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ABSTRACT 

 

Occupant behavior has a significant influence on energy consumption in buildings 

because HVAC, lighting, equipment, and ventilation operations are often tied to occupancy-

based controls. However, currently, the traditional methods for the prediction of occupant 

behavior using a building energy modeling approach has begun to face difficulties due to the 

complex nature of occupant behavior and the introduction of the new technologies (i.e., 

occupancy sensors) in new and renovated construction. Research in the previous studies revealed 

that actual occupancy rates in office buildings were quite different compared to typical 

simulation schedules used in the analysis of building codes and standards. Therefore, large 

potential energy use reductions are expected when occupancy-based controls are used in building 

operations. In addition, many workers are recently encouraged to work more at home, which 

may cause larger unoccupied periods for a significant portion of time at a commercial office 

building. This fact further increases the need to better understand various occupancy schedules 

and usage trends in building energy simulations.  

However, currently, the U.S. commercial building energy codes and standards (i.e., 

ASHRAE Standard 90.1) do not fully support building energy modeling for occupancy-based 

controls for code-compliance. Performance paths (i.e., Appendix G method) in Standard 90.1-

2016 offer only partial credits for occupancy-based lighting controls, which tend to 

underestimate the potential reduction from the use of occupancy-based controls. Also, the 

requirements of the ASHRAE Standard 90.1 performance path require the mandatory use of 

identical schedules for the baseline and the proposed design models, which do not present the 

calculation of reduction from occupancy-based controls.  
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Therefore, this study seeks to analyze occupancy-based controls to determine how 

varying factors may impact energy use reduction predictions in commercial office buildings. 

These factors include: different building types (i.e., lightweight versus heavyweight), with 

different system types (e.g., variable air volume versus packaged single-zone systems) by 

orientation (i.e., N,S,E,W) in different climates (e.g., cold and hot climates).   

To achieve the goal of this study, a reference office building was analyzed based on the 

prototype office building model that was developed by the U.S. DOE and PNNL for small office 

building for Standard 90.1-2016. Using this model, different thermal zoning models were 

developed for single-zone and five-zone models to evaluate the impact of occupancy-based 

controls in the prototype office building. The impact of occupancy-based controls was then 

evaluated using simulation to study the influence of occupant behavior on HVAC, lighting, 

equipment, and ventilation system energy use. A sensitivity analysis of each occupancy control 

schedule (i.e., occupancy, lighting, equipment) was performed in 100%-0% variations to 

determine interactions between occupancy variables. In addition, simulations for a set of specific 

occupancy control schedules (i.e., occupancy, lighting, equipment) were conducted in hot-humid 

and cold-humid climate zones with different building designs (i.e., a raised floor lightweight 

building and a heavyweight building with varying window-to-wall ratios) and different HVAC 

system types (i.e., packaged variable air volume versus packaged single-zone systems) to 

identify potential energy use reduction of occupancy-based building controls on annual energy 

consumption. The results showed substantial energy reduction potential from varying factors 

related to occupancy-based controls in commercial office buildings. The evaluation in two 

climate zones showed a range of energy reduction in Houston and Chicago due to the weather-

dependent loads (i.e., heating, cooling, ventilation). Heavyweight material models showed higher 
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percent energy use reduction potential ratios and less energy use compared to the reference 

building and lightweight models. Also, smaller window-to-wall models represented less total 

energy use than higher window-to-wall models, which led to higher energy use reduction ratios 

for smaller window-to-wall ratios. The PVAV systems had higher total load reduction ratios and 

less total energy use than PSZ systems in Houston and Chicago, especially for heating loads. 

Whole-building occupancy-based controls revealed more energy use reduction potential ratios in 

Houston compared to Chicago.  

The impact of orientation was different depending on thermal zone locations. However, 

the impact was not fully analyzed because this study did not evaluate combined occupancy 

sensor controls, daylight controls, and daylighting-based schedules. The largest energy use 

reduction contributors to occupancy modeling were the internal load factors (e.g., lighting, 

equipment). The outcome of this study should help guide the development of a guideline for 

evaluating how occupancy-based building controls can be better incorporated in different 

building types for different climate zones to reach compliance with ASHRAE Standard 90.1-

2016.  
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1. INTRODUCTION 

 

1.1. Background 

In our lives, people spend most of their time in the built environment for their residence 

and business. Representatively, buildings provide many places for physical safety from an 

external environment and a healthy indoor environment for thermal comfort and well-being. 

According to the U.S. statistics (U.S.BLS 2017) in 2017, employees typically consumed most of 

their daily schedules in the buildings. They used an average of 8.39 hours for their business and 

related activities and spent an average of 10.25 hours for household activities, including caring 

and helping household members or personal care like sleeping. These survey results underline 

why architects and engineers should carefully design building environments and effectively 

control building systems for occupants. However, most activities in buildings require energy 

consumption to operate building systems (i.e., HVAC, lighting, appliance, and ventilation).  

As a result, the residential and commercial end-use energy in the United States accounted 

for about 40% of the 2016 total source energy use (97.4 Quadrillion Btu). Commercial buildings 

alone consumed 18.2 Quadrillion Btu, which was equivalent to 18.7% of the total source energy 

consumption (U.S.EIA 2017). Moreover, building systems (i.e., HVAC, lighting, equipment) are 

dominant contributors to energy consumption. For example, HVAC (Heating, Ventilation, and 

Air Conditioning) systems are in charge of  40% of the total commercial end-use energy 

consumption (Azar and Menassa 2012) to maintain healthy and comfortable indoor 

environments, which would be equivalent to 7.28 Quadrillion Btu per year. Also, the 2012 

CBECS data showed energy consumption by building components in U.S. commercial buildings. 

44% of the total energy consumption was reported from HVAC systems to operate heating, 
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cooling, and ventilation systems and 18% of total energy consumption was used for lighting and 

equipment systems in commercial buildings (U.S.EIA 2016).   

On the other hand, in building system operations, occupant behavior is a primary driver 

to determine building usage schedules and control types. However, the nature of occupant 

activities and usage habits in buildings is quite uncertain and unpredictable, which makes 

challenges in building energy simulations to estimate building energy performance accurately. 

Moreover, the effect of occupant behavior is heterogeneous because it is motivated by many 

interactions between occupant behavior-related factors, including indoor factors (i.e., biological, 

psychological, and social factors) and outdoor factors (i.e., place/location, time) (IEA-EBC, 

Annex 66 2013). It could significantly affect the operations of building systems (i.e., lighting, 

equipment, and HVAC systems) and load profiles (Yang et al. 2016, Hong 2014). Thus, the 

simulation assumptions of occupant behavior (i.e., schedule, setpoint-temperature) sometimes 

produced overestimated energy consumption depending on the modeler’s expertise to control the 

indoor environment. However, the current tendency of building simulation approaches 

substantially underrated occupancy modeling and its influence in the building energy use 

(O’Brien and Gunay 2016). Therefore, the energy use reduction of occupant behavior has not 

been thoroughly examined in building energy performance calculations by practitioners in 

design, new construction, and retrofit processes.   

However, in reality, on the practitioner-side, an accurate estimate of a building’s 

occupant behavior is a big challenge because there are no governing rules to understand occupant 

behavior in building energy consumption. Therefore, there is a need to accurately measure 

occupant behavior in buildings is to use occupancy sensors in new and renovated buildings. This 

is now a popular trend across the U.S. to cut down building energy consumption without the loss 
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of indoor comfort. For example, occupancy sensors can be used by building system controls by 

signaling to the building systems when the room is not occupied so the building systems (e.g., 

HVAC) can switch to an energy use reduction in the unoccupied mode. (Yang et al. 2016). 

Therefore, new buildings that installed thermostats with occupancy sensors now have an 

excellent ability to capture additional energy use reduction compared to existing thermostats with 

fixed schedules because of the large amount of time that buildings are unoccupied during regular 

business hours.  

Also, in building designs, building energy simulation plays an essential role in the 

analysis procedure to correctly predict annual energy use and peak building loads to achieve the 

design performance goals and to meet building energy code-compliance for new and existing 

buildings. To perform analytic simulations, schedules are significant elements to represent 

building occupancy and system operation status by day, week, and month for energy 

performance predictions. However, the conventional use of deterministic simulation schedules is 

limited to represent actual building schedules, which use typical weekday and weekend/holiday 

schedules offered from ASHRAE Standards. This is because energy modelers do not often have 

the time or budget to obtain customized schedules for each zone of the proposed building that 

reflects the anticipated occupancy in the respective thermal zones in the building. Therefore, it is 

common practice in the building energy modeling of new commercial buildings to use simplified 

or fixed schedules with little or no regard for the potential energy use reduction such as 

occupancy-based thermostats to design more realistic schedules (Labeodan et al. 2015). As a 

result, it is accustomed to seeing significant discrepancies between the simulated occupancy 

schedule (i.e., fixed schedule) and the measured occupancy schedule in the building (Yang et al. 

2016) as an example in Figure 1.  
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Figure 1. Significant Discrepancies Between Typical and Actual Occupancy Schedules 
 

Therefore, recently, research by (O’Brien et al. 2018a,b,2020; Abdeen et al. 2020) 

pointed out the problems of the current single-type simulation schedules and suggested updates 

to occupancy schedules and modeling methods based on the occupancy-related studies and field 

measurement for new constructions and retrofits in codes and standards.   

In the United States, ANSI/ASHRAE/IES Standard 90.1 is the most commonly used 

commercial building energy standard that provides the minimum efficiency requirements except 

low-rise residential buildings. The latest revision, Standard 90.1-2019 (ASHRAE 2019) offers a 

prescriptive path and two compliance paths for users to meet the code requirements: The 

prescriptive path includes mandatory provisions of selected energy efficiency features of 

building components (i.e., R-values and U-values of insulation, lighting power density, 

occupancy sensor requirements for lighting control, the use of daylighting and the efficiency 

requirements for HVAC systems). The performance path contains two different paths: the 

Energy Cost Budget (ECB) and the Appendix G, Performance Rating Method (PRM).  



 

25 

 

However, in code-compliance for performance paths of Standard 90.1-2019, varying 

occupancy schedules for the proposed model analysis do not receive full credit in Standard 90.1-

2019 because the provisions for building energy modeling require the use of the identical 

occupancy schedules as the standard building. Thus, if someone wants to design occupancy-

based building system controls for better building energy efficiency and energy use reduction, it 

could not be acceptable in the present Standard 90.1-2019 for full credits.  

Therefore, this study seeks to evaluate the impact of occupancy-based building controls 

for different building types (i.e., lightweight, heavyweight), different system types (i.e., PSZ, 

PVAV) with varying window-to-wall ratios in different weather conditions. This will contribute 

to identifying the more potential energy use reductions from occupancy-based controls, which 

currently is not fully supported in Standard 90.1-2019 because of fixed schedules in both the 

proposed and reference buildings. 

 

1.2. Purpose and Objectives 

The purpose of this study is to evaluate the impact of Occupancy-Based Controls (OBC) 

for different building systems (i.e., PSZ, PVAV), different building envelope materials (i.e., 

lightweight, heavyweight), varying designs (i.e., window-to-wall ratio), and different climates 

(i.e., hot and cold climate zones) to develop occupancy modeling credits to improve performance 

paths in building energy codes and standards. To accomplish this goal, this study used U.S.DOE 

and PNNL’s prototype models to develop a reference model and other office model variations 

with different building design and weather conditions. The potential energy use reduction was 

calculated to support the development of occupancy modeling credits for occupancy-based 

controls. The outcome of this study will contribute to the improvement of building performance 
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estimation methods for performance compliance paths in Standard 90.1-2019. The objectives of 

this study are as follows:  

1) Review the previous literature to secure reliable and objective data, facts, information and 

knowledge, such as the influence of schedules in building energy use, occupancy modeling 

methods (i.e., deterministic, stochastic models), commercial prototype building models, code-

compliance in Standard 90.1-2016 (ASHRAE 2016a) and Standard 90.1-2019;  

2) Develop reference models of small office buildings using different architectural design (i.e., 

envelope material, window-to-wall ratio) and HVAC systems (i.e., PSZ, PVAV) in hot-humid 

and cold-humid climate zones to demonstrate the impact of occupancy-based controls in the 

proposed designs compared to conventional building simulations without occupancy-based 

controls;  

3) Determine the impact on energy use using different occupancy usage intensity (100%-0%) for 

the proposed occupancy modeling credits;   

4) Summarize the proposed occupancy-based control credits, using occupancy schedules (i.e., 

occupancy, lighting, equipment), as a reference to develop the occupancy modeling credits for 

the performance paths in ASHRAE Standard 90.1-2019.  

 

1.3. Organization of the Dissertation 

The organization of this study consists of seven chapters, including 1) Introduction, 2) 

Literature review, 3) Significance and limitations of the study, 4) Research methodology, 5) 

Simulation results and analysis, 6) Development of occupancy credits, and 7) Conclusions and 

future works.   
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Chapter 1 presents the background of the study, purpose, and objectives of this study. In 

chapter 2, this chapter provides the review of U.S. building energy codes and standards, 

occupant-related influencing factors in building energy use and their definitions, and what are 

challenges in occupancy-related studies, including occupancy-based building control schedules, 

building evaluation, and energy modeling methods. Chapter 3 shows the significance and 

limitations of this study. Chapter 4 describes the research methodology step-by-step with 

procedure descriptions for this study. DOE-2, as a whole-building energy simulation program, 

was used to develop reference building analysis models based on the PNNL commercial building 

prototype models for Standard 90.1-2016 that were the latest prototype model version for 

Standard 90.1 posted in 2019. Also, this chapter discusses the analytical approaches and 

development approaches to quantify the impact of occupancy-based building controls (i.e., 

HVAC, lighting, and equipment) and develop occupancy-based building control credits. Chapter 

5 calculated the energy performance of occupancy-based building control in DOE-2.1e models 

that were derived from the PNNL models in EnergyPlus. This chapter computed the influence of 

building occupancy in building energy use in different building design and system conditions 

using reference building models. Based on the analysis results, Chapter 6 developed occupancy-

based control credits to provide a reference for the future improvement of the modeling methods 

for code-compliance in Standard 90.1-2019. Chapter 7 summarizes this research and provides 

conclusions of this study in terms of the impact of occupancy-based building control and 

proposed credits. Future work is also described for further study to improve this research.  
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2. LITERATURE REVIEW 

 

2.1. Building Energy Codes and Standards 

In need of energy savings, building energy codes and standards are regarded as effective 

approaches in many countries to regulate minimum building energy performance. For example, 

in the U.S, building energy codes and standards have led to an overall energy efficiency 

improvement in buildings across the states. The improvement of Standard 90.1-2016 slashed 

34.2% of energy cost and consumption in commercial buildings on a national scale against 

requirements in Standard 90.1-2004 (Liu et al. 2018). Besides, the recent tendency of these codes 

and standards is becoming more stringent and enforcing high-performance building designs 

using design approaches and improved technologies to meet intensified code requirements. 

Therefore, this chapter reviewed the previous literature of building codes and standards in the 

U.S, including the history; the description of performance paths in ASHRAE Standard 90.1-2019 

(i.e., Energy Cost Budget (ECB) Method, Appendix G Performance Rating Method (PRM)); the 

features of ASHRAE Standard 90.1-2019 and details of code-compliant modeling. 

 

2.1.1. The History of Building Energy Codes and Standards  

In history, the U.S. has developed and adopted numerous building energy codes and 

standards since the 1970s. For example, the American Society of Heating, Refrigerating, and 

Air-Conditioning Engineers (ASHRAE) and the International Code Council (ICC) are 

representative entities that are in charge of developing building energy codes and standards (i.e., 

ASHRAE Standards, IECC codes) for the code enforcement community (Bartlett et al. 2003).  
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The first building energy codes in the U.S. appeared in the 1970s to respond to energy 

security problems caused by oil embargos. During the period, significantly limited oil supplies 

and increasing energy prices pressed governments for the development of building energy codes 

to improve energy efficiency in buildings. As a result, in February 1974, the National Bureau of 

Standards (NBS, now the National Institute for Standards and Technology, NIST) published a 

first energy-conserving guideline, the NBSIR 74-452, Design, and Evaluation Criteria for 

Energy Conservation in New Buildings. The NBSIR 74-452 offered a component performance 

approach and prescriptive provisions to design HVAC and lighting systems with three 

compliance paths: 1) A prescriptive path, 2) A performance path with equal or higher 

performance than the basic prescriptive design, 3) An alternative path including a credit for 

renewable energy. Soon after this, ASHRAE took charge of the development of national building 

energy standards and firstly published Standard 90-75, Energy Conservation in New Building 

Design in 1975 for residential and commercial buildings with technical support from the 

Illuminating Engineering Society (IES). In 1980 a revised edition of Standard 90-75 was 

published as ANSI/ASHRAE/IES 90A-1980 that provided revised Sections 1 through 9 of 

Standard 90-75 (Hunn et al. 2010). The new revision of Standard 90-75 was accomplished by 

splitting the standard into three parts: 1) 90A-1980 for the prescriptive path (Sections 1 to 9 of 

90-75), 2) 90B-1975 for the alternative performance path (Sections 10 and 11 of 90-75), and 3) 

90C-1977 (Section 12) for “annul fuel and energy resource determination” (ASHRAE 1980). In 

1982, ASHRAE further divided the original Standard 90 A,B,C Standards into a commercial and 

a residential standard, which were called Standard 90.1 and 90.2 Standards (Halverson et al. 

2009, Hunn et al. 2010). 
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In 1992, the U.S. Energy Policy Act of 1992 (EPACT) became effective. This Act 

required all state governments to institute building energy codes. Besides, the EPACT indicated 

that state governments should upgrade their energy codes to meet or exceed Standard 90.1. After 

the 1992 EPACT, ASHRAE developed Standard 90.1-1999, the next revision to Standard 90.1-

1989 (Hunn et al. 2010).  

In 1999, the ASHRAE Board of Directors approved continuous maintenance on the 

standard to correspond to the publication update periods of the International Energy 

Conservation Code (IECC). Accordingly, in 2001, Standards 90.1-2001 commercial and 90.2-

2001 residential were published as the first revised standards under continuous maintenance. 

Following this, five revisions were published every third year, beginning in 2004 through 2019 

(2004, 2007, 2010, 2013, 2016, 2019). Standard 90.1-2016 firstly allowed Appendix G to be 

used as a performance path for compliance with the standard. Finally, of importance to this 

study, the performance path Appendix G in 90.1-2016 introduced a credit for occupancy sensors 

by lighting power allowance changes that more efficiently control lighting fixtures when spaces 

were not occupied or partially occupied. In Standard 90.1-2019, there was no more update 

further for occupancy-based controls in performance paths.  

Figure 2 depicts the status of code adoption by U.S. state governments (U.S.DOE 2020). 

Most states typically adopted Standard 90.1 for commercial buildings. However, there are still 

many states that have not adopted the latest building energy codes, which could lead to 

inefficient building performance and energy waste for system operations due to no 

considerations about the recent code changes. More information for the history of building 

energy codes and standards is detailed in Appendix C.  
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Figure 2. Status of State ASHRAE 90.1 Adoption (as of June 2020) 
 

2.1.2. The Features of ASHRAE Standard 90.1-2016 and 90.1-2019   

Standard 90.1-2016 included significant changes compared to the previous Standard 90.1 

published in 2013 (ASHRAE 2013,2016a). The main changes to the application of the 

performance paths are organized into three parts: (1) a new metric for the Appendix G; (2) a new 

fixed performance of the baseline design beyond versions of the standards; and (3) a new credit 

for occupancy sensors for lighting system controls. In the first change, the new Appendix G 

performance path introduced a new metric, the Performance Cost Index (PCI) that can be used to 

rate the designed building performance through whole-building energy simulation. In the second 

change, the new Standard 90.1-2016 set Standard 90.1-2004 as the baseline building energy 

performance level. Therefore, this indicates that the baseline design from the 2016 edition can be 

analyzed as a particular level of energy performance in Standard 90.1-2004, which allows the 

user to perform a more objective evaluation of a building rating when using updated standards. 
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Last but not least, in Standard 90.1-2016, the new modification from addenda dx to Standard 

90.1-2013 gives occupancy sensors credits to reduce lighting power allowances using the Space-

by-Space Method (ASHRAE 2016a, Table G3.7). For example, Table G3.7 (See Appendix B) 

presents the range of the reduction to the lighting power density for space with occupancy 

sensors, depending on common space type (i.e., Auditorium, atrium, hotel, and office). Such a 

lighting power allowance reduction can be calculated by multiplying the occupancy sensor 

reduction factor times the lighting power density. This flexible rating method enables designers 

to create more opportunities to save lighting energy in commercial buildings.  

In 2019, ASHRAE published a new Standard 90.1-2019 (ASHRAE 2019). The latest 

version of Standard 90.1 included updates in the prescriptive provisions of building envelope, 

lighting, and mechanical sections. In summary, the minimum criteria of SHGC and U-factor for 

fenestrations were updated in all climate zones. Also, lighting power allowances for the Space-

by-Space Method and the Building Area Method were upgraded to represent real-world 

conditions, including IES recommendations. In occupancy sensor reduction of the Space-by-

Space Method, there were no significant changes in occupancy credits for lighting systems in 

performance paths.  

  

2.1.3. Code-Compliant Performance Paths of Standard 90.1-2019 

In Standard 90.1-2019, there are two performance paths for code-compliance: (1) the 

Energy Cost Budget (ECB) Method; and (2) the Appendix G: Performance Rating Method 

(PRM). The ECB method is an existing performance path to provide an alternative to the 

prescriptive path in Standard 90.1. The Appendix G Method was a newly approved performance 

path in the 2016 version of 90.1. The previous Appendix G Method in ASHRAE 90.1-2013 was 
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to be used solely for building performance in beyond-code programs. In the next two chapters of 

this study, the code-compliance requirement of the two performance paths in Standard 90.1-2016 

and Standard 90.1-2019 is reviewed.  

 

 

Figure 3. ASHRAE 90.1-2019 Code-Compliance Paths 
 

2.1.3.1. Energy Cost Budget (ECB) Method    

The Energy Cost Budget (ECB) method is an alternative performance path to comply 

with Standard 90.1-2019. For compliance of the ECB method, the proposed design must first 

satisfy all provisions of Section 5.4 through Section 10.4 and show that the design energy cost 

(i.e., the proposed design) is at least equal to or less than the energy cost budget (i.e., baseline 

design), as calculated by an approved hourly, whole-building energy simulation program. The 

energy simulation programs that are used to calculate the ECB method must be computer-based 

programs, such as DOE-2, TRNSYS, and EnergyPlus, which must be tested with ASHRAE 

Standard 140-2014 (ASHRAE 2014a). Such programs directly compare the annual hourly-
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simulated design energy cost and the annual hourly-simulated baseline energy cost to determine 

if a building complies with the codes.  

In the ECB method, the simulation design model shall be identical with the baseline 

model in input parameters (i.e., weather data, thermal blocks or zoning, and schedules) and all 

features except the new energy efficiency features of the building. Finally, the results of both the 

design energy cost and the baseline energy cost must be compared using purchased energy rates 

(ASHRAE 2013b, 2016a, 2019).   

 

 
Figure 4. Code-compliance Requirement for the Energy Cost Budget (ECB) Method  

 

2.1.3.2. Appendix G: Performance Rating Method 

Appendix G: Performance Rating Method was approved as a new simulation-based 

performance path in Standard 90.1-2016. This is the result of a recent revision (Addendum bm) 

to Standard 90.1-2013 (Rosenberg and Eley 2013, ASHRAE 2015a). Before Standard 90.1-2016, 
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the Appendix G was only allowed to be used to evaluate the energy performance of a proposed 

design for “beyond code” programs, such as the Leadership in Energy and Environmental Design 

(LEED) for green building rating (USGBC 2017), Standard 189.1-2014: the Design of High-

Performance Green Buildings Except Low-Rise Residential Buildings (ASHRAE 2014b), and the 

International Green Construction Code (ICC 2015b). Currently, Standard 90.1-2019, the 

Appendix G is a more flexible performance path than the ECB method in the procedures used in 

the computer simulation modeling to design energy-efficient buildings that exceed the Standard 

requirement (ASHRAE 2016b, ASHRAE 2014c, Rosenberg and Hart 2016, ASHRAE 2019). 

For example, the Appendix G in Standard 90.1-2019 allows changes to lighting power 

allowances for the improved lighting controls using occupancy sensors, whereas HVAC controls 

using occupancy sensors are not allowed.  

Also, in 2016, the Appendix G introduced the Performance Cost Index (PCI) metric for 

code-compliance that is referred to the provisions of Section 4.2.1.1 of ASHRAE Standard 90.1-

2016 and 90.1-2019. In the PCI method, the Performance Cost Index Target (PCIt) shall not 

exceed the Performance Cost Index (PCI) using the equation provided by the Appendix G for the 

proposed design. Also, the design building shall comply with all mandatory provisions of 

Section 5.4 through Section 10.4 and meet the requirements of the interior lighting power 

allowance. Of this study, even though the Appendix G Method also assumed equivalent 

conditions similar to the ECB method, such as the modeling requirements of thermostat 

schedules, equipment schedules, and space classification to compare the results of the proposed 

building performance to the baseline building performance, it allows different schedules between 

the proposed design and the baseline building only in limited cases such as designing non-

standard buildings (ASHRAE 2016a, 2019).  
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Figure 5. Code-compliance Requirement for the Appendix G Method 
 

2.1.4. Details for Code-compliant Modeling 

There are two performance paths in Standard 90.1-2019: the ECB method and the 

Appendix G: Performance Rating Method (PRM) that are used to evaluate a proposed building’s 

energy efficiency using computer-based whole-building energy simulations. Both computer-

based energy modeling methods contain the procedures to meet minimum requirements in 

Standard 90.1-2019, which could assist the process of developing code-compliant models and 

securing the total reliability of analysis results. Also, these two performance paths provide their 

own requirements from simulation program selections to energy modeling to yield acceptable 

results in simulations for code-compliance. This chapter reviewed the details of the energy 

modeling requirements for performance paths in Standard 90.1-2019, which should be utilized 

for a case study in this study.  
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2.1.4.1. The ECB Method: Modeling Requirements for Estimating Energy Cost Budget 

The compliance calculation in the ECB method is based on a computer-based program to 

analyze building energy consumption. Simulation programs for compliance must be approved by 

the related authorities and meet minimum simulation program requirements (Section 11.4.1) in 

the ECB method for building energy modeling. In the ECB method, two designs are used to 

compare energy costs between the baseline and the proposed designs: energy cost budget (i.e., 

baseline design) and design energy cost (i.e., proposed design). Simulation users using this path 

must set up identical conditions in the simulations for code-compliance, including weather data 

and purchased energy rates.  

The requirements for occupancy-based building modeling of Table 11.1.5 in Standard 

90.1-2019 in the ECB method are listed below. Additional details for modeling specifications are 

continued in Table 11.5.1 in Standard 90.1-2019:  

 

 The baseline design (budget building) is a modification of the proposed design that shall be 

identical with the design documents, including details about fenestration, opaque walls, 

lighting power and control, and HVAC system information.   

 The same schedules shall be used for the proposed design and for budget building design.  

 For the building envelope, the budget building design shall use the same conditioned floor 

area and the same building dimensions and orientations with the proposed design.  

 The lighting schedules shall follow the automatic lighting control requirements in Standard 

90.1-2019, which shall also be equally applied to the budget building design (baseline 

model). 
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 Thermal blocks (i.e., thermal zoning) for designing an HVAC system shall be the same for 

the budget building design. The HVAC system efficiency shall meet or exceed the minimum 

prescriptive requirement.  

 

2.1.4.2. Appendix G. Method: Modeling Requirements for Rating Energy Performance  

In Standard 90.1-2019, the performance calculation in the Appendix G method exploits 

different concepts than the ECB method to represent the baseline and the proposed designs, 

which includes the Performance Cost Index (PCI, proposed design) and the Performance Cost 

Index Target (PCIt, baseline design). The PCI represents the ratio of the proposed building 

performance to the baseline building performance. The performance requirement for the 

proposed design shall not be more than the PCIt value that would be calculated by using the 

equation and tabulated data in Section 4.2 in Standard 90.1-2019, which offers the energy cost 

and Building Performance Factor (BPF) as shown in Appendix A (ASHRAE 2016a).  

The energy modeling requirements of Table G3.1 in Standard 90.1-2016 for the 

Appendix G method are shown below. Additional details for modeling specifications are 

included in Table G 3.1 in Standard 90.1-2019:  

 

 The floor area of the baseline design model in the Appendix G method is identical to the 

floor area of the proposed design model. The proposed design can be adjusted and compared 

to the baseline design (i.e., envelope properties and areas, fenestration, walls, lighting, and 

HVAC system design, types, and controls).  

 The schedules of the baseline design shall be configured using the same schedules in the 

proposed design. Unlike the ECB method, the Appendix G method allows two exceptions:  
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1) set-points and schedules may be altered when using the methodologies of ASHRAE 

Standard 55-2013, Section 5.3.3 “Elevated Air Speed” or Appendix B of ASHRAE Standard 

55-2013, “Computer program for Calculation of PMV-PPD”.  2) The schedule may be varied 

when required to use non-standard efficiency measures, using the modified schedules 

approved by an associated authority.  

 The building envelope shall use the identical conditioned floor area and the same building 

dimensions as the proposed design. The orientation of the baseline model shall simulate the 

actual orientation and rotated orientations of: 90, 180, and 270 degrees; with the performance 

being the average of the results of the four orientations.  

 Lighting schedules for automatic lighting controlled by occupancy sensors shall be simulated 

by cutting down the lighting schedule each hour based on the occupancy sensor reduction 

factors and space types.   

 Thermal blocks for HVAC zones in the proposed design are identical with the baseline 

design. The baseline HVAC systems shall be developed as complying with the description of 

Section G3.1.1-G3.1.3 in Standard 90.1-2019.  

 

2.1.4.3. Occupancy Modeling for Codes and Standards 

Currently, occupant modeling in building performance simulations is an emerging 

research area and has hardly started into practice or building codes and standards (O’Brien et al. 

2018b, O’Brien et al. 2020a). However, most building energy codes and standards’ performance 

paths implicitly assume buildings under steady and near-capacity occupancy conditions, 

although these schedules are not actual operating conditions. As a result, buildings are not prone 

to be designed with optimal energy performance in the actual building usage of partial and 
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fluctuating occupancy (O’Brien and Gunay 2019). Therefore, many academic discussions and 

research studies are recently in progress to improve occupancy modeling in codes and standards, 

including O’Brien et al. (2018a,b), O’Brien et al. (2020a), and Abdeen et al. (2020).  

First, O’Brien et al. (2018a,b) provided a brief roadmap that is being developed for 

advancing detailed occupant modeling in building codes and standards. This paper and report 

developed the roadmap based on a survey of building energy simulation users, a stakeholder 

workshop, and the literature for better occupant modeling. The roadmap was based on a 

technology roadmap guide from the International Energy Agency, such as goals, milestones, 

gaps and barriers, action items, and priorities and timelines. In their research, six methods were 

suggested as below to incorporate improved occupant modeling into building codes and 

standards.  

 

• Revision of prescriptive requirements based on occupant simulation research or the literature 

• New prescriptive requirements based on occupant simulation research 

• Update of simulation schedules and densities using the latest field measurements 

• Update of simulation schedules or the introduction of new schedules developed from 

occupant simulation-related studies  

• Update of mandatory procedural changes regarding occupant modeling 

• Development of specified occupant modeling approach (i.e., instead of schedules) 

 

For example, O’Brien et al. (2018a, 2018b) suggested multiple occupant scenarios for 

occupancy, receptacles, and lights instead of a single standard simulation (both for baseline and 

proposed building models). Multiple occupant scenarios can be applied by multiplying 
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simulation schedules by 0.75, 1.0, and 1.25. Also, for updating schedules from simulations, these 

studies recommended a decision tree based on parametric simulations depending on design 

variables and climate to apply quasi-custom schedules (i.e., high-use, average-use, low-use).  

In another study from IEA-EBC Annex 79, O’Brien et al. (2020a) investigated 23 

regions’ building energy codes and standards from the viewpoint of quantitative aspects (i.e., 

schedules, densities, and setpoints) and mandated requirements and approaches. This review 

found extensive occupant-related values, approaches, and attitudes. For instance, substantial 

variations were revealed across the codes concerning the occupancy, lighting, and equipment 

power density values. This fact highlights the need for developing occupant behavior modeling 

approaches for occupancy-based building performance codes and standards. In addition, 

occupants are often shown only implicitly, and expectations about energy use reduction from 

occupant behavior vary greatly. Only a few codes considered occupant feed-back and system 

usability. Based on the findings of the review, this study recommended three points as below for 

future building energy codes:  

 

• More in-situ studies to gather long-term data in various contexts (i.e., countries, building 

types) to advance confidence of both simulation schedules (and densities) and more 

improved occupant models (i.e., agent-based and dynamic) 

• More in-situ and simulation studies to update prescriptive requirements, such as control zone 

sizes, control algorithms, and building system usability 

• International committee to review building energy codes and standards, including occupant-

related aspects.  

 



 

42 

 

Lastly, Abdeen et al. (2020) conducted a comparative review of occupant-related energy 

aspects of the National Building Code (NBC) of Canada. This study explored the current 

occupant-related assumptions in the National Building Code (NBC) of Canada in comparison 

with other data sources. Six parameters were selected for the review (i.e., setpoint temperatures, 

domestic hot water (DHW) use, appliances lighting and plug loads, internal heat gains, 

mechanical ventilation, and the number of occupants). Each parameter was compared using 

available data sources against the NBC assumptions. Researchers found that a variety of code 

assumptions substantially differed from findings in recent measurement-based research, such as 

temperature setpoints, total daily volume and hourly schedule for DHW. Internal heat gains 

showed a similar profile in the available data as NBC, excepting the absence of morning peak 

hours. Based on the findings, this study recommended potential updates of NBC using one of 

four approaches: 1) update code values (e.g., setpoint temperatures), 2) update the code values 

depending on home-specific characteristics (e.g., the number of bedrooms for DHW 

consumption), 3) update code schedules (e.g., internal heat gains), or 4) supplement additional 

requirements and specifications (e.g., application and plug loads).  

In the literature review, previous and ongoing studies pointed out the problems of the 

current standard schedules (i.e., single schedule, discrepancy between the actual and the 

proposed) and the need for updating simulation schedules based on the extensive field 

measurement. Also, multiple schedule scenarios were suggested as one of the examples to 

improve the codes and standard schedules. Therefore, based on the literature review, occupancy-

based controls using different usage densities (i.e., OBC 100%-0%) can be an effective approach 

for improving the simulation schedules in codes and standards.   
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2.1.4.4. Code-compliant Building Performance Simulation (BPS) Tools  

Building systems (i.e., lighting, equipment, HVAC) accounted for 64% of the total 

energy use of U.S. commercial buildings (Davis 2016, U.S.EIA 2016). Over the last 30 years, 

numerous energy simulation programs have been developed over the years to enable users to 

more accurately predict and advance building energy performance while saving energy cost and 

design time. Currently, there are many different simulation programs available for code-

compliant whole-building energy analysis, including EnergyPlus (NREL 2017), DOE-2.1e (LBL 

1991), eQUEST 3.65 (JJH 2018), and TRNSYS (TESS 2017).  

For code-compliance in performance paths, general requirements are defined in Standard 

90.1-2019 that describes the minimum abilities of whole-building energy simulation programs to 

be used in the performance evaluations. In accordance with the ECB Method in Standard 90.1-

2019, energy simulation programs must be capable of load calculations for a minimum of 1,400 

hr/yr for both the design energy cost and energy cost budget calculations and contain hourly 

variations of loads (i.e., occupancy, lighting power).  

 

 

Figure 6. Whole-Building Energy Simulation Tools for Code-Compliance 
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Figure 7. Simulation Program Requirements in the ECB Method 
 

 

Figure 8. Simulation Program Requirements in the Appendix G Method 
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On the other hand, energy simulation programs in the Appendix G. Performance Rating 

Method must cover load calculations for a minimum of 8,760 hr/yr and the baseline building 

performance and proposed building performance with hourly variations. In both the ECB and the 

Appendix G methods, the simulation programs for both performance paths must be tested using 

Standard 140-2014, Standard Method of Test for the Evaluation of Building Energy Analysis 

Computer Programs, except Section 7 and 8. However, the current requirements for simulation 

programs do not incorporate the functions of actual usage schedules for occupancy, HVAC and 

lighting system (ASHRAE 2014a, 2016a, 2019), which might cause constraints and uncertainties 

in the results of building energy modeling and simulations that block to reduce discrepancies 

from actual energy consumption in buildings.  

Therefore, it is essential to understand the functions and features in selections of whole-

building energy simulation programs to develop proper code-compliant models for different 

performance paths in Standard 90.1-2019. Additional detailed description for building energy 

simulation tools is represented in Appendix F.  

 

2.1.4.5. Summary  

In summary, even though Standard 90.1 provides two performance paths for code-

compliance using computer-based simulations, there are some limitations to obtain the 

occupancy-based building control credits in both performance paths. For example, the current 

ECB method offers no direct credit for occupancy-based building controls in the energy 

modeling method, and the Appendix G method uses a fixed credit from Standard 90.1-2019 only 

for occupancy sensor reductions in the space-by-space method to calculate the lighting power 

allowance and schedules. In this respect, it can be concluded as the ECB method has more 
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difficulties in representing occupancy-based building controls for lighting, HVAC, and other 

building systems, which might leave out the energy use reduction potential for occupancy-based 

controls and deprive architects and engineers of the credits of emerging technologies for code-

compliance in Standard 90.1-2019.  

Therefore, these days, researchers began their discussion to improve occupancy modeling 

in building codes and standards. Despite the significant role of building energy codes and 

standards in occupancy modeling, the occupant-related aspects are typically studied simply and 

have been overlooked in the leading research. Only a few studies investigated occupancy-based 

controls of building energy codes and standards and made potential recommendations for future 

codes and standards. These studies commonly pointed out the needs to update the current 

standard schedules and introduce options to express multiple usage levels of simulation 

schedules for more realistic simulations.  

In terms of code-compliant simulation programs, there are many whole-building energy 

simulation tools (i.e., DOE-2.1e, eQUEST, and EnergyPlus) available to meet the requirements 

of both performance paths in Standard 90.1-2019. However, these programs mostly model 

predetermined and static schedules as input parameters, which do not easily capture varying 

actual schedules or stochastic models for simulations.   
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2.2. Influence of Occupancy Schedules in Building Performance Simulations 

In building energy consumption, occupant behavior is one of the influential factors. This 

affects building system operations and usage patterns. Therefore, there have been many previous 

efforts to identify occupant behavior in building energy consumption to economize on energy 

cost without the loss of occupant comfort. This chapter describes the previous and ongoing 

projects and research, including the topics of occupant behavior, schedule development, and the 

influence of the occupancy schedules in the building energy performance.  

In the previous and ongoing occupant behavior research, there are two major entities that 

have dominated occupant behavior research: the International Energy Agency-Energy in 

Buildings and Communities Programme (IEA-EBC) and ASHRAE Multi-Disciplinary Task 

Group on Occupant Behavior in Buildings (MTG-OBB).  

Firstly, the global collaborative research project group, IEA-EBC Annex 53: Total 

Energy Use in Buildings: Analysis and Evaluation Methods, identified that occupant behavior 

and related activities occupied a large portion of the discrepancy between the proposed and the 

actual energy use. They defined six reasons that could generate the discrepancy: 1) climate, 2) 

building envelope, 3) building equipment, 4) operation and maintenance, 5) occupant behavior 

and 6) indoor environmental conditions. Among these reasons, the last three are categorized as 

occupant influenced factors (IEA-EBC, Annex 53 2016). Such facts have motivated many 

researchers to acknowledge the importance of predicting and accurately modeling occupant 

behavior to optimize the operations of buildings, particularly in lighting and HVAC systems (i.e., 

IEA-EBC, Annex 66 2018, ASHRAE 2018).  

In addition, in 2013, the IEA approved a continuing project group of the Annex 53, the 

Annex 66: Definition and Simulation of Occupant Behavior in Buildings for 2013-2018, which 
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aimed at identifying a standard occupant behavior and developing a quantitative analysis 

approach for occupant behavior to predict the influence of occupant behavior associated with 

building energy use and indoor environment. The Annex 66 established five subtasks: a) 

occupant movement and presence models in buildings; b) occupant action models in residential 

buildings; c) occupant action models in commercial buildings; d) integration of occupant 

behavior models with building energy modeling programs; and e) applications in building design 

and operations. The Annex 66 also studied occupancy diversity in both energy modeling and 

analysis as an essential factor to estimate building energy performance as this affects the 

operation of the building HVAC systems (IEA-EBC, Annex 66 2013). In 2018, the Annex 66 

published a final report with several deliverables (IEA-EBC, Annex 66 2018, 2017b, 2017c, 

2017d). Their final report package has a significance as comprehensive research of occupant 

behavior in building energy use. It includes plentiful information and reviews based on their 

surveys, participants’ studies, and previous literature. The reports described methods for 

collecting occupant data, modeling methods of occupant behavior, the development of occupant 

behavior modeling tools and integration into building energy performance programs (i.e., 

EnergyPlus), and an international survey in workspaces.  

Shortly after the Annex 66 was formed, ASHRAE launched the Multi-Disciplinary Task 

Group on Occupant Behavior in Buildings (MTG-OBB) that was recognized at the Orlando 

conference in January 2016, and it has developed now developing the Research Topic 

Acceptance Requests (RTARs) associated with occupant behavior (ASHRAE 2016c, 2017c). As 

part of this effort, in the 2018 ASHRAE winter conference at Chicago, Technical Committee 

(TC) 7.5 reported a plan to develop a new RTAR for occupancy-based HVAC control (ASHRAE 

2018). The MTG-OBB meeting at 2019 ASHRAE winter conference in Atlanta addressed that 
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various the RTARs and the work statements had been discussed to develop occupant behavior-

related research projects, including Work Statement 1811 - Determining Occupancy Patterns in 

Clusters of Buildings with Data Drawn from Web-Based Social Media, Work Statement 1815 - 

Integrating Occupant Behavior Data into Building Performance Simulation, RTAR 1870 - 

Investigating Occupant Energy Behavior and Building-Human Interaction in Office Buildings, 

RTAR new (TC 4.7) - Baseline modification when building behavior changes, RTAR 1859 (TC 

2.8) - Residential Water Fixture Use Schedules based on Measured Occupant Behavior, and URP 

- Global occupancy database. Also, the MTG-OBB is trying to update ASHRAE publications to 

create new chapters of occupant behavior. For example, 2019 Handbook HVAC Applications 

introduced a new description of occupant-centric sensing and control, and 2021 Handbook 

Fundamentals will include a new chapter of occupant modeling and simulation. The efforts of 

occupant behavior in the MTG-OBB have been massively expanding in collaboration with other 

ASHRAE TCs and research entities since 2016.  

In addition to the MTG-OBB activities, as a partner of the Annex 66, the Occupant 

Behavior Research at Lawrence Berkeley National Laboratory (LBNL), funded by the U.S. 

Department of Energy (DOE), developed a web application for generating more realistic 

occupant schedules for commercial buildings based on the Database for Energy Efficiency 

Resources (DEER) building prototypes to represent the occupants’ diversity and stochastics 

(LBNL 2017). The primary research goals of the LBNL effort are 1) to collect occupant 

behavior-related data and develop tools; 2) to simulate and quantify the influence of occupant 

behavior; 3) to improve policymaking related to occupant behavior on building energy 

consumption; and 4) to contribute to codes and standards (i.e., Standards 55, 62, 90 and 189 

through the ASHRAE MTG.OBB, and the ASHRAE Handbook-Fundamentals) (LBNL 2018).  
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Last but not least, a new IEA-EBC Annex 79: Occupant-Centric Building Design and 

Operation began their study in fall 2018 for the 2018-2023 period right after the Annex 66 was 

terminated in May 2018. The purpose of this project is to incorporate occupancy and occupant 

behavior into the architectural design procedure to advance building energy performance without 

the loss of occupant comfort and usability. Given this objective, this project group has four 

specific subtasks posted on their website as following (IEA-EBC, Annex 79 2018): Subtask 1 is 

aiming to investigate multi-aspect environmental occupant exposure and its influence on 

occupant behavior and comfort in buildings. It includes a study of building interfaces to research 

the usability, occupant comfort, and energy implications as well. The scope of Subtask 2 is to 

explore and develop approaches and programs for modeling data-driven Occupant Presence and 

Action (OPA) analysis. For this, machine learning techniques (i.e., supervised and unsupervised 

learning algorithms) will be focused on developing new models and information for multi-aspect 

environmental exposure, building interfaces, and human behavior. The purpose of Subtask 3 is to 

develop improved approaches for existing occupant models that could consider comfort, 

usability, and energy performance to accomplish high-performance designs. In addition, Subtask 

3 will develop implications for both prescriptive and performance paths of building energy codes 

and standards in collaboration with the ASHRAE MTG-OBB. The goal of Subtask 4 is to 

investigate and validate occupant-centric building controls, which will expose practical 

difficulties concerning the implementation of occupant-centric building controls in existing 

buildings. The results from this Subtask will quantify the potential possibility for improved 

occupant comfort and more energy use reductions through occupant-centric building controls. 

In brief, since 2013, many research studies and collaborative projects have verified the 

significance of building occupancy in building energy performance and simulation prediction. 
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Moreover, the new ongoing project Annex 79 established a plan for their research subtasks, 

including political suggestions for the current codes and standards to improve both prescriptive 

and performance paths of occupant-centric building controls in cooperation with ASHRAE 

MTG-OBB. However, even though the research goals have sought to get a better understanding 

of occupant behavior for tool development and proposing new approaches or political 

implications, they have not explicitly developed and published a method to include credits for 

occupancy-based building controls in commercial building energy codes and standards.  

 

2.2.1. Influence of Occupancy-Based Lighting Control 

Occupancy sensors have come into extensive use with the availability and usability of 

occupancy-based lighting controls to optimize building system operations and maximize 

electricity use reduction in commercial buildings. The increased use of the occupancy sensors 

has allowed researchers to verify the energy use reduction from occupancy-based building 

controls in office spaces, including Guo et al. (2010), Haq et al. (2014), Hoes et al. (2009), 

Thornton et al. (2011), and Yan et al. (2015).  

In previous studies, researchers indicated the problems in the use of fixed and simplified 

schedules for energy calculations (Hoes et al. 2009, Yan et al. 2015). Hoes et al. (2009) reported 

that the simulation in building simulations frequently utilized static occupancy schedules that 

were expressed as a fraction of the total occupancy. Also, Yan et al. (2015) reported that 

simplified schedules in simulations did not represent the actual influence of occupancy in energy 

modeling and analysis. Guo et al. (2010) addressed occupancy-based lighting control that 

showed a 30% total energy savings using occupancy sensors that controlled lighting systems in 



 

52 

 

buildings. Such a fact indicates that there is a large gap between the current simulation schedules 

and measured building schedules from occupancy sensors for lighting controls.  

In other studies, the results of occupancy-based lighting controls demonstrated substantial 

energy use reduction potential, depending on the system types and controls (Haq et al. 2014, 

Thornton et al. 2011).  Haq et al. (2014) stated that lighting savings depend on the type of 

occupancy controls when comparing the results to previous research. This study showed 

considerable energy savings potential when applying actual occupancy in lighting systems. Also, 

Thornton et al. (2011) presented a quantitative analysis of the 53 addenda discussed in ASHRAE 

Standard 90.1-2007 and 2010. Of the 53 addenda, addendum 90.1-07x only addressed with 

lighting controls and efficiency. In the simulation results of this addendum, the time delay within 

30 minutes showed 22% savings for private offices. This study also pointed out that control types 

(i.e., manual-on/off, automatic shut-off) and the proportion of daylight perimeter space also 

affected the amount of savings under occupancy-based lighting controls.  

In summary, previous studies were reviewed to inspect the problems of existing 

simulation schedules and the energy savings potential from occupancy-based lighting systems. 

The previous literature studies reported that 22% to 30% of energy savings were expected from 

occupancy-based lighting controls. This implies that occupancy-based building controls for 

lighting systems provides significant potential for improving building energy efficiency. 

 

2.2.2. Influence of Occupancy-Based HVAC Control 

Many studies have analyzed the impact of occupancy-based thermostat controls in 

diversified settings to acquire a comprehensive understanding of HVAC system operation. In 

these studies, researchers focused on several topics: for example, occupancy variables (i.e., 
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presence, business type, gender), advanced sensing technologies (i.e., accuracy, layout), control 

(i.e., set-points, set-back) and modeling methods (i.e., schedules). This chapter reviewed the 

previous studies that analyzed the effectiveness of occupancy-based HVAC controls for office 

building energy modeling, including Azar and Menassa (2012), Brooks et al. (2014), Glazer 

(2015), Haberl et al. (2015, 2016) and Shin et al. (2017).    

In 2012, Azar and Menassa (2012) studied the influence of occupancy in office buildings 

using building energy simulation by reviewing nine characteristics (i.e., after-hours equipment 

use, after-hours lighting use) of typical office buildings. This study selected 30 typical 

representative buildings in the U.S. to verify energy sensitivity using parametric combinations of 

building occupancy. The result of the study found a considerable influence in building energy 

use from the occupant behavior in office buildings. Combined parameter variations showed up to 

a 23.6% change in building energy performance compared to the base-case models.  

In another study conducted by Brooks et al. (2014), researchers monitored occupant 

presences in office spaces using wireless systems. The experiment was performed in a 

commercial building at the University of Florida employing the Measured Occupancy-Based 

Set-back (MOBS) controller for the HVAC equipment that reduced the air flow rate when the 

spaces were unoccupied. The result found a potential for energy savings of 37 percent when the 

actual occupancy data were used as inputs in the HVAC simulation. The controllers improved 

energy performance without the damage to indoor comfort. Also, this study showed a significant 

deviation in energy savings between the thermal zones in the experiment.   

The ASHRAE 1651-RP project modeled occupancy sensors using previously published 

schedules for air-handling systems by changing the operational modes for occupied and 

unoccupied hours, which relates to the reduced airflow volume, and/or switching-off or altering 
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thermostat set-points. In the study, the simulation used different operation settings for the 

thermostat set-points during unoccupied times and on/off mode of the VAV dampers into the 

spaces. The result of the study reported a 2-7% energy reduction depending on the climate zones 

(Glazer 2015).  

Finally, the Fort Hood Army Base in Texas (Haberl et al. 2015, 2016; Shin et al. 2017) 

measured the actual building energy use and environment conditions to analyze the savings of a 

side-by-side net-zero building test facility. In this building, one-half of the building had a high-

efficiency Variable Refrigerant Flow (VRF) system controlled by thermostats with occupancy 

sensors while the other half of the building had a standard air-to-air heat pump controlled by a 

thermostat with a night set-back. In the result, the savings were determined by using several 

methods, including weather-normalized, side-by-side measurements, and calibrated simulation 

models with varying thermostat schedules that reflected actual occupancy conditions. The 

analysis reported that the renovated space consumed 35 to 50% less energy than the un-

renovated space, depending on which saving calculation methods were applied and which 

occupancy schedules were used. This study revealed the significant potential of occupancy-based 

building controls to achieve higher energy efficiency while maintaining thermal comfort during 

the occupied period.  

In summary, simulations and experiments in the literature review evaluated the influence 

of occupancy in office buildings. The existing studies showed that the occupancy parameters 

could vary according to climate, occupant behavior, office type, lighting, and HVAC control 

types. Also, the previous studies have determined a significant variety of energy savings 

potential (2%-50%) by occupancy-based HVAC controls. The results from the previous studies 
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indicate that building occupancy is a crucial factor in increasing energy efficiency and optimize 

lighting and HVAC system operations. 

 

2.2.3. Influence of Occupancy Diversity in Building Energy Consumption   

In buildings, occupant behavior can be interpreted as a process for action and reaction of 

occupants with the built environment to obtain satisfactory indoor comfort, usability, and 

productivity. This can be affected by physical, psychological, environmental factors, and thus, it 

is very complicated and challenging to be understood the actual effect of occupant behavior in 

building energy use. Therefore, uncertainties might often occur in the predicted energy 

performance and efficiency of occupancy-based building models. To resolve the uncertainties of 

occupant behavior, previous studies have discussed occupancy diversity in buildings to improve 

occupancy schedules and increase the accuracy of energy performance estimations. 

