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ABSTRACT 

 

Children with speech sound disorders typically improve pronunciation quality by 

undergoing speech therapy, which must be delivered frequently and with high intensity to 

be effective. As such, clinic sessions are supplemented with home practice, often under 

caregiver supervision. However, traditional home practice can grow boring for children 

due to monotony. Furthermore, practice frequency is limited by caregiver availability, 

making it difficult for some children to reach therapy dosage. To address these issues, this 

dissertation presents a novel speech therapy game to increase engagement, and explores 

automatic pronunciation evaluation techniques to afford children independent practice. 

 The therapy game, called Apraxia World, delivers customizable, repetition-based 

speech therapy while children play through platformer-style levels using typical on-screen 

tablet controls; children complete in-game speech exercises to collect assets required to 

progress through the levels. Additionally, Apraxia World provides pronunciation feedback 

according to an automated pronunciation evaluation system running locally on the tablet. 

Apraxia World offers two advantages over current commercial and research speech 

therapy games; first, the game provides extended gameplay to support long therapy 

treatments; second, it affords some therapy practice independence via automatic 

pronunciation evaluation, allowing caregivers to lightly supervise instead of directly 

administer the practice. Pilot testing indicated that children enjoyed the game-based 

therapy much more than traditional practice and that the exercises did not interfere with 

gameplay. During a longitudinal study, children made clinically-significant pronunciation 
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improvements while playing Apraxia World at home. Furthermore, children remained 

engaged in the game-based therapy over the two-month testing period and some even 

wanted to continue playing post-study. 

The second part of the dissertation explores word- and phoneme-level 

pronunciation verification for child speech therapy applications. Word-level 

pronunciation verification is accomplished using a child-specific template-matching 

framework, where an utterance is compared against correctly and incorrectly pronounced 

examples of the word. This framework identified mispronounced words better than both 

a standard automated baseline and co-located caregivers. Phoneme-level 

mispronunciation detection is investigated using a technique from the second-language 

learning literature: training phoneme-specific classifiers with phonetic posterior features. 

This method also outperformed the standard baseline, but more significantly, identified 

mispronunciations better than student clinicians. 
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1. INTRODUCTION  

 

As children begin to speak, they commonly learn some speech sounds early during 

development, while other sounds take longer to acquire. According to the American 

Speech-Language-Hearing Association, children should generally be able to produce most 

speech sounds by the time they are four years old [1]. Children who cannot form sounds 

by the expected age may have a speech sound disorder (SSD) affecting the development 

of accurate speech sound and prosody production [1]. Children with SSDs may also 

struggle with phonological representation, phonological awareness, and print awareness, 

which can lead to difficulties learning to read or reading disabilities [2], and negatively 

impact communication skills development [3]. Organic SSDs have an identifiable cause, 

such as motor difficulties (e.g., dysarthria), structural issues (e.g., cleft palate), or sensory 

problems (e.g., hearing impairments), whereas functional SSDs have no known cause [4]. 

Prevalence estimates for SSDs are varied; some researchers report that anywhere between 

2% and 25% of children aged 5-7 may have an SSD [5], while others suggest that 

prevalence is closer to 1% of primary-school-aged children [6]. 

To improve speech production quality, children with SSDs typically undergo 

speech therapy with a trained speech-language pathologist (SLP) in a clinic environment. 

For speech therapy to be effective, treatments must be “frequent, high-intensity, 

individualized, and naturalistic” [7] so that children can practice new habits and skills [8]. 

However, scheduling appointments with SLPs can be logistically difficult [9-11]; children 

with SSDs constitute more than 40% of SL caseloads [12, 13]  and up to 70% of SLPs 
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have waiting lists [13], which slows access to services. To meet high dosage requirements, 

clinic-based interventions must be supplemented with considerable home practice, 

typically directed by primary caregivers (e.g., parents, guardians). However, home practice 

poses its own problems. First, therapy sessions based on worksheets and flashcards can be 

tedious for children. Second, caregivers often have busy schedules that make it challenging 

to supervise the required amount of therapy, which can decrease practice [14]. As such, 

this dissertation represents an effort to make speech therapy more engaging and decrease 

the time and skill burden on caregivers. 

A promising approach to address the tedious nature of speech therapy is to 

incorporate the practice into digital games. Digital therapy games can have a positive 

impact on child motivation and satisfaction [15], and have been shown to increase 

participant engagement and persistence [16, 17]. Most importantly, research has shown 

that computerized and tablet-based speech therapy interventions can be as effective as 

traditional interventions (e.g., worksheets, tabletop exercises) [18-23]. Children often 

enjoy using digital therapy interventions in short-term tests, and sometimes even play 

beyond the required time [24, 25]. However, applications often employ an arcade or casual 

game with simple play mechanics, which do not lend themselves to long periods of 

gameplay/speech practice and may quickly lose child interest [26, 27]. Accordingly, the 

first part of this dissertation presents the development and evaluation of a game designed 

for lengthy use. 

Although work has gone into increasing therapy motivation, close caregiver 

supervision is still typically required during practice. For example, many game-like 
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applications for speech therapy have been commercially developed and are available for 

purchase [28] (e.g., Apraxia Farm [29], Articulation Station [30], ArtikPix [31]); however, 

these commercial applications do not include automated production feedback, which 

means that the caregiver must monitor productions and provide appropriate feedback. A 

handful of speech therapy games include basic production feedback through word 

recognition [26, 32] or monitoring vocalization volume, pitch, and duration [33, 34], but 

much research on field-delivered pronunciation feedback for children is still in its infancy. 

Although mispronunciation detection research is widespread in the language-learning 

community, less attention has been paid to children with speech sound disorders. This is 

likely due to the inherent difficulty of processing child speech caused by normally-

occurring production inconsistencies [35] and the relative dearth of corpora containing 

error-annotated disordered speech from children. Some groups have explored processing 

disordered speech from children (e.g., Shahin et al. [36, 37], Dudy et al. [38, 39]), but it 

remains to be seen how these systems perform on field-collected disordered speech from 

children. This is especially important, as these systems must be robust enough to process 

child speech collected in children’s homes, which are typically imperfect recording 

environments. Therefore, the second part of this dissertation investigates child 

pronunciation verification with data collected under realistic home therapy conditions. 

To address the motivation and independence issues associated with home practice, 

this dissertation presents the development of Apraxia World, a tablet-based speech therapy 

game, and an investigation of automated pronunciation evaluation for speech therapy 

applications. This work is divided into three primary focuses: developing Apraxia World, 
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evaluating the game longitudinally, and examining speech recognition and 

mispronunciation detection performance on disordered speech from children. These 

developments are described across four manuscripts, which constitute Chapters 3 through 

6 in this document. The research goals and contributions from this dissertation are 

described below. 

1.1. Specific research goals 

This dissertation research contains three main objectives: 

1. Game development: Design and develop a speech therapy game for home practice 

based on clinician, caregiver, and child feedback from previous prototypes and 

update after pilot tests. 

2. Game evaluation: Conduct initial pilot testing of the speech therapy game 

prototype and a longitudinal examination of the final version to study engagement 

and speech production improvements. This objective explores the following 

questions: 

a. What do children think about the Apraxia World gameplay? 

b. How and when should speech exercises be delivered in a platformer-style 

therapy game? 

c. Do in-game speech exercises detract from the gameplay experience? 

d. Do children remain engaged in game-based speech therapy over long 

periods? 

e. Are pronunciation improvements achieved while playing Apraxia World 

comparable to those from traditional speech therapy? 
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f. How accurately do caregivers and the in-game mispronunciation detection 

evaluate pronunciation? 

3. Automatic pronunciation evaluation: Implement low-resource mispronunciation 

detection for use in the game and use data collected during longitudinal testing to 

explore additional mispronunciation detection techniques for disordered speech 

from children. This objective examines the following: 

a. Can limited speaker-specific audio be used to improve the word error rate 

on disordered speech from children? 

b. Can a method from second-language learning mispronunciation detection 

work for disordered speech from children? 

c. How does automatic mispronunciation detection performance compare 

against student evaluators with some training? 

