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ABSTRACT

This thesis deals with two closely related problems about Eisenstein series on varying levels,

both of which stem from the Random Wave Conjecture.

The first problem is quantum unique ergodicity for Eisenstein series in the level aspect. With

a fixed nice test function, we see equidistribution as the level grows. A new feature for the level

aspect is a term of the logarithmic derivative of the Dirichlet L-function, which connects quantum

unique ergodicity and Siegel zeroes. Going one step further, we let the test function change with

the growth of level in the manner analogous to the recently known results on quantum unique

ergodicity on shrinking sets, and surprisingly, we observe some distorting behavior.

The second problem is bounding the regularized L4-norm for newform Eisenstein series. We

manage to express the fourth moment as an average of L-functions.
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1. INTRODUCTION

1.1 The Random Wave Conjecture

1.1.1 Automorphic forms

Let N ∈ Z>0 and χ be a Dirichlet character of modulus N . Let k ∈ Z≥0, and

Γ0(N) :=

{(
a b

c d

)∣∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 ( mod N)

}

denote the Hecke congruence subgroup of SL2(Z) of level N .

Let f be a real analytic functions from H := {(x, y)|x, y ∈ R, y > 0} to C. We call f an

automorphic form of level N , weight k and central character χ, if for any γ ∈ Γ0(N), there is

f |γ(z) := f(γz) = χ(γ)jk(γ)f(z) for all z ∈ H, where

( a bc d )z =
az + b

cz + d

χ(( a bc d )) := χ(d)

j(( a bc d )) :=
cz + d

|cz + d|
.

It is well-known that:

• The above linear fractional transformation makes a group action on H, the group action being

defined by f |γ1γ2= (f |γ1)|γ2 for any γ1, γ2 ∈ Γ0(N);

• There is χ(−1) = (−1)k; and

• The action of χ is a group homomorphism from Γ0(N) to
(
Z/NZ

)×
.

The group action can be extended to P1(Q), the set of cusps. We often employ the letters

a, b, c,..., to denote cusps. We say two cusps a and b are equivalent on level N and write a
N
= b, if

1



there exists γ ∈ Γ0(N) such that a = γb. That is to say, equivalence classes of cusps on level N

are the Γ0(N)-orbits in P1(Q).

By [34, Proposition 2.6], a full set of inequivalent cusps on level N can be written as

C(N) := {a| a = u
f
, f | N, u = minR(v), v ∈ (Z/NZ)×}, with

R(v) := {u ≡ v mod (f,N/f), u ≥ 1}.
(1.1)

We write L2(Γ0(N), k, χ) for the L2-completion of all L2-integrable automorphic forms of

level N , weight k and central character χ, with respect to the inner product

〈f, g〉
N

:=

∫
Γ0(N)\H

ykf(z)g(z)dµ, (1.2)

where f, g are automorphic forms of the same level and central character, and dµ = dµ(z) :=

y−2dxdy is the Poincaré measure.

A Jordan measurable subset F
N

of H is called a fundamental domain of Γ0(N)\H if ∪γγFN =

H and Γ0(N)z1 ∩ Γ0(N)z2 = ∅ for any distinct z1, z2 ∈ FN . Specifically, when N = 1, we have

the standard fundamental domain:

D = F1 :=
{

(x, y) ∈ H
∣∣∣− 1

2
< x ≤ 1

2
, x2 + y2 > 1

}⋃{
(cos θ, sin θ)

∣∣∣π
2
≤ θ ≤ 2π

3

}
.

For convenience, we always assume, unless otherwise specified, that F
N

is a tessellation ofD, i.e.,

F
N

=
⋃
γ

γD,

where there are only ν(N) = [SL2(Z) : Γ0(N)] different γ in the union.

Now consider the Beltrami-Laplace operator

∆k = y2(
∂2

∂x2
+

∂2

∂y2
)− iky ∂

∂x
.

2



Besides the constant functions, the operator has two types of eigenfunctions in L2(Γ0(N), k, χ).

• Hecke-Maass forms uj of discrete eigenvalues λ2
j + 1

4
for 0 ≤ λ1 ≤ λ2 ≤ ...;

• Eisenstein series Ea(z,
1
2

+ iT, χ) attached to cusps of eigenvalues 1
4

+ T 2 for T ∈ R.

For general manifolds, we can similarly define the Laplacian. The discrete spectra, namely the

family of eigenfunctions associated to isolated eigenvalues of increasing absolute values, often

exist and are studied for their limiting behavior. The Random Wave Conjecture is one of them.

1.1.2 The Random Wave Conjecture for automorphic forms

Conceived by M. Berry [9], the Random Wave Conjecture (RWC for short) brings light to the

randomness of high energy eigenstates on tori. Speaking in the language of automorphic forms,

it is a heuristic that a Maass newform of large eigenvalue should behave like a real random wave,

i.e., a random linear combination of some other Maass newforms of eigenvalues in a short window

around the aforementioned large eigenvalue, where all Maass forms are L2-renormalized.1 For

automorphic forms defined on arithmetic modular surfaces, if L2-normalized, the Maass forms

should also behave like random waves in the eigenvalue limit, as is evinced by the experimental

observations of D. Hejhal and B. Recknar [27] on SL2(Z)\H.2

The number theoretical version of this physical conjecture is still missing, and we walk around

by studying its indications. Two of the manifestations of RWCs are discussed in this thesis, namely

the Quantum Unique Ergodicity Conjecture and the Gaussian Moments Conjecture.

1.1.3 Benjamini-Schramm convergence

As is mentioned above, RWC is studied by number theorists without a formal definition of

it. Nevertheless, it can be formulated via Benjamini-Schramm (BS for short) convergence by M.

Abért, N. Bergeron and E. Le Masson in a recent preprint [2]. We give a brief introduction about

the language, and how it is relevant to the topics in this thesis.

1Holomorphic cusp forms should behave like a complex random wave in the weight aspect. See [12] for the
comparison.

2For general discrete groups Γ, however, Milićević [56] showed that on CM-points random wave functions and the
large eigenvalue Hecke-Maass forms behaves quite differently in terms of∞-norms.
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With Petersson inner product defined by (1.2), L2(F
N

) makes a Hilbert space. Given a se-

quence {gj} in this space, we say the sequence converges weakly to, or has weak* limit, g ∈

L2(F
N

), if

lim
j→∞
〈gj, f〉N = 〈g, f〉

N
,

for all f ∈ L2(F
N

). Note N remains fixed in this process.

For varying N , the weak* convergence can be generalized to the BS convergence, which is

inspired by a program in graph theory that was made popular by I. Benjamini and O. Schramm.3

Consider M, the space of pointed, connected, complete Riemannian manifolds of dimension

2, up to pointed isometries. For convenience of discussion in this thesis, let us further assume

M only contains manifolds modeled on the symmetric space SL2(R)/SO2(1). On M, M. Abért

and I. Biringer defined the smooth topology, where two pointed manifolds (M, p) and (N , q) are

smoothly close if there are compact subsets ofM andN containing large radius neighborhoods of

the base points that are diffeomorphic via a map that is C∞-close to an isometry.4 Together with

the Chabauty topology on closed subgroups of SL2(R), the smooth topology induces the product

topology in the space of the decorated closed subgroup

D̂ :=
{

(H, g)
∣∣∣H closed subgroup of SL2(R), g smooth and H − invariant

}
.

For eachM = Γ\H ∈M and Γ-invariant function g :M→ R, consider the map

SL2(R)/Γ −→ D̂

γΓ 7 −→ (γΓγ−1, g|γ−1),

where g|γ−1(z) = g(γ−1z). Denote by µΓ,g the push forward of the invariant probability measure

on H. Now let gn : H→ R be Γ0(n)-invariant for n ≥ 1, and call the sequence (Fn , gn) convergent

3See [7] for a reference.
4See Sec. A1 of [3].
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in the sense of Benjamini-Schramm, if the sequence µ
Γ0(n),gn converges in the weak* topology of

the set of probability measures on D̂.

An equivalent description of BS convergence is as follows due to M. Abért, et al. in Corollary

3.8 of [1]. Recall d(z, w) is the hyperbolic distance between z and w.

Theorem 1. The sequence (Fn, gn) is Benjamini-Schramm convergent if and only if for anyR > 0,

lim
n→∞

Vol({z ∈ Fn : InjRadFn(z) < R})
Vol(Fn)

= 0,

where

InjRadFn(z) := min
γ∈Γ0(n)−{±Id}

d(z, γz)

is the injectivity radius of Fn at z.

In this language, M. Frączyk and J. Raimbault [24] showed F
N

converges as N → ∞ in

the Benjamini-Schramm sense. On the other hand, BS convergence also contains the scenario of

weak convergence for sequences of automorphic functions defined on the same manifold. Thus

BS convergence provides a unified language for the level and eigenvalue aspects of automorphic

forms.

We write the (real) isotropic monochromatic Gaussian random wave with parameter λ on

SL2(R)/SO2(1) to be the Gaussian random field Fλ from SL2(R)/SO2(1) to R if its co-variance

kernel E[Fλ(x), Fλ(y)] equals ϕλ(x−1y) for any x, y ∈ SL2(R)/SO2(1), where ϕλ(·) is the only

spherical function of eigenvalue λ such that ϕλ(±Id) = 1 given by Harish-Chandra in [26].

Now we can formulate RWC in terms of BS convergence.

Conjecture 1 (Conj. 1, [2]). Let M be a compact, negatively curved manifold, and Mr be the

rescaling ofM by r > 0, where the only change is the metric inM gets multiplied by r inMr.

Let {uj}j be an orthonormal basis of L2(M) that consists of eigenvectors for the Laplacian, with

increasing eigenvalues t2j . Then (Mtj , uj) converges to the isotropic monochromatic Gaussian
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random Euclidean wave with eigenvalue 1, in the Benjamini-Schramm sense, as j →∞.

1.2 Equidistribution of Automorphic Forms in H2

1.2.1 The Quantum Ergodicity Theorem

For each of the sequence {uj} of L2-normalized Maass forms of level 1 and weight 0, we call

µj := |uj(z)|2dµ

the mass of uj . It is obvious that µj is a probability measure. For the sequence {µj}j of probability

measures, there are two fundamental questions to answer.

Question 1. What are the weak-* limits of the subsequences of {µj}j , and for each subsequential

limit, what is the density of the respective maximal subsequence?

Given a topological space X , we call a probability distribution ν on X scar strongly at a point

s ∈ X such that the restricted distribution of any neighborhood of s is not the zero-distribution. By

definition, ν scars strongly at the points of discontinuity of its cumulative probability function, if

any. On both quantum cat maps [23] and star graphs [8], some subsequences of the eigenfunctions

of Laplacian are proved to scar strongly.

Question 2. Does any of the subsequential weak-* limit of the aforementioned sequence scar

strongly?

These two questions are "almost done" in the sense of the following conclusion. Note that a

measure cannot both equidistribute and scar strongly.

Theorem 2 (The Quantum Ergodicity Theorem, [65][17][75][76]). AssumeX =M is a manifold.

If the geodesic flow on S∗(M), the cotangent bundle ofM, is ergodic, then there exist density-one

subsequences of {µj}j having the uniform distribution as its weak* limit.

Note that one sufficient condition forM to have ergodic geodesic flow is thatM has negative

Gaussian curvature. Furthermore, since the hyperbolic plane H has curvature −1, one can expect

to go further with the arithmetic properties of automorphic forms of discrete groups like SL2(Z).
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1.2.2 The Quantum Unique Ergodicity Conjecture

Completely answering Questions 1 and 2, E. Lindenstrauss and K. Soundararajan proved the

following theorem.

Theorem 3 (Quantum Unique Ergodicity Theorem on SL2(Z), [47][67]). Let {µj}j≥1 be the full

sequence of L2-normalized Maass forms on D. Then {µj}j≥1 has weak-* limit 3
π
dµ.

On the other hand, however, quantifying the rate of distribution is still yet to be done. In gen-

eral, the period integral formula of T. Watson5 converts the triple product integrals to special values

of automorphic L-functions, for which any non-trivial (called the subconvexity) bound implies a

bound for the error term. However, the subconvexity bounds leading to quantum unique ergodicity

are only established for few cases, including holomorphic CM forms by P. Sarnak [64] and prim-

itive dihedral cusp forms, due to V. Blomer [10] and J. Liu and Y. Ye [49]. 6 The main reason for

the lack of an unconditional quantum unique ergodicity for arbitrary Maass forms is that we do not

have factorization for the central value of the Rankin-Selberg L-function L(1
2
, f ⊗Adu), where u

is a cusp form, and f is a Maass form or Eisenstein series.

In general, Z. Rudnick and P. Sarnak have the Quantum Unique Ergodicity Conjecture which

still remains open. Note that Maass forms can be defined on general manifolds.

Conjecture 2 (The Quantum Unique Ergodicity Conjecture, [63][64]). For any manifold M of

negative Gaussian curvature, assume {u} be the sequence of L2-normalized

• Maass forms of increasing eigenvalues on generalM; or

• holomorphic modular forms of increasing weights on F
N

.

Then {|u|2dµ} converges to the uniform distribution weakly.

Note that in some respects, the two kinds of cusp forms behave similarly, and hence the proof

for one sometimes could be modified into the other without too much work. One similarity is
5The formula was later generalized by A. Ichino [33], known as the Ichino-Watson Formula.
6See [50][46] for the fixation of a gap of it. P. Humphries and R. Khan [31] bounded the quantum variance.
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as follows: if u is a holomorphic form of weight k, then yk/2u is a Laplacian eigenfunction of

eigenvalue ik−1
2

and it satisfies Γ0(N)-automorphy. When M = D, the weight aspect of the

conjecture is proven by R. Holowinsky and K. Soundararajan [28].

It is also known in [2, Theorem 4] that Conjecture 1 implies the Quantum Unique Ergodicity

Conjecture in the eigenvalue aspect. On the other hand, we know that Conjecture 1 is stated

in a unified language for both the eigenvalue and the level aspects. Thus the Quantum Unique

Ergodicity conjecture in the level aspect is also interesting. The level aspect analogue of Conjecture

2 was raised by E. Kowalski, Ph. Michel and J. VanderKam.

Conjecture 3 (The level aspect Quantum Unique Ergodicity for holomorphic forms, [43]). Let

k ≥ 2 be even, and {f (N)}
N

be the sequence of L2-normalized holomorphic modular newforms of

weight k and level N . As N →∞, we have

|f (N)|2dµ ∼ ν(N)dµ.

Here ν(N) = [SL2(Z) : Γ0(N)] = N
∏

p|N(1 − 1/p) = N1+o(1) is the group index. The

conjecture is proved by P. Nelson, A. Pitale and A. Saha [58][60], who indeed proved a stronger

form by obtaining the asymptotic formula hybrid in k and N . Furthermore, they also gave an

estimation for the error terms.

1.2.3 Equidistribution of Eisenstein Series

Almost immediately following the announcement of Conjecture 2, the family of classical

Eisenstein series was proved to have the mass equidistribution property.

Theorem 4 (Quantum Unique Ergodicity for classical Eisenstein series, [52]). Fix compact set B

of D. As t→∞, we have

∫
B

|E(z,
1

2
+ it)|2dµ ∼ VolB

〈1, 1〉1
log

(
1

4
+ t2

)
dµ.

The error term in this approximation was later bounded by M. Young [72], where the corre-
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sponding Rankin-Selberg L-function factorizes as

L(
1

2
+ it, f)L(

1

2
− it, f),

where f traversing the orthonormal basis of L2(D).

In the phase space, D. Jacobson [38] proved a similar result for the PSL(2,Z)\PSL(2,R)-

Eisenstein series. Moreover, considering an analogue of Conjecture 3, S. Koyama proved the

oldform Eisenstein series on growing levels.

Theorem 5 ([45][39]). Let N traverse all prime numbers, {E(N)
∞ (z, 1

2
+ iT )}

N
be the sequence of

Eisenstein series of weight 0, level N and trivial central character, and φ0 be a smooth, compactly

supported and SL2(Z)-invariant test function. Then as N →∞, we have

∫
F
N

|E(N)

∞ (z,
1

2
+ iT )|2φ(z)dµ ∼ 2

〈1, φ0〉1
〈1, 1〉1

logN.

A generalization to Theorem 5 makes the first result of this thesis. Throughout this thesis we

let θ be so that the p-th Hecke eigenvalues of Maass newforms are uniformly bounded by pθ +p−θ.

The value θ = 7/64 is allowable by [40].

Theorem 6. LetN > 1, q | N , χ be a Dirichlet character of modulus q, andE = E(N)
a (z, 1

2
+iT, χ)

be the Eisenstein series of weight 0, level N and central character χ. Keep all of the rest notations

the same as in Theorem 5. We have

〈|E|2, φ0〉N =
〈1, φ0〉1
〈1, 1〉1

(
2 logN + 4<L

′

L
(1 + 2iT, ψ)

)
+OT,φ0

((log logN)5) +OT (N−
1
8

+ε(N
q

)−
1
8

+θ‖φ0‖2), (1.3)

where ψ is a primitive Dirichlet character mod q totally determined by χ and a.

