.3. We also applied

Algorithm 2 to the toy example of n = 100 simulated observations in Figure 2.1, for which a

virtually exact approximation was obtained for n1 = m1 = 12, n2 = n = 100, and m2 = 1.
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Algorithm 2 Automatic choice of n` and m`

1: Input: C(`), n, ε, mmax, T . Default: mmax = 30
2: n` = 0, stepsize = 1, MinSum =∞
3: while n` ≤ n do
4: n` = n` + stepsize

5: [m`, D
(`)
j∈T ] = chooseM (C(`), ε,mmax, n`) (Algorithm 1)

6: if lastD(`)
j exists and ∀j ∈ T,

∣∣∣∣ logD
(`)
j −log lastD

(`)
j

log lastD
(`)
j

∣∣∣∣ < ε or D(`)
j = NA then

7: Break
8: end if
9: if

∑
j∈T D

(`)
j < MinSum then

10: MinSum =
∑

j∈T D
(`)
j

11: best_m` = m`

12: best_n` = n`
13: end if
14: lastD

(`)
j∈T = D

(`)
j∈T

15: stepsize = 2 ∗ stepsize
16: end while
17: return best_n`, and best_m`

(a) Algorithms 1 (given n1 = 63) (b) Algorithm 2

Figure 2.3: Illustration of Algorithms 1 and 2 for a Matérn covariance with effective range 1, variance 1 and smooth-
ness 3.5 on a 2D domain D = [0, 1]2 with sample size 900. For illustration purposes, we show the relative difference
of logD at three locations, and include the maxima over all locations in the last t locations in the maxmin ordering.
(a) shows that given n1 = 63, the relative difference of log conditional variances converges at m1 = 20. (b) shows
that the relative difference of log conditional variances converge at n1 = 148, which in turn results in a corresponding
m1 = 21.
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2.2.6 Sparsity and computational complexity

The matrix U is sparse and upper triangular. The columns of U corresponding to y` =

(y
(`)
1 , . . . , y

(`)
n` )> have at most m` nonzero non-diagonal entries per column, so the computational

complexity is O(n`m
3
`). Each zi may condition on m` variables at each level ` = 1, . . . , L − 1,

but the levels are independent, and so the matrix Cov(Nzi , Nzi) in B(L)
i in (2.3) is block-diagonal.

Hence, computing the columns of U corresponding to z takes at most O(n
∑L−1

`=1 m
3
`) time; how-

ever, the actual computing time can be much lower, because for any i ≤ n`, we can simply use

N
(`)
zi = {y(`)

i }.

Thus, U is highly sparse and can be calculated quickly. This often also results in a sparse

Cholesky factor V of UU>, based on the use of ordering algorithms such as approximate minimum

degree. In addition, in-fill can be avoided completely through the use of an incomplete Cholesky

algorithm without introducing significant additional error (Schäfer et al., 2020).

The complexity of each iteration in Algorithm 1 is O(tm3
`), so overall Algorithm 1 has com-

plexity O(tm4
`), which is Line 5 in Algorithm 2. Because the step size is doubled at each iteration

(Line 15), the overall computational complexity of Algorithm 2 is O(tm4
` log n).

2.3 Derivations and proofs

2.3.1 Computing U

The sparse upper triangular matrix U can be specified by the following rules:

(1) For each ` = 1, 2, ..., L − 1, denote U(`) as the block of U corresponding to level ` with size

n` × n`. For each i = 1, 2, ..., n`,

U
(`)
ii = (D

(`)
i )−1/2.

For the conditioning set of y(`)
i , suppose the s-th element in its conditioning set is y(`)

i′ , then

U
(`)
i′i = −{B(`)

i }s(D
(`)
i )−1/2.
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(2) For the data level L, first denote an n× n diagonal matrix by

U(L)(L) = diag
(

(D
(L)
1 )−1/2, (D

(L)
2 )−1/2, ..., (D(L)

n )−1/2
)
.

Next, for ` = 1, 2, ..., L − 1, denote an n` × n matrix U(L)(`) as the block of U corresponding to

{N (`)
zi , i = 1, 2, ..., n}. Then for each i, suppose the s-th element in N (`)

zi is y(`)
i′ , then

U
(L)(`)
i′i = −{B(L)

i }s(D
(L)
i )−1/2.

(3) Finally, the matrix U is

U =



U(1) U(L)(1)

U(2) U(L)(2)

. . . ...

U(L−1) U(L)(L−1)

U(L)(L)


All unmentioned entries in U are 0.

2.3.2 Prediction at unobserved locations

For simplicity in the proof, denote S as the locations corresponding to the knot set at level `.

First, we show
(
C(`)(S,S)

)−1
= U(`)U(`)>. When ` = 1, denote U =

 U1 U2

0 U3

, where

U1 = U(1) is the block of U corresponding to knot variables at level 1. Then

Ĉ−1 = UU> =

 U1 U2

0 U3


 U>1 0

U>2 U>3

 =

 U1U
>
1 + U2U

>
2 U2U

>
3

U3U
>
2 U3U

>
3

 .
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Since Ĉ−1 can also be written as Ĉ−1 =

 C(1)(S,S) A

A> B


−1

=

 E F

F> G

, by the property

of matrix inverse in block form, C(1)(S,S)−1 = E − FG−1F>. Thus we have

C(1)(S,S)−1 = U1U
>
1 + U2U

>
2 −U2U

>
3 (U3U

>
3 )−1U3U

>
2 = U1U

>
1 = U(1)U(1)>.

For any ` > 1, similar results hold: C(`)(S,S)−1 = U(`)U(`)>.

Using Algorithm 2 and achieving a KL divergence of (almost) zero, the MSV approximation based

on the knot set y` at level ` is (almost) exact, and so we assume that all information about the

process at level ` is captured by knot set y`. Then, the posterior mean at an unobserved location s0

can be computed as

E(y(`)(s0)|z) =E
(
E(y(`)(s0)|y`, z)|z

)
= E

(
E(y(`)(s0)|y`)|z

)
=C(`)(s0,S)

(
C(`)(S,S)

)−1
E(y`|z)

=C(`)(s0,S)U(`)U(`)>H`µ.
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The posterior variance can be computed as

var(y(`)(s0)|z)

=E
(
var(y(`)(s0)|y`, z)|z

)
+ var

(
E(y(`)(s0)|y`, z)|z

)
=E

(
var(y(`)(s0)|y`)|z

)
+ var

(
E(y(`)(s0)|y`)|z

)
=E

(
C(`)(s0, s0)− C(`)(s0,S)

(
C(`)(S,S)

)−1
C(`)(S, s0)|z

)
+ var

(
C(`)(s0,S)

(
C(`)(S,S)

)−1
y`|z

)
=C(`)(s0, s0)− C(`)(s0,S)

(
C(`)(S,S)

)−1
C(`)(S, s0)

+ C(`)(s0,S)
(
C(`)(S,S)

)−1
var(y`|z)

(
C(`)(S,S)

)−1
C(`)(s0,S)>

=C(`)(s0, s0)− C(`)(s0,S)U(`)U(`)>C(`)(S, s0)

+ C(`)(s0,S)U(`)U(`)>ΣH`
U(`)U(`)>C(`)(s0,S)>.