This dissertation research contains the following major contributions. Objective 1 

yields a long-form speech therapy game and the first platformer-style speech therapy 

game. Objective 2 suggests that this novel therapy game increases engagement over both 

short- and long-term use. Critically, it also indicates that pronunciation improvements 

measured during the game-based therapy are comparable to those reported for traditional 

speech therapy practice. Objective 3 suggests that limited field-collected disordered speech 

data can be used to detect phoneme-level mispronunciations in child speech better than 

baseline methods. More importantly, it shows that automatic mispronunciation detection 

can mimic expert clinician labels better than student evaluators in offline testing. 
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1.2. Dissertation outline 

The remainder of this dissertation is organized accordingly; it first presents relevant 

background for this work, then four manuscripts describing Apraxia World and processing 

disordered speech from children, and finally a summary chapter that offers discussion and 

directions for future work. Chapter 3 presents the prototype of Apraxia World and a pilot 

study to evaluate how children interact with the game and determine when to present the 

speech exercises to children during gameplay. This manuscript was published at the 2018 

ACM Conference on Interaction Design and Children [25]. Chapter 4 describes the final 

version of Apraxia World, the automatic pronunciation evaluation framework used in the 

game, and a longitudinal study to explore long-term use and speech improvements arising 

from gameplay. This manuscript is under review in the ACM Transactions on Accessible 

Computing [40] at the time of completing this dissertation. Preliminary results from 

Chapter 4 were also published as late-breaking-work at the 2020 ACM CHI Conference 

on Human Factors in Computing Systems [41]. Chapter 5 explores the use of limited 

disordered speech from children to improve automatic speech recognition word error rates 

so that whole-word recognition can be used to verify children attempted to produce a word 

close to the prompted target. A portion of this chapter was presented as an extended 

abstract at the 2019 ACM SIGACCESS Conference on Computers and Accessibility [42]. 

Chapter 6 demonstrates performance of a classifier-based mispronunciation detection 

framework on disordered speech from children using recordings captured during the 

longitudinal evaluation of Apraxia World. Chapter 7 concludes this dissertation with a 

summary and discussion of all manuscripts, and suggests future directions for speech 
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therapy games targeting children. Appendix A contains the consent forms, information 

sheets, and questionnaires used in the Apraxia World user studies. Appendix B is the 

Apraxia World user guide for administering clinicians, along with additional game 

screenshots. Appendix C is the user guide for Apraxia World Recorder. Appendix D lists 

notable child speech corpora. 
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2. BACKGROUND 

 

2.1. Childhood apraxia of speech 

Childhood apraxia of speech is a speech disorder that affects the ability to correctly 

produce speech sounds and words. The American Speech-Language-Hearing Association 

proposed the following definition [43]: “Childhood apraxia of speech (CAS) is a 

neurological childhood (pediatric) speech sound disorder in which the precision and 

consistency of movements underlying speech are impaired in the absence of 

neuromuscular deficits (e.g., abnormal reflexes, abnormal tone). CAS may occur as a result 

of known neurological impairment, in association with complex neurobehavioral disorders 

of known or unknown origin, or as an idiopathic neurogenic speech sound disorder. The 

core impairment in planning and/or programming spatiotemporal parameters of movement 

sequences results in errors in speech sound production and prosody.” 

Children with CAS may exhibit the following: 

• Vowel errors [3, 44] 

• Consonant distortions [44, 45] 

• Stress/prosody errors [46, 47] 

• Adding incorrect pauses between syllables [47, 48] 

• Adding schwa sounds into consonant clusters [46-48] 

• Speaking at the incorrect rate [47, 49] 

• Difficulty with multi-syllabic words [47, 48] 

• Inconsistent speech sound production [47, 50] 
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• Incorrect nasality [44, 47] 

2.2. Speech therapy 

If a caregiver or pediatrician suspects that a child may have a speech sound 

disorder, the child will first go through screening with a clinician before starting therapy 

practice. Assessments are culturally and linguistically sensitive, so a child’s scores must 

be compared against those from a representative population [4]. These assessments 

examine sounds both within single words and connected speech. Disorder severity can be 

measured either on a continuum (e.g., mild to severe [51]) or quantitatively (e.g., percent 

consonants correct [52], percent vowels correct [44]). Once a speech sound disorder has 

been established, clinicians identify stimulable sounds, which means that the child is able 

to accurately imitate the problematic sound after being provided a model [4]. Stimulability 

testing is important to determine which target sounds are currently appropriate for therapy 

practice [53]. 

Child speech therapy consists of clinic sessions that are usually paired with 

caregiver-led home practice. Clinicians in the United States have reported providing 30 to 

60 minutes of intervention across one or two sessions weekly [54]. However, clinicians in 

Australia (where the studies in this dissertation were conducted) meet with children less 

frequently, anywhere from once a week to once a month [55]. Regardless of clinic visit 

frequency, children need additional practice to meet treatment dosage. As such, caregivers 

are often involved in the therapy by supervising additional speech practice at home with 

their children [56]. This homework may include paper worksheets [57, 58] or fun activities 



 

10 
 

like games, reading books with repetitive phrases, and simply encouraging speech during 

regular interactions [59, 60].  

2.3. Digital speech therapy tools 

There has long been interest in digital speech therapy applications thanks to the 

opportunity to provide automatic feedback or remote therapy. Two notable speech therapy 

applications precede the work presented in this dissertation: the Indiana Speech Training 

Aid (ISTRA) and Tabby Talks. ISTRA is important for historical reasons, as it was one of 

the earliest speech therapy tools to offer automated pronunciation feedback. Tabby Talks 

is the precursor to Apraxia World and was developed as part of the same overarching 

project; lessons learned from Tabby Talks provided valuable insights when designing 

Apraxia World. Both ISTRA and Tabby Talks are described below. 

ISTRA is a digital speech therapy project introduced in the late 1980s that used 

commercially-available digital speech processing hardware to provide pronunciation 

feedback to patients [61, 62]. Automatic pronunciation feedback is provided using 

template matching, where a compressed feature vector extracted from a test utterance is 

compared against a previously-captured template for the utterance [63]. These fixed-length 

templates consist of the averaged samples of the best pronunciation the child could produce 

under clinician supervision [64]. ISTRA offers patient-specific computerized drill sessions 

with graphical feedback representing utterance scores (e.g., bar graphs, bull’s-eye 

displays) and pronunciation quality reports. Some speech exercises are also delivered 

through game-like applications such as Baseball and Bowling, where pronunciation scores 

are displayed as game performance [64]. 
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Tabby Talks [65, 66] is a speech therapy application that includes a clinician 

interface for configuring exercises and monitoring progress, a mobile interface for patients 

to complete exercises and record speech, and a server-based speech-processing engine. 

The speech processing is designed to provide clinicians with automated speech 

assessments in their reports; patients do not receive automated feedback via their interface. 

Speech exercises are delivered through a flashcard or memory game interface, both of 

which record utterances for later evaluation. In flashcard mode, children are presented with 

a series of prompts to record before moving to the next image with a screen tap or swipe. 

Starting and stopping the recording function is handled with discreet button presses. The 

memory game mode is a card matching game where the player must match five pairs of 

images hidden behind cards [26]. To flip a card over, the player taps it and then must record 

the word prompted by the card. Once the player has recorded the utterance, they can flip 

another card to look for a match. As neither mode provides automated production 

feedback, clinicians or caregivers can manually score the production by awarding in-app 

stars: gold for good and silver for fair. 

2.4. Speech therapy games 

To make speech therapy more engaging for children, researchers have investigated 

adding therapy exercises into digital games. SpokeIt [67, 68] is an example worth 

discussing because it is one of the few games intended for long-term use, similar to Apraxia 

World. SpokeIt is a storybook-style game centered around Nova, a star powered by speech 

energy who fell from the sky and must help the Migs return color to their world by using 

the player’s voice. As the story progresses, the game prompts the player to produce speech 
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targets that will help the characters in that scene; these targets may be sounds, words, or 

sentences. The game is controlled only through speech, with no touchscreen interaction 

required for play; as such, the game will move on automatically if the player struggles for 

10 seconds to produce the correct speech. SpokeIt provides feedback on what the 

recognizer actually heard, so players can compare against the target. Speech recognition is 

handled with an iOS-specific implementation of the PocketSphinx automatic speech 

recognizer. SpokeIt is unique in that the developers are working to include procedurally-

generated content and a narrative generator to afford repeated use of the game [69], 

something often missing in speech therapy games. 

This dissertation research is part of a larger project to explore digital speech 

therapy. While Apraxia World is the largest game to come from this project, many smaller 

therapy games have been developed by other team members. These are discussed below 

to demonstrate the variety of therapy game types and build context for Apraxia World. 

Aside from Flappy Voice, all games provide word-level pronunciation verification 

automatic speech recognition technology. Unless otherwise stated, the following games 

use PocketSphinx to detect if the produced word matches the target word.  