In practices, energy modelers prefer to use typical or normalized occupancy schedules 

from published sources, such as ASHRAE Standard 90.1 user’s manual (ASHRAE 2017b), the 

Commercial Reference Buildings developed by the National Renewable Energy Laboratory 

(NREL) (Deru et al. 2011) or the Commercial Prototype Building Models developed by the 

PNNL (PNNL and U.S.DOE 2018). However, there are significant differences in the published 

occupancy schedules compared to actual building usage schedules (e.g., usage intensity, pattern). 

This is because the commonly used schedules presume maximum occupancy or simplified 

occupancy schedules (Erickson and Cerpa 2010, Yan et al. 2015). Therefore, many papers 

attempted to identify the influence of occupancy diversity in order to improve the occupancy 

prediction algorithms and methods of building energy modeling, including Ekwevugbe et al. 
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(2013), Dong and Andrews (2009), Degelman (2000),  Abushakra and Claridge (2001) Duarte et 

al. (2013), and D’Oca and Hong (2015).  

 Ekwevugbe et al. (2013) studied the current technological issues of occupancy sensing 

technologies in buildings, including untrustworthy data, privacy issues, and sensor drift. 

However, despite drawbacks in occupancy sensing, the study concluded that occupancy-based 

smart controls are a more effective way to control HVAC systems for open-plan offices to 

increase energy efficiency and save costs. In another study, Dong and Andrews (2009) tested 

different wireless and wired sensors (i.e., lighting, acoustics, temperature, and relative humidity) 

in a conference room of a commercial building in Pittsburgh, PA and conducted experiments 

about occupancy detection. In the study, they compared four different thermostat set-point 

operations using EnergyPlus simulations: A fixed system schedule; a schedule based on pre-

determined occupancy; an occupancy (Motion) sensor schedule; and a dynamic occupancy 

schedule (i.e., a time and state-dependent use of a Markov model). The study found that the most 

effective approach to reducing energy consumption was a thermostat with a motion-based 

operation. Degelman (2000) found a significant occupancy influence on energy reductions in an 

office building in a hot-humid climate. This study used a Monte Carlo model to predict actual 

occupancy in buildings using the measured on-off status from motion sensors. The research 

reported that substantial energy savings could be available in almost all categories of end-use. 

For example, lighting showed the most excellent energy savings (29%). The total building 

energy-saving was 19% estimated. 

Also, Abushakra and Claridge (2001) showed occupancy variability that was frequently 

undervalued in inverse energy models (i.e., regression model). In their study, they used a Short-

term Monitoring Long-term Prediction (SMLP) inverse method to estimate the uncertainty of the 
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occupancy variables in office buildings using different alternatives derived from lighting and 

equipment loads. The SMLP inverse method predicts annual energy use based on a short period 

of hourly data through the use of a multiple linear regression model. The researchers found 

increased reliability in the energy models that applied the occupancy variable, besides they rated 

a strong interaction between occupancy and building performance.  

Duarte et al. (2013) studied occupancy patterns in a large office building using monitored 

sensor data to identify occupancy diversity factors. The variation in diversity factors showed up 

to a 46% difference compared to occupancy schedules in Standard 90.1-2004. When comparing 

measured occupancy data with stochastic occupancy models (Page et al. 2008), the occupancy 

profiles showed similar characteristics. This study pointed out that the difference in occupancy 

schedules may create miscalculated simulation results or may cause problems in the building 

HVAC system design since the code schedules could be used as a reference for energy modelers 

in simulation analysis.  

D’Oca and Hong (2015) used a three-step data mining framework to develop occupancy 

patterns in office spaces. This study collected measured occupancy data from 16 offices in 

Germany, which were mined using a decision tree model and a rule induction algorithm. Then, a 

cluster analysis was utilized to determine occupancy patterns by occupant behavior. The four 

typical working profiles were finally developed, which could be used to provide more realistic 

occupancy schedules for building energy simulation programs. D’Oca and Hong (2015) showed 

a characterization of the occupancy probability in an office would help develop more accurate 

building energy models.  

In summary, the review of the previous literature pointed out that occupancy diversity is 

large in actual buildings, which could generate uncertainties in energy estimations and 
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predictions when using normalized occupancy schedules due to large variations in actual 

occupancy usages. However, using improved sensing technologies can help predict actual 

occupant behavior and improve energy performance predictions in buildings. Also, such a fact 

attests to the need for occupancy-based building controls for building systems to achieve higher 

efficiency and operation optimization in buildings.  

    

2.3. Occupant Behavior Modeling Methods    

Interpretation of occupant behavior in buildings is one of the conundrums for 

architectural engineers in the last decades. The significant adversity of occupant behavior 

modeling in building energy simulations is that occupancy related-factors are complicated and 

knotty to be understandable. The problem could militate against identifying the causal 

relationship between occupants and buildings. It also sometimes gives rise to uncertainty in 

building performance analysis. Therefore, the improvement method of occupant behavior 

modeling is very significant to alleviate uncertainty from the randomness and unpredictability of 

occupant behavior, especially in building energy performance simulations and high-performance 

building designs, such as near-zero or net-zero energy buildings (O'Brien and Gunay 2014, 

O'Brien et al. 2018). For example, many studies have observed very different results from the 

simulations using different occupant-related input parameters in different building designs. They 

have shown varying results due to the impact of occupancy-based building controls and 

interactions between occupant-related factors (i.e., occupant schedules, operable windows, 

lighting controls, thermostats, and appliance usage models) (O'Brien and Gunay 2014, IEA-EBC 

2018, Annex 66).  
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After that, there have been numerous attempts using mathematical methods to develop 

improved occupant behavior modeling methods to accurately analyze the influence and 

interaction of occupant-related factors in building energy consumption. The mathematical 

modeling methods have advantages and disadvantages of data analyses depending on their 

methods, and to attain the best results from the different methods, it is necessary to choose 

proper suitable modeling methods for the study.  

Thus, on the basis of the previous and ongoing occupant modeling method studies, IEA-

EBC Annex 66 researchers tried to understand occupant behavior in building energy simulations 

and to develop occupant behavior models into current building energy simulation tools (i.e., 

eQUEST, EnergyPlus). The researchers found that several statistical approaches that were useful 

and most frequently used for occupant modeling, such as classical statistical model (i.e., general 

linear models), Markov and Hidden Markov chains, Mixed-effect model, and decision tree 

model (IEA-EBC, Annex 66 2018).  

Similarly, Gaetani et al. (2016) categorized the most common simulation methods for 

occupant behavior analysis based on size, resolution, and complexity. As simulation frameworks, 

conventional models and agent-based models were defined: The conventional model contains the 

deterministic model, non-probabilistic model, and stochastic model. The agent-based model 

refers to the agent-based stochastic model. Deterministic models represent commonly used 

simulations for code-compliance, and contrariwise, probabilistic (also called stochastic) models 

consider characteristics of randomness. Also, the static model performs a fixed model that does 

not respond to transient states during the simulation process (e.g., a schedule corresponding to 

the number of occupants in a room over a day). An example of this model in practice is a set of 

ASHRAE Standard 90.1 schedules for lighting, plug loads, and occupancy. Most suitable 
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applications of the model are building codes and standards primarily at the whole-building level 

for early design stages. The dynamic model captures the two-way interaction between occupants 

and buildings. Most suitable applications of the model are codes and standards at the room and 

zone scales, particularly related to adaptive comfort systems.  

 

2.3.1. Static and Dynamic Methods 

To understand occupancy modeling methods, it is required to figure out the 

characteristics of model types. Static (or known as steady-state) and dynamic (or known as the 

transient state) models are quite different positions about time-dependent changes in the 

buildings.  

Static models typically provide fixed schedules that assume no changes related to 

schedules during the projection period, which have the definite advantage of easy to use for 

practical projects and transparent process for code-compliance building energy modeling (i.e., 

Standard 90.1-2016 User’s Manual). However, it fails to carefully notice occupant behavior in 

different climates, indoor activities, and space types for building energy calculations. This is 

because these models adopt entirely previously determined schedules based on assumed 

conditions, and thus, they cannot respond to continuously varying external and internal 

environmental states. Therefore, the static model shows the conservative tendency of occupancy 

rates for office buildings (O'Brien et al. 2018). For example, occupancy schedules for Standard 

90.1-2016 assume 95% of peak occupancy rate for a medium office during weekdays (ASHRAE 

2017b), whereas the previous case study such as IEA-EBC, Annex 66 (2017b) reported that 

actual office spaces were used around 80% of the designed peak occupancy (i.e., Case 23). Such 
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a nature makes obstacles to understand the state of occupant behaviors and control uncertainty in 

building use simulations.  

On the other hand, dynamic models provide relatively flexible schedules that can 

consider the state changes of buildings by the interactions between buildings and states or events 

of occupant-related factors (i.e., occupancy rate, lighting system usage, and thermostat controls) 

during the estimated period. Such a characteristic of flexibility offers more reliable results using 

time-variant values in simulation predictions. For example, dynamic stochastic models as the 

emerging occupant modeling methods in the literature reviews (IEA-EBC, Annex 66 2018, 

O’Brien et al. 2018a) can surmise more realistic results to predict the actual building energy use 

than the conventional static models. However, this model may yield inconsistent results for every 

simulation because it uses different time-variant values for every calculation and only shows 

probability as a result of occupancy behaviors. Such a reason makes it difficult to secure 

reliability for code-compliance and to determine building energy performance for preliminary 

designs.     

 

2.3.2. Deterministic and Stochastic Methods    

In mathematical models, deterministic and stochastic (or probabilistic) models are placed 

on the antipodes in the theoretical approaches to estimate building energy performance of 

occupant behaviors. The typical deterministic model uses preset parameters that are optimized 

for previously designed environmental states of buildings and brings invariant values of 

occupancy-related schedules. Therefore, the deterministic model always produces the same 

results based on initial conditions if the model uses a static state.  
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Conversely, the stochastic model embraces variable states with the randomness of 

occupant behaviors in buildings by adopting probability distributions. For example, the LBNL 

research group developed a web-based occupancy simulator (LBNL 2018) using stochastic 

models to simulate occupancy profiles in buildings and create detailed occupancy schedules for 

designed spaces. Such generated schedules are useful to emulate occupancy diversity and 

randomness in buildings. However, in the convention of stochastic models, there are no 

representative approaches for code-compliance (i.e., the ECB and the Appendix G methods in 

Standard 90.1-2019) to propose the stochastic nature of occupancy modeling. Also, this model 

could generate different occupancy schedules for each building depending on their attributes of a 

population for occupancy modeling (i.e., size, location, building type, etc.), which creates 

uncertainty of stochastic models that obstructs to develop generally acceptable occupancy-related 

schedules.  

 

2.3.3. Agent-based Methods 

The agent-based model is an emerging occupant modeling technique since there are 

several benefits for simulating the influence of individuals’ dynamic actions and interactions of 

autonomous agents with the building (O’Brien et al. 2013, O'Brien et al. 2018 and IEA-EBC, 

Annex 66 2018). This model has the definite advantage of considering both experimental and 

mathematical approaches for the prediction and representation of individual occupants’ 

behaviors as agents in simulations. For stochastic modeling, numerous approaches can have been 

used. Annex 66 researchers (IEA-EBC, Annex 66 2018) organized occupant behavior modeling 

approaches from the previous literature that reported that Markov and Hidden Markov chains 

were suitable for time-dependent data sources, and Mixed-effects models can be used for 
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diversity among occupants. Also, data mining techniques (i.e., decision tree, clustering) recently 

shows a growing trend for occupant behavior modeling.  

 

2.3.4. Summary 

There have been numerous models for occupant behavior modeling. Such models have 

tried to improve the prediction of occupant behavior in buildings and reduce the uncertainty and 

discrepancies in building energy simulations against actual energy use of the existing buildings. 

In a literature review, occupant behavior simulation frameworks are basically categorized as four 

types depending on their size, resolution, and complexity: 1) Deterministic, 2) Non-probabilistic, 

3) Probabilistic/Stochastic, and 4) Agent-based models. Also, based on their state conditions of 

time flow, the dynamic and the static models can be applied for occupancy modeling analysis. 

Deterministic static models typically provide fixed schedules that assume no changes 

during the projection hours. This characteristic is useful for practical projects and transparent 

processes, such as code-compliance building energy modeling (i.e., Standard 90.1-2016 User’s 

Manual). On the other hand, dynamic stochastic models offer relatively flexible schedules that 

can reflect the interactions with buildings during the projection period. This model uses 

mathematical approaches (i.e., regression, Markov chain model) as shown as probability, which 

could over- or under-estimate the influence of occupant behaviors in commercial buildings 

depending on their data population characteristics and analysis models.  

Therefore, for this study, it is required to develop a realistic and feasible occupancy 

modeling method for occupancy-based building modeling credits to make up the problems of the 

currently adopted and used deterministic models for code-compliance in Standard 90.1-2016.    
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2.4. Challenges for Introducing Occupancy Predictions and Modeling Methods 

In this chapter, technical or descriptive barriers are addressed based on O’Brien et al. 

(2018), Tian et al. (2018), and Belazi et al. (2018) presented challenges that must be settled to 

introduce occupancy-based control credits in Standard 90.1-2019. The challenges for this study 

are categorized as the following:  

 Challenge 1: The necessity of defining related parameters of occupancy modeling for the 

Standards   

 Challenge 2: The necessity of defining occupancy-related provisions and modeling 

methods in the Standards (i.e., Standard 90.1 and 189.1)  

 Challenge 3: The inevitability of updating over- or under-estimated occupancy related 

schedules for simulations and no credits for supporting more energy use reduction 

potential due to occupancy-based building controls in the Standards  

 Challenge 4: Limitations of occupancy modeling in the current building energy 

performance programs (i.e., EnergyPlus, DOE-2.1e, eQUEST, and TRNSYS) 

 Challenge 5: Uncertainty analysis of input variables for occupancy-based controls in 

building energy performance simulations 

 

2.4.1. Challenge 1: No Consensus of Occupancy-Related Parameters for the Standards 

These days, the evolution of technologies such as the Internet of things (IoT) expedites 

the faster spread and integration of technologies in the field of architectural design and 

construction. For this reason, sensing technologies to control lighting and HVAC systems are not 

a stranger any longer. However, there has not been a common consensus of the scope of 

occupancy modeling and simulation parameters so far to precisely quantify the influence of 
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occupant behavior in building energy use and provide credits of its energy use reduction 

potential due to optimized control and operations. To date, only a few researchers started to 

discuss this topic in their research to improve code-compliance (i.e., O’Brien et al. 2018).  

However, to define the related parameters of occupancy modeling, it is required to 

exhaustively understand total building energy use, modeling assumptions, and parameters of 

occupant behavior. Although it is difficult to clearly diagnose occupant behavior and its impact 

on building energy use, hundreds of researchers in the working groups (i.e., IEA-EBC Annex 53, 

Annex 66, and Carleton University, Canada) found that occupant behavior significantly affects 

the results of building energy predictions from operable windows, window shading adjustment, 

lighting switching control, thermostat control, appliance use, and occupant diversity from the 

literature review (IEA-EBC, Annex 66 2018).  

However, currently, the performance compliance paths of Standard 90.1-2019 do not 

define energy modeling methods for the representations of occupancy-based building controls. 

The Appendix G only contains credits of occupancy sensors for the lighting system controls in 

the table G 3.7, pp333-335 that provide “Occupancy Sensor Reductions (OSR)” (See Appendix 

B, credits for lighting occupancy sensors). Therefore, there are no exhaustive ways except 

designers or engineers who want to develop and adjust their proposed design model for 

occupancy modeling based on their practical expertise and experience.  

Table 1 shows a list of occupancy-related parameters mentioned in Standard 90.1-2019 

(ASHRAE 2019). The existing code-compliant occupancy modeling methods do not fully cover 

occupancy-related parameters, which exclude personal conditions (i.e., Clothing level, metabolic 

rate) and reactions (i.e., personal thermostat control). Standard occupancy modeling typically 

depends on the simulation schedules to model occupancy behavior. O’Brien et al. (2018) pointed 
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out that occupancy modeling requires comprehensive and scrupulous studies of individuals’ 

adaptive behaviors for better understanding. Therefore, to develop elaborated occupancy models 

for conventional buildings, it is required to develop concurred occupancy-related parameters for 

performance code-compliance.   

 

Table 1. Occupancy-Related Parameters in Standard 90.1-2019 
Paths Section Covered 

Prescriptive 5 Building Envelope • N/A 

6 HVACs • Thermostat set points and controls (setback, on/off) 

• Ventilation system controls 

7 Service Hot Water • N/A 

9 Lighting • Lighting controls (occupancy sensors) 

Performance 11 Energy Cost Budget 
(ECB)  

• Schedules: occupancy, receptacle (plug) loads,   

  elevators, lighting, thermostat setpoints, hot water 

• Controls: thermostat, lighting, ventilation 

Appendix G • Schedules: occupancy, receptacle (plug) loads,   

  elevators, lighting, thermostat setpoints, hot water 

• Controls: thermostat, lighting, ventilation 

 

2.4.2. Challenge 2: The necessity of Defining Occupancy-Related Provisions and Modeling 

Methods  

The current performance paths (i.e., ECB and Appendix G methods) in Standard 90.1-

2019 neglect occupant behavior-related parameters and thus handle them only as types of 

schedules or control methods to conduct a comparative analysis between the baseline and the 

proposed design models. A single assumption for occupancy parameters (i.e., schedules) is 

mandated to compare energy use reduction potential against the baseline model. Even though 

Standard 90.1-2019 includes provisions of the credits for occupancy-based lighting controls, if 
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the credits integrate other occupancy-related parameters (i.e., HVAC, ventilation, and 

application), it could show more energy use reduction beyond the current code models. However, 

since full occupancy-based control modeling is not currently described enough in the Standard 

requirement to cover the characteristics of occupant behavior. Therefore, more research is 

required to seek a method to define occupancy modeling provisions and credit methods for 

Standard 90.1-2019.  

 

2.4.3. Challenge 3: The Necessity of Updating the Current Code Schedules and Introducing 

Credits for Occupancy-Based Building System Controls 

So far, researchers (Hoes et al. 2009, Yan et al. 2015) have argued that the current 

schedules cannot represent actual occupant behavior in office buildings, particularly in 

occupancy diversity and presence rate. What is serious in this regard is that these code schedules 

are commonly used for developing code-compliant models and practical works using building 

performance simulations (BPS). These bring about over- or under-estimated results of 

predictions using building energy simulations. Although Standard 90.1-2019 allows exploiting 

different schedules for the proposed design, it is unattainable without the approval from the 

related authorities. Thus, such a reason may enforce the use of fixed code schedules on architects 

or engineers for occupancy modeling. For example, Gaetani et al. (2016) verified the results 

from the survey that most modelers use default schedules for building energy modeling.  

Therefore, to compensate for the vulnerability of interactions between occupants and 

buildings in current deterministic schedules for code-compliance, it is inevitable to update 

occupancy related schedules. Otherwise, credits of more energy use reduction potential due to 

occupancy-based controls in the standards could not be considered to provide benefits and offset 
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the vulnerability of flexibility in the current deterministic schedules. There are three types of 

approaches to representing occupancy rate and credits in load calculations.  

 

2.4.3.1. Full-Time Equivalent Occupancy (FTEO)  (2nd Review)   

U.S. Green Building Advisory Committee (GBAC) developed an occupancy-based 

Energy Use Intensity (EUI) that was based on the lately suggested notion of Full-Time 

Equivalent Occupancy (FTEO) to provide an improved understanding of occupant-related 

building energy use. This study appraised about how much occupancy impacts building energy 

use and EUI using a standard office building. This metric could be useful in buildings that have 

dramatic changes in occupancy to acquire more accurate results in building energy performance 

evaluation. The concept of FTEO is “the number of assigned occupants may not represent actual 

occupancy level in a building, due to different factors including telework, alternative work 

schedules, and attendance at outside meetings or events” (Selvacanabady and Judd 2017). 

 

FTEO  
𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑃𝑒𝑟𝑠𝑜𝑛 𝐻𝑜𝑢𝑟𝑠

1645 𝐻𝑜𝑢𝑟𝑠
 

 1,645 hours = 35 hours/week × (52 weeks/year – 5 weeks regulatory vacation) 

 Regulatory vacation: federal holidays + average annual leave hours/year  

 

2.4.3.2.  Occupancy Load Factor (OLF)   

Haberl and Komor (1989) conducted a study of a shopping mall to ameliorate 

commercial building energy audits. This study discovered unexpected energy use in unoccupied 

hours in a comparative analysis between calculated base-level energy use and actual energy use 
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using Occupancy Load Factor (OLF) and Electric Load Factor (ELF). Unexpected electricity use 

in unoccupied hours could appear when monthly ELF outpaces monthly OLF. The equations of 

OLF and ELF can be defined as below (ASHRAE 2015b):    

OLF  
𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝐻𝑜𝑢𝑟𝑠 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑
24 𝐷𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

 

ELF  
𝑘𝑊ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

𝑘𝑊 𝑀𝑎𝑥 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 𝐻𝑜𝑢𝑟𝑠 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑
 

In these equations, the occupancy rate can be simply presented in an average occupied 

hour during the projected period to diagnose energy waste in buildings.  

 

2.4.3.3. Occupancy Reduction Factor (ORF) 

The Appendix G method in Standard 90.1-2016 proposed a new measure to calculate the 

performance rating method for Lighting Power Density (LPD) allowance, which could be used 

for occupancy sensor-based lighting controls. For example, if lighting systems in an enclosed 

office are controlled by occupancy sensors, the maximum LPD of the enclosed office is 30 

percent more than conventional enclosed offices (ASHRAE 2016a, 2019).    

Before this introduction, similarily, Thornton et al. (2011) used the same measure to 

provide occupancy schedule reduction credits for estimating potential energy use reduction of 

Standard 90.1-2010 compared to Standard 90.1-2004. This study assessed 153 Addenda (44 

Addenda to 90.1-2004 and 109 Addenda to 90.1-2010), and of them, occupancy sensors and 

LPD reduction-related Addendum were Addendum x to 90.1-2007, Addendum aa to 90.1-2007, 

and Addendum cf to 90.1-2007. The proposed lighting power deduction based on the previous 

literature had a format as below Table 2 (Thornton et al. 2011, Table 5.45).  
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Table 2. Manual-On Occupancy Sensor Lighting Power Reduction  
Prototype LPD reduction (W/ft2) 

Small Office 0.0217 
Medium Office 0.0191 
Large Office 0.0143 

 

Table 3. Occupancy Sensor Control Lighting Reduction by Space Type 
Space types Occupancy Sensor Reduction Estimate 

Pre-K to 12 Classrooms 32% 
Storage and Supply (50-1,000ft2) 48% 
Office (private up to 250ft2) 22% 
Restrooms 34% 
Dressing/Fitting Rooms 10% 

 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑝𝑎𝑐𝑒 𝑇𝑦𝑝𝑒 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

 

2.4.4. Challenge 4: Limitations of Occupancy Modeling in the Current Building Performance 

Simulation Programs 

In general, building energy simulation programs take the lead in occupancy modeling for 

code-compliance to quantify energy use reduction potential from the proposed design. Many 

simulations for compliance models prefer to use deterministic modeling approaches since 

Standard 90.1-2019 is not ready to cover dynamic or stochastic modeling approaches. There are 

three ways to develop occupancy models in building energy simulation programs (O’Brien et al. 

2018a, LBNL 2018):  

1. Adjust or customize existing schedules  

2. Use advanced functions in building energy simulation programs or plug-in 

applications (i.e., obFMU1, LBNL) 

 

1 The obFMU is an occupant behavior FMU developed by the occupant behavior research team at the LBNL. This 
tool co-simulates with EnergyPlus v8.3.0 based on a DNAs (drivers-needs-systems-actions) ontology. The objective 
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3. Generate occupant schedules using simulators (i.e., Occupancy Simulator, LBNL)  

  
An international survey of occupant behavior (IEA-EBC, Annex 66 2017d) identified the 

current needs, practice, and capabilities of occupant modeling by users. This survey contains two 

parts: (1) current practice and stance of simulation users respecting occupancy modeling and (2) 

available functions of occupant modeling in current building performance simulation (BPS) 

programs. A total of 274 valid responses from 37 countries showed that simulation users applied 

simplified and varied assumptions that are different in the actual phenomenon of occupant 

behavior in buildings because of insufficient time or lack of understanding as significant barriers. 

Also, to evaluate occupancy modeling in the commonly used building performance simulation 

programs (e.g., EnergyPlus, DOE-2, eQUEST, TRNSYS), six domains were discussed: occupant 

movement/presence, controls of lighting, window, and HVAC systems, other internal heat gains 

related with occupant behavior (i.e., domestic hot water), and other domains related with 

occupant behavior (i.e., blinds). The survey reported that deterministic functions could produce 

adequately consistent results from simulations, whereas stochastic functions could generate 

varied results depending on their conditions.  

Also, the Annex 66 (IEA-EBC, Annex 66 2018,2017d; Cowie et al. 2017) surveyed 

occupant modeling functionality in eight widely used building performance simulations (i.e., 

DeST, EnergyPlus, ESP-r, TRNSYS, IDA-ICE, IES-VE, Pleiades + Comfie, and DOE-2.1e). It 

comes up with facts that most of building performance programs offer relatively steady 

functionalities of deterministic occupant modeling, which are typically modeled employing 

 

of this tool is to simulate occupant behavior at each time step using XML format and consider other environmental 
condition using the co-simulation program.  
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prescribed schedules and rule-based controls. On the contrary, the stochastic modeling 

functionality of occupants is not prevalent in the present simulations that are available using two 

types of approaches: user-defined models and defined occupant models from the programs. For 

example, the representation of occupant stochastic models in the survey can be built up in their 

user-defined models, such as using the external function (i.e., DOE-2.1e), source code/EMS/co-

simulation (i.e., EnergyPlus v8.3), and source code modification (i.e., ESP-r v12.3, TRNSYS 17 

v5.3.0). The recommendation of this study to simulate stochastic occupant models is to develop a 

co-simulation for the current simulation tools.  

For more details, Appendix E describes the most used whole-building energy simulation 

programs and provides an abridged table for occupancy modeling functions in the programs.  

 

2.4.5. Challenge 5: Uncertainty Analysis of Input Variables for Occupancy-Based Controls in 

Building Energy Performance Simulations 

In general, there is always some uncertainty in whether or not the input variables for a 

simulation represent the actual conditions in a building. Numerous variables influencing energy 

use in buildings are complicated and inherently uncertain. For example, the uncertainty of 

occupant behavior and building envelope materials can affect the results of energy performance 

analysis. Therefore, previous researchers have tried to identify different uncertainty modeling 

approaches and conduct the uncertainty analysis to identify the impact of input variables on 

building energy performance simulations, including Tian et al. (2018) and Belazi et al. (2018).   

Tian et al. (2018) offered a systematic review of uncertainty analysis from four 

perspectives: uncertainty data sources, forward and inverse methods, application of uncertainty 

analysis, and available software. First, this study concluded that an uncertainty analysis's data 
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sources should provide a firm foundation for identifying variations of uncertainty factors. The 

study showed that forward uncertainty analysis typically used three types of approaches (i.e., 

Monte Carlo, non-sampling, and non-probabilistic) depending on the purpose and specific 

application of building analysis. For the inverse analysis, the study concluded that recent studies 

focused more on Bayesian computation due to the full use of prior information about unknown 

variables. Fourth, the study concluded that uncertainty analysis in building energy assessment 

can be applied to analyzing several variables, including weather data, thermal properties, HVAC 

system sizing, occupant behavior, and variations of sensitivity indicators.  

Belazi et al. (2018) performed an uncertainty analysis for hot, moderate and cold weather 

conditions using the building envelope (i.e., external walls, floor and roof U-values). The results 

revealed that there is a large variation of energy use because of uncertainties related to occupant 

behavior and building properties. The study concluded that uncertainty analysis of input data 

identified that occupant behavior variables have a considerable impact in hot climates compared 

to variables related to building envelope materials. On the other hand, for cold climate, the study 

found that the impact is more significant for building envelope variables than occupant behavior 

variables.  

Therefore, in occupancy-based controls, a complicated relationship of occupancy 

variables impact the results in building energy simulations. In general, previous studies have 

utilized sensitivity studies to determine which input parameters impact the simulation output so 

special attention can be paid to accurately portraying these parameters. Therefore, the impact of 

uncertainty should be considered in occupancy modeling when analyzing the impact of 

occupancy on energy use between different input variables.  
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2.5. Occupancy-related Influencing Variables and Impact on Building Design 

In building energy simulations, occupant-related variables are significant to determine the 

type of occupant behaviors and predict potential influence in building energy use. In building 

simulations, occupant behaviors could trigger the changes of building operation settings related 

to particular occupant behavior variables. Typically, occupant behavior is interactions between 

occupants and buildings, which would be affected by the physical, biological, social, and 

psychological environment. The prediction of these interactions requires a multilateral effort into 

solving problems with technical strategies. Therefore, the determination of occupancy variables 

in simulations is challenging due to the difficulty of considering all their conditions in the 

modeling stages.  

Thereby, this study limited the scope of occupant-related influencing variables, focusing 

on building systems (i.e., heating, cooling, ventilation, lighting, and appliances). In other words, 

occupant-related influencing variables in this study address usage profiles of occupants related to 

building systems and other triggers (i.e., biological, social, and psychological environment) were 

not included in the scope of the study. The following chapters describe occupancy-related 

variables from primary research projects of occupancy-based building controls.  

 

2.5.1.  IEA-EBC Annex 53  

IEA-EBC Annex 53 (IEA-EBC, Annex 53 2013a,b) studied occupant behavior and 

energy modeling to improve understanding of the total energy use in residential and office 

buildings. To interpret the relationship between occupant behavior and building energy use in 

office buildings, IEA-EBC Annex 53 investigated six types of analysis models: 1) Psychological 
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models; 2) Average value models; 3) Deterministic models; 4) Probabilistic models; 5) Agent-

based models; 6) Action-based models.    

As for the types of analysis models, psychological models were defined to describe the 

occupant behavior themselves and related actions in building energy use. Average value models 

employed the occupant-related influential factors, which significantly affect the total building 

energy use. Deterministic models have the classification of families to provide deterministic 

input values for energy simulations. Probabilistic models calculate the probability of specific 

actions using parameters and equations. Agent-based models regard occupants as individuals 

with rule-based self-regulating decisions (e.g., memory, self-learning). In action-based models, 

occupant behaviors were defined as actions (i.e., movement, control action) that could tune up 

occupant-related conditions, such as occupant location, window condition, lights, air-

conditioners and come up with results for occupant movement and control actions separately.  

 

 

Figure 9. Influencing Factors of Energy-related Occupant Behavior (Adapted from Figure 2.3 in 
IEA-EBC, Annex 53 2013a) 
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This project also identified occupant-related driving factors in energy use and attempted a 

quantitative analysis of occupant-related factors in energy modeling. Figure 9 shows a scheme 

developed by IEA-EBC Annex 53 that is an interaction between the occupant and building 

systems driven by influencing parameters that could be categorized as internal (biological, 

psychological, and social) and external parameters including building/installation properties, 

physical environment, and time.  

 

2.5.2.  IEA-EBC Annex 66  

IEA-EBC Annex 66, a follow-up study of Annex 53, has explored occupant behavior 

simulation in commercial buildings. The Annex 66 reviewed mathematical and statistical 

methods of occupant behavior in commercial buildings and developed an XML schema (i.e., 

obXML) to incorporate occupancy modeling into building energy performance programs (i.e., 

EnergyPlus) (LBNL 2018). 

In the process of developing an occupant behavior XML (obXML) schema, as a subtask 

under the Annex 66, the LBNL (Hong et al. 2015a,b) developed DNAS (Drivers-Needs-Actions-

Systems) ontology to standardize occupant behavior. The DNAS is a methodology of occupant 

behavior to have a better understanding of occupant in building energy use. Each capital letter of 

the DNAS indicates: 1) Drivers: environmental factors; 2) Needs: occupant-related physical and 

non-physical requirements; 3) Actions: interactions between systems/activities and occupants; 

and 4) Systems: equipment or mechanisms to restore comfort environment in the building.  

To propose the DNAS framework, researchers reviewed several simulation models of 

occupant behavior, which investigated typical building components, characteristics, metrics, and 

simulation outputs from the previous literature, as shown in Table 4 and Table 5 (Hong et al. 
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2015a,b). In the DNAS framework, parameters forcing occupant’s actions were newly defined as 

drivers that promote the interactions with building systems to change the indoor environmental 

conditions from discomfort to comfort.  

 

Table 4. Typical Building Components and Characteristics of Occupant behavior  
Group Components and characteristics 

Building Type Building type (i.e., office) 

Envelope design 

Building envelope, thermos-physical characteristics 

Façade orientation and height 

Window geometry and height 

Type of window device (manual/motorized/automated) 

Type of shading device (manual/motorized/automated) 

Space 
Type of office (open space, cubicle, private vs. shared office) 

Space layout, geometry, location 

Systems 

Type of ventilation system (natural, mechanical, mixed-mode, night ventilation) 

Type of HVAC/AC system 

Type of lighting control (manual/automatic) 

Controls 
Type of indoor temperature control 

Internal loads, occupancy schedules 

 

Table 5. Typical metrics and simulation outputs of Occupant behavior  
Techniques Metrics 

Windows air change rate(n/h), losses (kWh/m2), thermal comfort, indoor air quality 

Shade/blinds 
Mean Shade Occlusion (MSO), Shade Movement Rate (SMR), visual/thermal comfort, 

glare, discomfort index 

Lighting system daylight, Illuminance level (lux), Light switch frequency, visual comfort 

Thermostat primary energy consumption for space heating (kWh/m2), internal gains, thermal comfort 

Space occupancy 
occupancy rates, nominal occupancy profiles, vacancy activity, transition probability, 

presence/absence probability and distribution, frequent pattern detection  

Plug loads Occupancy patterns, operational schedules 
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2.5.3.  IEA-EBC Annex 79  

The ongoing IEA-EBC’s project Annex 79: Occupant-centric building design and 

operation for 2018-2023 period seeks for new approaches to integrate an understanding of 

occupant behaviors into building design and operation levels, which will encourage that the 

representation of real building’s operation can be appropriately modeled for designers and 

building managers with guidelines. The objective of this project is to include: 1) development of 

new scientific insights of adaptive occupant behavior based on manifold independent indoor 

environmental parameter; 2) a better understanding of interactions between occupant and 

buildings; 3) applications of big data techniques (i.e., machine learning) for promoting the active 

use of generated data of occupant, building and sensing technologies; 4) development of 

recommendations of occupant modeling to improve the current building codes and standards; 5) 

development of test cases to verify new methods and models for occupant-centric building 

design and operation (IEA-EBC, Annex 79 2018,2019).  

 

 

Figure 10. The Annex 79: Advanced building modeling of occupant behavior  
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Figure 10 (adapted from IEA-EBC, Annex 79 2019) shows their perspective to 

understand advanced modeling and related variables of occupant behavior for design and 

operation stages. This figure describes that this project mainly considers building energy 

performance, occupant comfort and indoor air quality as performance metrics and such 

performance metrics can be interacted based on adaptive occupant behaviors (i.e., windows, 

thermostats, blinds, lights) and building designs (i.e., design, logic, context).  

 

2.5.4.  Impact of Occupancy-Based Controls on Building Design 

With the technology evolution, occupancy-based control is becoming a new normal to 

monitor and operate building systems in commercial buildings. For example, in high-efficient 

buildings, numerous technologies of OBC can improve building operations and energy 

efficiency, which is closely related to human interactions with buildings, including HVAC, 

lighting, plug loads, operable window and shading, automated system, human operation, and 

distributed energy resources. Smart HVAC systems collect and interpret occupant usage from 

various sensors to optimize the system operation without loss of occupant comfort. Also, smart 

HVAC controls can reduce energy consumption when interior zones are unoccupied and improve 

Smart lighting systems incorporate daylighting, advanced occupancy, and dimming functions to 

eliminate overlit spaces or energy waste in unoccupied spaces using occupancy sensors (King 

and Perry 2017). Such technology is mainly involved with building performance (i.e., building 

automation, energy management, HVAC control) and indoor comfort (i.e., CO2/environmental 

monitoring, lighting) (IFSEC Global 2017). However, with the increased demand of green 

buildings (i.e., LEED-certified buildings) and high-efficient buildings, when developing building 

design, designers also started to consider occupancy-based controls of building performance in 
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building designs, such as window design, exterior envelope shading design, indoor shading 

device control, and HVAC system thermal zone design and operation. However, it has 

challenges to diffuse occupancy-based control in building designs. For example, the current 

Standard 90.1-2019 does not allow to use of different schedules from occupancy sensors in 

performance paths (ASHRAE 2019) and also, there are several problems, including 

integration/interoperability of different systems,  installation and maintenance costs, and cultural 

resistance to new technology among staffs (IFSEC Global 2017). Despite the pros and cons, 

occupancy-based controls are helpful to ensuring energy performance for energy-efficient 

buildings and integrated designs for green buildings.  

 

2.5.5.  Summary  

In summary, IEA-EBC’s research projects (i.e., the Annex 53, 66, 79) have identified 

occupancy-related variables and forwarded the understanding of occupant behavior in buildings. 

These projects have provided new insights about the influence of occupant behavior in building 

energy use, modeling methods in building performance simulation programs, and integration of 

occupant behaviors with building systems in design and operation stages. Also, researchers 

investigated occupant-related variables from the previous literature, which was significant to 

select occupancy variables and limit the research scope of occupant behaviors in this study. In 

addition, occupancy-based control would affect energy-performance based building designs for 

architects and building owners. The integration with IoT and smart technology can provide more 

options for designers who want to develop building design, considering occupant and built 

environment, to save energy and cost.  
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However, these projects and studies focused on the identification of total energy use 

(IEA-EBC, Annex 55 2013a,b), field study methods, modeling and evaluation methods, cases 

studies (IEA-EBC, Annex 66 2018; Wagner et al. 2018; Park et al. 2019), occupancy schedule 

tool development (Chen et al. 2018; Feng et al. 2015) and integrated occupancy model 

development with building energy simulation (IEA-EBC, Annex 66 2018; Hong et al. 2015a,b). 

Also, a recent research project, IEA-EBC Annex 79 concentrated on occupant-centric building 

design and operation (O’Brien et al. 2020b). This is in contrast to the previous and ongoing 

studies that recently began occupancy modeling research to apply it into practice or building 

codes and standards (O’Brien et al. 2018b; O’Brien et al. 2019; O’Brien et al. 2020a). These 

studies did not give analyzing an OBC method for different building systems (i.e., PSZ, PVAV), 

different building envelope materials (i.e., lightweight, heavyweight), and designs (i.e., window-

to-wall ratio) in different climates (i.e., hot and cold climate zones). Therefore, there is a need to 

consider the impact of different or varying occupancy-related variables and the impact on 

building design.  
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3. SIGNIFICANCE AND LIMITATIONS OF THE STUDY 

 

3.1. Significance of the Study  

This study investigated occupancy modeling approaches and evaluated the potential 

influence of Occupancy-Based Controls (OBC) using simulation to reduce building energy loads 

for building systems. From the literature review, the previous topics mostly focused on field 

measurement methods, predicting actual occupancy schedules, data-driven occupant modeling 

strategies, integrated occupancy model development with building energy simulation tools, OBC 

application in building design and operation. In contrast, the previous studies gave little attention 

to analyzing the impact of occupancy-based controls on different building systems (i.e., PSZ, 

PVAV), different building envelope materials (i.e., lightweight, heavyweight), and designs (i.e., 

window-to-wall ratio) in different climates (i.e., hot and cold climate zones). Therefore, this 

study concentrated on identifying the impact of occupancy-based building controls in different 

weather conditions, different building types (i.e., lightweight, heavyweight) for different system 

types (i.e., PSZ, PVAV) with varying window-to-wall ratios.  

 

3.2. Limitations of the Study  

This study has the following assumptions and limitations to accomplish the research 

objectives, which include:  

1) The reference buildings of this study were small sized office buildings. Therefore, the results 

of this study might differ in other sized buildings (e.g., medium, large).  
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2) The energy models in this study simulated only selected two different building systems (i.e., 

PSZ, PVAV) with occupancy-driven smart controls in small office buildings. Therefore, the 

results may not be applicable to other HVAC system types.   

3) This study used office building designs based on the U.S.DOE/PNNL prototype office 

buildings for Standard 90.1-2016. Therefore, other office shapes or offices with multiple 

floors may show different results.    

4) This study limited the scope of occupancy-based building controls to specific simulation 

schedules (e.g., occupancy, lighting, equipment) only. Other occupancy-based building 

control variable options (e.g., operable windows, varying thermostat control, and varying set-

back control) were not modeled in this study.  

5) This study calculated the energy performance only in two representative climate zones (i.e., 

hot-humid, cold-humid) in the U.S. The impact of occupancy-based building controls in the 

other climate zones would need to be studied in future research.  

6) This study assumes that occupancy-based building controls can be integrated into building 

systems, and their sensors can immediately and accurately capture occupant behaviors to 

send the correct signal to the control building systems. Thus, the simulations did not assume 

a time delay in building system controls.  

7) Occupancy-based control schedules used in this study included different usage intensities 

from 100% to 0% in office buildings. The usage rates of occupancy-based control schedules 

assumed evenly-distributed usages during open office hours on weekdays.  

8) This study used five-zone models for modeling convenience in energy performance 

calculations. More detailed zoning models would show improved accuracy in the impact of 

occupancy-based controls by space type.  
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9) This study adopted Standard 90.1-2016 models because the latest code adoption by the state 

of Texas is Standard 90.1-2016, and the latest prototype office models that were developed 

by the PNNL in collaboration with the DOE were for Standard 90.1-2016. 

10) This study assumed that all input parameters were correct and did not attempt to determine 

how the results would differ from variations in the inputs (i.e., a sensitivity analysis).   
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4. RESEARCH METHODOLOGY 

 

This chapter describes the research methodology to develop reference office building 

models and evaluate the impact of Occupancy-Based Controls (OBC) in order to develop the 

appropriate credits for improving code-compliance in the performance methods. To achieve the 

research goals, the following tasks are proposed: 1) Perform a literature review; 2) Develop the 

representative office building reference models based on the previous prototype building energy 

models for code-compliance; 3) Investigate the influence of OBC using energy models in 

different building design and system conditions (e.g., lightweight and heavyweight envelope 

materials, PSZ and PVAV systems); 4) Propose the novel credits of OBC modeling for hot-

humid and cold-humid climate zones to cover energy use reduction potential of OBC in lighting, 

equipment, ventilation, heating and cooling loads in simulation models.  

For each task, research methods were designed based on the previous literature review. 

Chapter 4.1 describes prototype office building models developed by the PNNL. Chapter 4.2 

outlines the procedure of the reference small office building models in DOE-2.1e. Chapter 4.3 

provides an approach to evaluate the impact of OBC in small office buildings. The evaluations of 

OBC were conducted using the sensitivity analysis of the occupancy-related schedules in hot-

humid and cold-humid climate zones. Chapter 4.4 presents the approach to developing modeling 

credits for OBC in building energy performance simulations. 
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4.1.Commercial Prototype Building Models 

The Department of Energy (DOE) has supported the development of the commercial 

prototype building model for code-compliant modeling (PNNL and U.S.DOE 2018). This 

prototype model represents 80% of the floor area of U.S. commercial buildings in all climate 

zones, which was developed in collaboration with the PNNL in order to back up Standard 90.1 

and IECC. Currently, the DOE offers 16 prototype building models across 17 representative 

cities in 8 climate zones in the U.S. The commercial building prototype models contain small, 

medium, and large types of commercial building energy simulations that are suitable for new 

construction or retrofits of HVAC systems in existing buildings. The large office model has 

498,588 ft2 floor area and 12 floors, and the medium office model has 53,628 ft2 floor area and 3 

floors, and the small office model has 5,500 ft2 floor area and one floor (Deru et al. 2011). In this 

study, small office models were selected to clarify and simplify the analysis process of potential 

energy use reduction due to occupancy-based controls. As of January 2020, Standard 90.1-2016 

is the latest version in the code-adoptions by the state for commercial buildings. Also, the latest 

prototype office building models were for Standard 90.1-2016 in EnergyPlus ver 8.0. Thus, the 

prototype models for Standard 90.1-2016 were used in this study for building performance 

evaluations.  

Figure 11 shows the modeling image of the PNNL small prototype office model plugged 

in Sketchup software for energy performance simulations in hot-humid and cold-humid climate 

zones. Sketchup was used to check the accuracy of the building’s geometry and dimension in 

EnergyPlus. The prototype small office model assumed a simplified rectangular shape (aspect 

ratio 1.5) with an attic roof and contains HVAC systems, including an air-source heat pump (i.e., 

gas furnace back-up) systems for space heating and cooling. For thermostat controls, setpoints 
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were defined as 75°F for cooling and 70°F for heating. As for ventilation design, ASHRAE 

Standard 62.1-2013 was used for simulations (ASHRAE 2013). Other requirements (e.g., 

envelope properties) and input parameters followed minimum requirements in Standard 90.1-

2016. 

 

  
(a) south-east view (b) north-east view 

 
Figure 11. Modeling Views of Small Office Building Prototype Model in EnergyPlus 

 

Therefore, the analyses using the prototype models can generate acceptable results to 

represent the U.S. office buildings and calculate reasonable energy use reduction potential for 

occupancy-driven building energy simulations. This study developed small office reference 

models in DOE-2.1e based on the PNNL prototype models in EnergyPlus. This study simulated 

energy models for Houston, TX and Chicago, IL, as representative cities for climate zone 2A 

(hot-humid) and 5A (cold-humid) that can show the comparison about the influence of 

occupancy-based building controls in hot and cold climates. However, in Standard 90.1-2016 

prototype models, since representative cities for climate zone 2A and 5A are Tampa, FL, and 

Buffalo, NY, the modeling locations were modified to reflect geographic information in Houston 

and Chicago.  
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4.2. Development of DOE-2.1e Small Office Reference Model 

This study developed the small office reference models in DOE-2.1e simulation based on 

the PNNL office building models for Standard 90.1-2016 (PNNL and U.S.DOE 2019) to test the 

building energy performance of occupancy-based building controls in two different Climate 

Zones (CZ) in the U.S.: CZ 2A- the hot and humid (i.e., Houston) and CZ 5A- cold and humid 

(i.e., Chicago). DOE-2.1e software was selected due to an advantage to intuitively understand the 

structure of simulation modeling and provide simplified subdivided output formats for 

occupancy model analysis (e.g., load components, hourly report). In simulation modeling and 

calculations, there are some differences between DOE-2.1e and EnergyPlus v8.0 simulations. 

For example, DOE-2.1e is based on Building Description Language (BDL) (LBL 1991) and can 

directly develop coding in FORTRAN language. Whereas EnergyPlus utilizes a modular 

simulation system for modeling components (Kreider et al. 2001). The modular type simulation 

tool may be challenging for users to figure out the modeling structure at a look because users 

should consider the complicated relations between component modules. 

Thus, this study used DOE-2.1e to develop small office reference models. Reference 

DOE-2.1e models shared the building information with the original PNNL prototype models in 

EnergyPlus ver 8.0 (PNNL and U.S.DOE 2018), including the building dimensions, material 

properties, and building systems (i.e., HVAC, lighting, ventilation systems). However, there 

were partial modifications in DOE-2.1e reference models from the original PNNL models due to 

the following reasons: 1)  input parameter type differences between two simulation programs 

(e.g., system parameters), 2) outdated simulation library, 3) To evaluate the impact of OBC in 

simulations (e.g., off daylighting, off infiltration). The following chapters addressed the 

procedure of the DOE-2.1e reference model development for this study.  
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Table 6. Summary for Small Office Building Reference Models in DOE-2.1e 
Category Model Description 

B
ui

ld
in

g 
su

m
m

ar
y 

Program & 
Form 

Location  Zone 2A: Houston, Texas (hot-humid) 
Zone 5A: Chicago, Illinois (cold-humid) 

Available fuel types Electricity 

Building Type  Office 

Building Prototype Small Office 

Total Floor Area  5500 ft2 (90.8 ft x 60.5 ft) 

Building shape  Rectangle (1.5 : 1) 

B
ui

ld
in

g 
su

m
m

ar
y 

Program & 
Form 

Number of Floors 1 

Window Fraction 
(Window-to-Wall Ratio) 

24.4% for South and 19.8% for the other three orientations 
(Window Dimensions: 6.0 ft x 5.0 ft punch windows for all 
façades)

Window Locations Evenly distributed along four façades 

Shading Geometry None 

Azimuth Non-directional 

Thermal Zoning Perimeter zone depth: 16.4 ft.  
Four perimeter zones, one core zone and an attic zone. 
Percentages of floor area:  perimeter 70%, core 30% 

Floor to floor height 10 ft 

Floor to ceiling height 10 ft 

Glazing sill height 3 ft (top of the window is 8 ft high with 5 ft high glass) 

A
rc

hi
te

ct
ur

e 

Exterior 
walls 

Construction Wood-frame walls (2X4 16" o.c.) 
1" Stucco + 5/8" gypsum board + wall Insulation+ 5/8 in. 
gypsum board

U-factor and/or R-value Requirements in Standard 90.1-2016 (Table 10) 
Non-residential; walls, above-grade, wood-framed 

Tilts and orientations Vertical 

Roof Construction Attic roof with wood joist:  
Roof insulation + 5/8 in. gypsum board 

U-factor and/or R-value Requirements in Standard 90.1-2016 (Table 10) 
Nonresidential; roofs, attic 

Tilts and orientations Hipped roof: 10.76 ft attic ridge height, 2 ft overhang-soffit 

Window Dimensions Based on window fraction, location, glazing sill height, floor 
area and aspect ratio 

Glass-Type and frame Hypothetical window with weighted U-factor and SHGC 

U-factor & SHGC (all) Requirements in Standard 90.1-2016 (Table 10) 
Nonresidential; Vertical Glazing

Visible transmittance Same as above requirements 

Foundation Foundation Type Slab-on-grade floors (unheated) 

Construction 8" concrete slab poured directly on to the earth 

Thermal properties for ground level 
floor: U-factor and/or R-value 

Requirements in Standard 90.1-2016 (Table 10) 
Nonresidential; slab-on-grade floors, unheated 

Thermal properties for basement walls N/A 

Dimensions Based on floor area and aspect ratio 
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Table 6. Summary for Small Office Building Reference Models in DOE-2.1e (continued) 
Category Model Description 

H
V

A
C

 &
 D

H
W

 

System 
Type 

Heating type Air-source heat pump  
Cooling type Air-source heat pump 

Distribution and terminal units Single zone, constant air volume air distribution, one unit per 
occupied thermal zone

HVAC 
Control 

Thermostat Setpoint 75 °F cooling/70 °F heating 

Thermostat Setback 85 °F cooling/60 °F heating 

Supply air temperature Maximum 104 °F, minimum 55 °F  

Service 
Water 

Heating 

SWH type Storage tank 

Fuel type Electric 

Thermal efficiency (%) Requirements in Standard 90.1-2016 

Tank Volume (gal) 40 

Water temperature setpoint 140 °F 

 

4.2.1. DOE-2.1e Model Development  

The small office reference models in DOE-2.1e were developed in modifications based 

on the model configuration and inputs of the PNNL commercial prototype models for Standard 

90.1-2016 (PNNL and U.S.DOE 2018). DOE-2.1e coding for the reference model development 

was processed in a step-by-step from architectural design to building systems in Building 

Description Language (BDL). The developed reference models were compared with the 

modified PNNL prototype models. To compare the result between DOE-2.1e and EnergyPlus, 

the simulation reports were carefully selected because two programs have different output 

variables and formats in the output reports of total loads and load components. The proposed 

reference DOE-2.1e models were used to investigate the influence of occupancy-based building 

controls in building energy performance simulations (BEPS) and develop occupancy-based 

building control modeling credits for code-compliance in Chapters 6.  
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4.2.1.1. Weather Data 

The weather data is a significant factor in the energy performance predictions, especially 

for calculating the heat gain and heat loss on the building envelope and HVAC system operations 

to respond to environmental condition changes. There are numerous types of weather data (e.g., 

Typical Meteorological Year (TMY), Test Reference Year (TRY), and Weather Year for Energy 

Calculations 2 (WYEC2)) to represent the regional weather conditions at specified locations. 