The same is true if the Eisenstein series is of weight 1, as we later prove in Section 3.7.2.
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According to the weight shifting operators introduced in [18, Sec 4], our theorem can be ex-

tended to the cases of arbitrary positive integer weight. For the similarity of the arguments of the

two cases, we write out the proof for weight 0 and transplant the proof to the case of weight 1 by

showing how the difference affects.

1.2.4 Quantum Unique Ergodicity on Shrinking Sets

Note that most of the results in quantum unique ergodicity do not contain error term estimation.

Applying the regularization method invented by D. Zagier [74] and developed by Ph. Michel and

A. Vankatesh [53], M. Young improved Theorem 4 with a power-saving bound for the error. This

enabled him to consider a stronger version of convergence, namely quantum unique ergodicity on

shrinking sets, by allowing the test function to change.

Theorem 7 ([72]; improved in [30]). For any z0 ∈ H, let φ = φt for t > 1 be a family of test

functions that are smooth, SL2(Z)-invariant, non-negatively valued, and supported within the ball

centered at z0 of radius rt = t−
1
6

+δ for any δ > 0. Then as t→∞, we have

∫
|E(z,

1

2
+ it)|2φdµ ∼ 3

π
log

(
1

4
+ t2

)∫
φdµ,

the convergence being independent of z0.

Looking for the quantum unique ergodicity threshold of the rate of shrinkage, P. Humphries

find the Planck scale rt � t−1 should be the barrier, via arguments of the probability variance.

1.2.5 The Level Aspect Analogue of Shrinking Sets and its Limitations

For Theorem 6, we let the test function φ0 to be of level 1, while N grows. A mild gener-

alization of (1.3) is to fix a positive integer M and a test function φ = φ(M) on Y0(M), and to

confine N ≡ 0 (mod M). In analogy to Theorems in Section 1.2.4, where φ = φt is allowed to

change with the spectral parameter t, we are led to consider the much more difficult generalization

of letting φ depend on N . A natural way to do this is to let M grow with N , constrained by M |N ,

and to choose φ = φ(M) on Y0(M) depending on M . To maintain uniform analytic properties of
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the test functions φ(M) of varying levels, we often make the following system of choices.

Convention 1. Once and for all fix an SL2(Z)-invariant smooth function φ0 = φ(1) with compact

and connected support. For simplicity, suppose that the support of φ0 , when restricted to the

standard fundamental domain D of SL2(Z), is contained in its interior. Suppose that Γ0(1) =

∪ν(M)

j=1 γjΓ0(M) as a disjoint coset decomposition. For each positive integerM , choose φ(M) = φ(M)

j

to be one of the following ν(M) functions. Set φ(M)

j (γkΓ0(M)z) equal to φ0(z) if j = k, and zero

if j 6= k, where k ∈ {1, 2, ..., ν(M)}. One can interpret this definition intuitively by noting that

∪ν(M)

j=1 γjD is a fundamental domain for Y0(M), and so φ(M)

j agrees with φ0 on one translate of D

and vanishes at all others.

The system of test functions satisfying the convention has the following pleasant properties.

We have φ0 =
∑

ν(M)

j=1 φ
(M)

j , where the supports of these φ(M)

j are pairwise disjoint. Moreover, we

have
∫
Y0(M)

φ(M)

j dµ =
∫
Y0(1)

φ0dµ, for each j. Since

Vol(Supp(φ(M)))

〈1, 1〉
M

= M−1+o(1),

we intuitively see that Suppφ(M) “shrinks”, if M →∞ as N →∞.

Theorem 8. Let E be as in Theorem 6. Choose a system of test functions according to Convention

1. Then there exists E ∈ A(Y0(N)), such that |E|2−E ∈ L2(Y0(N)), and

〈|E|2−E , φ〉
N
�ε,T ,φ0

N−
1
2

+ε(N
q

)θQ(M, q)‖φ0‖2
, (1.4)

with

Q(M, q) = M
1
4 q

3
8 +M

1
2 (M, q)

1
4 q

1
4 .

Under the generalized Lindelöf hypothesis, (1.4) holds with Q(M, q) =
√
M . Finally, we have

〈E , φ〉
N

=
〈1, φ0〉1
〈1, 1〉

M

(
log

N2

M(M,N/q)
+ 4<L

′

L
(1 + 2iT, ψ)

)
+OT,φ0

((log logN)5

〈1, 1〉
M

)
+αφ, (1.5)
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where αφ is a quantity (see (3.15) for an expression) satisfying

|αφ|�φ0 ,T
(log logM)3. (1.6)

Note that if M � N
1
10
−δ, then the bound in (1.4) is better than the first displayed main term

in (1.5) of size ≈ M−1+o(1) logN . This is analogous to the power-saving error term in the QUE

problem for Eisenstein series of level 1 in the spectral aspect, as in [72].

In the level aspect, our discussion shows that QUE does not hold for all systems of test functions

constructed according to Convention 1. This is in contradiction to the claimed result of Koyama

[44, Theorem 1.3], which in our notation would correspond to N = M prime and q = 1. Recently,

Kaneko and Koyama recast [44] in [39].

1.2.6 Main term discussion

To our surprise, if we construct the system of test functions according to Convention 1, then

QUE turns out not to hold for all test functions φ = φ(M)

j , at least, if M � N δ for some δ > 0.

The problem is that for some choices of φ, the contribution of αφ to the main term is dominant

and large enough to show that QUE does not hold. In retrospect, one might expect problematic

behavior for test functions with support escaping too quickly into a cusp. This is clear in the level 1

case (in the spectral aspect), since very high in the cusp the Eisenstein series is well-approximated

by its constant term. In the level aspect, it is a bit tricky to say what it means for a test function to

have support escaping into a cusp, not least because the cusp can be changing with the level.

Since αφ is complicated, we will now discuss it in further details in a special case that simplifies

the discussion. For more details, see Section 3.5.3. Let G(z) denote the constant term in the

Laurent expansion of E(z, s) around s = 1 (see [36, (22.69)] for an expression), which is SL2(Z)-

invariant, and which satisfies G(x + iy) ∼ y for y → ∞. Let M | N be prime with M �

(logN)1+δ and χ (mod N) be primitive. Then

〈E , φ〉
N

= c0〈1, φ〉M + c1〈G, φ〉M + cM〈G|M , φ〉M , (1.7)
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where

c0 =
1

〈1, 1〉
M

(
log

N2

M
+ 4<L

′

L
(1 + 2iT, χ) +OT,φ0

(1)
)
, (1.8)

c1, cM = M−1 + O(M−2). The term c0〈1, φ〉M is the naively-expected main term. If φ = φ(M)

j is

chosen according to Convention 1, then note 〈G, φ〉
M

= 〈G, φ0〉1 , which is independent of j and

M , so the term c1〈G, φ〉M is bounded acceptably. However, the term cM〈G|M , φ〉M may be much

larger than the expected main term, as we now explain. Suppose that the restriction of φ0 to the

standard fundamental domain D for Y0(1) has support with 2 ≤ y ≤ 3 and that φ0 is non-negative.

There exists a fundamental domain FM for Y0(M) so that D ⊂ FM , and there exists a value of j

so that φ(M)

j (z) = φ0(z) for z ∈ D, and φ(M)

j (z) = 0 for z ∈ FM , z 6∈ D. For this value of j, we

have

cM〈G|M , φ〉M ≈M−1

∫ 3

2

∫ 1

0

G(Mz)φ(z)
dxdy

y2
,

which can be � 1, since G(Mz) ∼My uniformly on the region of integration (see Proposition 6).

Note that in this situation, cM〈G|M , φ〉M is much larger than c0〈1, φ〉M /M−1 logN . This choice

of φ = φ(M)

j should be interpreted as having support high in the cusp∞.

1.3 The L4-Norm Problem

1.3.1 Background

One implication of RWC is the Gaussian Moments Conjecture. For any compact Jordan-

measurable subset K of D, the conjecture says7

lim
T→∞

(VolK)−1

∫
K

∣∣∣E(z, 1
2

+ iT )

(2 log T )1/2

∣∣∣pdµ =
cp

(VolD)p/2
,

where cp is the p-th moment of the random variable of the Gaussian distribution of mean 0 and

variance 1, for all even p ≥ 2. The case p = 2 has been checked, as we can let φ be the indicator
7See Sec. 7.3 of [27].
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function of K in Theorem 4.8 For the next case p = 4, an upper bound O(T ε) was obtained due

to F. Spinu [68] and P. Humphries [30]. Conditionally on the Generalized Lindelöf Hypothesis,

J. Buttcane and R. Khan [16] proved an asymptotic formula9 for the fourth moment of dihedral

Maass forms with a power-saving bound for the error term. On the level aspect, J. Buttcane and R.

Khan [15] obtained an upper bound for holomorphic Hecke newforms.

The reason we confine the integral to a compact set is that Eisenstein series are not in L2(D),

for which we may study the truncated Eisenstein series instead. On the other hand, D. Zagier

found powerful tools in computing the regularized integrals, which seems to be a more natural

way to define moments of functions of moderate growth. To this end, G. Djanković and R. Khan

formulated Random Wave Conjecture for the regularized fourth moment of Eisenstein series, in

consistency with two special cases of the old conjecture with p = 4.10

Theorem 9. [19][20] Let ET = E(z, 1
2

+ iT ) be the classical Eisenstein series. As T → ∞, we

have

〈|E|2, |E|2〉reg =
72

π
log2 T + o(log5/3+ε). (1.9)

The Gaussian Moments Conjecture is also related to the Quantum Unique Ergodicity Conjec-

ture via the following observation, of which the L4-norm problems is a special case.

Conjecture 4. [37] Fix a geodesic ball B of D and 2 < p ≤ ∞. Assume {u} is the same as in

Conjecture 2. Then when λu →∞, there is

(∫
B

|u(z)|pdµ
)1/p

�p,B,ε λ
ε
u

(∫
B

|u(z)|2dµ
)1/2

.

8Although φ is assumed to be smooth, we can let it be arbitrarily close to the indicator function.
9Also see [51] for an upper bound of it.

10See Conj 1.2 of [19]. The conjecture is later proved in [20].
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1.3.2 The regularized L4-norm of newform Eisenstein series

The second main result of this thesis is a level aspect analogue of the computation for the

regularized integral in [19]. Recall that ν(N) = [SL2(Z) : Γ0(N)] = N1+o(1).

Theorem 10. Let N > 1, and E = Ea(z, s, χ) be a Γ0(N)-Eisenstein series attached to an

Atkin-Lehner cusp a, and of nebentypus χ primitive mod N . As N →∞, we have

〈|Ea(·,
1

2
+ iT, χ)|2, |Ea(·,

1

2
+ iT, χ)|2〉reg = I1 + I2,

where (writing O(N) for an orthonormal basis of the space of level N Maass forms)

ν(N)I1 =
∑

u∈O(N)

cosh(πtu)

2

Λ2(1
2
, u)|Λ(1

2
+ 2iT, u⊗ ψ)|2

|Λ(1 + 2iT, ψ)|2
+ continuous spectrum,

for some primitive ψ = ψ(χ, a) mod N to be defined in the next section, and

ν(N)I2 =
24

π
log2N +O(

L′′

L
(1 + 2iT, ψ)) +O(logN log logN

L′

L
(1 + 2iT, ψ)).

The multiplication by ν(N) to I1 and I2 is under consideration of L4-renormalization. That

is to say, if we regard Ea to be "L2-normalized" (they do have comparable behaviors with the

classical Eisenstein series E(z, 1
2

+ it) in the t-aspect, see [52] for a QUE comparison), then we

should expect
∫
|Ea|4 to have size � ν(N)−1. Assuming GRH, we can see ν(N)I2 ∼ 24

π
log2N ,

which is in agreement with [19] in the spectral aspect.
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2. EISENSTEIN SERIES

2.1 Cusps and their widths

It is well-known that Γ0(N) = {( a bc d ) ∈ SL2(Z)| c ≡ 0 (mod N)} acts on H via ( a bc d )z 7→
az+b
cz+d

. In this section we introduce some background knowledge of cusps on Γ0(N). We counsel

experienced readers to skip this section except for Section 2.1.3 on relative width, and refer other

readers to [60, Section 3.4] and [34, Sections 2.1–2.4] for more details.

2.1.1 Cusps

The group action can be extended to P1(Q), the set of cusps. We often employ the letters

a, b, c,..., to denote cusps. We say two cusps a and b are equivalent on level N and write a
N
= b, if

there exists γ ∈ Γ0(N) such that a = γb. That is to say, equivalence classes of cusps on level N

are the Γ0(N)-orbits in P1(Q).

Recall (1.1) that a full set of inequivalent cusps on level N can be written as

C(N) := {a| a = u
f
, f | N, u = minR(N, f, v), v ∈ (Z/NZ)×}, with

R(N, f, v) := {u ≡ vMod(f,N/f), u ≥ 1}.
(2.1)

Throughout this paper we write ua and fa such that a N
= ua

fa
∈ C(N), if necessary. Also, if we

write u
f
∈ C(N), then we always assume that the fraction is in the lowest terms.

Let ΓNa be the stabilizer of a in Γ0(N). It is clear that for all N , ΓN∞ = {±( 1 n
0 1 )|n ∈ Z}, so we

may write Γ∞ as well. In addition, there are scaling matrices σa,N ∈ SL2(R) such that σa,N∞ = a,

and σ−1
a,NΓNa σa,N = Γ∞. If the level is clear, we may suppress N in these symbols.

2.1.2 (Absolute) width

If τ ∈ Γ = SL2(Z) and τ∞ = a, then τ−1ΓNa τ is a subgroup of Γ∞. Since τΓ∞τ
−1 = Γ1

a, we

have [Γ∞ : τ−1ΓNa τ ] = [Γ1
a : ΓNa ], which does not depend on the choice of τ . Define this index as

the (absolute) width of a on level N and write it W 1
N(a).
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Convention 1. When there is no ambiguity on levels, we may write the (absolute) width of a by

Wa as well. Width of a cusp is a common terminology, so we add “absolute” only if it is necessary

to distinguish it from relative width introduced in the following subsection.

Remark 1. For future usage we cite [34, (2.31)] to note that for fixed γa ∈ SL2(Z) sending∞ to

a, γa
(
W

1/2
a 0

0 W
−1/2
a

)
serves as a scaling matrix σa = σa,N .

Lemma 1. [34, (2.29)] For each a = u
f
∈ C(N) in (1.1), we have

Wa =
N

(N, f 2)
.

Let M | N , and a = u
f
∈ C(N). Then by [41, Proposition 3.1], for all M | N , a is equivalent

to a cusp of the form u′

(M,f)
∈ C(M), with width

W 1
M(a) =

M

(M, (M, f)2)
.

2.1.3 Relative width

Now we fix Γ0(N) but let Γ = Γ0(M) for any M | N instead. We define the index [ΓMa : ΓNa ]

as the relative width of a ∈ C(N) from level M , and denote it by WM
N (a). Note that the absolute

width is a special case of the relative width when M = 1.

Remark 2. From the definition we can also see if a N
= b, then WM

N (a) = WM
N (b). This results

from the fact Γ∗b = τΓ∗aτ
−1, for any τ ∈ Γ0(N) with τa = b and ∗ = M,N .

The following lemma follows directly from the definition.

Lemma 2. For each cusp a on Y0(N), we have

WM
N (a) =

W 1
N(a)

W 1
M(a)

.
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Lemma 3. For each cusps a and b on Y0(N), we have

#{γ ∈ Γ0(N)\Γ| γb N
= a} =


WM
N (a) if a M

= b;

0 otherwise.

Proof. If a is not Γ-equivalent with b, then the set is empty. Now assume a
M
= b with τa = b for

some τ ∈ Γ. We have the following bijective map

{γ ∈ Γ0(N)\Γ| γb N
= a} → {γ ∈ Γ0(N)\Γ| γa N

= a}

γ 7→ γτ

so it suffices to compute #Sa, where Sa = {γ ∈ Γ0(N)\Γ|γa N
= a}. Note that ΓMa acts transitively

on Sa (on the right) with stabilizer ΓNa . Hence, by the Orbit-Stabilizer Theorem (see e.g., [4,

Chapter 5, Proposition (7.2)]), we have #Sa = [ΓMa : ΓNa ] = WM
N (a).

2.1.4 Singularity

Given an even Dirichlet character χ (mod N), i.e., χ(−1) = 1, we define

χ : Γ0(N)→ C∗

by χ(γ) = χ(dγ), where dγ stands for the lower-right entry of γ. It is easy to see that χ preserves

multiplication of the two sides, and hence it is a group homomorphism.