Flappy Voice [34]: This is a Flappy Bird clone where players move the bird up and 

down by modulating their vocal loudness. Loudness is measured according to speech 

amplitude, which is normalized according the minimum and maximum amplitude 

observed so far in a play session. Increased volume moves the bird up and decreased 

volume lowers the bird. Points are awarded for every obstacle cleared. The game offers 

two play modes; free mode is similar to the original Flappy Bird game, where hitting an 
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obstacle ends the game; assisted mode keeps the bird within a defined region so the player 

never hits an obstacle and can play endlessly, but points are only awarded for obstacles 

cleared without touching the region barriers. 

sPeAK-MAN [70]: This is a clone of the classic Pac-Man game. Players move the 

character with the standard four-directional controls to eat pellets and avoid ghosts. A level 

is cleared when all of the pellets have been eaten. If a ghost touches the character, a life is 

lost. In Pac-Man, the player can get a power-up that briefly makes all ghosts vulnerable 

and the character can eat them to gain points and temporarily clear them from the play-

field. In sPeAK-MAN, the player has to say a target word associated with a spoecific ghost 

to make it vulnerable, instead of getting a power-up. Word recognition is handled with the 

Microsoft Speech SDK. 

Asteroids [26]: This is an open-source clone of the retro Asteroids game. Players 

move a continuously-shooting spaceship with on-screen controls to shoot asteroids and 

avoid having any hit their ship. Large asteroids must be broken up by selecting them with 

a touch, which starts the recorder, and then correctly saying the displayed target word. If 

PocketSphinx recognizes the word, the asteroid breaks into smaller pieces that the ship can 

destroy by shooting them. Players earn extra lives by reaching specified point thresholds. 

Once all lives are lost due to asteroid collisions, the game is over. 

Whack-a-Mole [26]: This game displays a set of 10 cards that flip over one at a 

time. If the flipped card shows a word prompt, the player must tap (“whack”) it to start the 

recorder and say the word before a timer runs out. If PocketSphinx correctly recognizes 

the word, the player earns a star. If not, the card turns back over and no stars are awarded. 
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Periodically, the flipped cards display a bomb instead of a word prompt. If the player taps 

these cards, they lose a star, if they currently have any. 

WordPop [26]: This game displays a target word with letters contained in colorful 

bubbles. The player touches the tablet screen to start the recorder, says the word, and 

releases the touch when the utterance is complete. If PocketSphinx detects that the 

utterance matches the target, the letter bubbles break apart and float away, while making 

popping noises. If the word is not correctly recognized, the player can try again infinitely 

or request a new word. Players earn points for each letter bubble that floats away. 

Speech Worm [26]: This is a word-search-style game where the letters forming a 

word are contiguous within a search field, but not necessarily in a single row, column, or 

diagonal. The target word is displayed above the search field and the player must first find 

the word by swiping their finger over the letters in the correct order. Once the word has 

been located, the player must press the “Speak” button to activate the recorder and press it 

again once they finish speaking. Players earn points for each word that PocketSphinx 

recognizes as correct. Players can say the word until PocketSphinx correctly recognizes it 

or request a new word. 

2.5. Speech processing 

2.5.1. Automatic speech recognition 

Automatic speech recognizers (ASR) convert speech into a digital transcript, either 

for use by humans (e.g., composing an email by voice) or computers (e.g., smart 

assistants). For processing, the speech signal is typically converted to frequency domain 

features, the most common of which are Mel-Frequency Cepstrum Coefficients (MFCC) 



 

15 
 

[71]. These are derived by applying a Fourier transform to speech signal frames to convert 

them into a spectrogram, which represents power spectra over time. Next, the Mel filter 

bank energies are computed by passing the spectrogram through a series of triangular 

filters spaced according to the Mel scale, which mimics the frequency resolution of human 

perception [72]. Finally, the discrete cosine transform is applied to the log of the Mel filter 

bank energies to arrive at the final feature vector. 

Once the speech signal has been converted into a feature vector, it can be passed 

through an acoustic model to determine the feature sequence phonetic probabilities. Given 

that feature sequences vary in length, acoustic models typically use Hidden Markov 

Models (HMMs) to represent transitions between phonetic states [73]. Historically, 

Gaussian Mixture Models (GMMs) were used to represent the phonetic states in feature 

space [74]; this combination of models is referred to as a GMM-HMM acoustic model. 

However, more recently, deep neural networks (DNNs) have surpassed GMM accuracy 

due to computation power increases and the availability of large-scale data [75]. As such, 

the DNN-HMM acoustic model has become a more popular alternative to the GMM-

HMM. 

Another important component of an ASR is the language model, which determines 

the word or symbol sequence probability. Language models are typically n-gram models 

with sequence statistics or finite state models that use weighted or unweighted finite state 

automata to represent sequences [76]. The final step in the speech recognition process is 

to combine the acoustic and language model probabilities to search for the most likely 

hypothesized word sequence, which is returned as the recognition result [74].  
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2.5.1.1 PocketSphinx 

PocketSphinx is the mobile-ready implementation of the CMU Sphinx speech 

recognition platform. Sphinx was originally developed in the late 1980s to address 

limitations of speech recognition at the time, namely the lack of speaker-independent, large 

vocabulary, continuous speech recognizers [77]. The latest version, Sphinx-4, was 

rewritten completely in Java and introduced modular components to make the system more 

flexible [78]. PocketSphinx was introduced in the mid-2000s specifically to run on the 

limited hand-held device hardware of the day [79]. The recognizer uses a GMM-HMM 

acoustic model, which support adaptation through either maximum likelihood linear 

regression or maximum a posteriori, both of which are run with scripts provided by the 

project developers. The last stable version (5prealpha) was released in 2016 [80] and recent 

development has slowed, according to activity on the project’s GitHub repository [81]. 

The CMU Sphinx team addressed the lack of project updates in a blog post, saying that 

they have been contributing to state-of-the-art speech recognition projects, even creating a 

mobile port of another open-source speech recognizer, Kaldi [82]. It is unclear what the 

future holds for PocketSphinx, given that it is developer-friendly, but falls behind current 

speech recognition technology in terms of performance [83]. 

2.5.1.2 Kaldi 

Kaldi is the most popular open-source speech recognition framework at the time of 

writing this dissertation. When originally introduced in 2011, Kaldi only used GMM-

HMM acoustic models, although it supported two types of GMMs [84]. However, Kaldi 

has supported neural-network-based acoustic models for some time now, with the latest 
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neural network framework (nnet3) being released in 2014 [85]. The framework is written 

in C++ and is generally interfaced with through BASH scripts that call the various 

processing steps. Kaldi uses BASH script “recipes” to handle model training, which are 

typically written for specific corpora and distributed so that others with the speech data 

can train their own copy of the acoustic model. Python libraries like Pykaldi [86] have 

been introduced to make interacting with Kaldi easier and more recently, PyTorch-Kaldi 

made it simpler to train Kaldi models using the PyTorch neural network library [87]. Until 

recently, Kaldi was largely limited to running on personal machines for research or servers 

for business use, as the library was difficult to run natively on mobile devices. Although 

compiling Kaldi for Android had been previously documented [88], the process was 

highly-involved and required writing custom code to interface with all desired Kaldi 

functions, which put the tool out of reach of non-experts. However, in 2019, the developers 

behind PocketSphinx released a Kaldi port for Android [89], which enables state-of-the-

art speech recognition to run completely on-device. This opens the door for future 

developers to use this advanced speech recognizer within mobile speech therapy games. 

2.5.2. Mispronunciation detection 

Mispronunciation detection aims to use speech processing techniques to identify 

speech segments that diverge from the expected “correct” pronunciation. In general, 

mispronunciation detection methods can be characterized as posterior-probability-based, 

classifier-based, or rule-based. Posterior-probability-based methods compare acoustic 

model likelihood outputs against a threshold to determine if a segment is correctly 

pronounced [90-93]. Classifier-based approaches extract acoustic features from samples 
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to train classifiers that discriminate between correct and incorrect pronunciations [94-96]. 

Rule-based approaches manipulate the language model according to predefined error 

patterns to identify mispronunciations [97-100]. Mispronunciation detection is an active 

research area for adult speakers, but less attention has been paid to disordered speech from 

children. 

