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ABSTRACT 

 

 Sources of water for irrigation use on Texas urban soils have varied in recent years due to 

the decline in water supplies, urbanization, and frequent and persistent drought conditions. 

Municipalities are turning to other sources of water for irrigation such as wastewater treatment 

effluent, harvested rainwater, gray water and saline water or produced water, and others. 

Wastewater treatment plant effluent has become more common to use in city parks and 

commercial landscaping. The objectives of this study were to evaluate the relationship between 

irrigation water chemistry and soil chemistry, turfgrass growth and performance, and soil 

microbial activity. Treatments included irrigation with saline water, wastewater treatment plant 

effluent, municipal tap water, reverse osmosis water, and gray water. Overall, soils irrigated with 

saline had the highest electrical conductivity (EC), sodium, pH, sulfur, and calcium 

concentrations and sodium absorption ratio (SAR). Irrigation treatment did not have a significant 

effect on soil microbial activity and had variable effects on turfgrass growth and performance. 

Principal coordinate analysis and non-metric multidimensional scaling indicated no 

dissimilarities in fungal community composition in irrigation treatments. Relationships between 

soil depth, time and irrigation treatment and their effects on soil chemistry were also examined, 

as well as the effects of water treatment on soil fungal community composition using DNA 

analysis. Depth and irrigation treatment had an impact on sodium and copper. TDN, DON, 

salinity, and copper concentrations were significantly higher in December than in November. 

While relatively short-term in nature, these findings support the use of alternative sources of 

water for municipal and commercial turfgrass irrigation in areas that are facing water demand 

and supply issues. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Problem 

 Climate change, global socio-demographic and environmental changes, freshwater 

scarcity and freshwater demand, and unexpected impacts of extreme events are all issues that 

mankind is currently facing. Over the last few decades there has been an increase in demand for 

freshwater while there has been a decrease in available sources. With the current global water 

demand estimated to be 4,600 km3
 and projected to increase to 5,500 to 6,000 km3 (20-30%) per 

year by 2050, pressure on freshwater sources will continue to increase (Burek et al., 2016). 

Along with increasing global water demand, from 2017 to 2050 the global population is 

projected to increase from 7.7 billion to between 9.4 and 10.2 billion with the two major 

contributors to be Africa at 1.3 billion and Asia at 0.75 billion (United Nations, Department of 

Economic and Social Affairs, 2017).  Author James Ridgeway states that the ability of the 

world’s water supply “to support human, plant and animal life is greatly in peril” (Ridgeway, 

2004).  

 With a shortage of water and high demand, water quality also plays an important role in 

the availability of freshwater sources. Global increases in urbanization and industrialization are 

some of the many contributors precipitating the deterioration in available water sources due to 

the addition of unwanted sediment and chemicals (Holgate et al., 2011). Agricultural and 

nonagricultural pesticides (Konstantinou et al., 2006) and fertilizer runoff, trace elements in 

industrial waste (Nriagu and Pacyna, 1988), and heavy metal deposits caused by contaminated 

impervious surface runoff in urban areas (Zhao et al., 2010) are some of the major contaminants 

that reduce surface water quality and eventually, groundwater systems as well. In 2002, the 
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United States Geological Survey (USGS) reported that 22 different antibiotics, as well as other 

pharmaceuticals, fire retardants, and steroids, were found in 48 percent of 139 steams in 30 

different states. Other countries as well as the United States are also facing deterioration in water 

quality. Bangladesh is currently grappling with the “largest mass poisoning” caused by inorganic 

arsenic seeping into groundwater resources (Smith et al., 2000). Currently, approximately half of 

Europe’s rivers and lakes are polluted. For example, Germany and the Netherlands are suffering 

high levels of chemical pollutants and nitrates caused by runoff from urbanization and animal 

farming (European Environment Agency, 2016). 

 Water supply has been unable to keep pace with the rate of population increase in the last 

century as a result of uneven distribution, wastefulness, and poor management. Currently, 1.2 

billion people or one-fifth of the world’s population live in regions affected by water scarcity 

while other areas are on the verge of experiencing water scarcity (Watkins, 2006). To be 

considered an area experiencing water scarcity, the population has to experience annual water 

supplies dropping below 1,000 m3 per person. Below 500 m3 is considered “absolute scarcity” 

(United Nations, 2014). The major issue countries are facing is the ability to grow enough food 

while also having to maintain environmental and urban water needs. Growing populations 

increase the demand for food and with that the increase in amount of necessary water to grow 

that food. In reality, individuals only require around 2-5 liters of water for drinking and 20 to 400 

liters of water for everyday household use. However, the consumption of water is much greater. 

Currently, individuals use between 2,000 and 5,000 liters of water per person per day (L/p/d), 

depending on what kind of food they eat and how productive the agriculture was that produced 

that food. The average annual amounts of water required for food consumption per person is 
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1,000 cubic meters, not including other every day uses such as drinking, bathing, washing 

household items, and recreation (Molden et al., 2007).  

 The two main sources that freshwater water is derived from are surface water and 

groundwater. Surface water resources, including rivers, lakes, and reservoirs, rely on rainfall and 

snowfall while groundwater resources, such as confined and unconfined aquifers, rely on 

recharge from surface water as it moves through the soil to the aquifer. Of the 110,000 cubic 

kilometers of rainfall that the Earth receives each year, about 40,000 cubic kilometers contributes 

to rivers and groundwater with the rest in the soil being lost to evaporation (Molden et al., 2007).  

 Consumers are using municipally treated public drinking water for horticulture and 

agricultural irrigation and for industrial purposes such as manufacturing and thermoelectricity 

causing a depletion in these freshwater sources in some areas (Toze, 2005; Flörke et al., 2013). 

Thermoelectric power and agricultural irrigation were the two largest users of water in 2010. 

With irrigation being the primary cause of groundwater depletion (United Nations Water, 2018). 

Withdrawals for thermoelectric power were 161 billion gallons per day (Bgal/d) and withdrawals 

for irrigation were 115 Bgal/d, while public-supply withdrawals were only 42.0 Bgal/d (Maupin 

et al., 2014). While agricultural irrigation relies heavily on rainfall and the timing of it, during 

times of drought or a period of decreased of rainfall then water will be extracted for irrigation to 

make up for this decline. Presently, consumers use 60% of the United States groundwater for 

agricultural and urban irrigation (Scanlon et al., 2012). Landscape irrigation for residential 

purposes ranges from 40% to 70% across the United States with the majority of withdrawals 

from groundwater and the balance from surface water (Hilaire et al., 2008). Freshwater surface 

and ground water withdrawals account for 61% of all the uses, excluding thermoelectric power, 

which also use saline surface water withdrawals (Maupin et al., 2014). Western states, except for 



 

 4 

Kansas, Nebraska, Oklahoma, Texas and South Dakota, primarily use surface water for irrigation 

owing to the fact that the average annual precipitation is insufficient to support crops (Haupin et 

al., 2014). From 2005 to 2010, surface and groundwater withdrawals have seen an overall 

decrease, possibly caused by the decline in water quality caused by eutrophication and over-

withdrawing of aquifers (United Nations, 2011). The extractions from both surface and 

groundwater surfaces have ultimately begun to reach their limits. The United States isn’t the only 

country facing a decline in water sources. Multiple river basins throughout the world have been 

“closed” because the water is gone, and the only water left is for the local ecosystems. For 

example, the Colorado River in the United States, the Indus River in southern Asia, the Yellow 

River in China, the Jordan River in the Middle East, and the Murray Darling River in Australia 

all have significantly lower flows compared to their historical levels. 

 As citizens rely on water for any form of irrigation, many growers believe it is important 

for those water sources to be readily available for inexpensive extraction and not require extreme 

filtration. Drip irrigation technology has recently been developed and can reduce water 

consumptions on farms by as much as 60%; however, these systems are expensive to install, 

costing as much as $3,000 per acre (Chu, 2017). Due to the increasing demand both on surface 

and groundwater, society is beginning to turn to other sources of water for irrigation in hopes of 

alleviating the pressure that currently exists. 

1.2 Freshwater Issues Facing Texas 

 Texas is currently one of the major US states that must to turn to other sources of water to 

be used for urban irrigation as a result of the high population densities in major urban cities such 

as San Antonio, Austin, Houston, and the Dallas/Fort Worth metroplex. The increase in 

population growth along with the high intensity droughts of Texas has placed emphasis on new 
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techniques and technologies for water conservation. The Texas Water Development board 

predicts, according to the 2017 Texas State Water Plan, that from 2020 to 2070, Texas’ 

population will grow from 29.5 million to 51 million, a 73 percent increase, and Texas water 

supplies in acre-feet per year will shrink from 15.2 million to 13.6 million, a 17 percent decrease 

(Texas State Water Plan, 2017). The current projected cost to implement the water management 

strategy projects recommended by the Texas Water Development Board is $63 billion in the 

short term if implemented immediately. It will be expensive initially, but these projects will 

mitigate the increased demand on water and the cost if not implemented will be $73 billion to 

$151 billion by 2070 (Texas State Water Plan, 2017).  

 Currently, there is not enough water to sustain the growing needs of the Texas 

population. There are cities that have resorted to using recycled wastewater, gray water, and 

other unlikely water sources for irrigation and potable water requirements. Residents of Dallas, 

Houston, and San Antonio currently use 213, 134 and 149 gallons of water per day per person, 

respectively (Henry, 2011). In order to alleviate some of these water scarcity issues, certain cities 

are introducing the recycling of toilet water, more commonly known as “toilet to tap” or black 

water. El Paso is presently experiencing river drought with the Rio Grande and the aquifers that 

are not being replenished quickly enough to satisfy its population demand. Therefore, the El Paso 

Water Utility is recycling its wastewater with multiple types of filtration and disinfectant 

treatments in order to make it safe for drinking and irrigation (El Paso Water Utility, 2007).  

 Efficient water use, reduction of pollutants, proper management of water sources, and 

good land use decisions together could help alleviate some of the current demand on water 

sources. A better understanding of the innovative recycling of water sources that countries and 
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states are adopting could also prove beneficial and help minimize the impacts of urbanization 

and industrialization. 

1.3 Treated Wastewater Treatment Plant Effluent 

 Worldwide water shortages are forcing countries to turn to different sources of water for 

agricultural irrigation. Treated municipal wastewater is readily available to be used and reused 

when natural resources are being depleted or are too limited. It is a source that remains constant 

and the reuse of the water can have environmental benefits. Raw municipal wastewater typically 

contains organic and inorganic material or dissolved minerals, toxic chemicals, and pathogens 

such as bacteria, viruses, and helminths. The chemical makeup of wastewater depends on the 

socioeconomic characteristics of that community and the amount of industrial and commercial 

properties (Hanjra et al., 2012), and therefore, can vary in chemical and biological composition. 

The discharge of the effluent into rivers, lakes, and reservoirs can severely degrade the 

surrounding environments. The high concentrations of inorganic and organic nutrients in the 

discharged effluent, for example nitrogen and phosphate, can be applied as a fertilizer and reduce 

the dependence on manufactured fertilizers (McCarty et al., 2011).  

 Due to the presence of possibly harmful organisms, there is a public concern and lack of 

public acceptance for using treated effluent to irrigate not only for agriculture, but also for 

municipal homes. Strict monitoring regulations have been implemented on the reuse of treated 

wastewater effluent to ensure the safety of humans and animals eating the agricultural crops to 

children outside playing on urban lawns. Cirelli et al. (2011) conducted a study in Eastern Sicily 

on the long-term effects of treated crops intended for human consumption. Tertiary-treated 

municipal wastewater was applied to tomato and eggplant crops using surface and subsurface 

drip irrigation. They reported elevated E. coli in the irrigation water, which was significantly 
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above the 50 CFU 100 mL-1 Italian mandatory limits, but neither Salmonella nor helminth eggs 

were detected. Only two eggplant samples contained 102 CFU/100 g of fecal coliforms and fecal 

streptococci. Tomato samples in contact with the soil or plastic mulch were contaminated by the 

high presence of microbes in those substrates. The tomato and eggplant crops not only 

successfully grew on the irrigated plots but their yields were also significantly higher than the 

plots irrigated with a freshwater source. Overall, they found that the microbiological quality of 

the two crops was generally maintained even though E. coli in the treated wastewater was over 

the regulatory limits.   

 Along with health safety, soil and plant quality are also a concern when using treated 

wastewater for irrigation. There are currently over 1000 effluent irrigation systems that are 

operating in the U.S. (Feigin et al., 2012). One study performed in Arizona over a 3.2 year period 

found that secondary-treated sewage effluent (STSE) irrigation caused a significant increase in 

soil sodium and EC compared to the potable water, as a result of higher concentrations in the 

effluent; however, the SAR and EC values were not high enough to damage the bermudagrass 

(Hayes et al., 1990). Another study performed in Colorado also saw an 89 to 95% increase in 

sodium, a 28 to 50% increase in boron, and an 89 to 117% increase in phosphorus, but did not 

see values high enough to cause soil deterioration (Qian and Mecham, 2005). In the Region of 

Murcia, Spain, Pedrero et al. (2010) found that treated wastewater is an adequate alternative 

water resource for citrus tree irrigation. 

 Heavy metals and trace organics are also a public concern for using treated effluent as a 

source of water when the effluent is from an industrial or from a less treated source. Typically, 

heavy metals are removed during the primary stage of treatment while endocrine disrupting 

chemicals (EDC) and pharmaceutically-active compounds (PhAC) are removed during the 



 

 8 

secondary stage of treatment. While the concentrations in the effluents are low and the required 

ingestion needs to be high and over a long period of time, there is still public concern. One study 

performed by Angelova et al. (2004) found that flax and cotton took up heavy metals when 

grown in heavily contaminated soils, but the concentrations detected in the leaves and seeds were 

only small in comparison to the concentrations present in the soil. EDCs include estradiol 

compounds, and while effluent concentrations are not usually high enough to have endocrine 

capabilities in the human body, have been known to have significant impacts on other animals in 

the local ecosystem including problems relating to the size and development of male gonads in 

juvenile male alligators to the complete feminization of male amphibians, reptiles, and fish 

(Toze, 2005; Hayes et al., 2011). The major concern for PhACs, even more so than being taken 

up by crops, is causing antibiotic resistance in soil and water microorganisms.  

   Even with the different concerns of the public, most of these can be managed through 

proper treatments and application of the treated effluent. Metals and trace chemicals, organic and 

inorganic nutrients, and microorganisms can usually be removed from the wastewater during the 

different treatment stages of a water treatment plant. The exception being salts and other cations 

and anions that require reverse osmosis membrane filtrations, which is expensive and 

economically difficult to implement solely for irrigation purposes. However, even these 

contaminants can be removed with proper leaching techniques that are dependent on the soil 

profile. Treated wastewater effluent has the potential to reduce the use of other water sources and 

will last as long as the proper treatment and effective management practices are in place.  