Convention 2. We write χ1 ' χ2 if they are induced by the same primitive character.

We say a is singular for χ, if the kernel of χ contains ΓNa . If χ1 ' χ2, then the singularity of a

for χ1 is equivalent to that for χ2. For fixed χ (mod N), singularity and non-singularity of a cusp

extends to its Γ0(N)-equivalence class, for the same reason as for Remark 2.

Convention 3. For χ (mod N), we write the subset of singular cusps for χ by Cχ(N). Note

Cχ(N) = C(N) if χ is trivial.
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We have a criterion for singularity from [73, Lemma 5.4]. Recall that q is the conductor of χ.

Proposition 1. The cusp u
f
∈ C(N) is singular for χ if and only if q | [f, N

f
].

One interesting case is when χ is primitive (mod N). By Proposition 1, only cusps a = u
f
∈

C(N) with (f,N/f) = 1 are singular for χ. Moreover, from (1.1) we can see u = 1. These cusps

are known as the Atkin-Lehner cusps.

2.2 Eisenstein series of weight zero

This section deals with knowledge about Eisenstein series of weight zero. We suggest advanced

readers skip this section with a glance on Propositions 4 and 5 on descriptions of their cuspidal

behaviors. Good references include [DS, Chapter 4] and [34].

2.2.1 Two kinds of Eisenstein series

On level N , there are Eisenstein series attached to cusps and Eisenstein series attached to

characters.

The Eisenstein series of central character χ (mod N) attached to the cusp a is

Ea(z, s, χ) =
∑

γ∈Γa\Γ0(N)

χ(γ)(Imσ−1
a γz)s.

To make this well-defined, we require χ to be even, and a to be singular for χ. The definition does

not depend on the choice of σa. Since Eγa = χ(γ)Ea for γ ∈ Γ0(N), we can always represent Ea

in terms of Ea′ with a′ ∈ Cχ(N) (see Convention 3 for definition and Remark 3 for practice).

For Dirichlet characters χi (mod qi) with i = 1, 2, having the same parity, the Eisenstein series

attached to χ1, χ2 is

Eχ1,χ2(z, s) =
1

2

∑
(c,d)=1

(q2y)sχ1(c)χ2(d)

|cq2z + d|2s
.

If both χ1 and χ2 are primitive, Eχ1,χ2 is a newform Eisenstein series of level q1q2.

Both types of Eisenstein series converge absolutely for <s > 1, with meromorphic continua-
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tions to C.

Convention 4. When χ = χ0,N , we write Ea(z, s) in short of Ea(z, s, χ). If N = 1, then the

classical Eisenstein series E is the only one in both types, so we write it in place of E1,1. If we

want to emphasize Ea is an Eisenstein series of level N , then we may write E(N)
a instead.

These two kinds of Eisenstein series are closely connected. Recently, the second author [73]

found the change-of-basis formulas between them, which is also done by Booker, Lee, and Ström-

bergsson [14].

Theorem 11. [73, Theorem 6.1] Keeping notations as above and 3, and denoting the Euler totient

function by ϕ, we have for a = u
f
∈ Cχ(N)

Ea(z, s, χ) =
W−s

a f−s

ϕ((f, N
f

))

∑
q1|Nf

∑
q2|f

∑∗

χ1,χ2

χ2(−u)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

∑
a|f

∑
b|N
f

µ(a)µ(b)χ1(b)χ2(a)

(ab)s
Eχ1,χ2

( bf
aq2

z, s
)
,

where the asterisked sum is over all primitive χi (mod qi), i = 1, 2, satisfying χ1χ2 ' χ.

Remark 3. In [73], the cusp choice a = 1
uf

was made, and we transfer it for convenience. It is

remarked in [73, Section 5.2], that for all u
f
∈ C(N), there is γ ∈ Γ0(N) such that γ u

f
= 1

uf
, and

has lower-right entry equal to u (mod N). Then we have

Eu
f

= χ(u)E 1
uf
.

We are interested in two special cases: when f = N , and when q = N .

Since∞ N
= 1

N
via γ = ( 1 0

N 1 ), we have E∞ = E 1
N

. By Theorem 11, we have

E∞(z, s, χ) = N−s
L(2s, ψ)

L(2s, χ)

∑
a|N

µ(a)ψ(a)

as
E1,ψ

(N
aq
z, s
)
. (2.2)
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If χ is primitive mod N , then only Atkin-Lehner cusps are singular for it, as is discussed in

Section 2.1.4. Assuming a = 1
f
∈ Cχ(N), we have

Ea(z, s, χ) = N−sEχ1,χ2(z, s), (2.3)

where χ1 is primitive mod N
f

and χ2 is primitive mod f , with χ = χ1χ2.

Now we see why Theorem 6 implies QUE for all newform Eisenstein series of squarefree

levels. If N is squarefree, then by definition, a newform Eisenstein series of level N is Eχ1,χ2(z, s)

for some primitive χi mod qi, i = 1, 2, with q1q2 = N and (q1, q2) = 1. Then (2.3) says E =

N sE 1
q2

(z, s, χ1χ2), to which Theorem 6 applies.

In addition, if we relax the squarefree assumption on N and instead assume E = Eχ1,χ2 is a

newform Eisenstein series of level N and primitive central character χ ' χ1χ2 (mod N), for χi

mod qi, i = 1, 2, then since q1q2 = N , we must have (q1, q2) = 1. The above argument again

shows QUE for E = N sE 1
q2

(z, s, χ1χ2).

2.2.2 Fourier expansions

One merit of Eisenstein series attached to primitive characters is their explicit Fourier expan-

sions with multiplicative Fourier coefficients. Define the completed Eisenstein series by

E∗χ1,χ2
(z, s) := θχ1,χ2(s)Eχ1,χ2(z, s),

with χi primitive mod qi, i = 1, 2, and

θχ1,χ2(s) =
qs2π

−s

τ(χ2)
Γ(s)L(2s, χ1χ2). (2.4)

Then we have

E∗χ1,χ2
(z, s) = e∗χ1,χ2

(y, s) + 2
√
y
∑
n6=0

λχ1,χ2(n, s)e(nx)Ks− 1
2
(2π|n|y), (2.5)

21



where

e∗χ1,χ2
(y, s) = δq1=1θ1,χ2(s)(q2y)s + δq2=1θ1,χ1(1− s)(q1y)1−s,

λχ1,χ2(n, s) = χ2( n
|n|)
∑

ab=|n| χ1(a)χ2(b)( b
a
)s−

1
2 , τ(χ) is the Gauss sum of χ, and Kα is the K-

Bessel function of order α ∈ C, so that the series in (2.5) decays exponentially, as y → ∞. See

Huxley [32], and Knightly and Li [42, Section 5.6] for more details.

Remark 4. From the definition we see that when s = 1
2

+ iT , |λχ1,χ2(n, s)|≤ d(n)� nε.

Remark 5. If χ is primitive mod q for q > 1, then Eχ,χ(z, s) is regular at s = 1.

Remark 6. The newform Eisenstein series are eigenfunctions of all the Hecke operators Tn, and

indeed TnEχ1,χ2(z, s) = λχ1,χ2(n, s)Eχ1,χ2(z, s).

For future application, we write out two special cases. When χ1 = 1, and χ2 = ψ primitive

mod q, we have

E1,ψ(z, 1
2

+ iT ) = e1,ψ(y, 1
2

+ iT ) + 2ρ1,ψ(1
2

+ iT )
√
y
∑
n6=0

λ1,ψ(n)e(nx)KiT (2π|n|y), (2.6)

where eχ1,χ2(s) = ρχ1,χ2(s)e∗χ1,χ2
(y, s), ρχ1,χ2(s) = 1

θχ1,χ2 (s)
, λχ1,χ2(n) = λχ1,χ2(n, 1

2
+ iT ), and

ρ1,ψ(1
2

+ iT ) = O(qε(1 + |T |)εe
π|T |

2 ) (2.7)

by Stirling’s formula, see e.g. [36, (5.73)] and [54, (11.18)]. Another case is when q1q2 = N with

(q1, q2) = 1, and χi is primitive mod qi for i = 1, 2. We then have

Eχ1,χ2(z, 1
2

+ iT ) = ρχ1,χ2(1
2

+ iT )
√
y
∑
n6=0

λχ1,χ2(n)e(nx)KiT (2π|n|y), (2.8)
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and similarly,

ρχ1,χ2(1
2

+ iT ) = O(N ε(1 + |T |)εe
π|T |

2 ). (2.9)

Next we discuss some aspects of the Fourier expansion of Ea(z, s, χ). For the following dis-

cussion, assume a, b are cusps singular for χ. When y →∞ (see e.g., [34, (13.15)])

Ea(σbz, s, χ) = δaby
s + ϕab(s, χ)y1−s +O(y−P ), (2.10)

for all P ∈ N, where δab = 1 if a N
= b, and vanishes otherwise, and ϕab is meromorphic in s ∈ C.

Iwaniec writes ϕab as an infinite sum, see [34, (13.16)–(13.18)], and we have an alternative finite

expression in Proposition 4 below.

Convention 5. Analogously to Convention 4, if χ = χ0,N , then we suppress it from ϕab(s, χ); if

necessary, we write ϕ(N)

ab to emphasize it comes from E(N)
a .

Proposition 2 (Selberg [34] (13.30)). For <s = 1
2
, the matrix Φ(s, χ) =

(
ϕab(s, χ)

)
a,b

is unitary.

In particular, we have
∑

a∈Cχ(N)|ϕ∞a(s, χ)|2= 1 for s = 1
2

+ iT .

2.2.3 Functional equations

Eisenstein series attached to Dirichlet characters satisfy the following simple functional equa-

tion. Recall σa = σa,N is a scaling matrix as in Remark 1.

Proposition 3 (Huxley [32]). For primitive χ1 and χ2, we have

E∗χ1,χ2
(z, s) = E∗χ2,χ1

(z, 1− s).

When (q1, q2) = 1 and a = 1
q2

, Weisinger [70] essentially showed (see also [73, (9.1)])

Eχ1,χ2 |σa= εχ1,χ2E1,χ1χ2 , where |εχ1,χ2|= 1. (2.11)
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In addition, we also have in (9.1) of [73] that

E∗χ1,χ2
(σ1/q2z, s) =

τ(χ1χ2)

τ(χ2)
(
q2

N
)sE∗1,χ1χ2

(z, s); (2.12)

E∗χ2,χ1
(σ1/q1z, s) =

τ(χ1χ2)

τ(χ1)
(
q1

N
)sE∗1,χ1χ2

(z, s). (2.13)

If χ is primitive mod N , then (q1, q2) = 1, and hence χ can uniquely be decomposed as χ1χ2

for χj primitive mod qj , j = 1, 2. By [73, (6.2)], we have

E 1
q2

(z, s, χ) = N−s
χ1(−1)τ(χ2)

Λ(2s, χ1χ2)
E∗χ1,χ2

(z, s). (2.14)

When χ is primitive mod N , a = 1
q2
∈ Cχ, we denote 1

q1
by a∗. With discussions in Sections

2.2.5, we have the following cuspidal behavior formulas for b ∈ C and y →∞:

Ea(σbz, s, χ) =


ys +O(p−N) if b = a

τ(χ1)τ(χ2)N−sΛ(2−2s,χ1χ2)
Λ(2s,χ1χ2)

y1−s +O(p−N) if b = a∗

O(p−N) otherwise

. (2.15)

2.2.4 Identifying traced Eisenstein series

Define the trace operator TrNM : A(Y0(N))→ A(Y0(M)) via

f 7→
∑

γ∈Γ0(N)\Γ0(M)

f |γ. (2.16)

Now we can determine the exact shape of TrNM E(N)
a (z, s) by (2.10).

Lemma 4. We have the following equality of meromorphic functions:

TrNM E(N)

a (z, s) = (WM
N (a))1−sE(M)

a (z, s).
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Remark 7. We have to point out that when a is a cusp for Y0(N), there might be ambiguities for

the symbol of E(M)
a . However, since the central character is trivial, the choice of representative for

a in Y0(M) does not affect the resulted function, as mentioned in Section 2.2.1.

Proof. Let <s > 1. By [35, Lemma 6.4], TrNM E(N)
a (z, s) is a linear combination of E(M)

b (z, s) for

cusps b of level M . Now we compare the ys-terms to determine this linear combination.

For each b pick σb,M = γb(W
1/2 0
0 W−1/2 ) as in Remark 1, where γb ∈ SL2(Z), γb∞ = b, and

W = W 1
M(b). As y →∞, we have by (2.10), Lemmas 3, 2 and Remark 2,

TrNM E(N)

a (σb,Mz, s) =
∑

γ∈Γ0(N)\Γ0(M)

E(N)

a (γγbWz, s) =
∑

γ∈Γ0(N)\Γ0(M)

E(N)

a

(
σγb,N

W
W 1
N (γb)

z, s
)

=
∑

γ∈Γ0(N)\Γ0(M)

δ
γb
N
=a

(
W

W 1
N (γb)

y
)s

+O(1)

= δ
b
M
=a
WM
N (a)

(
W 1
M (a)

W 1
N (a)

y
)s

+O(1) = δ
b
M
=a
WM
N (a)1−sys +O(1).

On the other hand, (WM
N (a))1−sE(M)

a |σb has exactly the same formula as above by (2.10), which

finishes the proof.

2.2.5 Explicit calculations with scattering matrices and related quantities

As is mentioned previously, we need to study the behavior of |E∞(z, s, χ)|2 at each cusp in

C(N), not just these in Cχ(N). The change-of-basis formula, Theorem 11, now helps.

2.2.5.1 Preparation

We begin with proving a lemma.

Lemma 5. Let K ≥ 1, and γ = ( u v
f w ) ∈ SL2(Z) with f | N . Then there exist meromorphic

Cχ1,χ2(s) and Dχ1,χ2(s) (depending on K and γ) such that

Eχ1,χ2(Kγz, s) = Cχ1,χ2(s)ys +Dχ1,χ2(s)y1−s + o(1), (2.17)
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as y →∞. Precisely,

Cχ1,χ2(s) = δq2|f
(q2K, f)2s

qs2K
s

χ1

( −f
(q2K, f)

)
χ2

( q2Ku

(q2K, f)

)
,

Dχ1,χ2(s) = δq1|f
θχ2,χ1(1− s)
θχ1,χ2(s)

(q1K, f)2−2s

q1−s
1 K1−s χ1

( q1Ku

(q1K, f)

)
χ2

( −f
(q1K, f)

)
.

(2.18)

Proof. Observe Eχ1,χ2(Kγz, s) is periodic with some integer period. By [35, Proposition 1.5],

(2.17) holds. To obtain (2.18), we proceed directly. By definition, we have

Eχ1,χ2(Kγz, s) =
1

2

∑
(c,d)=1

(q2=(Kγz))sχ1(c)χ2(d)

|cq2Kγz + d|2s

=
1

2

∑
(c,d)=1

(q2Ky)sχ1(c)χ2(d)

|(cq2Ku+ df)z + (cq2Kv + dw)|2s
=

1

2

∑
`∈Z

∑
(c,d)=1

cq2Ku+df=`

(q2Ky)sχ1(c)χ2(d)

|`z + (cq2Kv + dw)|2s
.

For any <s > 1, we see that as y →∞, uniform convergence allows us to interchange the limit

and the sums, yielding

Eχ1,χ2(Kγz, s) = C(s)ys + o(1), for C(s) =
1

2

∑
(c,d)=1

cq2Ku+df=0

(q2K)sχ1(c)χ2(d)

|cq2Kv + dw|2s
.

Then (2.17) implies that C(s) = Cχ1,χ2(s), and we can calculate Cχ1,χ2(s) by simplifying the

above expression. Solving cq2Ku + df = 0 for (c, d) = 1 and χ1(c)χ2(d) 6= 0, we can easily see

the solutions exist only if q2 | f , and they are


c = ± f

(q2K,f)

d = ∓ q2Ku
(q2K,f)

.

Since uw − vf = 1 and χ1χ2(−1) = 1, we arrive at the desired expression for Cχ1,χ2(s). By
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Proposition 3, we have

Dχ1,χ2(s) =
θχ2,χ1

(1−s)
θχ1,χ2 (s)

Cχ2,χ1(1− s).

Inserting the formula of Cχ2,χ1 , we complete the proof.

2.2.5.2 Entries of scattering matrices

Proposition 4. If a, b ∈ Cχ(N), then

ϕab(s, χ) =
f−1
a W−s

a W 1−s
b

ϕ((fa,
N
fa

))

∑
q1|( Nfa ,fb)

∑
q2|fa

∑∗

χ1,χ2

χ1(ub)χ2(ua)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

θχ2,χ1(1− s)
θχ1,χ2(s)

( q2
q1

)1−s
∑
a|fa

∑
b| N
fa

µ(a)µ(b)χ1(b)χ2(a)

a2s−1b
(q1

bfa
aq2
, fb)

2−2sχ1

( q1
bfa
aq2

(q1
bfa
aq2
, fb)

)
χ2

( fb

(q1
bfa
aq2
, fb)

)
,

where the asterisked sum is over all primitive χi (mod qi) for i = 1, 2 with χ1χ2 ' χ (see

Convention 2 for definition).