2.5.3. Child speech processing obstacles 

In general, all child speech is more challenging to process than adult speech due to 

physiological differences and production inconsistency or inaccuracy during development 

and skill acquisition [101]. The vocal tract in children is smaller than in adults, which 

affects how they produce speech. For example, formants (frequency bands that define 

vowel sounds) extracted from child speech have been found to be roughly 50% higher than 

those extracted from adult speech [102]. As a child grows and the vocal tract changes, the 

formant production also shifts; Narayanan and Potamianos reported a close-to-linear 

decrease in formant frequency as age increases [103]. Furthermore, as children grow, 

average vowel duration and variance decreases, along with average pitch, which eventually 

decreases more for males than females [104]; these spectral variations make it difficult for 

ASR to accurately parse child speech. Although production inconsistencies and errors may 

arise due to typical development timelines, they can be more prominent due to SSDs, 

making disordered speech from children especially difficult to automatically process. As 

such, child speech recognition training data must be carefully selected to model the desired 

pronunciations from the appropriate populations, as simply adding more data when 

training acoustic models does not guarantee improved performance [105]. 
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3. APRAXIA WORLD: A SPEECH THERAPY GAME FOR CHILDREN WITH 

SPEECH SOUND DISORDERS* 

 

3.1. Overview 

This paper presents Apraxia World, a remote therapy tool for speech sound 

disorders that integrates speech exercises into an engaging platformer-style game. In 

Apraxia World, the player controls the avatar with virtual buttons/joystick, whereas speech 

input is associated with assets needed to advance from one level to the next. We tested 

performance and child preference of two strategies for delivering speech exercises: during 

each level, and after it. Most children indicated that doing exercises after completing each 

level was less disruptive and preferable to doing exercises scattered through the level. We 

also found that children liked having perceived control over the game (character 

appearance, exercise behavior). Our results indicate that (i) a familiar style of game 

successfully engages children, (ii) speech exercises function well when decoupled from 

game control, and (iii) children are willing to complete required speech exercises while 

playing a game they enjoy. 

3.2. Introduction 

Speech sound disorders (SSDs) can affect language production and speech 

articulation in children, leading to serious communicative disabilities [43]. Estimates for 

 

* This chapter was published at IDC 2018. Reprinted with permission. Hair, A., Monroe, P., Ahmed, B., 

Ballard, K. J., & Gutierrez-Osuna, R. (2018, June). Apraxia world: A speech therapy game for children with 

speech sound disorders. In Proceedings of the 17th ACM Conference on Interaction Design and Children 

(pp. 119-131). https://doi.org/10.1145/3202185.3202733 
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the prevalence of SSDs in children vary; some suggest between 2% and 25% of children 

aged 5-7 years may be affected [5], while others estimate values closer to 1% of the 

primary-school-aged population [6]. Regardless of their exact prevalence, SSDs can have 

potentially devastating effects on a child’s communication development [3]. Fortunately, 

children can reduce symptoms and improve speech skills by working closely with a speech 

language pathologist (SLP) [43]. To be effective, these treatments must be “frequent, high-

intensity, individualized, and naturalistic” [7]. However, scheduling appointments with 

SLPs can be difficult, especially for children who live far from clinics [9-11]. Thus, clinic-

based intervention typically must be supplemented with considerable home practice. 

Previous work indicates that remote digital sessions can be as effective as clinic-based 

sessions [18]. To alleviate the repetitive nature of frequent intense practice, however, these 

computerized therapies must be engaging.  

A promising strategy to increase engagement is to deliver the speech exercises 

through mobile games. Accordingly, a number of game-like applications for speech 

therapy have been developed (e.g., Apraxiaville [29], Tiga Talk [106], Tabby Talks [16, 

65], Articulation Station [30], ArtikPix [31], Pocket SLP [107]), though few provide 

feedback on speech productions. Among those that do, Tabby Talks [16, 65] combines (i) 

a mobile game that embeds speech exercises into a “memory/concentration” game where 

the goal is to find all pairs of identical cards in a deck, and (ii) an automatic speech 

recognition (ASR) engine running on a remote server that scores each individual 

production from the child [66]. In a pilot study [65], Tabby Talks was well received by 

parents, SLPs, and the children themselves, though feedback also suggested that the 
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intervention needed more game-like features to increase the player’s interest, especially 

for younger children. A second area for improvement in Tabby Talks was in terms of 

providing real-time feedback on productions, which was not possible with the remote ASR 

engine due to transmission and computation delays. To address these concerns, we have 

developed Apraxia World, a speech-therapy game constructed on top of a full-fledged, 

two-dimensional platformer game, which will later be coupled with a mobile ASR engine 

capable of providing real-time feedback on productions. In Apraxia World, the player 

guides an avatar (the cheerful monkey character shown in Figure 1) through a multi-level 

world where the goal is to collect assets while avoiding enemies and traversing an obstacle 

course.  

This paper describes the gaming and therapy elements of Apraxia World, with 

special emphasis on how to integrate speech production into the game1. In Apraxia World, 

the player controls the avatar with standard inputs (virtual buttons and joystick), and 

speech input is tied to assets that the player must collect in order to advance from one level 

to the next. By associating speech production with the assets, players are able to anticipate 

and control when speech exercises appear, and the speech exercises do not detract from 

the gameplay or interrupt the player while executing complicated moves. 

We validated Apraxia World through a pilot study with 14 children with SSDs (4-

12 years old) and 7 typically-developing (TD) children (5-12 years old). This diverse 

 

1As will be discussed in the Game Design section, speech assessments in the present study were 

conducted by an SLP during gameplay rather than by a mobile ASR engine. This allowed us to isolate the 

game aspects of Apraxia World from issues pertaining to mobile ASR performance, which will be addressed 

in a separate publication.  
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population allowed us to gather feedback from children with varying exposure to speech 

therapy and their perception of how the speech exercises impacted gameplay. Specifically, 

we examined two strategies for integrating the speech exercises into the game, a during-

game condition where the exercises were distributed throughout each level, and an after-

game condition where the exercises were presented after finishing a level. Each child 

played both versions of Apraxia World and answered corresponding questionnaires on 

enjoyability, preference, improvements, etc. We also examined child engagement with 

Apraxia World based on qualitative questionnaire responses. 

 

 

  

Figure 1 (a) Start screen showing all of the available characters. Players start with 

the monkey on the far left as the default (b) On-screen information shown to players: 

collectibles and health in the top left, available power-ups in the top right, and a 

progress bar in the lower center 

 

 

The remaining parts of this paper are organized as follows. First, we provide 

background information on SSDs and review related work on speech-driven games and 

game-based therapy. Next, we describe the game, the integration of speech exercises, and 
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the (manual) assessment of productions. We then outline the experimental methods, 

including participant recruitment and study protocol, followed by the results from a pilot 

study with SSD children and TD children. The paper concludes with a discussion and 

directions for future work. 

3.3. Background 

The term speech sound disorder (SSD) describes a collection of difficulties with 

perception and/or production of individual speech sounds that affect a person’s ability to 

produce intelligible speech [43]. SSDs that affect the production of the correct form of 

sounds are associated with motor-based or structural disorders (e.g., childhood apraxia of 

speech (CAS) or cleft palate, respectively) and are considered to be articulation disorders. 

SSDs that affect the functional employment of sounds (i.e., when the sounds produced are 

correct in form but not in usage, for example, a person may say ‘dar’ for ‘car’) are 

considered to be disorders involving the individual’s phonological representation of 

sounds and/or speech segments. These speech difficulties are often overcome with regular 

and frequent practice [43], the repetitive nature of which makes speech therapy an 

excellent candidate for game integration. 

3.3.1. Speech-driven games 

In the context of gaming, speech input has been used to improve accessibility [108], 

novel interaction [109], physical therapy [110], speech therapy [34], and social skill 

development [111]. In previous speech-integrated games, the player’s voice [108, 112, 

113] or vocal features [34, 114, 115] have been used for game control. However, this 

model limits the choice of game to those slow enough for the player to produce the correct 
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voice command, and impedes gameplay if players struggle to produce command words. 

Furthermore, once a word-to-input mapping has been established, it is difficult to change 

the word without causing confusion or increasing cognitive load by making players keep 

track of new command words.  

Cai et al. [112] took a different approach for using voice within an arcade-style 

game. The authors implemented a version of Tetris where voice commands unlock 

Tetromino (Tetris piece) rotation, rather than using the speech to directly move the piece; 

this allowed words to be reinforced without slow speech dramatically hindering gameplay. 

Researchers have also examined non-verbal features as inputs for games; common features 

include pitch changes or vowel sounds. Sporka et al. [115] designed a version of Tetris 

where players moved and rotated the Tetromino with pre-defined pitch patterns. They later 

extended their study of pitch as an input by comparing verbal and non-verbal commands 

for driving a radio-controlled car [116]. In both studies, users preferred the non-verbal 

commands due to ease of use and quick response.  

The Vocal Joystick [117] maps pitch, power, and vowel quality to computer mouse 

movements. In tests, users quickly learned how to use the Vocal Joystick and found it less 

frustrating than using command words. In later work, Harada et al. [118] used non-verbal 

inputs for four different games, where game-specific commands were mapped to vowels 

and pitch intensities. They found that system processing time was significantly shorter for 

non-verbal commands, which is ideal for quick arcade-style games. House et al. [119] 

further expanded upon the idea of the Vocal Joystick by implementing a 5 degrees-of-
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freedom control mechanism for a robotic arm moving in three-dimensional space. Vowel 

sounds have also been used to control retro-style games [120]. 