1.4 Gray Water 

 Gray water is defined as wastewater generated from residential sources such as baths, 

showers, dishwashers, hand and kitchen sinks and washing machines with the exclusion of inputs 
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from toilet flushing (blackwater) (Jefferson et al., 2004). Because gray water is readily available 

and accessible it has an untapped potential for being an alternative water resource for irrigation, 

especially in arid or semi-arid conditions where fresh water is scarce. Gray water accounts for 

50-80% of the total water use in domestic residences (Al-Hamaiedeh & Bino, 2010). The amount 

of gray water produced is directly related to the amount of water readily available to the 

household. Discharges can range from 180-300 L/p/d to 30-80 L/p/d to 9-50 L/p/d depending on 

if there is more than one tap inside the house, a tap outside of the house, or the house is 250 m or 

more from a standpipe (Rodda et al., 2011). Similar to treated wastewater effluent, there is public 

concern with using raw gray water as an alternative to fresh or ground water sources.  

 Gray water composition varies significantly from residence to residence and depends on 

how it is stored, the type of occupants in the household, its source and if it is raw or treated. 

When gray water is being used for applications, such as irrigation or vehicle washing, certain 

water quality requirements based on organic compounds such as those contained within total 

phosphorous and total nitrogen; solids, and microbial content must be met (Jefferson et al., 

2004). Homeowners that irrigate ornamental and food plants with untreated gray water have 

concerns about the health risks and the potential for gastrointestinal disease transmission by gray 

water (Rose et al., 1991; Busgang et al., 2018). One study performed in Arizona by Casanova et 

al. (2001) measured and compared chemical and microbial quality from a single-family home 

with two adults and the same home years earlier when two adults and one child lived there. They 

found that there was no difference in total coliform levels between each household but an 

increase of fecal coliforms along with turbidity and biological oxygen demand in the household 

with two adults and one child. They also found that the overall chemical, microbial and physical 

qualities of the untreated gray water fell between the ranges of raw and treated wastewater and 
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secondary effluent. Because of the high presence of enteric pathogens in gray water, 

gastrointestinal health is the biggest issue facing the implementation of gray water recycling 

programs.   

 Similar to treated wastewater effluent, there are public concerns on how gray water will 

affect the soil and plant quality. A study performed in the Israeli Negev desert by Gross et al. 

(2005) found elevated levels of boron in gray water treated plots resulting in plant toxicity. Due 

to gray water containing food matter, grease, and surfactants, irrigation may create hydrophobic 

soils that prevent soil infiltration and increase surface runoff and erosion (Leas et al., 2014). 

Another study used raw gray water on three different soil types (sand, loam, and loess) and saw a 

significant number of surfactants, coliform bacteria, and oil and grease in the soil compared to 

the treated gray and freshwater (Travis et al., 2010). Al-Hamaiedeh & Bino (2010) conducted a 

study in Jordan and compared treated and raw gray water and their effects on the properties of 

soil and irrigated plants. Their study saw an increase in salinity, SAR, and organic material in the 

soil over time; however, the chemical properties of the irrigated olive trees and vegetable crops 

were not adversely affected, but the biological quality of some of the vegetable crops were 

affected. Holgate et al. (2011) examined the impacts of gray water, municipal tap water, and 

harvested rainwater on soil under the grass species perennial ryegrass (Lolium perenne [L]). 

They found dissolved organic C losses to be two-to-four times greater in the soil irrigated with 

gray water and municipal tap water relative to the soils irrigated with only to the harvested 

rainwater. They attributed these losses to the temperatures in the greenhouse plus the addition of 

nitrogen and phosphorous from the gray water inputs resulting in increased litter decomposition 

and increased production of DOC in the gray water treatments (2011). 
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 When gray water is recycled residentially, it has several potential economic incentives 

that include but are not limited to: reducing the amount of income allocated to purchasing water 

for irrigation, decreasing the demand for chemical fertilizers, increasing the overall quantity of 

water available for irrigation, and increasing the potential for higher biomass yields in crops 

(Leas et al., 2014). On a global scale, adopting gray water recycling practices may lower 

groundwater extraction rates and freshwater demands (Leas et al., 2014). Koussis et al. (2010) 

even found that treated gray water can reduce the pressure caused by saltwater intrusion in 

coastal aquifers. The treated gray water will create a larger supply of reusable brackish 

groundwater, which is more energy- and cost-efficient to desalinate than pure seawater. 

 The quality of the gray water and its intended use should be considered when creating the 

reuse guidelines to reduce both environmental and health risks. Already, there are various 

recycling treatments that are currently being considered for treating raw gray water such as 

storage, sedimentation, filtration, biological treatment and disinfection (Rose et al., 1991). With 

the implementation of proper management and safe recycling programs, gray water has the 

potential to be reused and to alleviate the growing pressure on freshwater sources to be used for 

irrigation. 

1.5 Saline Water 

 

 Saline water sources or water sources that have previously been deemed too saline for use 

for irrigation are now being considered as an alternative solution to increase water available for 

irrigation. Saline water has relatively high concentrations of dissolved salts. However, recycled 

water does not always inherently contain high concentrations of salts. In coastal areas, the water 

to be used for irrigation may already be salty or the pipes carrying the groundwater to the water 

treatment facility may travel through areas of salt water (Parsons et al., 2010). The salinity of the 
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water source is measured as electrical conductivity, which varies depending on the source, 

location, treatment, and time of year (Niu & Cabrera, 2010). 

 One major concern when irrigating using a water source with elevated salt levels is plant 

damage in response to salinity stress. Salt tolerance is defined as the plant’s inherent ability to 

withstand the effects of high salts in the root zone or on is leaves without significant adverse 

effects such as growth or yield reduction (Grieve et al., 2008). There are some plants known as 

halophytes that can balance the osmotic and ion changes by absorbing the salt ions and 

sequestering them in the vacuoles of the cells. Chavarria et al. (2019) performed a two-year 

study over using subirrigation water containing Instant Ocean on 10 commonly used cultivars 

representing warm season turfgrass species. They found that the majority of cultivars, with the 

exception of ‘Celebration’ bermuda grass and seashore paspalum, fell below acceptable turf 

quality at EC of 15 dS m1. Tifway, an intermediate tolerant turfgrass, had increased shoot 

biomass in year one but reduced biomass in year two at the 15 dS m-1. A study performed by 

Dudeck et al. (1983) on eight bermudagrass cultivars exhibited only a 22% reduction in top 

growth at 9.9 dS m-1 while root growth increased to 270% above the plants irrigated with no salt 

treatment.   

1.6 Sodic Water 

 Water that contains higher sodium (Na+) concentration relative to concentrations of 

calcium (Ca2+) and magnesium (Mg2+) is considered to be sodic water. Soils can become sodic if 

there is not proper drainage throughout. Depending on the soil profile, there can be an increase in 

pH, a reduction in hydraulic conductivity, permeability, or both through the phenomena of 

swelling dispersion. In turn, this causes a decrease in readily available nutrients and water for 

plants (Rodda et al., 2010). Qadir and Oster (2004) found that an accumulation of salts and Na+ 
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in soils could be remediated by the addition of calcium to replace the excess Na+ from the cation 

exchange sites through a managed amount of leaching. However, excess amounts of 

exchangeable sodium in soils can cause stunted growth and arrested cell development in plants. 

With the proper management practices and use of plants that are more salt tolerant, water sources 

that are saline or sodic may be used as an alternative source of water for irrigation.  
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CHAPTER II 

IMPACTS OF IRRIGATION WATER QUALITY ON SOIL CHEMISTRY, TURFGRASS 

GROWTH, AND FUNGAL COMMUNITY DIVERSITY 

2.1 Introduction 

 Municipalities must turn to alternative sources of water for irrigation including saline, 

recycled water, and gray water, as a result of the increasing depletion of available water sources 

(Qadir and Oster, 2003; Qian and Mecham, 2005; Rodda et al., 2011). One strategy to help with 

the use of alternative water sources is the choice of turfgrass and consideration of climate for that 

particular municipality. For example, in areas where groundwater tends to be more saline or 

sodic the selection of a salt-tolerant turfgrass may prove to be more appropriate for the 

landscape. Another strategy would be the appropriate soil or fertilizer type to help with the 

turfgrass growth. The soil is the reservoir for water and the source of most of the essential 

nutrients for turfgrass plants (Carrow et al., 2001).  

 In order to accurately meet the nutrient requirements for turfgrass it is important for 

managers to understand the formation of the soil. Soil formation is dependent on five major 

factors: climate, vegetation and other living organisms, topography or relief, and time (Jenny, 

1941). Soils in warm, humid climates have a different soil profile than soils in warm, arid 

climates. The parent rock and microorganisms can also have a significant impact on soil 

formation. All of these chemical, physical, and biological factors coupled with the input water 

source play an important role in how managers culture their turfgrass landscape.  

2.1.1 Impacts of Essential Nutrients and Metals in Water Sources on Soils and Turfgrass 

 The primary nutrients that managers focus on are N, P, and K due to the large amounts 

required by each type of turfgrass. Previous researchers have sought to determine the importance 
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of essential nutrients for turfgrass quality. Synder and Cisar (2000) performed a study examining 

the effects of K:N fertilization ratios on a ‘Tifgreen’ bermudagrass (Cynodon dactylon (L.) Pers. 

x C. transvaalensis Burtt Davy) over a 3-year period in south Florida. They found that there were 

significant deficiencies of K in the absence of K fertilization and increasing beyond a 0.5 to 1 

ratio had no significant effect on the growth or visual quality of the bermudagrass. They also 

observed that N fertilization had a significant influence on visual quality ratings during the 

duration of the study. Phosphorus is also important because it plays a number of roles because of 

its ability to form high energy pyrophosphate bonds in adenosine diphosphate (ADP), adenosine 

triphosphate (ATP), and other phosphates. Growth of bermudagrass has been reported to decline 

in Florida under excessive P, but cool-season grasses can tolerate high levels (Carrow et al., 

2001). 

 A few other essential nutrients that managers must consider are Na, Ca, Mg, S, Fe, Mg, 

Zn, B, and Cu. All of these nutrients are found in wastewater treatment plant effluent, gray 

water, and saline water and can cause problems for turfgrass managers if the nutrient levels are 

toxic or insufficient. Some of these issues include but are not limited to chlorosis, reduced 

growth or yield, loss of shoot density, distorted appearance of new leaves, and root toxicity. 

Managers will need to perform a full irrigation water quality analysis to determine the current 

conditions of the soil and to determine what measures will possibly be needed in the future such 

as leaching, mowing, or fertilization (Carrow et al., 2001). 

2.1.2 Fungal Community Composition 

 Microorganisms in soils are important in the management of turfgrass and play a key role 

in processes such as soil structure formation, decomposition of organic matter, toxin removal, 

and the cycling of nutrients (Garbeva et al., 2004). They can also help in the suppression of 
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disease and promotion of plant growth. One such study indicated a dependence of Senna 

spectabilis, part of the legume family, on the symbiotic relationship with mycorrhizal fungi 

(Kung’u et al., 2008). Furthermore, because of mycorrhizal fungi’s ability to increase nutrient 

uptake and increase plant growth in water-stressed plants, the vesicular arbuscular mycorrhizal 

fungi (AMF) inoculation increased total shoot height by 100%, as well as root collar diameter 

increased by 25%, and leaf number increased by 84%.  

This symbiotic relationship is beneficial in not only legumes but also other plant and grass 

species as well. Bermudagrass (Cynodon spp.) and St. Augustine grass (Stenotaphrum 

secundatum (Walt.) Kuntze ‘Raleigh’) are two of the more commonly used types of turfgrass for 

sports facilities and municipal lawns respectively in Central Texas. Due to Texas being highly 

prone to droughts, mycorrhizal fungi can be crucial to plants and soil function (TWRI, 2011). 

Wu et al. (2011) examined the effects of AMF versus non-mycorrhizal plant growth above 

ground, post cutting of bermudagrass (Cynodon dactylon L.). They not only found aboveground 

biomass to be significantly higher in AMF plants but also found increased chlorophyll contents, 

possibly indicating that AMF facilitates greater rates of photosynthesis. While there has been 

significant research on the relationship between mycorrhizal fungi and plants and mycorrhizal 

fungi and soil, the research is limited surrounding how actual water chemistry directly affects 

mycorrhizal fungi as well as other fungal species in the soil. 

2.2 Objectives and Hypotheses 

Objectives 

 The major objective of this study was to investigate the different sources of water for 

irrigation and their effects on turfgrass growth and physical properties, soil chemistry, and fungal 

community diversity within turfgrass soils. The five different irrigation sources were 1) saline, 2) 
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wastewater treatment plant effluent, 3) sodic municipal tap water, 4) reverse osmosis water, and 

5) gray water. 

Hypotheses 

HO1 There will be no significant differences in chemistry of soil receiving the wastewater 

treatment plant effluent, gray water, saline water, and municipal tap water treatments 

compared to the control treatment. 

H1 There will be significant differences in soil nutrient concentrations in the wastewater 

treatment plant effluent, gray water, saline water, and municipal tap water treatments 

compared to the control treatment due to an input of ions and nutrients. 

HO2 There will be no significant difference in soil nutrient concentrations at different soil 

depths. 

H2 There will be significant differences in soil nutrient concentrations at different depths.  

HO3 There will be no significant interaction between depth and irrigation treatments on 

soil chemistries. 

H3 There will be a significant interaction effect between depth and irrigation treatments 

on soil chemistries.   

HO4 There will be no significant interaction between date and irrigation treatments on soil 

chemistries.  

H4 There will be significant interaction effect between date and irrigation treatments on 

soil chemistries.  

HO5 There will be no significant differences in turfgrass growth among irrigation 

treatments.  

H5 There will be significant differences in turfgrass growth among irrigation treatments.  
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HO6 There will be no significant differences in microbial activity due to irrigation 

treatment.  

H6 There will be significant differences in microbial activity due to irrigation treatment.  

HO7 There will be no significant differences in fungal diversity among irrigation  

 treatments. 

H7 There will be significant differences in fungal diversity among irrigation treatments. 
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2.3 Materials and Methods 

2.3.1 Field Study Site 

 The experiment occurred during the growing season from June through November of 

2016 at Texas A&M University Turfgrass Field Research Site in College Station, TX. The field 

research site was previously used for dairy farming until its close in 2003. The native soil at the 

field study site is described as a Zach series (fine, smectitic, thermic Udertic Paleustalf). The site 

received a cumulative annual rainfall of 1106.4 mm for the year of 2016.  The area designated 

for the experimental plot received no previous irrigation except for precipitation events that 

occurred throughout the year. The average daily temperature was 20.3°C for 2016, and average 

temperatures ranged from 17.3°C to 28.7°C during the experimental months (Figure 1). The 

cumulative daily rainfall during those months were 56.4 mm, 3.6 mm, 174.8 mm, 50.6 mm, 60.2 

mm, and 97.5 mm, respectively. These data were collected from on-site weather stations 

(Campbell Scientific, Logan, UT) at the Turfgrass Research Field Laboratory in College Station, 

TX.  