Energy modelers should avoid using single year, such as Test Reference Year-type (TRY) 

weather data, because a single year cannot describe typical long-term weather conditions (e.g., 

20-30 years) (EnergyPlus 2019c). To run simulations in DOE-2.1e and EnergyPlus, this study 

used the latest TMY3 data for Houston (#722430) and Chicago (#725300) for both simulation 

programs. The epw TMY3 files were downloaded from the EnergyPlus website and NREL 

website (EnergyPlus 2019b; Wilcox and Marion 2008). Then, TMY3 weather data in Houston, 

TX and Chicago, IL were converted for DOE-2.1e using the eQ_WthProc (JJH 2018) that is a 

software to convert EnergyPlus epw weather data into eQUEST and DOE-2 bin readable weather 

data.  

 

Table 7. Locations and TMY3 weather data for Houston,TX and Chicago,IL 
 Houston Chicago 

TMY3 Weather Station #722430 #725300 

Climate Type Hot and humid (2A) Cold and humid (5A) 

Latitude 30 o 41.98 o 

Longitude -95.4o -87.9 o 

Elevation 29.0m 201.0m 

Time Zone -6 -6 

Hours 8,760hrs 8,760hrs 
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4.2.1.2. Simulation Schedules  

In energy modeling, simulation schedules define building system operations and 

occupant usage schedules, which has a critical influence on building energy consumption and 

energy usage profile in buildings.  

In reality, occupancy schedules in buildings vary due to different activities and usage 

profiles, which results in different building system operation patterns with more or less energy 

use to control the indoor environment in office buildings. However, in energy simulations, 

typical occupancy schedules generally assumed fixed values for occupancy profiles based on 

different building types and sizes. For example, occupancy schedules can be defined as a fraction 

of the nominal occupancy (i.e., the value between 0 and 1) for each hour during business hours, 

non-business hours (i.e., weekends, holidays). A schedule value of 1 indicates 100% occupancy 

in the space at that time, and a schedule value of 0 represents 0% occupancy at that hour (i.e., 

unoccupied). Also, standard simulation schedules (e.g., occupancy, lighting, and equipment) in 

many detailed simulation models are categorized only by building type and size without the 

considerations of usage diversity in reality. For instance, for code-compliant modeling, the ECB 

method (Section 11.4.1.1) in Standard 90.1-2019 requires hourly-based occupancy schedules for 

whole-building energy simulation programs and that the proposed design schedules must be 

identical with the baseline design schedules. In another performance path, the Appendix G 

method describes that different proposed schedules can be used by the designer with the approval 

of the local code authority (ASHRAE 2016a, 2019).  

To apply occupancy schedules in the DOE-2.1e reference models, it is necessary to 

understand the interface configuration between DOE-2.1e and EnergyPlus that might differ 

depending on the simulation tools.  
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Table 8. Schedule Designs for DOE-2.1e and EnergyPlus 
Description DOE-2.1e EnergyPlus 

Method BDL FORTRAN coding Schedule spreadsheet in IDF editor 

Basic Schedule 
Level 

Day, Week, Annual Day, Week, Annual 

Day Schedule 24 hours in a day 24 hours in a day 

Week Schedule 

Individual schedules for 7days (Monday to 

Sunday) or 

Weekday and weekend schedules or custom 

day designations 

Individual schedules for 7days (Monday to 

Sunday) or 

Weekday and weekend schedules or custom 

day designations 

Annual 
Schedule 

<Example> 

INFIL-SCH   =SCHEDULE           

                         THRU MAR 31 (ALL) (1,24) (1) 

                         THRU OCT 31 (ALL) (1,24) (0) 

                         THRU DEC 31 (ALL) (1,24) (1) 

 
 

<Example> 

 

Special Days 
Holiday, summer design day, winter design 

day 

Holiday, summer design day, winter design 

day 

Schedule Types 

Occupancy, lighting, equipment, infiltration, 

Domestic Hot Water (DHW), fan/ elevator, 

heating and cooling temperature  

Occupancy, lighting, equipment, infiltration 

Domestic Hot Water (DHW), fan/ elevator, 

heating and cooling temperature  

 

In simulation schedules, several types of input values (i.e., occupancy, fan, cooling, and 

heating temperature) are modeled based on the fractions in each schedule: any number, fraction, 

temperature (oF), on/off, humidity (%), and control type (EnergyPlus 2013, PNNL and U.S.DOE 

2018). Between two simulation programs, DOE-2.1e and EnergyPlus have slightly different 

input formats in the simulations as an example in Table 8. However, those two programs have 

similar schedule structures and input value types. Also, in both simulation tools, the forms of 

schedules typically show pre-determined characteristics for weekdays or weekends/holidays. 

This is because current simulation schedules mainly model prescribed schedules (i.e., fixed) and 

rule-based controls. Therefore, the use of stochastic schedules or real-time schedules is limited in 
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energy modeling using the current simulation tools (See Chapter 2.4.4). Table 8 summaries the 

schedule design features in DOE-2.1e and EnergyPlus.  

 

 

(a) Occupancy Schedules 

 

(b) Lighting Schedules 

 

(c) Equipment Schedules 

Figure 12. Simulation Schedules for Code-Compliant Modeling 
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(a) Ventilation Fan Schedules 

 

(b) Thermostat Setpoint Temperature Schedules 

Figure 13. Vent Fan and Setpoint-Temperature Schedules for Code-Compliant Modeling  

 

To develop the DOE-2.1e reference office models, this study selected the Standard 90.1-

2016 schedules (ASHRAE 2017b) as the baseline schedules without modifications that are 

shown in Figure 12 and Figure 13. Then, in addition to the Standard 90.1-2016 schedules, to 

compare the impact of OBC according to different space usage rates in office buildings, 100% to 

10% OBC schedules in-office hours (9 AM-5 PM) for occupancy, lighting, equipment, 

ventilation fan, and thermostat set-point schedules were developed to evaluate minimum and 

maximum reduction from varying building system operations due to occupancy usage diversity.  
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4.2.1.3. Building Envelope and Fenestration 

In the developing process of building envelopes and windows in the simulations, DOE-

2.1e and EnergyPlus use different parameters and input methods to express the envelope material 

properties and constructions for their architectural design and thermal properties. Table 9 shows 

the details of the input parameters for modeling the building envelope in DOE-2.1e and 

EnergyPlus. To develop the building envelope, DOE-2.1e exploits a layer command to represent 

internal/external walls, floors, ceilings, roofs that are made up of assemblies using thickness, 

conductivity, density, specific heat, and resistance to describe the thermal properties of each 

material. Similarly, EnergyPlus makes use of layers expressed as constructions. 

 

Table 9. Input Parameters for Building Envelope Modeling in DOE-2.1e and EnergyPlus 
Type DOE-2.1e EnergyPlus 

Material • Type: Roof, Internal/External wall, 
Ceiling, Floor 

• Parameter: Thickness, Conductivity, 
Density, Specific heat, Resistance 

• Type: Roof, Internal/External wall, 
Ceiling, Floor 

• Parameter: Roughness, Thickness, 
Conductivity, Density, Specific heat, 
Thermal absorptance, Solar absorptance, 
Visible absorptance  

Material: No Mass N/A • Type: Door, Carpet, Air wall, Insulation 
• Parameter: Roughness, Thermal 

resistance, Thermal absorptance, Solar 
absorptance, Visible absorptance 

Window: Glazing • Type: glazing  
• Parameter: panes (1-3), glass type code, 

shading coefficient (SC), glass 
conductance, visual transmittance, frame 
conductance, frame absorptance, spacer 
type code, inside/outside emission 

• Type: glazing 
• Parameter: Optical data type, thickness, 

Solar transmittance, Front/backside 
solar reflection at normal incidence, 
Visible transmittance at normal 
incidence, Front/backside visible 
reflection at normal incidence, Infrared 
transmittance at normal incidence, 
Front/backside infrared hemispherical 
emissivity, conductivity 
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Table 9. Input Parameters for Building Envelope Modeling in DOE-2.1e and EnergyPlus (cont.) 
Type DOE-2.1e EnergyPlus 

Construction • Type: Door, Ceiling, Roof, 
Internal/External wall, Floor, Window 

• Parameter: Layers (Material, Thickness, 
Inside film resistance), U-value, 
Absorptance, Roughness   

• Type: Door, Air wall, Ceiling, Roof, 
Internal/External wall, Floor, Window 

• Parameter: Layers (Material) 

Building Surface • Type: Roof, External wall, Plenum wall 
• Parameter: Dimension, Construction, 

Azimuth, Tilt, Ground reflectance, 
Location, Shading surface/division,  
Sky/ground form factors, Infiltration 
coefficient, Solar fraction, Inside visible 
reflectance, Inside Solar absorptance, 
Outside emission,   

• Type: Roof, Ceiling, Floor, 
Internal/External wall, Plenum wall 

• Parameter: Surface type, Zone name, 
Boundary condition, Sun/Wind 
exposure, View factor to ground, 
Dimension  

• Type: Interior wall, Air wall 
• Parameter: Area, Location, Construction, 

Wall type, Solar fraction, Inside visible 
reflection, Azimuth, Inside Solar 
absorptance 

• Type: Underground wall/floor 
• Parameter: Area, Dimension, 

Construction, Tilt, U-Effective, 
Multiplier, Solar fraction, Inside visible 
reflection, Inside Solar absorptance 

Fenestration 
Surface 

• Type: Window, Door 
• Parameter: Dimension, Glass type, Frame, 

Shading design/schedule, Ground form 
factor, Shading division, Infiltration 
coefficient, Solar transmittance schedule, 
Visible transmittance schedule, Glare 
control 

• Type: Window, Door 
• Parameter: surface type, building 

surface for window, View factor to 
ground, Shading control, Frame and 
divider, Multiplier 

 

Therefore, in this study, the DOE-2.1e model’s envelope constructions were developed 

based on the inputs of the PNNL small office prototype models for Standard 90.1-2016. Some SI 

input parameters in the PNNL models were converted to IP units using conversion factors for 

modeling in DOE-2.1e. Table 10 shows building envelope component properties for small office 
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buildings in Houston, TX and Chicago, IL. Table 11 to Table 12 represent building envelope 

components and material layers for the DOE-2.1e models in Houston, TX and Chicago, IL.  

 

Table 10. Summary of Small Office Model Construction  
# Type Houston (2A) Chicago (5A) 

    
U-Value  

(Btu/hr-ft2-F) 
SHGC 

U-Value  
(Btu/hr-ft2-F) 

SHGC 

1 Roof 0.526 0.0257 
(0.027) 

- 0.526 0.0202 
(0.021) 

- 

2 Ceiling 0.027 - 0.021 - 

3 External wall 0.087 (0.089) - 0.050 (0.051) - 

4 Interior wall 0.442 - 0.442 - 

5 Ground floor* 0.415 (F-0.730) - 0.415 (F-0.520) - 

6 Window** 0.52 (0.54) 0.249 (0.25) 0.367 (0.38) 0.365 (0.38) 

7 Glass door** 0.52 (0.54) 0.249 (0.25) 0.367 (0.38) 0.365 (0.38) 

8 Opaque door 0.370 (0.037) - 0.370 - 
* Note: The numbers in brackets are code-compliance for Standard 90.1-2016. U-value and SHGC were extracted from DOE-

2.1e LV-C and LV-D reports. U-values included air films.  
* Ground floor is slab-on-grade (unheated) both for Houston and Chicago models, which used 8” concrete slab with carpet pad. 

As of August 2020, DOE updated the prototype models using F-factor for underground calculations. Before then, U-value used 
for underground calculations. The construction of F-factor insulation can be found in Standard 90.1-2016, Table A6.3.1.  

** Hypothetical window with weighted U-factor and SHGC used based on the PNNL prototype models. The weighting process is 
described in Thornton et al. (2011).  

 

Table 11. Houston (2A): Small Office Model Material Layers 
# Type Material Layers (Outside to Inside) 

1 Attic roof    Asphalt shingles, 5/8” plywood 
2 Ceiling insulation   Insulation (R-35.4), 15/8” gypsum board 
3 External slab 8” with carpet   7 7/8” normal-weight concrete floor, carpet pad 
4 Exterior wall   1” stucco, 5/8” gypsum board, insulation (R-9), 5/8” gypsum board 
5 Interior wall   ½” gypsum board, ½” gypsum board 
6 Exterior roof soffit    5/8” plywood 
7 Window    Glass 1576, air 2 1/16”, Glass 102 (U-value 0.58, SHGC 0.25) 
8 Glass door  U-value 0.58, SHGC 0.25 
9 Swinging door   Opaque door panel 
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Table 12. Chicago (5A): Small Office Model Material Layers 
# Type Material Layers (Outside to Inside) 

1 Attic roof    Asphalt shingles, 5/8” plywood 
2 Ceiling insulation   Insulation (R-45.98), 5/8” gypsum board 
3 External slab 8” with carpet   7 7/8” normal-weight concrete floor, carpet pad 

4 Exterior wall   
1” stucco, 5/8” gypsum board, insulation (R-17.43), 5/8” gypsum 
board 

5 Interior wall   ½” gypsum board, ½” gypsum board 
6 Exterior roof soffit    5/8” plywood 
7 Window    Glass 8652, air ½”, Glass 102 (U-value 0.41, SHGC 0.38) 
8 Glass door  U-value 0.41, SHGC 0.38 
9 Swinging door   Opaque door panel 

 

4.2.1.4. Internal Heat Gains  

In general, internal heat gains in buildings significantly affect building HVAC operations 

for space cooling and heating. Influential factors for internal heat gains are mainly occupancy, 

electrical equipment, internal lighting, and other equipment. Table 13 presents default internal 

heat gain inputs for small office models in DOE-2.1e simulations in this study. In the DOE-2.1e 

model development, task lighting and other equipment elements are not modeled for internal 

loads. Input values were mainly extracted from Standard 90.1-2016, User’s manual (ASHRAE 

2017b), and PNNL small office models for Standard 90.1-2016 (PNNL and U.S.DOE 2018).  

  

Table 13. Internal Heat Gain Inputs in DOE-2.1e and EnergyPlus Simulation Tests 
Heat sources DOE-2.1e EnergyPlus Reference 

Occupancy - 450W/person   

- 200ft2/person 

- 450W/person   

- 200ft2/person 

ASHRAE (2017b) 

Electrical equipment 0.63 W/ft2 0.63 W/ft2 ASHRAE (2017b) 

Internal lighting 0.79 W/ft2 0.79 W/ft2 ASHRAE (2017b) 

Task lighting Not modeled Not modeled N/A 
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4.2.1.5. Heat Transfer on the Ground Surfaces 

The ground-coupled floor is a primary path to lose heat in buildings. Previous literature 

(Andolsun et al. 2010, 2011, 2012) reported that the current simulation programs showed a high 

degree of variation in the ground-coupled heat transfer (GCHT) calculations in slab-on-grade 

buildings. Heat loss through the ground may comprise 30-50% of the total heat loss in code or 

above-code houses, and the variation of heat transfer on the ground surfaces can differ based on 

insulation on the slabs, simulation model, climate, thermal properties (Andolsun et al. 2010). The 

estimation of ground coupling is challenging because it contains three-dimensional heat 

conduction, humidity transport, longtime constants, and heat storage properties of the ground 

condition (Andolsun et al. 2011).  

 

Table 14. Average Monthly Ground Temperature in DOE-2.1e and EnergyPlus  
Month Houston (CZ 2A, °F) Chicago (CZ 5A,°F) Reference 

January 69.314 67.838 PNNL and 
U.S.DOE 
(2014) 

February 69.224 67.604 

March 69.368 67.604 

April 69.512 37.838 

May 69.692 68.180 

June 73.634 72.050 

July 74.300 73.184 

August 74.444 73.526 

September 74.480 73.634 

October 70.448 69.944 

November 69.818 68.954 

December 69.458 68.342 

 

In prototype models, this study selected monthly ground temperature models for the 

small office models in Houston, TX and Chicago, IL, which was used in the original PNNL 
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prototype model methods for small office models. Therefore, to match the simulation results, 

DOE-2.1e models used the same average monthly ground temperatures from the PNNL 

prototype small office building models in EnergyPlus. For more information about the ground 

coupled models, Appendix G provides the comparison of the impact of ground-coupling.  

 

4.2.1.6. Thermal Zones for HVAC Systems 

In simulation models, the determination of thermal zoning is significant to improve the 

accuracy of the mathematical predictions because thermal zoning methods can affect sensitive 

calculation on building elements, such as heat transfer and circulation in building spaces, and 

building system assignments and operations. In reality, it is difficult to have the same indoor 

temperature distribution in building spaces due to solar gains in the perimeter zones. Therefore, 

thermal zoning should be carefully modeled in a modeling procedure by considering building 

design and system factors (e.g., space type, orientation, occupant density and activities, HVAC 

types and controls).  

Thermal zones have been defined as different names and definitions (e.g., thermal zone, 

thermal block, HVAC zone) (Shin 2018). For example, Standard 90.1-2013 (ASHRAE 2013b) 

described an HVAC zone that is “a space or group of spaces within a building with heating and 

cooling requirements that are sufficiently similar so that desired conditions (e.g., temperature) 

can be maintained throughout using a single sensor (e.g., thermostat or temperature sensor).” 

Such thermal zones are operated by a single thermostat sensor with its setpoint temperature and 

schedule. Moreover, in the same thermal zone, the zone should maintain the same set-

temperature during the operating period in simulations. Therefore, to carefully consider thermal 

zoning, previous studies have developed guides for simulation modeling. From the literature 
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review, Shin (2018) also found common criteria for thermal zoning that contained considerations 

of (a) solar gains, (b) orientation, (c) occupancy, (d) schedule, and (e) space function.  

To determine the thermal zoning model, this study developed simplified single models 

and five-zone models to compare the simulation estimation accuracy of thermal zoning based on 

the small office building models in DOE-2.1e. Also, an attic roof is not conditioned as a thermal 

zone, and the return air path was set to “direct” without the use of ducts in DOE-2.1e 

simulations. Table 15 and Table 16 represents the thermal zoning model summary for single-

zone models and five-zone models. The depth of the perimeter zone for five-zone models was 

assumed as 15ft with four perimeter zones, one core zone, and an attic zone. The percentages of 

floor areas are 70% of perimeter zones and 30% of the core zone.  

 

Table 15. Single Zone Model Summary for DOE-2.1e Models in Houston and Chicago 

Zone 
Area 
[ft²] 

Conditioned 
[Y/N] 

Volume
[ft³]

Gross 
Wall 
Area 
[ft²]

Window 
Glass 
Area 
[ft²]

90.1-
2016 

Lighting2 

[W/ft²]
People  

[ft²/person] 

Number 
of 

People 

Plug 
and 

Process 
[W/ft²]

Space1-1 5,503 Yes 55,065 3,030 643 0.79 179 31 0.63 
Attic 6,114 No 25,437 0 0 0.79 - 0 0.00 
Total  5,503   80,502 3,030 643     31   
Area weighted 
average 

            179   0.63 

 
 

Table 16. Five Zone Model Summary for DOE-2.1e Models in Houston and Chicago 

Zone 
Area 
[ft²] 

Conditioned 
[Y/N] 

Volume
[ft³]

Gross 
Wall 
Area 
[ft²]

Window 
Glass 
Area 
[ft²]

90.1-
2016 

Lighting2 

[W/ft²]
People  

[ft²/person] 

Number 
of 

People 

Plug 
and 

Process 
[W/ft²]

Space5-1 1,611 Yes 16,122 0 0 0.79 179 9 0.63 
Space1-1 1,221 Yes 12,221 909 222 0.79 179 7 0.63 
Space2-1 724 Yes 7,250 606 120 0.79 179 4 0.63 
Space3-1 1,221 Yes 12,221 909 180 0.79 179 7 0.63 
Space4-1 724 Yes 7,250 606 120 0.79 179 4 0.63 
Attic 6,114 No 25,437 0 0 0.79 - 0 0.00 
Total  5,503   80,502 3,030 643     31   
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4.2.1.7. Building System Configuration  

This chapter investigated system input variables for the small office reference building 

models to develop system variables in DOE-2.1e. Table 17 shows a building system summary 

for small office building models in DOE-2.1e, which was based on the PNNL prototype models 

for Standard 90.1-2016. The reference office model used a packaged single-zone model (PSZ) 

for space cooling and heating. The energy efficiencies were 4.12 (COP) for cooling and 3.36 

(COP) for heating both in Houston, TX and Chicago, IL. Designed thermostat setpoint 

temperatures were 75°F of cooling and 70°F of heating, respectively, during the daytime with 

set-back controls. The outdoor air ventilation rate was 0.085 CFM/ft2 in Standard 62.1-2013, 

which is equal to 17 CFM/person in office spaces (ASHRAE 2013b). Also, the missing or 

different parameters that were not provided by EnergyPlus were selected from the default values 

in the DOE-2 reference manual (LBL and LASL 1980a,b).  

 

Table 17. Input Summary for Small Office Building Systems 
  Houston (2A) Chicago (5A) 

System 
Type 

Heat Source Heat pump  Heat pump  

HVAC system Packaged single-zone system 

(PSZ) 

Packaged single-zone system (PSZ) 

HVAC 
Sizing 

Air Conditioning Autosized to design day Autosized to design day 

Heating Autosized to design day Autosized to design day 

HVAC 
Efficiency 

Air Conditioning 4.12 (COP) 4.12 (COP) 

Heating 3.36 (COP) 3.36 (COP) 

HVAC 
Control 

Thermostat Setpoint 75°F Cooling/70°F Heating 75°F Cooling/70°F Heating 

Thermostat Setback 85°F Cooling/60°F Heating 85°F Cooling/60°F Heating 

Supply Air 

Temperature 

Maximum 104°F, Minimum 55°F Maximum 104°F, Minimum 55°F 

 



 

104 

 

Table 17. Input Summary for Small Office Building Systems (con’t) 
 Houston (2A) Chicago (5A) 

HVAC 
Control 

Economizers Toa > 65°F  

(required high-limit setting for 2A) 

Toa > 65°F  

(required high-limit setting for 5A) 

Ventilation Standard 62.1-2013  

(outdoor air CFM/person=17) 

Standard 62.1-2013  

(outdoor air CFM/person=17) 

Vent Fan Schedules Code Schedules Code Schedules 

Supply Fan Total 
Efficiency (%) 

0.56 0.56 

Supply 
Fan 

SWH Type Storage tank Storage tank 

Fuel Type Electric Electric 

Tank Volume (gal) 40 gal 40 gal 

Service 
Water 
Heating 

Water Temperature 
Setpoint 

140°F 140°F 

Water Consumption 24hr, 1.0 24hr, 1.0 

 

4.2.2.  Result of the Development of DOE-2.1e Reference Models  

This chapter describes the results of the development of commercial small office models 

in DOE-2.1e in order to evaluate the impact of occupancy-based controls. DOE-2.1e simulation 

software was adopted because it is more intuitive on the simulation interface and coding methods 

and easy-to-use than EnergyPlus. This point has the advantage in the simulation model-

developing process to aid the understanding of the modeling structure and immediate 

modifications of the simulation models corresponding to the variable changes. Therefore, DOE-

2.1e reference office models were developed using the same building dimensions and system 

conditions in the PNNL prototype office building models in EnergyPlus ver.8.0 for Standard 

90.1-2016 (PNNL and DOE 2018). However, there are some modifications in the reference 

models in DOE-2.1e from the original PNNL prototype models so as to estimate the maximum 

and minimum impacts of OBC. This is because, in the original prototype models, lighting 

controls with motion sensors and occupancy schedule reductions were already included. Thus, 
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OBC -related variables were removed in the reference models. Also, other input variables (i.e., 

external lighting) were also eliminated only to evaluate the impact of OBC in lighting energy 

use. The results of the reference models in DOE-2.1e models were verified in comparison with 

modified PNNL prototype models in EnergyPlus for this study. The following results are a 

comparison in Houston, TX and Chicago, IL. BEPS reports in DOE-2.1e and Annual Building 

Utility Performance Summary reports in EnergyPlus were used to compare component loads and 

total building load calculations.  

 

Table 18. Comparison of Building Component Loads and Total Loads in Houston  

 (Unit: MMBtu/yr) Lighting 
Misc 

equipment 
Space 

heating 
Space 

cooling 
Pump & 

misc 
Vent 
fans 

Total 
(MMBtu) 

EP+ Model (Modified) 53.13 54.51 2.07 29.89 -  21.08 160.68

DOE-2.1e Model 53.14 54.53 2.93 29.90 0.05 21.10 161.66

Difference  0.01 0.02 0.87 0.01 0.05 0.02 0.98

Difference (%) 0.0% 0.0% 42.0% 0.0% -  0.1% 0.6%
 

Table 19. Comparison of Building Component Loads and Total Loads in Chicago 

 (Unit: MMBtu/yr) Lighting 
Misc 

equipment 
Space 

heating 
Space 

cooling 
Pump & 

misc 
Vent 
fans 

Total 
(MMBtu) 

EP+ Model (Modified) 53.13 54.51 11.60 13.55 - 18.99 151.79

DOE-2.1e Model 53.14 54.53 13.95 13.66 0.50 19.08 154.86

Difference  0.01 0.03 2.35 0.06 0.50 0.08 3.07

Difference (%) 0.0% 0.0% 20.2% 0.8% -  0.5% 2.0%
 

In comparison between modified prototype models and DOE-2.1e simulation models, 

total building load differences between modified PNNL prototype models and DOE-2.1e models 

were 0.6% and 2.0% in Houston and Chicago, respectively, which are within the acceptable 
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ranges for the use. Table 18 and Table 19 represent component loads and differences between 

modified PNNL prototype models and DOE-2.1e models. In the reference models, area lighting 

and equipment loads are nearly the same values because these results were mainly determined by 

simulation schedules and power density (i.e., lighting power density and equipment power 

density). Also, cooling and ventilation loads were slightly different but produced almost the 

same result between DOE-2.1e and EnergyPlus. The only exception was heating calculations. 

DOE-2.1e showed the over-estimation in heating loads than the modified prototype models when 

applied to the PSZ systems. Based on the reference model development in DOE-2.1e models, 

this study evaluated the impact of OBC and modeling credits for small office buildings.  

 

4.3.Evaluation of Potential Energy Ese Reduction in Office Buildings  

In the literature review, substantial energy use reduction were expected from occupancy-

based controls in office buildings. However, the quantity of energy use reduction would vary 

depending on architectural designs, system designs, and simulation conditions. In this chapter, 

the procedure of the potential energy use reduction calculations for office buildings was 

addressed to achieve the research goals. 

Firstly, this study selected representative climate zones in the U.S., such as hot-humid 

(e.g., Houston, TX) and cold-humid (e.g., Chicago, IL). These two cities represent the U.S. south 

and north areas, which can describe different thermal characteristics of OBC in building energy 

simulations. To identify and quantify potential energy use reduction in different climate zones, 

the reference models were developed in the previous chapter using DOE-2.1e that are the 

reference code-compliant models for OBC in small office buildings. Then, potential energy use 

reduction were estimated using the sensitivity analysis in DOE-2.1e. OBC schedules (e.g., 
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occupancy, lighting, equipment, ventilation fan) were selected based on the previous literature 

that could significantly affect building controls and total energy use. Hence, the results of this 

study can clarify the impact of OBC in office building energy modeling. Based on the simulation 

results of potential energy use reduction, proposed credits were presented in Chapter 6 to suggest 

ideas to develop occupancy-based building control credits for a new Standard 90.1 addendum of 

OBC that could improve the modeling requirement in Standard 90.1 performance paths to be 

more realistic. The credits would provide energy use reduction calculations in a format using 

different OBC profiles of schedule and operation rates, which can give the flexibility of the 

current deterministic schedules in Standard 90.1-2016 and Standard 90.1-2019 that they do not 

match occupancy modeling with the actual building usages in some cases.  

Therefore, potential energy use reduction in this study were calculated based on the 

following simulation conditions: 1) different climate zones (i.e., Houston, TX and Chicago, IL), 

2) different usage profiles (i.e., 100% to 10% usage fractions), 3) different thermal zone 

orientations (i.e., east, west, south, north, and core zone) 4) different HVAC system types (i.e., 

packaged single zone (PSZ) system and packaged variable air volume (PVAV) system), and 

different thermal zoning methods (i.e., single-zone model, five multi-zone model).  

As for simulation conditions, the reference small office buildings were computed in 

Houston, TX and Chicago, IL to predict the impact of OBC in hot-humid and cold-humid 

regions. Also, simulations used Standard 90.1-2016 schedules as baseline schedules and 

developed OBC schedules to predict potential energy use reduction from occupancy-based 

controls. Figure 14 to Figure 19 presents OBC schedules for simulations that applied for typical 

weekdays. The shapes of OBC schedules show evenly distributed deterministic schedules to 

cover occupant usage diversity during business hours on weekdays. The weekend schedules used 
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the same schedules with Standard 90.1-2016 schedules that represent unoccupied conditions at 

the weekends. This is because stochastic schedules are project-customized and, thus, challenging 

to be generalized. In contrast, although deterministic schedules are fixed and less flexible to 

various office usage profiles, low flexibility and diversity can be made up using various OBC 

usage profiles. Also, typical codes and standards have used normalized and deterministic 

schedules because of the difficulty in the generalization of customized schedules in different 

buildings. Therefore, 100% to 10% OBC schedules were used to represent different occupancy 

rates and diversity during the daytime and provide alternatives for energy simulation modeling in 

the performance paths.  

On the other hand, in the office building operations, occupancy-based controls would be 

ideally applied in a whole building, but sometimes, it would be used only for a particular zone 

due to different space types and usage in office buildings. Therefore, test simulations assumed 

total OBC applications for the whole-buildings and individual zone OBC applications in thermal 

zones. The different OBC application methods could show energy use reduction depending on 

office building zone orientations.  

In test cases of HVAC systems, the reference models used a packaged single zone (PSZ) 

system with constant air volume (CAV) for small office buildings. However, the CAV system 

has a limitation in capturing the changes in occupancy rates. Therefore, packaged Variable Air 

Volume (PVAV) system models were also developed to evaluate maximum energy use reduction 

potential from occupancy-based building controls in building energy performance simulations.  

Besides, thermal zoning methods are significant in energy performance calculations, 

which would affect the accuracy of the energy use reduction impact in office buildings. Previous 

studies in Chapter 4.2 described that a multi-zoning model would show separate and 
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sophisticated system controls of different space usages in office buildings. Therefore, to 

precisely compare reduction impact, single-zone models and five multi-zone models were 

compared to estimate the different reduction impacts due to thermal zoning.  

Last but not least, as for the occupancy-based controls in simulations, this study selected 

only simulation schedules (i.e., occupancy, lighting, equipment, fan, and thermostat set-

temperature schedules) as occupancy-related variables. Other parameters (e.g., operable window, 

office layouts) remained fixed. 

 

4.3.1. Step.1 Determination of Occupancy-based Building Control Schedules 

In the development of occupancy models, the determination of the simulation schedules 

is an essential task because the OBC schedules define occupant behavior in building system 

operations, such as HVAC, ventilation, equipment, and lighting systems during weekdays and 

weekends based on space types and locations.  

Typically, simulation schedules in building codes and standards showed a conservative 

tendency in the modeling requirement. They used a static and deterministic type schedule (e.g., 

Standard 90.1-2016 User’s Manual) and the maximized peak occupancy rate that is 100% during 

the daytime in a small office building (ASHRAE 2017b). This static and deterministic schedule 

has an advantage for code-compliance due to easy to use for users, more transparent process, and 

unbiased schedule shape of most building projects. Also, these strengths would offer complete 

generality for building performance paths in building codes and standards. Nonetheless, this 

static and deterministic schedule is now meeting with a rebuttal of occupancy-related energy 

modeling due to fixed and uniform schedule configurations for energy simulations. Therefore, 

the right determination of OBC schedules would solve the problems of the current fixed standard 



 

110 

 

schedules by reflecting actual-similar occupancy diversity in energy performance prediction 

models.  

In that sense, to sublate conformity and respect diversity of OBC profiles and diverse 

operations in simulation models, this study proposed 100% to 10% OBC schedules for 

occupancy, lighting control, and HVAC systems on weekdays. These OBC schedules would 

represent occupant diversity for more flexible space usages in a static and deterministic schedule 

format. Fan control and thermostat setpoint temperatures are also modified, corresponding to the 

changes in OBC schedules. Weekend and holiday schedules are not modified because the current 

standard schedules already assume unoccupied and system off conditions for small office 

buildings.  

 

Table 20. Daily Average Rates of Proposed Simulation Schedules for Weekdays 
Occupancy Lighting System Equipment HVAC Fan 

100% OBC 0.38 0.49 0.50 0.38 

90% OBC 0.34 0.45 0.46 0.38 

80% OBC 0.30 0.41 0.43 0.38 

70% OBC 0.26 0.38 0.39 0.38 

60% OBC 0.23 0.34 0.35 0.38 

50% OBC 0.19 0.30 0.31 0.38 

40% OBC 0.15 0.26 0.28 0.38 

30% OBC 0.11 0.23 0.24 0.38 

20% OBC 0.08 0.19 0.20 0.38 

10% OBC 0.04 0.15 0.16 0.38 
* 24hour schedule average in weekdays from Standard 90.1-2016 User’s manual (ASHRAE 2017b) 

  

Table 20 show daily averaged rates for proposed OBC schedules with Standard 90.1-

2016 average schedule rates on a weekday. In Standard 90.1-2016 schedules, average daily rates 

for a weekday were 0.40 for occupancy, 0.51 for lighting system, 0.67 for equipment system, and 
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0.54 for HVAC fan. Lighting and equipment usages in Standard 90.1-2016 schedules showed 

higher usage rates than occupancy rates for 6 pm to 8 am unoccupied hours, which led to higher 

usage rates in daily averages.  

Figure 14 to Figure 20 represents the proposed schedules for evaluating the impact of 

occupancy-based controls in small office buildings. Small office building open hours were set to 

9 am to 5 pm, and no occupant presence was assumed after business hours during weekday. All 

types of schedules have equally 0.1 intervals between schedule variations of OBC 100% to OBC 

10%. Weekend and holiday schedules used the minimum rates for occupancy (0.0), lighting 

(0.18), equipment (0.20), fan (0.0), and set-back controls for thermostats.  

 

 
Figure 14. Test Simulation Occupancy schedules (100% to 10%) for Weekdays 
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Figure 15. Test Simulation Lighting Schedules (100% to 10%) for Weekdays 

 

 
Figure 16. Test Simulation Equipment Schedules (100% to 10%) for Weekdays 

 

 
Figure 17. Test Simulation Equipment Schedules (100% to 10%) for Weekends 
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Figure 18. Test Simulation HVAC Fan Schedules (100% to 10%) 

 

 
Figure 19. Test Simulation Thermostat Set-temperature Schedules (100% to 10%) for Weekdays 
 

 
Figure 20. Test Simulation Thermostat Set-temperature Schedules (100% to 10%) for Weekends 
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4.3.2. Step.2 Development of Variable Air Volume System Models 

The original small office model for Standard 90.1-2016 used an air-source heat pump for 

the heating system and the cooling system. For the distribution and terminal units, the prototype 

model adopted the PSZ, CAV air distribution system (PNNL and U.S.DOE 2018). However, in 

general, the CAV system supplies a constant airflow into indoor spaces at variable temperature, 

which is not sensitive to energy reduction due to the changes in occupant frequency. 

Contrastively, the VAV system supplies a variable airflow into indoor spaces at a constant 

temperature that would provide improved energy performance and cost savings, especially in the 

ventilation systems. This supports the fact that the VAV system showed improved energy 

performance versus the CAV system in most commercial spaces, especially those with changing 

occupant loads. Therefore, to observe energy efficiency and reduction from occupancy in 

different HVAC systems, small office PVAV models were developed in DOE-2.1e for different 

climate zones (i.e., Houston: 2A and Chicago: 5A). The PVAV models for small office buildings 

in DOE-2.1e were developed based on the reference models in DOE-2.1e that are the baseline 

models modified from the PNNL’s small office prototype models (PNNL and U.S.DOE 2018). 

Coding for the VAV systems used the default commands and inputs of the packaged variable air 

volume systems (PVAV) in the DOE-2 BDL Summary ver. 2.1E (Winkelmann et al. 1993). For 

the system fan setting for the PVAV systems, the SUPPLY-DELTA-T and SUPPLY-KW used 

the default values from the DOE-2 documents (Winkelmann et al. 1993, pp101-102). Also, the 

minimum CFM ratio of 1.0 was eliminated from the VAV system controls to show more energy 

reduction using flexible air volume controls in each thermal zone. These VAV models were used 

to simulate the impact of OBC in small office building energy uses.  
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4.3.3. Step.3 Evaluation of Single-Zone and Multi-Zone Models  

Thermal zones in simulation models play a significant role in defining characteristics of 

heat transfer, system controls, occupant usages, and load calculations. The correct approach for 

thermal zoning would improve simulation accuracy and resolution of occupancy-based controls 

in the results. Therefore, in the middle of the OBC evaluation process, single-zone models and 

five multi-zone models were developed and compared to quantify the impact of the zoning 

model selection in OBC calculations.  

 

4.3.3.1. Thermal Zoning Considerations  

As for basic principles for thermal zoning, thermal zone control is very sophisticated 

despite its simple appearance in simulations, which is related to several factors (e.g., outdoor 

temperature, humidity, outdoor air ventilation, internal and external heat gains). Shin (2018) 

summarized the thermal zoning considerations of HVAC design from previous literature as 

Table 21.  

 

Table 21. Primary Design Considerations for Thermal Zoning in Building Performance 
Simulations  

Reference Considerations for Thermal Zoning  

Bachman (2003)  Similar solar exposure and orientation 
 Similar envelope exposure 
 Similar occupancy type and density 
 Similar schedules 
 Shared incremental capacity

McDowall (2006)  Solar gain 
 Wall or roof heat gains or heat losses 
 Occupancy 
 Equipment and associated heat loads 
 Freeze protection in cold climates

Grondzik and Kwok (2014)  Function of thermal zones 
 Schedule 
 Orientation
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Even though there was still no general quantitative method for thermal zoning, based on 

the previous literature, this study identified five criteria of HVAC thermal zoning: solar gains, 

orientation, occupancy, schedule, and space function.  

In building energy simulations, the number of thermal zones in a building is important in 

the analysis of the thermal characteristics (e.g., heating, cooling, thermal comfort) in spaces. In 

the literature, there have been discussions about the appropriate number of thermal zones, 

including Georgescu (2014), Shin (2018), Dogan et al. (2014), Im and New (2018) and, Im et al. 

(2019). Georgescu (2014) described a conventional approach that combines thermal zones with 

similar load profiles into a single thermal zone to save time and effort in developing a whole-

building energy simulation. However, if grouped spaces do not contain sufficient information 

about similar thermal attributes, it may deteriorate the simulation model accuracy. Shin (2018) 

stated that a single-zone model may not reflect the localized loads on the north or south exposure 

that may not be accurately simulated. For example, if a single-zone model has significant south-

facing windows, the south face of the thermal zone may have high thermal loads, whereas the 

north face of the same zone may be less affected by mid-day solar radiation in the winter. 

However, building energy simulation programs calculate the average loads for the whole zone 

(e.g., a well-mixed model). Therefore, a single-zone model may not accurately estimate the 

localized loads on the north or south faces, which causes load cancellation that can create 

reduced energy cooling or heating demand for a single-zone model in comparison to the multi-

zone model. In an extreme case, Dogan et al. (2014) found that a multi-thermal zone model may 

have as much as 14% higher annual thermal loads (i.e., heating and cooling loads) than a single-

zone model of the same building.   
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The Oak Ridge National Laboratory (ORNL) developed newly-improved thermal zone 

models (Im and New 2018; Im et al. 2019) for the small and medium office prototype buildings, 

with model properties based on Standard 90.1. In the current prototype models, only one space 

type was used for all office building types to calculate energy use, which is “office” space type. 

However, in typical office buildings, there are many other space types (e.g., conference room, 

restroom, enclosed office, open office). As part of efforts to overcome these shortcomings, 

ORNL updated new space types for the small and medium offices and compared energy 

performance with the original small office models in Standard 90.1-2004 through Standard 90.1-

2013 requirements. The results identified that climate zone 2A would have energy use changes 

of -0.2% to 2.0%, and climate zone 5A would increase by 2.8% to 8.6% energy use in different 

Standard 90.1 models. The increase of energy use was more apparent in cases of cold climate 

zones than in cases of hot climate zones throughout all simulations. This study concluded that the 

new models that added more space types and associated space characteristics in office buildings 

would show different energy use. Also, in this study, the energy use discrepancies between the 

simulation models mainly came from detailed space types, space-specific lighting and plug 

power densities, and ventilation rates.  

 

4.3.3.2. Thermal Zoning Model Development  

From the previous literature, it was shown that a detailed thermal zoning model should 

help analyze the impact of occupancy-based building controls in office buildings. However, 

thermal zoning development requires a significant effort and time to organize and analyze using 

simulation models. Thereby, based on the literature, this study selected a five-zone model for 

Houston and Chicago based on the original small office prototype models. The dimension and 
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zoning of the models followed the small office building prototypes for Standard 90.1-2016. Next, 

five-zone models were then compared with single-zone models to evaluate the differences in 

energy performance. The results were used to verify that more thermal zones have the advantage 

of a detailed analysis for localized energy demand, and specific energy uses by space types. The 

interpretation of the zoning models allowed for an improved understanding of the significance of 

thermal zoning in occupancy modeling. To compare the impact in different thermal zoning 

models, the evaluations were processed in three levels: 1) total building energy use, 2) peak day 

energy use, and 3) sensitivity analysis of occupancy-based building controls.   

 

4.3.4. Step.4 Evaluation of Energy Use Reduction Impact due to Occupancy-Based Controls 

In this step, the five-zone models were simulated to compare building energy use in 

different architectural and system design conditions (e.g., envelope materials, window design, 

HVAC system). This process verified the thermal characteristics of occupancy-based controls in 

different building conditions. To evaluate the energy performance, a sensitivity analysis of 

occupancy-based building controls (i.e., occupancy, lighting, and equipment schedules) was 

performed to investigate the influence of the OBC variable in Houston (CZ 2A) and Chicago 

(CZ 5A). Then, the energy use reduction potential were calculated in building loads using all 

occupancy-related schedule variables together. This analysis was performed in the small office 

buildings with the reference model, lightweight and heavyweight envelope designs as well as 

10%-40% window-to-wall ratio models. Lastly, the energy use reduction from individual zones 

occupancy-based operations was simulated to analyze the impact in differently oriented thermal 

zones in the office building. Based on the result, OBC credits were proposed in Chapter 6 to 

suggest the solutions of occupancy modeling for Standard 90.1-2019 performance paths.  
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4.4. Development of Simulation Modeling Credits for Occupancy-Based Controls 

In the previous literature, most research focused on the identification and improvement of 

occupant behavior modeling methods (i.e., IEA-EBC, Annex 66 2018). However, these studies 

neglected to quantify the impact of occupancy variables in the energy use to develop occupancy 

modeling credits in standard modeling. Only a few of the previous literature showed examples of 

occupancy-based modeling credits, such as the PNNL reports (Thornton et al. 2011, Goel et al. 

2014) and Appendix G in Standard 90.1-2016. However, these references included only limited 

credits of occupancy-based modeling for partial building systems (i.e., lighting system). 

However, a review of the impact of OBC in Chapter 2.2 verified that office buildings possessed 

more potential to save energy use from various building systems, including lighting, equipment, 

HVAC, and ventilation systems, when OBC applied and integrated into building systems. 

Therefore, as the last task, this study performed a process to develop occupancy modeling credits 

for small office buildings.  

In terms of the forms of OBC credits, the energy use reduction impact was quantified 

using energy use reduction percentages in Houston and Chicago. The total energy use reduction 

of OBC would be calculated using the proposed equations. OBC rates of load components could 

then be used to calculate energy use reduction potential for each system component in different 

building design and system conditions, which can be used to improve Standard 90.1-2019 

performance paths. 
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5. RESULTS: IMPACT OF OCCUPANCY-BASED BUILDING CONTROLS 

 

In general, occupant behavior and activities are key drivers to determine building energy 

use for system and equipment operations. However, their patterns would vary and be difficult to 

forecast where, when, and how occupant behavior or events would occur. As a result, the 

traditional energy simulation modeling using fixed and deterministic schedules is now facing 

limits in its ability to predict accurate results and reduce a gap of energy use between the 

proposed design and the actual design. However, most code compliance studies (i.e., Standard 

90.1-2016) in the U.S. allow architects and engineers to use only limited modeling of 

Occupancy-Based Controls (OBC) due to the requirements of the performance paths in the ECB 

method and Appendix G method. Those modeling requirements basically require identical 

schedules for both baseline design and proposed design, which constrains the advanced building 

designs using occupancy-based controls in office building models.  

Accordingly, as an effort to resolve such problems, this study presents an analysis of the 

impact of OBC in small office models in this Chapter. The simulations were performed in 

Houston, TX and Chicago, IL using TMY3 weather data as the representative cities of hot-humid 

and cold-humid climate zones in the U.S. This result shows an overlooked aspect of OBC in the 

current energy modeling methods under code compliance and provides useful information about 

how to improve modeling requirements for future energy codes. The impact of OBC was 

calculated based on the sensitivity tests using simulation schedules, building design & materials, 

HVAC system types & controls, and thermal zone system controls. Energy use reduction 

contributions to building load components were also analyzed to identify the energy use 

reduction features of OBC in different U.S. climate zones. The analysis of peak day data shows 
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the most influential energy-related factors of occupancy-based building controls in an entire 

building and individual thermal zones. These results would be useful to better understand what 

OBC could do to save energy in office buildings in hot-humid and cold-humid climate zones.  

 

5.1. Impact of Different Thermal Zoning Models  

In general, a thermal zone is a unit for controlling the building HVAC systems (e.g., 

thermostat, equipment, ventilation) in simulations that would significantly affect energy 

calculations. A rule of thumb for developing thermal zoning models in the previous literature, as 

discussed in Chapter 4.2.3, was a simplified thermal zoning approach, considering occupancy, 

orientation, space type, usage profiles, and system type. However, a detailed zoning model 

would be more beneficial to reflect the actual thermal characteristics of heat gain and transfer by 

space locations, types, and system operations.  

In that sense, this study compares two different types of thermal zoning models (i.e., 

single, 5-zone models) using the reference models for small office buildings in two locations. 

The result of the model comparison observed significant differences in the total energy used for 

heating, cooling, and HVAC fan operations from the single-zone and 5-zone models. Lighting 

and equipment showed almost the same between the single-zone and 5-zone models. For the 

tests, thermal zoning models applied packages single zone models with the CAV system and 

packaged variable air volume models to monitor the system effect of occupancy-based controls 

in Houston and Chicago. Simulation cases for estimating total energy use in small office 

buildings are presented in Table 22.  
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Table 22. Simulation Cases for Total Building Energy Use Analysis 

Group Location 
Zoning 
Model 

System 
Type 

OBC Schedule Type (Weekdays) Average 
WWR Occupant Light Equipment Infiltration Vent Fan   Set-point  Set-back 

1 Houston Single 
zone 

PSZ 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

2 Houston Single 
zone 

PVAV 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

3 Houston Five zones PSZ 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

4 Houston Five zones PVAV 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

5 Chicago Single 
zone 

PSZ 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

6 Chicago Single 
zone 

PVAV 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

7 Chicago Five zones PSZ 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

8 Chicago Five zones PVAV 1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

1) 90.1-2016 
2) 100% 24hrs 
3) 0% 24 hors 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

* Weekend schedules set to minimum operating conditions of simulation schedules (e.g., occupancy=0.0; lighting=0.18; equipment=0.20; infiltration=off; ventilation fan=0.0;  
   set-point temperature: heating 60oF, cooling 85oF).  
* Window-to-wall (WWR) ratio in small office models is 21% on average. Window fraction is 24.4% for South and 19.8% for the other three orientations (e.g., east, west, north).  
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5.1.1. Total Building Energy Uses of Different Thermal Zoning Models  

To evaluate the impact of different thermal zoning models in building energy 

simulations, the total building energy use was simulated using the reference small office models 

in DOE-2.1e. All test models used the same building dimensions and code-compliance for the 

climate zones. The independent variables for simulations were the climate zones (i.e., 2A, 5A), 

the thermal zoning models (i.e., single, 5 zones), the HVAC system type (i.e., PSZ, PVAV), and 

schedule types (i.e., Standard 90.1-2016 schedules, 100% 24hr operation, 0% 24hr operation 

schedules).  

Figure 21 and Table 23 showed the result of total energy use and load configuration by 

components. The annual total building energy use (end-use) verified the discrepancies between 

single-zone and 5 zone models. In cases of the 0% occupancy, 24-hour system operations, the 

lighting and equipment consumed minimum energy due to the minimum system operations with 

0% occupancy. Other load components (e.g., heating, cooling, ventilation fan) were set-back to 

thermostat temperatures. The result shows annual minimum cooling and heating demand due to 

weather data and internal heat gain.  

 In cases in Houston, using the Standard 90.1-2016 schedules, area lighting and 

equipment occupied the most significant portions of building load components. The cooling 

loads and ventilation fan loads were the third and fourth largest loads for the hot-humid climate. 

Space heating showed smaller energy use than most load components. In cases for Chicago, 

using Standard 90.1-2016 schedules, heating loads were increased as expected due to cool-humid 

climate. An interesting observation was that the PSZ systems in the single and 5-zone models 

used more heating energy than cooling energy. In comparison, the PVAV systems in single and 5 

zone models used higher cooling energy than heating energy.  
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                       (a) Houston: 0%, 24hrs                                         (b) Chicago: 0%, 24hrs 

 
            (c) Houston: Standard 90.1-2016                             (d) Chicago: Standard 90.1-2016                                  

 

                   (e) Houston: 100%, 24hrs                                       (f) Chicago: 100%, 24hrs 

 
Figure 21. Total Building Energy Use by Thermal Zoning Models 
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Table 23. Total Building Energy Use by Thermal Zoning Models in Houston and Chicago (Unit: MMBtu) 

Simulation Cases 
Area 

Lights 
Misc 

Equipment 
Space 
Heat Space Cool 

Pump  
& Misc 

Vent 
Fans Total 

5Z vs 1Z 
Difference(%) 

Std 90.1, 5Z-Houston,PSZ 53.1 54.5 3.1 31.6 0.1 19.9 162.3
5.6% 

Std 90.1, 1Z-Houston, PSZ 53.1 54.5 1.3 28.0 0.1 16.7 153.7

Std 90.1, 5Z-Houston,PVAV 53.1 54.5 1.6 33.6 0.1 10.1 153.0
0.3% 

Std 90.1, 1Z-Houston,PVAV 53.1 54.5 1.6 33.3 0.1 10.0 152.5

Std 90.1, 5Z-Chicago, PSZ 53.1 54.5 14.8 13.8 0.5 18.4 155.2
4.6% 

Std 90.1, 1Z-Chicago, PSZ 53.1 54.5 14.6 12.1 0.4 13.7 148.4

Std 90.1, 5Z-Chicago, PVAV 53.1 54.5 7.8 16.8 0.7 10.5 143.6
-0.6% 

Std 90.1, 1Z-Chicago, PVAV 53.1 54.5 12.1 15.2 0.6 8.9 144.4

100%,24hr, 5Z-Houston, PSZ 129.9 103.6 4.8 82.7 0.1 54.5 375.6
6.2% 

100%,24hr, 1Z-Houston, PSZ 129.9 103.6 2.6 71.8 0.0 45.8 353.7

100%,24hr, 5Z-Houston, PVAV 129.9 103.6 7.8 87.0 0.1 29.5 357.9
2.5% 

100%,24hr, 1Z-Houston, PVAV 129.9 103.6 7.4 81.7 0.1 26.4 349.0

100%,24hr, 5Z-Chicago, PSZ 129.9 103.6 34.0 33.7 0.5 51.1 352.9
4.9% 

100%,24hr, 1Z-Chicago, PSZ 129.9 103.6 37.4 27.6 0.2 37.7 336.3

100%,24hr, 5Z-Chicago, PVAV 129.9 103.6 51.5 39.3 0.7 28.8 353.8
3.0% 

100%,24hr, 1Z-Chicago, PVAV 129.9 103.6 50.0 35.5 0.6 23.7 343.3

0%,24hr, 5Z-Houston, PSZ 23.4 20.7 1.8 0.1 0.1 12.7 58.8
4.6% 

0%,24hr, 1Z-Houston, PSZ 23.4 20.7 0.1 2.1 0.1 9.9 56.2

0%,24hr, 5Z-Houston, PVAV 23.4 20.7 0.7 22.8 0.1 6.6 74.2
7.1% 

0%,24hr, 1Z-Houston, PVAV 23.4 20.7 1.1 19.0 0.1 5.1 69.3

0%,24hr, 5Z-Chicago, PSZ 23.4 20.7 8.3 0.6 0.5 12.1 65.7
7.7% 

0%,24hr, 1Z-Chicago, PSZ 23.4 20.7 8.7 0.2 0.4 7.6 61.0

0%,24hr, 5Z-Chicago, PVAV 23.4 20.7 9.5 10.7 0.5 7.0 71.9
2.5% 

0%,24hr, 1Z-Chicago, PVAV 23.4 20.7 12.0 8.6 0.5 5.0 70.1
* Total building energy use extracted from BEPU reports in DOE-2.1e simulations and then SI unit in kWh converted to IP unit in MMBtu 
** In 0% 24hr simulation cases, minimum rates for the lighting system and equipment were 0.18 and 0.20, respectively. The minimum occupancy rate was 0.00.    
Thermostat set-temperatures for heating and cooling used set-back temperatures for 24 hours. 
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In cases using 100%, 24 hours system operations, all models used almost 2/3 of total 

energy use for lighting and equipment. In Houston, cooling loads in the single and 5-zone 

models increased dramatically, which were 11-27 times more than heating loads. In the PSZ 

systems, the simulation showed more fan energy use for ventilation compared to PVAV systems 

because PSZ’s fan is not as flexible as VAV systems in response to occupant’s thermal demand. 