2.3.3 Proof of proposition

Proposition 2. For a polynomial y(`)(s) = p(s)>β as a function of spatial location s with p

coefficients β ∼ Np(0,Σβ), the corresponding covariance function C(`)(si, sj) = p(si)
>Σβp(sj)

can be captured exactly by setting the knot and conditioning set to be any distinct p locations.

Proof of Proposition 2. Denote any p distinct locations as {s1, s2, ..., sp}. For polynomial y(s) =

p(s)>β with β ∼ Np(0,Σβ), the system of equations {p(s1)>β = y(s1),p(s2)>β = y(s2), ...,

p(sp)
>β = y(sp),p(s)>β = y(s)} is equivalent to the system of equations {p(s1)>β = y(s1),

p(s2)>β = y(s2), ...,p(sp)
>β = y(sp)}, thus P (y(s)|y(s1), y(s2), ..., y(sp)) = 1. Then the exact

distribution for y = (y(s1), y(s2), ..., y(sn)) is

f(y) =
n∏
i=1

f(y(si)|y(shi))

=f(y(s1))f(y(s2)|y(s1))f(y(s3)|y(s1), y(s2)) · · · f(y(sp)|y(s1), y(s2), ..., y(sp−1))·
n∏

i=p+1

f(y(si)|y(s1), y(s2), ..., y(sp)),
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which equals f̂(y) in Vecchia by setting the knot and conditioning set to be {s1, s2, ..., sp}. Thus

the covariance can be captured exactly.

2.3.4 Proof of theorem

Proof of Theorem 1. The following proof is related to Guinness (2016, Thm. 1). Suppose the true

covariance is Σ0 and the approximated covariance is Σ̂. By the property of normal distribution, KL

divergence of each level ` can be written as KL
(
f(y(`))||f̂(y(`))

)
= 1

2
E
(
−(y(`))>Σ−1

0 y(`)
)

+

1
2
E
(

(y(`))>Σ̂−1y(`)
)

+ 1
2

log |Σ̂||Σ0| . Since Σ0 is the true covariance, then the first term can be written

as E
(
−(y(`))>Σ−1

0 y(`)
)

= −n. Based on MSV, we have log|Σ̂| =
∑n

i=1 logD
(`)
i . Suppose L0

is the Cholesky factor of Σ0, then E
(

(y(`))>Σ̂−1y(`)
)

= tr(UUTΣ0) =
∑

i,j(L
T
0U)2

ij = n.

Thus, the KL divergence is KL
(
f(y(`))||f̂(y(`))

)
= 1

2

(
−n+ n+

∑n
i=1 logD

(`)
i − log|Σ0|

)
=

1
2

∑n
i=1 logD

(`)
i − constant.

2.4 Numerical comparison

We considered simulated data from Gaussian processes with L = 3 levels with a Matérn,

exponential, and nugget covariance, respectively. We compared the following approaches:

• Standard: The original Vecchia approximation (Vecchia, 1988), which from our perspective is a

1-level Vecchia applied directly to the covariance function of the data, obtained by collapsing

all levels into one as in (2.1).

• Latent: The latent Vecchia approach (e.g., Datta et al., 2016; Katzfuss and Guinness, 2017) is

viewed as a 2-level Vecchia approximation, for which the second level must be Gaussian

white noise, C̃(2) = C(L), and so all other levels in our model are collapsed into one, C̃(1) =∑L−1
`=1 C

(`).

•MSV: The multi-scale Vecchia approximation proposed in previous sections, here with L = 3

levels.

As all approaches can be highly accurate but also slow for large conditioning-set sizes, we com-

pared the KL divergence to the true distribution as a function of computational complexity, which
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Figure 2.4: Comparison of KL divergence (on a log scale) against computational complexity for simulated data on a
one-dimensional domain D = [0, 10] with n = 900 from a 3-level GP with Matérn (smoothness 2.5, variance 1 and
effective range 5), exponential (variance 0.32 and effective range 2.996), and nugget (0.12) covariance.

was taken to be nm3, n(m3 + 1), and n
∑L−1

`=1 m
3
` for Standard, Latent, and MSV, respectively.

(Standard and Latent only use a single conditioning-set size m.)

Figure 2.4 shows a comparison on a one-dimensional domain with a relatively small data size

of n = 900, which allowed us to compute the exact KL divergence. MSV clearly outperformed

the other approaches, except for the very-low-complexity setting.

Then, we considered larger datasets of size n = 6,400 on a two-dimensional domain. One

simulated dataset is illustrated in Figure 2.5. Figure 2.6 shows comparisons in terms of KL diver-

gence; to avoid the high computational cost of repeatedly calculating the exact KL divergence, the

KL was approximated by subtracting each method’s loglikelihood from the loglikelihood for MSV

with the largest possible conditioning sets.

MSV was again more accurate than Latent for a given computational complexity, and both

methods strongly outperformed Standard Vecchia.

2.5 Application

We applied the MSV method to 148,309 satellite measurements of daytime land-surface tem-

peratures from Heaton et al. (2019). The observations are Level-3 data obtained on August 4,

2016, by the Terra instrument onboard the MODIS satellite, over a latitudinal range of 34.29519
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(a) Observations z (b) y(1)

(c) y(2) (d) y(3)

Figure 2.5: 2D example of (a) observations z of a three-scale process based on components with (b) Matérn (smooth-
ness 2.5, variance 1 and effective range 5), (c) exponential (variance 0.32 and effective range 3), and (d) nugget(0.12)
covariance, respectively, on a two-dimensional domain D = [0, 10]2.

(a) Matérn effective range λ1 = 5 (b) Matérn effective range λ1 = 8

Figure 2.6: Comparison of KL divergence (on a log scale) against computational complexity for simulated data on
a two-dimensional domain D = [0, 10]2 with n = 6,400 from a 3-level GP with Matérn (smoothness 2.5, variance
1, and effective range 5 in (a) and 8 in (b)), exponential (variance 0.32 and effective range 2.996), and nugget (0.12)
covariance
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to 37.06811, and a longitude range from -95.91153 to -91.28381. According to the split in Heaton

et al. (2019), the training dataset has 105,569 observations, and the testing dataset has 42,740 ob-

servations. We considered the centered data obtained by subtracting an overall (constant) mean,

which are shown in Figure 2.7. For these centered data, we assumed a 3-level Gaussian process

model with mean zero and with Matérn, exponential, and nugget covariance, with six unknown

parameters. As in Heaton et al. (2019), the parameters were estimated based on a subsample of

size 2,500, resulting in the following parameter estimates: for the Matérn level, variance 19.8656,

range 0.3573, smoothness 4.9894; for the exponential level, variance 2.6772, range 0.0665; and

nugget variance 0.6917. The resulting covariance function is illustrated in Figure 2.8.