Proof. For b = ub
fb

as is in (1.1), we have by Theorem 11

ϕab(s, χ) =
f−sa W−s

a

ϕ((fa,
N
fa

))

∑
q1| Nfa

∑
q2|fa

∑∗

χ1,χ2

χ2(−ua)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

∑
a|fa

∑
b| N
fa

µ(a)µ(b)χ1(b)χ2(a)

(ab)s
Ψ
(
Eχ1,χ2

( bfa
aq2

σbz, s
))
,

where Ψ(Eχ1,χ2) stands for the coefficient of the y1−s-term of Eχ1,χ2 . Since the choice of σb does

not affect the constant term in the Fourier expansion, we can take

σb = γb

(
W

1/2
b 0

0 W
−1/2
b

)
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by Remark 1, where γb = (
ub v
fb w ) ∈ SL2(Z). Then for K = bfa

aq2
, and γ = γb, (2.18) gives

Ψ
(
Eχ1,χ2

( bfa
aq2

σbz, s
))

= δq1|fb
θχ2,χ1(1− s)
θχ1,χ2(s)

(q1
bfa
aq2
, fb)

2−2s

q1−s
1 ( bfa

aq2
)1−s

χ1

( ubq1
bfa
aq2

(q1
bfa
aq2
, fb)

)
χ2

( −fb
(q1

bfa
aq2
, fb)

)
W 1−s

b .

Then we complete the proof after substitution.

There are two special cases of Proposition 4 of special interest in this paper.

Firstly, we consider the case a = ∞. Notice that ( 1 0
N 1 )a = a′ = 1

N
, by Remark 3, so we have

ϕab = χ(1)ϕa′b = ϕa′b. In addition, we have the following closed-form formula:

Corollary 1. For b = u
f
∈ Cχ(N) in (1.1), we have

ϕ∞b(s, χ) = δf |N
q
τ(ψ)

W−s
b f 1−2s

ϕ((f, N
f

))

Λ(2− 2s, ψ)

Λ(2s, ψ)

∏
p|N

(
1− ψ(p)

p2s

)−1∏
p|f

(1− 1

p
)
∏
p|N
f

(
1− ψ(p)

p2s−1

)
,

where Λ is the completed Dirichlet L-function. In particular, ϕ∞∞(s, χ) = 0 unless χ = χ0,N .

Sketch of proof. We need to substitute fa = N , fb = f into Proposition 4. Briefly, after some local

analysis over different types of prime numbers, we have

∑
a|N

µ(a)ψ(a)

a2s−1

(N
aq
, f
)2−2s

ψ
( f

(N
aq
, f)

)
= δf |N

q
f 2−2s

∏
p|N
f

(
1− ψ(p)

p2s−1

)∏
p-N
f

(
1− 1

p

)
.

One can verify the rest easily and complete the proof.

Secondly, we assume χ is primitive (mod N), where only Atkin-Lehner cusps are singular for

χ. Given an Atkin-Lehner cusp a = 1
f
∈ C(N), we call a∗ := 1

N/f
∈ C(N) the Atkin-Lehner

complement of a (on level N ). The following calculation by N. Pitt depicts a special property of

Atkin-Lehner complement. Humphries (via personal communication) computed it independently,

in full details, and for general weights.
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Corollary 2. [34, Proposition 13.7] If a, b ∈ C(N) are Atkin-Lehner, and χ = χ1χ2 with χ1

primitive mod N
fa

and χ2 primitive mod fa, then we have

ϕab(s, χ) =


χ1(−1)τ(χ1)τ(χ2)N−sΛ(2−2s,χ1χ2)

Λ(2s,χ1χ2)
if b = a∗;

0 otherwise.

2.2.5.3 The behavior of Eisenstein series at cusps that are not singular

As we have mentioned in the introduction, the cuspidal behavior of Eisenstein series at cusps

not singular for the central character affects the precise description of E .

Proposition 5. If a ∈ Cχ(N), and b ∈ C(N)\Cχ(N), then as y →∞, we have

Ea(σbz, s, χ) = os(1).

Selberg proved (yet not published) the proposition for primitive χ; see [66, Thm. 7.1, p.641].

Here we give an alternative proof, for which we need some preparation.

Convention 6. We denote the p-adic order function by νp(·).

Lemma 6. Let χi be primitive mod qi for i = 1, 2, and χ = χ1χ2 be induced by primitive ψmod q.

Assume there is f | N such that q1 | Nf and q2 | f , and K | N satisfying:

νp(K) ≤


νp(N)− νp(q2) if p - q1, p | q2;

νp(f)− νp(q2) if p | q1.

(2.19)

If Eχ1,χ2(Kσbz, s, χ) is unbounded as y →∞ for some b ∈ C(N), then b ∈ Cχ(N).

Proof. If Eχ1,χ2|Kσb is unbounded, then by Lemma 5, either Cχ1,χ2(s) 6= 0 or Dχ1,χ2(s) 6= 0.

In the former case, we have q2 | fb, and for all prime numbers p | q1,

νp(K) ≥ νp(fb)− νp(q2).
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From (2.19), we know νp(K) ≤ νp(f)− νp(q2), which gives νp(f) ≥ νp(fb). Then by assumption

on f , we have

νp(q1) ≤ νp(N/f) ≤ νp(N/fb),

indicating q1 | Nfb . Together with q2 | fb, we find q = [q1, q2] | [fb,
N
fb

], which means b is singular

for χ by Proposition 1.

In the latter case, we have q1 | fb, and for all prime numbers p | q2,

νp(fb) ≤ νp(q1) + νp(K).

We want to show

νp(q2) ≤ νp(N)− νp(fb) (2.20)

for all p | q2, since this implies q2 | Nfb , and hence that b is singular for χ1χ2 for the same reason in

the previous case. We further bifurcate the discussion. Say p also divides q1. Then

νp(fb) ≤ νp(q1) + νp(K) ≤ νp(q1) + νp(f)− νp(q2) ≤ νp(N)− νp(q2),

Thus (2.20) holds. On the contrary, if p - q1, then νp(fb) ≤ νp(K) ≤ νp(N)− νp(q2), giving (2.20)

again.

Proof of Proposition 5. By Theorem 11, Ea(σbz, s, χ) can be written as a linear combination of

Eχ1,χ2(Kσbz, s, χ), where χi is primitive mod qi for i = 1, 2, χ1χ2 ' χ, and K | N satisfies

(2.19). By Lemma 6, none of these Eχ1,χ2(Kσbz, s, χ) contributes any ys or y1−s-terms, so we

have done.
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2.2.6 The formal inner product of Eisenstein series

It is well-known that Eisenstein series are not in L2. It is nevertheless useful to consider the

formal inner product of two Eisenstein series. Concretely, if a, b ∈ C(N), then the formal inner

product of Ea and Eb is defined by

〈Ea(·, s), Eb(·, s)〉Eis
N

:= 4πδab,

when s = 1
2

+ iT . For more details, see Section 3.3, where we adopt newform Eisenstein series

to build an alternative orthonormal basis. To accomplish this, we have the following lemma as a

special case of [73, Lemma 8.3].

Lemma 7. For primitive ψ (mod q) with q2 | N , we have

〈Eψ,ψ, Eψ,ψ〉Eis
N

= 4πN
∏
p|q

(1− p−1)
∏
p|N

(1 + χ0,N (p)p−1).

2.2.7 Laurent expansions of Eisenstein series

Proposition 6. We have the Laurent expansion

E(z, s) =
3/π

s− 1
+G(z) +O(|s− 1|),

where as y →∞,

G(z) = y +O(log y). (2.21)

Proposition 6 follows directly from [36, (22.66)–(22.69)], so we omit the proof. These formulas

also show that G(z) ∈ A(Y0(1)) can be expressed in terms of the logarithm of the Dedekind eta

function, but all we need for our later purposes is (2.21).

It is also important to explicitly evaluate the Laurent expansion of Ea(z, s) around s = 1 in
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terms of the newform Eisenstein series.

Proposition 7. For a = u
f
∈ C(N), we have

Ea(z, s) =
Vol(Y0(N))−1

s− 1
+ ca,0 +

∑
g|N

ca,gG|g

+
∑

1<r|(f,N/f)

∑∗

η(r)

η(u)
∑
g|Nr−2

ca,η,gEη,η(gz, 1) +O(|s− 1|),

where ca,η,g are independent of u,

ca,0 =
1

Vol(Y0(N))

(
log

(f, N
f

)

N
+
∑
p|N

log p

p+ 1
−

∑
p|(f,N/f)

log p

p− 1

)
, (2.22)

and

ca,g =
(f,N/f)

Nϕ((f,N/f))

ζ(2)

L(2, χ0,N)

∑
a|f

∑
b|N
f

δbf/a=g
µ(a)µ(b)

ab
. (2.23)

Proof. By Theorem 11, Ea(z, s) can be expressed as a linear combination of Eη,η|g for primitive η

(mod r) with r | (f,N/f), and suitable g|N . The contribution from r > 1 is

W−s
a f−s

ϕ((f,N/f))

∑
1<r|(f,N/f)

∑∗

η

η(−u)
L(2s, η2)

L(2s, η2χ0,N )

∑
a|f

∑
b|N
f

µ(a)µ(b)η(ab)

asbs
Eη,η

(bf
ar
z, s
)
,

which can be expressed as
∑

1<r|(f,N/f)

∑∗
η(r) η(−u)

∑
g|Nr−2 ca,η,gEη,η(gz, 1) with ca,η,g indepen-

dent of u. By Proposition 6, the contribution from r = 1 equals

W−s
a f−s

ϕ((f,N/f))

ζ(2s)

L(2s, χ0,N )

∑
a|f

∑
b|N
f

µ(a)µ(b)

asbs

( 3/π

s− 1
+G

(bf
a
z
)

+O(s− 1)
)
.

Let

Fa(s) =
W−s

a f−s

ϕ((f,N/f))

ζ(2s)

L(2s, χ0,N )

∑
a|f

∑
b|N
f

µ(a)µ(b)

asbs
. (2.24)

It is well-known that Ress=1Ea(z, s) = (Vol(Y0(N)))−1, so 3
π
Fa(1) = Vol(Y0(N))−1; of course,
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for consistency this can be checked directly from (2.24). Hence the contribution of r = 1 to the

Laurent expansion of Ea(z, s) is of the form

Vol(Y0(N))−1

s− 1
+ 3

π
F ′a(1) +

∑
g|N

ca,gG|g+O(s− 1),

for ca,g given by (2.23). The term F ′a(1) gives rise to ca,0, which is computed by

F ′a
Fa

(1) = − logN + log
(
f, N

f

)
+
∑
p|N

log p

p+ 1
−

∑
p|(f,N/f)

log p

p− 1
.

Although the level 1 Eisenstein series is an eigenfunction of the Hecke operators, the same is

not quite true for the function G.

Lemma 8. For n ≥ 1, we have

Tn(G) = λ(n)G+
3

π

√
n
∑
a|n

a−1 log
n

a2
,

where Tn is the n-th Hecke operator, and λ(n) = λ1,1(n, 1) = n1/2
∑

b|n b
−1 as is in (2.6).

Remark 8. Our normalization of the Hecke operator Tn is so that Tnuj = λj(n)uj .

Proof. Recall that G(z) = Ress=1(s− 1)−1E(z, s), so by Remark 6 we have

Tn(G) =Res
s=1

(
(s− 1)−1λ(n, s)E(z, s)

)
.

By Proposition 6 and since λ(n, s) =
∑

ab=n( b
a
)s−1/2, we finish the proof.

2.2.8 Some inequalities

Here we perform some elementary calculations related to ϕ∞a, which is critical for future

arguments. To begin, we have the following standard lemma.
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Lemma 9. There exists an absolute constant C so that

∑
p|N

1

p
≤ log log log(N + 15) + C, and

∑
p|N

log p

p
≤ log log(N + 2) + C.

Convention 7. For integers A and B, we denote the greatest divisor of A that divides (is coprime

to, respectively) B by AB (A⊥B, respectively). Notice that A = ABA
⊥
B.

From the fact N⊥q | Nq , we have the following corollary.

Corollary 3. If s = 1
2

+ iT and ψ is primitive (mod q) for q | N , then

∑
p|N

ψ(p) log p

ψ(p)p2s − 1
� log log

(
N
q

+ 2
)
.

Then we can bound the coefficients in Proposition 7.

Corollary 4. For a = u
f
∈ C(N), we have

ca,0 =
1

Vol(Y0(N))

(
log

(f,N/f)

N
+O(log logN)

)
, (2.25)

and

∑
g|N

|ca,g|� N−1(log logN)3. (2.26)

Proof. The equation (2.25) follows from Lemma 9. By (2.23), we have

∑
g|N

|ca,g| ≤
(f,N/f)

Nϕ((f,N/f))

ζ(2)

L(2, χ0,N)

∑
a|f

∑
b|N
f

|µ(a)µ(b)|
ab

= N−1
∏

p|(f,N/f)

(1− p−1)−1
∏
p|N

(1− p−2)−1
∏
p|f

(1 + p−1)
∏
p|N
f

(1 + p−1).

Then Lemma 9 completes the proof of (2.26).

Convention 8. Given n ≥ 1, we denote the number of prime divisors of n by ω(n).
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Proposition 8. For any positive integers k and L,

∑
g|L

log g

g
kω(g) �k (log log(L+ 2))k+1.

Proof. Decomposing log g into
∑

p|g νp(g) log p, we have

∑
g|L

log g

g
kω(g) =

∑
p|L

log p
∑
g|L

g≡0(p)

νp(g)

g
kω(g) =

∑
p|L

log p

νp(L)∑
i=1

i
∑
g|L

νp(g)=i

kω(g)

g

=
∑
p|L

log p

νp(L)∑
i=1

ik

pi

∑
g|L

g 6≡0(p)

kω(g)

g
= k

∑
p|L

log p

νp(L)∑
i=1

i

pi︸ ︷︷ ︸
A

B(p)︷ ︸︸ ︷∏
p′|L
p′ 6=p

(1 + k

νp′ (L)∑
j=1

1

(p′)j
) .

It is not hard to find that 0 < A �
∑

p|L
log p
p
� log log(L+ 2) by Lemma 9. Since 1 ≤ B(p) ≤∏

p′|L (1 + k
∑∞

j=1
1

(p′)j
) =: B, we have again by Lemma 9

logB =
∑
p|L

log (1 + k
∞∑
j=1

1

pj
) = k

∑
p|L

1

p
+Ok(1) ≤ k log log log(L+ 2) +Ok(1).

Then B �k (log log(L+ 2))k implies
∑

g|L
log g
g
kω(g) ≤ AB �k (log log(L+ 2))k+1.

Corollary 5. For a = ua
fa
∈ C(N) as in (1.1), and s = 1

2
+ iT , we have

∑
a

|ϕ∞a(s, χ)|2log
N

qfa
�
(

log log
(N
q

+ 2
))5

; (2.27)

∑
a

|ϕ∞a(s, χ)|2
∑
p| N
fa

ψ(p) log p

ψ(p)p2s−1 − 1
�
(

log log (
N

q
+ 2)

)5

; (2.28)

∑
a

|ϕ∞a(s, χ)|2log fa = log
N

q
+O

((
log log (

N

q
+ 2)

)5)
. (2.29)

35



Proof. Define Sf (s, χ) :=
∑

a:fa=f |ϕ∞a(s, χ)|2 for f | N
q

. By Lemma 1, we have

Sf (s, χ) = Cf (s, χ)
∏
p|N
f

Spf (s, χ),

where

Cf (s, χ) =
qf

N

∏
p|(f,N

f
)

(1− p−1)
∏

p|N⊥
(N/f)

|1− ψ(p)p−2s|−2(1− p−1)2 ≤ qf

N
,

and

Spf (s, χ) =
∣∣∣1− ψ(p)p1−2s

1− ψ(p)p−2s

∣∣∣2 ≤


4 if p - q,

1 if p | q.

There being at most ω((N
f

)⊥q ) ≤ ω(N
qf

) such p that Spf (s, χ) > 1 in the last product, we have

Sf (s, χ) ≤ qf

N
4ω( N

qf
) =: Sf (χ). (2.30)

Then (2.27) follows from Proposition 8 and the fact

∣∣∣∑
a

|ϕ∞a(s, χ)|2log
N

qfa

∣∣∣ ≤∑
f |N

q

Sf (χ) log
N

qf
.