In the 100%, 24-hour operations, the heating systems in both the single-zone and the 5-zone 

model used more energy than cooling systems.  

The three types of simulation schedules and two different HVAC systems in the single-

zone and 5-zone models verified that the lighting and equipment loads were the most energy-

consuming loads in the small office buildings in hot-humid and cold-humid climate regions. In 

addition, heating, cooling, and ventilation fans were weather and system dependent as expected.  

The thermal zone models using the Standard 90.1-2016 schedules showed 0.3% - 5.6% 

differences between the PSZ and PVAV models in Houston and -0.6% - 4.6% differences in the 

Chicago PSZ and PVAV models. The 5 zone models using a 100%, 24-hour operation resulted 

in a 2.5% - 6.2% difference for the PSZ and PVAV models in Houston and a 3.0% - 4.9% 

difference for the Chicago PSZ and PVAV models. The 0% occupancy, 24-hour operation 

models yielded 4.6% -7.1% differences between the single-zone and 5-zone models in Houston 

and Chicago and 2.5% - 7.7% differences found in Chicago.  

Figure 22 and Table 24 analyzed the end-use load components to determine where the 

total building energy use differences are coming from in different simulation models. The results 

found that energy use differences in small office buildings mainly resided in weather-dependent 

load components (i.e., heating, cooling, ventilation).  
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Figure 22. Total Building Energy Use Differences by Thermal Zoning Models 
 

 

In cases with 0% occupancy and 24-hour operation, the building system operations were 

set-back to off-hour conditions. Therefore, in all cases of 0% occupancy, 24-hour operation had 

the same operation inputs of occupancy, system schedules, thermostat schedules. However, 

outdoor environmental conditions (i.e., external air temperature, humidity) and internal heat gain 

from minimum lighting and equipment operations made heating and cooling demands, which 

made the changes of heating, cooling and ventilation fan loads in simulation models using 0%, 

24 hours schedule.  

In cases where the Standard 90.1-2016 schedule was used, the primary differences came 

from space cooling and ventilation. The differences in the PSZ system’s cooling and ventilation 

were larger than the PVAV system’s energy loads. Space heating energy use showed divergent 

results depending on regions and system types. The 5-zone PSZ system models in Houston and 
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Chicago used more space heating energy than single zoning models. In contrast, the 5 zone VAV 

system models in Houston and Chicago used less space heating energy than single zoning 

models. Lighting and equipment used the same amount of energy between the single-zone and 

the 5 zone model in all cases of Standard 90.1-2016 schedules. 

In cases of 100% occupancy, 24-hour operation, the total energy use differences between 

different thermal zoning models were at least two times larger than Standard 90.1-2016 

schedules. Most of the differences in energy use between the single and 5-zone models were 

from space cooling and ventilation, which occupied 86 to 94 percent of the total energy use 

differences in all the 100%, 24-hour operation simulations. In space heating, all cases of the 

100%, 24-hour operation showed that 5-zone models used more energy than single-zone models 

except some cases of 5-zones and 1 zone models using CAV systems in Chicago. Since lighting 

and equipment were weather-independent load components, the differences were very small.  

Figure 23 and Figure 24 show the variations of energy use in load components in single-

zone and 5-zone models when applied to the three different types of simulation schedules and 

two types of HVAC systems (i.e., PSZ, PVAV). The results show the lighting and equipment 

variations in Houston equal to the result in Chicago models. However, the 5-zone models in 

Houston and Chicago showed larger extents of changes in the heating, cooling, and ventilation 

fan energy use depending on HVAC system types.  
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Table 24. Total Building Energy Use Difference by Thermal Zoning Models in Houston and Chicago (Unit: MMBtu) 

Base Cases Area Lights 
Misc 

Equipment 
Space 
Heat 

Space  
Cool 

Heat 
Rejection 

Pump  
& Misc Vent Fans Total 

Std 90.1, 5Z vs 1Z-Houston,PSZ 0.0 0.0 1.8 3.6 0.0 0.0 3.1 8.6

Std 90.1, 5Z vs 1Z -Houston, PVAV 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.4

Std 90.1, 5Z vs 1Z -Chicago, PSZ 0.0 0.0 0.2 1.7 0.0 0.1 4.7 6.8

Std 90.1, 5Z vs 1Z -Chicago, PVAV 0.0 0.0 -4.2 1.6 0.0 0.1 1.6 -0.9

100%,24hr, 5Z vs 1Z -Houston, PSZ 0.1 0.1 2.1 10.9 0.0 0.0 8.7 21.9

100%,24hr, 5Z vs 1Z -Houston, PVAV 0.1 0.1 0.4 5.3 0.0 0.0 3.1 8.9

100%,24hr, 5Z vs 1Z -Chicago, PSZ 0.1 0.1 -3.4 6.1 0.0 0.4 13.4 16.6

100%,24hr, 5Z vs 1Z -Chicago, PVAV 0.1 0.1 1.5 3.7 0.0 0.1 5.0 10.4

0%,24hr, 5Z vs 1Z -Houston, PSZ 0.0 0.0 1.7 -2.0 0.0 0.0 2.8 2.6

0%,24hr, 5Z vs 1Z -Houston, PVAV 0.0 0.0 -0.4 3.8 0.0 0.0 1.5 4.9

0%,24hr, 5Z vs 1Z -Chicago, PSZ 0.0 0.0 -0.4 0.4 0.0 0.1 4.6 4.7

0%,24hr, 5Z vs 1Z -Chicago, PVAV 0.0 0.0 -2.4 2.1 0.0 0.1 2.0 1.8
* Total building energy use differences calculated energy use differences in MMBtu between different thermal zoning models using the same HVAC systems 
** Total building energy use extracted from BEPU reports in DOE-2.1e simulations and then SI unit in kWh converted to IP unit in MMBtu 
*** In 0% 24hr simulation cases, minimum rates for the lighting system and equipment were 0.18 and 0.20, respectively. The minimum occupancy rate was 0.00.    
Thermostat set-temperatures for heating and cooling used set-back temperatures for 24 hours.  
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Figure 23. Houston: Energy Use Variations of Load Components in 1 Zone and 5 Zone Models 
 

 

Figure 24. Chicago: Energy Use Variations of Load Components in 1 Zone and 5 Zone Models 
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5.1.2. Peak Day Building Energy Loads  

Peak loads represent peak demands that refer to the maximum energy demand during a 

particular period, typically a day. Figure 25 shows a concept of peak loads that depicts 24-hour 

electric utility load curves for summer and winter peak days at a specific location (Aznar 2015). 

Understanding this concept is significant because a daily pattern of energy use is highly affected 

by building operating hours and solar gain. In other words, high occupancy intensity and high 

solar gain (e.g., afternoon) requires more electricity use to control indoor temperature and 

operate equipment in the summer. Also, these 24-hour load curves can be shown in different load 

components that are used to understand what is causing the daily load trend changes by the hour.  

 

 

Figure 25. Example Daily Load Curves in Summer and Winter 
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energy use reduction contributing components in different simulation conditions. For this, this 

study used reference small office prototype models for testing PSZ and PVAV systems. The 

results showed building energy performance, peak day loads by load component, and hourly 

patterns by HVAC system types and locations (e.g., Houston, TX and Chicago, IL) in single and 

5 zone small office building models. The simulation cases for this review are represented in 

Table 22.  

The peak days for this chapter were determined based on the rules shown below to 

compare simulation models on the same peak days and to better evaluate the occupancy-based 

controls in energy reduction.  

• Peak days were selected based on the building or thermal zone’s summer and winter peak 

days using the LS-A: space peak loads summary report in DOE-2.1e simulations 

using Houston (#722430) and Chicago (#725300) TMY3 data  

• Peak days were selected to be clear days based on cloud amount from TMY3 weather 

data in the summer and winter, as well as the solar data for the peak day. 

 

Based on the above rules and a simulation period of the calendar year 2019, August 2 

(Friday) and February 11 (Monday) were selected for Houston, TX, and September 27 (Friday) 

and January 23 (Wednesday) were selected for Chicago, IL. For Chicago, the original peak day 

for winter was January 27 in building total and all five zones. However, since January 27 in 2019 

was Sunday, one of the coldest days on weekdays was selected instead for the winter peak day.  

Finally, the weather data of peak days in summer and winter are presented in Figure 26 to 

Figure 29, which include ground temperature (oF), outdoor temperature(oF),  and total horizontal 

solar radiation (Btu/ft2∙hr). 
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Figure 26. Weather Data for the Summer Peak Load Day (Aug. 2) in Houston, TX 
 

 

Figure 27. Weather Data for the Winter Peak Load Day (Feb. 11) in Houston, TX 
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Figure 28. Weather Data for the Summer Peak Load Day (Sep. 27) in Chicago, IL 
 

 

Figure 29. Weather Data for the Winter Peak Load Day (Dec. 20) in Chicago, IL 
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For the hourly reporting of peak days in Houston and Chicago, an hourly report of outside dry-

bulb temperature (oF) was added in space loads calculations. Also, zonal temperature (oF), zonal 

supply fan volume (CFM), heating coil and cooling coil leaving temperatures were hourly 

calculated in system loads calculations. Lastly, energy use by load components was hourly 

calculated in plant loads calculations that are end-use energy by load components (i.e., area 

lighting, equipment, heating, cooling, ventilation) in electricity (kWh).  

 

5.1.2.1. Total Building Energy Use (End-Use) in Peak Days 

This chapter compares the total building energy use of single zone and 5 zone models in 

summer and winter peak days. The result of total building energy use on a peak day was 

extracted from the hourly plant loads report. Component loads from the plant loads calculations 

included five components in kWh: area lighting, equipment, heating, cooling, ventilation, which 

were converted to kBtu/day to compare results in Houston and Chicago.  

Table 25, Table 26, Figure 30 and Figure 31 show the result of total building energy use 

in summer and winter peak days in Houston (Aug 2/Feb 11) and Chicago (Sep 27/Dec 20). 

About the total building energy use in summer peak days, all 5 zone models represented more 

energy use than single-zone models in Houston and Chicago, which was 1.7% to 6.3% of total 

building energy use in each 5 zone model. PSZ systems showed more disparities compared to 

PVAV systems in both different climate regions.  

In terms of total building energy use in winter peak days, 5 zone PSZ models used 1.6%  

to 18.6% of more energy than the single-zone PSZ models in Houston and Chicago, respectively. 

Contrastively, 5 zone PVAV system models in Houston and Chicago showed less energy use 

than single-zone PVAV models in winter peak days.  
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Table 25. Total Building Energy Use in Summer Peak Days 

  

Area 
Lighting 
Electric 
(kBtu) 

Equipment 
Electric 
(kBtu) 

Heating 
Electric 
(kBtu) 

Cooling 
Electric 
(kBtu) 

Ventilation 
Electric 
(kBtu) 

Total 
(kBtu) 

Difference 
(5Z - 1Z 

Model, %) 

1Z,Houston, PSZ 182.1 190.8 0.0 256.1 66.3 695.3  N/A 

5Z,Houston, PSZ 182.1 190.9 0.0 283.2 78.8 735.0 5.7% 

1Z,Houston, PVAV 182.1 190.8 0.0 267.4 60.4 700.7 N/A  

5Z,Houston, PVAV 182.1 190.9 0.0 287.8 62.9 723.7 3.3% 

1Z,Chicago, PSZ 182.1 190.8 0.0 137.9 54.3 565.1  N/A 

5Z,Chicago, PSZ 182.1 190.9 0.0 154.6 73.0 600.6 6.3% 

1Z,Chicago, PVAV 182.1 190.8 0.0 148.7 48.0 569.6  N/A 

5Z,Chicago, PVAV 182.1 190.9 0.0 156.4 49.6 579.0 1.7% 

 

Table 26. Total Building Energy Use in Winter Peak Days 

  

Area 
Lighting 
Electric 
(kBtu) 

Equipment 
Electric 
(kBtu) 

Heating 
Electric 
(kBtu) 

Cooling 
Electric 
(kBtu) 

Ventilation 
Electric 
(kBtu) 

Total 
(kBtu) 

Difference 
(5Z - 1Z 

Model, %) 

1Z,Houston, PSZ 182.1 190.8 55.9 0.0 66.3 495.1  N/A 

5Z,Houston, PSZ 182.1 190.9 135.2 0.0 78.8 587.1 18.6% 

1Z,Houston, PVAV 182.1 190.8 183.8 0.0 32.3 589.0  N/A 

5Z,Houston, PVAV 182.1 190.9 113.0 0.0 38.5 524.5 -11.0% 

1Z,Chicago, PSZ 182.1 190.8 413.8 0.0 54.3 841.0  N/A 

5Z,Chicago, PSZ 182.1 190.9 408.2 0.0 73.0 854.2 1.6% 

1Z,Chicago, PVAV 182.1 190.8 260.7 0.0 31.0 664.6  N/A 

5Z,Chicago, PVAV 182.1 190.9 197.9 0.0 39.4 610.3 -8.2% 

 

 

Figure 30. Houston: Total Building Energy Use in Summer and Winter Peak Days 
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Figure 31. Chicago: Total Building Energy Use in Summer and Winter Peak Days 
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consumed more heating energy than the PSZ system. In ventilation loads, Chicago models 

showed more significant discrepancies than Houston models, which implies Chicago single-zone 

models much more overestimated than Houston single-zone models against 5 zone models.  

 

 

Figure 32. Peak Day Energy Use Difference Between Single Zone and 5 Zone Models (%) 
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The underestimation of single-zone models in summer was from cooling and ventilation 

loads. Also, the underestimation of single-zone models in winter came from heating and 

ventilation, especially in heating loads of PSZ systems. PVAV single-zone models represented 

overestimation in heating loads, which led to large discrepancies between single-zone and 5 zone 

models in Houston and Chicago.  

 

5.1.2.2. Houston: Hourly Building Energy Use (End-Use) in Peak Days 

This chapter investigated hourly trends of building energy use by load components in 

summer and winter peak days using Standard 90.1-2016 schedules. Daily load curves could 

show shapes and patterns of load components for 24 hours at peak days. Also, the daily load 

curves would help understand the impact and sensitivity of thermal zoning models to investigate 

OBC in this study. The result of daily load curves was calculated in the end-use energy from 

hourly plant loads calculations in DOE-2.1e.  Figure 33 and Figure 34 represent summer and 

winter peak days with outdoor air temperatures in single-zone and 5 models in Houston and 

Chicago. Lighting, equipment, and ventilation loads consumed energy based on operating 

schedules during a weekday. On the contrary, cooling and heating loads showed load changes 

corresponding to weather conditions and system schedules. In cases of PSZ systems in Houston, 

a single-zone model underestimated cooling and ventilation loads in summer and heating and 

ventilation loads in winter than a 5-zone model. Notably, in winter, heating load was highly 

underestimated in the early morning and late afternoon.  
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Figure 33. Daily Load Curve: Single Zone Model, Houston, PSZ System 
 

 

Figure 34. Daily Load Curve: 5 Zone Model, Houston, PSZ System 
 

Figure 35 and Figure 36 describe daily load curves of summer and winter peak days in 

single-zone and 5 zone models in Houston and Chicago. Lighting, equipment, and ventilation 

loads followed operating schedules over a weekday, which is not weather-dependent. 

Contrastively, cooling and heating loads corresponded to the changes in weather conditions.  
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Figure 35. Daily Load Curve: Single Zone Model, Houston, PVAV System 
 

 

Figure 36. Daily Load Curve: 5 Zone Model, Houston, PVAV System 
 

In cases of PVAV systems in Houston, a single-zone model underestimated cooling and 

ventilation loads in summer and ventilation load in winter than a 5 zone model. Underestimation 

in summer occurred in the early morning and late afternoon. However, in winter, a PVAV single-

zone model overestimated the heating load than a 5 PVAV zone model, particularly at 1 pm-5 
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pm. The analysis of daily load curves showed when and where differences occurred in summer 

and winter.  

 

5.1.2.3. Chicago: Hourly Building Energy Use (End-Use) in Peak Days  

In this chapter, hourly trends of building energy use were investigated in Chicago for 

summer and winter peak days. Daily load curves showed shapes and patterns of load components 

for 24 hours at peak days. The result of daily load curves was calculated in single-zone and 5 

zone models using Standard 90.1-2016 schedules in the end-use energy from hourly plant loads 

calculations in DOE-2.1e.  

Figure 37 and Figure 38 represent summer and winter peak days with outdoor air 

temperatures in Houston and Chicago. Lighting and equipment loads showed constant energy 

use between different zoning models that were based on operating schedules during a weekday. 

The ventilation system worked only in building open hours, which used different amounts of 

energy depending on HVAC system type and climate region.  

On the contrary, cooling and heating loads showed weather-dependent load patterns. The 

hourly patterns of cooling and heating were similar to cooling and heating coil leaving 

temperatures, as shown in Chap 5.1.3. In cases of PSZ systems in Chicago, a single-zone model 

underestimated cooling and ventilation loads in summer and ventilation loads in winter than a 5 

zone model. However, in winter, the heating load was highly overestimated during the daytime.  

 



 

143 

 

 

Figure 37. Daily Load Curve: Single Zone Model, Chicago, PSZ System 
 

 

Figure 38. Daily Load Curve: 5 Zone Model, Chicago, PSZ System 
 

Figure 39 and Figure 40 describe daily load curves of single-zone and 5 zone models in 

summer and winter peak days in Houston and Chicago. Lighting, equipment, and ventilation 

loads operated based on simulation schedules over a weekday, which is weather-independent. In 

contrast, cooling and heating loads showed the changes corresponded to weather conditions.  
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Figure 39. Daily Load Curve: Single Zone Model, Chicago, PVAV System 
 

 

Figure 40. Daily Load Curve: 5 Zone Model, Chicago, PVAV System 
 

In cases of PVAV systems in Chicago, a single-zone model underestimated cooling and 

ventilation loads in summer and underrated ventilation loads in winter than a 5 zone model. 

Underestimation in summer occurred evenly throughout the day. However, in winter, a PVAV 

single-zone model overestimated the heating load than a 5 zone PVAV zone model, particularly 
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at 12 pm-5 pm. The analysis of daily load curves showed when and where differences occurred 

in summer and winter.  

 

5.1.2.4. Summary  

This chapter analyzed the peak day’s total building energy use and daily load curve 

patterns in Houston and Chicago. Houston and Chicago are representative cities of hot/humid 

and cold/humid climate zones in the U.S. The daily load analysis would show the maximum 

energy demands during 24 hours in summer and winter peak days.   

Annual total building energy use (end-use) verified the discrepancies between single-

zone and 5 zone models using three different simulation schedule types: (1) Standard 90.1-2016, 

(2) 100% and 24-hour operation, and (3) 0% and 24-hour operation. 5 zone models using 

Standard 90.1-2016 schedules showed 1.7% - 5.6% differences of Houston PSZ and PVAV 

models and -0.4% - 4.9% differences of Chicago PSZ and PVAV models. 5 zone models using 

100%, 24-hours operation resulted in 2.7% - 6.2% differences of Houston PSZ and PVAV 

models and 3.2% - 5.3% differences of Chicago PSZ and PVAV models. 0%, 24-hours operation 

models yielded 0.1% differences between single-zone and 5 zone models in Houston and 

Chicago due to minimum rate operations of lighting and equipment and 0% occupancy during 

weekday and weekend.  

In terms of building energy load analysis in peak days, the amounts of lighting and 

equipment consumption were fixed based on simulation weekday schedules while heating, 

cooling, and ventilation fan energy use showed the variability against outdoor air temperature 

and occupancy schedule. Single-zone models in winter peak days consumed more heating energy 

than 5 zone models except for winter_1Z Houston, PSZ model. Whereas, single-zone models in 
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summer peak days used less cooling energy than 5 zone models in both Houston and Chicago. 

As for ventilation fans, PSZ systems typically used more energy than PVAV systems due to 

constant fan operations. Weather-dependent load components showed fluctuations in daily 

energy use and patterns depending on daily weather conditions when simulating different 

combinations of HVAC types and thermal zoning models.  

Daily load curves identified how much energy consumed by hours and which load 

components used by hours in summer and winter. Cooling load curves represented relatively 

even distribution in Houston and Chicago, including PSZ and PVAV systems. Heating load 

curves in Houston and Chicago showed significant changes based on the outdoor temperature in 

winter. In cases of cold and huge daily temperature ranges, PSZ models in Houston and Chicago 

were energy-intensive in the early morning and late afternoon. Also, the daily cooling and 

heating curves showed similar patterns with cooling and heating coil leaving temperatures in 

Chapter 5.1.3.  

The comparative analysis of single-zone and 5 zone models verified that the single-zone 

model would underestimate cooling and ventilation in summer and ventilation in winter. In 

contrast, in winter single-zone model would overestimate the heating load than a 5 zone PVAV 

zone model. The single-zone model would miscalculate weather-dependent load components 

(e.g., heating, cooling, PVAV system ventilation).  

 

5.1.3. Sensitivity in Building Energy Use Reduction from Occupancy-based Controls  

In office buildings, occupancy is a critical factor in determining building system usage 

and operation schedule. However, due to the randomness attribute, occupant behavior causes 

uncertainty in determining building energy performance. Therefore, to broaden our perspective 
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of how OBC works, this chapter performed simplified sensitivity tests using reference small 

office models in building energy use from OBC. Currently, there are many measures available to 

evaluate the impact of OBC, depending on the definitions and simulation environment settings. 

As part of this effort, this study suggested simplified simulation schedules for 100% to 10% 

usage rates in Figure 14 to Figure 20. These schedules can show normalized usage rates for 

daytime depending on average occupancy rates even though it is vulnerable to represent the 

frequency of occupant presence.  

The simulations for computing the impact of occupancy and related schedules and 

controls were conducted in single-zone and 5-zone models in Houston and Chicago. They are 

representative regions of hot/humid (2A) and cold/humid (5A) climate zones. OBC schedules 

were applied to a whole building in single-zone and 5-zone models. Testing simulation cases in 

Table 26 were determined as part of continuity from the previous sub-chapters in Chapter 5.1 

using several independent variables (i.e., location, zoning model, HVAC type, schedule type). 

Table 28 to Table 35 summarize the annual energy use of occupancy-based controls.  
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Table 27. Simulation Cases for Quantifying the Impact of Occupancy-Based Controls 

Group Location 
Zoning 
Model 

Envelope 
Material 

System 
Type 

OBC Schedule Type (Weekdays, 9AM-5PM) Average 
WWR Occup Light Equip Infilt Vent Fan   Set-temp  Set-back 

1 Houston Single 
zone 

Standard  
90.1-2016 

PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

2 Houston Single 
zone 

Standard  
90.1-2016 

PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

3 Houston Five zones Standard  
90.1-2016 

PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

4 Houston Five zones Standard  
90.1-2016 

PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

5 Chicago Single 
zone 

Standard  
90.1-2016 

PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

6 Chicago Single 
zone 

Standard  
90.1-2016 

PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

7 Chicago Five zones Standard  
90.1-2016 

PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

8 Chicago Five zones Standard  
90.1-2016 

PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

* 0% schedules refer to minimum operating contisions using weekend Standard schedules.  
* Weekend schedules set to minimum operating conditions of simulation schedules (e.g., occupancy=0.0, 0%; lighting=0.18, 18%; equipment=0.20, 20%; infiltration=off; 
ventilation fan=0.0;  
   set-temperature: heating 60oF, cooling 85oF).  
* Window-to-wall (WWR) ratio in small office models is 21% on average. Window fraction is 24.4% for South and 19.8% for the other three orientations (e.g., east, west, north).  
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Table 28. Houston, Single-Zone PSZ Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.1 30.8 27.4 24.0 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.4 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 0.3 0.4 0.5 0.6 0.7 0.9 1.1 1.4 1.6 1.7 1.8
Space Cool 24.9 23.5 22.1 20.7 19.3 18.0 16.6 15.3 13.9 13.4 13.0
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Vent Fans 11.8 11.2 10.7 10.1 9.5 8.9 8.3 7.7 7.2 7.0 6.8
Total 130.2 122.3 114.3 106.4 98.6 90.7 82.9 75.2 67.5 66.3 65.8

* Schedules for 100% OBC to 0% OBC (no occupancy) controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours 
 

Table 29. Houston, 5-Zone PSZ Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.2 30.8 27.4 24.1 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.5 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 1.1 1.2 1.3 1.5 1.7 1.9 2.4 2.9 3.6 3.7 3.7
Space Cool 27.2 25.6 24.0 22.3 20.7 19.0 17.3 15.5 13.8 13.2 12.7
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Vent Fans 14.0 13.4 12.8 12.2 11.6 11.0 10.3 9.7 9.1 8.9 8.8
Total 135.6 127.4 119.2 111.1 103.0 94.9 87.0 79.1 71.3 70.0 69.4

* Schedules for 100% OBC to 0% OBC (no occupancy)  controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours  
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Table 30. Houston, Single-Zone PVAV Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.1 30.8 27.4 24.0 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.4 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4
Space Cool 27.3 25.9 24.5 23.1 21.8 20.5 19.3 18.2 17.1 16.8 16.5
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Vent Fans 7.8 7.3 6.9 6.4 5.9 5.5 5.1 4.7 4.3 4.2 4.1
Total 128.8 120.9 112.9 105.0 97.2 89.4 81.8 74.2 66.7 65.6 65.3

* Schedules for 100% OBC to 0% OBC (no occupancy)  controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours 
 

Table 31. Houston, 5-Zone PVAV Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.2 30.8 27.4 24.1 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.5 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Space Cool 28.8 27.3 26.0 24.6 23.4 22.2 21.1 20.1 19.1 18.8 18.5
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2
Vent Fans 8.4 8.0 7.5 7.0 6.6 6.2 5.8 5.5 5.1 5.0 4.9
Total 130.6 122.7 114.8 107.0 99.3 91.7 84.2 76.7 69.4 68.3 67.9

* Schedules for 100% OBC to 0% OBC (no occupancy) controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours  
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Table 32. Chicago, Single-Zone PSZ Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.1 30.8 27.4 24.0 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.4 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 7.3 8.0 8.7 9.4 10.2 11.0 12.0 13.2 14.8 15.4 15.9
Space Cool 10.7 10.0 9.3 8.6 8.0 7.3 6.7 6.0 5.3 5.1 4.9
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Vent Fans 9.7 9.2 8.7 8.2 7.6 7.1 6.6 6.0 5.5 5.4 5.2
Total 121.3 114.7 108.2 101.6 95.1 88.7 82.5 76.5 70.8 70.4 70.6

* Schedules for 100% OBC to 0% OBC (no occupancy) controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours 
  

Table 33. Chicago, 5-Zone PSZ Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.2 30.8 27.4 24.1 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.5 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 6.9 8.1 9.4 11.1 13.0 15.2 17.1 17.8 17.3 17.2 17.4
Space Cool 12.1 11.3 10.6 9.8 9.0 8.1 7.3 6.5 5.5 5.1 4.8
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4
Vent Fans 13.0 12.5 11.9 11.4 10.8 10.3 9.7 9.2 8.6 8.5 8.4
Total 125.7 119.5 113.5 107.8 102.3 97.1 91.5 84.8 76.7 75.3 75.1

* Schedules for 100% OBC to 0% OBC (no occupancy) controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours  
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Table 34. Chicago, Single-Zone PVAV Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.1 30.8 27.4 24.0 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.4 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 7.6 7.5 7.4 7.3 7.3 7.2 7.1 7.0 6.9 6.8 6.8
Space Cool 12.7 11.9 11.2 10.4 9.7 8.9 8.3 7.6 7.1 6.9 6.8
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7
Vent Fans 6.7 6.3 5.9 5.5 5.1 4.8 4.4 4.1 3.8 3.7 3.6
Total 120.7 113.4 106.1 98.8 91.6 84.4 77.2 70.2 63.2 62.2 62.0

* Schedules for 100% OBC to 0% OBC (no occupancy) controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours 
 

Table 35. Chicago, 5-Zone PVAV Model: Annual Energy Use from OBC 

(Unit: MMBtu) 

Houston 1Zone, PSZ System
100% 
OBC 

90% 
OBC 

80% 
OBC

70% 
OBC

60% 
OBC

50% 
OBC

40% 
OBC

30% 
OBC

20% 
OBC

10% 
OBC

0%  
OBC

Area Lights 51.0 47.6 44.2 40.9 37.5 34.2 30.8 27.4 24.1 23.4 23.4
Misc Equipment 42.2 39.5 36.8 34.1 31.5 28.8 26.1 23.4 20.7 20.7 20.7
Space Heat 4.7 4.7 4.7 4.8 4.7 4.7 4.7 4.6 4.6 4.6 4.6
Space Cool 13.8 13.0 12.3 11.6 10.8 10.2 9.6 9.1 8.6 8.5 8.4
Heat Rejection 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pump & Misc 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8
Vent Fans 7.7 7.4 7.0 6.6 6.3 5.9 5.6 5.3 5.1 5.0 4.9
Total 120.1 112.9 105.8 98.6 91.5 84.5 77.5 70.6 63.9 62.9 62.8

* Schedules for 100% OBC to 0% OBC (no occupancy) controls applied only for weekday based on the schedules in Figure 14 to Figure 20.  
** Weekend and holiday calculations used the same schedules with Standard 90.1-2016 schedules. 
*** Set-back controls used for heating and cooling systems in unoccupied hours  
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5.1.3.1. Houston, Packaged Single Zone System, Packaged Single-Zone: 1 Zone vs 5 Zone 

Models 

This study analyzed the discrepancies between single-zone and 5-zone models using the 

reference small office models in annual total energy use, peak day energy use, and peak day 

indoor environmental conditions. Lastly, from this chapter, 100% to 0% OBC cases were 

computed to evaluate the impact of thermal zoning models in energy reduction of occupancy-

based controls.  

Figure 41 shows the trends of annual energy use and load components in test cases of 

100% OBC to 0%  OBC in the Houston single-zone PSZ models. Result data is presented in 

Table 28. 100% OBC consumed 130.2 MMBtu/yr, and 0% OBC consumed 65.8 MMBtu/yr. The 

potential maximum energy reduction in total building energy use was 64.4 MMBtu/yr, which 

was calculated as a difference between 100% OBC and 0% OBC results. The tendencies of load 

components represented a persistent decrease except heating loads that had a gradual increase 

due to reduced internal heat gain (e.g., occupant, light, equipment).  

In Figure 42, energy reduction was principally found in lighting and equipment that are 

the largest energy-consuming components in small office buildings. As for cooling loads, since 

Houston is hot and humid, the reduction from OBC rate reductions occupied 17.6% of the 

maximum energy reduction potential. Heating loads showed a slightly negative effect on 

reducing total energy use due to the loss of internal heat gains from office appliances and people. 

The energy use reduction of ventilation fans were affected by the demands of the occupancy rate 

and HVAC operations.  
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Figure 41. 1 Zone PSZ Model: Annual Energy Use from OBC 100% to 0%, Houston, TX 
 

 

Figure 42. 1 Zone PSZ Model: Energy Reduction Contributions (OBC 100%-0%), Houston, TX 
 

Figure 43 displayed the trends of annual energy use and load components of OBC 100% 

to 10% test cases in 5-Zone PSZ Models. The tabular result is described in Table 29. 100% OBC 

consumed 135.6 MMBtu/yr, and 0% OBC consumed 69.4 MMBtu/yr. The maximum energy 
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Reduction potential in total building energy use was 66.2 MMBtu/yr, which was computed as a 

difference between 100% OBC and 0% OBC results. The tendencies of load components showed 

a constant decrease except heating loads that had a gradual increase due to reduced internal heat 

gain (e.g., occupant, light, equipment).  

 

 

Figure 43. 5 Zone PSZ Model: Annual Energy Use from OBC 100% to 0%, Houston, TX 
 

In Figure 44, energy reduction was mainly from lighting and equipment that used the 

most considerable energy in small office buildings. As for weather-dependent load components, 

since Houston is hot and humid, the cooling load reduction from OBC rate changes occupied 

20.3% of the maximum energy reduction potential. Heating loads showed a slightly negative 

effect of -3.7% due to the loss of internal heat gains from people and office appliances. The 

energy reduction of ventilation fans were influenced by the demands of the occupancy rate and 

HVAC operations.  
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Figure 44. 5 Zone PSZ Model: Energy Reduction Contributions (OBC 100%-0%), Houston, TX 
 

5.1.3.2. Houston, Packaged Variable Air Volume System: 1 Zone vs 5 Zone Models  

This chapter evaluated single-zone models and 5-zone models using the reference small 

office models to compare the impact of thermal zoning models using 100% to 0% OBC rates in 

energy reduction of OBC.  

Figure 45 Figure 41shows the trends of annual energy use and load components in test 

cases of 100% OBC to 0% OBC in the Houston single-zone PVAV models. The outcome of the 

simulations is summarized in Table 30. 100% OBC consumed 128.8 MMBtu/yr, and 0% OBC 

consumed 65.3 MMBtu/yr. The potential maximum energy reduction in total building energy use 

was 63.2 MMBtu/yr, which was estimated as a difference between 100% OBC and 0% OBC 

models. The tendencies of load components showed a gradual decrease except heating loads that 

had a slight increase due to reduced internal heat gain (e.g., occupant, light, equipment).  
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Figure 45. 1 Zone PVAV Model: Annual Energy Use from OBC 100% to 0%, Houston, TX 
 

 

Figure 46. 1 Zone PVAV Model: Energy Reduction Contributions (OBC 100%-0%), Houston, TX 
 

In Figure 46, lighting and equipment are the most significant energy-consuming 

components in small office buildings, which propelled primary energy reduction. In terms of 

cooling loads, owing to the hot and humid climate in Houston, the cooling load reduction from 
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OBC rate reductions also occupied a large reduction that was 16.7% of the maximum energy 

reduction potential. Heating loads showed a minor effect on reducing total energy use due to the 

loss of internal heat gains from office appliances and people. The energy reduction of ventilation 

fans was 5.8% of the total energy reduction in 100% OBC to 0% OBC test cases.  

Figure 47 displayed the trends of annual energy use and load components of OBC 100% 

to 0% test cases in 5-Zone PVAV Models. The tabular result is described in Table 31. 100% 

OBC consumed 130.6 MMBtu/yr, and 0% OBC consumed 67.9 MBtu/yr. The maximum energy 

reduction potential in total building energy use was 62.4 MMBtu/yr, which was computed as a 

difference between 100% OBC and 0% OBC results. The tendencies of load components showed 

a constant decrease except heating loads that had a gradual increase due to reduced internal heat 

gain (e.g., occupant, light, equipment).  

  

 

Figure 47. 5 Zone PVAV Model: Annual Energy Use from OBC 100% to 0%, Houston, TX 
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In Figure 48, most energy reduction came from lighting and equipment that used the most 

considerable energy in small office buildings. As for weather-dependent load components, since 

Houston is hot and humid, the cooling load reduction from OBC rate changes occupied 16.1% of 

the maximum energy reduction potential. The energy reduction of ventilation fans was 5.5% of 

the total energy reduction in 100% OBC to 0% OBC test cases.  

 

 

Figure 48. 5 Zone PVAV Model: Energy Reduction Contributions (OBC 100%-0%), Houston, TX 
 

5.1.3.3. Chicago, Packaged Single Zone System, Packaged Single-Zone: 1 Zone vs 5 Zone 

Models 

Chicago models can reflect energy attributes in cool and humid climate zones in the U.S. 

Therefore, this chapter performed single-zone models and 5-zone models using the reference 

small office models to compare the impact of thermal zoning models using 100% to 0% OBC 

rates in energy reduction of occupancy-based controls.  
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Figure 49 shows the trends of annual energy use and load components in test cases of 

100% OBC to 0% OBC in the Chicago single-zone PSZ models. The outcome of the simulations 

is summarized in Table 32. 100% OBC consumed 121.3 MMBtu/yr, and 0% OBC consumed 

70.6 MMBtu/yr. The potential maximum energy reduction in total building energy use was 51.0 

MMBtu/yr, which was estimated as a difference between 100% OBC and 0% OBC models. The 

tendencies of load components showed a gradual decrease except heating loads that had a slight 

increase due to reduced internal heat gain (e.g., occupant, light, equipment).  

 

 

Figure 49. 1 Zone PSZ Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
 

In Figure 50, lighting and equipment dominated most energy reduction that are the largest 

energy-consuming components in small office buildings. As for cooling loads, since Houston is 

hot and humid, the reduction from OBC rate reductions occupied 8.3% of the maximum energy 

reduction potential. Heating loads showed a negative effect on total energy use due to the loss of 
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internal heat gains from office appliances and people. The energy reduction of ventilation fans 

were responsible for 6.5% of the potential total energy reduction.  

 

 

Figure 50. 1 Zone PSZ Model: Energy Reduction Contributions (OBC 100%-0%), Chicago, IL 
 

Figure 51 showed the trends of annual energy use and load components of OBC 100% to 

0% test cases in 5-Zone PSZ Models. The tabular result is arranged in Table 33. 100% OBC 

consumed 125.7 MMBtu/yr, and 0% OBC consumed 75.1 MMBtu/yr. The maximum energy 

reduction potential in total building energy use was 50.4 MMBtu/yr, which was computed as a 

difference between 100% OBC and 0% OBC results. The tendencies of load components showed 

a constant decrease except heating loads that had a gradual increase due to reduced internal heat 

gain (e.g., occupant, light, equipment).  
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Figure 51. 5 Zone PSZ Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
 

 

Figure 52. 5 Zone PSZ Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
 

In Figure 52, energy reduction was mainly from lighting and equipment that used the 

most considerable energy in small office buildings. Also, since Houston is hot and humid, the 

cooling load reduction from OBC rate changes occupied a large portion that was 9.9% of the 
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maximum energy reduction potential. Heating loads showed a negative effect due to the loss of 

internal heat gains from people and office appliances. The energy reduction of ventilation fans 

was 6.4% of the potential total energy reduction in 100% OBC – 0% OBC test cases. 

 

5.1.3.4. Chicago, Packaged Variable Air Volume system: 1 Zone vs 5 Zone Models  

This chapter evaluated single-zone models and 5-zone models using the reference small 

office models to compare the impact of thermal zoning models using 100% to 0% OBC rates in 

energy reduction of occupancy-based controls.  

Figure 53 shows the trends of annual energy use and load components in test cases of 

100% OBC to 0% OBC in the Houston single-zone PVAV models. The outcome of the 

simulations is summarized in Table 34. 100% OBC consumed 120.7 MMBtu/yr, and 10% OBC 

consumed 62.0 MMBtu/yr. The potential maximum energy reduction in total building energy use 

was 58.5 MMBtu/yr, which was estimated as a difference between 100% OBC and 0% OBC 

models. The tendencies of load components showed a gradual decrease except heating loads that 

had a slight increase due to reduced internal heat gain (e.g., occupant, light, equipment).  

In Figure 54, lighting and equipment are the most significant energy-consuming 

components in small office buildings, which propelled primary energy reduction. In terms of 

cooling loads, owing to the hot and humid climate in Houston, the cooling load reduction from 

OBC rate reductions also occupied a large reduction that was 10.2% of the maximum energy 

reduction potential. Heating loads showed a minor reduction effect to reduce total energy use due 

to the loss of internal heat gains from office appliances and people. The energy reduction of 

ventilation fans were 5.3% of the total energy reduction in 100% OBC to 0% OBC test cases.  
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Figure 53. 1 Zone PVAV Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
 

 

Figure 54. 1 Zone PVAV Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
 

Figure 55 showed the trends of annual energy use and load components of OBC 100% to 

0% test cases in 5-Zone PSZ Models. The tabular result is arranged in Table 35. 100% OBC 
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consumed 120.1 MMBtu/yr, and 0% OBC consumed 62.8 MMBtu/yr. The maximum energy 

reduction potential in total building energy use was 57.1 MMBtu/yr, which was computed as a 

difference between 100% OBC and 0% OBC results. The tendencies of load components showed 

a constant decrease except heating loads that had a gradual increase due to reduced internal heat 

gain (e.g., occupant, light, equipment).  

In Figure 56, energy reduction were mainly from lighting and equipment that used the 

most substantial energy in small office buildings. Also, since Houston is hot and humid, the 

cooling load reduction from OBC rate changes occupied a large portion that was 9.4% of the 

maximum energy reduction potential. Heating loads showed a minor effect due to the loss of 

internal heat gains from people and office appliances. The energy reduction of ventilation fans 

were 4.9% of the potential total energy reduction in 100% OBC – 0% OBC test cases.  

 

 

Figure 55. 5 Zone PVAV Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
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Figure 56. 5 Zone PVAV Model: Annual Energy Use from OBC 100% to 0%, Chicago, IL 
 

5.1.3.5. Summary 

This chapter discussed the energy use sensitivity of different thermal zoning models 

using the reference small office models in occupancy-based controls. In energy calculations, the 

thermal zoning model is related to numerous parameters that affect building energy performance 

and consumption. Therefore, different thermal zoning models would bring about a 

misunderstanding of heat transfer and gain in particular spaces as well as different results from 

the same building simulations. For example, a single-zone model would mix heat gain from the 

south-side or west-side in a building because the DOE-2.1e program uses average temperature in 

thermal zones. Such a fact moderates daily indoor air temperature changes over time than the 5-

zone model because the single-zone model cannot distinguish indoor air temperatures in different 

perimeter zones or different space types. Therefore, the sensitivity tests in this chapter quantified 

the impact in energy use between the single-zone model and the 5-zone model in Houston and 

Chicago.  
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Table 36. Maximum Energy Use Reduction on Building Total Loads by Thermal Zoning 
Models, Systems, and Climate Zones 

(MMBtu) 
1Z,Houston

PSZ 
5Z,Houston 

PSZ 
1Z,Houston 

PVAV
5Z,Houston 

PVAV
1Z,Chicago 

PSZ
5Z,Chicago

PSZ
1Z,Chicago

PVAV 
5Z,Chicago

PVAV

Lights 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6

Equipment 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5

Space Heat -1.4 -2.7 0.1 0.0 -8.0 -10.4 0.8 0.1

Space Cool 11.9 14.5 10.5 10.0 5.6 7.1 5.8 5.3

Pump & Misc 0.0 0.0 -0.1 -0.1 0.0 0.1 -0.1 -0.1

Vent Fans 5.0 5.2 3.6 3.4 4.4 4.6 3.0 2.8

Total 64.4 66.2 63.2 62.4 51.0 50.4 58.5 57.1
* Maximum energy reduction = differences between 100% OBC energy use – 0% OBC energy use 

 

Table 37. Maximum Energy Use Reduction Percentages on Building Total Loads by Thermal 
Zoning Models, Systems, and Climate Zones 

(%) 
1Z,Houston

PSZ 
5Z,Houston 

PSZ 
1Z,Houston 

PVAV
5Z,Houston 

PVAV
1Z,Chicago 

PSZ
5Z,Chicago

PSZ
1Z,Chicago

PVAV 
5Z,Chicago

PVAV

Lights 41.0% 38.6% 43.7% 44.2% 41.1% 38.8% 48.4% 48.4%

Equipment 31.9% 30.0% 34.0% 34.4% 32.0% 30.2% 37.7% 37.7%

Space Heat -2.1% -3.7% 0.1% 0.0% -12.0% -14.6% 1.4% 0.2%

Space Cool 17.6% 20.3% 16.7% 16.1% 8.3% 9.9% 10.2% 9.4%

Pump & Misc 0.0% 0.0% -0.1% -0.2% 0.0% 0.1% -0.2% -0.2%

Vent Fans 7.4% 7.3% 5.8% 5.5% 6.5% 6.4% 5.3% 4.9%
* Maximum energy reduction percentages = (100% OBC energy use – 0% OBC energy use)/ 100% OBC energy use 

 

Table 36 and Table 37 compare maximum energy reduction and percentages from 100% 

OBC – 0% OBC between single-zone and 5-zone models. The maximum energy reduction from 

100% OBC to 0% OBC in Houston were 64.4 MMBtu/yr in single-zone PSZ and 66.2 

MMBtu/yr in 5-zone PSZ. For PVAV systems in Houston, single-zone mode saved 63.2 

MMBtu/yr, and 5-zone model reduced 62.4 MMBtu/yr. In Chicago, single-zone PSZ less used 

51.0 MMBtu/yr, and 5-zone PSZ was 50.4 MMBtu/yr. For PVAV systems, single-zone PVAV 

reduced 58.5 MMBtu/yr, and 5-zone PVAV eliminated 57.1 MMBtu/yr. In terms of load 
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components, differences of 100% OBC to 0% OBC showed -3.7% to 44.2% changes in Houston 

and -14.6% to 48.4% changes in Chicago.  

 

The findings of load component trends from the 100% OBC – 0% OBC sensitivity test 

are summarized below:  

 No major difference were found in lighting and equipment energy reduction between 

single-zone and 5-zone models in Houston and Chicago: lighting and equipment are 

weather-independent load components and thus used based on the simulation 

schedules only 

 In Houston and Chicago, single-zone PSZ systems underestimated heating loads more 

than 5-zone PSZ systems, while single-zone PVAV systems overestimated heating 

loads versus the 5-zone PVAV systems 

 For cooling loads, single-zone PSZ and PVAV models in Houston and Chicago 

mostly underestimated reduction versus the 5-zone PSZ and PVAV models 

 For ventilation fans, all cases in the single-zone PSZ and PVAV models 

underestimated energy use than 5-zone PSZ and PVAV models.  

 Most comparison cases between single-zone models and 5-zone models showed 

underestimations in single-zone models. PVAV systems in Chicago showed similar 

result patterns between single-zone models and 5-zone models.  

 

In conclusion, the single-zone model shows slightly different results in heating, cooling, 

and ventilation fan loads of occupancy-based control analysis. 5-zone model showed more 

sensitivity to the response of occupancy-related parameters and controls.  
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5.2. Impact of Different Occupancy-Based Controls 

This chapter investigated the impact of occupancy-based controls in Houston and 

Chicago. The impact in building loads was interpreted in different load levels (i.e., total loads, 

load components) as well as different building design (i.e., reference, raised floor lightweight 

and heavyweight materials, WWR 10%-40%) and systems (i.e., PSZ, PVAV). Also, the impact 

of occupancy-based controls would be distinguished depending on thermal zones due to different 

orientations and space usage profiles. Therefore, the estimations were computed using simulation 

cases to predict energy reduction in U.S. commercial office buildings.  

 

5.2.1. Sensitivity Analysis of Occupancy-Based Controls in Total Building 

In buildings, there are complicated and heterogeneous interactions between energy 

variables, which determines total building energy use patterns. However, each energy variable 

has a different impact on energy usage. Therefore, this chapter performed a sensitivity analysis 

of occupancy-related schedule parameters (i.e., occupancy, lighting, and equipment) using the 

reference small office models. The amount of ventilation is connected to the occupancy density 

in offices because the outdoor air intake is determined based on OA-CFM/PER= 17 in DOE-

2.1e. Table 38 represents the cases of sensitivity analysis in Houston (CZ 2A) and Chicago (CZ 

5A). In simulations, only selected schedules were adjusted from 100% to 0% to estimate 

sensitivity in energy use of occupancy-based controls with 10% rate intervals, and other 

schedules were controlled at a 100% rate. 
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Table 38. Sensitivity Analysis Table for Small Office Buildings 

Group Location 
Zoning 
Model 

System Type 
Schedule Type (Weekdays, 9AM-5PM) Average 

WWR Occupancy Light Equip Infiltration Vent Fan   Set-temp  Set-back 
1 Houston Five zones PSZ  1.0-0.0 

 
1.0 1.0 Off 1.0 H: 70oF 

C: 75oF 
H: 60oF 
C: 85oF 

21% 
(default) 

2 Houston Five zones PSZ 1.0 1.0-0.0 
 

1.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

3 Houston Five zones PSZ 1.0 
 

1.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

4 Houston Five zones PVAV 1.0-0.0 
 

1.0 1.0 Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

5 Houston Five zones PVAV 1.0 1.0-0.0 
 

1.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

6 Houston Five zones PVAV 1.0 
 

1.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

7 Chicago Five zones PSZ 1.0-0.0 
 

1.0 1.0 Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

8 Chicago Five zones PSZ 1.0 1.0-0.0 
 

1.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

9 Chicago Five zones PSZ 1.0 
 

1.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

10 Chicago Five zones PVAV 1.0-0.0 
 

1.0 1.0 Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

11 Chicago Five zones PVAV 1.0 1.0-0.0 
 

1.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

12 Chicago Five zones PVAV 1.0 
 

1.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

* 6PM-8AM in weekdays uses minimum operating conditions of simulation schedules and set-temperatures 
** Weekend schedules set to minimum operating conditions of simulation schedules (e.g., occupancy=0.0, 0%; lighting=0.18, 18%; equipment=0.20, 20%;; infiltration=off; 

ventilation fan=0.0; set-point temperature: heating 60oF, cooling 85oF).  
*** Window-to-wall (WWR) ratio in small office models is 21% on average. Window fraction is 24.4% for South and 19.8% for the other three orientations (e.g., east, west, 

north). 
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5.2.1.1. The sensitivity of Occupancy-Based Control Parameters in Houston 

The hot and humid climate characteristics in Houston require more cooling and less 

heating than the Chicago region, which is weather-dependent loads in office buildings. Weather 

conditions do not influence on interior lighting and equipment loads. Those energy uses are 

determined by usage schedules if lighting systems do not use daylighting to reduce artificial 

lighting in office buildings. Figure 57 shows the sensitivity analysis in total building energy use 

from the BEPS report in DOE-2.1e due to the changes in occupancy-related schedule parameters. 