Automatic speech recognizers (ASR) are often found in speech-input systems, but 

they tend to struggle with children’s speech. When ASR frameworks are tested with 

different forms of children’s speech, performance decreases dramatically for continuous 

speech and long sentences as compared to adult speech, and the best results come from 

limiting the dictionary to single words and short phrases [121]. Speech patterns are 

typically harder to identify in children’s speech due to large variations in vocal tract length, 

formant frequency and pronunciation quality [104, 122]. Additionally, even when ASR 

systems perform well with TD speech, they struggle with SSD speech [123]. 

3.3.2. Game-based therapy 

Games have been evaluated for a variety of therapy applications across many 

disciplines. For example, in a recent IDC paper, Alessandrini et al. [124] developed a 

collaborative storytelling application to engage children with autism alongside their 

therapist, and found that the application helped fixate the child’s attention on the activity. 

In another IDC study, Ferri et al. [125] conducted a research-through-design study of 

games for cognitive behavioral therapy. They prototyped three games to help children 

improve self-reflection and emotional analysis skills. These games were either non-

competitive or gently competitive, without real loss scenarios. After surveying 18 physical 

therapists, Annema et al. [126] provided three implications for therapy game design: (i) 

configuration and setup should be simple and quick for the therapist; (ii) games should 

support the child and therapist by supporting on-the-fly changes and easy pausing or level 
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ending; and (iii) games should report and log child performance to give an overview or 

report across multiple therapy sessions. While simple games work well for infrequent 

events, such as a single clinical evaluation [127], arcade-style games may not be the most 

appropriate for long-term therapy, as gameplay can quickly grow stale [26, 27]. 

Previous applications for mobile speech therapy, such as Tabby Talks [16, 66], 

were developed as a proof-of-concept for remote speech therapy with a simple prompt 

interface. Similarly, Vocaliza [128] is a speech recognition system to help children with 

phonological, semantic, and syntactic therapy that shows progress over time. Research 

suggests that children engage better in and make fewer response errors with these types of 

electronic interventions than with traditional therapy [129].  

Speech interventions have also been incorporated into casual games. Ganzeboom 

et al. [113] developed a multiplayer speech therapy game based on feedback from 

individuals with dysarthria. Players give each other verbal instructions through the 

interface – the game extracts loudness and pitch from the speech to provide feedback to 

help the player stay within a certain range. Umanski et al. [130] developed a game that 

helps children practice syllabic production rhythms. The game is a downhill slalom 

competition where the player makes their skier turn by producing the syllable at the correct 

time, with more accurate timing resulting in a tighter turn. Flappy Voice [34] is a modified 

clone of the popular game Flappy Bird where vocal loudness and pitch are mapped to the 

bird’s position along the vertical axis. Players can use any verbal or non-verbal utterance 

to guide the bird through openings in the pipes, so long as pitch and loudness patterns can 

be extracted from the utterances. Lopes et al. [114] developed a game to practice sustained 
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vowel sounds. A bird flies from one branch to another if a vowel is produced with 

consistent intensity for a set duration, otherwise, it falls and the game resets. A more novel 

approach is demonstrated by Shtern et al. [131], where the speech articulators (i.e., tongue) 

are examined rather than the produced speech. In their game, the player uses tongue 

movements to control a flying bee. 

3.4. Game design 

3.4.1. Game development 

We developed Apraxia World atop a full-featured, multi-world game project 

available for the Unity Game Engine. The game (Ekume Engine 2D) is a colorful 

adventure game where the player controls a monkey character. It comes with 48 levels 

divided into 8 worlds, multiple characters, and an in-game store for clothing and power-

ups. All of the characters are shown in the start screen; see Figure 1a. Gameplay is linear 

– players must work their way towards the goal line at the right side of each level by 

navigating platforms, caverns, and other obstacles while trying to collect assets and avoid 

or eliminate enemies. Players control their character with a directional pad and two 

buttons, all overlaid on the tablet screen. Level and character information is shown in a 

heads-up display; see Figure 1b. The game offers two types of assets to collect: coins and 

stars. Coins are plentifully dispersed throughout the levels and are used to purchase items 

in the store. Stars originally served as a secondary challenge where a player could try to 

collect all stars within a level before finishing; this is similar to other games where players 

try to find all items of an object class. Each level contains a checkpoint (represented by a 

large anchor icon) around halfway through – if the player dies before reaching this point, 
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they lose the assets (coins and stars) collected so far in that level. However, if they die after 

reaching the checkpoint, they keep the assets and restart at the checkpoint. 

The in-game store sells clothing/costumes, weapons, and power-ups. The store uses 

in-game currency, either collected in the levels or awarded for doing exercises. The prices 

for store items range from 50 to 6,000 coins. The clothing store is shown in Figure 2a, 

where the player can see how the different items look on their character. The weapons 

(Figure 2b) vary in power and striking distance (e.g. slingshots can shoot far but swords 

and hammers are close-proximity weapons)2. Power-ups (Figure 2c) include coin value 

duplication, flight, invincibility, and coin magnets, all of which last for a short duration 

that can be lengthened by upgrading the power-up in the store. 

We left the core gameplay unchanged, and instead modified the role of the stars. 

In our modified game, a player must collect a predetermined number of stars to complete 

a level, each star in turn requiring the player to complete a number of speech exercises. 

The game delivers these speech exercises either during or after gameplay; the delivery 

method is explained in the next section. We associated speech production with the stars so 

that players would be able to anticipate and control when speech exercises would appear. 

Additionally, we needed a “safe” time to display the exercise that would not detract from 

the gameplay or interrupt the player while executing complicated moves.  

As well as adding the speech exercise, we also edited the levels to make them age-

appropriate and increased the number of stars to 7-10 per level. In addition, we set stars to 

 

2Although the game contains weapons and some combat, it is very mild in terms of violence. There 

are neither blood nor death animations – characters and enemies simply fall over and then disappear. 
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regenerate in the same place 10 seconds after being collected. We wanted a surplus of stars 

in different locations throughout the level to encourage players to gather extra and 

complete additional speech exercises if they so desired. 
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(a) 

 

(b) 

 

(c) 

Figure 2 (a) The clothing store offers different pieces to fully dress up the character 

(b) The weapons store offers four types of weapons with increasing power (c) The 

power-up store offers uses of power-ups and increases to power duration 
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3.4.2. Speech exercises 

The SLP can set how many exercises must be completed for each level, as well as 

provide a customized list of words per level, according to each child’s therapy needs. In 

what follows, let 𝐸 denote the number of speech exercises (i.e., word prompts) that must 

be completed per star, 𝑆 denote the number of stars per level, and 𝐶 denote the value of 

each star (in coins), all as defined by the SLP. Prompts are randomly selected from the 

word list such that they do not repeat until all words have been prompted. 

The game delivers exercises in two ways: during-game or after-game. In the 

during-game mode, an exercise popup (see Figure 3a) appears when the player attempts to 

collect a star, at which point the player must complete 𝐸 prompts. Correctly producing the 

target word triggers the game to either load the next prompt, or dismiss the popup if enough 

prompts have been completed. Incorrectly producing the target word causes a “Try again!” 

message to display briefly before the word prompt is displayed again. When the child has 

completed 𝐸 prompts, the popup window disappears, a star is awarded, and 𝐶 coins are 

also awarded. Players can collect as many stars as they like, each star yielding 𝐶 coins. If 

the player attempts to complete the level before collecting 𝑆 stars, a text banner prompts 

them to turn around and collect additional stars – see Figure 3b. Once the child collects at 

least 𝑆 stars and crosses the goal line, the level ends. 
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(a) (b) 

  

(c) (d) 

Figure 3 (a) Speech exercise popup in the during-game condition contains both a 

pictorial and text cue (b) The game displays a warning message when a player tries to 

finish the level before collecting enough stars (c) Speech exercise popup in the after-

game condition. An awarded star count has been added to help children know how 

far along they are in the exercises (d) Speech exercise popup in the after-game 

condition once the minimum numbers of exercises have been completed. The message 

tells the player that they can either complete more exercises for a bonus or press the 

button to continue to the next level 

 

 

In contrast, the after-game condition allows children to play the game as normal 

until they attempt to cross the goal line, at which point they must complete 𝑆 × 𝐸 exercises 

– the same number as the during-game condition. Before attempting to cross the goal line, 

the player is allowed to collect as many stars dispersed through the game as they want, but 
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these stars do not award any bonus coins nor do they trigger speech exercises. If players 

so choose, they can collect no stars and go straight for the goal line. Once the player reaches 

the goal, the exercise popup appears; this popup (Figure 3c) is identical to the one in the 

during-game condition, except that it has a Star Counter so that the player knows their 

exercise progress. After each correct utterance, the game loads the next prompt. The same 

brief “Try again!” message as in the during-game condition appears if the child incorrectly 

produced the target word. Every 𝐸 prompts, the game awards 𝐶 coins and one star; this 

reward is reflected in the Star Counter. Once 𝑆 × 𝐸 exercises have been completed, two 

text banners and a continue button appear (Figure 3d); the banners inform the child that 

they can continue producing speech to gain additional coins or they can press the continue 

button to end the level. Once the child presses the continue button, the popup disappears 

and the level ends.  