We similarly have

∑
a

|ϕ∞a(s, χ)|2
∑
p| N
fa

∣∣∣ ψ(p) log p

ψ(p)p2s−1 − 1

∣∣∣ ≤∑
f |N

q

∑
p| N
qf

∣∣∣Sf (s, χ)
ψ(p) log p

ψ(p)p2s−1 − 1

∣∣∣.
Noticing that |Spf (s, χ) 1

ψ(p)p2s−1−1
|= |1−ψ(p)p1−2s|

|(1−ψ(p)p−2s)|2 ≤
2

(1−p−1)2 ≤ 8, we have

∣∣∣ Sf (s, χ)

ψ(p)p2s−1 − 1

∣∣∣� Sf (χ).
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Consequently,

∑
f |N

q

∑
p| N
qf

∣∣∣Sf (s, χ)
ψ(p) log p

ψ(p)p2s−1 − 1

∣∣∣�∑
f |N

q

Sf (χ)
∑
p| N
qf

log p ≤
∑
f |N

q

Sf (χ) log
N

qf
,

and (2.28) follows from Proposition 8. Equation (2.29) results from (2.27) and that
∑

a|ϕ∞a(s)|2(log fa+

log N
qfa

) = log N
q

∑
a|ϕ∞a(s)|2= log N

q
by Proposition 2.
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3. PROOF OF THEOREMS 6 AND 8

3.1 Overall strategy

To expose everything as clearly as possible, we initially prove Theorem 8, which contains

Theorem 6, in the case of weight zero. The main body of the proof lies in Sections 3.3–3.5, for

which we sketch the argument for (1.4) later in this subsection; the supportive part consists of

prerequisites about cusps in Section 2.1, Eisenstein series featured by a comprehensive description

of their cuspidal behaviors in Section 2.2, and regularized integrals in Section 3.2. After that, we

prove Theorem 6 for k = 1 in Section 3.6. Finally, we sketch the proof of the case of weight one

in Section 3.7.

The spectral decomposition to 〈|E|2−E , φ〉
N

gives

〈|E|2−E , φ〉
N
≈
∑
tj�T

∑∗

uj

〈|E|2, uj〉N 〈uj, φ〉M + continuous spectrum,

where the inner sum is over all L2(Y0(M))-normalized Hecke-Maass newforms of level M with

spectral parameter tj , and recall that E = E∞(z, 1
2

+ iT, χ). This regularized spectral decomposi-

tion is the topic of Section 3.3, and Section 3.4 mainly focuses on the following estimation.

Proposition 9. With the above notations, we have

〈|E|2, uj〉N �T,tj N
− 1

2
+εM− 1

2 (N
q

)θ|L(1
2
, uj)L(1

2
+ 2iT, uj ⊗ ψ)|.

The following crucial subconvexity bound for twisted L-functions then finishes the job.

Theorem 12 (Blomer, Harcos [11]). If ψ is primitive (mod q) and uj is a newform of levelM , then

L(1
2

+ 2iT, uj ⊗ ψ)� (|T |+1)
1
2 (M

1
4 q

3
8 +M

1
2 (M, q)

1
4 q

1
4 ).

The contribution of the continuous spectrum to 〈|E|2−E , φ〉
N

is similar. Section 3.5 addresses
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the main terms, about which we have briefly discussed earlier in this section.

3.2 Integral renormalization

3.2.1 Equivalent definitions of integral regularizations

We start by recalling Zagier’s definition of integral regularizations on Y0(1). Assume F (z) is

SL2(Z)-invariant and satisfies

F (z) = ψ
F

(y) +O(y−P ) (3.1)

as y → ∞ for all integers P , where ψ
F

=
∑m

i=1 ciy
αi , with ci ∈ C∗, distinct αi ∈ C\{1}, i =

1, 2, ...,m, and m = m(F ) ≥ 1. When m 6= 0 and <αi ≥ 1 for some i, F is not integrable in the

usual sense. Nevertheless, F is “renormalizable" (in Zagier’s terminology). Write R.N.(
∫
Fdµ),

the renormalization of
∫
Fdµ, defined by

•
∫
y<R

Fdµ+
∫
y≥R(F − ψ

F
)dµ+

∫ R
y−2ψ

F
(y)dy.

Here the first two integrals are performed over the standard fundamental domain F for SL2(Z),

with their displayed additional restrictions, and the third is the “anti-derivative" with respect to

R, i.e., a linear combination of R-powers without a nonzero constant term. Zagier’s definition is

independent of R, as we verify in the following subsection. Moreover, as we let R → ∞, the

second term tends to zero, giving an alternative definition:

• lim
R→∞

(
∫
y<R

Fdµ−
∫ R

y−2ψ
F

(y)dy).

The third description is also called the regularization of the integral
∫
Fdµ by Michel and Venkatesh

[53]:

•
∫

(F −
∑

1≤i≤m
<αi≥1/2

ciE(z, αi))dµ,

which is based on R.N.(
∫
E(z, s)dµ) = 0, a direct result of the following theorem.

Theorem 13 (Zagier [74]). Assume F is continuous, has Fourier expansion
∑
an(y)e(nx) and

satisfies all above assumptions. Then E(z, s)F (z) is also renormalizable for <s large, and for any
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R > 1 the following function

∫ R

0

a0(y)ys−2dy +

∫ ∞
R

(a0(y)− ψ
F

(y))ys−2dy −
∫ R

ψ
F

(y)ys−2dy (3.2)

has meromorphic continuation and equals R.N.(
∫
E(z, s)F (z)dµ).

3.2.2 Generalization of Zagier’s result to arbitrary level

By [35, Proposition 2.4], there exists a fundamental domain for Y0(N), whose vertices are

Γ0(N)-inequivalent cusps. Let F be such a fundamental domain. For R > 1, if we write Fa(R) to

be the image of the truncated strip 0 < x < 1, y > R under σa, and F(R) = F\( ta Fa(R)), then

we define the truncated Eisenstein series by

ER
a =


Ea if z ∈ Γ0(N)(F(R));

0 otherwise.
(3.3)

It is obvious that truncated Eisenstein series are in L2. Assume F (z) ∈ A(Y0(N)) has Fourier

expansion
∑
an(y)e(nx), and at each cusp a, there is ψa =

∑
i ca,iy

αa,i , such that i = 1, 2, ...,ma

for some ma ≥ 1, and

F (σaz) = ψa(y) +O(y−P ), (3.4)

for all integers P as y → ∞, where ca,i ∈ C\{0} and αa,i ∈ C\{1}. Then we call F renormaliz-

able, because
∫
Fdµ can be renormalized as follows for all R > 1:

R.N.
(∫
F
F (z)dµ

)
:=

∫
F(R)

Fdµ+
∑
a

(∫
Fa(R)

(F (z)− ψa(Im (σ−1
a z)))dµ−

∫ R

ψay
−2dy

)
.

Again, the expression of the renormalized integral is independent of R: pick 1 < R1 < R2,
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then the difference between the right hand sides of the equation evaluated at R2 and R1 is

∫
(F(R2)−F(R1))

Fdµ−
∑
a

(∫
σa(F∞(R1)−F∞(R2))

(F (z)−ψa(Im (σ−1
a z)))dµ−

∫ R1

R2

ψa(y)y−2dy
)

=

∫
F∞(R1)−F∞(R2)

∑
a

ψa(y)dµ−
∑
a

∫ R1

R2

ψa(y)y−2dy = 0.

Remark 9. Just as in Zagier’s level 1 case, if the integrand is integrable already, the renormalized

integral agrees with the usual integral.

Now suppose F ∈ A(Y0(N), χ) satisfies (3.4) and has Fourier expansion
∑
aan(y)e(nx) at

each a, with
∑

n6=0|aan(y)|= O(y−P ) as y → ∞ for all P ≥ 1. Define Ra(F ; s) :=
∫∞

0
(aa0(y) −

ψa(y))ys−2dy, which converges for <s large by work of Dutta-Gupta [22].

Hulse, Kuan, Lowry-Duda and Walker essentially generalized Zagier’s theory to higher levels.

Their original claim only concerns case χ being trivial, but it takes no extra efforts to see that the

same argument works for general central characters.

Theorem 14. [29, Proposition A3] If <s sufficiently large, and a ∈ Cχ(N), then

R.N.(〈Ea(·, s, χ), F (·)〉
N

) = Ra(F ; s).

Consequently, the renormalized integral of a single Eisenstein series, attached to any cusp,

vanishes, which justifies the third definition in Zagier’s work, as well as our generalization:

R.N.
(∫

Fdµ
)

=

∫ (
F −

∑
a

∑
Reαa,i≥1/2

Ea(z, αa,i)
)
.

We also call this the regularization of 〈F, 1〉
N

and write it 〈F, 1〉reg
N

.

Corollary 6. For any a and b singular for χ and s1, s2 ∈ C\{0, 1}, we have

〈Ea(·, s1, χ), Eb(·, s2, χ)〉reg
N

= 0.
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Remark 10. Note the difference between 〈·, ·〉reg
N

above and 〈·, ·〉Eis
N

.

3.3 Spectral decomposition

Here we take the notation in [35] of Bδ(Y0(N)) with δ ≥ 0, which stands for the space of

smooth automorphic functions f on Y0(N), satisfying

f(σaz)� yδ as y →∞,

for all a ∈ C(N). We note that for δ < 1
2
, Bδ(Y0(N)) ⊂ L2(Y0(N)).

3.3.1 Classical theory

For F ∈ Bδ(Y0(N)) with δ < 1/2, we have spectral decomposition:

F (z) =
〈F, 1〉

N

〈1, 1〉
N

+
∑

u∈O(N)

〈F, u〉
N
u(z) +

1

4π

∑
a∈C(N)

∫ ∞
−∞
〈F,Ea(·, 1

2
+ it)〉

N
Ea(z,

1
2

+ it)dt.

Remark 11. In our work, the choice of Ea as an orthogonal basis in the spectral decomposition is

convenient for computations with the main terms, but not for the error terms.

3.3.2 Regularization for spectral decomposition

To apply the spectral decomposition, we need to regularize |E|2. See [53, Sections 4.3–4.4] for

more about the general theory.

Proposition 10. For E = E∞(z, 1
2

+ iT, χ) as in Theorem 8, we have |E|2−E ∈ Bε(Y0(N)) for

arbitrarily small ε > 0 with

E := 2<
(
ϕ∞∞(1

2
+ iT, χ)E∞(z, 1− 2iT )

)
+ lim

β→0+

(
E∞(z, 1 + β) +

∑
a∈Cχ(N)

ϕ∞a(
1
2

+ iT, χ)ϕ∞a(
1
2

+ β − iT, χ)Ea(z, 1− β)
)
.

Remark 12. We note that as long as T 6= 0, E is well-defined as an element in Bε(Y0(N)).
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Proof. This is done by comparing ψ
Fβ

(see (3.1) for definition) with ψEβ for

Fβ(z, T ) = E∞(z, 1
2

+ iT, χ)E∞(z, 1
2

+ β − iT, χ) and

Eβ(z, T ) = ϕ∞∞(1
2

+ iT, χ)E∞(z, 1 + β − 2iT ) + ϕ∞∞(1
2

+ β − iT, χ)E∞(z, 1− β + 2iT )

+ E∞(z, 1 + β) +
∑
a

ϕ∞a(
1
2

+ iT, χ)ϕ∞a(
1
2

+ β − iT, χ)Ea(z, 1− β).

The constant terms in the Fourier expansion of E∞ can be calculated via (2.2) and (2.6), and that

of E|σa is computable with Proposition 4. Now that ψFβ and ψEβ agree for all sufficiently small

β > 0, their difference lies in Bε(Y0(N)), for all ε > β.

3.3.3 Regularized spectral decomposition in a new choice of orthonormal basis

Define

Oj(M) :=
{
u<`>j (z) =

∑
d|`

ξ`(d)uj|d
∣∣∣ uj ∈ Hitj(M1), ` |M2,M = M1M2

}
, (3.5)

where Hitj(M1) stands for the set of L2(Y0(M))-normalized Hecke-Maass newforms of level M1

and spectral parameter tj , and ξ`(d) are certain coefficients satisfying the bound

ξ`(d)� `ε(`/d)θ−
1
2 , (3.6)

as is described in [13, (5.6)]. Here each uj can be written as ρju∗j , where

u∗j(z) =
√
y
∑
n6=0

λj(n)Kitj(2π|n|y)e(nx), (3.7)

stands for the Hecke-normalized cusp form, and

ρj =
∥∥u∗j∥∥−1

2
= O(M− 1

2
+εe

π|tj |
2 ). (3.8)
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Blomer and Milićević 1 showed that Oj(M) is an orthonormal basis of the space of cusp forms of

spectral parameter tj . Consequently,O(M) := t∞j=1Oj(M) makes an orthonormal basis of Maass

cusp forms of level M .

Parallelly, as explained in [73, Section 8.3],

OEis
t (M) :=

{
E<`>

η,η (z, 1
2

+ it) =

∑
d|` ξ`(d)Eη,η(dz,

1
2

+ it)∥∥E(M)
η,η

∥∥Eis
2

∣∣∣ η mod r, r2` |M
}

(3.9)

forms a formal orthonormal basis, with exactly the same ξ`(d). Since

∥∥E(M)

η,η

∥∥Eis

2
:=
√
〈E(M)

η,η , E
(M)
η,η 〉Eis

M
=
√

4πM
∏
p|r

(1− p−1)
1
2

∏
p|M⊥r

(1 + p−1)
1
2 = M

1
2

+o(1).

From the definition of renormalized integral and Corollary 6, we have 〈|E|2−E , 1〉
N

= 0. Since

〈E , u〉
N

= 0, applying the Plancherel formula to 〈|E|2−E , φ〉
N

yields

〈|E|2−E , φ〉
N

=
∑

u∈O(M)

〈|E|2, u〉
N
〈u, φ〉

M
+

∫ ∞
−∞

∑
Et∈OEis

t (M)

〈|E|2, Et〉reg
N
〈Et, φ〉Mdt. (3.10)

Consequently we can take (3.5) and (3.9) back to (3.10), and obtain

〈|E|2−E , φ〉
N

=
∑
j≥1

∑
M1M2=M

∑
uj∈Hitj (M1)

∑
`|M2

〈|E|2, u<`>j 〉N 〈u<`>j , φ〉
M

+

∫ ∞
−∞

∑
r2L=M

∑∗

ηmod r

∑
`|L

〈|E|2, E<`>

η,η (·, 1
2

+ it)〉reg
N
〈E<`>

η,η (·, 1
2

+ it), φ〉
M
dt, (3.11)

where the asterisked sum is over all primitive Dirichlet characters mod r. We estimate the terms in

(3.10), or equivalently (3.11), and 〈E , φ〉
N

in the following sections.

1See https://www.uni-math.gwdg.de/blomer/corrections.pdf for corrections of [13].
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3.4 Error term estimation

3.4.1 Calculation with Fourier coefficients

Lemma 10. Suppose f ∈ A(Y0(N), χ), g ∈ A(Y0(N)) with Fourier expansions

f(z) = a0(y) +
√
y
∑
n6=0

λf (n)a(ny)e(nx)

g(z) =
√
y
∑
n6=0

λg(n)b(ny)e(nx),

where λf and λg are multiplicative and λ∗(−n) = λ∗(−1)λ∗(n) for ∗ = f or g. Then we have

〈E(N)

∞ (·, s, χ), f · g〉
N

= (λf (−1) + λg(−1))h(s)
∑
n≥1

n−sλf (n)λg(n),

where h(s) =
∫∞

0
ys−1a(y)b(y)dy.

Proof. This is easy by unfolding and integration on x.

Corollary 7. With the same assumptions as Lemma 10, if we further have f |A∈ A(Y0(N), χ) and

g|B∈ A(Y0(N)) for some A,B | N , then

〈E(N)

∞ (·, s, χ), f |A·g|B〉N = (λf (−1) + λg(−1))h(s)ZA,B(s),

with

ZA,B(s) =

√
AB

[A,B]s

∑
n≥1

n−sλf

( [A,B]

A
n
)
λg

( [A,B]

B
n
)
.

3.4.2 Cuspidal contribution

The following corollary is a special case of Corollary 7 with (3.7) and (2.6).

45



Corollary 8. For all A | N
q

and B | N , we have

〈E(N)
∞ (·, 1

2
+ iT, χ), E1,ψ|A·uj|B〉N = FT (tj)ZA,B(1

2
+ iT, ψ, uj),

where

ZA,B(1
2

+ iT, ψ, uj) =

√
AB

[A,B]
1
2

+iT

∑
n≥1

λ1,ψ( [A,B]
A
n)λj(

[A,B]
B
n)

n
1
2

+iT
, and

FT (tj) = ρ1,ψ(1
2

+ iT )ρj(λ1,ψ(−1) + λj(−1))

∫ ∞
0

y−
1
2

+iTKiT (2πy)Kitj(2πy)dy.