The result of the sensitivity test revealed that the lighting schedule has the largest impacts on 

energy consumption, with the equipment schedule followed after that. The occupancy schedule 

had the smallest impact of the three schedule types, which influenced the use of heating, cooling, 

and ventilation. Figure 58 represents the energy sensitivity in load components. The energy 

reduction of lighting and equipment schedules were primarily from the reduction of lighting and 

equipment loads. Also, the decrease of internal heat gains from lighting and equipment led to 

energy reduction in cooling and ventilation loads and increased heating energy loads. The 

changes (100%-0%) in the occupancy schedules did not affect lighting and equipment loads. It 

lowered cooling and ventilation loads and augmented heating loads due to reduced internal heat 

gains in winter. The energy consumption patterns of sensitivity analysis were identical regardless 

of the system types (i.e., PSZ, PVAV). Figure 59 depicts normalized potential energy use 

reduction (EUI) sensitivity due to the controls of simulation schedules. In both the PSZ and 

PVAV systems, energy use reduction rates from lighting and equipment schedules were about 

the same, which is not related to HVAC system types and weather conditions in energy use. In 

all cases of (c), space heating showed a negative effect.   
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Figure 57. Houston: Sensitivity in Total Energy Use of OBC schedule controls 

(a) PSZ: Equipment, Houston (d) PVAV: Equipment, Houston

(b) PSZ: Light, Houston (e) PVAV: Light, Houston

(c) PSZ: OCC, Houston (f) PVAV: OCC, Houston
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Figure 58. Houston: Sensitivity in Load Components of OBC schedule controls 

(a) PSZ: Equipment, Houston (d) PVAV: Equipment, Houston

(b) PSZ: Light, Houston (e) PVAV: Light, Houston

(c) PSZ: OCC, Houston (f) PVAV: OCC, Houston
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Figure 59. Houston: Sensitivity in EUI Energy Use Reduction of OBC schedule controls 

(a) Energy Saving Sensitivity from Lighting (b) Energy Saving Sensitivity from Equipment

(c) Energy Saving Sensitivity from Space Heating (d) Energy Saving Sensitivity from Space Cooling

(e) Energy Saving Sensitivity from Vent Fans (f) Energy Saving Sensitivity in Total Energy Use
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In cooling loads, the lighting had the most significant potential in cooling energy 

reduction. Following this, equipment had the second most impact, and the occupancy rate 

showed the least impact on cooling energy use. The simple reduction of the cooling loads of 

occupancy-based controls is larger in PSZ systems than PVAV systems. Figure 59 (e) showed a 

proportional increase in energy use reduction impact due to occupancy-related schedule controls. 

The lighting and equipment also affected the ventilation fan operation because of the decrease in 

internal gains, which reduced cooling demands in building spaces. Lastly, Figure 59 (f) 

summarizes energy use reduction sensitivity in total building EUI. This result shows that the 

same schedules in different HVAC systems about produced the same energy use reduction 

patterns. The lighting schedule and the equipment schedule showed 6.9-7.8 times and 5.5-6.2 

times more energy use reduction than the occupancy loads in PSZ and PVAV systems, 

respectively. Table 39 to Table 41 represents the result of the sensitivity analysis in Houston. In 

the sensitivity of individual simulation schedules related to OBC, the lighting schedule had a 

sensitivity of 31.0-31.4%, and the equipment schedule had a sensitivity of 24.7-25.1%, and the 

occupancy schedule showed a sensitivity of 4.0-4.5% in total EUI. The variability of total energy 

use would be interpreted as potential energy reduction from OBC in Houston.  

 

Table 39. Houston: Sensitivity in Total Energy Use of OBC (unit: MMBtu/ft2) 
 100% 

Sch 
90% 
Sch 

80% 
Sch 

70% 
Sch

60% 
Sch

50% 
Sch

40% 
Sch

30% 
Sch

20% 
Sch 

10% 
Sch

0% 
Sch 

PSZ_Equip 136.7 133.4 130.0 126.6 123.2 119.8 116.5 113.1 109.7 106.3 103.0 

PSZ_Light 136.7 132.5 128.3 124.0 119.8 115.5 111.3 107.0 102.8 98.6 94.4 

PSZ_OCC 136.7 136.1 135.5 134.9 134.2 133.6 133.0 132.4 131.8 131.2 130.5 

PVAV_Equip 130.6 127.3 124.0 120.7 117.4 114.2 110.9 107.6 104.4 101.1 97.9 

PVAV_Light 130.6 126.5 122.3 118.2 114.1 110.0 105.9 101.8 97.8 93.7 89.7 

PVAV_OCC 130.6 130.1 129.5 129.0 128.5 127.9 127.4 126.9 126.4 125.9 125.4 
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Table 40. Houston: Sensitivity in Energy Use Intensity of OBC (unit: kBtu/ft2) 
 100% 

Sch 
90% 
Sch 

80% 
Sch 

70% 
Sch

60% 
Sch

50% 
Sch

40% 
Sch

30% 
Sch

20% 
Sch 

10% 
Sch

0% 
Sch 

PSZ_Equip 24.8 24.2 23.6 23.0 22.4 21.8 21.2 20.5 19.9 19.3 18.7 

PSZ_Light 24.8 24.1 23.3 22.5 21.8 21.0 20.2 19.4 18.7 17.9 17.1 

PSZ_OCC 24.8 24.7 24.6 24.5 24.4 24.3 24.2 24.1 23.9 23.8 23.7 

PVAV_Equip 23.7 23.1 22.5 21.9 21.3 20.7 20.2 19.6 19.0 18.4 17.8 

PVAV_Light 23.7 23.0 22.2 21.5 20.7 20.0 19.2 18.5 17.8 17.0 16.3 

PVAV_OCC 23.7 23.6 23.5 23.4 23.3 23.2 23.2 23.1 23.0 22.9 22.8 

 

Table 41. Houston: Energy Reduction Potential in Energy Use Intensity of OBC 
 100% 

Sch 
90% 
Sch 

80% 
Sch 

70% 
Sch

60% 
Sch

50% 
Sch

40% 
Sch

30% 
Sch

20% 
Sch 

10% 
Sch

0% 
Sch 

PSZ_Equip 0.0% 2.4% 4.9% 7.4% 9.9% 12.4% 14.8% 17.3% 19.8% 22.2% 24.7% 

PSZ_Light 0.0% 3.1% 6.2% 9.3% 12.4% 15.5% 18.6% 21.7% 24.8% 27.9% 31.0% 

PSZ_OCC 0.0% 0.4% 0.9% 1.3% 1.8% 2.3% 2.7% 3.2% 3.6% 4.1% 4.5% 

PVAV_Equip 0.0% 2.5% 5.1% 7.6% 10.1% 12.6% 15.1% 17.6% 20.1% 22.6% 25.1% 

PVAV_Light 0.0% 3.2% 6.3% 9.5% 12.6% 15.8% 18.9% 22.0% 25.1% 28.2% 31.4% 

PVAV_OCC 0.0% 0.4% 0.8% 1.2% 1.6% 2.1% 2.5% 2.8% 3.2% 3.6% 4.0% 

 

5.2.1.2. The sensitivity of Occupancy-Based Control Parameters in Chicago  

The cold and humid climate characteristics in Chicago need to have more heating and 

less cooling than the Houston region. In lighting and equipment loads, weather conditions do not 

make influential, which is determined by usage schedules if lighting systems do not introduce 

daylighting to reduce artificial lighting in office buildings. Figure 60 shows the result of 

sensitivity analysis in total building energy use from the BEPS report in DOE-2.1e due to the 

changes (100%-0%) in occupancy-related schedule parameters. The result of the sensitivity test 

found that the lighting schedule has the largest impact on energy consumption, and the 

equipment schedule followed after that. The occupancy schedule had the smallest impact of the 

three schedule types, which typically influenced the use of heating, cooling, and ventilation. 
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Figure 61 presents the energy sensitivity in load components. The energy reduction of lighting 

and equipment schedules came mainly from the reduction of lighting and equipment loads. Also, 

the decrease of internal heat gains from lighting and equipment produced energy reduction in 

cooling and ventilation loads, while it mostly caused the increase of heating energy loads except 

a case of PVAV-equipment. The changes (100%-0%) in the occupancy schedules were not 

influential in lighting and equipment loads. It lowered cooling and ventilation loads and 

augmented heating loads in PSZ systems due to reduced internal heat gains in winter. Figure 62 

provides the sensitivity of normalized energy use reduction (EUI) potential due to the simulation 

schedule controls. In both PSZ and PVAV systems, energy use reduction rates from lighting and 

equipment schedules were the same, which is not related to HVAC system types and weather 

conditions in energy use. In all cases of (c), space heating showed a negative effect. Most of the 

increase in heating loads were seen in the PSZ systems while PVAV systems showed minor 

changes in heating loads due to occupancy-related schedules. In cooling loads of (d), the lighting 

had the largest potential in cooling energy reduction. Following this, equipment had a second 

place, and the occupancy rate showed the least impact on cooling energy use. Figure 62 (e) 

showed a proportional increment in ventilation energy use reduction due to occupancy-related 

schedule controls. The lighting and equipment also had an influence here because of the decrease 

in internal gains, which reduced cooling demand in building spaces. Lastly, Figure 62 (f) outlines 

energy use reduction sensitivity in total building EUI. The PVAV systems showed more energy 

use reduction potential than the PSZ in total energy use. Depending on schedule type, the 

lighting and equipment schedules resulted in much higher energy use reduction potential than the 

occupancy schedule.  



 

178 

 

 

Figure 60. Chicago: Sensitivity in Total Energy Use of OBC schedule controls 

(a) PSZ: Equipment, Chicago (d) PVAV: Equipment, Chicago

(b) PSZ: Light, Chicago (e) PVAV: Light, Chicago

(c) PSZ: OCC, Chicago (f) PVAV: OCC, Chicago
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Figure 61. Chicago: Sensitivity in Load Components of OBC schedule controls 

(a) PSZ: Equipment, Chicago (d) PVAV: Equipment, Chicago

(b) PSZ: Light, Chicago (e) PVAV: Light, Chicago

(c) PSZ: OCC, Chicago (f) PVAV: OCC, Chicago
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Figure 62. Chicago: Sensitivity in EUI Energy Use Reduction of OBC schedule controls 

(a) Energy Saving Sensitivity from Lighting (b) Energy Saving Sensitivity from Equipment

(c) Energy Saving Sensitivity from Space Heating (d) Energy Saving Sensitivity from Space Cooling

(e) Energy Saving Sensitivity from Vent Fans (f) Energy Saving Sensitivity in Total Energy Use
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Table 42. Chicago: Sensitivity in Total Energy Use of OBC (unit: MMBtu/ft2) 
 100% 

Sch 
90% 
Sch 

80% 
Sch 

70% 
Sch

60% 
Sch

50% 
Sch

40% 
Sch

30% 
Sch

20% 
Sch 

10% 
Sch

0% 
Sch

PSZ_Equip 125.2 122.5 119.7 117.1 114.4 111.8 109.1 106.6 104.0 101.5 99.0 

PSZ_Light 125.2 121.7 118.4 115.1 111.7 108.4 105.3 102.1 98.9 95.9 92.8 

PSZ_OCC 125.2 125.1 124.9 124.9 124.8 124.8 124.7 124.7 124.6 124.6 124.7 

PVAV_Equip 119.4 116.4 113.3 110.3 107.2 104.2 101.2 98.1 95.1 92.1 89.0 

PVAV_Light 119.4 115.6 111.8 107.9 104.1 100.3 96.5 92.7 88.9 85.1 81.3 

PVAV_OCC 119.4 119.1 118.8 118.5 118.2 117.8 117.5 117.2 116.9 116.6 116.3 

 

Table 43. Chicago: Sensitivity in Energy Use Intensity of OBC (unit: kBtu/ft2) 
 100% 

Sch 
90% 
Sch 

80% 
Sch 

70% 
Sch

60% 
Sch

50% 
Sch

40% 
Sch

30% 
Sch

20% 
Sch 

10% 
Sch

0% 
Sch

PSZ_Equip 22.8 22.3 21.8 21.3 20.8 20.3 19.8 19.4 18.9 18.4 18.0 

PSZ_Light 22.8 22.1 21.5 20.9 20.3 19.7 19.1 18.5 18.0 17.4 16.9 

PSZ_OCC 22.8 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.6 22.7 

PVAV_Equip 21.7 21.1 20.6 20.0 19.5 18.9 18.4 17.8 17.3 16.7 16.2 

PVAV_Light 21.7 21.0 20.3 19.6 18.9 18.2 17.5 16.8 16.2 15.5 14.8 

PVAV_OCC 21.7 21.6 21.6 21.5 21.5 21.4 21.4 21.3 21.2 21.2 21.1 

 

Table 44. Chicago: Energy Use Reduction Potential in Energy Use Intensity of OBC  
 100% 

Sch 
90% 
Sch 

80% 
Sch 

70% 
Sch

60% 
Sch

50% 
Sch

40% 
Sch

30% 
Sch

20% 
Sch 

10% 
Sch

0% 
Sch

PSZ_Equip 0.0% 2.2% 4.4% 6.5% 8.6% 10.7% 12.8% 14.9% 16.9% 19.0% 20.9% 

PSZ_Light 0.0% 2.8% 5.5% 8.1% 10.8% 13.4% 15.9% 18.5% 21.0% 23.4% 25.9% 

PSZ_OCC 0.0% 0.1% 0.2% 0.3% 0.3% 0.4% 0.4% 0.4% 0.4% 0.5% 0.4% 

PVAV_Equip 0.0% 2.6% 5.1% 7.7% 10.2% 12.7% 15.3% 17.8% 20.4% 22.9% 25.4% 

PVAV_Light 0.0% 3.2% 6.4% 9.6% 12.8% 16.0% 19.2% 22.4% 25.5% 28.7% 31.9% 

PVAV_OCC 0.0% 0.3% 0.5% 0.8% 1.1% 1.3% 1.6% 1.8% 2.1% 2.3% 2.6% 

  

Table 42 to Table 44 shows the result of the sensitivity analysis in Chicago. In the 

sensitivity from individual simulation schedules, the lighting schedule had a sensitivity of 25.4-

25.9%, and the equipment schedule had a sensitivity of 20.9-25.4%, and the occupancy schedule 

showed a sensitivity of 0.4-2.6% in total EUI. In Chicago, the occupancy schedule showed less 
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contribution to total energy reduction. The variability of total energy use would be analyzed as 

potential energy use reduction from OBC in Chicago.  

 

5.2.2. Impact on Building Energy Use of Occupancy-Based Controls in Reference Building, 

Lightweight Building and Heavyweight Building  

The selection of building envelope materials influences the heat transfer of the building 

surface layers. The thicker and high heat capacity materials can extend heat transfer to pass 

through the building envelope, which is called time lag on the thermal mass. Therefore, this 

study modeled the reference building and the heavyweight small office buildings to compare 

energy performance in different thermal characteristics of envelope materials from the PNNL 

small and large office prototype models for Standard 90.1-2016 (PNNL and U.S.DOE 2018). 

Also, a raised floor lightweight building was modeled to analyze the impact when excluding the 

ground-coupling in simulations. In the PNNL models, small office prototype models used a 

wooden structure with an attic roof and concrete slab-on-grade, while large office building 

models used a concrete structure with a built-up roof and concrete slab-on-grade. Thus, this 

study developed the lightweight building model from reference small office prototype models 

and only changed concrete slab-on-grade to the raised wooden floor, and heavyweight building 

materials were extracted from large office prototype models for climate zone 2A and 5A.  

In reference and lightweight models, the exterior walls used stucco, gypsum board, and 

insulation, and ceiling construction used gypsum board and insulation. On the contrary 

heavyweight models used normal weight concrete, insulation, and gypsum board for exterior 

walls and worked up built-up roofing, insulation, and metal surface for the flat roof. For this 

study, heavyweight models used only exterior wall and slab materials from the PNNL models 
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and maintained attic roof instead of built-up roofing to keep the same building design. The use of 

these materials in office buildings would bring about different energy use reduction impacts due 

to the time lag effect on the building surface. Between reference, raised floor lightweight, and 

heavyweight models, thermal properties (e.g., R-value, u-value, SHGC) are designed identically 

in DOE-2.1e. Therefore, in this chapter, the simulations tested energy use reduction impacts for 

whole buildings using the reference, raised floor lightweight, and heavyweight structures. The 

simulation schedules were changed from 100% to 0% to evaluate the impact of OBC. Table 45 

represents simulation cases to analyze total building energy reduction in Houston and Chicago. 

Table 46 to Table 51 represent simulation envelope parameters for the reference, lightweight and 

heavyweight small office buildings in Houston (2A) and Chicago (5A). BEPS reports were 

exploited to compare total building energy performance in DOE-2.1e simulations.  

Also, in terms of DOE-2 calculations, it uses weighting factors for the estimations of 

thermal loads and room air temperatures. It describes a compromise between simpler methods 

and more complex methods. For example, simple methods are a steady-state calculation that 

neglects the calculations of the building mass to store energy, while sophisticated methods refer 

to complete energy-balance calculations. Using weighting-factors, an hourly thermal-load 

calculation is computed according to physical information of the building and hourly adjacent 

weather conditions (e.g., temperature, solar radiation, wind velocity, etc.). The weighting-factor 

methods offer a simple, flexible, fast, and efficient calculation method about the significant 

parameters that influence building energy calculations (LBL and LANL 1982). There are two 

general premises of all weighting factor methods used in DOE-2. The first one is that the process 

modeled is able to be described by linear differential equations. This assumption is inevitable 

because DOE-2 calculates heat gains from different sources independently and later combines to 
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obtain the aggregate result. Thus, nonlinear processes (i.e., natural convection, radiation) have to 

be approximated linearly. The second general premise is that the influence of system properties 

are constant in the weighting factor calculations. This indicates that system properties (e.g., film 

coefficients, incident radiation on surfaces) are used by average values over the time of interest 

(LBL and LANL 1982). 

To develop weighting factors in DOE-2, two classes of weighting factors are available: 

custom weighting factors (CWFs) and ASHRAE weighting factors (AWFs). Basically, if DOE 

exploits FLOOR-WEIGHT = 0, the program estimates CWFs based on your inputs of the 

building description. CWFs provide more accurate results than AWFs because they are 

customized to the actual building models. Contrastively, AWFs are generic because they are 

precalculated weighting factors for the building models. They may have a similar heat capacity 

as the actual building but may be different compared to the actual building due to the difference 

in geometry and construction. Also, AWFs assume that all of the heat gains from a space 

consequently is contained in a load, unlike CWFs. This is a poor premise for highly conductive 

building design (e.g.,  poorly insulated spaces or high window-to-wall ratio spaces), for which 

the overestimate can be as high as 25-30% of the heat gains. Thus, AWFs typically overestimate 

both heating and cooling loads. Also, the AWF methods assume that all of the solar radiation 

into space remains in the space, but the CWF methods represent that solar gain is reflected back 

out the windows. The AWFs are precalculated weighting factors that are already calculated for 

typical building spaces. The DOE-2 will apply AWFs if FLOOR-WEIGHT is greater than zero. 

To calculate the FLOOR-WEIGHT for space, the weight of the materials in the space (e.g., 

walls, ceilings, floors, furnishings) should be divided by the floor area of the space in lb/ft2 or 

kg/m2. Only the weight of materials on the space side of the insulating layers should be 
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calculated. For example, if concrete block walls are on the outside of the insulation layers, they 

are not counted as the weight of the blocks; but if the insulation is on the outside of the blocks, 

they can be counted for the weight of the blocks (LBNL and JJA 2015).  

Therefore, to prevent over-estimations of weighting factors, the CWFs were used in all 

calculations of occupancy-based building controls to develop more accurate models of heating 

and cooling loads in DOE-2.1e simulations. 
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Table 45. Sensitivity Analysis Table for Reference, Raised Floor Lightweight and Heavyweight Buildings 

Group Location 
Zoning 
Model 

Envelope 
Material 

System 
Type 

OBC Schedule Type (Weekdays, 9AM-5PM) Average 
WWR Occupancy Light Equip Infiltration Vent Fan   Set-temp  Set-back 

1B Houston Five zones Baseline PSZ  1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

1L Houston Five zones Lightweight 
w/raised floor 

PSZ  1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

1H Houston Five zones Heavyweight PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

2B Houston Five zones Baseline PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

2L Houston Five zones Lightweight 
w/raised floor 

PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

2H Houston Five zones Heavyweight PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

3B Chicago Five zones Baseline PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

3L Chicago Five zones Lightweight 
w/raised floor 

PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

3H Chicago Five zones Heavyweight PSZ 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

4B Chicago Five zones Baseline PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

4L Chicago Five zones Lightweight 
w/raised floor 

PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

4H Chicago Five zones Heavyweight PVAV 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

21% 
(default) 

* Lightweight envelope materials refer to envelope properties used in PNNL small office buildings for Standard 90.1-2016, but floor material was replaced from concrete floor to 
wood floor. Heavyweight envelope materials are based on building  

   constructions used in PNNL large office buildings for Standard 90.1-2016. Thermal properties (e.g., u-value) for envelope are identical between lightweight and heavyweight.  
** Weekend schedules set to minimum operating conditions of simulation schedules (e.g., occupancy=0.0, 0%; lighting=0.18, 18%; equipment=0.20, 20%;; infiltration=off; 
ventilation fan=0.0; set-point temperature: heating 60oF, cooling 85oF).  
*** Window-to-wall (WWR) ratio in small office models is 21% on average. Window fraction is 24.4% for South and 19.8% for the other three orientations (e.g., east, west, 
north).  
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Table 46. Simulation Parameters for Reference Building in Houston, TX 
# Type Layer Unit Value 

1 Attic roof  Asphalt shingles, 16mm plywood U-value (hr-ft2-F/Btu) 0.83 

2 Ceiling R-35.4 Insulation, 16mm gypsum board U-value (hr-ft2-F/Btu) 0.03 

3 External wall 25mm stucco, 16mm gypsum board, R-9 
insulation, 16mm gypsum board

U-value (hr-ft2-F/Btu) 0.10 

4 Internal wall 13mm gypsum board, 13mm gypsum board U-value (hr-ft2-F/Btu) 1.11 

5 Attic soffit 16mm plywood U-value (hr-ft2-F/Btu) 1.33 

6 Swinging door Opaque door panel U-value (hr-ft2-F/Btu) 0.37 

7 Slab-on-grade floor 200mm normal weight concrete floor, 
carpet pad 

U-value (hr-ft2-F/Btu) 0.58 

8 Window Glass_1576_LayerAvg, 52mm air, 
Glass_102_LayerAvg 

Window to Wall ration (%) 21.2 
U-value (hr-ft2-F/Btu) 0.58 
SHGC (Fraction) 0.227 

* U-value calculations did not include air films on material surfaces due to internal calculations of air films in simulation 
programs.  
** Slab-on-grade models used average monthly ground temperatures for calculations from the PNNL prototype models.  
*** Reference building envelope materials used envelope properties from PNNL small office buildings in Tampa, FL and 
Buffalo, NY for Standard 90.1-2016. Tampa and Buffalo are representative cities of climate zone 2A and 5A for Standard 90.1-
2016 prototype models. 

 

Table 47. Simulation Parameters for Reference Building in Chicago, IL 
# Type Layer Unit Value 

1 Attic roof  Asphalt shingles, 16mm plywood U-value (hr-ft2-F/Btu) 0.83 

2 Ceiling R-46 Insulation, 16mm gypsum board U-value (hr-ft2-F/Btu) 0.02 

3 External wall 25mm stucco, 16mm gypsum board,  
R-17.4 insulation, 16mm gypsum board

U-value (hr-ft2-F/Btu) 0.05 

4 Internal wall 13mm gypsum board, 13mm gypsum board U-value (hr-ft2-F/Btu) 1.11 

5 Attic soffit 16mm plywood U-value (hr-ft2-F/Btu) 1.33 

6 Swinging door Opaque door panel U-value (hr-ft2-F/Btu) 0.37 

7 Slab-on-grade floor 200mm normal weight concrete floor, 
carpet pad 

U-value (hr-ft2-F/Btu) 0.58 

8 Window Glass_8652_LayerAvg, 12.7mm air, 
Glass_102_LayerAvg 

Window to Wall ration (%) 21.2 
U-value (hr-ft2-F/Btu) 0.40 
SHGC (Fraction) 0.365 

* U-value calculations did not include air films on material surfaces due to internal calculations of air films in simulation 
programs.  
** Slab-on-grade models used average monthly ground temperatures for calculations from the PNNL prototype models.  
*** Reference building materials used envelope properties from PNNL small office buildings in Tampa, FL and Buffalo, NY for 
Standard 90.1-2016. Tampa and Buffalo are representative cities of climate zone 2A and 5A for Standard 90.1-2016 prototype 
models.  
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Table 48. Simulation Parameters for Raised Floor, Lightweight Building in Houston, TX 
# Type Layer Unit Value 

1 Attic roof  Asphalt shingles, 16mm plywood U-value (hr-ft2-F/Btu) 0.83 

2 Ceiling R-35.4 Insulation, 16mm gypsum board U-value (hr-ft2-F/Btu) 0.03 

3 External wall 25mm stucco, 16mm gypsum board, R-9 
insulation, 16mm gypsum board

U-value (hr-ft2-F/Btu) 0.10 

4 Internal wall 13mm gypsum board, 13mm gypsum board U-value (hr-ft2-F/Btu) 1.11 

5 Attic soffit 16mm plywood U-value (hr-ft2-F/Btu) 1.33 

6 Swinging door Opaque door panel U-value (hr-ft2-F/Btu) 0.37 

7 Raised floor 13mm gypsum board, R-30 Insulation, 
16mm gypsum board, carpet pad

U-value (hr-ft2-F/Btu) 0.30 

8 Window Glass_1576_LayerAvg, 52mm air, 
Glass_102_LayerAvg 

Window to Wall ration (%) 21.2 
U-value (hr-ft2-F/Btu) 0.58 
SHGC (Fraction) 0.227 

* U-value calculations did not include air films on material surfaces due to internal calculations of air films in simulation 
programs.  
** Lightweight envelope materials used envelope properties from PNNL small office buildings in Tampa, FL and Buffalo, NY 
for Standard 90.1-2016 except wooden floor. Tampa and Buffalo are representative cities of climate zone 2A and 5A for 
Standard 90.1-2016 prototype models. 

 

Table 49. Simulation Parameters for Raised Floor, Lightweight Building in Chicago, IL 
# Type Layer Unit Value 

1 Attic roof  Asphalt shingles, 16mm plywood U-value (hr-ft2-F/Btu) 0.83 

2 Ceiling R-46 Insulation, 16mm gypsum board U-value (hr-ft2-F/Btu) 0.02 

3 External wall 25mm stucco, 16mm gypsum board,  
R-17.4 insulation, 16mm gypsum board

U-value (hr-ft2-F/Btu) 0.05 

4 Internal wall 13mm gypsum board, 13mm gypsum board U-value (hr-ft2-F/Btu) 1.11 

5 Attic soffit 16mm plywood U-value (hr-ft2-F/Btu) 1.33 

6 Swinging door Opaque door panel U-value (hr-ft2-F/Btu) 0.37 

7 Raised floor 13mm gypsum board, R-30 Insulation, 
16mm gypsum board, carpet pad

U-value (hr-ft2-F/Btu) 0.30 

8 Window Glass_8652_LayerAvg, 12.7mm air, 
Glass_102_LayerAvg 

Window to Wall ration (%) 21.2 
U-value (hr-ft2-F/Btu) 0.40 
SHGC (Fraction) 0.365 

* U-value calculations did not include air films on material surfaces due to internal calculations of air films in simulation 
programs.  
** Lightweight envelope materials used envelope properties from PNNL small office buildings in Tampa, FL and Buffalo, NY 
for Standard 90.1-2016 except wooden floor. Tampa and Buffalo are representative cities of climate zone 2A and 5A for 
Standard 90.1-2016 prototype models.  
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                       (a) Southeast View                                               (b) Northeast View 

 

 

(c) Front View 

Figure 63. Raised Floor, Lightweight Models 
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Table 50. Simulation Parameters for Heavyweight Building in Houston, TX 
# Type Layer Unit Value 

1 Attic roof  Asphalt shingles, 16mm plywood U-value (hr-ft2-F/Btu) 0.83 

2 Ceiling  R-35.4 insulation, 16mm gypsum board U-value (hr-ft2-F/Btu) 0.03 

3 External wall 200mm normal weight concrete wall, R-9 

insulation, 13mm gypsum board 

U-value (hr-ft2-F/Btu) 0.10 

4 Internal wall 13mm gypsum board, 13mm gypsum board U-value (hr-ft2-F/Btu) 1.11 

5 Attic soffit 16mm plywood U-value (hr-ft2-F/Btu) 1.33 

6 Swinging door Opaque door panel U-value (hr-ft2-F/Btu) 0.37 

7 Slab-on-grade floor 200mm normal weight concrete floor, 
carpet pad 

U-value (hr-ft2-F/Btu) 0.58 

8 Window Glass_1576_LayerAvg, 52mm air, 
Glass_102_LayerAvg 

Window to Wall ration (%) 21.2 
U-value (hr-ft2-F/Btu) 0.58 
SHGC (Fraction) 0.227 

* U-value calculations did not include films on material surfaces due to internal calculations of films in simulation programs.  
** Slab-on-grade models used average monthly ground temperatures for calculations from the PNNL prototype models.  
*** Heavyweight envelope materials used envelope properties from PNNL large office buildings in Tampa, FL and Buffalo, NY 
for Standard 90.1-2016. Tampa and Buffalo are representative cities of climate zone 2A and 5A for Standard 90.1-2016 prototype 
models. 

 

Table 51. Simulation Parameters for Heavyweight Building in Chicago, IL 
# Type Layer Unit Value 

1 Attic roof  Asphalt shingles, 16mm plywood U-value (hr-ft2-F/Btu) 0.83 

2 Ceiling R-46 insulation, 16mm gypsum board U-value (hr-ft2-F/Btu) 0.02 

3 External wall 200mm normal weight concrete wall,  
R-17.4 insulation, 13mm gypsum board

U-value (hr-ft2-F/Btu) 0.05 

4 Internal wall 13mm gypsum board, 13mm gypsum board U-value (hr-ft2-F/Btu) 1.11 

5 Attic soffit 16mm plywood U-value (hr-ft2-F/Btu) 1.33 

6 Swinging door Opaque door panel U-value (hr-ft2-F/Btu) 0.37 

7 Slab-on-grade floor 200mm normal weight concrete floor, 
carpet pad 

U-value (hr-ft2-F/Btu) 0.58 

8 Window Glass_8652_LayerAvg, 12.7mm air, 
Glass_102_LayerAvg 

Window to Wall ration (%) 21.2 
U-value (hr-ft2-F/Btu) 0.40 
SHGC (Fraction) 0.365 

* U-value calculations did not include films on material surfaces due to internal calculations of films in simulation programs.  
** Slab-on-grade models used average monthly ground temperatures for calculations from the PNNL prototype models.  
*** Heavyweight envelope materials used envelope properties from PNNL large office buildings in Tampa, FL and Buffalo, NY 
for Standard 90.1-2016. Tampa and Buffalo are representative cities of climate zone 2A and 5A for Standard 90.1-2016 prototype 
models.  
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5.2.2.1. Building Energy Use in Houston  

This chapter addressed the impact of 100%-0% occupancy-based controls (i.e., occupancy, 

lighting, and equipment schedules) in the reference, lightweight and heavyweight small office models 

in Houston. The ventilation rate was controlled by occupant density using OA-CFM/PER command in 

DOE-2.1e models. Figure 64 shows the maximum energy use reduction of occupancy-based controls 

in the reference, raised floor lightweight and heavyweight small office models using PSZ and PVAV 

systems. PSZ system is a default system for small office models in the PNNL models. However, since 

medium and large office buildings typically use VAV systems, PVAV system models were also 

evaluated to quantify energy use reduction effect. The maximum energy use reduction from 

occupancy-based controls in PSZ were 49% of reference, 43% of raised floor lightweight and 50% of 

heavyweight. PVAV systems represented reduction potential up to 48% of reference, 48% of raised 

floor lightweight and 49% of heavyweight. Although the reduction rates of PVAV were slightly higher 

than PSZ systems, the amounts of total energy use reduction in PSZ were larger than PVAV systems.  

 

 

 
                         a. PSZ system                                                          b. PVAV system 
 

Figure 64. Houston: Reference, Lightweight and Heavyweight Building Total Loads
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                     a. Reference, PSZ                                          b. Lightweight, PSZ                                         c. Heavyweight, PSZ  
 

 
                   d. Reference, PVAV                                      e. Lightweight, PVAV                                     f. Heavyweight, PVAV 
 

Figure 65. Houston: Reference, Lightweight and Heavyweight Building Load Components
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The differences in total loads between the reference, lightweight and heavyweight were 

significant, especially in the raised floor lightweight models due to wooden materials and 

exposed floor environment. In energy use analysis in Houston, when considering with the high-

intensity schedules for Standard 90.1-2016 that is average 0.89 of occupancy schedule from 9 

AM to 5 PM on weekdays, office buildings have substantial potential to reduce energy waste 

depending on usage profiles (e.g., medium and low-intensity usage). Figure 65 depicts the trends 

of component load energy reduction in diverse OBC in the reference, lightweight and 

heavyweight buildings. The trends represent that the energy use reductions are expected 

proportionally due to OBC except heating loads. Heating loads showed the negative effect of 

OBC, especially in PSZ systems. This is because occupancy-based building control leads to less 

internal heat gains from occupants, lights, and equipment, which creates more heating demand in 

internal spaces. Most of the energy use reduction came from lighting and equipment, and the 

reduction rate of cooling energy was relatively low. Table 52 to Table 57 provides normalized 

total building energy use in the reference, lightweight and heavyweight buildings. Weather-

dependent energy use includes heating, cooling, and ventilation loads, while weather-

independent energy use contains lighting and equipment loads. The loads from weather-

independent components were identical throughout the year between PSZ and PVAV and 

between the reference, lightweight and heavyweight. Monthly load differences in lighting and 

equipment are due to differences in the number of HVAC operating days per month. Weather-

dependent energy use shows the seasonal impact of OBC, which would be maximized in 

summer. Cooling and ventilation dominated the seasonal load changes. The result indicates that, 

for Houston areas, occupancy-based building control is significant from May to September to 

operate HVAC systems efficiently. 
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Table 52. Total Building Energy Use Intensity of PSZ Systems in Reference Building (Unit: kBtu/yr-ft2) 

  

Base 
PSZ_100% 

OBC 

Base 
PSZ_90% 

OBC 

Base 
PSZ_80% 

OBC 

Base 
PSZ_70% 

OBC 

Base 
PSZ_60% 

OBC 

Base 
PSZ_50% 

OBC 

Base 
PSZ_40% 

OBC 

Base 
PSZ_30% 

OBC 

Base 
PSZ_20% 

OBC 

Base 
PSZ_10% 

OBC 

Base 
PSZ_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.19 0.20 0.23 0.26 0.29 0.33 0.40 0.51 0.62 0.64 0.65 

Space Cool 4.95 4.66 4.36 4.05 3.76 3.45 3.15 2.82 2.50 2.39 2.31 

Vent Fans 2.77 2.65 2.53 2.41 2.29 2.16 2.04 1.92 1.80 1.76 1.73 

Total 24.84 23.34 21.85 20.35 18.87 17.38 15.93 14.49 13.06 12.81 12.71 

* Total building EUI of different building systems and materials in Houston. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  

** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

Table 53. Total Building Energy Use Intensity of PVAV Systems in Reference Building (Unit: kBtu/yr-ft2) 

  

Base 
PVAV_100

% OBC 

Base 
PVAV_90% 

OBC 

Base 
PVAV_80% 

OBC 

Base 
PVAV_70% 

OBC 

Base 
PVAV_60% 

OBC 

Base 
PVAV_50% 

OBC 

Base 
PVAV_40% 

OBC 

Base 
PVAV_30% 

OBC 

Base 
PVAV_20% 

OBC 

Base 
PVAV_10% 

OBC 

Base 
PVAV_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

Space Cool 5.22 4.96 4.70 4.46 4.23 4.02 3.81 3.62 3.44 3.37 3.33 

Vent Fans 1.53 1.44 1.36 1.28 1.20 1.12 1.05 0.98 0.92 0.90 0.88 

Total 23.72 22.27 20.83 19.41 18.00 16.61 15.24 13.88 12.53 12.33 12.27 

* Total building EUI of different building systems and materials in Houston. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  

** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 
 
 
 
 
 



 

195 

 

Table 54. Total Building Energy Use Intensity of PSZ Systems in Raised Floor Lightweight Building (Unit: kBtu/yr-ft2) 

  

LT 
PSZ_100% 

OBC 

LT 
PSZ_90% 

OBC 

LT 
PSZ_80% 

OBC 

LT 
PSZ_70% 

OBC 

LT 
PSZ_60% 

OBC 

LT 
PSZ_50% 

OBC 

LT 
PSZ_40% 

OBC 

LT 
PSZ_30% 

OBC 

LT 
PSZ_20% 

OBC 

LT 
PSZ_10% 

OBC 

LT  
PSZ_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 2.02 2.07 2.11 2.15 2.20 2.22 2.10 2.25 2.26 2.26 2.27 

Space Cool 6.80 6.48 6.18 5.87 5.55 5.24 4.82 4.61 4.28 4.16 4.07 

Vent Fans 3.20 3.06 2.93 2.79 2.65 2.52 2.30 2.24 2.10 2.06 2.03 

Total 28.95 27.45 25.95 24.45 22.94 21.41 19.55 18.34 16.79 16.50 16.38 

* Total building EUI of different building systems and materials in Houston. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  

** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

  

Table 55. Total Building Energy Use Intensity of PVAV Systems in Raised Floor Lightweight Building (Unit: kBtu/yr-ft2) 

  

LT 
PVAV_100

% OBC 

LT 
PVAV_90% 

OBC 

LT 
PVAV_80% 

OBC 

LT 
PVAV_70% 

OBC 

LT 
PVAV_60% 

OBC 

LT 
PVAV_50% 

OBC 

LT 
PVAV_40% 

OBC 

LT 
PVAV_30% 

OBC 

LT 
PVAV_20% 

OBC 

LT 
PVAV_10% 

OBC 

LT 
PVAV_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Space Cool 7.37 7.01 6.66 6.30 5.95 5.60 5.27 4.95 4.64 4.54 4.46 

Vent Fans 2.12 2.00 1.88 1.76 1.65 1.54 1.43 1.33 1.24 1.21 1.19 

Total 26.46 24.87 23.30 21.73 20.16 18.61 17.07 15.55 14.05 13.80 13.70 

* Total building EUI of different building systems and materials in Houston. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  

** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 
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Table 56. Total Building Energy Use Intensity of PSZ Systems in Heavyweight Building (Unit: kBtu/yr-ft2) 

  

HW 
PSZ_100% 

OBC 

HW 
PSZ_90% 

OBC 

HW 
PSZ_80% 

OBC 

HW 
PSZ_70% 

OBC 

HW 
PSZ_60% 

OBC 

HW 
PSZ_50% 

OBC 

HW 
PSZ_40% 

OBC 

HW 
PSZ_30% 

OBC 

HW 
PSZ_20% 

OBC 

HW 
PSZ_10% 

OBC 

HW 
PSZ_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.13 0.15 0.18 0.22 0.26 0.30 0.37 0.47 0.58 0.61 0.63 

Space Cool 4.72 4.43 4.13 3.83 3.53 3.23 2.92 2.60 2.28 2.18 2.10 

Vent Fans 2.53 2.41 2.29 2.17 2.05 1.92 1.80 1.68 1.56 1.52 1.50 

Total 24.32 22.83 21.34 19.85 18.37 16.89 15.43 13.99 12.56 12.33 12.25 

* Total building EUI of different building systems and materials in Houston. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  

** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

Table 57. Total Building Energy Use Intensity of PVAV Systems in Heavyweight Building (Unit: kBtu/yr-ft2) 

  

HW 
PVAV_100

% OBC 

HW 
PVAV_90% 

OBC 

HW 
PVAV_80% 

OBC 

HW 
PVAV_70% 

OBC 

HW 
PVAV_60% 

OBC 

HW 
PVAV_50% 

OBC 

HW 
PVAV_40% 

OBC 

HW 
PVAV_30% 

OBC 

HW 
PVAV_20% 

OBC 

HW 
PVAV_10% 

OBC 

HW 
PVAV_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 

Space Cool 4.98 4.71 4.45 4.19 3.96 3.73 3.52 3.32 3.13 3.07 3.03 

Vent Fans 1.42 1.33 1.24 1.16 1.08 1.00 0.93 0.86 0.79 0.77 0.76 

Total 23.41 21.95 20.50 19.06 17.64 16.24 14.85 13.48 12.13 11.93 11.87 

* Total building EUI of different building systems and materials in Houston. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  

** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 
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5.2.2.2. Building Energy Use in Chicago  

This chapter calculated the energy use reduction effect of 100%-0% OBC (i.e., occupancy, 

lighting, and equipment schedules) in the reference, lightweight and heavyweight small office 

models in Chicago. The ventilation rate that is also related to OBC was controlled by occupant 

density using OA-CFM/PER command in DOE-2.1e models. Figure 66 shows the potential energy 

use reduction of OBC using PSZ and PVAV systems in Chicago. The maximum energy use 

reduction from OBC in PSZ was expected up to 45% of reference, 35% of raised floor lightweight 

and 45% of heavyweight. The energy use reduction potential of PVAV systems were 53% of 

reference, 47% of raised floor lightweight and 53% of heavyweight. All PSZ used more energy than 

PVAV buildings from weather-dependent load components. The differences in total loads between 

the reference and heavyweight were almost zero, but raised lightweight models showed substantial 

differences in total energy use and reduction. The energy use reduction rates and amounts in Chicago 

models were lower compared to the results of lightweight and heavyweight buildings in Houston.   

 

 
                     a. PSZ CAV system                                                       b. PVAV system 
 

Figure 66. Chicago: Reference, Lightweight and Heavyweight Building Total Loads
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                     a. Reference, PSZ                                          b. Lightweight, PSZ                                         c. Heavyweight, PSZ  
 

 
                   d. Reference, PVAV                                      e. Lightweight, PVAV                                     f. Heavyweight, PVAV 
 

Figure 67. Chicago: Reference, Lightweight and Heavyweight Building Load Components
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In comparison with Standard 90.1-2016, the result showed that office buildings have 

enormous potential to reduce energy consumption depending on usage levels (e.g., medium and 

low-intensity usage). Figure 67 presents the trends of component load energy reduction potential 

in different OBC from the reference, raised floor lightweight and heavyweight buildings. The 

trends represent that the energy use reduction are proportionally working due to OBC except 

heating loads. Heating loads described the negative effect of OBC, especially in PSZ systems. 

This is because OBC causes less internal heat gains from occupants, lights, and equipment, 

which requires more heating demand in internal spaces. However, the increasing trend in heating 

loads is slowing by around 40% of OBC in both lightweight and heavyweight.  

The result of simulations informs that lighting and equipment are the most significant 

contributors to OBC energy use reduction. The energy use reduction impact of cooling energy in 

total energy use was relatively low because Chicago has more heating demand then Houston. 

Table 58 to Table 63 offers normalized total building energy use in the reference, lightweight 

and heavyweight buildings. Weather-dependent energy use contains heating, cooling, and 

ventilation loads, whereas weather-independent energy use includes lighting and equipment 

loads. The loads from weather-independent components were identical throughout the year 

between PSZ and PVAV and between reference, lightweight and heavyweight. Weather-

dependent energy use describes the seasonal impact and potential reduction of occupancy-based 

building controls, which would be maximized in the summer of PVAV systems and winter of 

PSZ systems. Cooling and ventilation loads dominated the seasonal load changes of PVAV 

systems and heating loads led in PSZ systems. The result indicates that, for Chicago areas, OBC 

is important to operate HVAC systems efficiently, but the contributing load components would 

vary depending on the system type.  
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Table 58. Total Building Energy Use Intensity of PSZ Systems in Reference Building (Unit: kBtu/yr-ft2) 

  

Base 
PSZ_100% 

OBC 

Base 
PSZ_90% 

OBC 

Base 
PSZ_80% 

OBC 

Base 
PSZ_70% 

OBC 

Base 
PSZ_60% 

OBC 

Base 
PSZ_50% 

OBC 

Base 
PSZ_40% 

OBC 

Base 
PSZ_30% 

OBC 

Base 
PSZ_20% 

OBC 

Base 
PSZ_10% 

OBC 

Base 
PSZ_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 1.25 1.47 1.71 2.02 2.36 2.76 3.11 3.24 3.15 3.13 3.16 

Space Cool 2.20 2.06 1.92 1.78 1.63 1.48 1.33 1.17 1.00 0.92 0.87 

Vent Fans 2.37 2.27 2.17 2.07 1.97 1.87 1.77 1.67 1.57 1.54 1.52 

Total 22.75 21.63 20.54 19.50 18.50 17.55 16.55 15.33 13.85 13.61 13.58 

* Total building EUI of different building systems and materials in Chicago. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  
** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

Table 59. Total Building Energy Use Intensity of PVAV Systems in Reference Building (Unit: kBtu/yr-ft2) 

  

Base 
PVAV_100

% OBC 

Base 
PVAV_90% 

OBC 

Base 
PVAV_80% 

OBC 

Base 
PVAV_70% 

OBC 

Base 
PVAV_60% 

OBC 

Base 
PVAV_50% 

OBC 

Base 
PVAV_40% 

OBC 

Base 
PVAV_30% 

OBC 

Base 
PVAV_20% 

OBC 

Base 
PVAV_10% 

OBC 

Base 
PVAV_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.85 0.86 0.86 0.87 0.86 0.86 0.85 0.84 0.84 0.84 0.83 

Space Cool 2.51 2.37 2.23 2.10 1.97 1.85 1.74 1.65 1.57 1.54 1.52 

Vent Fans 1.41 1.34 1.27 1.20 1.14 1.08 1.02 0.97 0.92 0.90 0.90 

Total 21.70 20.40 19.09 17.80 16.51 15.22 13.95 12.70 11.47 11.30 11.27 

* Total building EUI of different building systems and materials in Chicago. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  
** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 
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Table 60. Total Building Energy Use Intensity of PSZ Systems in Raised Floor Lightweight Building (Unit: kBtu/yr-ft2) 

  

LT 
PSZ_100% 

OBC 

LT 
PSZ_90% 

OBC 

LT 
PSZ_80% 

OBC 

LT 
PSZ_70% 

OBC 

LT 
PSZ_60% 

OBC 

LT 
PSZ_50% 

OBC 

LT 
PSZ_40% 

OBC 

LT 
PSZ_30% 

OBC 

LT 
PSZ_20% 

OBC 

LT 
PSZ_10% 

OBC 

LT  
PSZ_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 4.46 4.62 4.82 5.03 5.25 5.44 5.60 5.75 6.06 6.10 6.11 

Space Cool 3.45 3.27 3.08 2.91 2.75 2.57 2.38 2.20 2.03 1.95 1.88 

Vent Fans 2.86 2.74 2.63 2.51 2.40 2.28 2.16 2.05 1.93 1.91 1.89 

Total 27.70 26.46 25.26 24.09 22.93 21.73 20.48 19.24 18.16 17.97 17.90 

* Total building EUI of different building systems and materials in Chicago. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  
** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

Table 61. Total Building Energy Use Intensity of PVAV Systems in Raised Floor Lightweight Building (Unit: kBtu/yr-ft2) 

  

LT 
PVAV_100

% OBC 

LT 
PVAV_90% 

OBC 

LT 
PVAV_80% 

OBC 

LT 
PVAV_70% 

OBC 

LT 
PVAV_60% 

OBC 

LT 
PVAV_50% 

OBC 

LT 
PVAV_40% 

OBC 

LT 
PVAV_30% 

OBC 

LT 
PVAV_20% 

OBC 

LT 
PVAV_10% 

OBC 

LT 
PVAV_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.63 0.66 0.66 0.67 0.69 0.69 0.70 0.71 0.72 0.72 0.72 

Space Cool 3.59 3.39 3.21 3.03 2.86 2.69 2.52 2.36 2.21 2.17 2.15 

Vent Fans 1.87 1.78 1.69 1.60 1.51 1.43 1.35 1.27 1.21 1.19 1.18 

Total 23.02 21.66 20.30 18.94 17.59 16.24 14.91 13.58 12.27 12.10 12.07 

* Total building EUI of different building systems and materials in Chicago. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  
** For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

 

 



 

202 

 

Table 62. Total Building Energy Use Intensity of PSZ Systems in Heavyweight Building (Unit: kBtu/yr-ft2) 

  

HW 
PSZ_100% 

OBC 

HW 
PSZ_90% 

OBC 

HW 
PSZ_80% 

OBC 

HW 
PSZ_70% 

OBC 

HW 
PSZ_60% 

OBC 

HW 
PSZ_50% 

OBC 

HW 
PSZ_40% 

OBC 

HW 
PSZ_30% 

OBC 

HW 
PSZ_20% 

OBC 

HW 
PSZ_10% 

OBC 

HW 
PSZ_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 1.20 1.41 1.66 1.96 2.31 2.68 3.03 3.21 3.17 3.13 3.13 

Space Cool 2.17 2.02 1.88 1.74 1.59 1.44 1.28 1.12 0.94 0.86 0.80 

Vent Fans 2.29 2.19 2.09 1.99 1.89 1.79 1.69 1.59 1.49 1.46 1.44 

Total 22.59 21.46 20.36 19.32 18.32 17.35 16.33 15.16 13.74 13.46 13.40 

* Total building EUI of different building systems and materials in Chicago. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  
* For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

Table 63. Total Building Energy Use Intensity of PVAV Systems in Heavyweight Building (Unit: kBtu/yr-ft2) 

  

HW 
PVAV_100

% OBC 

HW 
PVAV_90% 

OBC 

HW 
PVAV_80% 

OBC 

HW 
PVAV_70% 

OBC 

HW 
PVAV_60% 

OBC 

HW 
PVAV_50% 

OBC 

HW 
PVAV_40% 

OBC 

HW 
PVAV_30% 

OBC 

HW 
PVAV_20% 

OBC 

HW 
PVAV_10% 

OBC 

HW 
PVAV_0% 

OBC 

Area Lights 9.26 8.65 8.04 7.43 6.82 6.21 5.60 4.98 4.37 4.25 4.25 

Misc Equipment 7.67 7.18 6.69 6.20 5.72 5.23 4.74 4.25 3.77 3.77 3.77 

Space Heat 0.90 0.89 0.89 0.89 0.90 0.89 0.89 0.88 0.86 0.85 0.85 

Space Cool 2.45 2.31 2.17 2.03 1.90 1.78 1.68 1.59 1.51 1.48 1.46 

Vent Fans 1.36 1.29 1.22 1.15 1.09 1.03 0.98 0.92 0.88 0.86 0.85 

Total 21.64 20.32 19.01 17.71 16.43 15.15 13.88 12.63 11.39 11.22 11.19 

* Total building EUI of different building systems and materials in Chicago. Occupancy-based controls of simulation applied 100% to 0% in occupancy and 100% to minimum values in light and 
equipment schedules. Ventilation calculation is linked to the occupancy rate in simulation models.  
* For EUI calculations, system end-use energy is used from the BEPS report in DOE-2.1e. 

 

 



 

203 

 

5.2.2.3. Comparison of the Impact of Occupancy-Based Controls in Reference, Lightweight and 

Heavyweight buildings  

Among load components, although lighting and equipment loads provide internal heat 

gains into buildings, their load amounts are not determined by building envelope materials. 

Thermal characteristics of building surfaces affect heating, cooling, and ventilation loads in 

office buildings, which are weather-dependent load components. Therefore, this chapter 

compared the energy use impact of occupancy-based controls between the reference, raised floor 

lightweight and heavyweight models to identify the impact of occupancy-based controls in 

building loads. Figure 68 and Figure 69 outlines total annual heating, cooling, and ventilation 

loads of occupancy-based controls in the reference, raised floor lightweight and heavyweight 

models in Houston and Chicago.   

 

 

Figure 68. Total Loads of OBC in Reference, Lightweight and Heavyweight PSZ Models 
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Figure 69. Total Loads of OBC in Reference, Lightweight and Heavyweight PVAV Models 
 

In terms of PSZ systems, Table 64 and Table 65 revealed that PSZ raised floor 

lightweight models consumed 52.0-78.2% more energy and PSZ heavyweight models used 6.5-

9.9% less energy than the reference models in Houston. The result showed 77.7-84.8% more 
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heavyweight models in Chicago. All loads (i.e., heating, cooling, ventilation) in Houston 
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to 27.7% and PSZ heavyweight models used more energy up to -3.8% than the reference models 

in Chicago. The differences in PVAV systems were lower than PSZ CAV systems. The impact 

of the energy use changes from OBC 100% to OBC 0% was slightly different depending on 

building material types.  