(a) training data (b) testing data (c) full data

Figure 2.7: Centered daytime land surface temperature data measured on August 4, 2016 by the Terra instrument
onboard the MODIS satellite

For the full training dataset, we used Algorithm 2, with mmax = 30, ε = 0.001, and T = 1000

(i.e., the last 1000 locations in the maxmin ordering). The algorithm then selected m1 = 13, n1 =

16383 for level 1 (Matérn), and m2 = 23, n2 = 105569 for level 2 (exponential covariance). Given

these knots and conditioning sets, we computed the posterior predictive distribution using MSV

at each level. Note that both training data and testing data were noisy observations, with the true

underlying process are unknown. Hence, MSV predictions were obtained at both training locations

and testing locations.

The prediction results are shown in Figure 2.9. We can see that the first level (Figure 2.9(a))

captures the large-scale spatial dependence, and the second level (Figure 2.9(b)) captures smaller-
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Figure 2.8: Illustration of the first two levels of the new estimated 3-level covariance function as a function of distance.
The original exponential covariance (black curve) was estimated in Heaton et al. (2019), with an estimated variance of
16.40771 and a range of 4/3.

(a) prediction at level 1 (b) prediction at level 2 (c) prediction level 1 + level 2

Figure 2.9: MSV predictions for MODIS temperature data

scale spatial dependence. The overall predicted values (i.e., level 1 plus level 2) given in Figure

2.9(c) is very close to the full original observations in Figure 2.7(c).

As the dataset considered here is the same one used for the comparison study of many recent

approaches for analyzing large spatial dataset in Heaton et al. (2019), we conducted a comparison

between our MSV prediction accuracy on the test data and the top six methods’ accuracy studied

in Heaton et al. (2019). We considered mean absolute error (MAE) and root mean squared error

(RMSE). The results, given in Table 2.1, indicate that the multi-level approach (MSV) was highly

competitive with the leading existing methods in Heaton et al. (2019).
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Method MAE RMSE

MSV 1.11 1.42
LatticeKrig 1.22 1.68
MRA 1.33 1.85
NNGP 1.21 1.64
Partition 1.41 1.80
SPDE 1.10 1.53
Periodic Embedding 1.29 1.79

Table 2.1: Comparison of prediction accuracy scores for MSV and top methods from Heaton et al. (2019) on the
MODIS temperature data

2.6 Discussion

We proposed a multi-scale Vecchia (MSV) approximation of Gaussian processes for analysis

of the multi-scale phenomena. Our MSV method can tailor a suitable Vecchia approximation to

the process acting at each underlying scale. The increasingly small scales of spatial variation can

be captured by increasingly large sets of variables, and then an accurate approximation of the spa-

tial dependence is obtained from very large to very fine scales. We conducted inference using

the MSV method, explored approximation properties, and provided an algorithm for automatic

choice of the number of knot variables and the conditioning set size at each level. We compared

our method to existing variants of the Vecchia approximation using simulated data. In an appli-

cation to MODIS daytime land-surface temperature data, our multi-scale method exhibited highly

competitive performance relative to a large set of existing approaches for analyzing large spatial

datasets in Heaton et al. (2019). Our method also leads to nice visualizations of the different scales,

which can be highly useful in many scientific contexts.

Our algorithm for determining tuning parameters for the Vecchia approximations at different

levels or scales is also applicable and useful for single-level (Vecchia, 1988) or two-level (Katzfuss

and Guinness, 2017) Vecchia approximations. While we have assumed here for simplicity that the

data are obtained as an unweighted sum of the latent processes at the different scales, extending our

methodology to observations that are modeled as (different) linear combinations of the individual
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scales (including some with zero weight) is straightforward. Our method could also be combined

with compositional kernel search (Duvenaud et al., 2013), which expresses the covariance function

or kernel of a GP as a sum of kernels, which are obtained using a greedy search over sums and

products of a number of base kernels.
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3. LOCALLY ANISOTROPIC COVARIANCE FUNCTIONS ON THE SPHERE

3.1 Introduction

Traditionally, geostatistical analysis relied on approximating small or regional spatial domains

as flat, as subsets of R2. However, as satellites have enabled the collection of global data, there is

an increased need for covariance functions that are valid on spheres. Thus, our focus here is on

spatial data observed on the unit 2-sphere, S = {s̃ ∈ R3 : ‖s̃‖ = 1}.

For processes on a sphere S, two different measures of distance are commonly used. The most

natural distance is great-arc (or great-circle) distance, which measures the distance “going along

the surface of the sphere.” In contrast, chordal distance or Euclidean distance “pierces through the

sphere.” The relationship between chordal distance and great-arc distance on S is given by,

ch = 2 sin(ga/2), (3.1)

where ga is the great-arc distance between two locations on S, and ch is the corresponding chordal

(or Euclidean) distance. Thus, any function of chordal distance is also a function of great-circle

distance, and vice versa.

It is not trivial to build great-arc-distance-based covariance functions on the sphere because of

the curvature of S (e.g., Jones, 1963). Most well-known classes of covariance functions are valid

(i.e., positive definite) only when used with Euclidean (or Mahalanobis) distance on Rd, for some

(or all) d ≥ 1. They are not guaranteed to be valid when used with great-arc distance (e.g. Gneiting,

2013). For example, the Matérn correlation is only valid with great-arc distance for smoothness

up to 0.5 (i.e., for ν ≤ 0.5). Some valid covariance functions based on great-circle distance were

proposed by Das (2000) in closed form, but it is difficult to use these covariance functions in most

applications due to unrealistic smoothness assumptions (Stein, 1999).

Much of the work on covariance functions with great-arc distance has focused on isotropic

covariance functions. Huang et al. (2011) summarize the validity of commonly used covariance
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and variogram functions on the sphere. Gneiting (2013) further developed characterizations and

constructions of isotropic positive-definite functions on the sphere, and proved that under a natural

support condition, many valid isotropic functions in R3 allow for the replacement of the chordal

distance by the great-arc distance on the sphere. Guinness and Fuentes (2016) study properties of

isotropic covariance functions on the sphere. Another class of literature is devoted to deriving new

covariance functions on sphere, including stationary and isotropic covariance matrix structures

of Gaussian vector random fields on the sphere by Ma (2012, 2015), and parametric isotropic

variogram matrix models on the sphere by Du et al. (2013).

Current approaches to modeling nonstationary, anisotropic processes on a sphere are reviewed

in Jeong et al. (2017), including the differential operator approach (Jun and Stein, 2007, 2008; Jun,

2014), spherical harmonic representation (Stein et al., 2007), stochastic partial differential equa-

tions (Lindgren et al., 2011), kernel convolution (Heaton et al., 2014), and multi-step spectrum

(Castruccio et al., 2013; Castruccio and Genton, 2014, 2016). Hitczenko and Stein (2012) investi-

gate some properties of a class of anisotropic processes that are invariant to shifts in longitude on

spheres.