2.3.2 Experimental Design 

 The experiment was conducted on newly established Tifway (Cynodon dactylon × C. 

transvaalensis Burtt Davy) hybrid bermudagrass. To prepare for the sod installation, active 

ingredient (Ranger Pro Herbicide, Monsanto Company, St. Louis, Missouri) was applied at a rate 

of 0.7 mL/m2 using a carrier volume of 37.4 mL/m2 to kill all vegetation (EPA Reg #524-517). 

The sod was installed in 41.6 by 35.6 cm pieces. After the planting of the Tifway plot in mid 

May 2016, the plot was established naturally with the precipitation events (Figure 2) that 

occurred during the month of May which was 305.3 mm cumulative precipitation (Texas A&M 

AgriLife Extension). The area of the plot was 30.5 m by 1.8 m. with a total area of 55.8 m2 
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(Figure 3).  The study design was a randomized complete block design. There were four 

replicates per treatment with a total of 5 treatments. The study area was randomly segmented into 

20 smaller 0.71 m2 (0.84 m x 0.84 m) plots with a barrier 0.61 m between each individual plot 

and a 0.30 m barrier between the plots and the surrounding native environment (Figures 3-5). 

Fertilization of the plots occurred once at the beginning of the study and again during mid-

summer, using a 21-7-14 N-P-K fertilizer containing 25% sulfur coated urea at a rate of 4.9 kg N 

ha-1 (URI-PELS S.R. 21-7-14 25% Sulfur Coated Urea, American Plant Food Corporation, 

Galena Park, Texas, USA). There was an army worm infestation during the month of September 

and the insecticide Talstar (EPA Reg $279-3206) was applied at a rate of 1.1 mL/m2 using a 

carrier volume of 407.5 mL/m2. 
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Figure 1. Daily temperature for the duration of the experiment, May - November. Values next to sampling date indicate the 

temperature for that sampling date.   

Figure 2.  Daily rainfall values for the duration of the experiment, May – November. Values next to sampling date indicate the 

precipitation event for that sampling date.  
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Figure 3. Image of entire Tifway plot. Red paint indicates the area to be watered per treatment 

replicate block. 
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Figure 4. Image of 0.84 m x0.84 m Tifway and treatment plot within the replicate block. Red 

paint indicates the area to be watered per treatment replicate block. 
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Figure 5. Image of 0.84 m x 0.84 m Tifway plot surrounded by buffer. Red paint indicates the 

area to be watered per treatment replicate block.  
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REP 1 REP 2 REP 3 REP 4 
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GRAY  

MTW  

RO  
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Figure 6. Diagram of the experimental plot plan treatments. WWTP = wastewater treatment 

plant effluent, GRAY = gray water, MTW = municipal tap water, RO = reverse osmosis water, 

and SALINE = saline water. 

 

 This experiment consisted of five water treatments; 1) reverse osmosis water (control), 2) 

sodic municipal tap water, 3) gray water, 4) saline water, and 5) wastewater treatment plant 

effluent (Figure 6).  Irrigation of treatment plots consisted of the application of 42.7 L of the 

respective irrigation water twice weekly, in order to supply 2.54 cm of irrigation per week.  

According to the Texas Water Development Board, warm-season turfgrass such as hybrid 

bermudagrass requires approximately 2.54 cm of rainfall or irrigation per week during the 

growing season (Texas Water Development Board, n.d.). Therefore, the irrigation applications 

occurred twice weekly from June through November. Rainfall was not accounted for when 

scheduling irrigation requirements. Rain gauges located on site determine the actual amount of 

rainfall contributed for that week (Figure 2).  

2.3.3 Irrigation Water 

 The gray water was prepared by using of 10 mL of Tide detergent (Tide; ingredients 

listed in Table 1) added to 18.93 L of MTW based on the assumption that 40 mL of detergent is 

used for a medium load (20 gallons or 76 L) of laundry in a front-loading washing machine. Two 

18.93 L containers and one 7.57 L container was used for the collection of gray water and the 
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saline water. Each batch was prepared within 48 hours of irrigation. In addition, a sub-sample 

was collected from each prepared batch, mixed, and then run for chemical analysis. 

 The saline water was prepared using of 69.42 g of Instant Ocean (Instant Ocean); 

ingredients listed in Table 1) added to 18.93 L of RO water in order to obtain an electrical 

conductivity (EC) of 6.51 dS m-1. An irrigation water is considered saline when EC is > 4 dS m-

1, pH is < 8.5, exchangeable sodium percentage (%ESP) < 15 and SAR is < 13 (Davis et al., 

2007). The saline water was prepared within 48 hours of irrigating and a sub-sample was taken 

to run for chemical analysis. 

 The municipal tap water from College Station, Texas that was used for the experiment is 

a groundwater sourced from three different aquifers: the Carrizo-Wilcox, Sparta, and Yegua and 

is mainly disinfected with chlorine gas. The water was obtained from a faucet located in the 

Heep Center Building at Texas A&M University. Reverse osmosis (RO) water, derived by 

pressure-driven membrane filtration, was collected from a RO faucet located in the Heep Center 

Building at Texas A&M University. The RO treatment was chosen as the control treatment due 

to it being the water treatment with no nutrients or contaminants added. Normally, MTW would 

have been used as the control treatment; however, the MTW in College Station has average 

sodium concentration of 206  25 mg/L and toxicity to turfgrass can be anywhere from 70-210 

mg/L with severe toxicity being above 210 mg/L (Aitkenhead-Peterson et al., 2018; Carrow et 

al., 2001). Sub-samples of irrigation water were taken monthly for chemical analyses.  

 Wastewater treatment plant effluent was collected from the Carter’s Creek wastewater 

plant in College Station, Texas each morning prior to irrigation. The wastewater that goes to the 

treatment plant travels through a primary and secondary treatment followed by UV disinfectant. 
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Sub-samples were taken at every collection for chemical analyses (Table 2).  The chemical 

composition of treated wastewater may change dependent on precipitation events. 

 All water treatments were collected or prepared the within 48-hours of irrigation. They 

were collected and prepared in two, 18.9 L containers and one, 7.6 L container. As the turfgrass 

irrigation recommended is 2.54 cm each week, the first 1.27 cm of water was applied on a 

Monday and the second 1.27 cm was applied on the Thursday each week of the study (0.08534 

m3 x 1 m3/1000 L = 85.34 L of water per treatment per week or 82.67 L irrigated twice weekly)  

Sub-samples were taken from every new batch of gray, saline, and wastewater effluent, and sub-

samples were taken monthly for municipal tap and reverse osmosis water. All sub-samples were 

frozen at -20° Celsius until chemical analysis.  
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Table 1. Ingredients in the Tide detergent and Instant Ocean products used for the gray water 

and saline water treatments. Ingredients are as listed in current MSDS sheets. 

Irrigation Treatment Product Ingredients listed on MSDS sheet 

Gray Tide detergent 

Biodegradable surfactants (anionic 

and nonionic) and enzymes 

Sodium carbonate 

Benzenesulfonic acid, 

mono-C10-16-alkyl derivs. 

Silicic acid, aluminum sodium salt, 

sodium salt 

Carbonic acid disodium salt, 

compd. with hydrogen peroxide 

Sodium 

2-(nonanoyloxy)benzenesulfonate 

Poly(oxy-1,2-ethanediyl), alpha-

sulfo-omega-hydroxy-, C10-16-

alkyl ethers 

Saline Instant Ocean 

Sodium Chloride  

(CAS # 7647-14-5) 

Magnesium Chloride  

(CAS # 7791-18-6)  

Sodium Sulfate  

(CAS # 7757-82-6)  

Calcium Chloride ( 

CAS # 10043-52-4)  

Potassium Chloride  

(CAS # 7447-40-7) 
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2.3.4 Chemical Analysis of the Irrigation Water Treatments and Soil Water Extracts 

 The irrigation water analysis tested for the following constituents: pH, EC, salinity, NO3-

N, NH4-N, PO4-P, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), Ca, Mg, Na, 

K, B, S, P, Fe, Cu, and Mn. The pH and conductivity of each extract sample was recorded prior 

to filtration. Solutions were filtered using ashed (500 ◦C for 4 hr) Whatman GF/F filters (nominal 

pore size 0.7 μm). Dissolved organic nitrogen (DON) was estimated by deducting NO3-N + NH4-

N from TDN. 

  Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured 

with high temperature platinum-catalyzed combustion using a Shimadzu TOC-VCSH and 

Shimadzu total measuring unit (TNM-1) (Shimadzu Corp, Houston, TX, USA). Dissolved 

organic carbon was quantified as nonpurgeable carbon using USEPA method 415.1, which 

entailed acidifying (2N HCl) the sample and sparging for 4 min with C-free air. Ammonium-N 

was analyzed using the phenate hypochlorite method with sodium nitroprusside enhancement 

(USEPA method 350.1), and nitrate-N was analyzed using Cd-Cu reduction (USEPA method 

353.3). Orthophosphate-P was quantified using the ascorbic acid, molybdate blue method. 

Colorimetric methods were performed with a Westco Scientific Smartchem Discrete Analyzer 

(Westco Scientific Instruments Inc. Brookfield, CT, USA). Water blanks, replicate samples, 

National Institute of Standards and Technology (NIST) traceable standards, and check standards 

were run every 12th sample to monitor instrument precision.  

 The trace metals were detected and measured using inductive coupled plasma mass 

spectrometry (ICP) analysis. The average and standard deviation for each chemical constituent in 

each of the different irrigation treatments that were used in this experiment are listed in Table 2.  
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Table 2. Irrigation water treatment chemistry. All values are mg/L unless otherwise indicated. 

The values in parenthesis in bold indicate averages and values not in bold indicate standard 

deviation.  

  

Constituent Grey MTW RO Saline Effluent

pH 9.39 9.43 8.48 9.08 9.05

0.19 0.01 0.04 0.25 0.10

EC dS/m 1.05 1.05 0.02 6.51 1.20

0.05 0.01 0.00 0.26 0.04

Salinity (S/m) 1.01 0.98 0.02 5.87 1.17

0.05 0.01 0.01 0.38 0.03

SAR 30.98 30.26 2.47 18.27 15.71

1.35 0.20 0.06 0.58 0.49

ESP % 97.73 97.82 91.85 78.97 91.84

0.12 0.02 0.47 0.50 0.28

NO3-N 0.16 0.18 0.00 0.01 16.96

0.10 0.07 0.00 0.01 4.24

NH4-N 0.01 0.00 0.01 0.01 0.24

0.01 0.01 0.00 0.04 0.20

PO4-P 0.11 0.19 0.00 0.01 3.88

0.01 0.02 0.00 0.01 0.44

DOC 97.04 3.22 0.58 0.90 10.00

5.81 0.23 0.08 0.25 1.65

TDN 3.31 0.31 0.00 0.03 20.74

0.17 0.10 0.00 0.06 1.89

DON 3.14 0.12 0.00 0.03 3.55

0.19 0.17 0.00 0.06 3.01

Ca 2.88 2.93 0.36 37.30 9.59

0.15 0.19 0.14 2.82 0.41

Mg 0.58 0.39 0.02 110.17 2.08

0.19 0.02 0.01 7.55 0.15

Na 246.31 234.41 6.25 1021.70 251.89

7.49 5.14 0.72 60.02 6.88

K 2.21 1.90 0.19 35.66 12.62

0.27 0.16 0.14 2.18 0.29

B 1.55 0.35 0.33 0.81 0.49

0.43 0.02 0.02 0.06 0.03

SO4 41.56 20.19 0.40 264.07 32.83

9.65 1.38 0.16 12.57 1.07

P 0.20 0.20 0.01 0.02 3.80

0.02 0.01 0.01 0.00 0.42

Fe 0.01 0.01 0.01 0.01 0.02

0.00 0.00 0.00 0.00 0.00

Zn 0.01 0.01 0.01 0.01 0.05

0.00 0.00 0.00 0.01 0.01

Cu 0.02 0.01 0.01 0.01 0.01

0.01 0.00 0.00 0.00 0.01

Mn 0.01 0.01 0.01 0.01 0.01

0.00 0.00 0.00 0.00 0.00

ESP is exchangeable sodium percentage
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2.3.5 Evaluation of Turfgrass Growth and Performance 

 The evaluation for turfgrass growth was based on clipping biomass. Mowing occurred 

every 10-14 days, but the clippings were harvested once a month for clipping biomass. The 

clippings were not returned after mowing. Five harvesting dates included 15 July, 29 August, 28 

September, 24 October, and 11 November 2016. If rainfall had recently occurred, clipping was 

withheld until the turfgrass was no longer saturated. The 20 individual plots were mowed at a 

height of 5.1 cm using a Snapper (21") 190cc Hi-Vac Push Lawn Mower. The grass clippings 

were collected using one-gallon paint strainers. The collected clippings were oven-dried at 65° C 

for 72 hr. The clippings were then weighed, and the obtained values were then divided by the 

number of growing days (approx. 21 to 45 days) that occurred pre-mowing to determine the 

growth rates.  

 Digital images were taken post-mowing throughout the growing season from July to 

November (16 June 2016, 18 July 2016, 5 October 2016, 27 October 2016, and 17 November 

2016) using a Canon PowerShot SD790IS equipped to a light-box, 60.96 cm x 45.72 cm with a 

camera hole height of 40.64 cm. The purpose of the light box was to cancel out outside light and 

create uniform light within the box (Karcher and Richardson, 2005). The study analyzed the 

images taken for percent green cover using digital image analysis software SigmaScan 

(SigmaScan, SPSS, Chicago, IL) (Karcher and Richardson, 2005). The SigmaScan software is 

designed to create an average hue saturation and brightness level (HSB), which is a color space 

based upon human perception of color level for each image (Hejl, 2014). The images taken in 

June were taken at the beginning of the study and were not taken post-mowing. 
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2.3.6 Chemical Analysis of Soil Samples 

 To allow a full growing season to adjust to the different types of irrigation waters, soil 

samples were collected during the months of November and December to assess the effect of the 

different irrigation water on soil chemistry. For the chemical analysis at different soil depths, two 

core samples per plot were taken 2 December 2016 using a 5.1 cm diameter corer at 0-2.5 cm, 

2.5-7.6 cm, and 7.6-12.6 cm depth increments.  

 The samples were allowed to air dry at 25° C then homogenized and sieved (2 mm and 

0.5 mm) in preparation for chemical analysis. Approximately 3 g of soil was combined with 30 

mL of DDW. Actual soil and water weights were measured and recorded. The soil/DDW 

solution in the centrifuge tubes were shaken at 60 rpm for two hours. The soils were then 

centrifuged using a S-34 fixed angle rotor at 16,000 rpm for 15 minutes at 19,974 g-force 

(Thermo Fisher Scientific LLC S, Asheville, NC, USA). Salinity, pH, and EC were recorded on 

unfiltered supernatant. The soil water extracts were then filtered with ashed (500 ◦ C for 4 hours) 

Whatman GF/F filters (nominal pore size 0.7 μm) to remove any floating organic material and 

the weight of the extract recorded. DDW was added to the extract (1:1 by weight) to ensure 

enough sample size. The extracts were then analyzed for NO3-N, NH4-N, PO4-P, DOC, TDN, 

Ca, Mg, Na, K, B, S, P, Fe, Cu, and Mn.  