 

Table 64. Impact of OBC in the Reference, Lightweight and Heavyweight Models using PSZ 
Systems in Houston 

Load Type Category 

Base 
PSZ_100% 

OBC

LW 
PSZ_100% 

OBC

HW 
PSZ_100% 

OBC

Base 
PSZ_0% 

OBC 

LW 
PSZ_0% 

OBC 

HW 
PSZ_0% 

OBC
Space Heat Energy Use (MMBtu/yr) 1.0 11.1 0.7 3.6 12.5 3.5 

Difference (MMBtu/yr) - -10.1 0.3 - -8.9 0.1 

Space Cool Energy Use (MMBtu/yr) 27.2 37.4 26.0 12.7 22.4 11.5 

Difference (MMBtu/yr) - -10.2 1.2 - -9.7 1.1 

Vent Fans Energy Use (MMBtu/yr) 15.3 17.6 13.9 9.5 11.2 8.2 

Difference (MMBtu/yr) - -2.4 1.3 - -1.6 1.3 

Total Energy Use (MMBtu/yr) 43.5 66.1 40.7 25.8 46.0 23.3 

Difference (MMBtu/yr) - -22.6 2.8 - -20.2 2.6 

Difference (%) - -52.0% 6.5% - -78.2% 9.9% 

 

Table 65. Impact of OBC in the Reference, Lightweight and Heavyweight Models using PSZ 
Systems in Chicago 

Load Type Category 

Base 
PSZ_100% 

OBC

LW 
PSZ_100% 

OBC

HW 
PSZ_100% 

OBC

Base 
PSZ_0% 

OBC 

LW 
PSZ_0% 

OBC 

HW 
PSZ_0% 

OBC
Space Heat Energy Use (MMBtu/yr) 6.9 24.5 6.6 17.4 33.6 17.2 

Difference (MMBtu/yr) - -17.6 0.3 - -16.2 0.2 

Space Cool Energy Use (MMBtu/yr) 12.1 19.0 11.9 4.8 10.3 4.4 

Difference (MMBtu/yr) - -6.8 0.2 - -5.5 0.4 

Vent Fans Energy Use (MMBtu/yr) 13.0 15.7 12.6 8.4 10.4 7.9 

Difference (MMBtu/yr) - -2.7 0.4 - -2.0 0.5 

Total Energy Use (MMBtu/yr) 32.1 59.2 31.1 30.6 54.4 29.6 

Difference (MMBtu/yr) - -27.2 0.9 - -23.8 1.0 

Difference (%) - -84.8% 2.9% - -77.8% 3.2% 
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Table 66. Impact of OBC in the Reference, Lightweight and Heavyweight Models using PVAV 
Systems in Houston 

Load Type Category 

Base 
PVAV 100% 

OBC
LW PVAV 
100% OBC

HW PVAV 
100% OBC

Base 
PVAV 0% 

OBC 
LW PVAV 
0% OBC 

HW 
PVAV 0% 

OBC
Space Heat Energy Use (MMBtu/yr) 0.2 0.2 0.4 0.2 0.2 0.4

Difference (MMBtu/yr) - 0.1 -0.2 - 0.0 -0.1
Space Cool Energy Use (MMBtu/yr) 28.7 40.6 27.4 18.3 24.6 16.7

Difference (MMBtu/yr) - -11.9 1.3 - -6.2 1.6
Vent Fans Energy Use (MMBtu/yr) 8.4 11.7 7.8 4.9 6.5 4.2

Difference (MMBtu/yr) - -3.3 0.6 - -1.7 0.7
Total Energy Use (MMBtu/yr) 37.4 52.4 35.6 23.4 31.3 21.2

Difference (MMBtu/yr) - -15.1 1.7 - -7.9 2.2

Difference (%) - -40.3% 4.6% - -33.7% 9.3%

 

Table 67. Impact of OBC in the Reference, Lightweight and Heavyweight Models using PVAV 
Systems in Chicago 

Load Type Category 

Base 
PVAV 

100% OBC
LW PVAV 
100% OBC

HW PVAV 
100% OBC

Base 
PVAV 0% 

OBC 
LW PVAV 
0% OBC 

HW 
PVAV 0% 

OBC
Space Heat Energy Use (MMBtu/yr) 4.7 3.5 4.9 4.6 4.0 4.7

Difference (MMBtu/yr) - 1.2 -0.2 - 0.6 -0.1
Space Cool Energy Use (MMBtu/yr) 13.8 19.8 13.5 8.4 11.8 8.1

Difference (MMBtu/yr) - -5.9 0.3 - -3.4 0.3
Vent Fans Energy Use (MMBtu/yr) 7.7 10.3 7.5 4.9 6.5 4.7

Difference (MMBtu/yr) - -2.6 0.3 - -1.6 0.2
Total Energy Use (MMBtu/yr) 26.3 33.5 25.9 17.9 22.3 17.4

Difference (MMBtu/yr) - -7.3 0.3 - -4.4 0.5

Difference (%) - -27.7% 1.3% - -24.6% 2.6%

 

5.2.3. Impact on Building Energy Use of Occupancy-Based Controls in 10-40% Window-to-Wall 

Ratio Models  

In this chapter, the impact of OBC controls in different window-to-wall (WWR) office 

models was investigated in Houston and Chicago. For this study, twelve groups of simulations 

were developed in the considerations of two climate zones (i.e., Houston, TX, Chicago, IL), two 

envelope materials (i.e., reference, raised floor lightweight and heavyweight), and two HVAC 

systems (i.e., PSZ, PVAV). To evaluate the energy performance in the small office buildings, 

five-zone models were used in OBC schedules of 100%-0% to quantify the energy use reduction 
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potential in WWR models. Heating, cooling, and ventilation loads for cases were calculated and 

compared.  

Table 68 represents a test set of WWR models (i.e., 10%, 21%, 30%, 40%). The analysis 

cases only considered the WWR range of the prescriptive requirement in Standard 90.1-2016, 

which specified that vertical fenestration should be 0% to 40% of walls in Section 6 (ASHRAE 

2016a). The WWR 20% is not developed in this analysis because baseline models based on 

PNNL prototype buildings originally have 21% WWR.   

Typically, a high WWR ratio deteriorates thermal properties on the building envelopes 

due to increased overall U-value and solar heat gain. The energy use in different WWR models 

was verified by previous research, such as Phillips et al. (2020) and Troup et al. (2019).  

Phillips et al. (2020) studied the environmental, economic, and social effects of various 

WWR levels (i.e., 20%, 40%, 60%) in Boston, Miami, and San Francisco. For testing U.S. 

DOE’s large office (12 stories) prototype building was modeled using Autodesk Revit, and then 

the TallyRevit application and EnergyPlus were used to calculated life cycle assessment (LCA) 

and energy cost. The results revealed that in all locations, electricity use was decreased with a 

lower WWR and increased with a higher WWR. The changes of energy use were mostly affected 

by the additional cooling and ventilation fans/pumps due to more solar heat gain from large 

window area. Also, high WWR models required more gas consumption for heating.  In another 

study, Troup et al. (2019) evaluated the effect of WWR in U.S. office building using the 2012 

CBECS data and regression model. This study found that average total EUI increases with high 

WWR, and had statistical significance on cooling, lighting, and ventilation energy use. The 

cooling loads represented the largest increase among disaggregated load components.  
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Table 68. Window-to-Wall Ratio Analysis of Occupancy-Based Controls in Houston and Chicago 

Group Location 
Zoning 
Model 

Envelope 
Material 

System 
Type 

Average 
WWR 

OBC Schedule Type (Weekdays, 9AM-5PM) 

Occupancy Light Equip Infiltration Vent Fan   Set-temp  Set-back 

1B Houston Five 
zones 

Reference PSZ 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

1L Houston Five 
zones 

Raised Floor 
Lightweight 

PSZ  10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

1H Houston Five 
zones 

Heavyweight PSZ  10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

2B Houston Five 
zones 

Reference PVAV 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

2L Houston Five 
zones 

Raised Floor 
Lightweight 

PVAV 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

2H Houston Five 
zones 

Heavyweight PVAV 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

3B Chicago Five 
zones 

Reference PSZ  10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

3L Chicago Five 
zones 

Raised Floor 
Lightweight 

PSZ  10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

3H Chicago Five 
zones 

Heavyweight PSZ  10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

4B Chicago Five 
zones 

Reference PVAV 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

4L Chicago Five 
zones 

Raised Floor 
Lightweight 

PVAV 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

4H Chicago Five 
zones 

Heavyweight PVAV 10-40% 1.0-0.0 
 

1.0-0.0 
 

1.0-0.0 
 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

* Reference and lightweight envelope materials refer to envelope properties used in PNNL small office buildings for Standard 90.1-2016. Raised floor complied with Standard 
90.1-2016. Heavyweight envelope materials are based on building.  

   constructions used in PNNL large office buildings for Standard 90.1-2016. Thermal properties (e.g., u-value) for envelope are identical between lightweight and heavyweight.  
** Weekend schedules set to minimum operating conditions of simulation schedules (e.g., occupancy=0.0, 0%; lighting=0.18, 18%; equipment=0.20, 20%;; infiltration=off; 

ventilation fan=0.0; set-point temperature: heating 60oF, cooling 85oF).  
*** Default window-to-wall (WWR) ratio in small office models is 21% on average. Window fraction is 24.4% for South and 19.8% for the other three orientations (e.g., east, 

west, north).  
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Table 69. Designed Window Areas by Thermal Zone 

Zone Area [ft²] 
Conditioned 

[Y/N]
Volume 

[ft³] Multipliers

External 
Wall Area 

[ft²]

10% Window 
Glass Area 

[ft²] 

Baseline (21%) 
Window Glass 

Area [ft²]

30% Window 
Glass Area 

[ft²]

40% Window 
Glass Area 

[ft²]
Space5-1 (Core) 1,611 Yes 16,122 1 0 0 0 0 0
Space1-1 (South) 1,221 Yes 12,221 1 908 91 222 273 364
Space2-1 (East) 724 Yes 7,250 1 605 61 120 182 243
Space3-1 (North) 1,221 Yes 12,221 1 908 91 180 273 364
Space4-1 (West) 724 Yes 7,250 1 605 61 120 182 243
Attic 6,114 No 25,437 1 0 0 0 0 0
Window to Wall Ratio 
(WWR) 

        
3,026 10% 21% 30% 40%

* Baseline Case Window Fraction (Window-to-Wall Ratio) is 24.4% for South and 19.8% for the other three orientations  
* Window Locations are evenly distributed along four façades (Baseline Case Window Dimensions: 6.0 ft x 5.0 ft punch windows for all façades) 
* Top of the window is fixed at 8 ft high with different high glasses in test cases 

 

Table 70. Designed Window Dimensions of 10-40% Window-to-Wall Ratios 

Zone 

Numbers 
of 

Windows 

10% 
Window 

Glass Height 
[ft]

Baseline 
(21.2%) 

Window Glass 
Height [ft]

30% 
Window 

Glass Height 
[ft]

40% 
Window 

Glass Height 
[ft]

10% Window 
Glass Width 

[ft]

Baseline (21%) 
Window Glass 

Width [ft]

30% Window 
Glass Width 

[ft]

40% Window 
Glass Width 

[ft]
Space5-1 (Core) 0 0 0 0 0 0 0 0 0
Space1-1 (South) 6 2.04 5 4.82 5.97 4 6 8 9
Space2-1 (East) 4 3.79 5 5.69 6.74 4 6 8 9
Space3-1 (North) 6 3.79 5 5.68 6.74 4 6 8 9
Space4-1 (West) 4 3.79 5 5.69 6.74 4 6 8 9
Attic 0 0 0 0 0 0 0 0 0
Total 20 16 24 32 36

* Baseline Case Window Fraction (Window-to-Wall Ratio) is 24.4% for South and 19.8% for the other three orientations  
* Window Locations are evenly distributed along four façades (Baseline Case Window Dimensions: 6.0 ft x 5.0 ft punch windows for all façades) 
* Glassdoor is included for Space1-1 window fraction in the baseline case 
* Top of the window is fixed at 8 ft high with different high glasses in test cases 
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However, the previous researcher did not fully include varying impact of occupancy 

modeling in their study scope due to building design and system conditions, and locations. For 

example, Ouf et al. (2019) developed a method to generate and integrate design-sensitive 

occupant-related lighting schedules for building energy simulations. Using a decision tree model 

based on a different orientation, window to wall (WWR) ratio, optical characteristics of windows 

and blinds, and indoor surface reflectances, light schedules were determined and evaluated. The 

results of this study represented the strongest effect of WWR and building orientation on light 

use schedules. However, this study only focused on producing design-sensitive light schedules 

for single offices, even though other simulation schedules for other building types and systems 

(i.e., windows, equipment, or thermostats) can be developed using a similar workflow. 

Therefore, this study of OBC can contribute to the identification of the impact of occupancy 

schedules, considering different designs, systems, and climates on building energy use. For this, 

three more models are designed at 10%, 30%, and 40% WWR for simulations. The material 

properties for the reference, raised floor lightweight and heavyweight models were identical with 

the models in previous chapter 5.2.2. Table 69 and Table 70 are designed window areas and 

dimensions by the thermal zone.  

 

Table 71. Window-to-Wall Ratios in Four Orientations for Simulations 

Orientation 
10%  

Window-to-Wall 
Baseline (21.2%) 
Window-to-Wall 

30%  
Window-to-Wall 

40%  
Window-to-Wall 

South 10% 24% 30% 40% 

East 10% 20% 30% 40% 

North 10% 20% 30% 40% 

West 10% 20% 30% 40% 

Average WWR 10% 21% 30% 40% 
* Baseline (original) models contained glassdoor in the south (space 1-1). South WWR was adjusted in other 10-40% models to evenly 

distributed for different building orientations. The adjusted south WWR still included glassdoor on the envelope.  
* WWR 0% to 40% is the prescriptive requirement of vertical walls in Standard 90.1-2016.  
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WWR on the facade is evenly distributed on four orientations (i.e., North, East, South, 

West) in Table 71. The building direction faces the south in all cases. Figure 70 to Figure 73 are 

exterior views of the simulation models used in this study. 

 

 

                       (a) Southeast View                                               (b) Northeast View 

Figure 70. Window-to-Wall Ratio 10% Model 

 

 

                       (a) Southeast View                                               (b) Northeast View 

Figure 71. Window-to-Wall Ratio 21% Model (default model) 
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                       (a) Southeast View                                               (b) Northeast View 

Figure 72. Window-to-Wall Ratio 30% Model 

 

 

                       (a) Southeast View                                               (b) Northeast View 

Figure 73. Window-to-Wall Ratio 40% Model 
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5.2.3.1. Impact of Occupancy-Based Controls in Related Component Loads  

In Figure 74 to Figure 79, this study identified the impact of occupancy-based controls in 

heating, cooling, and ventilation loads. These loads are primarily influenced in energy use by the 

changes of WWR. The results showed the calculated loads at 100% OBC and 0% OBC of WWR 

10-40% models to represent the trends of WWR changes and the maximum energy use reduction 

potential of OBC. The changes in total energy use with component loads revealed the load 

sensitivity of OBC in 10-40% WWR models.  

In Houston models, PSZ models had higher sensitivity than PVAV systems. According to 

OBC changes (i.e., 100-0%), cooling and ventilation loads are remarkably reduced, whereas 

heating loads were expanded, especially in PSZ systems.           

 

 

Figure 74. Energy Use of OBC-related Component Loads in Reference Models in Houston 
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Figure 75. Energy Use of OBC-related Component Loads in Raised Floor Lightweight Models 
in Houston 

 

 

Figure 76. Energy Use of OBC-related Component Loads in Heavyweight Models in Houston 
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Figure 77. Energy Use of OBC-related Component Loads in Reference Models in Chicago 

 

 

Figure 78. Energy Use of OBC-related Component Loads in Raised Floor Lightweight Models 
in Chicago 
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Figure 79. Energy Use of OBC-related Component Loads in Heavyweight Models in Chicago 
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ventilation loads, cooling and ventilation load types were consistently grown when window areas 

were expanded on the building envelope.  

 

 
                            (a) Houston                                                             (b) Chicago 

Figure 80. Heating Energy Use of OBC in WWR 10-40% Models  

 

 
                            (a) Houston                                                              (b) Chicago 

Figure 81. Cooling Energy Use of OBC in WWR 10-40% Models  
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                            (a) Houston                                                              (b) Chicago 

Figure 82. Ventilation Energy Use of OBC in WWR 10-40% Models  
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systems were similar, but PSZ systems were marginally higher. Contrastively, Chicago models 

showed significant differences between PSZ and PVAV systems. PSZ systems represented 

smaller energy use reduction effects due to the large increase in heating energy consumption than 

PVAV systems in Chicago. The maximum energy use reduction of OBC in Houston were 47.1-

50.2% of reference PSZ, 40.5-45.7% of raised floor LW PSZ, 47.9-51.2% of HW PSZ, 46.0-

49.6% of reference PVAV, 46.2-49.6% of raised floor LW PVAV, and 46.8-50.5% of HW 

PVAV. In Chicago, the maximum energy use reduction of OBC were 37.8-41.5% of reference 

PSZ, 37.2-40.1% of raised floor LW PSZ, 38.4-42.4% of HW PSZ, 46.5-48.4% of reference 

PVAV, 45.4-47.8% of raised floor LW PVAV, and 46.6-48.3% of HW PVAV. The maximum 

energy use reduction percentage of OBC occurred in all cases of WWR 10% models, and the 

minimum energy use reduction percentage of OBC was produced in all cases of WWR 40%.   

 

  

Figure 83. Impact on Total Energy Use Reduction of OBC Component Loads in WWR 10-40% 
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The result of WWR ratio showed that the effect of occupancy-based controls would vary 

depending on building design, such as different window-to-wall ratio in office buildings. 

However, typically high WWR ratio buildings represented more energy use reduction in 

weather-dependent factors (i.e., heating, cooling, ventilation) in Houston and Chicago.  

  

5.2.4. Impact on Building Energy Use of Individual Zone Occupancy-Based Controls  

This chapter evaluated potential energy use reduction of partial OBC applications in 

thermal zones. In reality, each space of the buildings has a different usage schedule depending on 

space type, user type, and activity type. This fact indicates that each space holds its schedules 

and thermal demands for HVAC operations. Therefore, this study calculated possible energy use 

reduction from individual OBC applications in five-zone models using different usage scenarios.  

 

Table 72. Office Building Usage Intensity of OBC in simulations 
OBC Intensity 

Type 
OBC Schedule 

level 
Description 

Maximum Usage  OBC 100% Maximum building usage in 24-hour operations  

Standard Usage  OBC 90% Standard OBC usage based on average occupancy rate (i.e., 90%) in 

Standard 90.1-2016 schedules during 9 AM-5 PM on weekdays 

Medium Usage  OBC 50% Medium building usage during 9 AM-5 PM in weekdays 

Minimum Usage  OBC 0% Unoccupied condition, Weekend and set-back schedules used 

* Weekend schedules of OBC are identical with Standard 90.1-2016 small office schedules. OBC operations applied only on weekdays.  
* The details of OBC schedules are described in Chapter 4.3.  

 

An individual zone was selected for occupancy-based controls and the remaining four 

zones used Standard 90.1-2016 schedules (i.e., occupancy, lighting, equipment, set-temperature, 

set-back schedule, ventilation fan schedule). Among 100% OBC to 0% OBC, a selected thermal 
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zone used four types of OBC schedules (i.e., max, standard, medium, min) to represent different 

space usage levels in practice. OBC schedules in this chapter are identical to previously used 

schedules for weekdays. Table 72 describes four types of OBC usage intensities for simulation 

evaluations in this chapter. Maximum usage represents 100% building occupancy and operation 

for 24 hours. Also, standard usage (i.e., OBC 90%) is a Standard 90.1-2016 schedule-based OBC 

schedule. In Standard 90.1-2016 schedules, the average occupancy from 9 AM-5 PM on 

weekdays is around 90%. The medium level reflects the recent changes in the working 

environment, such as new information technology development (e.g., conference call, 

homeworking) and business culture shift. Minimum usage is an unoccupied condition during the 

daytime on weekdays.  

To estimate the impact of OBC applications in the selected zone when the buildings 

applied different types of simulation schedules in thermal zones, a total of 960 analysis cases 

were simulated as Table 73. Simulation cases included several independent variables of building 

designs, such as different orientations, WWR, building material (i.e., reference, raised floor 

lightweight, heavyweight), system type (i.e., PSZ, PVAV), climate zone (i.e., CZ 2A, CZ 5A). 

The results of various cases would show energy use reduction in different building operation 

environments and design conditions.   
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Table 73. Individual Zone Energy Performance Analysis of 100-0% OBC in Houston and Chicago 

Group Location 

Simulation Cases Independent Variables Controlled Variables 
Other Schedules 

System 
Type 

Envelope 
Material 

Average 
WWR 

Thermal 
Zone 

OBC Schedule Type**  
(Weekdays, 9 AM-5 PM) Thermal 

Zone 
Schedule 

Type 
Occup Light Equip Infilt Vent   Set-temp Set-back 

1 Houston PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% South 
(S1-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

2 Houston PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40%  East 
(S2-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

3 Houston PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% North 
(S3-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

4 Houston PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% West 
(S4-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

5 Houston PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% Core 
(S5-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

6 Chicago PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% South 
(S1-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

7 Chicago PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40%  East 
(S2-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

8 Chicago PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% North 
(S3-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

9 Chicago PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% West 
(S4-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

10 Chicago PSZ, 
PVAV 

Ref/ 
LW/HW 

10-40% Core 
(S5-1) 

Max-
Min 

Max-
Min 

Max-
Min 

Rest 
Zones 

Std 90.1-
2016 

Off 1.0 H: 70oF 
C: 75oF 

H: 60oF 
C: 85oF 

* In individual zone analysis, OBC applied only in a selected thermal zone, and the rest four zones were controlled and used the Standard 90.1-2016 schedules for occupancy, 
lighting, equipment schedules. The other schedule types (i.e., infiltration, ventilation fan, set-temperature, set-back temperature) are identical between all models.  

* Lightweight envelope materials refer to envelope properties used in PNNL small office buildings for Standard 90.1-2016 except floor. The floor u-value complied with Standard 
90.1-2016. Heavyweight envelope materials are based on building  

   constructions used in PNNL large office buildings for Standard 90.1-2016. Thermal properties (e.g., u-value) for envelope are identical between lightweight and heavyweight.  
* Weekend schedules set to minimum operating conditions of simulation schedules (e.g., occupancy=0.0, 0%; lighting=0.18, 18%; equipment=0.20, 20%;; infiltration=off; 

ventilation fan=0.0; set-point temperature: heating 60oF, cooling 85oF).  
* Default window-to-wall (WWR) ratio in small office models is 21% on average. Window fraction is 24.4% for South and 19.8% for the other three orientations (e.g., east, west, 

north).      
** OBC schedule types are OBC 100%, OBC 90%, OBC 50%, and OBC 0%, which are maximum to minimum OBC usage intensities for office models.  
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5.2.4.1. Impact of Individual Occupancy-Based Controls in Houston  

The occupancy-based control impact in the selected zone applications was analyzed by 

orientation in five zone models. Briefly, the results showed that total loads gradually increased as 

WWR increased while their patterns decreased as the OBC rate decreases. In architectural 

design, WWR significantly affected heating, cooling, and ventilation loads. Higher WWR led to 

more heating loads in PSZ systems due to reduced internal heat gains and required more cooling 

and ventilation loads due to increased solar gains. Occupancy-based controls had a bigger impact 

on energy use reduction when WWR are smaller. In this chapter, all results of simulations were 

extracted from the BEPS reports in DOE-2.1e. Table 74 outlines the impact of partial occupancy-

based control applications in a particular zone in total load calculations. The energy use 

reduction ranges of WWR changes were lowered in high WWR office buildings in both PSZ and 

PVAV systems. Maximum occupancy control reduction rates were found in Space5-1 (core), 

whereas min OBC energy use reduction rate happened in Space2-1 (East). In terms of orientation 

effect in occupancy-based building control energy reductions, the west zone (Space4-1) 

represented more energy use reduction potential compared to the east zone (Space2-1). Also, the 

south zone (Space1-1) showed higher energy use reduction ratios than the north zone (Space3-1).  
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Table 74. Normalized Energy Use Reduction on Total Loads in Individual Zone OBC 

Type 
PSZ System PVAV System 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

Ref: OBC South zone -43% -41% -40% -39% -44% -43% -42% -41% 

Ref: OBC East zone -41% -40% -39% -38% -43% -42% -40% -39% 

Ref: OBC North zone -42% -40% -39% -38% -41% -40% -39% -39% 

Ref: OBC West zone -42% -40% -39% -38% -45% -44% -43% -42% 

Ref: OBC Core zone -44% -42% -41% -40% -44% -43% -41% -40% 

LW: OBC South zone -39% -38% -36% -35% -43% -41% -40% -39% 

LW: OBC East zone -37% -35% -33% -32% -44% -42% -41% -40% 

LW: OBC North zone -39% -36% -34% -32% -41% -40% -39% -42% 

LW: OBC West zone -39% -36% -34% -33% -45% -44% -43% -41% 

LW: OBC Core zone -43% -42% -41% -40% -44% -43% -41% -40% 

HW: OBC South zone -44% -42% -41% -40% -43% -41% -40% -39% 

HW: OBC East zone -43% -41% -39% -38% -44% -42% -41% -40% 

HW: OBC North zone -44% -42% -40% -39% -42% -41% -39% -39% 

HW: OBC West zone -43% -41% -40% -38% -44% -42% -41% -40% 

HW: OBC Core zone -45% -43% -42% -40% -44% -43% -42% -41% 

Reduction range of 
WWR 

-37 to 
-45% 

35 to 
-43%

-33 to 
-42%

-32 to 
-40%

-41 to 
-45%

-40 to 
-44% 

-39 to 
-43% 

-39 to 
-42%

* Total loads energy reduction rates were calculated as the differences between OBC 100% (max usage) and OBC 0% (min usage, unoccupied) 
* Occupant density for simulations is 180 ft2/people based ASHRAE Standard 62.1-2013 

  

Table 75. Normalized Energy Use Reduction on Total Loads in Individual Zone OBC 

Type 
(Unit: kBtu/ft2) 

PSZ System PVAV System 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

Ref: OBC South zone 11.8 11.7 11.7 11.7 12.0 11.8 11.8 11.7 

Ref: OBC East zone 11.5 11.5 11.5 11.4 11.8 11.6 11.5 11.4 

Ref: OBC North zone 11.6 11.5 11.5 11.4 11.6 11.5 11.3 11.2 

Ref: OBC West zone 11.6 11.5 11.5 11.5 11.8 11.7 11.6 11.4 

Ref: OBC Core zone 11.9 11.9 11.9 11.8 11.7 11.7 11.6 11.5 

LW: OBC South zone 12.2 12.3 12.3 12.3 13.1 12.8 12.7 12.6 

LW: OBC East zone 11.8 11.9 11.9 11.9 12.4 12.4 12.3 12.3 

LW: OBC North zone 12.0 12.0 12.0 12.0 12.3 12.1 12.0 13.2 

LW: OBC West zone 12.0 12.1 12.1 12.1 12.6 12.5 12.4 12.3 

LW: OBC Core zone 12.6 12.7 12.7 12.7 13.3 13.3 13.3 13.3 

HW: OBC South zone 11.8 11.7 11.7 11.7 11.9 12.0 11.9 11.7 

HW: OBC East zone 11.6 11.5 11.5 11.4 11.8 11.7 11.6 11.4 

HW: OBC North zone 11.7 11.6 11.5 11.4 11.8 11.7 11.5 11.3 

HW: OBC West zone 11.7 11.6 11.5 11.5 11.8 11.8 11.6 11.5 

HW: OBC Core zone 11.9 11.9 11.9 11.9 11.7 11.7 11.7 11.6 

Reduction range of 
WWR 

11.5 to 
12.6 

11.5 to 
12.7

11.5 to 
12.7

11.4 to 
12.7

11.6 to 
13.3

11.5 to 
13.3 

11.3 to 
13.3 

11.2 to 
13.3

* Total loads energy reduction rates were calculated as the differences between OBC 100% (max usage) and OBC 0% (min usage, unoccupied) 
* Occupant density for simulations is 180 ft2/people based ASHRAE Standard 62.1-2013 
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 In detail, Figure 84 to Figure 86 illustrate examples of the overall building loads and 

component loads when occupancy-based control is applied only to Space1-1 (south) in Houston. 

In this model, the rest four zones applied Standard 90.1-2016 schedules for HVAC operations. In 

the interpretation of the result, there were several significant findings of occupancy-based 

controls. The result showed that occupancy-based controls could contribute to load reduction 

more when WWR was smaller (e.g., WWR 10%). Between the reference, raised floor 

lightweight (LW) and heavyweight (HW) in PSZ models, heavyweight models showed higher 

energy use reduction ratios than reference and raised floor lightweight models. Between the PSZ 

system and PVAV systems, PVAV systems represented higher energy use reduction percentages 

than the PSZ system models, including both LW and HW cases. Occupancy-based controls 

applied in Space1-1 (south) showed that WWR 10% OBC 0% of the reference PSZ used 9.8% 

less energy in total loads than WWR 10% OBC 100% of the reference PSZ.  WWR 40% OBC 

0% of the reference PSZ used 8.9% less energy in total loads than WWR 40% OBC 100% of the 

reference PSZ. Also, as for envelope materials (i.e., reference, LW, HW), the reference PSZ of 

WWR 40% OBC 100% use 1.5% more energy than heavyweight PSZ of WWR 40% OBC 100% 

in total loads. The primary contributors to OBC energy use reduction were lighting, equipment, 

cooling, and ventilation loads. These load patterns of occupancy-based controls were similar in 

the other simulation groups (i.e., PVAV, heavyweight), but energy use reduction ratios varied 

depending on architectural design and system design. Also, similar energy use reduction trends 

are mostly shown across all individual zone OBC analyses. 
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                                     (a) Reference, PSZ                                                                            (b) Reference, PVAV 

Figure 84. Reference Model: Impact of Occupancy-Based Controls of Space1-1 (South) in Houston 

 

 
                                     (a) Lightweight, PSZ                                                                          (b) Lightweight, PVAV 

Figure 85. Lightweight Model: Impact of Occupancy-Based Controls of Space1-1 (South) in Houston 
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                                    (a) Heavyweight, PSZ                                                                         (b) Heavyweight, PVAV 

Figure 86. Heavyweight Model: Impact of Occupancy-Based Controls of Space1-1 (South) in Houston 
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5.2.4.2. Impact of Individual Occupancy-Based Controls in Chicago     

In this chapter, the impact of occupancy-based control application in a specific zone was 

calculated by orientation in Chicago. In conclusion, the total loads of occupancy-based controls 

steadily expanded as WWR increased while their patterns were declined as the OBC rate 

decreases. In building design, WWR on building envelope significantly affected heating, 

cooling, and ventilation loads. Higher WWR led to more heating loads in PSZ systems and less 

heating in PVAV systems. In contrast, cooling and ventilation loads were raised in high WWR. 

Occupancy-based controls had a more significant impact in Chicago when WWR are smaller.  

 

Table 76. Normalized Energy Use Reduction on Total Loads in Individual Zone OBC 

Type 
PSZ System PVAV System 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

Ref: OBC South zone -37% -36% -35% -34% -42% -42% -42% -41% 
Ref: OBC East zone -36% -34% -33% -32% -42% -41% -41% -40% 
Ref: OBC North zone -34% -33% -33% -32% -40% -40% -39% -38% 
Ref: OBC West zone -36% -35% -34% -33% -43% -41% -40% -39% 
Ref: OBC Core zone -34% -33% -32% -30% -40% -40% -39% -38% 
LW: OBC South zone -31% -31% -30% -29% -41% -41% -40% -39% 
LW: OBC East zone -30% -28% -27% -26% -42% -41% -40% -39% 
LW: OBC North zone -30% -25% -24% -23% -39% -39% -38% -37% 
LW: OBC West zone -31% -29% -27% -26% -42% -42% -42% -41% 
LW: OBC Core zone -32% -28% -27% -27% -41% -42% -41% -40% 
HW: OBC South zone -37% -37% -36% -34% -40% -40% -40% -38% 
HW: OBC East zone -37% -35% -34% -32% -42% -42% -41% -41% 
HW: OBC North zone -38% -33% -33% -33% -41% -41% -40% -39% 
HW: OBC West zone -38% -35% -34% -33% -41% -41% -40% -39% 
HW: OBC Core zone -35% -33% -32% -31% -42% -41% -41% -39% 
Reduction range of 
WWR 

-30 to 
-38% 

-25 to 
-37% 

-24 to 
-36% 

-23 to 
-34% 

-39 to 
-43% 

-39 to 
-42% 

-38 to 
-42% 

-37 to 
-42% 

* Total loads reduction rates were calculated as the differences between OBC 100% (max usage) and OBC 0% (min usage, unoccupied)  
* Occupant density for simulations is 180 ft2/people based ASHRAE Standard 62.1-2013 
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Table 76 summarizes the impact of OBC applications in a particular zone in total load 

estimations. The energy use reduction ranges of WWR became small in high WWR office 

buildings in both PSZ and PVAV systems. Like the results in Houston, max OBC energy use 

reduction rates were represented in Space5-1 (core), while min OBC energy use reduction rate 

found in Space2-1 (East). When it comes to the orientation effect in occupancy control energy 

reduction, the west zone (Space4-1) showed more energy use reduction potential compared to the 

east zone (Space2-1). Also, the south zone (Space1-1) showed higher energy use reduction ratios 

than the north zone (Space3-1).  

 

Table 77. Normalized Energy Use Reduction on Total Loads in Individual Zone OBC 

Type 
(Unit: kBtu/ft2) 

PSZ System PVAV System 
WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

Ref: OBC South zone 9.6 9.9 9.9 10.0 10.7 10.7 10.7 10.7 
Ref: OBC East zone 9.5 9.5 9.5 9.4 10.6 10.5 10.4 10.4 
Ref: OBC North zone 8.6 9.0 9.2 9.3 10.3 10.2 10.4 10.1 
Ref: OBC West zone 9.6 9.7 9.7 9.7 10.7 10.7 10.6 10.6 
Ref: OBC Core zone 8.7 8.8 8.8 8.8 10.5 10.5 10.4 10.4 
LW: OBC South zone 9.4 9.9 10.0 10.2 11.2 11.2 11.2 11.2 
LW: OBC East zone 9.1 9.3 9.4 9.5 10.8 10.8 10.8 10.8 
LW: OBC North zone 8.8 8.3 8.4 8.5 10.4 10.4 10.4 10.4 
LW: OBC West zone 9.4 9.4 9.5 9.6 11.1 11.1 11.1 11.1 
LW: OBC Core zone 9.0 8.3 8.3 8.3 11.2 10.9 10.9 10.9 
HW: OBC South zone 9.6 9.9 9.9 10.0 10.8 10.7 10.7 10.7 
HW: OBC East zone 9.3 9.6 9.5 9.4 10.6 10.6 10.5 10.5 
HW: OBC North zone 9.4 8.9 9.2 9.4 10.4 10.2 10.2 10.1 
HW: OBC West zone 9.4 9.7 9.7 9.6 10.8 10.7 10.6 10.6 
HW: OBC Core zone 8.6 8.8 8.8 8.8 10.6 10.5 10.5 10.4 
Reduction range of 
WWR 

8.6 to 
9.6 

8.3 to 
9.9

8.3 to 
10.0

8.3 to 
10.2

10.3 to 
11.2

10.2 to 
11.2 

10.2 to 
11.2 

10.1 to 
11.2

* Total loads reduction rates were calculated as the differences between OBC 100% (max usage) and OBC 0% (min usage, unoccupied) 
* Occupant density for simulations is 180 ft2/people based ASHRAE Standard 62.1-2013 
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Figure 87 to Figure 89 describes the example simulation results of the total building loads 

and the component loads in cases of Space1-1 (south) OBC in Chicago. In this model, the 

remaining four zones used Standard 90.1-2016 schedules for building system operations. From 

the results, several findings of occupancy-based controls were revealed. The result found that 

occupancy-based controls could provide more energy use reductions when WWR was smaller 

(e.g., WWR 10%). Between the reference, raised floor lightweight (LW) and heavyweight (HW) 

in PSZ models, heavyweight models showed higher energy energy use reduction ratios than the 

reference, raised floor lightweight models in Chicago. Between the PSZ system and PVAV 

systems, PVAV systems had higher energy use reduction percentages than the PSZ system 

models, including both LW and HW cases. The primary contributors to occupancy-based control 

reductions were lighting, equipment, cooling, and ventilation loads. Heating loads added more 

building loads in PSZ system simulations. Such trends of building loads in occupancy-based 

controls were similar in the other simulation groups (i.e., PVAV, heavyweight), but energy use 

reduction ratios varied depending on architectural design and system design. Also, similar energy 

use reduction trends are mostly shown across all individual zone OBC analyses. 
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                                     (a) Reference, PSZ                                                                            (b) Reference, PVAV 

Figure 87. Reference Model: Impact of Occupancy-Based Controls of Space1-1 (South) in Chicago 

 

 
                                     (a) Lightweight, PSZ                                                                          (b) Lightweight, PVAV 

Figure 88. Lightweight Model: Impact of Occupancy-Based Controls of Space1-1 (South) in Chicago 
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                                    (a) Heavyweight, PSZ                                                                         (b) Heavyweight, PVAV 

Figure 89. Heavyweight Model: Impact of Occupancy-Based Controls of Space1-1 (South) in Chicago 
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In terms of the impact in load components, lighting and equipment loads were influenced 

by only OBC intensity from 100% to 0%. Lighting and equipment loads are determined based on 

lighting power density (W/ft2), equipment power density (W/ft2), and their operating schedules. 

Therefore, if optimized occupancy-based controls can be applied in energy simulations, it would 

have a substantial impact on building energy performance calculations. The occupancy-based 

control effect in heating loads was different depending on HVAC system types. PSZ systems 

showed a negative effect on building energy use, while PVAV systems represented diverse 

effects depending on OBC intensity and WWR level. In Chicago, since heating loads were 

considerable, heating loads lowered energy use reduction potential in occupancy-based control 

models compared to Houston models. Cooling loads were still the most significant weather-

dependent contributor to OBC energy use reduction in Chicago. Energy use reduction potential 

gradually increased when the office building’s usage level was lower in WWR 10-40% models. 

In terms of system type, PVAV systems in Chicago displayed more energy use reduction 

potential than PSZ systems, especially in cooling loads. Also, although PVAV systems used less 

energy in ventilation fans than PSZ systems, energy use reduction potential was lower than PSZ 

systems except WWR 10% HW PSZ models. HW of WWR 10% PSZ models consumed more 

energy than LW of WWR 10% PSZ models. From WWR 20%, HW PSZ models used less 

energy compared to LW PSZ models. The result of energy use reduction in a particular zone 

OBC revealed that occupancy-based control of this study has the significance of updating code-

compliant models using OBC credits.   
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5.2.4.3. Impact of Occupancy-Based Controls in Whole Buildings   

The energy use reduction of occupancy-based controls can be maximized when OBC is 

applied to the whole building. This chapter calculated the energy use reduction impact in cases of 

5 zones controlled by OBC. In this chapter, OBC energy use reduction represents a reduction of 

“OBC 100% (max usage) – OBC 0% (min usage)”. The simulation results of OBC described that 

OBC energy use reduction has a low relationship with architectural design elements such as 

building materials and window-to-wall ratio. The climate zone and HVAC system had a 

significant influence on OBC energy use reduction. This is because OBC energy variables (e.g., 

lighting, equipment, occupant density, outdoor air intake) are independent of weather conditions 

and building design elements. Total cooling, heating, and ventilation demands of OBC were 

changed depending on architectural designs, but simulation schedules based on OBC almost 

fixed the load changes of heating, cooling, and ventilation. Figure 90 showed normalized energy 

use reduction of whole building OBC in Houston and Chicago by building design type.  

 

 

Figure 90. Normalized Energy Use Reduction of 5 Zone OBC on Total Building Loads 
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Table 78. Normalized Energy Use Reduction Ratios of OBC in Whole Buildings 

Type 

PSZ System PVAV System 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

Houston Base -50% -49% -48% -47% -50% -49% -48% -47% 
Houston LW -46% -43% -42% -41% -50% -48% -47% -46% 
Houston HW -51% -50% -49% -48% -51% -50% -49% -48% 
Chicago Base -42% -40% -39% -38% -49% -48% -48% -48% 
Chicago LW -37% -35% -36% -36% -42% -47% -46% -45% 
Chicago HW -42% -41% -40% -38% -49% -48% -48% -48% 
Reduction 
range of WWR 

-37 to  
-51% 

-35 to  
-50% 

-36 to  
-49% 

-36 to  
-48% 

-42 to  
-51% 

-47 to  
-50% 

-46 to  
-49% 

-45 to  
-48% 

* Total loads reduction rates were calculated as the differences between OBC 100% (max usage) and OBC 0% (min usage, unoccupied) 
* Occupant density for simulations is 180 ft2/people based ASHRAE Standard 62.1-2013 

 

Table 79. Normalized Energy Use Reduction of Occupancy-Based Controls in Whole Buildings 

Type 
(Unit: kBtu/ft2) 

PSZ System PVAV System 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

WWR 
10% 

WWR 
21% 

WWR 
30% 

WWR 
40% 

Houston Base 12.5 12.6 12.7 12.8 11.9 11.8 11.8 11.8 
Houston LW 12.8 12.8 12.8 12.9 12.8 12.7 12.7 12.6 
Houston HW 12.5 12.6 12.7 12.9 11.8 11.9 11.8 11.8 
Chicago Base 11.0 11.1 11.2 11.3 10.7 10.7 10.7 10.9 
Chicago LW 9.6 9.8 10.5 11.1 9.8 10.9 11.0 11.0 
Chicago HW 11.0 11.2 11.3 11.4 10.8 10.7 10.7 10.9 
Reduction 
range of WWR 

9.6 to  
12.8 

9.8 to  
12.8 

10.5 to  
12.8 

11.1 to  
12.9 

9.8 to  
12.8 

10.7 to  
12.7 

10.7 to  
12.7 

12.6 to  
12.6 

* Total loads reduction rates were calculated as the differences between OBC 100% (max usage) and OBC 0% (min usage, unoccupied) 
* Occupant density for simulations is 180 ft2/people based ASHRAE Standard 62.1-2013 

 

When applying OBC to 5 zones (i.e., whole building), the OBC energy use reduction 

rates in total loads are computed in Table 78. Although architectural design (i.e., envelope 

material, WWR) had a quantitatively limited effect in OBC energy use reduction, architectural 

design influenced considerable impact in total loads. Thus, the OBC energy use reduction rates 

varied. Low WWR design had higher energy use reduction potential by percentage, and PVAV 

systems had higher energy use reduction potential in percentage than PSZ systems due to lower 
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total loads. HW buildings had more energy use reduction potential than LW buildings, but the 

differences were not well distinguished.  

 

5.2.4.4. Summary   

In simulations of occupancy-based controls in a specific zone, this study explored 

building energy use reduction in different building designs and HVAC systems in hot and cold 

climates. The results show significant energy use reduction in both climates for reference, 

lightweight and heavyweight buildings. The results of this study in Houston and Chicago are 

summarized as below:  

• Occupancy-based controls of whole buildings represented 41-51% of total load reduction 

potential in Houston and 35-49% of total load reduction potential in Chicago 

• A specific zone OCC from Space1-1 to Space5-1 showed 32% to 45% energy reduction 

potential of selected zone EUIs in Houston and resulted in 24% to 43% energy reduction 

potential of selected zone EUIs in Chicago 

• Total load reduction of occupancy-based building controls were larger in PSZ/PVAV and 

LW/HW models as this order: WWR 10% > WWR 21% > WWR 30% > WWR 40% 

• Total load reduction ratios of PVAV systems were higher than PSZ systems  

• Heavyweight models had higher reduction potential ratios compared to the reference and 

raised floor, lightweight models. Also, raised floor lightweight models mostly showed low 

energy reduction potential than the reference and heavyweight models 

• The occupancy control reduction of component loads increased in lighting, equipment, 

cooling, and ventilation loads, while OBC reduction varied in heating loads depending on 

system type and OBC intensity 
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• Total load reduction ratio of specific zone OBC showed that west zone (Space4-1) models 

larger than the east zone (Space2-1) models, as well as south zone (Space1-1), models bigger 

than the north zone (Space3-1) models  

• Max energy reduction ratios were found in the core zone (Space5-1) OBC in Houston and 

Chicago 

• Min energy reduction ratios were represented in the east zone (Space2-1) OBC in Houston 

and Chicago 

• The occupancy modeling’s energy use reduction mostly came from internal load controls and 

heat gains (e.g., weather independent variables) in energy simulations. The impact of weather 

and design elements was limited in OBC energy use reduction. Weather and design elements 

mainly affected the total amount of building loads.  
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6. RESULTS: OCCUPANCY CREDITS FOR CODE-COMPLIANT MODELING 

 

6.1. Overview of Simulation Results  

This study analyzed the impact of Occupancy-Based Controls (OBC) in office buildings. 

The study calculated two types of control operation modes: 1) total building (5 zones) 

occupancy-based controls and 2) individual zone OBC controls. Total building application refers 

to the whole-building controlled by OBC. The particular zone OBC means that only the selected 

zones applied OBC and the remaining zones used Standard 90.1-2016 schedules for simulations. 

To evaluate the energy performance, baseline small office buildings were developed in DOE-

2.1e based on the U.S.DOE sponsored PNNL prototype models for Standard 90.1-2016. The 

small office models were simulated in Houston, TX and Chicago, IL. Two cities represent the 

hot-humid climate zone (2A) and cold-humid climate zone (5A) in the U.S.  

 

 

Figure 91. Relationship between Occupancy-Based Controls and Building Simulation 
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Figure 91 shows the relationship between occupancy-based control variables and 

buildings based on building energy simulations in this study. In the simulations, weather-

independent occupancy-based control variables dominated energy use reduction, and the energy 

use reduction from weather-dependent occupancy-based building control variables is limited 

according to climate zone, WWR, and HVAC system type.   

 

 

                             (a) Houston                                                              (b) Chicago 

Figure 92. Example: OBC Energy Use Reduction Contribution Rates of WWR 40% Models 

 

Figure 92 shows energy use reduction contribution rates of “OBC 100% - OBC 0%” in 

WWR 40% models by energy end-use type in Houston, TX and Chicago, IL. The energy use 

reduction ratios indicate that building HVAC system type and climate zone can be the dominant 

factors to determine OBC reduction in Houston and Chicago. Also, in terms of load components, 

lighting and equipment occupied 69.3-75.6% of OBC energy use reduction in Houston and 78.4-

81.9% of OBC reduction in Chicago. In the PSZ systems, heating loads raised building energy 

use and in PVAV systems, the effect of occupancy-based building controls was varied depending 
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on building designs. For the weather-dependent loads, the cooling load reduction of occupancy-

based controls were the most effective to reduce building energy use in Houston. On the 

contrary, in Chicago PSZ systems, cooling and ventilation occupancy-based control reduction 

was almost offset by increases in heating loads.  

Therefore, with the potential of occupancy-based building modeling, occupancy-based 

building control credits can be proposed for occupancy-based building modeling to support 

estimations of smart control-based office buildings in the U.S. The occupancy-based modeling 

credits for office buildings were proposed for whole-building applications and for specific zone 

occupancy-based building operations in Houston and Chicago in the next chapters.  
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6.2. Proposed Occupancy-Based Control Credits for Whole Buildings  

This study calculated the energy performance of occupancy-based controls in small office 

buildings using the DOE-2.1e simulation that was cross-checked with EnergyPlus. Based on the 

results of occupancy modeling energy use reduction in simulations, occupancy modeling credits 

were developed as proposed in Table 80 and Appendix H for whole-building occupancy-based 

control operations. In the tables, occupancy modeling credits present potential energy use 

reduction ratios at particular usage intensity (i.e., max-100%, standard-90%, medium-50%, min-

0%) in each case of building design and HVAC conditions (i.e., reference/raised floor LW/HW, 

WWR 10-40%, PSZ, PVAV) compared to 100% operations from 9 AM to 5 PM on weekdays. 

Blue colors mean high energy use reduction potential from occupancy-based control 

applications, and red colors indicate low or negative energy use reduction potential from 

occupancy-based control operations. This would be a simplified, easy-to-use approach for 

estimating and diagnosing energy use reduction from occupancy-based controls. Energy 

modelers and architects could use the tables to estimate using occupancy modeling credits 

depending on their occupancy usage intensity in office buildings.  

Occupancy-based control credits could be used to supplement the current deterministic 

building modeling schedules and improve the energy modeling requirement of the current 

performance paths (i.e., ECB method, Appendix G method) in Standard 90.1-2019. Since the 

recent code-compliant modeling provides partial credits only for lighting systems from Standard 

90.1-2016, the other load components (i.e., equipment, occupancy, ventilation) should be 

considered in the future code-compliance to develop more realistic energy models for practices. 

More credit information is described in Appendix H.  
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Table 80. Example: Houston PSZ- Percentage-Based Energy Reduction Credits of Total Building Occupancy-Based Controls 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 52.8%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -19.3% -205.8% -465.6% 0.0% -15.6% -132.2% -386.1% 0.0% -10.6% -103.7% -340.8% 0.0% -10.5% -99.2% -302.6%

Cooling 0.0% 6.6% 34.3% 59.5% 0.0% 6.1% 31.6% 55.8% 0.0% 5.7% 29.9% 54.6% 0.0% 5.6% 28.4% 49.9%
Ventilation 0.0% 5.8% 29.2% 49.9% 0.0% 4.8% 24.1% 41.2% 0.0% 4.2% 21.2% 35.2% 0.0% 3.7% 18.6% 29.4%

 

  Raised Floor Lightweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -4.8% -21.1% -31.2% 0.0% -2.6% -10.0% -12.4% 0.0% -1.9% -5.1% -4.5% 0.0% -1.9% -3.7% -2.0%
Cooling 0.0% 5.1% 25.3% 43.7% 0.0% 4.6% 23.0% 40.1% 0.0% 4.3% 21.7% 38.3% 0.0% 4.1% 20.7% 36.7%
Ventilation 0.0% 5.1% 25.3% 43.3% 0.0% 4.3% 21.4% 36.4% 0.0% 3.9% 19.5% 33.5% 0.0% 3.6% 18.0% 30.7%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -19.3% -205.8% -465.6% 0.0% -15.6% -132.2% -386.1% 0.0% -10.6% -103.7% -340.8% 0.0% -10.5% -99.2% -329.7%

Cooling 0.0% 6.6% 34.3% 59.5% 0.0% 6.1% 31.6% 55.8% 0.0% 5.7% 29.9% 54.6% 0.0% 5.6% 28.4% 54.8%
Ventilation 0.0% 5.8% 29.2% 49.9% 0.0% 4.8% 24.1% 41.2% 0.0% 4.2% 21.2% 35.2% 0.0% 3.7% 18.6% 31.2%

* Red color: negative effect on energy reduction 
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6.3. Proposed Occupancy-based Control Credits for Individual Zone Control  

This chapter provided occupancy modeling credits for partial occupancy-based control 

operations only in a particular zone. Table 81 and Appendix I describe occupancy modeling 

credits of office buildings in Houston, TX and Chicago, IL. To evaluate the energy performance 

of occupancy-based controls, the equation in Chapter 6.2 could be used to estimate the impact of 

occupancy controls in energy modeling. The energy use reduction impact of occupancy-based 

controls can vary depending on building materials, system type, window-to-wall ratio, and 

climate zone. Therefore, when developing occupancy modeling, these variables should be 

considered in the simulations. Figure 93 depicts the example trends of occupancy modeling 

credits for cooling loads. Depending on building design and system conditions, different usage 

intensity (i.e., max, standard, medium, min) could be calculated in energy models using 

occupancy modeling credits. Since occupancy-based controls have a significant influence on 

energy use and HVAC system operations, it should be carefully modeled in building energy 

estimations, especially in office buildings. More credit information is described in Appendix I.  