The speech exercises (i.e., word prompts) are based on the Nuffield Dyspraxia 

Programme (NDP3), an intervention program for young children with severe SSDs, 

including CAS [132]. NDP3 is designed to address specific effects of CAS, such as single 

consonant and vowel articulation, sequencing sounds together, and maintaining accurate 

prosody. We selected NDP3 because it comes with a 750-image set representing CV, CVC, 

CVCV, and multisyllabic words, which can easily be displayed in the exercise popup. 

Furthermore, NDP3 shows good treatment and generalization gains when delivered 

intensively [133]. Nonetheless, Apraxia World can be extended to other practice materials 

beyond (or instead of) the NDP3 set. 
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3.4.3. Speech assessment 

Previous mobile speech therapy applications have used some form of automatic 

speech recognition (ASR), such as Pocketsphinx [34, 65] or custom approaches [37]. 

However, ASR on mobile devices either produces poor recognition rates with disordered 

speech or requires an internet connection such that a server can process the audio (e.g., 

Google Speech, Apple’s Siri). Additionally, ASR performs especially poorly on speech 

from children [121]. Therefore, for the present study, we decided to isolate the game 

aspects of Apraxia World from issues pertaining to mobile ASR performance. 

Accordingly, we used a Wizard of Oz design where speech was evaluated manually by an 

SLP via a Bluetooth keyboard that allowed them to indicate (as the child plays the game) 

whether or not each word had been produced correctly. While ASR will be used in future 

iterations of the game, using the human evaluator gave us the children’s best-case 

impression of the game and speech exercise integration, without any frustration from ASR 

errors.  

We designed the keyboard input to mimic a binary decision: the SLP marks a 

speech production either as correct or as incorrect. We implemented rules to reduce the 

number of incorrect attempts on a single word and minimize reinforcing the wrong 

pronunciation; 4 consecutive incorrect pronunciations will cause a new prompt to come up 

(i.e., skip the problematic prompt) and 3 skipped prompts during an attempt at collecting 

a star (i.e., 3 prompts were skipped before 2 prompts were said correctly and a star was 

awarded) causes the exercise popup to disappear without awarding a star. These rules were 
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put in place now, so that the exercise logic will be the same between the current and future 

versions when ASR is enabled.  

3.5. Methods 

We evaluated Apraxia World in a within-subject study where children played two 

versions of the game, where speech exercises were delivered either during or after 

gameplay. In the process, we surveyed the children’s impressions of this style of game in 

terms of enjoyability, ease of play, likes, dislikes, suggestions for improvement; we 

queried preference for game version; and we analyzed meta-data to identify differences 

across versions in amount of speech practice completed. 

3.5.1. Participants 

Twenty-one English speakers took part in the study. Participants included 14 

children with diagnosed SSDs ranging from mild to severe (7 motor-speech and 7 

phonological impairments; 13 male and 1 female; mean age: 7.4 years, range: 4-12 years 

old), and 7 children reported by parents to be TD (4 male and 3 female; mean age: 8.7 

years; range: 5-12 years old). The children with SSDs had all been formally assessed and 

diagnosed as having a speech sound disorder by a qualified SLP and, at the time of 

participation, had no other developmental diagnosis (e.g., autism spectrum disorder or 

cognitive impairment). All procedures were approved by the University’s Human 

Research Ethics Committee and all children and guardians provided written informed 

assent/consent, respectively, before participating in the study. 
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3.5.2. Selection and participation of children 

Participating families self-referred in response to flyers and advertisements placed 

within the University’s Speech Clinic, sent out by email, posted on social media, and 

posted in a local magazine. They were then selected for participation on the basis of SSD 

diagnosis occurring without other developmental diagnosis or no speech or developmental 

diagnosis (i.e., TD). Children and parents were asked if they would like to participate in a 

study looking into the development of tablet-based games to help children with their 

speech therapy exercises. Children were told that they would be shown two versions of the 

same game and asked some questions to help the research team continue to develop the 

game. They were told they could stop playing/discontinue participation at any time.  

3.5.3. Procedure 

All children were asked to test both versions of the game (during-game and after-

game conditions). The order of presentation of the two game versions was randomized. 

Audio was recorded during the exercises for later analysis and debugging. The SLP sat 

beside the child and evaluated speech in real time. Exercise parameters were fixed for all 

children (𝐸 = 2, 𝑆 = 10, 𝐶 = 25), such that each child had to correctly produce at least 

20 words before completing a level.  

Two individualized word lists of approximately equal complexity were created for 

each child, one for each version of the game. The words were chosen by the accompanying 

parent and both lists contained (i) five words the parent believed the child should have no 

difficulty producing and (ii) five that they believed the child would have some difficulty 
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producing3. This was done in order to mimic a home-practice setting where some “easy” 

words are included to ensure some success. Each child’s ability to say the words chosen 

for them was checked before they began playing the game. 

The children were first provided a description of the game, its aim (to collect coins 

and stars to buy things for the character as progression is made through the levels), and 

instructions on how to play. A brief demonstration of how to use the controls was also 

provided. The children were not explicitly told that their word productions would be 

judged as correct/incorrect by the SLP conducting the study. They were asked to play each 

version for as long as they wanted, up to a maximum of 15 minutes per version. The 

children were then given the game to play on a Samsung Tab A 10.1-inch tablet (Android 

6.0 Marshmallow). All children started with a training level that had no exercises, no 

enemies, and no chance of falling off the platform. The purpose of this training level was 

for children to learn the game mechanics. Each child progressed from the training level 

into Level 1 of the full game in the same way as they transitioned between other levels of 

the game. Once a child had played the first version of the game (for as long as they wanted 

to, up to 15 minutes), they were asked to complete a questionnaire about the game before 

being presented with the second version. On average, the questionnaire took 5 minutes to 

complete. The child was then again given the game for as long as they wanted to play (up 

to 15 minutes). After playing the second version, they were asked a series of follow-up 

questions before being asked (i) which version they preferred and which version they 

 

3e.g., for one child, “watch” and “witch” were hard words, while “rabbit” and “peach” were easy 

words. The same words may not work for different children. 
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would now like to play again, and (ii) if they would like to play again. The questionnaire 

focused on game enjoyability, ease of play, likes, dislikes, and suggestions for 

improvement. It contained a combination of 5-point Likert-scales and open-ended 

questions; see Figure 4. The questions were read to all children and all responses were 

written down by the SLP. After answering the questionnaire, the child was allowed to play 

their version of choice again, if desired. 

During gameplay, each child’s behavior was also observed to monitor for signs of 

reduced concentration or signs of frustration, such as fidgeting. Were such signs observed, 

the child was reminded that they could cease gameplay at any time. Observations on each 

child’s approach to gameplay were also collected, including a willingness to collect 

additional stars in either condition; focus on collecting all the available coins; a desire to 

explore the levels or to try to progress through the levels as fast as possible; and use of 

coins collected to purchase items from the store.  

We logged the number of levels completed, strategy of gameplay (e.g., focus on 

completing the level vs acquiring assets), and number of exercises completed (i.e. words 

produced) for each child per level. This allowed us to explore whether the two game 

versions facilitated different amounts of practice.  

3.6. Results 

3.6.1. Feedback from children 

Figure 4 summarizes responses to questions that used numeric ratings via boxplots. 

Four of the children did not answer all questions on the questionnaire, but their available 

responses are included in the analysis.  
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Nineteen of the 21 children found the game enjoyable and said they would like to 

play it again. All 19 would have continued playing beyond the 15-minute time cap had 

they not been stopped by the researcher. The other two children (one SSD and one TD) 

requested to discontinue during the allotted testing time because they were not engaged 

with the game and said that they would probably not play it again. However, they did play 

both versions and their data are included in all analyses.  