   Dissolved organic carbon and TDN were measured with high temperature platinum-

catalyzed combustion using a Shimadzu TOC-VCSH and Shimadzu total measuring unit (TNM-

1) (Shimadzu Corp, Houston, TX, USA). DOC was quantified as non-purgeable carbon using 

USEPA method 415.1, which entailed acidifying (2N HCl) the sample and sparging for 4 min 

with C-free air. Ammonium-N was analyzed using the phenate hypochlorite method with sodium 

nitroprusside enhancement (USEPA method 350.1), and nitrate-N was analyzed using Cd-Cu 
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reduction (USEPA method 353.3). Orthophosphate-P was quantified using the ascorbic acid, 

molybdate blue method. Colorimetric methods were performed with a Westco Scientific 

Smartchem Discrete Analyzer (Westco Scientific Instruments Inc. Brookfield, CT, USA). DON 

was calculated as TDN–(NH4–N + NO3–N). Water blanks, replicate samples, NIST traceable, 

and check standards were run every 12th sample to monitor instrument precision.  

 The trace metals were detected and measured using inductive coupled plasma mass 

spectrometry (ICP) analysis. 

 Salt accumulation on the irrigated plots was monitored starting at the end of September 

through October with bi-weekly measurements of EC using a handheld EC meter (FieldScout EC 

110 Meter, Spectrum Technologies, Inc., Aurora, IL). The readings were obtained for depths 0-

2.54 cm and 0-7.62 cm unless the soil was too saturated with water due to rainfall. This was to 

compare the conductivity readings in the field to those obtained during the chemical analysis.  

 SAR was calculated using the formula: 𝑆𝐴𝑅 =
𝑁𝑎

√
(𝐶𝑎)+(𝑀𝑔)

2

 and %ESP was calculated using 

the formula: 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑏𝑎𝑙𝑒 {
𝑁𝑎

𝐶𝑎+𝑀𝑔+𝐾+𝑁𝑎
} 𝑥 100. 

2.3.7 Solvita CO2 Respiration Test 

 All 60 of the December samples were evaluated for CO2 respiration, as an indicator of 

microbial activity, using the Solvita CO2-C Burst test (Solvita, CO2-Burst, Mount Vernon, 

Maine). The samples were allowed to air dry at 25° C then homogenized and sieved (2 mm and 

0.5 mm) in preparation CO2 testing. Forty grams of the dried soil was placed into the 50 mL 

plastic capillary cup. The cup was then placed into a 475 mL jar and 20 mL of deionized water 

was added into the jar while avoiding spilling on the soil. The CO2 detector probe was then 

added alongside the capillary cup with the gel probe facing the outside of the jar to be easily 

viewed. The lid of the jar was then sealed and allowed to incubate for 24 hr in an incubator at 
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20° C temperature. After the 24-hour incubation period, the probe was removed and read by the 

Solvita Digital Color Reader. The reader read for both color and mg CO2/kg of soil.  

2.3.8 Fungal Community Composition 

 At the end of October, before the turfgrass transitioned into dormancy, two soil samples 

were taken from each individual plot using a 2.5 cm diameter core sampler for the 0 - 12.6 cm 

depth and frozen at -20°C until chemical and DNA analysis. The frozen samples were 

homogenized and, using the same methodology from sections 2.3.4 and 2.3.6 were tested for pH, 

EC, salinity, NO3-N, NH4-N, PO4-P, DOC, TDN, Ca, Mg, Na, K, B, S, P, Fe, Cu, and Mn.  

 The soil nucleic acids were extracted using the PowerSoil DNA Isolation Kit from 

MoBio Laboratories Inc. (Carlsbad, California), according to a slightly modified manufacturer’s 

protocol. Instead of 0.25 g of soil sample, 0.50 g of soil sample was used. During step five of the 

manufacturer’s protocol, the PowerBead Tube was vortexed for 20 minutes instead of 10. During 

step 15, 625 μL of the solution from step 14 was loaded multiple times onto a Spin Filter instead 

of the 675 μL. Finally, during step 20 only 50 μL of Solution C6 was added to the white filter 

membrane instead of the recommended 100 μL. The slight changes were made to the protocol in 

order to have optimum DNA yield from the DNA Isolation Kit.  

 Concentrations of purified DNA were determined by spectrophotometry (NanoDrop-

1000, Waltham, MA). Extracted samples were shipped to the MR DNA Laboratory in 

Shallowater, Texas for analysis. The internal transcribed spacer 1-2 (fungi) PCR primers were 

used in a single-step 30 cycle PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, USA). 

These were the following conditions: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30 

seconds, 53°C for 40 seconds, 72° C for 1 minute, and finally, 72° C for 5 minutes. Sequencing 

was performed on an Ion Torrent PGM following the manufacturer’s guidelines. Sequence data 
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were processed using a proprietary analysis pipeline. The sequences were depleted of barcodes 

and primers, then sequences <150 bp removed, sequences with ambiguous base calls, and with 

homopolymer runs exceeding 6 bp were also removed. Sequences were de-noised, OTUs 

generated and chimeras removed. Operational taxonomic units (OTUs) were defined by 

clustering at 3% divergence (97% similarity). Final OTUs were taxonomically classified using 

BLAST against a curated database derived from GreenGenes, RDPII and NCBI 

(www.ncbi.nlm.nih.go and http://rdp.cme.msu.edu). 

2.3.9 Statistical Analyses 

 An initial multivariate analysis of variance using one factor with post hoc Tukey (HSD) 

tests was applied to the data to determine if there were any significant differences between the 

control treatment (RO) and the other four treatments: 1) WWTP effluent, 2) gray water, 3) 

municipal tap water, and 4) saline water (p > 0.05). An initial multivariate analysis of variance 

using one factor with post hoc Tukey (HSD) tests was applied to the data to determine if there 

were any significant differences between the three depths: 1) 0-2.54 cm, 2) 2.54-7.62 cm, and 3) 

7.62-12.7 cm (p < 0.05).  

A multivariate analysis of variance with two factors was applied to the data to determine 

if there was a significant effect of treatment or depth or an interaction between treatment and 

depth on CO2 respiration and pH, EC, salinity, NO3-N, NH4-N, PO4-P, DOC, TDN, Ca, Mg, Na, 

K, B, S, P, Fe, Cu, Mn, SAR, and ESP (p < 0.05). If there was a significant interaction, a one-

way analysis of variance (ANOVA) with post hoc-Tukey (HSD) tests was performed on the 

nutrient for all irrigation treatments to test the hypotheses that irrigation treatment and depth 

would have a significant effect on soil nutrients.  
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If there was no depth by treatment interaction, data were pooled cross depths from both 

sampling months of the study; and a multivariate analysis of variance with two factors was used 

to determine if there was a significant effect of date, treatment, or an interaction between date 

and treatment on pH, EC, salinity, NO3-N, NH4-N, PO4-P, DOC, TDN, Ca, Mg, Na, K, B, S, P, 

Fe, Cu, Mn, SAR, and ESP (p < 0.05). If there was a significant interaction, a one-way analysis 

of variance (ANOVA) with post hoc-Tukey (HSD) tests was performed on the nutrient for all 

irrigation treatments to test the hypotheses that irrigation treatment and date would have a 

significant effect on soil nutrients.  

For nutrients with no significant date by treatment interaction, data were pooled cross 

both dates, and one-way analysis of variance (ANOVA) was performed with a post hoc Tukey 

(HSD) test on nutrients to determine there was an irrigation treatment main effect (p < 0.05).  

A multivariate analysis of variance with two factors was used to determine if there was a 

significant effect of date, treatment, or an interaction between date and treatment on clipping 

biomass and percent green cover. If there was a significant interaction, a one-way analysis of 

variance (ANOVA) with post hoc-Tukey (HSD) tests was conducted on the clipping biomass 

and percent green cover for all irrigation treatments to test the hypotheses that irrigation 

treatment and date would have a significant effect on clipping biomass and percent green cover.  

A multivariate analysis of variance with two factors was used to determine if there was a 

significant effect of depth, treatment, or an interaction between depth and treatment on soil 

microbial activity. 

In order to determine if fungal community composition was significantly different 

between samples, one-way permutational multivariate analysis of variance (PERMANOVA) was 

conducted on fungal species percentage data. The same matrix was used to perform one-way 
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analysis of similarity (ANOSIM) to double check the result of the PERMANOVA and evaluate 

dissimilarities between treatments. While there were hundreds of species returned, only species 

representing greater than 1% of the community were used for comparison. The fungal 

community structure was estimated using Bray-Curtis distances and then visualized using 

principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (nMDS) 

using dissimilarity matrices (Hammer et al., 2001) in PAST 4.X (University of Oslo 2020).  
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2.4 Results 

2.4.1 Comparative Analysis of Soil Depth Chemistry 

 A repeated univariate linear model of analysis of variance with a post hoc Tukey test was 

applied to the soil chemistry and treatments to determine if there were significant differences 

between the control treatment and the other four treatments (Table 3). The null (HO-1) hypothesis 

was rejected. There were no significant differences in NO3-N, NH4-N, PO4-P, Ca, Mg, K, B, P, 

Zn, and Cu between the control treatment and saline water, gray water, wastewater treatment 

plant effluent, and municipal tap water treatments. The alternative hypothesis (H1) was accepted. 

pH, EC, salinity, DOC, TDN, DON, Na, S, Fe, Mn, SAR, and ESP showed significant 

differences between the saline and control treatments (p < 0.05) and was verified by Tukey’s 

Studentized Range post-hoc analysis.  

 Dissolved organic carbon, TDN, DON, and Fe showed significant differences between 

the control and gray water and WWTP effluent. Sodium, SAR, and ESP showed significant 

differences between the control and all four other treatments. The saline treatment had a 

significantly higher pH, EC, salinity, S, and Mn, than the control water treatment (p < 0.05). The 

DOC, TDN, DON and Fe concentrations in the saline, WWTP effluent, and gray water 

treatments were significantly higher than the MTW and control treatments (p < 0.05). All four 

treatments had significantly higher concentrations of Na, and SAR and ESP compared to the 

control treatments (p < 0.05; Table 3).  

 Due to these significant differences, a univariate linear model of analysis of variance was 

applied to all dependent variables to determine if there was a significant effect of depth (Table 

4). The second null hypothesis (HO-2) was rejected. The alternative hypothesis (H2) was accepted. 

pH, EC, NH4-N, Mg, P, and S showed significant differences between depth 1 and depths 2 and 
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3 but showed no significant differences between depth 2 and depth 3 (p < 0.05). There were 

significant differences in depth 1 and 3 for salinity, Zn, SAR, and ESP (p < 0.05). 

Orthophosphate-P, DOC, TDN, DON and Na showed significant differences between all three 

depths (p <0.05). There were no significant differences between depth 1 and depth 2 for NO3-N; 

there were no significant differences between depth 1 and depth 3 for Cu (p < 0.05; Table 4). 
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Table 3. Multiple Comparisons of soil depth chemistries for each treatment. Values in bold 

indicate significant difference between control and treatment at p < 0.05, those not bolded 

indicate p > 0.05. 

  

WWTP 0.822 WWTP <0.001

MTW 0.323 MTW <0.001

SALINE 0.006 SALINE <0.001

GRAY 0.349 GRAY <0.001

WWTP 0.926 WWTP 0.893

MTW 1 MTW 0.854

SALINE <0.001 SALINE <0.001

GRAY 0.702 GRAY 0.462

WWTP 0.941 WWTP 0.007

MTW 0.933 MTW 0.475

SALINE <0.001 SALINE 0.005

GRAY 0.744 GRAY 0.038

WWTP 0.041 WWTP 0.675

MTW 0.996 MTW 0.834

SALINE <0.001 SALINE <0.001

GRAY <0.001 GRAY 0.991

WWTP 0.008 WWTP <0.001

MTW 0.996 MTW 0.001

SALINE 0.03 SALINE <0.001

GRAY 0.005 GRAY <0.001

WWTP 0.024 WWTP <0.001

MTW 0.985 MTW <0.001

SALINE <0.001 SALINE <0.001

GRAY 0.003 GRAY <0.001

Soil Nutrient TMT TMT Sig Soil Nutrient

DON RO

SAR RO

Salinity RO

DOC

EC RO

TMT

Na RO

S RO

Fe RO

Mn RORO

TMT Sig

ESP RO

pH RO

TDN RO
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Table 4. Multiple Comparisons of nutrients at different depths. Values bolded indicate 

significant difference between control and treatment at p < 0.05, those not bolded indicate p > 

0.05. 

 

 

2 <0.001 2 <0.001 2 0.032

3 <0.001 3 <0.001 3 <0.001

1 <0.001 1 <0.001 1 0.032

3 0.241 3 <0.001 3 207

1 <0.001 1 <0.001 1 <0.001

2 0.241 2 <0.001 2 0.207

2 0.031 1 2 <0.001 2 0.39

3 0.008 3 <0.001 3 0.035

1 0.031 2 1 <0.001 1 0.39

3 0.859 3 <0.001 3 0.426

1 0.008 3 1 <0.001 1 0.035

2 0.859 2 <0.001 2 0.426

2 0.092 2 0.001 2 <0.001

3 0.034 3 <0.001 3 0.961

1 0.092 1 0.001 1 <0.001

3 0.898 3 0.033 3 <0.001

1 0.034 1 <0.001 1 0.961

2 0.898 2 0.033 2 <0.001

2 0.71 2 <0.001 2 0.155

3 <0.001 3 <0.001 3 0.003

1 0.71 1 <0.001 1 0.155

3 <0.001 3 0.977 3 0.254

1 <0.001 1 0.002 1 0.003

2 <0.001 2 0.977 2 0.254

2 <0.001 2 <0.001 2 0.833

3 <0.001 3 <0.001 3 0.014

1 <0.001 1 <0.001 1 0.833

3 0.602 3 0.018 3 0.059

1 <0.001 1 <0.001 1 0.14

2 0.602 2 0.018 2 0.059

2 0.008 2 <0.001

3 <0.001 3 <0.001

1 0.008 1 <0.001

3 <0.001 3 0.072

1 <0.001 1 <0.001

2 <0.001 2 0.072

SALINITY

1

2

3

Zn

1

2

3

3

2

1

Cu

DOC

1

2

3

DEPTH DEPTH

S

1

2

3

P

1

2

3

SAR

1

2

3

2

3

DON

Sig.

NH4-N

1

2

3

PO4-P

1

2

3

Mg

1

2

3

2

3

DEPTH

Na

1

2

3

Soil Nutrient

NO3-N

1

2

3

DEPTH

pH

1

2

3

EC

1

DEPTHDEPTHSoil Nutrient

TDN

Sig. Soil Nutrient

1

Sig.