From (2.7), (3.8), and [25, (6.576.4)], we see FT (tj) � N εM− 1
2 eHT (tj)P (tj, T ) for some

polynomial P (x, y), where

HT (tj) =


0 if |tj|≤ 2|T |,

π
2
(2|T |−|tj|) if |tj|> 2|T |.

(3.12)

As for ZA,B(1
2

+ iT, ψ, uj), we can rewrite the Dirichlet series as an Euler product

√
AB

[A,B]
1
2

+iT

∏
p

(∑
n≥0

λ1,ψ(pn+νp(
[A,B]
A

))λj(p
n+νp(

[A,B]
B

))

pn( 1
2

+iT )

)
= Fj(A,B)

∑
n≥1

λ1,ψ(n)λj(n)

n
1
2

+iT
,

where Fj(A,B) is a finite Euler product over prime divisors of [A,B]. Inserting the bounds from

Remark 4, we have Fj(A,B) = O(N ε(A,B)
1
2 (A⊥M)θ). Applying the Rankin-Selberg method (see

e.g. [34, (13.1)]), we have

∑
n≥1

λ1,ψ(n)λj(n)

n
1
2

+iT
=
L(1

2
, uj)L(1

2
+ 2iT, uj ⊗ ψ)

L(1 + 2iT, ψ · χ0,M )
.

Recalling equation (2.2) and the fact |L(1 + 2iT, ψ)|�T q
−ε, we have the following lemma.
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Lemma 11. Keeping above notations and s = 1
2

+ iT , we have for all d |M

〈|E∞(·, s, χ)|2, uj|d〉N �T
eHT (tj)N−

1
2

+εM− 1
2 (N

q
, d)

1
2 (N

q
)θ|L(1

2
, uj)L(1

2
+ 2iT, uj ⊗ ψ)|.

Notice Lemma 11 implies Proposition 9. Now we can estimate the first part of (3.10).

Proposition 11. Keeping all notations in Theorems 6 and 8, we have

∑
u∈O(M)

〈|E∞(·, 1
2

+ iT, χ)|2, u〉
N
〈u, φ〉

M
�

T
N−

1
2

+ε(N
q

)θM
1
2 q

3
8‖φ‖2.

Before proving Proposition 11, we claim a lemma.

Lemma 12. We have

∑
tj≤2|T |+2 logN

∑
uj∈Hitj (M1)

|L(1
2
, uj)|2�T,ε N

εM1.

The proof follows from the spectral large sieve inequality, so we omit it. See Motohashi [57,

(3.4.4)] for an example on the case M = 1.

Remark 13. A bound of the same quality actually holds for the fourth moment of central values of

theseL-functions, which follows from the spectral large sieve for Γ0(M) developed by Deshouillers

and Iwaniec [DI]. Motohashi [57, Theorem 3.4] shows this for the case M = 1.

Proof of Proposition 11. By (3.5), (3.11) and Cauchy-Schwarz, we have

∑
u∈O(M)

|〈|E∞|2, u〉N 〈u, φ〉M |=
∑
j≥1

∑
uj∈Oj(M)

|〈|E∞|2, uj〉N 〈uj, φ〉M |

≤
(∑
j≥1

∑
uj∈Oj(M)

|〈|E∞|2, uj〉N |2
) 1

2
(∑
j≥1

∑
uj∈Oj(M)

|〈uj, φ〉M |2
) 1

2
.
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Observe that by Bessel’s inequality,

∑
j≥1

∑
uj∈Oj(M)

|〈uj, φ〉M |2≤ ‖φ‖
2
2.

As for the other factor, we recall (3.5) and (3.6), and apply Cauchy-Schwarz again to see

|〈|E∞|2, u<`>j 〉N | ≤
(∑

d|`

|ξ<`>d |2
) 1

2
(∑

d|`

|〈|E∞|2, uj|d〉N |2
) 1

2 � `ε max
d|`
|〈|E∞|2, uj|d〉N |

�ε N
− 1

2
+εM− 1

2 eHT (tj)(N
q
, `)

1
2 (N

q
)θ
∣∣∣L(1

2
, uj)L(1

2
+ 2iT, uj ⊗ ψ)

∣∣∣,
where ξ<`>d is defined in (3.5).Because of the factor eHT (tj) (see (3.12) for its magnitude), we may

truncate the sum at |tj|≤ 2|T |+2 logN , with a very small error term.

Furthermore, for all |tj|≤ 2|T |+2 logN , we have

∑
l|M2

|〈|E∞|2, u<`>j 〉N |2�ε N
−1+ε

∑
l|M2

(N
q
, `)

M
(N
q

)2θ|L(1
2
, uj)L(1

2
+ 2iT, uj ⊗ ψ)|2

= N−1+εM−1(N
q

)2θ(N
q
,M2)|L(1

2
, uj)L(1

2
+ 2iT, uj ⊗ ψ)|2,

and by Theorem 12 and Lemma 12, we have

∑
|tj |≤2|T |+2 logN

∑
uj∈Hitj (M1)

∑
`|M2

|〈|E∞|2, u<`>j 〉N |2

�
T
N−1+εM−1(N

q
)2θ(N

q
,M2)M1 max{M

1
2

1 q
3
4 ,M1(M1, q)

1
2 q

1
2}.

In the summation over M1M2 = M , the term with M = M1 and M2 = 1 dominates, so

( ∑
|tj |≤2|T |+2 logN

∑
uj∈Oj(M)

|〈|E∞|2, uj〉N |2
) 1

2 �
T
N−

1
2

+ε(N
q

)θ max{M
1
4 q

3
8 ,M

1
2 (M, q)

1
4 q

1
4}.
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Remark 14. Following the same line as Lemma 12 we can similarly have

∑∗

ηmod r

∫ 2|T |+2 logN

−2|T |−2 logN

|L(1
2
, Eη,η(·, 1

2
+ it))|2dt�

T
N εr.

3.4.3 Eisenstein contribution

Now we estimate the second part in (3.10). It is not hard to see we have made every piece

correspond well with that of the first part, in the rewritten formula (3.11), and that is why we

choose OEis
t (M) to be the orthonormal basis.

Lemma 13. Keeping all notations as in (3.11), we have

〈|E∞(·, s, χ)|2, Eη,η(d·, 1
2

+ it)〉reg
N
�

T
eHT (t)N−

1
2

+ε(N
q
, d)

1
2 |L(1

2
, Eη,η)L(1

2
+ 2iT, Eη,η ⊗ ψ)|,

where HT (t) agrees with HT (tj) in (3.12).

The proof is almost the same as that of Lemma 11, so we omit the details.

Proposition 12. Keeping all notations from Theorems 6 and 8, we have

∫ ∞
−∞

∑
Et∈OEis

t (M)

〈|E|2, Et〉reg
N
〈Et, φ〉Mdt�T

N−
1
2

+εq
3
8M

1
2‖φ‖

2
.

Sketch of proof. After Lemma 13, the calculation can be reduced to some multiple of

∑∗

ηmod r

∫ 2|T |+2 logN

−2|T |−2 logN

|L(1
2
, Eη,η)L(1

2
+ 2iT, Eη,η ⊗ ψ)|2dt,

with similarly negligible tail. Then we can just perform the same procedure of proving Proposition

11, except for taking the Burgess bound for |L(1
2
, Eη,η⊗ψ)| instead of that of [13], and putting the

equation in Remark 14 in place of Lemma 12.
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3.5 Main term estimation

The main goal of this section is to prove (1.5) and (1.6), which are the main term aspects of

Theorem 8. Throughout this section we adopt all notations in previous sections.

3.5.1 Preparation

Recall W 1
N(a) is the width of a (see Section 2.1.2 for definition).

3.5.1.1 Weighted average

Lemma 14. For s = 1
2

+ iT , we have

−
∑

a∈Cχ(N)

|ϕ∞a(s, χ)|2
(ϕ′∞a(s, χ)

ϕ∞a(s, χ)
+ logW 1

N(a)
)

= 2 logN + 4<L
′(1 + 2iT, ψ)

L(1 + 2iT, ψ)

+OT (1) +O(( log log (N
q

+ 2))5).

Proof. According to Lemma 1, for a = u
f
∈ Cχ(N) with f | N

q
, we have

−
ϕ′∞a(

1
2
− iT, χ)

ϕ∞a(
1
2
− iT, χ)

= −(logϕ∞a(
1
2
− iT, χ))′ = log

fN

(f, N
f

)

+ 4<Λ′(1 + 2iT, ψ)

Λ(1 + 2iT, ψ)
+ 2

∑
p|N

ψ(p)p−1+2iT log p

1− ψ(p)p−1+2iT
− 2

∑
p|N
f

ψ(p)p2iT log p

1− ψ(p)p2iT
,

where Λ is the completed L-function. Moreover, by Lemma 1 and Proposition 2, we have

∑
a∈Cχ(N)

−|ϕ∞a(
1
2

+ iT, χ)|2
(ϕ′∞a(

1
2
− iT, χ)

ϕ∞a(
1
2
− iT, χ)

+ logW 1
N(a)

)
=

∑
a∈Cχ(N)

|ϕ∞a(
1
2

+ iT, χ)|2

·
(

2 log f + 4<Λ′(1 + 2iT, ψ)

Λ(1 + 2iT, ψ)
+ 2

∑
p|N

ψ(p)p−1+2iT log p

1− ψ(p)p−1+2iT
− 2

∑
p|N
f

ψ(p)p2iT log p

1− ψ(p)p2iT

)
.

Recalling Corollaries 3 and 5, we arrive at the lemma.
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3.5.1.2 Traced Eisenstein series

Applying the trace operator TrNM (see the definition in (2.16)) to E , we have (see [6, Lemma

12])

〈E , φ〉
N

= 〈TrNM E , φ〉M .

To calculate further with this, we need to identify TrNM E . By Lemma 4 and Proposition 10, we

have for all T 6= 0

TrNM E = 2<
(
ϕ(N)

∞∞(1
2

+ iT, χ)E(M)

∞ (z, 1− 2iT )
)

+ lim
β→0+

(
E(M)

∞ (z, 1 + β)+∑
a∈Cχ(N)

ϕ(N)

∞a(
1
2

+ iT, χ)ϕ(N)

∞a(
1
2

+ β − iT, χ)(WM
N (a))βE(M)

a (z, 1− β)
)
. (3.13)

It is still necessary to simplify (3.13) further.

Proposition 13. When T 6= 0, we have

TrNM E = c0 +
∑
g|M

cgG|g+
∑
g|M

c′gE(·, 1 + 2iT )|g,

where

c0 =
1

〈1, 1〉
M

(
log

N2

M(M,N/q)
+ 4<L

′(1 + 2iT, ψ)

L(1 + 2iT, ψ)
+O

T
((log log

(
N
q

+ 2
)

)5)
)
, (3.14)

and the coefficients cg, c′g satisfy
∑

g|M |cg|+|c′g|�M−1(log logM)3.

Remark 15. One of the pleasant features in Proposition 13 is that there is no contribution from

the newform Eisenstein series with r > 1. In addition, by taking M = N , Proposition 13 gives an

alternative expression for E itself. Finally, we note from Lemma 1 that ϕ(N)
∞∞(s, χ) vanishes unless

χ is trivial, which means c′g = 0 for all g |M whenever χ is nontrivial.
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Proof. By (3.13), Proposition 2 and Corollary 7, we have

TrNM E = c0 +
∑
g|M

cgG|g+
∑

1<r2|N

∑∗

η(r)

∑
g|Nr−2

cη,gEη,η(gz, 1)

+ 2<
(
ϕ(N)

∞∞(1
2

+ iT, χ)E(M)

∞ (z, 1− 2iT )
)
,

where

c0 = c∞,0 +
∑

a∈Cχ(N)

|ϕ(N)

∞a(
1
2

+ iT, χ)|2ca,0

− 1

〈1, 1〉
M

∑
a∈Cχ(N)

|ϕ(N)

∞a(
1
2

+ iT, χ)|2
(ϕ′∞a(

1
2
− iT, χ)

ϕ∞a(
1
2
− iT, χ)

+ logWM
N (a)

)
,

cg = c∞,g +
∑

a∈Cχ(N)

|ϕ(N)

∞a(
1
2

+ iT, χ)|2ca,g,

and

cη,g =
∑

a∈Cχ(N)

|ϕ(N)

∞a(
1
2

+ iT, χ)|2η(ua)ca,η,g.

For clarity, we remark that the coefficients ca,0 and ca,g correspond to the notation from Proposition

7, but on level M . To simplify, first observe that when η (mod r) is primitive with r > 1, then

cη,g = 0 for all g | M . This holds because for each fixed f | N , Cχ(N) contains all cusps u
f

with

u ∈ (Z/(f,N/f)Z)×. Then, since |ϕ(N)
∞a(

1
2

+ iT, χ)|2 and ca,η,g are independent of ua, the sum over

ua vanishes.

Next we simplify c0. Using Lemmas 2 and 1, and Corollary 4, we have logWM
N (a) =

logW 1
N(a)− log

(
M

(M,(M,f)2)

)
, and so

Vol(Y0(M))c0 = − logM +
∑

a∈Cχ(N)

|ϕ(N)

∞a(
1
2

+ iT, χ)|2
(
− log(f,M)

−
ϕ′∞a(

1
2
− iT, χ)

ϕ∞a(
1
2
− iT, χ)

− logW 1
N(a)

)
+O(log logM).
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Next we apply some approximations to simplify this further. From Corollary 1, we see that

ϕ∞a(s, χ) = 0 unless f |N
q

, and hence only terms with (M, f) | (M,N/q) are in the sum. More-

over, we have (M,N/q)
(M,f)

| N/q
f

. By (2.27), we can replace log (f,M) by log (M,N/q) with an

acceptable error term, which gives the claimed estimation (3.14) for c0.

The estimation of
∑

g|M |cg| comes from Corollary 4 and the fact that

∑
g|M

|cg|≤
∑
g|M

|c∞,g|+
∑
a

|ϕ∞a(
1
2

+ iT, χ)|2
∑
g|M

|ca,g|.

For fixed T 6= 0, we have

E(M)

∞ (z, 1 + 2iT ) = M−1−2iT ζ(2 + 4iT )

L(2 + 4iT, χ0,M )

∑
g|M

µ(M/g)

(M/g)1+2iT
E(gz, 1 + 2iT )

=
∑
g|M

c′gE(gz, 1 + 2iT ),

with c′g = µ(M/g)M−2−2iTg1+iT ζ(2+4iT )
L(2+4iT,χ0,M

)
. It is obvious that |c′g|≤ |cg|, so the bound of

∑
g|cg|

applies to
∑

g|c′g|.

3.5.2 Proof of (1.5) and (1.6)

Recalling Proposition 13, we have

〈E , φ〉
N

= 〈c0, φ〉M +
∑
g|M

cg〈G|g, φ〉M +
∑
g|M

c′g〈E(g·, 1 + 2iT ), φ〉
M
,

where cg and c′g are the constants from Proposition 13. Define

αφ =
∑
g|M

cg〈G|g, φ〉M +
∑
g|M

c′g〈E(g·, 1 + 2iT ), φ〉
M
. (3.15)

By Lemma 14 and Remark 2, we have

〈TrNM E , φ〉M = c0〈1, φ〉M + αφ.
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Then (3.14) gives (1.5), and (1.6) follows from Proposition 13 and (3.15).

3.5.3 Limitations to QUE (continued)

Here we provide the additional details of the example discussed previously. Recall in the

example that χ is primitive mod N and M is a prime divisor of N . Then by Proposition 10,

Remark 2, Lemma 2 and Corollary 2, we have

TrNM E = lim
β→0+

(
E(M)

∞ (z, 1 + β) + (N
M

)βϕ(N)

∞0(1
2

+ iT, χ)ϕ(N)

∞0(1
2

+ β − iT, χ)E(M)

0 (z, 1− β)
)
.

Next, Theorem 11 says

E(M)

∞ (z, 1 + β) = M−1−β ζ(2 + 2β)

L(2 + 2β, χ0,M )

(
E(Mz, 1 + β)−M−1−βE(z, 1 + β)

)
,

and

E(M)

0 (z, 1− β) = M−1+β ζ(2− 2β)

L(2− 2β, χ0,M )

(
E(z, 1− β)−M−1+βE(Mz, 1− β)

)
.

Then since 〈E , φ〉
N

= 〈TrNM E , φ〉M , by Proposition 6 we obtain (1.7) with

c1 = cM =
ζ(2)

L(2, χ0,M )

(
M−1 −M−2

)
= M−1 +O(M−2). (3.16)

The estimation (1.8) of c0 is contained in (3.14).