The younger children (4-5 years) conflated the question “How difficult was the 

game?” with ease of control manipulation; for example, some children who struggled to 

complete a level still rated the game as easy to play. The older children were better able to 

dissociate ease of game control and gameplay, and their answers as to how easy they found 

the game more closely reflected their game progression.  

Responses to whether the during-game condition made the game harder were 

varied and depended, in part, on whether the child liked having the speech exercises during 

or after gameplay. Responses included: “[…] because I liked the game and wanted to 

concentrate on it” and “[the exercises] keep on popping and almost killing you.” Most 

children agreed that the after-game condition did not make the game harder. 

When asked which version of the game they preferred playing, 13/21 of the 

children selected the after-game condition (eight preferred during-game). The reasons for 

this preference included: “the words at the end of the game didn’t interrupt your game,” 

“instead of collecting stars you can just say them,” and “playing [the during-game 

condition] made the words harder.” One of the children who liked the during-game 

condition said that they “liked the exercises popping up.” A child said that although they 
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liked the during-game condition, they “would play [the after-game condition] again 

because of the risk of dying while doing exercises in [the during-game condition]” (some 

children struggled to navigate immediately after the game un-paused following the 

exercises). Some children offered alternatives to the two conditions we included: one said 

they “would like exercises before the level” and another said they “would choose neither – 

would like the words during the game and then again at the end of the level so that you 

can practice them and get extra points.” 

Other verbal responses surveyed the child’s likes, dislikes, and suggestions for 

improvement. When asked what they liked, children mentioned the monkey characters and 

fighting the enemy characters (e.g., “bashing monkeys,” “the monkey and hitting the 

monsters,” “fighting the monkeys,” the “bashing hammer,” and “hitting enemies”). One 

child said the game structure “reminds me of Donkey Kong [and I] like that it was hard.” 

Two other children also commented that they liked that the game increased in difficulty, 

saying: “it gets harder” and “it takes work/skill to play.” Other likes included: “[there are] 

not a million things to remember” and “all the super powers.” 
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Figure 4 Boxplots for survey responses from all children (some children did not 

answer all questions) 
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The children were also asked what aspects of the game they liked the least. The 

most common comments were about dying, restarting, and losing stars collected (if they 

died before the checkpoint) (e.g., “keeping dying,” “restarting when you die,” and “losing 

stars when I die before the checkpoint”). Although some children enjoyed that difficulty 

level increased quickly, others cited it as an issue (e.g., “it got hard pretty quick”).  

Suggestions for changes were varied and reflected that the children had engaged 

well enough with the game to imagine modifications for both individualization and 

development. Some suggested ensuring that the items for purchase were more varied and 

matched the characters, or combined with the superpowers (e.g., boots that allow you to 

fly). One child said they “would rather princesses and unicorns” than monkeys. Three 

children commented that they would like the game more if it had a storyline (i.e., a reason 

for their character’s progression through the islands). For example, one said that they 

would like the island to have villages so that they could then be the hero who has to save 

their village. Other comments reflected the same idea of fleshing out the virtual world: 

“collect[ing] an army to kill the bad guys,” having “different types of bad guys,” and 

“buy[ing] pets to help you survive.” 

3.6.2. Observations on strategy, gameplay, and engagement 

Gameplay data were available for all 14 SSD children. Data for two of the seven 

TD children were lost due to software malfunction. 

All of the children, except the two who asked to discontinue play, were observed 

to concentrate well during both gameplay and exercise completion. Minor frustration was 

observed solely in relation to the child’s character dying and/or loss of stars collected. This 
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was, however, accepted by all children as a negative, but unavoidable, part of the game. 

The smaller children were observed to have difficulty holding the tablet and those less 

familiar with tablet-based games appeared to have difficulty managing the two-handed 

controls. One child’s suggestion for easing these difficulties was to include an option for 

an external joystick. The double jump maneuver proved difficult for some children, who 

struggled with the button timing.  

Approach to gameplay appeared to be linked to interest in asset collection. Sixteen 

children rated buying items for their characters highly (“it made it like a quest to earn cash 

and buy your accessories”). They were observed to spend more time collecting coins than 

the remaining five children, who said that buying items for their character did not interest 

them. The older children demonstrated a clear understanding of the relationship between 

completing exercises and asset collection, whereas the younger children did not. For 

example, three older children (10–12 years) purposefully undertook more than the 

minimum required exercises per level, with the express intent of purchasing items from 

the store. 

Figure 5 shows the total number of speech exercises completed by the children per 

finished level. Speech exercises completed in unfinished or restarted levels are not 

included. Regardless of order of delivery, 14/19 of the children for which we have 

gameplay data finished more levels in the after-game condition; three children finished the 

same number of levels in both conditions and one child finished more levels in the during-

game condition. This imbalance is due to two primary causes, (i) levels take longer to 

finish in the during-game condition because the player must spend time looking for stars 
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or waiting for them to regenerate, and (ii) the gameplay data include levels completed in 

the brief free-play portion after the test. These data were left in because the free-play more 

closely approximates home-practice (less evaluative pressure on the child).  

 

 

 

Figure 5 Boxplot of exercises completed per finished level (unfinished and restarted 

levels excluded) 

 

 

SSD children in total finished l=31 levels in the after-game condition (median 

exercises per level: 20, range: 20-36) and l=16 levels in the during-game condition 

(median exercises per level: 22, range: 20-26). TD children in total finished l=11 levels in 

the after-game condition (median exercises per level: 22, range: 20-82) and l=5 levels in 

the during-game condition (median exercises per level: 22, range: 20-24). In general, SSD 

children completed the minimum number (20) of speech exercises per level in the after-

game condition; TD children completed more exercises in the after-game condition due to 
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a lack of perceived risk (any attempted exercise essentially guarantees a reward). All 

children completed close to the minimum number of exercises in the during-game 

condition. Across all participants, the median exercises completed in each condition (20 

vs 22 – SSD; 22 vs 22 – TD) indicate that children are unlikely to complete large quantities 

of speech exercises beyond a specified minimum. As such, the choice of exercise delivery 

method may be more important as a per-player customizable element rather than a way to 

ensure maximal exercise completion; we further expand upon customization below. 

3.7. Discussion 

This paper presents a novel approach for providing intensive and often tedious 

speech exercises to children with SSDs in a more engaging manner. We have developed 

two versions of a platformer game in which speech exercises are integrated and linked to 

asset collection, wherein the exercises can be presented either during or after gameplay. 

We surveyed children’s impressions of the overall approach and version preference, and 

also examined meta-data for potential influence of version on the amount of speech 

practice undertaken.  

Overall, the children (13/21) preferred the after-game condition for two main 

reasons: (i) they did not like having their gameplay disrupted, preferring to do the exercises 

separately and (ii) they did not like losing collected stars in the during-game condition 

when they died before reaching the checkpoint. Although the stars were placed in locations 

that should have been minimally disruptive to gameplay, the children still reported 

worrying about controlling their character immediately after the game un-paused when in 

a potentially difficult position (e.g., if an enemy is close by, if they are jumping over a 
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platform gap). Losing stars upon dying was more discouraging to players than had been 

anticipated. One child compensated by strategizing: they prioritized reaching the 

checkpoint before collecting any stars. Stars collected before the player reached a 

checkpoint were intentionally not saved to encourage additional speech production. 

However, even though this led to all children completing many more exercises in the 

during-game condition than they did in the after-game condition, it also proved to reduce 

their motivation. Losing stars was judged as being more frustrating than repeatedly dying 

– the children completed an average of 25 exercises while playing in the during-game 

condition that were not saved due to restarting a level. In future versions of Apraxia World, 

this could be remedied by, for example, allowing players to keep all coins collected from 

the exercises (but not stars, still ensuring extra speech production) if their character dies 

before the checkpoint, or by allowing them to keep all stars and coins collected.  

The eight children who preferred the during-game condition demonstrate that the 

preference for one version over the other was not unanimous. These children enjoyed 

having their speech exercises distributed during gameplay, with one stating that “it seemed 

like I had to earn less stars [in the during-game condition].” It could therefore be argued 

that providing future players access to both game versions would ensure that individual 

preferences will be met. 

One important consideration, regardless of version, is the ratio of speech exercises 

to gameplay. Although the after-game condition was preferred by the majority, if a player 

struggles to make progress in the game, it becomes non-optimal in terms of number of 

exercises completed during gameplay, which undermines the major goal of the 
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intervention tool. Most children reached a point, for the younger players (4-5 yrs.) in the 

first level, where they had to make multiple attempts to reach the end of the level. In the 

after-game condition, this resulted in a lot of gameplay without speech exercises. 