We consider here using Euclidean distance and restrict a valid covariance function in R3 to

S according to Yaglom (1987). This is guaranteed to be valid, in that we know the covariance

function is valid for points in R3, it just so “happens” that all locations now fall onto the surface of

our sphere within this space. In addition, results based on chordal and great-arc distance are often

indistinguishable (Guinness and Fuentes, 2016). This makes intuitive sense because sin(x) ≈ x

for small x, and so for two points on the sphere the covariance is either (close to) zero (if the points

are far apart) or the two points have approximately equal chordal distance and great-arc distance

as in (3.1) (if they are close together). Matérn functions based on chordal distance also have the

expected differentiability properties (Guinness and Fuentes, 2016).

We develop nonstationary, locally anisotropic covariance functions on the sphere based on the

locally anisotropic covariance functions for Euclidean space proposed in Paciorek and Schervish

(2006). Similar ideas were previously considered in Katzfuss (2011) and Knapp (2012). We de-
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scribe how to construct these anisotropic covariance functions in general, and explore properties of

the parameterization. The approach is very general, and we provide theorems and conditions such

that the resulting correlation function is isotropic or axially symmetric, for sensible parameteriza-

tions in specific applications. For modern large datasets on the sphere, the Vecchia approximation

(Vecchia, 1988) is applied to achieve computational feasibility and conduct Bayesian parameter

inference.

The remainder of this chapter is organized as follows. Section 3.2 reviews a nonstationary

correlation function on Rd. In Section 3.3, we construct nonstationary covariance functions on

the sphere, and provide theorems and conditions for important special cases such as isotropy and

axial symmetry. Section 3.4 reviews the Vecchia approximation for large spatial datasets. Section

3.5 contains proofs of theorems. In Section 3.6, we illustrate Gaussian process realizations using

various covariance functions constructed by our method, and provide comparisons in numerical

studies. We conclude in Section 3.7.

3.2 Review: A nonstationary correlation function on Rd

Paciorek and Schervish (2006) showed that for any isotropic correlation function ρ that is

positive definite on Rd for all d ∈ N, a valid nonstationary correlation function with spatially

varying anisotropy can be obtained as

ρNS(si, sj) = c(si, sj)ρ
(
q(si, sj)

)
,

where

q(si, sj) = {2(si − sj)
′(Σ(si) + Σ(sj))

−1(si − sj)}1/2 (3.2)

is the Mahalanobis distance with respect to the averaged matrix (Σ(si) + Σ(sj))/2,

c(si, sj) := |Σ(si)|1/4|Σ(sj)|1/4|(Σ(si) + Σ(sj))/2|−1/2, (3.3)

is a normalization term, and Σ(s) for each s is a positive definite d× d matrix that determines the
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local rotation and scaling of the space at location s.

3.3 Classes of nonstationary covariance functions on the sphere

3.3.1 Construction of the covariance functions

We now develop nonstationary covariance functions on the sphere obtained by simply using

a valid nonstationary covariance function (in R3) based on Paciorek and Schervish (2006). Since

we choose the chordal distance as a measurement of distance, the first step is to convert longitude-

latitude coordinates to (x, y, z)-coordinates of a 3-dimensional Cartesian coordinate system. For

a given unit sphere S, the origin (0, 0, 0) of a Cartesian coordinate system is determined by the

centre of S. The direction of the x-axis is defined by a vector, which is from the sphere’s center

to the (0◦ longitude, 0◦ latitude) point. The direction of the y-axis is defined by a vector, which

is from the sphere’s center to the (90◦ longitude, 0◦ latitude) point. Then the z-axis is determined

accordingly by x-axis and y-axis. For any point s = (l, L) with longitude l and latitude L on S, the

corresponding coordinates s̃ = (x, y, z) in the Cartesian coordinate system are

x = cos(L) cos(l),

y = cos(L) sin(l),

z = sin(L).

For example, (0◦ longitude, 0◦ latitude) on the sphere is converted to (1, 0, 0) in the Cartesian

coordinate system. We illustrate the coordinate conversion in Figure 3.1.

To construct a nonstationary correlation function based on Section 3.2, we need to determine

the anisotropy matrix Σ(·). It can be parameterized by d scaling parameters and d − 1 rotation

parameters for d-dimensional Euclidean space (see, e.g., Banerjee et al., 2008). Given the con-

straint that S is a 2-dimensional surface embedded in R3, we prefer to use only two local scaling

parameters and one local rotation parameter to parameterize Σ(·).

We first parameterize Σ(·) at the Euclidean coordinate c̃ := (1, 0, 0), then extend it to Σ(·) at

any point. Since the sphere is locally flat around c̃ = (1, 0, 0) (spherical coordinates c = (0, 0))
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Figure 3.1: A part of a unit sphere displayed in the Cartesian coordinate system. The centre of the sphere is located at
the origin (0, 0, 0).

and parallel to the y − z plane, the correlation length in the y-direction and z-direction can be

specified by two scaling parameters, γ1(c) > 0 and γ2(c) > 0, respectively (illustrated in Figure

3.2). Denote γ(c) := (γ1(c), γ2(c))′, then the local scaling matrix at point c̃ is

D(γ(c)) := diag{1, γ1(c), γ2(c)}.

Figure 3.2: Illustration of the scaling and rotation parameters at point c̃
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To describe the rotation at c̃, we define a rotation parameter κ(c) ∈ [0, π/2) and a rotation matrix

Rx(κ(c)) by

Rx(κ(c)) :=


1 0 0

0 cosκ(c) − sinκ(c)

0 sinκ(c) cosκ(c)

 ,

which rotates the (y, z)-coordinate system at c̃ about the x-axis. With the scaling parameters γ(c)

and rotation parameter κ(c), the local anisotropy matrix at c̃ (corresponding spherical coordinates

c) is then given by,

Σ̃(c) := Rx(κ(c))D(γ(c))Rx(κ(c))′. (3.4)

Based on Σ̃(c), we now derive the anisotropy matrix at any point on the sphere. Define a

rotation matrixRy(θ), which rotates a vector in R3 by angle θ about the y-axis, by

Ry(θ) :=


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,

and a rotation matrixRz(θ), which rotates a vector in R3 by angle θ about the z-axis, by

Rz(θ) :=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

Then for any spherical location s = (l, L) (with corresponding Euclidean coordinates s̃), we rotate

s̃ about the y-axis and z-axis to the point c̃ by writing

c̃ = Ry(−L)Rz(−l)s̃.

.
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Let γ1(s) and γ2(s) be the scaling parameters at s, and κ(s) be the rotation parameter. To derive

a quadratic form as in (3.2), we combine these rotation matrices with the anisotropy matrix for c

in (3.4), and obtain

Σ̃(s) := Rx(κ(s))D(γ(s))Rx(κ(s))′,

c̃′Σ̃(s)−1c̃ =
(
Ry(−L)Rz(−l) s̃

)′
Σ̃(s)−1

(
Ry(−L)Rz(−l) s̃

)
=: s̃′Σ(s)−1s̃,

where

Σ(s) := Rz(l)Ry(L)Σ̃(s)Ry(L)′Rz(l)
′

is an anisotropy matrix for spherical domains (i.e., whenD ⊆ S) and can be used in (3.2) and (3.3)

to construct a nonstationary correlation function of the form

ρNS(si, sj) = c(si, sj)ρ
(
q(si, sj)

)
, (3.5)

where ρ is an isotropic correlation function that is positive definite in Rd for all d = 1, 2, . . ..