3.5.4 Comparison of main terms

An astute reader may notice an apparent inconsistency between the main terms displayed in

Theorems 6 and 8, and we devote this section to compare these main terms and resolve this para-

dox. Recall that Theorem 8 estimates 〈|E|2, φ〉
N

, where φ = φ(M)

j is chosen from the system

described in Convention 1. One can recover Theorem 6 in two different ways from Theorem 8;

the first way is to simply take M = 1 in Theorem 8, which visibly reduces to Theorem 6, and the

second is to form φ0 as the sum of φ(M)

j . That is, summing over φ = φ(M)

j for j = 1, 2, ..., ν(M),
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we have

∑
φ

〈|E|2, φ〉
N

= 〈|E|2, φ0〉N ∼
∑
φ

〈1, φ〉
M

〈1, 1〉
M

(
log

N2

M(M,N/q)
+ 4<L

′

L
(1 + 2iT, ψ)

)
+
∑
φ

αφ

=
〈1, φ0〉1
〈1, 1〉1

(
log

N2

M(M,N/q)
+ 4<L

′

L
(1 + 2iT, ψ)

)
+
∑
φ

αφ.

This expression has a different shape than that from Theorem 6, which says

〈|E|2, φ0〉N ∼
〈1, φ0〉1
〈1, 1〉1

(
logN2 + 4<L

′

L
(1 + 2iT, ψ)

)
.

For consistency, we must have

∑
φ

αφ ∼
〈1, φ0〉1
〈1, 1〉1

log(M(M,N/q)). (3.17)

We wish to check this directly, at least in some special cases. For simplicity of exposition, we take

q = N (i.e., χ is primitive), and M prime.

In (3.15), we have c′g = 0 since q 6= 1, whence

∑
φ

αφ =
∑
φ

∑
g|M

cg〈G|g, φ〉M =
∑
g|M

cg〈G|g, φ0〉M .

Since φ0 is SL2(Z)-invariant, we have

∑
g|M

cg〈G|g, φ0〉M =
∑
g|M

cg
ν(M)

ν(g)
〈Trg1(G|g), φ0〉1 .

On the other hand, one can check directly (see [DS, Sections 5.1–5.4]) that

Trg1(f |g) =
√
gTg(f),
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for any automorphic function f of level 1. Hence by Lemma 8 and (3.16),

∑
φ

αφ =
∑
g|M

cg
ν(M)

ν(g)

√
g〈Tg(G), φ0〉1

=
∑
g|M

cg
ν(M)

ν(g)

√
g
(
λ(g)〈G, φ0〉1 +

3

π

√
g
(∑

a|g

a−1 log
g

a2

)
〈1, φ0〉1

)
=
〈1, φ0〉1
〈1, 1〉1

(logM)(1 +O(M−1)) + 〈G, φ0〉1(2 +O(M−1)),

which indeed agrees with (3.17).

3.6 QUE for Eisenstein series attached to other cusps

This section concentrates on proving Theorem 6 for k = 1. Assume χ is primitive modulo N

throughout this section. By Proposition 1, Cχ(N) consists of Atkin-Lehner cusps. Recall for a cusp

a = 1
f
∈ Cχ(N), we denote the cusp 1

N/f
∈ Cχ(N) by a∗ and call it the Atkin-Lehner conjugate of

a. It is easy to see by Lemma 1 that Wa = N/f , and Wa∗ = f .

3.6.1 Identification of E

Corollary 2 and Proposition 5 give the cuspidal behavior of |Ea|2 at any b ∈ C(N). The

following proposition can be proved similarly as Proposition 10.

Proposition 14. For E = Ea(z,
1
2

+ iT, χ) as in Theorem 6 for k = 1, we have |E|2−E ∈

Bε(Y0(N)) for arbitrarily small ε > 0 with

E = lim
β→0+

(
Ea(z, 1 + β) + ϕaa∗(

1
2

+ iT, χ)ϕaa∗(
1
2

+ β − iT, χ)Ea∗(z, 1− β)
)
.

The following subsections deal with 〈|E|2−E , φ0〉N and 〈E , φ0〉N separately.

3.6.2 Error term

Since |E|2−E ∈ Bε(Y0(N)) and M = 1, the analog of (3.11) is

〈|E|2−E , φ0〉N =
∑
j≥1

〈|E|2, uj〉N 〈uj, φ0〉1 +
1

4π

∫ ∞
−∞
〈|E|2, E(·, 1

2
+ it)〉reg

N
〈E(·, 1

2
+ it), φ0〉1dt.
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Recall from (2.3) that Ea(z, s, χ) = N−sEχ1,χ2(z, s), where χ = χ1χ2 with χ1 modulo N/f

and χ2 modulo f . As a result, with (3.7), (2.11) and (2.8) we have for some ε with |ε|= 1

〈|Ea(·, s, χ)|2, uj〉N = χ1(−1)N−s
∫ 1

0

∫ ∞
0

ys−2Eχ1,χ2|σauj(σaz)dxdy

= εN−s
∫ 1

0

∫ ∞
0

ys−2E1,χ1χ2uj(
N
f
z)dxdy

=
2εFT (tj)

N s(2π)sθ1,χ1χ2

(λ1,χ1χ2(−1) + λj(−1))
∑
n≥1

λ1,χ1χ2(N
f
n, s)λj(n)

ns
.

Then we can meromorphically continue the above equation to the whole complex plane, and take

s = 1
2

+ iT , where the Dirichlet series equals a finite Euler product of size O(N ε) times

L(1
2
, uj)L(1

2
+ 2iT, uj ⊗ χ1χ2)

L(1 + 2iT, χ1χ2)
,

which has Burgess bound N
3
8

+ε. Hence, in total we have

〈|Ea(·, s, χ)|2, uj〉N �T e
π
2
HT (tj)N−

1
8

+ε,

for the same HT (tj) as in (3.12). Mimicking the proof of Proposition 11, we have

∑
u∈O(1)

〈|Ea|2, u〉N 〈u, φ0〉1 =
∑
j≥1

〈|Ea|2, uj〉N 〈uj, φ0〉1 �T N
− 1

8
+ε‖φ0‖2

,

and likewise,

1

4π

∫ ∞
−∞
〈|Ea|2, E(·, 1

2
+ it)〉reg

N
〈E(·, 1

2
+ it), φ0〉1dt�T N

− 1
8

+ε‖φ0‖2
.
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3.6.3 Main term

Since Wa∗ = f by Lemma 1, we can derive from Lemma 4 and Proposition 14 that

〈E , φ0〉N = 〈TrN1 E , φ0〉1 = lim
β→0+

(
(N
f

)−β〈E(·, 1 + β), φ0〉1

+ ϕaa∗(
1
2

+ iT, χ)ϕaa∗(
1
2

+ β − iT, χ)fβ〈E(·, 1− β), φ0〉1
)
.

Substituting the Laurent expansion by Proposition 6, we have

〈E , φ0〉N =
〈1, φ0〉1
〈1, 1〉1

(
− log N

f
− log f − ϕ′aa∗

ϕaa∗
(1

2
− iT, χ)

)
+ 2〈G, φ0〉1 ,

while from Corollary 2 we see that

ϕ′aa∗

ϕaa∗
(1

2
− iT, χ) = −3 logN − 4<L

′

L
(1 + 2iT, χ1χ2) +OT (1).

After subtraction we arrive at

〈E , φ0〉N =
〈1, φ0〉1
〈1, 1〉1

(
2 logN + 4<L

′

L
(1 + 2iT, χ1χ2) +OT (1)

)
+ 2〈G, φ0〉1 .

3.7 QUE for Eisenstein Series of Weight One

3.7.1 All differences

From now on we write E by

E(N)

a (z, s, χ) =
∑

γ∈Γa\Γ0(N)

χ(γ)
|cγσaz + dγ|
cγσaz + dγ

(Im γσ−1
a z)s

be Eisenstein series of weight one, while all other parameters remains the same as the weight zero

case. Then there are three differences in computation:

• the central character of an Eisenstein series is odd instead of even, i.e., χ(−1) = −1;

58



• the new scattering matrix (ϕab(s, χ))a,b has different entries, eachϕab(s, χ) being− Γ(s)Γ( 3
2
−s)

Γ(1−s)Γ( 1
2

+s)

times ϕab in the weight zero case; and

• for primitive χi mod qi, i = 1, 2, Eχ1,χ2 has a different Fourier expansion:

ys + ϕχ1,χ2(s)y1−s + ρχ1,χ2(s)
∑
n6=0

|n|−
1
2λχ1,χ2(n, s)e(nx)

Γ(s+ 1
2
)

Γ(s+
sgn(n)

2
)
W |n|

2n
,s− 1

2

(4π|n|y),

where

– λχ1,χ2(n, s) is exactly the same as in the weight zero case;

– ϕχ1,χ2(s) is − Γ(s)Γ( 3
2
−s)

Γ(1−s)Γ( 1
2

+s)
times the previous ϕχ1,χ2(s) in the weight zero case;

– ρχ1,χ2(s) equals iΓ(s)

Γ(s+ 1
2

)
multiplies its counterpart in the weight zero case; and

– Wµ,ν(4π|n|y) is the W -Whittaker function. When µ = 0, |n|− 1
2Wµ,ν(4π|n|y) together

simplifies into
√
yKν(2π|n|y), which is in the weight zero case. When µ = ±1

2
, we

have the following lemma.

Lemma 15. For y > 0, we have

W 1
2
,iT (2y) =

y√
π

(K− 1
2

+iT (y) +K 1
2

+iT (y));

W− 1
2
,iT (2y) =

y√
πiT

(−K− 1
2

+iT (y) +K 1
2

+iT (y)).

Lemma 15 is directly obtained from the recurrence relations of the Whittaker function (see e.g.

[21, (13,15.10) and (13.15.12)]), and we omit the proof.

3.7.2 Proof of Theorem 6 in the weight one case

To simplify the exposition of showing Theorems 6 and 8 in the new environment, we set χ to

be primitive mod N to prove the theorem as an example of such duplication.
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3.7.2.1 Identification of E

One quick observation is, |E|2 is still of weight zero, and Proposition 10 functions the same

way. Specifically speaking, we have

〈|E|2, φ〉
N

= 〈|E|2−E , φ〉
N

+ 〈E , φ〉
N
,

for some E of weight 0. Studying cuspidal behaviors, we have E∞(z, s) ∼ ys, and

E∞|σ0∼ ϕ∞0(s, χ)y1−s,

where E∞ and E0 are of weight zero and trivial central character, while

ϕ∞0(s, χ) =
N1−s

τ(χ)

Γ(3
2
− s)

Γ(1
2

+ s)

Γ(s)

Γ(1− s)
Λ(2− 2s, χ)

Λ(2s, χ)
.

So similarly to the previous case of weight zero, Proposition 10 holds with

E = lim
β→0+

(
E∞(z, 1 + β) + ϕ∞0(s, χ)ϕ∞0(s+ β, χ)E0(z, 1− β)

)
.

3.7.2.2 Error term

Then we can see Corollary 7 still holds, where FT (tj) has a slightly different formula:

ρ1,χρj

(
(λj(−1)− λ1,χ(−1))

∫ ∞
0

ys−
1
2K− 1

2
+iT (2πy)Kitj(2πy)dy+

(λj(−1) + λ1,χ(−1))

∫ ∞
0

ys−
1
2K 1

2
+iT (2πy)Kitj(2πy)dy

)
.

From [25, (6.576.,4)], we see the old bound FT (tj) � N εeHT (tj)P (tj, T ) still hold for the new

FT (tj) with the same HT (tj) in (3.12) and perhaps some different polynomial P (tj, T ). Since the

Dirichlet series remains the same as in the weight zero case, we arrive at
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Proposition 15. With above notations, we have

∑
u∈O(M)

〈|E|2, u〉1〈u, φ0〉1 = OT (N−
1
8

+ε‖φ0‖1).

The Eisenstein contribution to the error terms can be done similarly, so we omit the proof.

3.7.2.3 Main term

Now we complete the proof of Theorem 6 for k = 1 by proving the following proposition.

Proposition 16. With above notations, we have

〈E , φ〉
N

=
〈1, φ0〉1
〈1, 1〉1

(
2 logN + 4<L

′

L
(1 + 2iT, χ) +OT (1)

)
+Oφ(1).

Proof. Applying the trace operator, we have

〈E , φ〉
N

= 〈TrNM E , φ〉M = lim
β→0+

(
〈TrNM E∞(·, 1 + β), φ〉

M

+ ϕ∞0(s, χ)ϕ∞0(s+ β, χ)〈TrNM E0(·, 1− β), φ〉
M

)
.

Since these Eisenstein series above are of weight zero, everything goes in the same way, which

means TrNM E∞(z, 1 + β) and TrNM E0(z, 1 − β) are same as before, and so are their Laurent

expansions. Then

〈E , φ〉
N

= 2〈G, φ〉1 −
〈1, φ〉1

Vol(F1)

(ϕ′∞0(s, χ)

ϕ∞0(s, χ)
+ logW 1

N(0)
)
.

Noticing that ϕ∞0(s, χ) in the weight one case differs from that in the weight zero case by a

factor − Γ(s)Γ( 3
2
−s)

Γ(1−s)Γ( 1
2

+s)
that is level independent, we know that the new logarithmic derivative will be

the same, up to the term of the logarithmic derivative of the additional factor. All differences being

absorbed into the OT (1) error term of the main term asymptotic formula for the weight zero case

with M = 1 and q = N , we arrive at the same conclusion.
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4. PROOF OF THEOREM 10

4.1 General strategy

Just like what happens in [19], [72] and Chapter 3, |Ea(z,
1
2

+ iT, χ)|2 is not directly regulariz-

able, because we cannot subtract it by Ea(z, 1), which is not defined. Instead, we need to consider

rewriting the L4-norm as 〈Ea(·, s1, χ)Ea(·, s2, χ), Ea(·, s3, χ)Ea(·, s4, χ)〉reg, and find a path for

(s1, s2, s3, s4) ∈ C4, such that it arrives at (1
2

+ iT, 1
2

+ iT, 1
2

+ iT, 1
2

+ iT ) without touching any

point of singularity.

As is discussed in Chapter 3, if we further assume w1 +w2, w3 +w4 6= 1, then we can regularize

Ea(·, s1, χ)Ea(·, s2, χ) and Ea(·, s3, χ)Ea(·, s4, χ) respectively. That is, there exists E1 and E2 such

that Ea(·, s1, χ)Ea(·, s2, χ) − E1 and Ea(·, s3, χ)Ea(·, s4, χ) − E2 ∈ L2. Since their product is in

L1, we have

〈Ea(·, s1, χ)Ea(·, s2, χ), Ea(·, s3, χ)Ea(·, s4, χ)〉reg = I1 + I2,

where

I1 = I1(s1, s2, s3, s4) = 〈Ea(·, s1, χ)Ea(·, s2, χ)− E1, Ea(·, s3, χ)Ea(·, s4, χ)− E2〉,

and

I2 = I2(s1, s2, s3, s4) = 〈Ea(·, s1, χ)Ea(·, s2, χ), E2〉reg + 〈E1, Ea(·, s3, χ)Ea(·, s4, χ)〉reg + 〈E1, E2〉reg.

In order to decide E1 and E2, one needs to study carefully the behavior of Ea|σb for every b, no

matter singular or not for χ. According to Proposition 10, we have

E1 = E1(s1, s2) = Ea(z, s1 + s2) + ϕaa∗(s1, χ)ϕaa∗(s2, χ)Ea∗(z, 2− s1 − s2),

62



and

E2 = E2(s3, s4) = Ea(z, s3 + s4) + ϕaa∗(s3, χ)ϕaa∗(s4, χ)Ea∗(z, 2− s3 − s4).

It is known that 〈E1, E2〉reg = 0, so it suffices to compute the first two terms of I2.

One nice feature of the regularized integral is it is easily computable when an Eisenstein series

attached to a cusp is a factor of the integrand.

Now we need to introduce the regularized integrals. Roughly speaking, if an SL2(Z)-automorphic

function F is of moderate growth, then there always exists E , a linear combination of Eisenstein

series, such that F −E = O(
√
y) as y →∞, and still maintains automorphy. Then the convergent

integral
∫

(F − E) is defined to be the renormalized integral of
∫
F .

Theorem 15. For automorphic function F of moderate growth and w 6= 0, 1, we have

〈F,Ea(·, w)〉reg =

∫ ∞
0

yw−2(F (σaz)− ψa(y))dy,

where σa ∈ SL2(R) is any scaling matrix, and ψa is the moderate growth part of F (σaz).

Remark 16. All meromorphic functions in this paper is continuable. So, throughout, we directly

assume a function f(s) is defined on C from the beginning, as long as it is meromorphic on some

half plane <s > C.

Remark 17. All implied constants are assumed to be related with ε and T if not specified other-

wise.

4.2 Two consequences of GRH

Lemma 16. Assume GRH is true, <s = 1 and χ is primitive mod N , then we have

L′

L
(s, χ)� log logN ; (4.1)

L′′

L
(s, χ)� (log logN)3+ε. (4.2)
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Proof. Inequality (4.1) is in Theorem 5.17 of [36]. As for (4.2), we firstly recall that

(
L′

L
)′(s, χ) =

L′′

L
(s, χ)− (

L′

L
)2(s, χ).