ESP

1

2

3
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Since there were significant differences between the control and the other four treatments 

for EC, salinity, DOC, DON, Na, S, Fe, Mn, and SAR, a univariate analysis of variance with two 

factors was applied to determine if there was significant interaction between depth and the 

treatment on all nutrients (p < 0.05; Table 5). The null hypothesis (HO-3) was rejected. There was 

no significant interaction between depth and pH, EC, salinity, NO3-N, NH4-N, PO4-P, DOC, 

DON, TDN, Ca, Mg, K, B, S, P, Fe, Cn, Mn, SAR, and ESP (p < 0.05). The alternative 

hypothesis (H3) was accepted. There was significant interaction between depth and irrigation 

treatment for Na and Cu. A one-way analysis of variance (ANOVA) with post hoc-Tukey (HSD) 

tests was conducted on the nutrient for all irrigation treatments to test the hypotheses that 

irrigation treatment and depth would have a significant effect on soil nutrients. (Figure 7-8). 
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Table 5. Effect of depth, irrigation treatment, and interaction of depth*treatment on soil chemistry. Values in bold indicate a 

significant interaction effect of depth x treatment at p < 0.05, those not bolded indicate p > 0.05 

  
pH EC SALINITY 

NO3-

N 

NH4-

N 
PO4-P DOC DON TDN Na Ca 

 
Depth <0.001 0.006 0.029 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.548  

Treatment 0.013 <0.001 <0.001 0.019 0.46 0.274 <0.001 <0.001 <0.001 <0.001 0.018  

Treat*Depth 0.468 0.549 0.523 0.778 0.796 0.912 0.469 0.27 0.713 *0.002 0.889  

  Mg K B S P Fe Zn Cu Mn SAR ESP 
 

 
Depth <0.001 0.728 0.755 <0.001 <0.001 0.66 0.045 <0.001 0.296 0.005 0.013  

Treatment 0.001 0.379 0.393 <0.001 0.794 0.002 0.733 0.013 <0.001 <0.001 <0.001  

Treat*Depth 0.119 0.419 0.056 0.946 0.674 0.454 0.377 <0.001 0.159 0.595 0.646  
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2.4.1.1 Sodium 

 The saline treatment at depth 1 had the significantly greatest concentration of Na 

(489.2±46.2 µg/g). The saline water treatments at depth 2 (368.5±48.4 µg/g) and depth 3 

(347.1±35.2 µg/g) were significantly greater than all other treatments except for the gray water 

treatment at depth 1 (308.3±32.1 µg/g).  

The WWTP treatments at depth 1 (308.3±32.1 µg/g) and depth 3 (347.1±35.2 µg/g) were 

significantly higher than all other treatments except for the gray water treatments at depth 1 

(308.3±32.1 µg/g) and depth 2 (211.1±29.7 µg/g). The WWTP treatment at depth 2 (146.5±18.6 

µg/g) was not significantly different from the RO (71.1±17.0 µg/g) and municipal tap 

(185.6±17.0 µg/g) water treatments at depth 1, the municipal tap (153.7±28.1 µg/g) and gray 

(211.1±29.7 µg/g) water treatments at depth 2, and the WWTP (138.1±4.2 µg/g), the municipal 

tap (122.4±22.1 µg/g), and the gray (144.9±19.2 µg/g) treatments at depth 3.  

The RO treatment at depth 3 (29.6±20.9 µg/g) and depth 2 (42.1±19.4 µg/g) had the 

significantly lowest concentrations of Na (29.6±20.9 µg/g; p < 0.05) compared to all the other 

treatments except for the RO treatments at depth 1 (71.1±17.0 µg/g). The RO treatment at depth 

1 was not significantly different from the WWTP (146.5±18.6 µg/g) at depth 1, the WWTP at 

depth 2 (138.1±29.7 µg/g), and the municipal tap (122.4±22.1 µg/g) and gray water (144.9±19.2 

µg/g) treatments at depth 3. 

Municipal tap water treatments at depth 1 (185.6±17.0 µg/g) and depth 2 (153.7±28.1 

µg/g) were not significantly different from the WWTP (146.5±18.6 µg/g), the municipal tap 

water (153.7±28.1 µg/g), and gray water (211.1±29.7 µg/g) treatments at depth 2, and the 
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WWTP (138.1±4.2 µg/g), the municipal tap (122.4±22.1 µg/g), and the gray water (144.9±19.2 

µg/g) treatments at depth 3.  

The gray water treatment at depth 1 (308.3±32.1 µg/g) was significantly higher than all 

other treatments except the WWTP at depth 1 (267.6±20.9 µg/g) and the saline treatments at 

depth 2 (368.5±28.4 µg/g) and depth 3 (347.1±35.2) µg/g. The gray water treatment at depth 2 

(211.1±29.7 µg/g) was not significantly different from the gray water treatment at depth 3 

(144.9±19.2 µg/g). As the soil gets deeper, there is an overall trend of decreasing Na 

concentrations.
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 Figure 7. Average soil Na among depth and treatments. Different letters indicate significant 

difference (p <0.05 Tukeys HSD post-hoc test). Error bars are the standard deviation of the 

mean. Values above each bar indicate mean and standard deviation. 
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2.4.1.2 Copper 

The only significant difference in Cu was at depth 2. The municipal tap water treatment 

had the significantly highest concentration of Cu (0.58±0.21). 

 

 
  

 Figure 8. Average soil Cu among depth and treatments. Different letters indicate significant 

difference (p <0.05 Tukeys HSD post-hoc test). Error bars are the standard deviation of the 

mean. Values above each bar indicate mean and standard deviation. 
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2.4.2 Date Series of Soil Chemistries 

 Because of there being only a few depth by treatment interactions, the depths were 

pooled together for each sampling event. The soil chemistries were examined at both dates to see 

if there were any significant date by treatment interactions (Table 6). The null hypothesis (HO-4) 

was rejected. There was no date by treatment interaction for pH, EC, NO3-N, NH4-N, PO4-P, Ca, 

Na, Mg, K, B, P, Fe, Zn, S, Mn, and SAR. The hypothesis (H4) was accepted. Salinity, DOC, 

TDN, DON, Cu, and ESP had significant date by treatment interactions (Figure 9-13).



viii 

 

Table 6. Effect of date, irrigation treatment, and interaction of date*treatment on soil chemistry. Values in bold indicate a significant 

effect of date*treatment at p < 0.05, those not bolded indicate p > 0.05. 

  pH EC SALINITY 
NO3-

N 

NH4-

N 
PO4-P DOC TDN DON Na Ca 

 

Date <0.001 <0.001 <0.001 <0.001 <0.001 0.072 <0.001 <0.001 <0.001 0.207 0.164  

Treatment <0.001 <0.001 <0.001 0.001 0.886 0.553 0.003 0.023 0.109 <0.001 0.047  

Date*Treat 0.649 0.185 0.016 0.788 0.215 0.834 0.002 0.006 0.001 0.540 0.556  

  Mg K B S P Fe Zn Cu Mn SAR ESP 
 

 

Date <0.001 0.439 0.051 0.019 0.928 <0.001 0.008 0.600 0.148 0.261 0.584  

Treatment 0.036 0.274 0.563 <0.001 0.101 0.335 0.850 0.069 0.153 <0.001 <0.001  

Date*Treat 0.640 0.562 0.735 0.356 0.217 0.933 0.612 0.049 0.067 0.262 0.041  



viii 

 

2.4.2.1 Salinity 

 There were no significant differences in soil salinity for the WWTP (0.05±0.01 ppt), RO 

(0.03±0.01 ppt), gray (0.04±0.01 ppt), and municipal tap (0.04±0.01 ppt), water treatments in the 

November sampling and the WWTP (0.07±0.00 ppt), RO (0.06±0.01 ppt), gray (0.05±0.02 ppt), 

municipal tap (0.08±0.01ppt), water treatments for the December sampling. The WWTP 

(0.07±0.00), and the municipal tap (0.08±0.01 ppt), water irrigated soil had significantly higher 

salinity than the RO (0.03±0.01 ppt), gray (0.04±0.01 ppt), and municipal tap (0.08±0.01 ppt), 

irrigated soils. The saline water irrigated soils for both sampling dates had the significantly 

highest concentrations of salinity: November (0.12±0.02 ppt), December (0.12±0.01 ppt; Figure 

9).   
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Figure 9. Average soil salinity among date and treatments. Bars with the same letter are not 

significantly different between months based on Tukey’s HSD (p < 0.05). Error bars denote 

standard deviation of the mean. Values above bars indicate mean (top) and standard deviation 

(bottom).  
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2.4.2.2 Dissolved Organic Carbon 

The DOC for the WWTP treatment at the December sampling (432.7±49.0 μg/g) was 

significantly greater than the WWTP (284.2±53.2 μg/g), RO (267.1±26.5 μg/g), gray 

(255.5±45.3 μg/g), municipal tap (266.3±53.9 μg/g), saline (256.0±46.0 μg/g) treatments at the 

November sampling. The DOC for the WWTP for the December sampling was not significantly 

different than any other treatment at the December sampling. The DOC for the WWTP 

(284.2±53.2 μg/g) treatment at the November sampling was not significantly different than any 

other treatment at the November sampling. The DOC for the WWTP (284.2±53.2 μg/g) 

treatment for November was significantly lower than the municipal tap (472.3±54.8 μg/g) and 

saline water (520.5±14.4 μg/g) treatments at the December sampling. 

 The DOC for the RO treatment at the December sampling (359.9±45.3 μg/g) was 

significantly lower than the municipal tap (472.3±54.8 μg/g), and saline water (520.5±14.4 μg/g) 

treatments for the December sampling and significantly greater than the gray (255.5±45.3 μg/g), 

and saline water (256.0±46.0 μg/g) treatments for the November sampling. The DOC for the RO 

treatment at the November sampling (359.9±45.3 μg/g) was not significantly different from any 

other treatment for the November sampling but significantly lower than the municipal tap 

(472.3±54.8 μg/g), and saline water (520.5±14.4 μg/g) treatments for the December sampling. 

 The DOC for the gray water treatment at the December sampling (369.1±9.7 μg/g) was 

significantly lower than the saline water (520.5±14.4 μg/g) treatment for December sampling and 

significantly greater than the gray (255.5±45.3 μg/g) and saline water treatments for the 

November sampling (256.0±46.0 μg/g). The DOC for the gray water treatment at the December 

sampling (369.1±9.7 μg/g) was not significantly different from both municipal tap water 

treatments at the November (266.3±53.9 μg/g) and the December (472.3±54.8 μg/g) samplings. 
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The DOC for the gray water treatment at the November sampling (255.5±45.3 μg/g) was 

significantly lower than all other treatments in the December sampling and was not significantly 

different from any treatment in the November sampling. 

 The DOC for the municipal tap water treatment at the December sampling (472.3±54.8 

μg/g) was significantly greater than both the municipal tap (266.3±53.9 μg/g) and saline 

(256.0±46.0 μg/g) water treatments for the November sampling. The DOC for the municipal tap 

water treatment for the December sampling (472.3±54.8 μg/g) was not significantly different 

from the saline water treatment for the December sampling (520.5±14.4 μg/g). 

 The DOC for the saline water treatment at the December sampling (520.5±14.4 μg/g) was 

significantly greater than all other treatments at each sampling date except for the WWTP 

(432.7±49.0 μg/g) and municipal tap (472.3±54.8 μg/g) water treatments for the December 

sampling (Figure 10).  
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Figure 10. Average soil DOC among date and treatments. Bars with the same letter are not 

significantly different between months based on Tukey’s HSD (p < 0.05). Error bars denote 

standard deviation of the mean. Values above bars indicate mean (top) and standard deviation 

(bottom). 
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2.4.2.3 Total Dissolved Nitrogen 

The TDN concentrations for all treatments in the November sampling were not 

significantly different; the TDN concentrations for all treatments in the December sampling were 

not significantly different. The TDN in all treatments for the December sampling was 

significantly greater than their counterparts in the November sampling (Figure 11).  

 

Figure 11. Average soil TDN among date and treatments. Bars with the same letter are not 

significantly different between months based on Tukey’s HSD (p < 0.05). Error bars denote 

standard deviation of the mean. Values above bars indicate mean (top) and standard deviation 

(bottom). 
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2.4.2.4 Dissolved Organic Nitrogen 

There were no significant differences in DON concentrations between any of the 

treatments for the November sampling. The saline treatment (50.3±4.8 μg/g) for the December 

sampling had the significantly greatest concentration of DON with the except of the municipal 

tap (47.0±5.4 μg/g) and the WWTP (44.6±5.8 μg/g) treatments for the December sampling. The 

saline water treatment for the November sampling (21.7±4.2 μg/g) was significantly lower than 

the WWTP (44.6±5.8 μg/g) , RO (34.6±5.2 μg/g), gray (36.3±2.9 μg/g), and municipal tap 

(47.0±5.4 μg/g) water treatments for the December sampling.  

The WWTP treatment (23.2±4.5 μg/g) DON concentration for the November sampling 

was significantly lower than the WWTP (44.6±5.8 μg/g), gray water (36.3±2.9 μg/g), and the 

municipal tap (47.0±5.4 μg/g) for the December sampling. The WWTP for the December 

sampling (44.6±5.8 μg/g) was significantly greater than the RO (27.6±5.1 μg/g), gray (23.5±5.2 

μg/g), municipal tap (22.2±2.8 μg/g), and saline (21.7±4.2 μg/g) water treatments for the 

November sampling. The WWTP for the December sampling was not significantly different 

from the RO (34.6±5.2 μg/g), gray (36.3±2.9 μg/g), and municipal tap (47.0±5.4 μg/g) for the 

December sampling.  

The RO treatment (27.6±5.1 μg/g) DON concentration for the November sampling was 

significantly lower than the municipal tap (47.0±5.4 μg/g) water treatment for the December 

sampling. The RO treatment for the November sampling was not significantly different from the 

RO (34.6±5.2 μg/g) and gray water (36.3±2.9 μg/g) treatments for the December sampling. The 

RO treatment for the December sampling was significantly greater than the municipal tap 

(22.2±2.8 μg/g) and saline (21.7±4.2 μg/g) water treatments for the November sampling and 

significantly lower than the municipal tap (47.0±5.4 μg/g) for the December sampling. 
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The gray water treatment (23.5±5.2 μg/g) DON concentration for the November sampling 

was significantly lower than the gray water (36.3±2.9 μg/g) and municipal tap (47.0±5.4 μg/g) 

water treatment for the December sampling. The gray water treatment (36.3±2.9 μg/g) for the 

December sampling was significantly greater than the municipal tap (22.2±2.8 μg/g) and saline 

(21.7±4.2 μg/g) water treatments for the November sampling. The gray water treatment for the 

December sampling was not significantly different for the municipal tap (47.0±5.4 μg/g) for the 

December sampling. 