Then a valid covariance function is obtained by setting

C(si, sj) = σ(si)σ(sj)ρNS(si, sj),

where the standard deviation σ(·) > 0 can also vary over space.

3.3.2 Properties

While the approach above is very general, we will typically need a sensible parameterization

(i.e., special case) of this approach for specific applications. It is relatively straightforward to

obtain such special cases to achieve desired effects. We illustrate this here by providing conditions

such that the resulting correlation function is isotropic or axially symmetric.

An isotropic covariance function is a function of only distance between two locations. Due to

the one-to-one relationship between great-arc and chordal distance in (3.1), isotropic covariance

functions on the sphere are isotropic with respect to chordal and great-arc distance. By adding
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constraints to the scaling parameters γ1(s) and γ2(s), the correlation function ρNS in (3.5) can be

forced to be isotropic on the sphere:

Theorem 3. The correlation function ρNS in (3.5) is isotropic (i.e., depends only on distance) if

γ1(s) = γ2(s) ≡ γ is constant.

All proofs can be found in Section 3.5.

A subclass of covariance functions that is specifically useful for spherical domains is that of

axially symmetric covariance functions (e.g., Stein et al., 2007), which for a pair of locations on

the sphere, depend on both latitudes explicitly, but only depend on the longitudes through the

difference between them:

Definition 4. A covariance function C : S × S → R is called axially symmetric if there exists a

function CA such that

C(si, sj) = CA(li − lj, Li, Lj),

where si = (li, Li) and sj = (lj, Lj) with longitudes li and lj and latitudes Li and Lj on S.

Under certain constraints, our general nonstationary correlation function can be forced to be

axially symmetric:

Theorem 5. The correlation function ρNS in (3.5) is axially symmetric if κ(s) ≡ 0 and γ1(·) and

γ2(·) are functions of latitude only (i.e., they do not depend on longitude).

Different versions and special cases of our general nonstationary covariance function are il-

lustrated in Figure 3.3, with different settings for the scaling parameters γ1(s) and γ2(s) and the

rotation parameter κ(s).

3.3.3 Example: A nonstationary Matérn covariance on the sphere

The Matérn correlation function is highly popular in geospatial analysis. It is valid in Rd for

any d ∈ N and given by

Mν(r) = 21−ν

Γ(ν)
rνKν(r), r ≥ 0,
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(a) Isotropy (γ1 = γ2) (b) “Anisotropy” (κ = 0; γ1 > γ2)

(c) Axial symmetry (d) General nonstationarity with spatially vary-
ing rotation κ(·)

Figure 3.3: Illustration of special cases of the nonstationary class of correlation functions in (3.5) via correlation
contours for a set of locations on the sphere.

where Kν(·) is the modified Bessel function of order ν > 0.

Following the construction approach shown in Section 3.3.1, a nonstationary locally anisotropic

Matérn covariance function is

MNS(si, sj) = σ(si)σ(sj)c(si, sj)M(ν(si)+ν(sj))/2(q(si, sj)), (3.6)

where, in addition to the standard deviation σ(·) > 0, the local scaling and rotation through a d×d

positive definite anisotropy matrix Σ(·), the smoothness parameter ν(·) can also vary over space

(here, over the sphere) as shown in Stein (2005).

Guinness and Fuentes (2016) showed that the local smoothness properties of the Matérn co-

variance are preserved when restricting a process on Euclidean space to the sphere; for example, a
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Figure 3.4: A realization from Gaussian process with mean zero and the nonstationary Matérn covariance on sphere,
on a regular grid (longitude × latitude) of size 50 × 50 = 2,500. We used smoothness ν(s) ≡ 0.5, Matérn range =
0.668, rotation parameter κ(s) ≡ 0, and scaling parameters γ1(s) = exp(−0.7 + 0.35 sin(s1) + 0.44s2), γ2(s) =
exp(−1.2 + 0.25 sin(s1) + 0.44s2), where s1 and s2 denote longitude and latitude in radians, respectively.

Gaussian process (GP) with covariance functionMNS has m mean square derivatives at s if and

only if ν(s) > m.

A realization of a GP with the resulting nonstationary Matérn covariance is illustrated in in

Figure 3.4.

3.4 Vecchia approximation

For many modern large datasets, including on the sphere, direct application of Gaussian pro-

cesses is too computationally expensive, as the cost scales cubically in the number of observed

data. The approximation proposed by Vecchia (1988) has become highly popular in recent years,

which has low computational complexity and reduces the memory burden, but still presents high

accuracy according to the KL divergence from the true process (e.g., Guinness, 2018; Katzfuss and

Guinness, 2017). In Vecchia approximation, the high-dimensional joint distribution of the entire

data vector is substituted by a product of univariate conditional distributions. The conditioning

set for each univariate conditional distribution consists of a small subset of previously ordered

variables.

Consider a Gaussian process y(·) ∼ GP (0, C) on a spatial region D with covariance function
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C, define the history set of i as h(i) = {1, 2, ..., i − 1} and h(1) = ∅, then yh(i) = (y1, ..., yi−1)′.

The exact distribution of the observed vector y = (y1, y2, ..., yn) is

f(y) =
n∏
i=1

f(yi|yh(i)).

The history set h(i) is substituted by a subset g(i) ⊂ h(i) in Vecchia approximation, where g(i)

consists of the indices of the nearest m data points to the ith data. Then the approximated joint

density is obtained by:

f̂(y) =
n∏
i=1

f(yi|yg(i)). (3.7)

There are various choices in ordering locations and the conditioning sets (Katzfuss and Guin-

ness, 2017). Considering the approximation accuracy, we will use nearest-neighbor conditioning

and maximum-minimum-distance ordering (Guinness, 2018) in the numerical studies, both based

on the Euclidean locations. Correlation-based ordering and conditioning that takes into account the

potential nonstationary structure (e.g., Katzfuss et al., 2020b) will be considered as future work.

Aside from likelihood-based parameter inference using the Vecchia likelihood in (3.7), the Vecchia

approximation can also be applied to the joint distribution of GP at prediction locations and ob-

served locations, in order to obtain highly accurate approximations of the (joint) posterior predic-

tive distributions (e.g., Katzfuss et al., 2020a). When data is noisy, the Vecchia approximation can

be applied to latent (noise-free) GP as before, and then combined with an incomplete-Cholesky de-

composition of the posterior precision matrix to preserve a low computational complexity (Schäfer

et al., 2020). We implemented Vecchia inference based on our new covariance function by extend-

ing the R package GPvecchia (Katzfuss et al., 2020c).
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3.5 Proofs of theorems

Proof of Theorem 3. If γ1(s) = γ2(s) ≡ γ is constant, then

D(γ) =


1 0 0

0 γ 0

0 0 γ

 ,

Σ̃(s) = Rx(κ(s))D(γ(s))Rx(κ(s))′

=


1 0 0

0 cosκ(s) − sinκ(s)

0 sinκ(s) cosκ(s)




1 0 0

0 γ 0

0 0 γ




1 0 0

0 cosκ(s) sinκ(s)

0 − sinκ(s) cosκ(s)



=


1 0 0

0 γ 0

0 0 γ

 .