 

 

Figure 93. Example: Cooling Load Occupancy Modeling Credits of Space1-1 OBC in Houston 
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Table 81. Example: Houston PSZ Percentage-Based Energy Reduction Credits of Space1-1 OBC in Total Loads 

  
  

Reference PSZ 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.9% -6.8% -14.8% 0.0% -0.7% -5.5% -11.2% 0.0% -0.8% -5.4% -9.6% 0.0% -0.3% -4.2% -7.1%
Cooling 0.0% 1.3% 6.4% 10.5% 0.0% 1.1% 5.7% 9.2% 0.0% 1.0% 5.4% 8.6% 0.0% 1.0% 5.0% 8.0%
Ventilation 0.0% 0.9% 4.6% 7.4% 0.0% 0.8% 3.8% 6.1% 0.0% 0.7% 3.4% 5.4% 0.0% 0.6% 3.0% 4.7%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.4% -2.4% -4.9% 0.0% -0.2% -1.5% -3.1% 0.0% -0.1% -1.1% -2.3% 0.0% -0.1% -0.9% -1.8%
Cooling 0.0% 1.0% 4.8% 8.3% 0.0% 0.9% 4.4% 7.6% 0.0% 0.8% 4.2% 7.2% 0.0% 0.8% 3.9% 6.9%
Ventilation 0.0% 0.8% 4.1% 6.9% 0.0% 0.7% 3.7% 6.3% 0.0% 0.7% 3.4% 5.8% 0.0% 0.6% 3.1% 5.3%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.9% -6.8% -14.8% 0.0% -0.7% -5.5% -11.2% 0.0% -0.8% -5.4% -9.6% 0.0% -0.3% -4.2% -7.1%
Cooling 0.0% 1.3% 6.4% 10.5% 0.0% 1.1% 5.7% 9.2% 0.0% 1.0% 5.4% 8.6% 0.0% 1.0% 5.0% 8.0%
Ventilation 0.0% 0.9% 4.6% 7.4% 0.0% 0.8% 3.8% 6.1% 0.0% 0.7% 3.4% 5.4% 0.0% 0.6% 3.0% 4.7%
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7. CONCLUSIONS AND FUTURE WORK 

 

This study investigated occupancy-based controls (OBC) to evaluate the impact on 

building energy use for small office buildings. In the process, this study identified energy use 

reduction of OBC on total annual energy use and end-use energy use components depending on 

different building systems (i.e., PSZ, PVAV), different building envelope materials (i.e., 

lightweight, heavyweight), and building designs (i.e., window-to-wall ratio) in different climates 

(i.e., hot and cold climate zones)., and interpreted energy use reduction contributors in hot-humid 

and cold-humid climate zones. The results of this study will allow energy modelers, architects, 

and engineers to more easily estimate overlooked potential energy use reduction when their 

building design uses occupancy-based controls. This chapter presents the summary and 

conclusions of this study. Based on the findings, future work is also discussed.  

 

7.1. Summary and Conclusions  

In buildings, occupant behavior is a significant factor in building energy use. However, 

most previous literature focused on field measurement methods, data-driven occupant modeling 

strategies, integrated occupancy behavior model development with building energy simulation 

tools, application in building design an operation (IEA-EBC, Annex 66 2018; IEA-EBC, Annex 

79 2018; Wagner et al. 2018), even though occupancy-based controls affect the usage of most 

load components in office buildings. Also, the current Standard 90.1 provided limited occupancy 

modeling credits only for lighting systems in the Appendix G method. Therefore, this study 

analyzed variations in annual energy use for different building types and designs with a long-

term goal of developing a procedure for occupancy modeling credits for building energy codes.  
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Currently, occupancy modeling uses the following methods: 1) static and dynamic 

methods, 2) deterministic and stochastic methods, and 3) agent-based methods. Of them, 

deterministic models are only used in codes as preset parameters that remain the same for the 

standard building design and the proposed building design. Thus, this study investigated the 

impact of various OBC usage (i.e., 100%-0% on weekdays) on energy use to improve the current 

deterministic schedules in building standards to cover occupancy diversity in energy modeling.  

To achieve the research goals, reference small office models were developed based on the 

PNNL prototype office buildings for Standard 90.1-2016 in DOE-2.1e. The models were 

simulated in hot-humid (CZ 2A: Houston, TX) and cool-humid (CZ 5A: Chicago, IL) to estimate 

the impact in different climate zones.  

First, thermal zoning models were determined between single-zone and five-zone models 

to evaluate the impact of occupancy-based controls accurately in office buildings. The results 

showed that the single-zone models showed that it does not represent the same result as a 5-zone 

model. For example, a single-zone model mixes heat gains from the south surface or west 

surface because the simulation uses average temperatures in the thermal zones. This fact in the 

single-zone model provides different daily indoor air temperature changes versus the five-zone 

model since the single-zone model cannot discriminate indoor air temperatures between 

perimeter zones or space types. Therefore, this study used the five-zone model in Houston and 

Chicago.  

Second, a sensitivity analysis of different OBC schedules (i.e., occupancy, lighting, 

equipment) was conducted in 100%-0% variations of OBC to determine interactions between 

OBC energy variables and to identify building energy use patterns of OBC in office buildings. In 

Houston, the result of the sensitivity analysis showed that the lighting schedule had a variation of 
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up to 31.0%, and the equipment schedule had a variation of up to 24.7%. The occupancy 

schedule showed a sensitivity of up to 4.5% in total EUI. Also, in Chicago, the OBC schedule 

showed a sensitivity of up to 25.9% in lighting schedules, up to 20.9% in equipment schedules, 

and up to 0.4% in occupancy schedules. Many of the trends of sensitivity in the EUI reduction of 

each OBC schedule showed almost linear patterns in the load components (i.e., lighting, 

equipment, heating, cooling, ventilation).  

Based on the results of varying OBC schedules, a set of OBC schedules (i.e., occupancy, 

lighting, equipment)  were applied to analyze building energy use reduction of occupancy-based 

controls for different building design conditions (i.e., reference model, raised floor lightweight 

and heavyweight models, window-to-wall ratio 10-40%, PSZ and PVAV systems) in different 

climate zones. As a result, architectural design elements affected cooling, heating, and 

ventilation loads.  

The results showed that raised floor, lightweight (LW) models showed more energy use 

in all load types (i.e., heating, cooling, ventilation) in Houston and Chicago compared to the 

reference and heavyweight (HW) models that had a slab-on-grade construction. The results 

showed that the impact of occupancy-based controls using PVAV systems in the HW models 

was 6.5-9.9% less energy for heating, cooling, and ventilation loads than the reference U.S.DOE 

models in Houston and a 3.8% increase in energy use in Chicago. The different ratios in PVAV 

systems were lower than PSZ systems.  

In simulations, WWR 10-40% for whole-building application was significant in 

determining building performance. The results showed that the highest energy use reduction 

ratios of occupancy-based controls from heating, cooling, and ventilation in Houston. The energy 

use reduction ratios when varying WWR 10-40% were expected up to 47.1-50.2% of reference 
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PSZ, 40.5-45.7% of raised floor LW PSZ, 47.9-51.2% of HW PSZ, 46.0-49.6% of reference 

PVAV, 46.2-49.6% of raised floor LW PVAV, and 46.8-50.5% of HW PVAV. In Chicago, the 

maximum reduction of occupancy-based controls from heating, cooling, and ventilation were 

presented as 37.2-40.1% of raised floor LW PSZ, 38.4-42.4% of HW PSZ, 46.5-48.4% of 

reference PVAV, 45.4-47.8% of raised floor LW PVAV, and 46.6-48.3% of HW PVAV, 

respectively. The possible energy use reduction ratios of total loads were 41-51% of occupancy 

controls in Houston and 37-49% of occupancy controls in Chicago. The maximum energy use 

reduction potential percentage of occupancy-based controls was found in all cases of WWR 10% 

models, and the minimum energy use reduction potential percentage of occupancy-based 

controls occurred in all cases of WWR 40%.   

Next, the potential energy use reduction of a specific zone occupancy-based building 

control were explored in five zone models. This analysis modeled a total of 960 combination 

cases using different HVAC (i.e., PSZ, PVAV), envelope material and design (i.e., reference, 

raised floor LW, HW, WWR 10-40%), occupancy-based control application (i.e., all zone OBC, 

single-zone OBC), and climate zone (i.e., Houston, Chicago). The energy use reduction potential 

and trends of occupancy-based controls provide a preliminary look at what OBC could provide 

for code-compliance with ASHRAE Standard 90.1. The findings of occupancy-based building 

controls in this study are summarized below:  

 

• Occupancy-based controls in small office buildings showed substantial energy use 

reduction potential from varying energy factors and different building conditions. 

• In terms of weather conditions, Climate Zone (CZ) significantly affected the range of 

energy use reduction due to an increase or decrease of weather-dependent loads (i.e., 
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heating, cooling, ventilation). Houston, TX showed more energy use reduction potential 

than Chicago, IL, in all building types (i.e., reference, lightweight, heavyweight). This is 

because Houston, TX used more cooling energy and less heating energy, while Chicago, 

IL used more heating energy and less cooling energy. The increase of heating loads offset 

cooling and ventilation load reduction of OBC, especially in Chicago, PSZ systems. 

• In terms of building materials, heavyweight models had higher energy use reduction 

potential ratios of OBC compared to the reference and lightweight models because 

lightweight, raised floor models had higher annual energy use. Lightweight models 

showed the largest energy consumption, and the reference models represented the 

second-largest energy consumption.  

• In terms of window-to-wall ratio, the total load energy use reduction potential of 

occupancy-based controls using varying WWRs were larger in Houston and Chicago in 

this order: WWR 10% > WWR 21% > WWR 30% > WWR 40%. Smaller WWR models 

showed less total energy use than higher WWR models, which influenced the percentage 

energy use reduction ratios of WWR models.  

• In terms of building system types, the energy use of building systems is related to 

weather-dependent variables (i.e., heating, cooling, and ventilation loads). Also, the 

operation of the HVAC system is different depending on the features of system types 

(i.e., variable air volume versus constant air volume). In this study, PVAV systems 

represented less total energy use than PSZ systems in Houston and Chicago, especially in 

heating and ventilation loads. PVAV systems showed higher total load reduction ratios of 

OBC than PSZ systems in Houston and Chicago. Due to difference in weather conditions, 

reduction ratios of Houston PSZ systems were larger versus Chicago PSZ systems, and 
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reduction ratios of Houston PVAV systems were larger compared to Chicago PVAV 

systems. 

• In terms of ground-coupling, slab-on-grade models (i.e., reference, heavyweight) showed 

lower energy consumption and higher than raised floor models (i.e., lightweight). Raised 

floor models represented the largest energy use and lowest energy use reduction potential 

in Houston and Chicago compared to the reference and heavyweight models.  

• In terms of whole-building OBC application, occupancy-based controls in 5 zone models 

showed 41-51% of total load reduction potential in Houston (CZ 2A) and 35-49% of total 

load reduction potential in Chicago (CZ 5A).  

• In terms of single-zone OBC application, a single zone OBC represented 32% to 45% 

energy use reduction potential of selected zone EUIs in Houston and resulted in 24% to 

43% energy use reduction potential of selected zone EUIs in Chicago. The total load 

reduction ratio of a specific zone occupancy-based control showed that west zone 

(Space4-1) models were larger than the east zone (Space2-1) models. In addition, as 

south zone (Space1-1) models were larger than the north zone (Space3-1) models. 

Maximum reduction ratios occurred in the core zone (Space5-1) occupancy-based 

building control in both Houston and Chicago due to the larger area. Minimum reduction 

ratios were found in the east zone (Space2-1) occupancy-based building control in 

Houston and Chicago. 

• In terms of energy use reduction contributors, the largest contributors to occupancy 

modeling’s energy use reduction were internal load factors (e.g., lighting, equipment) in 

energy simulations. Weather and design elements had a limited impact on occupancy 

modeling-driven energy use reduction. Weather and design elements mainly affected the 
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energy use of heating, cooling, and ventilation loads. The occupancy-based control 

energy use reduction of component loads increased in lighting, equipment, cooling, and 

ventilation loads, while heating loads varied depending on system type and OBC usage 

intensity. 

• This study showed the U.S.DOE lightweight building with a slab-on-grade behaved like a 

heavyweight building. Therefore, a raised-floor lightweight model was developed to 

represent a lightweight building. 

 

Last but not least, based on the results, occupancy control credits for office buildings 

were proposed as a reduction fraction basis for Houston and Chicago climates. The proposed 

occupancy-based control credits could be an easy-to-use and straightforward procedure to 

estimate the impact of occupancy-based controls in the energy modeling process for hot-humid 

and cool-humid climates. Also, occupancy modeling credits by total loads and load sub-types 

allow calculating occupancy modeling energy use reduction by load components, which would 

be useful as a reference to develop future occupancy modeling credits for total loads and load 

components in building codes and standards.  

 

7.2. Future Work  

This study attempted to investigate the impact of occupancy-based controls in building 

energy modeling with an integrated perspective. However, the result of this study still contains 

the limitations for future work as follows:   

1) This study investigated the impact of occupancy-based control in a small office 

building. However, future work will need to systematically investigate: system type, 



 

252 

 

construction (i.e., lightweight, heavyweight), variations in window-to-wall ratios in 

cold, mild, and hot climates in order to develop occupancy-based control credits.  

2) Occupancy-based controls in this study focused only on simulation schedules (i.e., 

occupancy, lighting, equipment, fan schedules). Therefore, other schedules should be 

analyzed. 

3) Future work is needed to systematically determine how variations in simulation 

inputs would impact occupancy-based control simulation results.  

4) Occupancy modeling-driven energy use reduction calculations in other U.S. climate 

zones (e.g., climate zone 1 to 8) should be performed. 

5) Calculations of occupancy modeling in medium and large office buildings should be 

performed. 

6) Different building shapes (i.e., square) should be evaluated. 

7) No detailed thermal zone model over five zones was used to estimated building 

energy performance. Therefore, additional zones should be investigated. 

8) All results were calculated in the DOE-2.1e building energy simulation program for 

easy-of-use, although a comparison was performed against EnergyPlus that showed 

similar results. Therefore, repeating the work in EnergyPlus should be used. 

9) Other HVAC systems should be analyzed. 

10) Varying schedules of occupancy, lighting, and equipment should be analyzed. 

11) No infiltration was used to quantify ventilation based on occupant density. 

12) The impact of WWR in simulations was partially limited due to shade by the attic 

roof in small office buildings. Therefore, additional study is needed. 
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13) The interaction of occupancy-related variables (e.g., window and thermostat set-

temperature controls by the occupant, daylighting) was not modeled. Therefore, this 

needs further study. 

Therefore, in summary, the following recommendations for future works are as the 

following:  

1) Based on the results of this study, it is recommended that additional analysis be 

performed to develop the necessary library of results for OBC in different buildings. 

2) The detailed impact of OBC on building loads needs further study, including more 

accurate ground-coupling and advanced window models using the latest algorithms 

(e.g., KIVA analysis) in different simulation tools (i.e., EnergyPlus, Radiance, CFD, 

TRNSYS).  

3) Uncertainty analysis of input parameters on energy performance is required for hot, 

cool and cold climate zones to quantify the uncertainties on the building loads of 

occupancy-based controls.  

4) Investigation of other building types (e.g., residential buildings, schools, industrial 

buildings, mixed-use, retails) and different building sizes (e.g., medium, large) is 

required for occupancy modeling. 

5) Development of optimal thermal zoning methods for occupancy modeling based on 

space types in buildings. 

6) Analysis of the impact of the ground-coupling in occupancy-based control models 

and the impact of occupancy-based controls in plenum models. 

7) Analysis of the relations between occupancy-related parameters. 
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8) Development of more realistic occupancy-based control simulation schedules to 

cover different usage profiles (e.g., high, medium, low) by space type (e.g., office, 

auditorium, meeting room, kitchen). 

9) Development of occupancy modeling credits by office layout (e.g., open space, 

private office).  

10) Development of more sophisticated occupancy modeling approach taking account of 

occupant behavior for weekdays and weekends.  

11) The occupancy modeling credit methodology developed in this study needs to be 

verified using case-study buildings and recommended to be confirmed for code-

compliance in the future codes and standards. 
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APPENDIX A 

HISTORY OF BUILDING CODES AND STANDARDS 

 

In history, the U.S. building energy codes and standards started in the 1970s based on the 

public reaction to the oil crisis. Since then, numerous codes and standards have been developed 

to provide minimum requirements for a residential and a commercial building to regulate whole-

building energy use and increase energy efficiency.  

     In the early 1970s, the U.S. consumed one-third of its total energy use for buildings, 

such as heating, cooling, and lighting (U.S.EIA 2012) with only a modest awareness of energy 

waste. However, energy crises in 1973, which was triggered by oil embargoes, increased the 

public interest in building energy efficiency. Before this, in 1967 the oil embargo involved in the 

Six-Day war did not have a critical influence on the price of oil in the U.S. However, the 1973 

oil embargo, which targeted nations that supported Israel in the Yom Kippur War, significantly 

limited oil supplies and caused energy security issues in the world. Increasing energy prices also 

made countries aware of their dependence on imported energy and increased social awareness 

for energy performance and building energy codes. As a result, the National Conference of States 

on Building Codes and Standards (NCSBCS) urged the National Bureau of Standards (NBS, now 

the National Institute for Standards and Technology, NIST) to embark on the development of 

energy conservation guidelines in buildings for adoption by states and local governments to be 

used in local building codes. In February 1974, after several years of study, the NBS published 

an energy-conserving guideline, the NBSIR 74-452, Design and Evaluation Criteria for Energy 

Conservation in New Buildings. The NBSIR 74-452 provided a component performance 

approach and prescriptive provisions to design HVAC and lighting systems with three 
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compliance paths for building energy design: 1) A prescriptive path, 2) A performance path with 

equal or higher performance than the basic prescriptive design, 3) An alternative path including a 

bonus for renewable energy. Soon after this, ASHRAE was requested by NCSBCS to take 

charge of the previous 1974 NBS energy conservation report and to develop national building 

energy standards (Hunn et al. 2010). Using the 1974 NBS report as a foundation, ASHRAE 

published Standard 90 -75, Energy Conservation in New Building Design in 1975 for residential 

and commercial buildings with technical support from the Illuminating Engineering Society 

(IES) (Halverson et al. 2009, Hunn et al. 2010).  

     In 1980 a revised edition of Standard 90 was published as ANSI/ASHRAE/IES 90A-

1980 that provided revised Sections 1 through 9 of Standard 90-75 (Hunn et al. 2010). The new 

revision of Standard 90-75 was accomplished by splitting the standard into three parts: 1) 90A-

1980 for the prescriptive path (Sections 1 to 9 of 90-75), 2) 90B-1975 for the alternative 

performance path (Sections 10 and 11 of 90-75), and 3) 90C-1977 (Section 12) for “annul fuel 

and energy resource determination” (ASHRAE 1980).  

     In 1982, to supplant the existing energy criteria of the Housing and Urban 

Development (HUD) Minimum Property Standards, ASHRAE further divided the original 

Standard 90 A,B,C Standards and into commercial and residential standards that were called 

Standard 90.1 and 90.2 Standards. ASHRAE first published Standard 90.1 in 1989 and Standard 

90.2 in 1987 to upgrade Standard 90A-1980 and Standard 90B-1975 (Hunn et al. 2010, Christian 

1988) 

     In 1992, the U.S. Energy Policy Act of 1992 (EPACT) became effective, and it was a 

critical turning point for Standard 90.1 because the new Energy Policy Act included general 

provisions for energy that required all state governments to institute building energy codes. In 
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addition, EPACT indicated that state governments should upgrade their energy codes to meet or 

exceed Standard 90.1. After the 1992 EPACT, Standard 90.1-1999 took 10 years to develop the 

next revision to Standard 90.1-1989 with increased interest and participation from stakeholders. 

In Standard 90.1-1999, ASHRAE introduced a simplified National Energy Model to evaluate the 

total energy savings potential. The new standard was also written in an enforceable language, 

which would be acceptable as a building code (Hunn et al. 2010).  

     In 1999, the ASHRAE Board of Directors approved continuous maintenance on the 

standard to correspond to the publication update periods of the International Energy 

Conservation Code (IECC). Accordingly, in 2001, Standards 90.1-2001 commercial and 90.2-

2001 residential were published as the first revised standards under continuous maintenance. 

Following this, six revisions were published every third year, beginning in 2004 through 2019 

(2004, 2007, 2010, 2013, 2016, 2019). Standard 90.1-2004 had significant changes, which 

included the introduction of Appendix G, the Performance Rating Method, to evaluate the energy 

performance of proposed designs that must be at least equivalent to the performance level of 

provisions of the standard. In 2016, ASHRAE published Standard 90.1-2016, which was 30% 

more stringent than Standard 90.1-2004. To accomplish this, the Pacific Northwest National 

Laboratory PNNL and U.S.DOE  performed the energy savings analysis, using ASHRAE 

Standard 90.1-2004 as a benchmark (ASHRAE 2017a). Standard 90.1 2016 allowed Appendix G 

to be used as a performance path for compliance with the standard for the first time. Prior to 

Standard 90.1-2016, Appendix G could be only used to evaluate the “beyond code” performance 

of buildings, such as the U.S. Green Building Council USGBC  LEED rating system (ASHRAE 

2016b). Finally, of importance to this study, the new Appendix G in 90.1-2016 also gave a credit 
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for occupancy sensors by lighting power allowances that efficiently control lighting fixtures 

when spaces were not occupied or partially occupied.  

     Although Standard 90.1 is widely used as the national energy standard for commercial 

buildings, the International Energy Conservation Code (IECC) has been adopted by many states 

and municipal governments for both residential and commercial buildings (Mendon et al. 2015). 

The IECC also provides minimum provisions for the energy efficiency of buildings through 

prescriptive and performance paths.  

In the U.S. the Model Code for Energy Conservation (MCEC) was the first national 

building energy code that described the technical requirements for energy efficiency in buildings 

as an enforceable code language (Hunn et al. 2010). The first model code was the MCEC 77 that 

was developed by a collaboration of multiple organizations headed by the Council of American 

Building Officials (CABO), which included by CABO, the Building Officials Code 

Administrators International (BOCA), the International Conference of Building Officials 

(ICBO), the National Conference of States on Building Codes and Standards (NCSBCS), and the 

Southern Building Code Congress International (SBCCI) in 1983. Since 1977, the CABO had 

published subsequent codes every couple of years until 1998 (1983, 1986, 1989, 1992, 1993, and 

1995). In 1998 the International Code Council (ICC) took charge of the development and 

maintenance of the model codes. In 1994 the ICC was established by former members of the 

Building Officials and Code Administrators International, Inc. (BOCA), the International 

Conference of Building Officials (IBCO), and the Southern Building Code Congress 

International, Inc. (SBCCI) (Blissard 2015, ICC 2015a). The 1998 IECC was the first model 

energy code under the ICC’s jurisdiction (Martin 2010). Since 1998 the ICC has published 

revisions to the IECC beginning in 1998, 2000, 2003, 2006, 2009, 2012, 2015, and 2018.    
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 2015 version of the IECC introduced a new compliance path for architects and engineers 

to have more diversity and flexibility in their design with meeting energy efficiency and code-

compliance uses an Energy Rating Index (ERI) to allow building owners and contractors to 

understand energy efficiency, similar with the Home Energy Rating System (HERS) ratings that 

have been widely applied to evaluate homes and provide useful information to consumers. The 

ERI is an alternative path that uses a 0 to 100 linear scale that accounts for the percent change of 

the total energy use of the proposed design proportional to the reference design. For example, an 

ERI 0 is a level to express a net-zero energy home and an ERI 100 is a level that is equal to the 

2006 IECC. In other words, the lower ERI value represents a more energy-efficient home. Such 

model codes have contributed to efficient building design in the United States, along with 

ASHRAE Standards (ICC 2015a, CBei 2016).  

The figure A-1 shows the history of the Model codes (i.e., IECC) and Standard 90.1 

codes that are the most national-widely used codes and standards in the U.S.   
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Figure A-1. The U.S. History of Building Codes and Standards 
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APPENDIX B 

PERFORMANCE CODE-COMPLIANCE PATHS IN STANDARD 90.1-2016 and 90.1-2019 

ASHRAE Standard 90.1-2016 and 90.1-2019 contains two types of code-compliance paths: a prescriptive path and a 
performance path. The prescriptive path describes design requirements using the provisions from Section 5 to Section 10 of 90.1. The 
performance path includes two options, which include Section 11, Energy Cost Budget Method (ECB); and Appendix G. Performance 
Rating Method as below. 
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APPENDIX C  

PERFORMANCE CALCULATION METHOD FOR APPENDIX G  

IN ASHRAE STANDARD 90.1-2019 

 

ASHRAE Standard 90.1-2016, Appendix G. Performance Rating Method was approved 

as a new performance path with the current Energy Cost Budget (ECB) path in Standard 90.1-

2016. In 2016 Appendix G introduced a new metric to calculate building energy performance, 

which is referred to as Performance Cost Index (PCI) (ASHRAE 2016a). In Standard 90.1-2019, 

to comply with code-requirements, the PCI shall not be more than the Performance Cost Index 

Target (PCIt). The formula for proposed building design in Section G1.2.2 is as below 

(ASHRAE 2019): 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑃𝐶𝐼    

  
               (Eq. 1) 

Where: Proposed Building Performance = The annual energy cost estimated for a proposed 

design, Baseline Building Performance = The annual energy cost estimated for a baseline 

design  

 

To determine a baseline building performance, the PCI targets should be calculated using 

the following equation, which is suggested in Section 4.2.1.1 New Buildings: 

                                             𝑃𝐶𝐼                            (Eq. 2) 

Where (Rosenberg and Hart 2016, ASHRAE 2019):  

PCI = The maximum Performance Cost Index for a proposed design to comply with a target    

           version of Standard 90.1. 
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BBUEC = Baseline Building Unregulated Energy Cost. The portion of the annual energy cost of  

      a baseline building design that is due to unregulated energy use. 

BBREC = Baseline Building Regulated Energy Cost. The portion of the annual energy cost of a  

      baseline building design that is due to regulated energy use. 

BPF = Building Performance Factor (BPF) from Table 4.2.1.1. For building area types not listed  

            in Table 4.2.1.1. use “All others.” Where a building has multiple building area types, the  

            regulated BPF shall be equal to the area-weighted average of the building area types.   

BBP = Baseline Building Performance.  

 

Table C-1. Building Performance Factor (BPF) (a portion of the table 4.2.1.1)  
Building 
Area type 

Climate Zone 

0A 
and 
1A 

0B 
and 
1B 

2A 2B 3A 3B 3C 
…... 

6A 6B 7 8 

Multi-

family 

0.68 0.70 0.66 0.66 0.69 0.68 0.59 …... 0.68 0.71 0.68 0.72 

Healthcare/ 

Hospitality 

0.60 0.60 0.58 0.54 0.56 0.55 0.55 …... 0.57 0.52 0.57 0.57 

Hotel/Motel 0.55 0.53 0.53 0.52 0.53 0.54 0.54 …... 0.50 0.50 0.50 0.50 

Office 0.52 0.57 0.50 0.56 0.53 0.56 0.48 …... 0.52 0.52 0.49 0.51 

Restaurant 0.63 0.64 0.60 0.60 0.60 0.61 0.58  0.65 0.65 0.67 0.70 

Retail 0.51 0.54 0.49 0.55 0.51 0.55 0.53 …... 0.50 0.50 0.48 0.50 

School 0.39 0.47 0.38 0.43 0.38 0.42 0.40 …... 0.36 0.36 0.36 0.37 

Warehouse 0.38 0.42 0.40 0.42 0.43 0.44 0.43  0.54 0.54 0.57 0.57 

All others 0.56 0.57 0.50 0.52 0.50 0.54 0.53 …... 0.50 0.50 0.50 0.46 
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APPENDIX D  

OCCUPANCY SENSOR REDUCTIONS USING THE SPACE-BY-SPACE METHOD  

IN ASHRAE STANDARD 90.1-2019 

 

ASHRAE introduced a new credit for occupancy-based lighting controls to calculate 

lighting power density allowances for Appendix G Performance Rating Method (RPM) in 

Standard 90.1-2016. This modification is based on addenda dx to Standard 90.1-2013 that gives 

a reduction rate in lighting power allowances for occupancy sensors in the Space-by-Space 

Method (ASHRAE 2016a, Table G3.7). For example, it provides a 15% to 30% reduction of the 

lighting power density in an office. Table D-1 provides a portion of the G3.7 Table in Standard 

90.1-2019.  

 

Table D-1. Performance Rating Method Lighting Power Density Allowances and Occupancy 
Sensor Reductions Using the Space-by-Space Method in ASHRAE Standard 90.1-2019 (portion 
of the table G 3.7, pp333-335)  

Common Space Typesa Lighting Power Density, W/ft2 Occupancy Sensor Reductionb 

Laboratory 
In or as a classroom 1.40 None 
All other laboratory 1.40 10% 
Laundry/Washing Area 0.60 10% 
Loading Dock, Interior 0.59 10% 
Lobby 
Facility for the visual impaired  
(and used primarily by residents) 

2.26 25% 

Elevator 0.80 25% 
Hotel 1.10 25% 
Motion picture theater 1.10 25% 
Performing arts theater 3.30 25% 
All other lobby 1.30 25% 
Locker Room 0.60 25% 
Lounge/ Breakroom 
Healthcare facility 0.80 None 
All other lounge/breakroom 1.20 None 
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Table D-1. Performance Rating Method Lighting Power Density Allowances and Occupancy 
Sensor Reductions Using the Space-by-Space Method in ASHRAE Standard 90.1-2019 (portion 
of the table G 3.7, pp333-335) (cont.)  

Common Space Typesa Lighting Power Density, W/ft2 Occupancy Sensor Reductionb 
Office 
Enclosed 1.10 30% 
Open plan 1.10 15%C 
Parking Area, Interior 0.20 15% 
Pharmacy Area 1.20 10% 
Restroom 
Facility for the visual impaired  
(and used primarily by residents) 

1.52 45% 

All other restroom 0.90 45% 
Sales Area 1.70 15% 
Seating Area, General 0.68 10% 
Stairwell 0.60 75% 
Storage Room 
Hospital 0.90 45% 
≥ 50 ft2 0.80 45% 
< 50 ft2 0.80 45% 
Vehicular Maintenance Area 0.70 10% 
Workshop 1.90 10% 

a. In cases where both a common space type and a building area-specific space type are listed, the building area-specific space 
type shall apply. 

b. For manual-ON or partial-auto-ON occupancy sensors, the occupancy sensor reduction factor shall be multiplied by 1.25. 
c. For occupancy sensors controlling individual workstation lighting, occupancy sensor reduction factor shall be 30%. 
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APPENDIX E  

ENERGY SIMULATION PROGRAMS 

 

Energy simulation is extensively used to analyze building energy performance and 

savings in practice and research because of substantial advantage to save costs and time. Also, 

performance paths using energy simulations in standards and codes provide a chance to have 

design flexibility compared to prescriptive methods. There have been several whole-building 

energy simulation programs to meet the requirement in the codes and standards. Among them, 

the DOE-2 and EnergyPlus programs are the most widely recognized programs to develop 

building energy models for code-compliance.  

 

1) DOE-2   

DOE-2 is one of the whole-building simulation programs for analyzing building energy 

use and fuel costs associated with commercial building operation in the U.S that has been widely 

used with Standard 90.1. This program was initially developed by the Lawrence Berkeley 

National Laboratory (LBNL) in 1978 in cooperation with Los Alamos Scientific Laboratory 

(LASL) and Argonne National Laboratory (ANL), with funding from the DOE (Kreider et al. 

2001, Oh 2013, JJH 2018). DOE-2 can estimate the hour-by-hour energy performance of the 

8,760 hr/yr using the Building Description Language (BDL) based on FORTRAN code 

language. The BDL Processor continuously confirms BDL instructions to check suitable format, 

syntax, and values from input variables and libraries (e.g., materials and weather libraries). This 

BDL Processor utilizes response factors to assess the transient heat flow on exterior walls and 

roofs under changing climatic conditions and can calculate system and plant loads (LBL and 
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LANL 1982, LBL 1991). The accuracy of DOE-2 in general engineering practice accomplished 

“10–12% in monthly peak demand, 8–10% in monthly energy use, 10–15% in annual peak 

demand, and 3–5% in annual energy use for large commercial buildings” (Kreider et al. 2001). 

This program was used in the Fort Hood Project performed by the ESL to develop energy 

estimating models for the case building. 

 

2) EnergyPlus   

EnergyPlus is a more recently developed tool that allows the modular simulation to 

design and analyze building performance and energy use, which can calculate heat flow from 

building surfaces and internal heat gains, and calculate the energy consumption for complex 

HVAC equipment to maintain thermal comfort. EnergyPlus was created by LBNL, the U.S. 

Army Construction Engineering Research Laboratory (CERL) and the University of Illinois 

Urbana-Champaign (UIUC), in collaboration with the staff of the previous DOE-2 and BLAST 

development groups. In a simulation fashion as TRNSYS, Energyplus introduced a modular 

simulation to improve program development in the future (Kreider et al. 2001). EnergyPlus also 

developed the EnergyPlus Programming Standard for programming style based on FORTRAN 

90 or 95. Each module in EnergyPlus consists of a different package associated with source code 

in different files. The source code has a close relation with data structures, and processes in each 

module and the modules used are connected and implement simulation as the codes in 

EnergyPlus (U.S.DOE 2016b). As an integrated simulation, EnergyPlus can simultaneously 

calculate three major parts of building, system, and plant. In the difference to the previous 

sequential simulations (i.e., BLAST or DOE-2), integrated simulation can provide feedback 

between zone conditions, system and plant information that affects the simulation results for 
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HVAC systems (U.S.DOE 2016a). Also, EnergyPlus supports code-compliance modeling with 

output formats for Appendix G and beyond code programs (U.S.DOE 2016c). The DOE also 

provides reference models compliant with Standard 90.1 in an EnergyPlus format.  

 

3) Features of Modeling Program: DOE2.1e and EnergyPlus  (1st Review) 

In the history of building energy simulations, numerous simulation programs have been 

developed to enhance calculation accuracy and reduce a gap in the prediction results against the 

practical building energy use. DOE-2 and EnergyPlus are the most preferred representative 

programs in energy simulations. Therefore, this study reviewed building energy models in both 

DOE-2.1e and EnergyPlus by developing small reference office building models in DOE-2.1e 

and comparing with the models in EnergyPlus. The following is a simple description and 

comparison of DOE-2 and EnergyPlus that are used simulation programs in this study.        

 

 

Figure E-1. DOE-2.1e simulation process (adapted from LBL 1991) 
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DOE-2 is a whole-building energy simulation program to estimate the hourly-based 

energy use and cost of a building using physical information such as hourly weather data, 

building geometry, geographical location, HVAC system and other building description (LBL 

1991). DOE-2.1e was first released in 1993 and has been updated until 2003 for different 

window OS versions (i.e., Win 95/98/ME/2000/XP) (JJH 2018). DOE-2.1e is made up of one 

processor and four sub-programs: 1) BDL- the building description language processor; 2) 

LOADS- the loads simulation sub-program; 3) SYSTEMs- the secondary HVAC system 

simulation sub-program; 4) PLANT- the primary HVAC simulation sub-program and; 5) 

ECONOMICS- the economic analysis sub-program (LBL 1991).  

DOE-2.1e has been extensively utilized for investigating energy conservation measures 

of retrofit projects and building performance designs in the U.S. and many other countries. Also, 

In the private sector, over 20 interfaces have been developed by adapting DOE-2 to make the 

program more comfortable to use (Crawley et al. 2005,2008).   

eQUEST is a quick energy simulation tool derived from advanced DOE2.2 simulation 

that combines three building creation modules (i.e., schematic design wizard (SD wizard), design 

development wizard (DD wizard) and energy efficiency measure wizard (EEM wizard)) to help 

users with graphical 3D modeling view. The building creation wizard offers a step-by-step 

process to create a building model that provides easy-to-understand opportunities of building 

components and system designs (JJH 2018).  Also, graphical support for modeling users is a 

strong understanding of architectural modeling and HVAC system components compared to 

DOE2.1e.  
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Table E-1. Key comparative factors for whole-building energy simulation tools 
Description DOE2.1e eQUEST EnergyPlus 

General details 

Simulation engine DOE2.1e DOE2.2 
EnergyPlus 
(based on BLAST and 
DOE2) 

First release 1993 1999 2001 
3D modeling/ Visualization No/ DrawBDL Yes No/ SketchUp 

Coding language FORTRAN FORTRAN 
FORTRAN (2001-2014) 
C++ (2014-present)

Input data creation BDL coding wizard tools modules 
Usability Normal 

- Intuitive process 
- direct coding available 

Fairly easy 
- Intuitive and straight 
forward wizard process 
- 3D graphics  

Difficult 
- modular simulations 
- complicated interface 

 

Standard 140 test/ Standard 
90.1-2016 requirements 

Satisfied  Satisfied Satisfied 

Comprehensive/graphical 
interfaces 

Visual DOE, eQUEST Not available Designbuilder, Revit, 
Honeybee & ladybug in 
Grasshopper 

Load calculations 

Simulation of loads, 
systems, solutions, and 
economics 

Yes Yes Yes 

Calculation methods 
Weighting Factor 
method 

Weighting Factor method Energy Balance Method 

Weather data format bin file bin file epw file 
Hourly load calculation Yes Yes Yes 
Dynamic model calculation Yes Yes Yes 
Simulation Schedules 

Type Deterministic Deterministic Deterministic  
Input style Fraction/temperature Fraction/temperature Fraction/temperature
Modeling of measured 
schedules 

Partly available Partly available Partly available 

Stochastic model  N/A N/A N/A 
HVAC systems and components 

HVAC ideal mode Sum mode  Ideal load system 

User configuration of 
HVAC systems 

Yes Yes Yes 

Automatic sizing Yes Yes Yes 

Distribution system Yes Yes Yes 

Thermal zone Yes Yes Yes 

Natural and mechanical 
ventilation 

Yes Yes Yes 

Report 

Graphical presentations No Yes No 

Text Yes Yes Yes 

Source: JJH (2018), EnergyPlus (2019a), Oh (2013), Rallapalli (2010), Crawley et al. (2005, 2008) 
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For example, 3D modeling function in eQUEST through the building creation wizard 

depicts physical information of ongoing building design such as shape, window location, and 

HVAC zoning. Moreover, graphic chart for HVAC systems describes the diagrammatic 

composition of HVAC system and their options of its heating, cooling and ventilating and air-

conditioning systems, which promotes better interpretation in process to build up HVAC design 

than EnergyPlus that consists of simulation modules that is not sometimes able to see the total 

HVAC system design and process for developing building simulations.   

EnergyPlus is a console, module-based simulation programs for whole-building energy 

simulations that was developed based on the functions and capabilities of BLAST and DOE-2.1e 

(EnergyPlus 2019, Crawley et al. 2008) that contains several tools for pre-processing and post-

process (i.e., IDF-Editor, EP-Launch, and EP-Compare). For instance, reading and writing of 

input and output data work in text files that can be modified and configured in IDF-Editor to 

create EnergyPlus input files using spreadsheet-similar interface. EP-Launch is to indicate 

weather and EnergyPlus input files to perform simulations in EneryPlus. Also, simulation results 

from the runs in EP-Launch can be graphically compared with two or more other results 

(Crawley et al. 2008). The graphical 3D modeling and input interface are not incorporated in 

EnergyPlus, but several graphical interfaces have been developed for EnergyPlus such as Sketch-

up and OpenStudio. Even though the modular system for simulations in EnergyPlus is not 

intuitive to figure out the flow of systems, there is a strong point to relatively easily add 

simulation modules to correspond to new technologies.  
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4) Differences in Calculations Between DOE-2.1e and EnergyPlus 8.0  (1st Review) 

In 2000, Huang & Associates (2000) compared DOE-2.1e to review California Title-24 

compliance estimations in EnergyPlus. To evaluate the models in EnergyPlus, the 150 DOE-2 

files to EnergyPlus were converted from the California Energy Commission’s Alternate 

Compliance Method (ACM) manual. The 150 ACM test cases included: three partial compliance 

tests, eighteen envelope tests, twenty-three internal loads tests, and thirty-five system tests. Also, 

four prototype buildings were tested in different California climates: small single-story building, 

large two-stories building, large five stories, and single-story attached office or store. Table E-2 

describes load discrepancies using different series of independent parameters between DOE2.1e 

and EnergyPlus, which showed substantial differences between DOE2.1e and EnergyPlus even 

though the same input or algorithms were applied to two simulation programs. Table E-3 

addresses summarized problems, reasons, and solutions discussed to settle differences from 

simulation results. 

 

Table E-2. Load Calculation discrepancies between DOE2.1e and EnergyPlus 
Test Series EnergyPlus: Heating EnergyPlus: Cooling EnergyPlus: Fan 

Wall assemblies Lower (< 20%) Higher (< 10%) similar 

Window-to-wall ratios Lower (30% - 60%) similar Higher (< 10%) 

Lighting levels Lower (60% - 70%) Higher (15% - 20%) similar 

Ventilation rates Lower (15% - 20%) Higher (< 15%) similar 

HVAC system type Higher (≈ 100%) similar similar 

Ref. Huang et al. (2000) 
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Table E-3. Issues for energy modeling transition from DOE2.1e to EnergyPlus 
Issues Phenomenon Reason  Solution 
Window modeling Different window modeling methods DOE2 uses only properties of U-factor and 

Solar Heat Gain Coefficient (SHGC) for 
window modeling 
EnergyPlus defines thermal and optical 
properties for the window assembly by layer 

Using fictitious window layers calculated by 
iterative LBNL Window software 
calculations within EnergyPlus to find the 
best match to the specified U-factor and 
SHGC 
e.g.) For a U-factor of a double glazing 
window, the gap thickness was tuned and 
then the inner glazing conductivity, and 
lastly the outer glazing conductivity 
e.g.) For matching an SHGC, the solar 
transmittance at normal incidence was 
firstly tuned, and then the front and back 
solar reflectances at normal incidence were 
adjusted

Window shading Different Solar heat gain reduction 
calculations 

The original DOE2 input files assumed a 
solar heat gain reduction of 0.80 because of 
the effects of drapes, curtains, or other 
window shading devices. To model this, 
DOE2 assumes a 20% reduction in the 
entering solar radiation 
EnergyPlus is much more stringent and 
complicated of modeling window interior 
blinds with the appropriate thermal properties 
matching with the same 0.20 solar reduction 
across the board

To solve out, no solar heat gain reduction 
was determined to model the windows in 
both EnergyPlus and DOE2 

Infiltration When simulated Simple Air Flow model 
in EnergyPlus, the airflow rates, as a 
result, were continuously higher by 30% 
 

The DOE2 infiltration inputs for the air-
changes per hour (ACH) method were 
converted into the Simple Air Flow model in 
EnergyPlus, which generated a discrepancy 
due to DOE2’s reduction of the wind speed 
on the weather tape to account for local 
terrain effects.  
Whereas EnergyPlus similarly adjusts wind 
speed in cases of their thermal calculations, 
these adjusted values were not applied in the 
Simple Air Flow model

As a provisional approach, wind speed 
reduction in DOE-2 was excluded in order 
that the calculated infiltration rates will be 
matched between the two programs. 
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Table E-3. Issues for energy modeling transition from DOE2.1e to EnergyPlus (cont.) 
Issues Phenomenon Reason Solution
Thermostat 
throttling range 

Zone average temperature difference due 
to throttling range in DOE2 

The DOE2 files use a throttling range of 
2.2oC (4oF), which generating were average 
1oC higher temperatures in the zones than the 
thermostat setting. While EnergyPlus does 
not simulate throttling ranges.  

Throttling-range in DOE2 was changed to 
0.20 because PID controls are widely used 
and do not have throttling ranges 

Inconsistent fan 
inputs in DOE2 

DOE2 allows unnecessary fan inputs 
(i.e., SUPPLY-CFM, SUPPLYDELTA-
T, and SUPPLY-KW). Fan energy 
consumptions in EnergyPlus differed 
substantially against DOE2 calculations 
using the input SUPPLY-KW.

The discrepancy can occur as the DOE2 
inputs for SUPPLY-DELTA-T and 
SUPPLY-KW are conflicting 

SUPPLY-KW in the DOE2 files were 
overwritten with values to be consistent 
with SUPPLY-DELTA-T input values 

Heating to the 
cooling setpoint 

The supply air is heated to the cooling 
setpoint during the morning hours. 

Temperature plots during the shoulder 
seasons showed that EnergyPlus roamed 
between the heating or cooling season control 
logic

This problem can be modified by updating 
the setpoint manager in EnergyPlus 

Faulty economizer 
operating logic 

The EnergyPlus heating used more than 
50% higher for test runs using PSZ 
(Packaged Single Zone) systems in 
different climates with substantial 
economizer usage.  

The economizer control in EnergyPlus 
caused overcooling in the swing season, 
which then required heating to turn back the 
thermostat setpoint 

This problem can be modified by updating 
the economizer control in EnergyPlus 

Abnormally low 
boiler temperatures 

In some runs, the EnergyPlus heating 
energies were less than half, and yet in 
other runs, they showed 50% higher than 
the DOE2 heating energies.  
 

Although DOE2 does not model the boiler 
water temperature, it used low default boiler 
temperature to deliver the loop temperature 
for a water-source heat pump. When such a 
low temperature was modeled in EnergyPlus 
for a boiler operating, it made tiny heat 
capacity and thus a very small amount of 
heat delivered to the building. 

This problem can be modified by 
overwriting the DOE2 boiler temperature 
with a value of 48ºC (120 ºF) 

Excessive pump 
heat displacing 
mechanical heating 

In test runs, a hot water loop with a 
fixed-speed pump was modeled.   
EnergyPlus has utilized to size the 
pumps because DOE2 does not size 
water loop pumps. In California 
climates, EnergyPlus returned too large 
pump sizes several times.  

The fixed-speed pump would add a constant 
amount of heat to the hot water loop when it 
was operated. Moreover, the constant water 
loop temperature in EnergyPlus without any 
distribution losses caused that the building 
obtains over time the pump heat gain, which 
is enough amount to meet heating load 
without the boiler operation.  

There are several available solutions, such 
as (1) improving the EnergyPlus sizing 
routine, (2) updating the pump types from 
fixed to variable speed, or (3) adding a loss 
coefficient in the loop (DOE2 assumes 1%). 
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This project found that a stringent automated conversion tool (i.e., doe2ep2) is required to 

ensure consistency between the DOE-2.1e and EnergyPlus input files. This is because minor 

differences in input values or control algorithms resulted in high sensitivity. 

In other studies, Andolsun et al. (2011a,b) investigated DOE-2.1e with EnergyPlus and 

TRANSYS for understanding differences of ground-coupled heat transfer calculations on slab-

on-grade in residential buildings. Analyzed models in this study included two cases (i.e., sealed 

box models, IECC 2009 compliant houses) in four different climate regions (i.e., Austin, TX; 

Phoenix, AZ; Chicago, IL and Columbia Falls, MT).  

In the first part, empty and adiabatic sealed boxes were developed in DOE-2.1e, 

EnergyPlus, and TRNSYS that were coupled only with the ground to separate the slab-on-grade 

heat transfer from other building components. In this comparative study, three different models 

were developed to compare the results, such as 1) DOE-2.1e model with the Winkelmann 

method, 2) EnergyPlus model using the Slab preprocessor, 3) TRNSYS model using the 

TRNSYS slab-on-grade method. In the second part, IECC compliant houses were modeled to 

quantify the effect of underground heat transfer on slab-on-grade and compared between the 

DOE-2.1e, EnergyPlus, and TRNSYS programs.  

In calculations methods, DOE-2.1e defines the heat transfer between the zone air and the 

interior surfaces as the heat transfer between a massless fictitious air layer and an inside surface 

of the building construction. This fictitious air layer describes the combined effect of the inside 

radiation and convection heat transfer on the surface. Then, the combined heat transfer of 

 

2 doe2ep is a modified DOE-2.1e program to support the large number of file transition from DOE2.1e to 
EnergyPlus that would automatically transfer DOE2.1e input files to the corresponding EnergyPlus input files 
(Huang et al. 2000) 
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radiation and convection is integrated into the building envelope conduction calculations based 

on the one-dimensional conduction heat transfer equation (LBL and LANL 1982).   

In the EnergyPlus calculations for the heat transfer between the slab and zone air, it 

contains four heat components such as 1) heat exchange of longwave radiation on the zone 

surfaces, 2) longwave radiation from internal sources, 3) shortwave radiation from lights and 

solar sources, 4) heat exchange of the convection with the zone air (EnergyPlus 2010).  

EnergyPlus used a matrix of exchange coefficients depending on surface configurations 

developed by Hottel and Sarofim (1967). For convection calculations, five options are available: 

1) user-defined, 2) simple algorithm, 3) detailed algorithm, 4) ceiling diffuser, and 5) Trombe 

wall algorithm. Of these options, the user algorithm utilizes user input of the constant convection 

coefficients of the inside and outside surfaces, and the simple algorithm uses the constant 

convection coefficients of the different heat transfer configurations.   

Therefore, Andolsun et al. (2011a,b) identified calculation differences of convection and 

radiation between the slab and zone air in DOE-2.1e and EnergyPlus. For example, calculation 

methods for ground-coupled heat transfer are significantly different in EnergyPlus and DOE-

2.1e. EnergyPlus estimates z-transfer function coefficients in order to calculate the transient 

ground surface temperatures while DOE-2.1e uses a steady-state for the temperatures on the 

ground surfaces. Therefore, to reduce a gap between two programs, this study found a good 

estimation for Qslab/zair that used the inside air film resistance (I-F-R) of 0.136 m2-K/W (0.77 hr-

ft2-°F/Btu). This value showed close floor heat transfer between the DOE-2.1e model with 

Winkelmann’s method and the EnergyPlus with Winkelmann’s method, which showed that the 

sealed box model in EnergyPlus resulted in slightly lower heat transfer (0.1-0.3W/m2) than 

DOE-2.1e during the period of the target year. These studies also pointed out that other factors 
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may additionally generate calculation differences in Winkelmann’s methods between two 

programs. For example, two programs differ inside boundary conditions due to different slab-soil 

interface temperatures. The DOE-2.1e’s zone air temperatures fluctuate during the year while 

EnergyPlus has constant temperature throughout a whole year. Also, in DOE-2.1e models, the 

inside surface temperatures of the floor are assumed as equal values to zone air temperatures. 

However, EnergyPlus models estimated the inside surface temperatures of the floor at each time 

step along with its inside heat balance calculation processes. At the end of these studies, the 

sealed boxes concluded that the floor heat transfer using the Winkelmann’s models and 

EnergyPlus Slab models are different from those of the TRNSYS’s slab-on-grade models in the 

magnitudes, the peak months and the peak-to-peak amplitudes of the floor heat transfers.  
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APPENDIX F  

REFERENCE MODEL INPUT VARIABLES AND REPORTS 

 

This study developed reference models for evaluating the impact of occupancy-based 

building system controls in office buildings. The reference models in this study used the same 

building shape, dimension, and material property with the PNNL commercial building prototype 

models for Standard 90.1-2016. The summary of the reference models is explained in Table 6. 

The description of the envelope material and construction is presented in Table 10 to Table 12. 

This Appendix provides the verification of input variables of reference models in this study 

based on the PNNL small office prototype models.  

 

Figure F-1. Small Office Model Envelope Construction for Houston and Chicago Models 

 
* Note: Chicago and Houston models have the same configurations of construction layers, but the properties of exterior wall insulation and roof 
insulation are different. Also, window materials were different, which was design based on the weighting process (Thornton et al. 2011, Section 
4.3) 
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 Figure F-2. Mass and No Mass Envelope Materials for Houston Models 

 

 

Figure F-3. Mass and No Mass Envelope Materials for Chicago Models 
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Figure F-4. Window Materials for Houston Models 

 
 
 
Figure F-5. Window Materials for Chicago Models 

 
 

Figure F-6. Internal Heat Gain: People 
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Figure F-7. Internal Heat Gain: Lighting 

 

 

Figure F-8. Internal Heat Gain: Equipment 
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Figure F-9. Zone Supply Temperature 

 

 

Figure F-10. System Type and Cooling COP 
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Figure F-11. Heating System COP 

 

 

Figure F-12. Supply Fan Efficiency 
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Table F-1. Simulation Schedules for Lighting, Equipment, Occupancy, HVAC Fan, and Setpoint Temperature 

 
* Note: simulation schedules were extracted from small office building scorecards (PNNL and U.S.DOE 2018) 

Schedule Type Through Day of Week 1 am 2 am 3 am 4 am 5 am 6 am 7 am 8 am 9 am 10 am 11 am Noon 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm 8 pm 9 pm 10 pm11 pm12 pm
Internal Loads Schedules
BLDG_LIGHT_SCH Fraction Through 12/31 WeekDay 0.18 0.18 0.18 0.18 0.18 0.23 0.23 0.42 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.61 0.42 0.42 0.32 0.32 0.23 0.18

Weekend 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
WinterDesignDay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SummerDesignDay 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BLDG_EQUIP_SCH Fraction Through 12/31 WeekDay 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 0.94 1 1 1 1 0.5 0.2 0.2 0.2 0.2 0.2 0.2
Weekend 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
WinterDesignDay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SummerDesignDay 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BLDG_OCC_SCH Fraction Through 12/31 WeekDay 0 0 0 0 0 0 0.11 0.21 1 1 1 1 0.53 1 1 1 1 0.32 0.11 0.11 0.11 0.11 0.05 0
Weekend 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WinterDesignDay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SummerDesignDay 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

HVAC Schedules
HVACOperationSchd On/off Through 12/31 WeekDay 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
(Fan Schedule) Weekend 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HTGSETP_SCH Temperature Through 12/31 WeekDay 60.08 60.08 60.08 60.08 60.08 60.08 69.98 69.98 69.98 69.98 69.98 69.98 69.98 69.98 69.98 69.98 69.98 69.98 69.98 60.01 60.01 60.01 60.01 60.01

(°F) Weekend 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01
WinterDesignDay 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00

CLGSETP_SCH Temperature Through 12/31 WeekDay 84.99 84.99 84.99 84.99 84.99 84.99 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 84.99 84.99 84.99 84.99 84.99 84.99
(°F) Weekend 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99 84.99

SummerDesignDay 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00
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The building envelope materials from EnergyPlus prototype models were converted from 

the SI unit to the IP unit in DOE-2.1e, which was presented, such as Figure 13 and Figure 14.  