The municipal tap (22.2±2.8 μg/g) water treatment for the November sampling was 

significantly lower than the saline water (50.3±4.8 μg/g) treatment for December sampling 

(Figure 12).  
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Figure 12. Average soil DON among date and treatments. Bars with the same letter are not 

significantly different between months based on Tukey’s HSD (p < 0.05). Error bars denote 

standard deviation of the mean. Values above bars indicate mean (top) and standard deviation 

(bottom). 
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2.4.2.5 Copper 

 The Cu concentration for the WWTP treatment in the November sampling (0.9±0.9 μg/g) 

was significantly greater than the RO (0.12±0.0 μg/g), gray (0.2±0.0 μg/g), municipal tap 

(0.2±0.1 μg/g), and saline (0.2±0.1 μg/g) water treatments for the November sampling. The Cu 

concentration for the WWTP in the November sampling was not significantly different from the 

WWTP (0.3±0.0 μg/g), RO (0.3±0.0 μg/g), gray (0.4±0.1 μg/g), municipal tap (0.3±0.0 μg/g), 

and the saline (0.3±0.0 μg/g) water treatments for the December sampling. There were no 

significant differences in Cu concentrations between the treatments in the November samplings 

and their December counterparts with the exception of WWTP in the November sampling 

(Figure 13).   
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Figure 13. Average soil Cu among date and treatments. Bars with the same letter are not 

significantly different between months based on Tukey’s HSD (p < 0.05). Error bars denote 

standard deviation of the mean. Values above bars indicate mean (top) and standard deviation 

(bottom). 
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2.4.2.6 Exchangeable sodium percentage 

 There were no significant differences in ESP between the WWTP (39.3±5.4 %), 

municipal tap, (39.2±7.0 %), and saline (52.3±13.1 %) water treatments for the November 

sampling and the WWTP (39.5±3.9 %), gray (37.7±30 %), municipal tap (48.6±7.3 %), and 

saline (43.2±7.5 %) water treatments for the December sampling. The saline water treatment 

ESP from the November sampling and the municipal tap water treatment ESP from the 

December sampling were significantly higher than the RO treatments at the November 

(17.1±8.1%) and December (12.2±1.9 %) samplings and the gray water (27.0±8.8 %) treatment 

in the November sampling. RO treatments had the significantly lowest ESP in comparison with 

the other treatments at each sampling date with the exception of the gray water treatment at the 

November sampling (Figure 14). 
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Figure 14. Average soil ESP among date and treatments. Bars with the same letter are not 

significantly different between months based on Tukey’s HSD (p < 0.05). Error bars denote 

standard deviation of the mean. Values above bars indicate mean (top) and standard deviation 

(bottom). 
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2.4.3 Treatment Main Effect on Soil Chemistries 

 After examining the different interactions between depth by treatment and date by 

treatment, the treatment main effect on soil treatments was examined by pooling the data from 

the two sampling dates: November and December. Based on the univariate analysis, there was a 

significant treatment impact on pH, EC, NO3-N, Na, Ca, Mg, S and SAR. One-way analysis of 

variance (ANOVA) was performed with a post hoc Tukey (HSD) test on nutrients to determine 

there was an irrigation treatment main effect. However, if an interaction was discussed for a 

nutrient in the previous section then it is not included in this section. ANOVA showed no 

significant differences in Mg or NO3-N concentrations among the five different irrigated soils so 

it will not be discussed in this section.  
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Table 7. Main effect of treatment on soil chemistry. Values in bold indicate a significant effect of treatment at p < 0.05, those not 

bolded indicate p > 0.05.  

 

  pH EC SALINITY NO3-N NH4-N PO4-P DOC TDN DON Na Ca 

Date <0.001 <0.001 <0.001 <0.001 <0.001 0.072 <0.001 <0.001 <0.001 0.207 0.164 

Treatment <0.001 <0.001 <0.001 0.001 0.886 0.553 0.003 0.023 0.109 <0.001 0.047 

  Mg K B S P Fe Zn Cu Mn SAR ESP  

Date <0.001 0.439 0.051 0.019 0.928 <0.001 0.008 0.600 0.148 0.004 0.004 

Treatment 0.036 0.274 0.563 <0.001 0.101 0.335 0.850 0.069 0.153 <0.001 <0.001 
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2.4.3.1 pH 

 The pH levels in the WWTP (7.55±0.24), municipal tap (7.64±0.17), and gray water 

treatments (7.66±0.18) were not significantly different from the pH levels in the RO and the 

saline water treatments. The RO and saline water treatments had significantly different pH 

levels. The RO treatment had a significantly lower (7.43±0.25) pH level than the saline water 

treatment (7.79±0.19; Figure 15). 

 

Figure 15. Average soil pH among irrigation treatments. Different letters indicate significant 

difference among treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard 

deviation of the mean. Values above bars indicate mean and standard deviation. 
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2.4.3.2 EC 

 Soil EC ranged from 0.09±0.02 dS m-1 for the RO treatment; 0.10±0.02 dS m-1  for the 

municipal tap treatment; 0.12±0.02 dS m-1 for the WWTP treatment; 0.12±0.03 dS m-1 for the 

gray water treatment; and 0.24±0.03 dS m-1 for the saline water treatment. There was no 

significant difference in EC between the WWTP, RO, municipal tap, and gray water treatments. 

Saline had the significantly greatest soil EC (Figure 16). 

The field readings of EC also reflect these similar results. The saline treatment had the 

significantly greatest EC concentrations for both depths at the study plot. There were no 

significant differences between the WWTP, RO, municipal tap, and gray water treatments for 

both depths at the study site (Table 8). 
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Figure 16. Average soil EC among irrigation treatments. Different letters indicate significant 

difference among treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard 

deviation of the mean. Values above each bar indicate mean and standard deviation. 
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Table 8. Average field EC at two soil depths. Different letters indicate significant difference 

among treatments at p <0.05 (Tukeys HSD post-hoc test). Values indicate mean and standard 

deviation. 

Treatment Depth 

Average 

Soil EC St. Dev 

 cm µS/cm  

WWTP 
2.54 

7.62 

909.2a 

580.7A 

89.6 

10-66 

Saline 
2.54 

7.62 

1918.4b 

1304.3B 

610.4 

15-36 

RO 
2.54 

7.62 

647.3a 

364.3A 

60.4 

7.62 

Gray 
2.54 

7.62 

910.2a 

538.6A 

102.6 

13-71 

MTW 2.54 

7.62 

880.3a 

540.8A 

209.0 

15-56 

 

  



 

 69 

2.4.3.3 Calcium 

Soil Ca concentrations ranged from 135.59±55.63 μg/g for the gray treatment; 

141.85±43.44 μg/g for the WWTP; 172.41±55.97 μg/g for the RO treatment; 172.41±187.36 

μg/g for the municipal tap treatment; and 342.06±241.03 μg/g for the saline water treatment. The 

only significant difference in Ca concentration was between the gray water and saline water 

irrigated soils. The saline water irrigated soil had a significantly greater concentration of Ca than 

the gray water irrigated soil (Figure 17). 

 

Figure 17. Average soil Ca among irrigation treatments. Different letters indicate significant 

difference among treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard 

deviation of the mean. Values above individual bars indicate mean and standard deviation. 
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2.4.3.4 Sodium 

There were no significant differences in Na concentrations between soils that had been 

irrigated with the WWTP, municipal tap, and the gray water treatments. The saline irrigated soil 

had significantly higher concentration of Na, 403.48±90.75  μg/g while the RO irrigated soil had 

significantly lower concentration of Na, 49.17±14.45 μg/g. Soil Na ranged from 183.75±21.27 

μg/g for WWTP, 49.17±14.45 μg/g for RO, 132.43±30.51 μg/g for municipal tap, 190.42±43.93 

μg/g for gray water, and 403.48±90.75 μg/g for saline water (Figure 18). 

 

Figure 18. Average soil Na among irrigation treatments. Different letters indicate significant 

difference among treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard 

deviation of the mean. Values above each bar indicate mean and standard deviation. 
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2.4.3.5 Sulfur (S) 

Soil S concentrations ranged from 16.10±5.62 for the RO treatment; 13.63±1.69 μg/g for 

the municipal tap treatment; 17.71±1.55 μg/g for the WWTP treatment; 18.19±3.65 for the gray 

water treatment; and 24.74±6.71 μg/g for the saline water treatment. There were no significant 

differences among the WWTP, RO, the municipal tap, and gray water treatments. The saline 

water treatment had the significantly greatest soil S concentration (Figure 19).   

 

Figure 19. Average soil S among irrigation treatments. Different letters indicate significant 

difference among treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard 

deviation of the mean. Values above each bar indicate mean and standard deviation. 
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2.4.3.6 SAR 

 There were no significant differences in SAR between the WWTP (1.16±0.18) and the 

municipal tap (0.83±0.23) and gray water (1.32±0.38) irrigated soils. Also, there were no 

significant differences in SAR between the RO (0.30±.12) and municipal tap water irrigated 

soils. RO treatment had significantly lower SAR when compared to the WWTP, gray water, and 

saline water irrigation treatments. Saline had a significantly higher SAR than all other irrigation 

treatments (2.10±0.70; p < 0.05; Figure 20). 

  

Figure 20. Average soil SAR among irrigation treatments. Different letters indicate significant 

difference among treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard 

deviation of the mean. Values above each bar indicate mean and standard deviation. 
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2.4.3.7 Time Series of Turfgrass Clippings 

 A multivariate analysis of variance with two factors was conducted to determine if there 

was a significant effect of date, treatment, or an interaction between date and treatment on 

clipping biomass. There was a significant date x treatment interaction on clipping biomass (p = 

0.045). Where there was a significant date x treatment interaction, parameters were presented 

separately by sampling date, and an ANOVA was performed to examine if there was a 

significant treatment main effect at each sampling date. The null hypothesis, HO-5, was rejected. 

Treatment had no significant effect on clipping biomass for sampling dates 1, 3, and 5. The 

hypothesis, H5, was accepted. At sampling date 2, the clipping biomass was significantly larger 

for the RO treatment (2.71±0.18 g m2 per day) relative to the saline water treatment (1.90±0.25 g 

m2 per day; Figure 21). At sampling date 4, the clipping biomass was significantly larger for the 

WWTP treatment (3.57±0.37 g m2 per day) relative to the gray water treatment (2.33±0.44 g m2 

per day; Figure 22). 
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Figure 21. Analysis of variance for treatment main effect on grass clippings during sampling 2, 

29 August 2016, of the study. Different letters indicate significant difference among treatments 

at p < 0.05 (Tukeys HSD post-hoc test). Error bars are the standard deviation of the mean. 

Values above each bar indicate mean and standard deviation. 
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Figure 22. Analysis of variance for treatment main effect on grass clippings during sampling 4, 

24 October 2016, of the study. Different letters indicate significant difference among treatments 

at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard deviation of the mean. Values 

indicate mean and standard deviation.
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2.4.3.8 Time Series of Percent Green Coverage 

 A multivariate analysis of variance with two factors was conducted to determine if there 

was a significant effect of date, treatment, or an interaction between date and treatment on 

percent green cover. There was a significant date x treatment interaction on percent green cover 

(p = 0.015).  Where there was a significant date x treatment interaction parameters were 

presented separately by sampling date, and an ANOVA was performed to determine if there was 

a significant treatment main effect at each sampling date. Treatment had no significant effect on 

percent green cover for sampling dates 1, 2, 3, and 5. At sampling date 4, the percent of green 

coverage was significantly greater for the RO (59.2±5.6 %) and gray water treatments (55.2±1.2 

%) relative to the WWTP treatment (37.2±8.9 %; Figure 23).  

 

Figure 23. Analysis of variance for treatment main effect on percent green cover during 

sampling 4, 27 October 2016, of the study. Different letters indicate significant difference among 
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treatments at p <0.05 (Tukeys HSD post-hoc test). Error bars are the standard deviation of the 

mean. Values indicate mean and standard deviation. 

2.4.3.9 Solvita CO2-C Burst test  

A multivariate analysis of variance with two factors was applied to the data to determine 

if there was a significant effect of treatment, depth or an interaction between treatment and depth 

on CO2 respiration. There was no significant depth by treatment interaction (Table 9).  A one-

way ANOVA was performed with a post hoc Tukey (HSD) test to determine there was an 

irrigation treatment main effect on microbial activity (p < 0.05). The null hypothesis, HO-6 was 

failed to be rejected. There were no significant differences in soil microbial activity due to 

irrigation treatments (Table 9). The hypothesis H6 was rejected.   

 

Table 9. Effect of depth, treatment, and interaction of depth*treatment on released CO2-C. 

Values in bold indicate a significant effect of date*treatment at p < 0.05, those not bolded 

indicate P > 0.05. 

  Soil CO2 

Depth <0.001 

Treatment 0.044 

Depth*Treat 0.6413 
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2.4.3.10 Fungal Species Percentage Analysis 

 To determine if there were any significant differences in fungal community composition, 

PERMANOVA and ANOSIM tests were performed on species percentages. The fungal 

community structure was estimated using Bray-Curtis distances and visualized it using principal 

coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (nMDS) using 

dissimilarity matrices. 

 Based on the ANOSIM results, there were no statistically significant differences in fungal 

community composition (R = -0.027, p = 0.674) in all five water treatments (Table 10). 

Similarly, PERMANOVA results showed no significant treatment effect on fungal community 

composition (p = 0.431; Table 11). 

Table 10. Result of ANOSIM pairwise comparison of fungal species percentages associated with 

the water treatments at the end of October. P < 0.05. 

  WWTP Saline RO Gray MTW 

WWTP -     

Saline 0.4426 -    

RO 0.9467 0.8227 -   

Gray 0.256 0.3706 0.5126 -  

MTW 0.339 0.5081 0.8212 0.3466 - 

 

Table 11. Result of PERMANOVA pairwise comparison of fungal species percentages 

associated with the water treatments at the end of October. P < 0.05. 

  WWTP Saline RO Gray MTW 

WWTP -     

Saline 0.7967 -    

RO 0.8268 0.7785 -   

Gray 0.2571 0.3245 0.2911 -  

MTW 0.1941 0.3222 0.4915 0.3406 - 
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Nonmetric multidimensional scaling (nMDS) plot was created using the Bray-Curtis 

distance matrices for relative abundances of species percentages in the different water treatments 

at the end of October. Fungal community composition showed no significant differences 

between the five water treatments (Figure 24). Among the water treatments, only saline showed a 

slightly dissimilarity compared to the other treatments. Principal coordinate analysis (PcoA) plot 

was created using the Euclidean distance matrices to visualize the similarities or dissimilarities 

of the species percentages in the different water treatments (Figure 25). The null hypothesis, H0-7 

was failed to be rejected, there were no significant differences in fungal diversity among 

treatments. The hypothesis H7 was rejected. 
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Figure 24. Nonmetric multidimensional scaling (NMDS) of species percentages in soil irrigated 

with WWTP, RO, municipal tap, gray, and saline water.  
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Figure 25. Principal coordinate analysis (PcoA) of species percentages in soil irrigated with 

WWTP, RO, municipal tap, gray, and saline water.  
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2.5. Discussion 

Due to declining volumes of fresh and groundwater on the planet countries are examining 

the effect of alternative water for irrigating municipal landscapes (Watkins, 2006).  This study 

examined the effect of alternative water sources for irrigating turfgrass on soil chemistry, 

turfgrass growth and soil microbial communities. 