To compute Σ(s) = Rz(s1)Ry(s2)Σ̃(s)Ry(s2)′Rz(s1)′, we first compute

A := Rz(s1)Ry(s2) =


cos(s1) − sin(s1) 0

sin(s1) cos(s1) 0

0 0 1




cos(s2) 0 sin(s2)

0 1 0

− sin(s2) 0 cos(s2)



=


cos(s1) cos(s2) − sin(s1) cos(s1) sin(s2)

sin(s1) cos(s2) cos(s1) sin(s1) sin(s2)

− sin(s2) 0 cos(s2)

 ,
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Σ(s) = AΣ̃(s)A′ =


(1− γ)x2 + γ (1− γ)xy (1− γ)xz

(1− γ)xy (1− γ)y2 + γ (1− γ)yz

(1− γ)xz (1− γ)yz (1− γ)z2 + γ



= (1− γ)


x

y

z


(
x y z

)
+ γI3

= (1− γ)̃ss̃′ + γI3,

where x = cos(s2) cos(s1), y = cos(s2) sin(s1), z = sin(s2) are the coordinates of a Cartesian

coordinate system. Then

|Σ(s)| = det{(1− γ) s̃s̃′ + γI3}

= γ3 · det
{

I3 +
1− γ
γ

s̃s̃′
}

= γ3 · det
{

1 +
1− γ
γ

s̃′s̃

}
= γ3 · det

{
1 +

1− γ
γ
· 1
}

= γ2

is a constant with respect to s. And for i 6= j,

(Σ(si) + Σ(sj))
−1 =

(
(1− γ)̃sis̃

′
i + (1− γ)̃sjs̃

′
j + 2γI3

)−1
.

WLOG, we ignore the constant coefficients inside the inverse, and then

(Σ(si) + Σ(sj))
−1 =

(
s̃is̃
′
i + s̃js̃

′
j + I3

)−1

= (̃sjs̃
′
j + I3)−1 − (̃sjs̃

′
j + I3)−1s̃i[1 + s̃′i(̃sjs̃

′
j + I3)−1s̃i]

−1s̃′i(̃sjs̃
′
j + I3)−1.
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Let B := (̃sjs̃
′
j + I3)−1, and so

(Σ(si) + Σ(sj))
−1 = B−Bs̃i(1 + s̃′iBs̃i)

−1s̃′iB = B− Bs̃is̃
′
iB

1 + s̃′iBs̃i
,

q2(si, sj) ∝ (̃si − s̃j)
′(Σ(si) + Σ(sj))

−1(̃si − s̃j)

∝ (̃si − s̃j)
′B(̃si − s̃j)−

1

1 + s̃′iBs̃i
(̃si − s̃j)

′Bs̃is̃
′
iB(̃si − s̃j).

So computation of q(si, sj) only involves terms s̃′iBs̃i, s̃′jBs̃j and s̃′iBs̃j. Because

B = (̃sjs̃
′
j + I3)−1 = I3 − s̃j(1 + s̃′js̃j)

−1s̃′j = I3 −
1

2
s̃js̃
′
j,

we have

s̃′iBs̃i = s̃′is̃i −
1

2
(̃s′is̃j)

2 = 1− 1

2
(̃s′is̃j)

2

s̃′jBs̃j = s̃′js̃j −
1

2
(̃s′js̃j)

2 = 1− 1

2
=

1

2

s̃′iBs̃j = s̃′is̃j −
1

2
(̃s′is̃j)(̃s

′
js̃j) = s̃′is̃j −

1

2
s̃′is̃j =

1

2
s̃′is̃j.

Further,

s̃′is̃j =
[
(̃si − s̃j)

′(̃si − s̃j)− s̃′is̃i − s̃′js̃j
]
/2 = [(̃si − s̃j)

′(̃si − s̃j)− 2] /2.
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So q(si, sj) just relies on (̃si − s̃j)
′(̃si − s̃j). For the normalization term c(si, sj), since we have

proved that |Σ(si)| = |Σ(sj)| ≡ γ2,

c(si, sj) = |Σ(si)|1/4|Σ(sj)|1/4|(Σ(si) + Σ(sj))/2|−1/2

∝ |(Σ(si) + Σ(sj))
−1|1/2

∝
(
|(Σ(si) + Σ(sj))

−1| · |(̃si − s̃j)
′(̃si − s̃j)|/[(̃si − s̃j)

′(̃si − s̃j)]
)1/2

∝
(
|(Σ(si) + Σ(sj))

−1| · det{(̃si − s̃j)(̃si − s̃j)
′}/[(̃si − s̃j)

′(̃si − s̃j)]
)1/2

∝
(
det
{

(Σ(si) + Σ(sj))
−1(̃si − s̃j)(̃si − s̃j)

′} /[(̃si − s̃j)
′(̃si − s̃j)]

)1/2

∝
(
det
{

(̃si − s̃j)
′(Σ(si) + Σ(sj))

−1(̃si − s̃j)
}
/[(̃si − s̃j)

′(̃si − s̃j)]
)1/2

∝
{

q2(si, sj)

(̃si − s̃j)′(̃si − s̃j)

}1/2

.

(3.8)

We have proved that q(si, sj) just depends on (̃si − s̃j)
′(̃si − s̃j), so c(si, sj) also relies on the

distance (̃si − s̃j)
′(̃si − s̃j) only.

Overall, we can show

ρNS(si, sj) = c(si, sj)ρ(q(si, sj))

only depends on the distance (̃si − s̃j)
′(̃si − s̃j), where ρ(q) is a valid isotropic correlation function.

So ρNS(si, sj) is isotropic.

Proof of Theorem 5. If κ(s) ≡ 0 and γ1(·), γ2(·) depend on s2 only, thenRx(κ(s)) ≡ Rx(0) = I3.
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Then

Σ̃(s) =D(γ(s))

=


1 0 0

0 γ1(s2) 0

0 0 γ2(s2)



=


1 0 0

0 γ1(s2) 0

0 0 γ1(s2)

+


0 0 0

0 0 0

0 0 γ2(s2)− γ1(s2)

 .