By (4.1), we know (L
′

L
)2(s, χ)� (log logN)2; Proposition 5.16 of [36] says that

−L
′

L
(s, χ) =

∑
p

χ(p) log p

ps
φ(
p

X
) +

∑
ρ

φ̂(ρ− s)Xρ−s +O(1),

for X = log2+εN(|s|+1), φ(y) = max{1 − y, 0}, and φ̂(w) = w−1(w + 1)−1. Taking derivative

on both sides, we see

∣∣∣(L′
L

)′(s, χ)
∣∣∣ ≤∑

p≤X

log2 p

p
+ logX

∑
ρ

1

|ρ− s|·|ρ+ 1− s|
+O(1)

�
∫ X

2

log2 t

t
dt+ logX ·O(

∑
ρ

|ρ|−2).

Since
∑

ρ|ρ|−2 converges, above can further be bounded by (log logN)3+ε. So is L′′

L
(s, χ).

4.3 Proof of Theorem 10

4.3.1 Preparation

Lemma 17. Assume w1 6= w2, 1− w2, and w3 6= 0, 1. Then

〈E∗χ1,χ2
(·, w1)E∗χ1,χ2

(·, w2), Ea(·, w3)〉reg = N−w3q1(
q2

N
)w1+w2

1

ξ(2w3)

∏
p|N

1− pw1+w2−w3−1

1− p−2w3

ξ(w1 + w2 + w3 − 1)Λ(w1 − w2 + w3, χ1χ2)Λ(−w1 + w2 + w3, χ1χ2)ξ(−w1 − w2 + w3 + 1).

Proof. Theorem 15 says that the left hand side equals

∫ ∞
0

yw3−2(

∫ 1

0

E∗χ1,χ2
(σaz, w1)E∗χ1,χ2

(σaz, w2))dx−Ψ)dy,
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where Ψ is the moderate growth part of F = E∗χ1,χ2
(z, w1)E∗χ1,χ2

(·, w2). Applying (2.12), we can

rewrite it with

q1(
q2

N
)w1+w2

∫ ∞
0

yw3−2(

∫ 1

0

E∗1,χ1χ2
(z, w1)E∗χ1,χ2

(·, w2)dx−Ψ)dy.

Since the moderate growth part of F is exactly the product of the moderate growth parts of

E∗1,χ1χ2
(z, w1) and E∗1,χ1χ2

(z, w2), we further write it as (note λ1,χ1χ2(−1) + λ1,χ1χ2(−1) = 2 by

evenness of χ1χ2)

4q1(
q2

N
)w1+w2

∫ ∞
0

yw3−1
∑
n6=0

λ1,χ1χ2(n,w1)λ1,χ1χ2(−n,w2)Kw1− 1
2
(2π|n|y)Kw2− 1

2
(2π|n|y)dy

= 8q1(
q2

N
)w1+w2

∑
n≥1

λ1,χ1χ2(n,w1)λ1,χ1χ2(n,w2)

nw3

∫ ∞
0

yw3−1Kw1− 1
2
(2πy)Kw2− 1

2
(2πy)dy.

By (6.576.4) of [GR], we know the integral equals

π−w3

8Γ(w3)

∏
ε1=±1

∏
ε2=±1

Γ(
w3 + ε1(w1 − 1

2
) + ε2(w2 − 1

2
)

2
).

while the Dirichlet factors into (see (13.1) of [I1])

ζ(w1 + w2 + w3 − 1)L(w1 − w2 + w3, χ1χ2)L(−w1 + w2 + w3, χ1χ2)L(−w1 − w2 + w3 + 1, χ0,N )

L(2w3, χ0,N )
.

Completing these L-functions with proper factors, we obtain the right hand side.

Proposition 17. We have

I2 =H1ξ(s1 + s2 + s3 + s4 − 1)ξ(−s1 − s2 + s3 + s4 + 1)

+H2ξ(−s1 − s2 − s3 − s4 + 3)ξ(s1 + s2 − s3 − s4 + 1)

+H3ξ(s1 + s2 + s3 + s4 − 1)ξ(s1 + s2 − s3 − s4 + 1)

+H4ξ(−s1 − s2 − s3 − s4 + 3)ξ(−s1 − s2 + s3 + s4 + 1),
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where Hj = Hj(s1, s2, s3, s4) for j = 1, 2, 3, 4 with

H1 = N−s1−s2−s3−s4+1 Λ(s1 − s2 + s3 + s4, χ1χ2)Λ(−s1 + s2 + s3 + s4, χ1χ2)

ξ(2s3 + 2s4)Λ(2s1, χ1χ2)Λ(2s2, χ1χ2)∏
p|N

1− ps1+s2−s3−s4−1

1− p−2s3−2s4
,

H2 = N−1 Λ(s1 − s2 − s3 − s4 + 2, χ1χ2)Λ(−s1 + s2 − s3 − s4 + 2, χ1χ2)

ξ(−2s3 − 2s4 + 4)Λ(2s1, χ1χ2)Λ(2s2, χ1χ2)

Λ(2− 2s3, χ1χ2)Λ(2− 2s4, χ1χ2)

Λ(2s3, χ1χ2)Λ(2s4, χ1χ2)

∏
p|N

1− p−s1−s2+s3+s4−1

1− p2s3+2s4−4
,

H3 = N−s1−s2−s3−s4+1 Λ(s1 + s2 + s3 − s4, χ1χ2)Λ(s1 + s2 − s3 + s4, χ1χ2)

ξ(2s1 + 2s2)Λ(2s3, χ1χ2)Λ(2s4, χ1χ2)∏
p|N

1− p−s1−s2+s3+s4−1

1− p−2s1−2s2
,

H4 = N−1 Λ(−s1 − s2 + s3 − s4 + 2, χ1χ2)Λ(−s1 − s2 − s3 + s4 + 2, χ1χ2)

ξ(−2s1 − 2s2 + 4)Λ(2s3, χ1χ2)Λ(2s4, χ1χ2)

Λ(2− 2s1, χ1χ2)Λ(2− 2s2, χ1χ2)

Λ(2s1, χ1χ2)Λ(2s2, χ1χ2)

∏
p|N

1− ps1+s2−s3−s4−1

1− p2s1+2s2−4
.

Proof. Since Ea(z, s, χ) = N−sχ1(−1)ρχ1,χ2(s)E∗χ1,χ2
(z, s) with

ρχ1,χ2(s) :=
qs1τ(χ2)

Λ(2s, χ1χ2)
,

we see that 〈Ea(·, s1, χ)Ea(·, s2, χ), Ea(·, s3 + s4)〉reg equals

N−s1−s2ρχ1,χ2(s1)ρχ1,χ2(s2)〈E∗χ1,χ2
(·, s1)E∗χ1,χ2

(·, s2), Ea(·, s3 + s4)〉reg.

66



Applying Lemma 17 with w1 = s1, w2 = s2 and w3 = s3 + s4, we see above further equals

N−s1−s2−s3−s4qs1+s2−s3−s4+1
1 τ(χ2)τ(χ2)

ξ(2s3 + 2s4)Λ(2s1, χ1χ2)Λ(2s2, χ1χ2)
Λ(s1− s2 + s3 + s4, χ1χ2)Λ(−s1 + s2 + s3 + s4, χ1χ2)

ξ(s1 + s2 + s3 + s4 − 1)ξ(−s1 − s2 + s3 + s4 + 1)
∏
p|N

1− ps1+s2−s3−s4−1

1− p−2s3−2s4
.

This accounts for the first term H1ξ(s1 + s2 + s3 + s4 − 1)ξ(−s1 − s2 + s3 + s4 + 1). The other

three terms can be obtained in the same way, except that we adopt (2.13) in place of (2.12) for the

second and fourth terms.

4.3.2 Estimation of I2

Now set s1 = s3 = 1
2

+ iT , s2 = 1
2

+ η′− iT and s4 = 1
2

+ η− iT with 0 < η′ < η < 1
4
. Under

limit η′ → 0, I2 tends to

F1(η)ξ2(1 + η)︸ ︷︷ ︸
Ξ1

+F2(η)ξ2(1− η)︸ ︷︷ ︸
Ξ2

+F3(η)ξ(1 + η)ξ(1− η)︸ ︷︷ ︸
Ξ3

+F4(η)ξ(1− η)ξ(1 + η)︸ ︷︷ ︸
Ξ4

,

with Fj(η) = limη′→0+ Hj(
1
2

+ iT, 1
2

+ η′ − iT, 1
2

+ iT, 1
2

+ η − iT ). The explicit forms are

F1 = N−1−η |Λ(1 + η + 2iT, χ1χ2)|2

ξ(2 + 2η)|Λ(1 + 2iT, χ1χ2)|2
∏
p|N

(1 +
1

p1+η
)−1;

F2 = N−1 |Λ(1− η + 2iT, χ1χ2)|2Λ(1− 2η + 2iT, χ1χ2)

ξ(2− 2η)Λ2(1 + 2iT, χ1χ2)Λ(1 + 2η − 2iT, χ1χ2)

∏
p|N

(1 +
1

p1−η )−1;

F3 = N−1−η Λ(1− η + 2iT, χ1χ2)Λ(1 + η − 2iT, χ1χ2)

ξ(2)Λ(1 + 2iT, χ1χ2)Λ(1 + 2η − 2iT, χ1χ2)

∏
p|N

1− p−1+η

1− p−2
;

F4 = N−1 Λ(1− η + 2iT, χ1χ2)Λ(1 + η − 2iT, χ1χ2)

ξ(2)Λ(1 + 2iT, χ1χ2)Λ(1 + 2η − 2iT, χ1χ2)

∏
p|N

1− p−1−η

1− p−2
.
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Further calculation shows F1(0) = F2(0) = F3(0) = F4(0) = (ξ(2)ν(N))−1, and

F ′1(0) = F1(0) ·
(
− logN + 2<Λ′

Λ
(1 + 2iT, χ1χ2) − 2

ξ′

ξ
(2) +

∑
p|N

log p

p+ 1

)
;

F ′2(0) = F2(0) ·
(

− 6<Λ′

Λ
(1 + 2iT, χ1χ2) + 2

ξ′

ξ
(2) −

∑
p|N

log p

p+ 1

)
;

F ′3(0) = F3(0) ·
(
− logN − 2<Λ′

Λ
(1 + 2iT, χ1χ2) −

∑
p|N

log p

p+ 1

)
;

F ′4(0) = F4(0) ·
(

− 2<Λ′

Λ
(1 + 2iT, χ1χ2) +

∑
p|N

log p

p+ 1

)
.

Moreover, by F ′′j = (Fj ·
F ′j
Fj

)′ = Fj · ((
F ′j
Fj

)2 + (
F ′j
Fj

)′), we see that

F ′′1 (0) = F1(0) ·
(
− logN + 2<Λ′

Λ
(1 + 2iT, χ1χ2)− 2

ξ′

ξ
(2) +

∑
p|N

log p

p+ 1

)2

+ F1(0) ·
(

log2N + 2<(
Λ′

Λ
)′(1 + 2iT, χ1χ2)− 4(

ξ′

ξ
)′(2)−

∑
p|N

p log2 p

(p+ 1)2

)
;

F ′′2 (0) = F2(0) ·
(
− 6<Λ′

Λ
(1 + 2iT, χ1χ2) + 2

ξ′

ξ
(2)−

∑
p|N

log p

p+ 1

)2

+ F2(0) ·
(

2(
Λ′

Λ
)′(1 + 2iT, χ1χ2) + 6=(

Λ′

Λ
)′(1 + 2iT, χ1χ2)− 4(

ξ′

ξ
)′(2)−

∑
p|N

p log2 p

(p+ 1)2

)
;

F ′′3 (0) = F3(0) ·
(
− logN − 2<Λ′

Λ
(1 + 2iT, χ1χ2)−

∑
p|N

log p

p− 1

)2

+ F3(0) ·
(

log2N + 2<(
Λ′

Λ
)′(1 + 2iT, χ1χ2)− 4(

Λ′

Λ
)′(1− 2iT, χ1χ2) +

∑
p|N

p log2 p

(p− 1)2

)
;

F ′′4 (0) = F4(0) ·
(
− 2<Λ′

Λ
(1 + 2iT, χ1χ2) +

∑
p|N

log p

p− 1

)2

+ F4(0) ·
(

2<(
Λ′

Λ
)′(1 + 2iT, χ1χ2)− 4(

Λ′

Λ
)′(1− 2iT, χ1χ2) +

∑
p|N

p log2 p

(p− 1)2

)
.
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Let ξ(s) = (s− 1)−1 + a+ b(s− 1) +O((s− 1)2) for some a, b, then for η around 0, we have

Ξ1 = +
F1(0)

η2
+
F ′1(0) + 2aF1(0)

η
+
F ′′1 (0)

2
+ 2aF ′1(0) + (a2 + 2b)F1(0) +O(η);

Ξ2 = +
F2(0)

η2
+
F ′2(0)− 2aF2(0)

η
+
F ′′2 (0)

2
− 2aF ′2(0) + (a2 + 2b)F2(0) +O(η);

Ξ3 = −F3(0)

η2
− F ′3(0)

η
− F ′′3 (0)

2
+ (a2 − 2b)F3(0) +O(η);

Ξ4 = −F4(0)

η2
− F ′4(0)

η
− F ′′4 (0)

2
+ (a2 − 2b)F4(0) +O(η).

Thus, the coefficients of the 1
η2 and 1

η
of I2 vanish by cancellation, and its constant term equals

1

2
(F ′′1 (0) + F ′′2 (0)− F ′′3 (0)− F ′′4 (0)) + 2a(F ′1(0)− F ′2(0)) + 4a2F1(0)

=
1

2
(F ′′1 (0) + F ′′2 (0)− F ′′3 (0)− F ′′4 (0)) +

4a2 − 2a logN + 16a<Λ′

Λ
(1 + 2iT, χ1χ2)

ξ(2)ν(N)
.

A well-known fact being
∑

p|N
log p
p

= O(log logN), we have

ξ(2)ν(N)I2 = 4<(
Λ′

Λ
)′(1 + 2iT, χ1χ2) + 16<(

Λ′

Λ
)2(1 + 2iT, χ1χ2) + 16

∣∣∣Λ′
Λ

∣∣∣2(1 + 2iT, χ1χ2)

− 4 logN<Λ′

Λ
(1 + 2iT, χ1χ2) +O

(
logN + log logN

∣∣∣<Λ′

Λ
(1 + 2iT, χ1χ2)

∣∣∣).
Since (Λ′

Λ
)′ = Λ′′

Λ
− (Λ′

Λ
)2, and

PY
Λ′′

Λ
(s, χ1χ2) =

1

4
log2 N

π
+

1

4

Γ′′

Γ
(
s

2
) +

L′′

L
(s, χ1χ2)

+
1

2
log

N

π

Γ′

Γ
(
s

2
) + log

N

π

L′

L
(s, χ1χ2) +

Γ′

Γ
(
s

2
)
L′

L
(s, χ1χ2),

we can see that

ξ(2)ν(N)I2 = log2N+4<L
′′

L
(1+2iT, χ1χ2)+12<(

Λ′

Λ
)2(1+2iT, χ1χ2)+16

∣∣∣Λ′
Λ

∣∣∣2(1+2iT, χ1χ2)

− 4 logN<Λ′

Λ
(1 + 2iT, χ1χ2) +O

(
logN

∣∣∣L′
L

(s, χ1χ2)
∣∣∣+ log logN

∣∣∣<Λ′

Λ
(1 + 2iT, χ1χ2)

∣∣∣),
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and after substituting Λ′

Λ
(s, χ1χ2) = 1

2
logN + 1

2
Γ′

Γ
( s

2
) + L′

L
(s, χ1χ2), we arrive at

ξ(2)ν(N)I2 = 4 log2N + 4<L
′′

L
(1 + 2iT, χ1χ2)

+O
(

logN
∣∣∣L′
L

(s, χ1χ2)
∣∣∣+
∣∣∣L′
L

(s, χ1χ2)
∣∣∣2 + log logN

∣∣∣<Λ′

Λ
(1 + 2iT, χ1χ2)

∣∣∣).
Now we assume GRH. With Lemma 16, we have (note ξ(2) = π

6
)

ν(N)I2 =
24

π
log2N +O(logN log logN).
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5. SUMMARY

As we can see from the previous chapters, we have proved QUE and completed the reduction

to L-functions for all newform Eisenstein series of primitive central characters. In the process,

the simple structure of such Eisenstein series are heavily relied on. To generalize our results

to arbitrary newform Eisenstein series, we will need to study the adelic language of the GL(2)-

automorphic forms. We may do this as time permits in the near future.
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