2.5.1 Alternative water sources 

 The intention of the study was to assess the effect of sodic, saline, treated wastewater 

effluent and a gray water on soil chemistry under turfgrass, turfgrass growth and soil fungi as 

well as CO2 evolution from the soil. The sodic water was the municipal tap water in the city, 

which had a SAR of 30.3±0.2 and ESP of 98%.  The gray water was the municipal tap water 

with the addition of tide detergent and this brought the SAR up to 31.0±1.3 with an ESP of 98%.  

The treated wastewater effluent is derived from the city’s municipal water so expectations were 

that it would have a similar SAR and ESP and additional NO3-N and PO4-P; the SAR of this 

water was 15.7±0.5 and ESP was 92±0.28%.  The saline water, created by using “instant ocean” 

had a relatively high SAR of 18.3±0.6 and ESP of 79±0.50% which, although the electrical 

conductivity was high put it in the realms of sodic water rather than saline water in terms of its 

pH, SAR and %EC (Davis et al. 2007).  The RO water was not entirely pure water and had a 

SAR of 2.5±0.1 and ESP of 92±0.5% illustrating the difficulty of sodium removal by reverse 

osmosis systems.  Knowledge of SAR and ESP input values helps in the understanding of the 

effects these alternative irrigation sources have on soils and their microbial function and activity, 

as well as the chemistry and effect on turfgrass quality. 
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2.5.2 Water extractable soil chemistry 

2.5.2.1 Dissolved Organic Carbon 

 Soils irrigated with treated wastewater effluent typically have higher concentrations of 

DOC than soils irrigated with freshwater sources (Jueschke et al., 2008). Jueschke et al. (2008) 

investigated the use of freshwater and treated wastewater effluent over a number of years on 

soils underneath orchard and field crops: corn, sorghum, grapefruit, avocado and cotton soils in 

Israel. They found that the DOC concentrations in freshwater irrigated soil ranged from 26.40 to 

22.21 μg/g (December 2002, June 2003); and the DOC concentrations in treated wastewater 

effluent soil ranged from 51.52 to 47.52 μg/g (December 2002, June 2003). Overall, they found 

that DOC increased in in soils when irrigated with treated wastewater effluent in the short term 

but in the long-term DOC decreased. This may be a result of high sodium content in the 

wastewater effluent which in the long term allowed the percent C to decline and thus the 

extractable DOC. The concentrations reported by Jueschke et al. (2008) were much lower than 

the present studies’ concentrations resulting from irrigation of turfgrass with alternative water 

sources which ranged from 284.2 to 432.7 μg/g  for treated effluent,  267.1 to 359.9 μg/g for RO, 

255.5 to 369.1 for gray water, 266.3 to 472.3 for municipal tap water, and 256.0 to 520.5 μg/g for 

saline water. One reason for this discrepancy may be the way the soils were extracted in the two 

studies, which can make a large difference in DOC recovery (Carillo-Gonzalez et al. 2013). It 

would be expected that SAR of the Jueschke et al. (2008) municipal tap water and wastewater 

effluent derived from that tap water would be much lower than observed in the current as their 

water source was freshwater while mine was groundwater beneath marine clay.  Overall, we 

observed higher concentrations of DOC in treated effluent irrigated soils than in the RO treated 

soils although concentrations were not significantly higher. We also observed higher 
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concentrations in DOC in December versus earlier months. To tease apart the reasoning behind 

the difference in DOC in the present study and that of Jueschke et al. (2008) we turned to a prior 

study, Steele and Aitkenhead-Peterson (2013), examined the effect of different potable water 

irrigation chemistry across the State of Texas on water extractable DOC and DON.  They 

reported that as the SAR of the irrigation water increased then the extractable DOC also 

increased.  It is likely that the irrigation water used in the Jueschke et al. (2008) study had a 

lower SAR and that is why the current study DOC concentrations were higher. 

Another study by Rosa and Debska performed on soils under agricultural use in Poland 

(2018) found that CaCl2-extractable DOC concentrations in soils were changing throughout the 

year. They found that highest differences in organic carbon occurred in soils sampled in autumn 

(highest in November) and spring (lowest in March).  However, in the second year of the study 

they saw an inverse dependence with higher concentrations of DOC in the spring as compared 

with samples taken in late autumn, indicating that DOC was migrating deeper in the soils due to 

irrigation. The current study consisted of only one growing season of monitoring while the Rosa 

and Debska (2018) study consisted of two years. There is a possibility that more variations could 

have seen in the treatments if the study was for multiple growing seasons. The volume of rainfall 

vs volume of irrigation water would make a difference  

 In a study performed by Karavin et al. (2016) on Juglans regia L. in the Middle Black 

Sea Region of Turkey found that as salinity in irrigation water increased so did the litter 

decomposition rate. However, other studies in the literature have said the opposite: Roache et al. 

(2006) showed leaf mass loss caused by a decomposition decrease as a result of increasing 

salinity. In the current study, there were high sodium concentrations in the Instant Ocean in the 

saline solution (520.5 g/g) possibly causing an increase in litter decomposition which can be 
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responsible for the high concentration of DOC in the soil irrigated with the saline solution.  

Steele and Aikenhead-Peterson (2012) reported that more DOC was leached from senescent 

vegetation when exposed to higher SAR than those with lower SAR and that saline solution did 

not leach DOC at all. As the saline solution in the current study had a SAR of 18.3 and ESP 

(79%) and high pH expectations are that it was the concentration of sodium in the solution that 

had the effect of increasing DOC. 

The increase in DOC from October to November could be caused by an increase in 

organic matter. As turfgrass decomposes, nutrients increase in the soil providing energy for 

microbes. It has been noted that exudates released from plants are the major source of organic 

inputs into the rhizosphere called the rhizosphere effect (Rovira, 1965; Bertin et al., 2003; Jones 

et al., 2009). But, exudate from plant roots is typically very biodegradable unless an excess of 

nitrogen occurs (Aitkenhead-Peterson and Kalbitz 2005) which certainly may be the case in the 

WWTP irrigation treatment. Drake et al. (2012) found that exudates that contain C and N 

significantly increased microbial respiration, biomass, and the activity of exo-enzymes that 

decompose labile components of soil organic matter, while decreasing the activity of exo-

enzymes that degraded recalcitrant soil organic matter. From this perspective, the results in the 

current study support the increases in DOC during dormancy is a result of the cycling of plant 

biomass and exudates through microorganisms and very likely caused by high SAR of the 

irrigation solutions. 

2.5.2.2 Total dissolved nitrogen (TDN) and dissolved organic nitrogen (DON) 

 Studies have shown significant differences in TDN leachate among dates due to greater 

turfgrass assimilation of inorganic nitrogen during the warmer months versus cooler months 

(Wherley et al., 2009). Bermudagrass is considered a perennial warm-season grass and is most 
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active during the late spring and summer months. There is a natural competition for nutrients 

between plants and microbes. Wherley et al. (2009) conducted a study to determine the NO3-N 

uptake efficiency during both growth and dormancy cycles of Tifway Bermudagrass (Cynodon 

dactylon (L.) Pers. × C. transvaalensis Burtt Davy). Wherley et al. (2009) found that uptake was 

greatest during the summer months when the turfgrass was growing rapidly, and less than 80 to 

90% of NO3-N remained in the soil after the Bermudagrass became dormant in January. The 

total dissolved nitrogen concentrations in the soil chemistry from different treatments in the 

current study were not significantly different between treatments at each sampling date. The 

TDN concentrations in soil chemistry from the treatments in October were significantly lower 

than all treatments in November. Since TDN and DON follow the same trend and there was no 

significant date x treatment effect for inorganic nutrients, it can be assumed that DON is causing 

the significant differences in TDN for December sampling.  

 As the turfgrass activity decreased and its tissues begin to decompose, during the cooler 

temperatures in November, there was increased availability of DON along with DOC in the soil. 

DOC and DON exists in the soil in the form of amino acids and other precursors for more 

complex compounds such as chlorophyll, proteins, enzymes, hormones and nucleic acids 

(Carrow et al., 2001; Figure 25). Since there was not a pattern in rainfall, it can be assumed that 

DON concentrations in both samplings was not impacted by precipitation (Figure 26). Soil 

temperature has a great influence on nitrogen transformations (Nedwell, 1999). Nedwell (1999) 

performed a study on psychrophiles, mesophiles, and thermophiles at different temperatures. He 

found that affinity for organic and inorganic substrates decreases consistently as temperatures 

drop below the optimum temperature for growth. In the current study, there were lower 

temperatures during November, ranging from 20.6 to 8.3 C then in October, ranging from 



 

 87 

26.1 to 15.6 C. The temperatures are similar to the temperatures shown in Nedwell (1999) with 

his ranges showing greater affinity as temperatures approached 20 C.  If affinity for DON by 

microbes along with microbes themselves in the soil were decreased by the cooler temperatures 

in November, then this could explain why DON was significantly higher than October DON 

concentrations for various treatments.  
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Figure 25. Daily temperature for October – November. Red bars indicate dates soil samples collected. 

 

Figure 26. Daily precipitation for October – November. Red bars indicate dates soil samples collected. 
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2.5.2.3 pH 

 Soil pH can influence turfgrass and other plants by a variety of mechanism (Carrow et al., 

2001). In soils where pH is greater than 7.0, basic cations such as Ca, Mg, K, and Na dominate 

the exchange sites and OH- activity exceeds H+ activity (Carrow et al., 2001). The pH in soils 

from the different irrigation treatments were not significantly different with the exception being 

the saline irrigated soils were significantly greater than the RO water irrigated soil for pH. The 

pH levels in the current study ranged from 7.43 for RO to 7.79 for saline treatments, which are 

considered to be alkaline; however, nutritional stresses and impacts on microbial populations in 

alkaline soils are less common compared to acid soils (Carrow et al., 2001). Hayes et al. (1990) 

used potable well water and treated effluent water and saw an overall significant decrease in soil 

pH under both irrigation sources over the study period of 16 months. There was no date x 

treatment interaction on pH for the current study but that could be due to the study only being for 

one turfgrass growing season and only two soil samplings. 

2.5.2.4 Salinity and EC 

Multiple studies have examined the effects using of sewage, domestic or raw, on soil 

hydraulic properties (Hayes et al, 1990; Lado, and Ben-Hur, 2009). Hayes et al. (1990) 

investigated the use of secondary-treated effluent on soil chemistry under turfgrass soils for 16 

months in Tucson, Arizona. They found that effluent water results in increased concentrations of 

ions in the effluent irrigated plots versus the potable water irrigated plots. Their irrigation 

effluent and potable water quality EC ranges were 0.65-0.91 dS m-1 and 0.2-0.2 dS m-1, 

respectively. In the present study, the saline irrigated soils, had significantly higher EC 

(0.240.03 dS m-1) in the water extracts than the other irrigation treatments. These values were 

well below input irrigation values of 1.050.05 dS m-1 for gray water, 1.050.01 dS m-1 for 
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municipal tap, and 6.50.26 dS m-1 for saline, and 1.200.04 dS m-1 for WWTP effluent in the 

current study suggesting that the excess ions in solution had either leached beyond the root zone 

to a deeper, unmeasured depth, run off during a rain event or were taken up by the turfgrass. 

Similarly, to the previous study, Lado and Ben-Hur (2009) examined the impact of using 

secondary-treated effluents on hydraulic properties of semiarid and arid soils in various areas of 

Israel. The average EC of the effluents they used were 1.8 dS m-1 and 2.0 dS m-1. These EC 

values are higher than WWTP effluent values but lower than saline treatment values in the 

present study. They found that the EC and salinity values were higher in the effluent-irrigated 

soils at both topsoil and sub soil depths, ~1.5 and >4.0 m. and resulted in salt accumulation in the 

soils. However, another study found that soils irrigated with both the freshwater sourced 

municipal tap water and the effluent saw an overall decrease in salinity over the course of the 

study with an initial spike in the first year. In the current study, irrigating with saline water at 6 

dS m-1 resulted in higher soil salinity and EC due to greater input of salt ions as compared to, 

WWTP effluent, RO, gray water, and municipal tap water. The source of the salt ions was from 

Instant Ocean with the dominant four ions being chloride, sodium, magnesium and potassium 

(Table 1).  

Chavarri et al. (2019) also used Instant Ocean in their greenhouse study using 10 

commonly used cultivars representing warm-season turfgrass species. Salinity treatments were 

opposed on grasses for 10 weeks via subirrigation, followed by a 4-week freshwater recovery 

period. They saw Tifway (moderately tolerant) turfgrass quality decrease from 6.8 to 5.8 with 2.5 

dS m-1 salinity exposure and a greater decrease in turfgrass quality from 2.5, 2.7, 0.5 with 15 dS 

m-1, 30 dS m-1, and 45 dS m-1, respectively. Bermudagrass (Cynogon dactylon) salinity threshold 

is 4.3 dS m-1 (Carrow and Duncan, 2011). The highest EC values seen in the present study for 
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both the water-extractable EC and the EC at field site were 0.2 dS m-1 and 1.9 dS m-1, 

respectively. Based on the Carrow and Duncan (2011) salinity threshold, the salinity levels in the 

current study did not reach thresholds to cause any major impact on the turfgrass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

2.5.2.5 Sodium and SAR 

Mancino and Pepper (1992) examined the use of secondary sewage effluent and how it 

affected soil quality. They found that effluent water resulted in significantly higher soil sodium 

levels than potable water. The sodium of the effluent and potable irrigation waters ranged from 

80 to 94 mg L-1 and 14 to 30 mg L-1, respectively in their study (Mancino and Pepper, 1992). The 

ranges observed by Mancino and Pepper (1992) are lower than the values sodium and SAR 

measured in the present study for input irrigation water. The sodium values in the present study 

were 6.25 mg L-1 for RO, 251.89 mg L-1 for treated effluent, 251.89 mg L-1 for gray water, 

234.41 mg L-1 for municipal tap, and 1021.70 mg L-1 for saline, with the significantly highest 

concentrations of Na being in soils irrigated with treated saline water then gray, municipal tap, 

and WWTP effluent with RO irrigated soils being significantly lowest. In the current study, it is 

possible that the high concentrations of sodium in the soil irrigated by saline water is attributed 

to sodium chloride being the main ingredient in Instant Ocean rather than the high sodium 

domestic tap irrigation water. Instant Ocean was mixed with RO and not municipal tap water. 

The inputs of sodium for WWTP effluent, municipal tap, and gray water, while significantly 

higher than RO, were not significantly differently when compared to the saline solution. 