Due to the results in Theorem 3, we have

Σ(s) =Rz(s1)Ry(s2)Σ̃(s)Ry(s2)′Rz(s1)′

=(1− γ1(s2))̃ss̃′ + γ1(s2)I3 + (γ2(s2)− γ1(s2))̃s∗(̃s∗)′,

where

s̃∗ =


cos(s1) sin(s2)

sin(s1) sin(s2)

cos(s2)

 , (̃s∗)′(̃s∗) = 1.
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Thus

|Σ(s)| = det{(1− γ1(s2)) s̃s̃′ + γ1(s2)I3 + (γ2(s2)− γ1(s2))̃s∗(̃s∗)′}

= γ1(s2)3 · det
{

1− γ1(s2)

γ1(s2)
s̃s̃′ +

γ2(s2)− γ1(s2)

γ1(s2)
s̃∗(̃s∗)′ + I3

}

= γ1(s2)3 · det


(

1−γ1(s2)
γ1(s2)

s̃ γ2(s2)−γ1(s2)
γ1(s2)

s̃∗
) s̃′

(̃s∗)′

+ I3


= γ1(s2)3 · det


 s̃′

(̃s∗)′

( 1−γ1(s2)
γ1(s2)

s̃ γ2(s2)−γ1(s2)
γ1(s2)

s̃∗
)

+ I2


= γ1(s2)3 ·

∣∣∣∣∣∣∣
1−γ1(s2)
γ1(s2)

+ 1 2 sin(s2) cos(s2)

2 sin(s2) cos(s2) γ2(s2)−γ1(s2)
γ1(s2)

+ 1

∣∣∣∣∣∣∣
= γ1(s2)γ2(s2)− 4γ1(s2)3 sin2(s2) cos2(s2)

only depend on s2. WLOG, ignore γ1(s2), γ2(s2) again (they only depends on s2),

(Σ(si) + Σ(sj))
−1

=
[
s̃is̃
′
i + s̃∗i (̃s

∗
i )
′ + s̃js̃

′
j + s̃∗j (̃s

∗
j )
′ + I3

]−1

=

( s̃i s̃∗i

) s̃′i

(̃s∗i )
′

+

(
s̃j s̃∗j

) s̃′j

(̃s∗j )
′

+ I3


−1

=V−1 −V−1

(
s̃i s̃∗i

)I2 +

 s̃′i

(̃s∗i )
′

V−1

(
s̃i s̃∗i

)
−1 s̃′i

(̃s∗i )
′

V−1

=V−1 −V−1

(
s̃i s̃∗i

)I2 +

 s̃′iV
−1s̃i s̃′iV

−1s̃∗i

(̃s∗i )
′V−1s̃i (̃s∗i )

′V−1s̃∗i



−1 s̃′i

(̃s∗i )
′

V−1,

where

V =

(
s̃j s̃∗j

) s̃′j

(̃s∗j )
′

+ I3.
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Then

q2(si, sj) ∝(̃si − s̃j)
′(Σ(si) + Σ(sj))

−1(̃si − s̃j)

∝(̃si − s̃j)
′V−1(̃si − s̃j)− (̃si − s̃j)

′V−1

(
s̃i s̃∗i

)
·I2 +

 s̃′iV
−1s̃i s̃′iV

−1s̃∗i

(̃s∗i )
′V−1s̃i (̃s∗i )

′V−1s̃∗i



−1 s̃′i

(̃s∗i )
′

V−1(̃si − s̃j).

Because

V−1 = I3 −
(

s̃j s̃∗j

)I2 +

 1 s̃′js̃
∗
j

(̃sj)
′s̃j 1



−1 s̃′j

(̃s∗j )
′


= I3 −

1

4− (̃s′js̃
∗
j )

2

(
s̃j s̃∗j

)
 2 −s̃′js̃

∗
j

−(̃sj)
′s̃j 2



−1 s̃′j

(̃s∗j )
′

 ,
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we can figure out that the computation of q2(si, sj) only involves the following types of terms



s̃′is̃i =1

s̃′is̃
∗
i =s̃′i ·

[
(tan(si2))̃si +

(
0, 0, cos(si2)− sin2(si2)

cos(si2)

)′]

= tan(si2) + sin(si2)

[
cos(si2)− sin2(si2)

cos(si2)

]
(̃s∗i )

′s̃∗i =1

(̃s∗i )
′s̃∗j =

[
(tan(si2))̃si +

(
0, 0, cos(si2)− sin2(si2)

cos(si2)

)′]′
·[

(tan(sj2))̃sj +

(
0, 0, cos(sj2)− sin2(sj2)

cos(sj2)

)′]

= tan(si2) tan(sj2)(̃s′is̃j) + tan(si2) sin(si2)

[
cos(sj2)− sin2(sj2)

cos(sj2)

]
+ tan(sj2) sin(sj2)

[
cos(si2)− sin2(si2)

cos(si2)

]
+

[
cos(si2)− sin2(si2)

cos(si2)

] [
cos(sj2)− sin2(sj2)

cos(sj2)

]
s̃′is̃
∗
j = tan(sj2)(̃s′is̃j) + sin(si2)

[
cos(sj2)− sin2(sj2)

cos(sj2)

]
s̃′js̃
∗
i = tan(si2)(̃s′is̃j) + sin(sj2)

[
cos(si2)− sin2(si2)

cos(si2)

]
s̃′is̃j = [(̃si − s̃j)

′(̃si − s̃j)− 2] /2.

We can change the index i to j for the first 3 terms and they are still valid. Thus these values only

depend on si2, sj2 and s̃′is̃j, and s̃′is̃j can be written in terms of (̃si − s̃j)
′(̃si − s̃j). The computation

of q2(si, sj) only relies on the distance (̃si − s̃j)
′(̃si − s̃j) and the longitudes si2, sj2. Similar to

(3.8) in the proof of Theorem 3, we can also show that c(si, sj) is a function of (̃si − s̃j)
′(̃si − s̃j),

si2 and sj2. Then ρNS(si, sj) = c(si, sj)ρ(q(si, sj)) := ρA(̃si − s̃j, si2, sj2), so it is axially sym-

metric.
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3.6 Numerical study

We performed simulations to demonstrate how Gaussian processes with various covariance

functions actually behave on the sphere. We started with the regular Matérn covariance function

(smoothness 0.5, range 0.668, and a nugget effect 0.052), and then constructed covariance functions

based on (3.6) on the sphere. The scaling parameters γ1(s) and γ2(s) were given by

γ1(s) = exp(β10 + β11 sin(s1) + β12s2), (3.9)

γ2(s) = exp(β20 + β21 sin(s1) + β22s2), (3.10)

where s = (s1, s2) with longitude s1 and latitude s2.

We considered three different “true” covariance functions:

• Isotropy: According to Theorem 3, the correlation function ρNS in (3.5) is isotropic if γ1(s) =

γ2(s) ≡ γ is constant, and so we set the parameters in (3.9)–(3.10) as

β1 = (β10, β11, β12) = (−0.5, 0, 0),

β2 = (β20, β21, β22) = (−0.5, 0, 0).

• Axial symmetry: According to Theorem 5, the correlation function ρNS in (3.5) is axially sym-

metric if κ(s) ≡ 0 and γ1(·) and γ2(·) are functions of latitude only, and so we set the

parameters as

β1 = (β10, β11, β12) = (−0.5, 0, 1.44),

β2 = (β20, β21, β22) = (−3.2, 0, 1.44).