 

Figure F-13. Building Roof Materials in DOE-2.1e for Houston 

       

 

Figure F-14. Building Wall and Slab Materials in DOE-2.1e for Houston 
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Figure F-15. Building Window Materials in DOE-2.1e for Houston 

                  

 

In this study, the result of the reference models was extracted from the BEPS/BEPU 

reports and the annual building utility performance summary to compare DOE-2.1e and 

EnergyPlus. Figures 16 to 18 showed the original report examples for Houston models.  

 

Figure F-16. DOE-2.1e BEPS report for Houston 
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Figure F-17. DOE-2.1e BEPU report for Houston 

 

 

Figure F-18. EnergyPlus annual building utility performance summary for Houston 
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APPENDIX G  

THE IMPACT OF GROUND-COUPLED HEAT TRANSFER 

 

The ground-coupled floor is one of key factors in building energy use by affecting heat 

transfer in buildings. Therefore, in energy simulation programs, several algorithms have been 

developed to calculate ground heat transfer in buildings. For example, EnergyPlus used z-

transfer function coefficients to calculated the unsteady ground-coupled surface temperatures 

(Krarti 2001), and DOE-2 used the ground-coupled surface temperatures as steady (Sullivan 

1985). Thus, in the previous studies, Huang et al. (1988), Winkelmann (1998, 2002), Meldem 

and Winkelmann (1998), and Huang et al. (2000) have tried to figure out to get a better 

calculation of underground surfaces (i.e., wall and floor) in DOE2.  

Therefore, this study simply compared different ground heat transfer calculations for 

reference small office buildings (Chapter 4.2.1) in DOE-2.1e and EnergyPlus v8.0 to analyze the 

impact of ground heat transfer. Firstly, the ground temperature models were used in DOE-2.1e 

using average monthly ground temperature from the PNNL prototype models and using “Site: 

Ground Temperature: Building Surface in EnergyPlus. This model is the default calculation 

methods in the PNNL prototype models. On the second, U-EFFECTIVE command was used in 

DOE-2.1e based on Winklemann’s methods, which mainly focused on heat transfer in perimeter 

zones using effective resistance on the ground surfaces that consist of soil, air film, and fictitious 

insulation layer (Kim 2006). Also, for Winklemann’s methods in EnergyPlus, the fictitious 

layers were directly added on the slab-on-grade using Andolsun et al. (2012)’s modeling 

approach. Lastly, adiabatic floor models were developed to compare the impact of ground heat 

transfer in both simulations.  
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Figure G-1. Section of Ground Floor Construction for DOE2.1e models (adapted from 
Winkelmann 2002, p6) 

 

 
Figure G-2. Houston: Annual Energy Use of Ground Heat Transfer Calculations   

 

 
Figure G-3. Chicago: Annual Energy Use of Ground Heat Transfer Calculations   
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Table G-1. Houston: Annual Energy Use of Ground Heat Transfer Calculations   

 (MMBtu) 
DOE2 (Base) 
Ground T 

EP+  
Ground T 

DOE2 
Winkelmann 

EP+ 
Winkelmann 

DOE2 
Adiabatic 

EP+ 
Adiabatic 

Lights 53.2 53.1 53.2 53.1 53.2 53.1
Equipment 54.5 54.5 54.5 54.5 54.5 54.5
Heating 2.9 2.1 2.4 1.8 3.0 1.9
Cooling 29.9 29.9 37.7 40.4 40.3 42.9
Vent Fan 21.1 21.1 20.3 22.9 21.3 23.7
Total 161.6 160.7 168.1 172.7 172.3 176.1

 

Table G-2. Chicago: Annual Energy Use of Ground Heat Transfer Calculations   

 (MMBtu) 
DOE2 (Base) 
Ground T 

EP+  
Ground T 

DOE2 
Winkelmann 

EP+ 
Winkelmann 

DOE2 
Adiabatic 

EP+ 
Adiabatic 

Lights 53.2 53.1 53.2 53.1 53.2 53.1
Equipment 54.5 54.5 54.5 54.5 54.5 54.5
Heating 13.9 11.6 16.6 14.2 16.8 13.9
Cooling 13.7 13.6 18.4 19.8 20.1 21.7
Vent Fan 19.1 19.0 18.9 21.5 20.0 22.4
Total 154.4 151.8 161.6 163.2 164.6 165.6

 

The result of different ground floor calculations in small office models represented partial 

energy use differences of heating, cooling, and ventilation loads in the current PNNL prototype 

models compared to Winkelmann’s methods and adiabatic floor. The ground-coupling affected 

heating, cooling, and ventilation energy use of the ground temperature models in DOE-2.1e and 

EnergyPlus. However, variations of energy use were different depending on weather stations, 

calculation methods, and load components. 
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APPENDIX H 

PROPOSED OCCUPANCY-BASED CONTROL CREDITS: TOTAL BUILDING APPLICATIONS 

Table H-1. Houston PSZ: Percentage-Based Energy Reduction Credits of Total Building Occupancy-Based Controls 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -19.3% -205.8% -465.6% 0.0% -15.6% -132.2% -386.1% 0.0% -10.6% -103.7% -340.8% 0.0% -10.5% -99.2% -329.7%

Cooling 0.0% 6.6% 34.3% 59.5% 0.0% 6.1% 31.6% 55.8% 0.0% 5.7% 29.9% 54.6% 0.0% 5.6% 28.4% 54.8%
Ventilation 0.0% 5.8% 29.2% 49.9% 0.0% 4.8% 24.1% 41.2% 0.0% 4.2% 21.2% 35.2% 0.0% 3.7% 18.6% 31.2%

 

  Raised Floor Lightweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -4.8% -21.1% -31.2% 0.0% -2.6% -10.0% -12.4% 0.0% -1.9% -5.1% -4.5% 0.0% -1.9% -3.7% -2.0%
Cooling 0.0% 5.1% 25.3% 43.7% 0.0% 4.6% 23.0% 40.1% 0.0% 4.3% 21.7% 38.3% 0.0% 4.1% 20.7% 36.7%
Ventilation 0.0% 5.1% 25.3% 43.3% 0.0% 4.3% 21.4% 36.4% 0.0% 3.9% 19.5% 33.5% 0.0% 3.6% 18.0% 30.7%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -19.3% -205.8% -465.6% 0.0% -15.6% -132.2% -386.1% 0.0% -10.6% -103.7% -340.8% 0.0% -10.5% -99.2% -329.7%

Cooling 0.0% 6.6% 34.3% 59.5% 0.0% 6.1% 31.6% 55.8% 0.0% 5.7% 29.9% 54.6% 0.0% 5.6% 28.4% 54.8%
Ventilation 0.0% 5.8% 29.2% 49.9% 0.0% 4.8% 24.1% 41.2% 0.0% 4.2% 21.2% 35.2% 0.0% 3.7% 18.6% 31.2%
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Table H-2. Houston PVAV: Percentage-Based Energy Reduction Credits of Total Building Occupancy-Based Controls 

  
  

Reference PVAV 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% 1.4% 10.8% 15.7% 0.0% 0.0% 3.1% 8.4% 0.0% 3.8% -7.7% -12.7% 0.0% 0.0% 0.0% 100.0%
Cooling 0.0% 6.2% 28.0% 43.5% 0.0% 5.6% 25.1% 40.4% 0.0% 5.2% 23.1% 38.2% 0.0% 4.8% 21.1% 36.3%
Ventilation 0.0% 6.9% 32.6% 51.1% 0.0% 6.1% 27.9% 43.1% 0.0% 5.4% 25.0% 38.4% 0.0% 4.8% 22.3% 34.4%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% 0.0% -10.0% 2.3% 0.0% 2.1% -6.4% -24.7% 0.0% 0.0% -2.3% -33.2% 0.0% -2.4% -7.3% -43.0%
Cooling 0.0% 5.2% 25.9% 42.8% 0.0% 4.9% 24.0% 39.4% 0.0% 4.6% 22.8% 37.4% 0.0% 4.5% 21.8% 35.6%
Ventilation 0.0% 6.4% 31.1% 49.7% 0.0% 5.8% 27.6% 44.3% 0.0% 5.3% 25.3% 41.0% 0.0% 4.9% 23.4% 38.1%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% 0.0% 9.1% 21.2% 0.0% 2.5% 9.8% 3.9% 0.0% -1.6% 1.6% 7.0% 0.0% 0.0% 0.0% -39.6%
Cooling 0.0% 6.6% 30.1% 45.8% 0.0% 6.0% 27.5% 42.7% 0.0% 5.6% 25.0% 40.0% 0.0% 5.1% 22.7% 38.0%
Ventilation 0.0% 7.7% 35.8% 55.3% 0.0% 6.7% 30.9% 47.7% 0.0% 5.8% 27.2% 41.5% 0.0% 5.1% 23.8% 36.5%
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Table H-3. Chicago PSZ: Percentage-Based Energy Reduction Credits of Total Building Occupancy-Based Controls 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -16.4% -106.6% -147.1% 0.0% -17.2% -120.6% -152.4% 0.0% -15.2% -114.6% -147.4% 0.0% -14.8% -108.7% -146.0%

Cooling 0.0% 7.4% 37.0% 65.1% 0.0% 6.6% 32.9% 60.4% 0.0% 6.1% 30.6% 60.3% 0.0% 5.8% 29.0% 56.9%
Ventilation 0.0% 5.5% 27.1% 46.4% 0.0% 4.2% 21.0% 35.5% 0.0% 3.6% 18.1% 30.5% 0.0% 3.1% 15.6% 26.2%

 

  Raised Floor Lightweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -6.4% -31.3% -51.2% 0.0% -3.5% -22.1% -37.3% 0.0% -2.2% -13.2% -19.4% 0.0% -0.9% -6.4% -8.0%
Cooling 0.0% 5.7% 28.7% 50.1% 0.0% 5.2% 25.5% 45.7% 0.0% 4.9% 23.8% 42.6% 0.0% 4.7% 22.6% 40.7%
Ventilation 0.0% 5.3% 26.4% 43.5% 0.0% 4.1% 20.3% 33.9% 0.0% 3.6% 17.9% 30.0% 0.0% 3.2% 16.0% 26.4%

 
  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC  
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -20.1% -101.6% -135.1% 0.0% -17.8% -124.2% -161.2% 0.0% -17.2% -118.8% -159.4% 0.0% -15.4% -110.8% -155.7%

Cooling 0.0% 7.5% 37.5% 65.8% 0.0% 6.6% 33.5% 63.1% 0.0% 6.1% 31.5% 62.4% 0.0% 5.4% 30.5% 60.0%
Ventilation 0.0% 5.8% 28.7% 48.3% 0.0% 4.4% 21.9% 37.4% 0.0% 3.7% 18.6% 31.6% 0.0% 3.2% 15.9% 27.0%
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Table H-4. Chicago PVAV: Percentage-Based Energy Reduction Credits of Total Building Occupancy-Based Controls 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0% 

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% 0.6% 4.9% 9.2% 0.0% -0.4% -0.3% 2.1% 0.0% -0.8% -2.1% -0.2% 0.0% -2.3% -10.8% -11.3%
Cooling 0.0% 6.6% 31.6% 47.8% 0.0% 5.7% 27.5% 44.3% 0.0% 5.3% 25.0% 41.9% 0.0% 4.9% 22.8% 42.8%
Ventilation 0.0% 6.9% 31.2% 46.0% 0.0% 5.3% 24.3% 37.7% 0.0% 4.5% 20.7% 31.7% 0.0% 3.8% 17.7% 27.5%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% -2.4% -6.7% 39.4% 0.0% -4.1% -9.5% -15.4% 0.0% -2.1% -11.4% -19.4% 0.0% -1.8% -9.9% -17.2%
Cooling 0.0% 5.7% 27.7% 15.1% 0.0% 5.5% 25.1% 40.3% 0.0% 4.8% 23.1% 37.4% 0.0% 4.3% 21.2% 34.4%
Ventilation 0.0% 6.3% 29.1% -0.8% 0.0% 5.0% 23.7% 36.9% 0.0% 4.5% 21.2% 32.6% 0.0% 4.0% 19.0% 30.1%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1% 0.0% 6.6% 33.0% 54.1%
Equipment 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9% 0.0% 6.4% 31.8% 50.9%
Heating 0.0% 0.9% 5.7% 10.7% 0.0% 0.4% 0.3% 4.8% 0.0% 0.2% 0.4% 2.2% 0.0% -0.6% -4.8% -10.5%
Cooling 0.0% 7.0% 33.3% 49.4% 0.0% 6.0% 28.7% 45.0% 0.0% 5.6% 26.0% 42.7% 0.0% 4.8% 23.3% 42.8%
Ventilation 0.0% 7.2% 31.7% 46.7% 0.0% 5.7% 25.3% 38.5% 0.0% 4.6% 21.3% 32.5% 0.0% 3.9% 18.0% 28.4%
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APPENDIX I  

PROPOSED OCCUPANCY-BASED CONTROL CREDITS: INDIVIDUAL ZONE APPLICATIONS 

Table I-1. Houston PSZ: Percentage-Based Energy Reduction Credits of Space1-1 OBC on Total Loads 

  
  

Reference PSZ 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.9% -6.8% -14.8% 0.0% -0.7% -5.5% -11.2% 0.0% -0.8% -5.4% -9.6% 0.0% -0.3% -4.2% -7.1%
Cooling 0.0% 1.3% 6.4% 10.5% 0.0% 1.1% 5.7% 9.2% 0.0% 1.0% 5.4% 8.6% 0.0% 1.0% 5.0% 8.0%
Ventilation 0.0% 0.9% 4.6% 7.4% 0.0% 0.8% 3.8% 6.1% 0.0% 0.7% 3.4% 5.4% 0.0% 0.6% 3.0% 4.7%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.4% -2.4% -4.9% 0.0% -0.2% -1.5% -3.1% 0.0% -0.1% -1.1% -2.3% 0.0% -0.1% -0.9% -1.8%
Cooling 0.0% 1.0% 4.8% 8.3% 0.0% 0.9% 4.4% 7.6% 0.0% 0.8% 4.2% 7.2% 0.0% 0.8% 3.9% 6.9%
Ventilation 0.0% 0.8% 4.1% 6.9% 0.0% 0.7% 3.7% 6.3% 0.0% 0.7% 3.4% 5.8% 0.0% 0.6% 3.1% 5.3%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.9% -6.8% -14.8% 0.0% -0.7% -5.5% -11.2% 0.0% -0.8% -5.4% -9.6% 0.0% -0.3% -4.2% -7.1%
Cooling 0.0% 1.3% 6.4% 10.5% 0.0% 1.1% 5.7% 9.2% 0.0% 1.0% 5.4% 8.6% 0.0% 1.0% 5.0% 8.0%
Ventilation 0.0% 0.9% 4.6% 7.4% 0.0% 0.8% 3.8% 6.1% 0.0% 0.7% 3.4% 5.4% 0.0% 0.6% 3.0% 4.7%
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Table I-2. Houston PVAV: Percentage-Based Energy Reduction Credits of Space1-1 OBC on Total Loads 

  
  

Reference PVAV 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Cooling 0.0% 1.2% 5.9% 9.0% 0.0% 1.1% 5.3% 8.0% 0.0% 1.0% 4.9% 7.4% 0.0% 1.0% 4.5% 6.8%
Ventilation 0.0% 1.3% 6.4% 9.7% 0.0% 1.1% 5.2% 8.0% 0.0% 1.0% 4.6% 7.1% 0.0% 0.9% 4.0% 6.3%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.6% 0.6% 0.0% 0.0% -0.9% -1.7% -1.7% 0.0% 0.0% 0.0% -1.1% 0.0% -1.2% -2.4% -3.5%
Cooling 0.0% 1.0% 5.0% 8.3% 0.0% 0.9% 4.7% 7.7% 0.0% 0.9% 4.5% 7.2% 0.0% 0.9% 4.2% 6.8%
Ventilation 0.0% 1.3% 6.2% 10.0% 0.0% 1.0% 5.0% 8.0% 0.0% 0.9% 4.5% 7.3% 0.0% 0.8% 3.9% 6.5%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.3% 0.8% 1.3% 0.0% -0.3% 0.0% 0.9% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% -1.0%
Cooling 0.0% 1.3% 6.1% 9.2% 0.0% 1.2% 5.7% 8.7% 0.0% 1.1% 5.3% 8.0% 0.0% 1.0% 4.8% 7.2%
Ventilation 0.0% 1.5% 7.0% 10.5% 0.0% 1.2% 5.8% 8.8% 0.0% 1.0% 4.9% 7.6% 0.0% 0.9% 4.2% 6.5%

 
 
 
 
 



 

308 

 

Table I-3. Houston PSZ: Percentage-Based Energy Reduction Credits of Space2-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.5% -3.0% -6.0% 0.0% -0.3% -2.6% -4.9% 0.0% -0.4% -2.5% -4.7% 0.0% -0.3% -2.4% -4.3%
Cooling 0.0% 0.7% 3.4% 5.4% 0.0% 0.6% 3.1% 4.9% 0.0% 0.6% 2.9% 4.6% 0.0% 0.6% 2.7% 4.3%
Ventilation 0.0% 0.4% 2.2% 3.5% 0.0% 0.4% 1.8% 2.9% 0.0% 0.3% 1.6% 2.6% 0.0% 0.3% 1.5% 2.4%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.3% -1.7% -3.4% 0.0% -0.1% -0.9% -2.0% 0.0% -0.1% -0.7% -1.5% 0.0% -0.1% -0.5% -1.2%
Cooling 0.0% 0.5% 2.6% 4.5% 0.0% 0.5% 2.4% 4.1% 0.0% 0.4% 2.2% 3.8% 0.0% 0.4% 2.1% 3.6%
Ventilation 0.0% 0.4% 2.0% 3.4% 0.0% 0.4% 1.8% 3.2% 0.0% 0.3% 1.7% 2.9% 0.0% 0.3% 1.5% 2.7%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.6% -4.5% -9.0% 0.0% -0.6% -3.7% -7.4% 0.0% -0.3% -3.0% -6.2% 0.0% -0.4% -2.8% -5.1%
Cooling 0.0% 0.7% 3.7% 5.9% 0.0% 0.6% 3.2% 5.2% 0.0% 0.6% 3.0% 4.8% 0.0% 0.6% 2.8% 4.4%
Ventilation 0.0% 0.5% 2.5% 4.0% 0.0% 0.4% 2.1% 3.3% 0.0% 0.4% 1.8% 2.8% 0.0% 0.3% 1.6% 2.4%
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Table I-4. Houston PVAV: Percentage-Based Energy Reduction Credits of Space2-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Cooling 0.0% 0.7% 3.2% 4.9% 0.0% 0.6% 2.9% 4.4% 0.0% 0.6% 2.6% 3.9% 0.0% 0.5% 2.4% 3.6%
Ventilation 0.0% 0.7% 3.4% 5.2% 0.0% 0.6% 2.8% 4.3% 0.0% 0.5% 2.4% 3.8% 0.0% 0.4% 2.2% 3.4%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.0% -0.5% -0.5% 0.0% 0.0% 0.8% 0.0% 0.0% 0.0% -1.0% -1.0% 0.0% 0.0% -1.2% -1.2%
Cooling 0.0% 0.5% 2.6% 4.2% 0.0% 0.5% 2.5% 4.0% 0.0% 0.5% 2.3% 3.7% 0.0% 0.5% 2.3% 3.6%
Ventilation 0.0% 0.6% 3.1% 5.0% 0.0% 0.6% 2.8% 4.4% 0.0% 0.5% 2.5% 4.0% 0.0% 0.5% 2.3% 3.8%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.0% 0.5% 0.7% 0.0% 0.0% 0.3% 0.5% 0.0% 0.0% 0.4% 0.4% 0.0% 0.0% 0.0% 0.0%
Cooling 0.0% 0.7% 3.4% 5.2% 0.0% 0.7% 3.1% 4.7% 0.0% 0.6% 2.8% 4.3% 0.0% 0.5% 2.5% 3.8%
Ventilation 0.0% 0.8% 3.9% 6.0% 0.0% 0.6% 3.1% 4.8% 0.0% 0.6% 2.6% 4.0% 0.0% 0.5% 2.3% 3.5%
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Table I-5. Houston PSZ: Percentage-Based Energy Reduction Credits of Space3-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.5% -8.9% -18.1% 0.0% -1.1% -7.5% -15.4% 0.0% -1.2% -7.4% -15.5% 0.0% -1.7% -8.1% -15.9%
Cooling 0.0% 1.2% 5.9% 9.5% 0.0% 1.0% 5.3% 8.5% 0.0% 0.9% 4.9% 7.9% 0.0% 0.9% 4.6% 7.4%
Ventilation 0.0% 0.8% 4.1% 6.5% 0.0% 0.7% 3.4% 5.5% 0.0% 0.6% 3.1% 4.9% 0.0% 0.5% 2.7% 4.2%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.7% -3.7% -7.3% 0.0% -0.4% -2.0% -3.8% 0.0% -0.3% -1.4% -2.9% 0.0% -0.2% -1.1% -2.2%
Cooling 0.0% 1.0% 4.6% 7.8% 0.0% 0.8% 4.1% 7.0% 0.0% 0.8% 3.8% 6.5% 0.0% 0.7% 3.6% 6.1%
Ventilation 0.0% 0.8% 4.0% 6.8% 0.0% 0.7% 3.6% 6.1% 0.0% 0.6% 3.2% 5.6% 0.0% 0.6% 3.0% 5.1%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.2% -10.9% -23.5% 0.0% -1.2% -9.1% -19.5% 0.0% -1.3% -8.8% -18.1% 0.0% -1.5% -8.6% -17.7%
Cooling 0.0% 1.2% 6.4% 10.4% 0.0% 1.1% 5.8% 9.3% 0.0% 1.0% 5.2% 8.5% 0.0% 0.9% 4.8% 7.7%
Ventilation 0.0% 0.9% 4.6% 7.4% 0.0% 0.8% 3.8% 6.0% 0.0% 0.7% 3.3% 5.2% 0.0% 0.6% 2.9% 4.4%
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Table I-6. Houston PVAV: Percentage-Based Energy Reduction Credits of Space3-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.3% 0.3% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.6% 0.0% 0.0% -1.2% -1.2%
Cooling 0.0% 1.1% 5.2% 7.8% 0.0% 1.0% 4.6% 6.8% 0.0% 0.9% 4.0% 6.0% 0.0% 0.8% 3.6% 5.4%
Ventilation 0.0% 1.3% 5.9% 9.0% 0.0% 1.1% 5.0% 7.6% 0.0% 0.9% 4.4% 6.7% 0.0% 0.9% 3.9% 5.9%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 14.2%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.0% -0.5% -0.5% 0.0% 0.0% -0.8% -1.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -1.0% -1.0%
Cooling 0.0% 0.9% 4.4% 6.9% 0.0% 0.8% 4.0% 6.1% 0.0% 0.8% 3.7% 5.6% 0.0% 0.7% 3.5% 5.5%
Ventilation 0.0% 1.1% 5.2% 8.3% 0.0% 1.0% 4.8% 7.4% 0.0% 0.9% 4.4% 6.8% 0.0% 0.8% 4.1% 6.7%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.3% 1.3% 1.8% 0.0% 0.0% 0.6% 0.9% 0.0% 0.0% -0.4% -0.9% 0.0% 0.0% 0.0% 0.0%
Cooling 0.0% 1.2% 5.8% 8.8% 0.0% 1.1% 5.1% 7.7% 0.0% 1.0% 4.5% 6.8% 0.0% 0.9% 4.0% 5.9%
Ventilation 0.0% 1.4% 6.7% 10.2% 0.0% 1.2% 5.7% 8.6% 0.0% 1.1% 4.9% 7.5% 0.0% 0.9% 4.3% 6.4%
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Table I-7. Houston PSZ: Percentage-Based Energy Reduction Credits of Space4-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.5% -3.5% -6.9% 0.0% -0.6% -3.6% -6.5% 0.0% -0.5% -3.0% -5.8% 0.0% -0.6% -3.1% -5.5%
Cooling 0.0% 0.7% 3.4% 5.5% 0.0% 0.7% 3.1% 5.0% 0.0% 0.6% 2.9% 4.7% 0.0% 0.6% 2.8% 4.4%
Ventilation 0.0% 0.5% 2.4% 3.8% 0.0% 0.4% 2.0% 3.3% 0.0% 0.4% 1.8% 2.9% 0.0% 0.3% 1.6% 2.6%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.3% -2.3% -4.6% 0.0% -0.2% -1.3% -2.6% 0.0% -0.2% -1.0% -1.9% 0.0% -0.1% -0.7% -1.4%
Cooling 0.0% 0.5% 2.8% 4.7% 0.0% 0.5% 2.5% 4.3% 0.0% 0.5% 2.3% 4.0% 0.0% 0.4% 2.2% 3.8%
Ventilation 0.0% 0.5% 2.3% 3.9% 0.0% 0.4% 2.1% 3.6% 0.0% 0.4% 1.9% 3.3% 0.0% 0.4% 1.8% 3.0%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.9% 3.3% 5.3%
Heating 0.0% -0.6% -5.2% -10.2% 0.0% -0.5% -3.8% -7.7% 0.0% -0.4% -3.4% -6.7% 0.0% -0.5% -3.3% -6.0%
Cooling 0.0% 0.7% 3.7% 6.0% 0.0% 0.6% 3.3% 5.3% 0.0% 0.6% 3.0% 4.8% 0.0% 0.6% 2.8% 4.5%
Ventilation 0.0% 0.5% 2.7% 4.3% 0.0% 0.4% 2.2% 3.6% 0.0% 0.4% 2.0% 3.1% 0.0% 0.3% 1.7% 2.7%
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Table I-8. Houston PVAV: Percentage-Based Energy Reduction Credits of Space4-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.3% 0.6% 0.8% 0.0% 0.0% 0.4% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -1.3%
Cooling 0.0% 0.7% 3.3% 5.1% 0.0% 0.6% 2.9% 4.5% 0.0% 0.6% 2.7% 4.1% 0.0% 0.5% 2.4% 3.7%
Ventilation 0.0% 0.7% 3.2% 5.0% 0.0% 0.5% 2.7% 4.3% 0.0% 0.5% 2.4% 3.9% 0.0% 0.4% 2.2% 3.5%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.5% -0.5% -1.0% 0.0% 0.0% 0.0% -0.8% 0.0% -1.0% -2.0% -2.0% 0.0% 0.0% -1.1% -2.3%
Cooling 0.0% 0.6% 2.9% 4.6% 0.0% 0.5% 2.6% 4.1% 0.0% 0.5% 2.4% 3.8% 0.0% 0.5% 2.3% 3.7%
Ventilation 0.0% 0.6% 3.0% 4.9% 0.0% 0.6% 2.7% 4.4% 0.0% 0.5% 2.4% 4.0% 0.0% 0.5% 2.2% 3.7%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.2% 0.7% 1.0% 0.0% 0.3% 0.5% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.7% 0.0%
Cooling 0.0% 0.7% 3.5% 5.4% 0.0% 0.7% 3.2% 4.9% 0.0% 0.6% 2.9% 4.4% 0.0% 0.6% 2.6% 4.0%
Ventilation 0.0% 0.7% 3.7% 5.6% 0.0% 0.6% 3.0% 4.7% 0.0% 0.5% 2.6% 4.1% 0.0% 0.4% 2.3% 3.6%
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Table I-9. Houston PSZ: Percentage-Based Energy Reduction Credits of Space5-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -1.4% -6.8% -18.1% 0.0% -0.7% -6.2% -15.1% 0.0% -0.7% -5.2% -12.9% 0.0% -0.5% -3.8% -10.3%
Cooling 0.0% 1.6% 8.3% 13.9% 0.0% 1.5% 7.7% 12.9% 0.0% 1.4% 7.4% 12.3% 0.0% 1.3% 6.9% 11.6%
Ventilation 0.0% 1.1% 5.4% 8.6% 0.0% 0.9% 4.5% 7.2% 0.0% 0.8% 4.0% 6.5% 0.0% 0.7% 3.6% 5.8%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -0.4% -5.0% -15.7% 0.0% -0.4% -4.2% -13.2% 0.0% -0.3% -3.7% -11.6% 0.0% -0.3% -3.5% -10.7%
Cooling 0.0% 1.5% 7.8% 13.4% 0.0% 1.5% 7.5% 12.9% 0.0% 1.4% 7.3% 12.5% 0.0% 1.4% 7.1% 12.2%
Ventilation 0.0% 1.1% 5.3% 9.1% 0.0% 1.0% 4.8% 8.3% 0.0% 0.9% 4.4% 7.5% 0.0% 0.8% 4.1% 6.9%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -0.9% -9.7% -24.4% 0.0% -0.9% -8.0% -20.5% 0.0% -0.7% -6.9% -16.0% 0.0% -0.7% -5.2% -12.6%
Cooling 0.0% 1.8% 8.9% 14.9% 0.0% 1.6% 8.2% 13.7% 0.0% 1.5% 7.7% 13.0% 0.0% 1.4% 7.3% 12.1%
Ventilation 0.0% 1.2% 6.1% 9.8% 0.0% 1.0% 5.0% 8.0% 0.0% 0.9% 4.4% 7.0% 0.0% 0.8% 3.8% 6.1%
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Table I-10. Houston PVAV: Percentage-Based Energy Reduction Credits of Space5-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% 0.0% 0.9% 1.5% 0.0% 0.5% 1.9% 2.9% 0.0% 0.8% 4.2% 7.6% 0.0% 1.3% 6.6% 10.5%
Cooling 0.0% 1.6% 7.3% 10.9% 0.0% 1.4% 6.7% 9.9% 0.0% 1.3% 6.2% 9.2% 0.0% 1.3% 5.7% 8.4%
Ventilation 0.0% 1.7% 7.8% 10.9% 0.0% 1.5% 6.8% 9.4% 0.0% 1.3% 6.1% 8.5% 0.0% 1.2% 5.5% 7.6%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -0.6% -3.1% -0.6% 0.0% -0.8% -4.8% -0.8% 0.0% -1.9% -5.7% -0.9% 0.0% -1.0% -5.7% -1.0%
Cooling 0.0% 1.3% 6.7% 11.9% 0.0% 1.2% 6.3% 11.1% 0.0% 1.2% 6.0% 10.7% 0.0% 1.1% 5.8% 10.3%
Ventilation 0.0% 1.7% 8.4% 13.0% 0.0% 1.6% 7.7% 12.0% 0.0% 1.5% 7.3% 11.3% 0.0% 1.4% 7.0% 10.8%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% 0.3% 0.8% 1.9% 0.0% -0.3% 0.3% 1.2% 0.0% 0.5% 2.3% 2.8% 0.0% 0.9% 4.7% 7.5%
Cooling 0.0% 1.7% 7.9% 11.7% 0.0% 1.5% 7.2% 10.6% 0.0% 1.4% 6.7% 9.8% 0.0% 1.3% 6.0% 8.9%
Ventilation 0.0% 1.9% 8.6% 12.0% 0.0% 1.6% 7.4% 10.3% 0.0% 1.5% 6.7% 9.2% 0.0% 1.3% 5.9% 8.1%
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Table I-11. Chicago PSZ: Percentage-Based Energy Reduction Credits of Space1-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.4% -6.6% -10.9% 0.0% -1.1% -5.0% -8.1% 0.0% -1.0% -4.4% -7.0% 0.0% -0.8% -4.1% -6.4%
Cooling 0.0% 1.4% 7.2% 11.5% 0.0% 1.4% 6.6% 10.4% 0.0% 1.2% 6.1% 9.6% 0.0% 1.2% 5.7% 8.9%
Ventilation 0.0% 1.0% 5.0% 7.9% 0.0% 0.8% 3.8% 6.1% 0.0% 0.6% 3.2% 5.2% 0.0% 0.5% 2.8% 4.4%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40% 

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.9% -4.7% -8.8% 0.0% -0.6% -3.3% -5.8% 0.0% -0.4% -2.6% -4.6% 0.0% -0.3% -2.1% -3.8%
Cooling 0.0% 1.1% 5.4% 9.1% 0.0% 1.1% 4.9% 8.5% 0.0% 0.9% 4.5% 7.8% 0.0% 0.8% 4.2% 7.3%
Ventilation 0.0% 0.9% 4.6% 7.4% 0.0% 0.7% 3.6% 6.0% 0.0% 0.6% 3.2% 5.3% 0.0% 0.6% 2.9% 4.7%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.4% -6.6% -10.9% 0.0% -1.1% -5.0% -8.1% 0.0% -1.0% -4.4% -7.0% 0.0% -0.8% -4.1% -6.4%
Cooling 0.0% 1.4% 7.2% 11.5% 0.0% 1.4% 6.6% 10.4% 0.0% 1.2% 6.1% 9.6% 0.0% 1.2% 5.7% 8.9%
Ventilation 0.0% 1.0% 5.0% 7.9% 0.0% 0.8% 3.8% 6.1% 0.0% 0.6% 3.2% 5.2% 0.0% 0.5% 2.8% 4.4%
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Table I-12. Chicago PVAV: Percentage-Based Energy Reduction Credits of Space1-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.2% 0.3% 1.0% 0.0% -0.1% -0.3% -0.2% 0.0% 0.1% 0.0% -0.1% 0.0% 0.0% -0.1% -0.2%
Cooling 0.0% 1.3% 6.6% 10.2% 0.0% 1.2% 6.1% 9.3% 0.0% 1.1% 5.5% 8.4% 0.0% 1.0% 4.8% 7.4%
Ventilation 0.0% 1.3% 6.0% 9.0% 0.0% 1.0% 4.6% 7.1% 0.0% 0.8% 3.9% 6.1% 0.0% 0.7% 3.3% 5.3%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.3% -0.8% -1.2% 0.0% -0.1% -1.0% -2.0% 0.0% -0.2% -1.3% -2.5% 0.0% -0.2% -0.8% -2.1%
Cooling 0.0% 1.1% 5.5% 9.0% 0.0% 1.1% 5.2% 8.8% 0.0% 1.0% 4.8% 8.0% 0.0% 0.9% 4.5% 7.5%
Ventilation 0.0% 1.2% 5.7% 8.8% 0.0% 0.9% 4.4% 7.3% 0.0% 0.8% 3.9% 6.3% 0.0% 0.7% 3.4% 5.6%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.1% 0.6% 1.2% 0.0% -0.2% -0.7% -0.4% 0.0% 0.0% -0.1% -0.1% 0.0% -0.3% -0.3% -0.3%
Cooling 0.0% 1.4% 6.7% 10.3% 0.0% 1.3% 6.4% 9.7% 0.0% 1.2% 5.7% 8.7% 0.0% 1.1% 5.0% 7.6%
Ventilation 0.0% 1.3% 6.2% 9.2% 0.0% 1.0% 4.7% 7.4% 0.0% 0.8% 4.0% 6.3% 0.0% 0.7% 3.4% 5.3%
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Table I-13. Chicago PSZ: Percentage-Based Energy Reduction Credits of Space2-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.9% -3.7% -5.9% 0.0% -0.9% -3.8% -5.6% 0.0% -0.8% -3.4% -5.2% 0.0% -0.7% -3.3% -5.0%
Cooling 0.0% 0.8% 4.0% 6.3% 0.0% 0.7% 3.6% 5.6% 0.0% 0.7% 3.3% 5.1% 0.0% 0.6% 3.0% 4.7%
Ventilation 0.0% 0.5% 2.3% 3.5% 0.0% 0.3% 1.7% 2.7% 0.0% 0.3% 1.4% 2.3% 0.0% 0.2% 1.2% 2.0%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.6% -2.8% -5.2% 0.0% -0.4% -2.1% -3.7% 0.0% -0.3% -1.8% -2.9% 0.0% -0.3% -1.5% -2.5%
Cooling 0.0% 0.6% 2.9% 4.9% 0.0% 0.5% 2.4% 4.2% 0.0% 0.4% 2.2% 3.9% 0.0% 0.4% 2.1% 3.6%
Ventilation 0.0% 0.4% 2.0% 3.3% 0.0% 0.3% 1.5% 2.6% 0.0% 0.3% 1.3% 2.3% 0.0% 0.2% 1.2% 2.0%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.6% -3.0% -5.3% 0.0% -0.8% -3.7% -5.6% 0.0% -0.9% -3.6% -5.4% 0.0% -0.8% -3.5% -5.4%
Cooling 0.0% 0.7% 2.6% 3.8% 0.0% 0.8% 3.6% 5.9% 0.0% 0.7% 3.3% 5.2% 0.0% 0.6% 3.0% 4.7%
Ventilation 0.0% 0.5% 2.4% 3.8% 0.0% 0.4% 1.8% 2.9% 0.0% 0.3% 1.6% 2.5% 0.0% 0.3% 1.3% 2.2%
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Table I-14. Chicago PVAV: Percentage-Based Energy Reduction Credits of Space2-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.1% 0.5% 0.8% 0.0% 0.0% 0.4% 0.7% 0.0% 0.1% 0.4% 0.6% 0.0% 0.1% 0.3% 0.5%
Cooling 0.0% 0.8% 3.7% 5.7% 0.0% 0.6% 3.2% 4.8% 0.0% 0.6% 2.9% 4.3% 0.0% 0.5% 2.5% 3.8%
Ventilation 0.0% 0.7% 3.1% 4.6% 0.0% 0.5% 2.2% 3.5% 0.0% 0.4% 1.9% 2.9% 0.0% 0.3% 1.6% 2.5%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.1% -0.7% -1.3% 0.0% -0.1% -0.7% -1.6% 0.0% -0.2% -0.8% -1.9% 0.0% -0.1% -0.9% -1.8%
Cooling 0.0% 0.6% 2.9% 4.8% 0.0% 0.5% 2.6% 4.3% 0.0% 0.5% 2.5% 4.1% 0.0% 0.4% 2.3% 3.7%
Ventilation 0.0% 0.6% 2.7% 4.2% 0.0% 0.5% 2.2% 3.4% 0.0% 0.4% 1.8% 3.0% 0.0% 0.4% 1.6% 2.7%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.1% 0.5% 0.8% 0.0% 0.0% 0.6% 1.0% 0.0% -0.1% 0.3% 0.6% 0.0% 0.0% 0.2% 0.4%
Cooling 0.0% 0.8% 3.8% 5.7% 0.0% 0.7% 3.4% 5.1% 0.0% 0.6% 3.0% 4.5% 0.0% 0.5% 2.6% 3.9%
Ventilation 0.0% 0.7% 3.1% 4.7% 0.0% 0.5% 2.3% 3.6% 0.0% 0.4% 1.9% 3.0% 0.0% 0.3% 1.7% 2.6%
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Table I-15. Chicago PSZ: Percentage-Based Energy Reduction Credits of Space3-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.5% -9.0% -22.5% 0.0% -1.6% -8.3% -18.3% 0.0% -1.2% -7.2% -14.7% 0.0% -1.2% -6.4% -12.3%
Cooling 0.0% 1.4% 6.8% 10.9% 0.0% 1.1% 5.9% 9.6% 0.0% 1.1% 5.5% 8.6% 0.0% 1.0% 4.9% 7.8%
Ventilation 0.0% 0.9% 4.7% 7.4% 0.0% 0.7% 3.6% 5.7% 0.0% 0.6% 3.0% 4.9% 0.0% 0.5% 2.6% 4.2%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.2% -6.3% -12.9% 0.0% -0.9% -5.2% -11.2% 0.0% -0.7% -4.1% -8.7% 0.0% -0.6% -3.4% -7.2%
Cooling 0.0% 1.0% 5.0% 8.4% 0.0% 0.8% 4.2% 7.1% 0.0% 0.7% 3.7% 6.3% 0.0% 0.7% 3.3% 5.7%
Ventilation 0.0% 0.9% 4.6% 7.8% 0.0% 0.7% 3.5% 6.0% 0.0% 0.6% 3.0% 5.2% 0.0% 0.5% 2.7% 4.6%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -1.0% -5.7% -11.8% 0.0% -1.3% -7.8% -19.1% 0.0% -1.3% -7.0% -15.0% 0.0% -1.2% -6.1% -12.2%
Cooling 0.0% 0.9% 4.2% 6.2% 0.0% 1.2% 6.1% 9.7% 0.0% 1.0% 5.3% 8.6% 0.0% 1.0% 4.9% 8.1%
Ventilation 0.0% 1.0% 4.9% 7.9% 0.0% 0.7% 3.7% 5.9% 0.0% 0.6% 3.1% 5.0% 0.0% 0.5% 2.6% 4.2%
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Table I-16. Chicago PVAV: Percentage-Based Energy Reduction Credits of Space3-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 5.7% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 4.6% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.8% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.1% 0.6% 1.2% 0.0% 0.1% 0.6% 0.8% 0.0% 0.1% 0.2% 0.3% 0.0% 0.0% 0.0% -0.1%
Cooling 0.0% 1.2% 4.8% 8.1% 0.0% 1.0% 4.7% 6.9% 0.0% 1.0% 4.3% 6.2% 0.0% 0.9% 3.7% 5.5%
Ventilation 0.0% 1.1% 4.2% 6.9% 0.0% 0.8% 3.8% 5.2% 0.0% 0.8% 3.2% 4.3% 0.0% 0.6% 2.6% 3.5%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6% 0.0% 1.4% 7.1% 11.6%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% -0.1% -0.7% -1.2% 0.0% -0.2% -0.9% -1.7% 0.0% -0.3% -1.5% -2.4% 0.0% -0.2% -1.4% -2.4%
Cooling 0.0% 1.1% 4.9% 7.1% 0.0% 1.0% 4.0% 6.2% 0.0% 0.8% 3.6% 5.6% 0.0% 0.7% 3.3% 5.1%
Ventilation 0.0% 1.0% 4.0% 4.2% 0.0% 0.8% 3.3% 3.8% 0.0% 0.7% 2.9% 3.6% 0.0% 0.6% 2.6% 3.3%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3% 0.0% 1.4% 7.1% 11.3%
Equipment 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2% 0.0% 1.2% 5.7% 9.2%
Heating 0.0% 0.1% 0.8% 1.2% 0.0% 0.1% 0.3% 0.7% 0.0% 0.1% 0.4% 0.6% 0.0% 0.1% -0.1% 0.0%
Cooling 0.0% 1.3% 6.3% 8.5% 0.0% 1.2% 5.1% 7.2% 0.0% 1.0% 4.4% 6.4% 0.0% 1.0% 3.9% 5.6%
Ventilation 0.0% 1.1% 5.1% 6.5% 0.0% 0.9% 4.0% 5.2% 0.0% 0.7% 3.3% 4.2% 0.0% 0.6% 2.6% 3.4%
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Table I-17. Chicago PSZ: Percentage-Based Energy Reduction of Space4-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.8% -3.8% -6.1% 0.0% -0.8% -3.3% -5.4% 0.0% -0.8% -3.4% -5.1% 0.0% -0.8% -3.1% -4.7%
Cooling 0.0% 0.8% 4.0% 6.5% 0.0% 0.7% 3.6% 5.6% 0.0% 0.6% 3.1% 5.2% 0.0% 0.6% 3.0% 4.8%
Ventilation 0.0% 0.5% 2.8% 4.4% 0.0% 0.4% 2.1% 3.4% 0.0% 0.4% 1.9% 3.0% 0.0% 0.3% 1.6% 2.5%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.6% -3.1% -5.7% 0.0% -0.5% -2.3% -4.3% 0.0% -0.4% -1.9% -3.4% 0.0% -0.3% -1.6% -2.8%
Cooling 0.0% 0.6% 3.0% 5.2% 0.0% 0.5% 2.6% 4.5% 0.0% 0.5% 2.3% 4.0% 0.0% 0.4% 2.1% 3.6%
Ventilation 0.0% 0.5% 2.7% 4.6% 0.0% 0.4% 2.1% 3.6% 0.0% 0.4% 1.8% 3.1% 0.0% 0.3% 1.6% 2.8%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.7% -4.0% -5.9% 0.0% -0.9% -3.6% -5.7% 0.0% -0.9% -3.5% -5.2% 0.0% -0.7% -3.3% -5.0%
Cooling 0.0% 0.6% 2.9% 4.0% 0.0% 0.7% 3.7% 5.8% 0.0% 0.7% 3.4% 5.3% 0.0% 0.6% 3.0% 4.7%
Ventilation 0.0% 0.6% 2.9% 4.6% 0.0% 0.4% 2.2% 3.6% 0.0% 0.4% 1.9% 3.0% 0.0% 0.3% 1.6% 2.6%
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Table I-18. Chicago PVAV: Percentage-Based Energy Reduction of Space4-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.1% 0.6% 1.0% 0.0% 0.1% 0.6% 0.9% 0.0% 0.1% 0.3% 0.3% 0.0% 0.1% 0.0% -0.2%
Cooling 0.0% 0.8% 3.9% 6.0% 0.0% 0.7% 3.3% 5.1% 0.0% 0.6% 3.0% 4.7% 0.0% 0.6% 2.7% 4.1%
Ventilation 0.0% 0.7% 3.3% 5.2% 0.0% 0.5% 2.6% 4.1% 0.0% 0.4% 2.2% 3.5% 0.0% 0.4% 1.9% 3.0%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9% 0.0% 0.8% 4.2% 6.9%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% -0.1% -0.5% -1.4% 0.0% -0.1% -0.8% -1.7% 0.0% -0.3% -1.5% -2.7% 0.0% -0.3% -1.6% -2.7%
Cooling 0.0% 0.7% 3.2% 5.4% 0.0% 0.6% 2.9% 4.9% 0.0% 0.6% 2.7% 4.5% 0.0% 0.5% 2.5% 4.1%
Ventilation 0.0% 0.6% 3.1% 5.0% 0.0% 0.6% 2.5% 4.2% 0.0% 0.4% 2.2% 3.7% 0.0% 0.4% 2.0% 3.4%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7% 0.0% 0.8% 4.2% 6.7%
Equipment 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3% 0.0% 0.7% 3.3% 5.3%
Heating 0.0% 0.1% 0.6% 1.0% 0.0% 0.1% 0.6% 1.1% 0.0% 0.1% 0.2% 0.3% 0.0% -0.1% -0.2% -0.2%
Cooling 0.0% 0.8% 3.9% 5.9% 0.0% 0.7% 3.5% 5.3% 0.0% 0.7% 3.2% 4.8% 0.0% 0.6% 2.8% 4.2%
Ventilation 0.0% 0.7% 3.5% 5.4% 0.0% 0.6% 2.7% 4.3% 0.0% 0.5% 2.3% 3.6% 0.0% 0.4% 1.9% 3.1%
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Table I-19. Chicago PSZ: Percentage-Based Energy Reduction of Space5-1 OBC on Total Loads 
  Reference PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -2.4% -11.9% -30.4% 0.0% -1.9% -10.6% -27.6% 0.0% -1.6% -9.3% -24.2% 0.0% -1.5% -8.3% -21.3%

Cooling 0.0% 1.9% 9.6% 15.7% 0.0% 1.9% 8.8% 14.1% 0.0% 1.5% 8.2% 13.0% 0.0% 1.5% 7.5% 11.8%
Ventilation 0.0% 1.2% 6.1% 9.8% 0.0% 1.0% 4.7% 7.6% 0.0% 0.8% 4.1% 6.5% 0.0% 0.7% 3.5% 5.6%

 

  
  

Raised Floor Lightweight PSZ 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -1.7% -10.5% -22.5% 0.0% -1.7% -11.3% -24.9% 0.0% -1.6% -10.6% -23.4% 0.0% -1.5% -10.1% -22.4%
Cooling 0.0% 1.9% 9.6% 15.7% 0.0% 1.7% 8.7% 13.8% 0.0% 1.7% 8.2% 13.1% 0.0% 1.6% 7.8% 12.4%
Ventilation 0.0% 1.2% 6.1% 9.7% 0.0% 0.9% 4.7% 7.4% 0.0% 0.8% 4.1% 6.5% 0.0% 0.7% 3.6% 5.8%

 

  Heavyweight PSZ 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -1.3% -10.9% -29.5% 0.0% -2.0% -10.6% -27.9% 0.0% -2.1% -9.9% -25.3% 0.0% -1.6% -8.5% -22.0%
Cooling 0.0% 1.0% 4.5% 7.2% 0.0% 1.8% 9.1% 14.5% 0.0% 1.6% 8.3% 13.4% 0.0% 1.4% 7.5% 12.0%
Ventilation 0.0% 1.3% 6.5% 10.4% 0.0% 1.0% 4.9% 7.8% 0.0% 0.8% 4.1% 6.6% 0.0% 0.7% 3.5% 5.6%
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Table I-20. Chicago PVAV: Percentage-Based Energy Reduction of Space5-1 OBC on Total Loads 
  Reference PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40% 
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% 0.1% 1.1% 2.3% 0.0% 0.2% 2.0% 3.9% 0.0% 0.6% 3.5% 6.1% 0.0% 0.9% 4.8% 8.4%
Cooling 0.0% 1.7% 8.1% 11.6% 0.0% 1.4% 6.8% 9.7% 0.0% 1.2% 5.7% 8.1% 0.0% 1.0% 4.8% 6.8%
Ventilation 0.0% 1.6% 7.4% 9.1% 0.0% 1.3% 5.8% 7.0% 0.0% 1.1% 5.0% 6.0% 0.0% 0.9% 4.3% 5.0%

 

  
  

Raised Floor Lightweight PVAV 
WWR 10% WWR 21% WWR 30% WWR 40%

OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4% 0.0% 1.9% 9.4% 15.4%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% -2.8% -2.8% 0.4% 0.0% -3.5% -3.7% -0.4% 0.0% -3.9% -4.3% -0.5% 0.0% -4.1% -4.4% -0.4%
Cooling 0.0% 1.4% 7.3% 11.9% 0.0% 1.1% 5.8% 9.1% 0.0% 1.0% 5.2% 8.2% 0.0% 0.9% 4.8% 7.5%
Ventilation 0.0% 1.7% 7.9% 10.1% 0.0% 1.4% 6.5% 8.4% 0.0% 1.3% 5.9% 7.6% 0.0% 1.2% 5.3% 6.9%

 

  Heavyweight PVAV 

  

WWR 10% WWR 21% WWR 30% WWR 40%
OBC 
100% 

OBC 
90% 

OBC 
50% 

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90% 

OBC 
50%

OBC 
0%

OBC 
100%

OBC 
90%

OBC 
50%

OBC 
0%

Lights 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0% 0.0% 1.9% 9.4% 15.0%
Equipment 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3% 0.0% 1.5% 7.7% 12.3%
Heating 0.0% 0.2% 1.3% 2.7% 0.0% 0.2% 1.9% 3.7% 0.0% 0.7% 3.1% 5.9% 0.0% 0.7% 4.3% 7.9%
Cooling 0.0% 1.8% 8.9% 12.5% 0.0% 1.5% 7.2% 10.2% 0.0% 1.3% 6.0% 8.6% 0.0% 1.1% 5.0% 7.1%
Ventilation 0.0% 1.6% 7.5% 8.9% 0.0% 1.4% 6.1% 7.3% 0.0% 1.1% 5.2% 6.1% 0.0% 1.0% 4.3% 5.1%

 