However, the significant difference in sodium between WWTP effluent, municipal tap, and gray 

compared to the RO water treatments can be attributed to the high sodium domestic tap water 

used in each treatment.   
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Several studies have investigated the effect of using either alternative water sources for 

irrigating turfgrass or other crops on soil chemistry (Holgate et al. 2011; Chaganti, et al., 2020) 

or differently sourced (ground vs freshwater) on soil chemistry beneath turfgrass (Steele and 

Aitkenhead-Peterson 2012). Chaganti et al. (2020) investigated the effects of using freshwater 

derived municipal tap water and treated municipal effluent on soil chemistry under sorghum over 

a two-year period in El Paso, Texas. They examined the chemical properties of the soil at two 

different depths: 0-15 and 15-30 cm. They observed an increase in the SAR in both types of 

water irrigated soils, which is attributed to the accumulation in the lower layers as a result of 

leaching from the surface layer. However, soils treated with gypsum saw decreases in SAR with 

the addition of Ca in the soil, a commonly recommended method for treating sodic soils (Davis 

et al. 2007) where Ca will displace Na from soil exchange sites and allow it to leach further 

down the soil profile. Chaganti et al. (2020) reported that soil sodicity was significantly higher in 

soil effluent treated plots versus the fresh water derived tap water. For the present research, the 

Na concentrations were significantly higher in the saline treatment compared to the other 

treatments. In contrast with Chaganti et al. (2020), the current study saw an overall trend of 

significantly decreasing concentrations of Na as the soil became deeper. This could suggest a salt 

accumulation in topsoil as a result of Na adsorption on exchange sites thus replacing K, Mg and 

Ca and insufficient rainfall to leach the excess salt to deeper soil depths (Lado and Ben-Hur, 

2009). The high concentrations of sodium in the soil irrigated by saline water is more than likely 

attributed to sodium chloride being the main ingredient in Instant Ocean rather than the high 

sodium irrigation water since Instant Ocean was mixed with RO and not municipal tap water. 

In Holgate (2010) and Aitkenhead-Peterson et al. (2009) it was speculated that high DOC 

and DON concentrations in turfgrass soil in south-central Texas were most strongly related to 
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high sodium and bicarbonate in irrigation water. Bicarbonate was not included in the present 

study; however, the water extractable soil sodium concentrations ranged from 50.5 to 47.8 g/g 

for RO, 183.4 to 184.1 g/g for treated effluent, 111.0 to 153.9 g/g for gray water, 159.4 to 

221.4 g/g for municipal tap, and 405.4 to 401.6 g/g for saline water, with the highest 

concentrations being in soils irrigated with treated effluent, municipal tap, and saline water. In 

the current study, irrigated soils with the greatest concentrations of DOC also contained the 

greatest concentrations of sodium: saline, gray and WWTP irrigation treatments. The data 

supports the supports the correlation between sodium and DOC that both Holgate (2010) and 

Aitkenhead-Peterson et al. (2009) reported in their studies. 
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2.5.3 Secondary Nutrients 

2.5.3.1 Calcium 

 Turfgrasses are very efficient in taking up Ca and the soil contains a number of 

compounds in which Ca is a constituent. There are instances, when irrigation water is high in Na 

such as seawater irrigation, when the addition of Ca would be useful in enhancing salt tolerance 

of plants (Carrow et al., 2001). Albakawneh et al. (2016) examined the effects of the use of gray 

water on Jordan soil EC and soil quality parameters for two years. The average irrigation inputs 

for Ca for their study, 170 mg L-1, were higher than irrigation inputs in the current study with 

highest being 37.30 mg L-1 for saline and 9.59 mg L-1 for effluent. They saw an overall decrease 

in soil Ca after 2 years of using treated gray water. They attributed this decrease to the 

precipitation of calcium carbonates and the addition of carbonates from decomposition of 

organic material by microorganisms (Albakawneh et al. 2016). In the present study, the lowest 

concentration of Ca was seen in the gray water irrigated soils; however, carbonates were not 

analyzed so we cannot attribute the lowest Ca amounts to calcium carbonate precipitation.  

2.5.3.2 Sulfur 

 In the current study, the saline irrigated soils had the significantly highest concentrations 

of S and all other treatments were not significantly different. This could possibly be attributed to 

sodium sulfate being a main ingredient to Instant Ocean, which was used for the saline irrigation 

solution. Rodda et al. (2011) found that irrigation with either the hydroponic solution or gray 

water resulted in significantly higher concentrations of S than tap water irrigated soils. Turfgrass 

deficiencies are shown through symptoms of reduced shoot growth and yellowing of the leaf tip 

and turfgrass grown under high N are most susceptible to S deficiency (Carrow et al., 2001). 
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High S levels in the soil can lead to production of H2S, which can be phytotoxic, and the 

formation of FeS and MnS2 leading to a black coloration in the turfgrass (Carrow et al., 2001).  

2.5.4 Micronutrients 

Some of the micronutrients required for turfgrass growth and development are Fe, Mn, 

Zn, and Cu. Toxicities from excessive levels of Mn and Fe are common, but toxicities for Cu and 

Zn are more localized to areas contaminated by heavy metals from added soil amendments, 

airborne deposits from nearby industries and overapplication of micronutrient containing 

fertilizers (Carrow et al., 2001). The data results for Cu were highly variable across depths and 

date. For reference, only the municipal tap water treatment at depth 2 (2.5- 7.6 cm) was 

significantly different from all other treatments. Only the Cu concentration in the WWTP 

effluent irrigated soil for the November sampling was significantly higher than the other 

November treatments; all other treatments at each date were not significant. The standard 

deviations are also high for Cu making it difficult to draw conclusions.  However, it has been 

noted in study the Hayes et al. (1990) study that there was no significant influence of potable or 

effluent irrigation on soil extractable Cu concentrations. 

There were no significant differences in Fe, Zn, or Mn in the present study at any depth 

or between sampling dates. There was also no treatment main effect on any of these nutrients. 

The irrigation inputs contained very low levels of all three of the nutrients; they ranged between 

0.0.1-0.02 mg L-1 for Fe, 0.01-0.05 mg L-1 for Zn, and 0.01-0.01 mg L-1 for Mn. Mancino and 

Pepper (1992) and Hayes et al. (1990) both had low levels of inputs as well (<0.01 mg L-1). 

Hayes et al. (1990) reported that both potable and treated effluent increased Fe and Mn in the soil 

after 1.3 years but saw a decrease in Zn and no change in Cu. Mancino and Pepper (1992) 
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reported an increase in Fe and Mn after 3.3 years in both potable and treated effluent with Fe 

being higher in treated effluent irrigated soils. They reported no change in Zn.  

2.5.5 Clipping Biomass 

 Use of wastewater to irrigate turfgrass can significantly affect biomass produced and this 

is likely attributed the fertilizer effect of high NO3-N and PO4-P concentrations found in effluent. 

A study performed by Castro et al. (2011) saw greater phytomass yields in wastewater irrigated 

plots versus the potable water plots. They also saw no significant speeds of growth between the 

two irrigation treatments. Another study performed by Holgate (2010) saw the highest biomass 

production in bath water irrigated treatments and the lowest in the unfertilized tap water 

treatments. From their study, the bath water treatment had the highest inputs of Na while the 

treatment in the current study that had the highest inputs of Na was saline. However, the saline 

irrigated clipping biomass for the second sampling had the lowest Na concentration. This lack of 

clipping biomass could possibly be due to osmotic stress caused by high salt concentrations in 

the saline treatment (Dean et al., 1996). Evanylo et al. (2010) found no significant differences in 

biomass between potable and reclaimed water on bentgrass and bermudagrass during the 

growing season of the turfgrasses in 2004. The highest biomass at sampling 2, 29 August 2016, 

was the irrigated with WWTP and the lowest was irrigated with gray water. The highest biomass 

at sampling 4, 24 October 2016, was irrigated with RO and the lowest was irrigated with saline 

water. It was difficult to make any assumption as to why we were seeing different treatment 

effects since the sampling dates were not back to back. However, there was an overall decrease 

in average clipping biomass from sampling 2 to sampling 4 with the exception of gray water for 

sampling 4. Out of 5 sampling dates, these two were the only ones that showed significant 

differences. 
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2.5.6 Percent Green Cover 

 There have been multiple studies performed using the Sigma Scan images analysis to 

analyze percent green cover (Richardson et al., 2001; Hejl et al., 2016; Johnson and Leinauer, 

2004). Johnson and Leinauer (2004) examined warm and cool turfgrasses and their responses to 

different levels of irrigation water salinity and sprinklers versus drip irrigation. The three ranges 

of irrigation salinity were: potable water 0.6-1.2 dS m-1, high saline (geothermal) 3.1-5.0 dS m-1, 

and a 50/50 blended mix ranged from 2.0-3.0 dS m-1. For saline irrigated grasses, the highest 

percent green cover was for Seadwarf and Seaspray (paspalum cultivars) and the lowest was 

Bluegrass. Another study used chlorophyll instead of percent green cover and found that 

Bermudagrass had higher levels of chlorophyll than paspalum cultivars under high salinity levels 

(Kairmi et al., 2018). Out of all five sampling dates, only sampling 4, 27 October 2016, showed 

significant differences in percent green cover. The RO irrigated treatment reached almost 60% 

green coverage and gray water irrigated treatment reached 55% green cover.   

2.5.7 Soil Microbial Activity 

 There have been many studies performed using the Solvita CO2-Burst test to determine 

soil health and nutrient release (Qin et al., 2019; Moore et al., 2019; Bateman et al., 2019). Qin et 

al. (2019) used the Solvita CO2-Burst test to determine if the presence of humic substances could 

have a long-term influence on soil microbial activity in bell pepper rhizospheres. Humic 

substances are considered to be the chemical or biological decomposition products from plant are 

animal residuals (Qin et al., 2019). They found that although humic substances enhanced soil 

respiration they did significantly affect rhizosphere biomass (Qin et al. 2019). They also found 

that soil organic carbon did not correlate with soil respiration (Qin et al. 2019). These are similar 
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to the results of the current study. The soils irrigated with the saline treatment had the 

significantly highest DOC concentrations but there were no significant differences in soil 

released CO2. There was no significant treatment effect on the amount of CO2 released from 

microbes in the soil. However, there was a depth effect on CO2 released. As the soil became 

deeper, the less CO2 was released. In Engelhardt et al. (2018), they found that soil depth was the 

main factor in shaping differences among soil bacterial and fungal communities, where plant-soil 

microbial coupling is tightest.   

2.5.8 Fungal Community Composition 

 Soil microbes play key roles in ecosystems and influence a large number of important 

ecosystem processes, including nutrient acquisition, carbon cycling, nitrogen cycling, and soil 

formation (Van der Heijden et al., 2008). Mycorrhizal fungi (MF) provide resistance to disease 

and drought, and supply a range of limiting nutrients including N, P, Cu, Fe, and Z to the plant in 

exchange for carbon (Van der Heijden et al., 2008). Arbuscular mycorrhizal fungi are associated 

with two thirds of all land plants and are among the most abundant functional groups of soil 

microorganisms being present in almost any ecosystem investigated (Bender et al., 2014). The 

MF are present in soils as spores and hyphae in soil or as colonized roots. Arbuscular MF 

establish a mutual symbiosis with a turfgrass by developing a network of external hyphae that 

may extend the root surface area up to 40 times. This symbiotic relationship allows turfgrasses to 

explore a larger soil area and volume for nutrient uptake through the production of enzymes and 

excretions of organic substances (Visconti et al., 2020).  

  It has been reported that irrigation with treated wastewater could have the potential to 

decrease fungal diversity. Holgate et al. (2011) observed a significant decrease in fungal 

community 18:2 ω6c for all their irrigation treatments and a significant decrease in fungal 18:1 



 

 99 

ω9c for their municipal tap water and gray water irrigation treatments in a greenhouse study. A 

study performed by del Mar Alguacil et al. (2012) investigated the effects on long-term irrigation 

with freshwater and urban wastewater on AMF diversity in a semiarid orange-tree orchard in 

southeast Spain. Their soil samples consisted of five replicates of wastewater and freshwater 

rhizosphere soil samples. Using DNA analysis, del Mar Alguacil et al. (2012) reported greater 

diversity in AMF composition in freshwater irrigated soils compared to soils irrigated with 

wastewater. While the current study did not examine the AMF species specifically, we found no 

significant differences in fungal species among different irrigation water treatments. The 

difference in fungal community composition results between the current study and del Mar 

Alguacil et al. (2012) may be the time length of soil exposure to irrigation. Their study was 

conducted after 43 years of irrigation while the duration of the present study was 5 months. 

Another study by Chen et al. (2017) also found that irrigation with aquaculture wastewater could 

dramatically reduce soil microbial functional diversity. Chen et al. reported that increased soil 

salinity, especially Cl concentration caused a decrease in diversity indices and carbon source 

utilization (2017). Dang et al. (2019) determined that treated wastewater increased bacterial 

OTUs and inhibited fungal OTUs. There were no significant differences observed in the nMDS 

or PCoA of the DNA data suggesting that the water sources were not selective for the different 

soil fungal populations 
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CHAPTER III 

CONCLUSION 

3.1 Limitations to the study 

There were significant differences among soil chemistry which was a function of quality 

of irrigation water used. Higher concentrations of nutrients were detected in soils irrigated with 

saline water. Depth and date significantly affected soil chemistry. However, the data did not 

account for leaching due to rainfall, which could allow for variations among irrigation 

treatments. The study was also conducted during the rainy season in Central Texas, which allows 

for a high amount of leaching and a low amount of salt buildup. However, the study does not 

consider periods or seasons of low rainfall, allowing for salt buildup and a low amount of 

leaching. Furthermore, soils that contains excess salts can cause a decrease in microbial activity 

as a result of osmotic pressure and toxic ions (Yan et al., 2015).  

The soil sampling conducted occurred at the end of the growing season; no sampling 

occurred either throughout the growing season or during the dormant season. This limited 

sampling time does not allow for the confirmation of fungal community composition and 

diversity during the dormant season or early growing season. However, a study conducted by 

Bennett et al. (2013) demonstrated that fewer AMF species were able to colonize during the 

colder months, indicating that fungal diversity may actually be decreased during the turfgrass 

dormancy season. PCoA and nMDS analysis of the DNA species data showed no dissimilarities 

in fungal composition between treatments. 

The scope of the study is limited to the fungal community; therefore, the study will not 

fully represent the microbial community within the soil samples evaluated. There have been 

multiple studies performed that show the diversity of bacteria in soil to be very extensive and 
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some species of bacteria also have a symbiotic relationship with fungi (Torsvik et al., 1996; 

Nannipieri et al., 2002; Kung’u’ et al., 2008). 

3.2 Summary and Recommendations 

Sources of water for irrigation use in Texas urban soils have varied in recent years 

because of a decline in water supplies, an increase in urbanization, and frequent and persistent 

drought conditions. Treated wastewater effluent and recycled water sources containing low salt 

concentrations could be of importance in sustaining a freshwater supply. It can possibly be used 

as a fertilizer depending on its input nutrients. This study examined the effect of using alternative 

sources of water for irrigation of Tifway hybrid bermudagrass (Cynodon dactylon x C. 

transvaalensis) on soil chemistry, turfgrass growth and performance, microbial activity, and 

fungal community diversity.  

Based on the water quality guidelines for golf course irrigation set by the Golf Course 

Superintendents Association of America, the water sources used in this study would be adequate 

for municipal and landscape irrigation. None of the results in this study exceeded the ‘slight to 

moderate’ for degree of problem. While the saline irrigation treatment had an input EC of 6.51 

dS m-1, the soil EC at the field research site did not exceed 1.9 dS m-1, which is in the slight to 

moderate range for degree of problem (Harivandi, 2007). More studies are needed to more 

accurately determine what type of irrigation source would be best used for irrigation of 

bermudagrass. 
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