• General nonstationarity: A more general nonstationary covariance function can be obtained

by setting

κ = 0.8,
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β1 = (β10, β11, β12) = (−0.5,−1.2, 1.44),

β2 = (β20, β21, β22) = (−3.2,−0.3, 1.44).

We simulated data from a GP with each of the three true covariance functions. Each of the

datasets was then analyzed under each of the three assumptions:

• Isotropy: unknown β10, β20, with fixed β11 = β12 = β21 = β22 = κ = 0.

• Axial symmetry: unknown β10, β12, β20, β22, with fixed β11 = β21 = κ = 0.

• General nonstationarity: unknown β10, β11, β12, β20, β21, β22, κ.

In each setting, we assumed independent normal priors for the unknown parameters with mean

0 and standard deviation 6 (for the rotation parameter κ, we assumed a uniform prior). The vari-

ances and smoothness were known. We used an adaptive MCMC algorithm (Vihola, 2012) for

Bayesian inference based on the Vecchia approximation in (3.7) of the likelihood, using maximum-

minimum-distance ordering, nearest-neighbor conditioning, and conditioning-set size 10. We also

used the Vecchia approximation to calculate the posterior predictive distribution at test locations,

with the unknown parameters integrated out based on the MCMC samples.

For each setting, we simulated GP realizations at 2,500 gridded locations on the sphere, which

were split into a training and a test set, under two different scenarios: (a) simple random sampling

of 30% of realizations as test data; (b) designating all realizations within a randomly selected test

region as test data. The test region was generated by randomly sampling a location on the sphere

as the center of a rectangle, assuming the rectangle has length 2.5 (across longitude in radians) and

width 1 (across latitude in radians). The resulting test region contains 340 grid points. To measure

the prediction performance, we compared the mean absolute error (MAE), root mean squared error

(RMSE), the continuous ranked probability score (CRPS) (e.g., Gneiting and Katzfuss, 2014), and

the energy score among the different models. MAE and RMSE consider only point predictions,

CRPS evaluates marginal predictive distributions, and the energy score evaluates the joint predic-

tive distribution for the entire test set. Examples of predictions in the case of isotropic, axially
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(a) True model - Isotropic

Random Region
MAE RMSE CRPS Energy MAE RMSE CRPS Energy

Isotropic 0.2569 0.3303 0.1842 6.4160 0.5727 0.6921 0.4034 8.8546
Axially symmetric 0.2566 0.3302 0.1835 6.4427 0.5816 0.7018 0.4079 9.1464
Nonstationary 0.2568 0.3302 0.1842 6.4231 0.5726 0.6917 0.3987 8.9940

(b) True model - Axially symmetric

Random Region
MAE RMSE CRPS Energy MAE RMSE CRPS Energy

Isotropic 0.3407 0.4507 0.2455 8.7584 0.7317 0.8726 0.4952 10.9912
Axially symmetric 0.3390 0.4473 0.2401 8.6879 0.6869 0.8223 0.4863 10.9177
Nonstationary 0.3387 0.4470 0.2415 8.7104 0.6976 0.8319 0.4831 10.7633

(c) True model - Nonstationary

Random Region
MAE RMSE CRPS Energy MAE RMSE CRPS Energy

Isotropic 0.3975 0.5259 0.2863 10.1948 0.8655 1.0174 0.5928 13.1071
Axially symmetric 0.3940 0.5211 0.2817 10.1614 0.7593 0.9018 0.5266 11.6615
Nonstationary 0.3719 0.4890 0.2669 9.4416 0.6581 0.7958 0.4586 10.2956

Table 3.1: Prediction scores, each averaged over 10 simulated datasets, for three different true models and three
different assumed models. Test sets were selected via simple random sampling (Random) or based on a randomly
selected test region (Region).

symmetric, and general nonstationary data are demonstrated in Figure 3.5, Figure 3.6, and Figure

3.7, respectively.

The prediction scores are summarized in Table 3.1. For isotropic dataset, the scores were fairly

similar under the assumptions of isotropic, axially symmetric, and nonstationary structure. The

difference became more pronounced when the true data were from the axially symmetric model.

Furthermore, in the modeling of more general nonstationary data, using the correct nonstationary

structure considerably outperformed the other two covariance structures. Typically, the differences

were more pronounced for test regions then for random test sets, as expected.
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(a) True data (isotropic) (b) Isotropic

(c) Axially symmetric (d) General nonstationary

(e) True data (isotropic) (f) Isotropic

(g) Axially symmetric (h) General nonstationary

Figure 3.5: For data simulated using an isotropic covariance function, illustration of predictions under three different
assumptions (isotropic, axially symmetric, and general nonstationary) based on randomly selected test data (a, b, c, d)
and for a test region (black lines in (e, f, g, h))
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(a) True data (axially symmetric) (b) Isotropic

(c) Axially symmetric (d) General nonstationary

(e) True data (axially symmetric) (f) Isotropic

(g) Axially symmetric (h) General nonstationary

Figure 3.6: For data simulated using an axially symmetric covariance function, illustration of predictions under three
different assumptions (isotropic, axially symmetric, and general nonstationary) based on randomly selected test data
(a, b, c, d) and for a test region (black lines in (e, f, g, h))
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(a) True data (general nonstationary) (b) Isotropic

(c) Axially symmetric (d) General nonstationary

(e) True data (general nonstationary) (f) Isotropic

(g) Axially symmetric (h) General nonstationary

Figure 3.7: For data simulated using a general nonstationary covariance function, illustration of predictions under
three different assumptions (isotropic, axially symmetric, and general nonstationary) based on randomly selected test
data (a, b, c, d) and for a test region (black lines in (e, f, g, h))
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3.7 Discussion

We proposed a general approach for constructing nonstationary, locally anisotropic covariance

functions on the sphere based on covariance functions for Euclidean space. We described how

to adapt a valid nonstationary covariance function in R3 to the sphere S, and explored properties

of the parameterization. By adding certain constraints to the scaling and rotation parameters, the

resulting covariance function is isotropic or axially symmetric, which are widely used assumptions

in geospatial analysis of global data. For large datasets on the sphere, direct application of Gaus-

sian process is too computationally expensive, and so we applied the Vecchia approximation to

achieve fast inference. We illustrated realizations obtained from Gaussian processes with various

covariance functions constructed by our method, and provided numerical comparisons.
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4. CONCLUSIONS

In this dissertation, we presented fast inference methods for multi-scale and global spatial pro-

cesses. The proposed multi-scale Vecchia (MSV) approximation of Gaussian processes exhibited

highly competitive performance in the temperature-data application relative to a large set of exist-

ing approaches for analyzing large spatial data. The visualizations of the different scales from our

MSV method can be useful in many scientific contexts. For global spatial analysis, we developed

a general approach for constructing nonstationary, locally anisotropic covariance functions on the

sphere based on covariance functions for Euclidean space. By adding certain constraints to the

scaling and rotation parameters, the resulting covariance functions are isotropic or axially sym-

metric, which are widely used assumptions in geospatial analysis of global data. Combining this

approach with the Vecchia approximation, our method can achieve fast inference for large global

spatial data.
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