Similarly, some children seemed to like exploring the level and were in no hurry to move 

onto the next one, which again increased playtime without speech exercises. This could be 

remedied with a before-game condition, in which players would have to complete 

exercises whenever starting or restarting a level (from the beginning or checkpoint). 

Exercises could alternatively be presented at certain time intervals throughout the level. 

This would ensure that children could still experience uninterrupted gameplay time, while 

also ensuring that the necessary ratio of gameplay to speech exercises to maintain 

therapeutic utility would be upheld. An alternative solution may be to add an “energy” 

level that decays over time and must be replenished by completing exercises; in this 

fashion, players would be required to complete exercises regularly, but at a time of their 

choosing.  

Providing tiers of game difficulty to cross a broader range of age, physical ability, 

or SSD severity may be beneficial in future versions. Child age and prior gaming 

experience were observed to affect player success. Similarly, the children had varying 

success with the game controls. Even though the controls used are standard for tablet 

games, some children had trouble with button combinations that required more careful 

timing. Again, the children who had limited prior experience with tablet-based games were 

observed to find the dual-handed controls difficult. A subset of children with movement-

based speech disorders, such as CAS, have limb coordination difficulties; some children 
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during the study were observed to have difficulty with game controls, extraneous limb 

movements, and rapidly timed double clicks. Compensatory strategies for these factors, 

such as an external joystick, need to be addressed in subsequent versions of the game. 

The current study highlighted that built-in flexibility in a speech therapy tool is 

necessary. The subtle complexities in creating and presenting such a tool lie in matching 

both child and SLP expectations by balancing gameplay and child engagement against the 

provision of therapeutic levels of speech practice. Providing the user (SLP/child) with the 

ability to modify parameters such as exercises before, during, or after gameplay will help 

ensure the functionality and utility of the game as a therapeutic tool; this aligns with the 

implications for design put forth by Annema et al. [126] for therapy games. One of the 

aims of Apraxia World is to provide the child with a sense of autonomy during speech 

practice. Negotiation with their parent or SLP as to when they do exercises during 

gameplay would provide the child with a sense of control over their speech practice. 

However, to ensure that this negotiation does not lead to exercise avoidance, all game 

conditions need adjusting to ensure the ratio of gameplay to speech exercises is carefully 

balanced. 

Similar to traditional gameplay, children undertaking gamified speech therapy 

want customizability in their game experience. The children generally liked the concept of 

buying items for their character. They purchased costumes, new weapons, and extra 

character power-ups. Children were motivated by a desire to customize their game 

character, and having items to purchase inspired them to collect coins and stars. Character 

customization is another method to help the child create an individualized gameplay 
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experience, potentially helping them further engage with Apraxia World as a therapeutic 

tool. Maintaining a child’s motivation to use the game and engagement in speech practice 

over the long-term is vital for the success of Apraxia World. Both character customization 

and choice over when the speech exercises appear are flexible elements of Apraxia World 

aimed at supporting this. However, limitations in the inventory of items available were 

highlighted during the current study. One child commented that the costume items 

available did not match well and another highlighted that there were no girl clothes. The 

suggestion of being able to pay to change the name of their character was also made. 

Developing the range of items available for purchase in subsequent versions of Apraxia 

World would ensure a rich gameplay experience for the child, helping to maintain 

motivation and engagement. 

This study was limited by the population demographics – only 4 of the 21 

participants were female, and only one of them was in the SSD group. Although up to 2.85 

times more males than females have a SSD [6], our sex ratio approaches neither that of 

SSD nor general populations. Seeking a better demographic balance in future studies will 

help to make sure Apraxia World appeals to a wide audience. 

For this study, we focused on the engagement and usability aspects of Apraxia 

World, which serve as the foundation for ambulatory studies we plan to conduct later in 

2018. Direct SLP input will not be available during gameplay; as such, we will automate 

the speech evaluation through ASR. While mobile ASR engines (e.g., PocketSphinx) lack 

the capabilities of server-based solutions [66], recent findings [134] suggest that running 

the ASR engine in “forced-alignment” mode can be used to assess pronunciation. While 
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this is generally not an option for general applications of speech recognition, in the context 

of speech therapy, the (target) spoken word is known in advance. Alongside the ASR, we 

plan to develop a therapist portal for managing the remote therapy application. Given that 

some children found Apraxia World too difficult, future versions will include more 

graduated level difficulty and adaptive difficulty, such that the game stays at an engaging 

level of difficulty as players’ skills improve. Additionally, we will evaluate a before-game 

condition in the next version of Apraxia World, as the during-game and after-game 

conditions both had their own drawbacks. 

3.8. Conclusion 

In this paper, we presented Apraxia World, a mobile speech therapy tool built atop 

a full-fledged, multi-world platformer game. Apraxia World decouples speech production 

and game control to avoid limiting the type and variety of speech input; players complete 

speech exercises to make progress, but speech does not control character movement, which 

requires fine motor control. We conducted a user study to validate game functionality and 

evaluate how enjoyable children found gameplay alongside speech exercises. Overall, the 

children showed enthusiasm and engagement with Apraxia World and the novel mode of 

speech exercise delivery. Most of the children preferred to do exercises in the after-game 

condition, however, this was not unanimous; this indicates that future versions of the game 

should continue to offer flexibility in how players can do their speech exercises. The results 

of the study support the feasibility of Apraxia World as an augmentation to traditional 

clinic-based speech therapy.  
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4. A LONGITUDINAL EVALUATION OF TABLET-BASED CHILD SPEECH 

THERAPY WITH APRAXIA WORLD* 

 

4.1. Overview 

Digital games can make speech therapy exercises more enjoyable for children and 

increase their motivation during therapy. However, many such games developed to date 

have not been designed for long-term use. To address this issue, we developed Apraxia 

World, a speech therapy game specifically intended to be played over extended periods. 

In this study, we examined pronunciation improvements, child engagement over time, and 

caregiver and automated pronunciation evaluation accuracy while using our game over a 

multi-month period. Ten children played Apraxia World at home during two 

counterbalanced four-week treatment blocks separated by a two-week break. In one 

treatment phase, children received pronunciation feedback from caregivers and in the other 

treatment phase, utterances were evaluated with an automated framework built into the 

game. We found that children made therapeutically significant speech improvements while 

using Apraxia World, and that the game successfully increased engagement during speech 

therapy practice. Additionally, in offline mispronunciation detection tests, our automated 

pronunciation evaluation framework outperformed a traditional method based on 

 

* This chapter has been accepted for publication in the ACM Transactions on Accessible Computing. Re-

printed with permission. Hair, A., Ballard, K. J., Markoulli, C., Monroe, P., McKechnie, J., Ahmed, B., & 

Gutierrez-Osuna, R. A Longitudinal Evaluation of Tablet-Based Child Speech Therapy with Apraxia World. 

ACM Transactions on Accessible Computing. Forthcoming. 
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goodness-of-pronunciation scoring. Our results suggest that this type of speech therapy 

game is a valid complement to traditional home practice. 

4.2. Introduction 

The term speech sound disorder (SSD) refers to a group of disorders affecting the 

development of accurate speech sound and prosody production that are diagnosed in 

childhood [1]. Children with SSDs struggle with phonological representation, 

phonological awareness, and print awareness, which can lead to difficulties learning to 

read or reading disabilities [2], and negatively impact communication skills development 

[3]. Fortunately, children with SSDs often reduce symptoms and improve speech skills by 

working closely with speech-language pathologists (SLP) to undergo speech therapy [4]. 

For speech therapy to be effective, treatments must be “frequent, high-intensity, 

individualized, and naturalistic” [5] so that children can practice new habits and skills [6]. 

However, scheduling appointments with SLPs can be logistically difficult [7-9], and up to 

70% of SLPs have waiting lists [10], which slows access to services. To meet high dosage 

requirements, clinic-based interventions must be supplemented with considerable home 

practice, typically directed by primary caregivers (e.g., parents, guardians). However, 

home practice sessions can be tedious for both caregivers and children, and busy caregiver 

schedules can decrease the amount of practice a child receives [11]. As such, there is a 

need for speech therapy systems that follow best practice principles, place less burden on 

the time and skill of caregivers, and make the therapy itself more engaging. 

A promising approach to address barriers to frequent child speech therapy is to 

incorporate the therapy into digital games. Digital therapy games can have a positive 
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impact on child motivation and satisfaction [12], and have been shown to increase 

participant engagement and persistence [13, 14]. Most importantly, research has shown 

that computerized and tablet-based speech therapy interventions can be as effective as 

traditional interventions [15-21], although not all digital applications out-perform 

traditional methods [22] or produce clinically-significant results [23]. A number of game-

like applications for speech therapy have been commercially developed and are available 

for purchase [24] (e.g., Apraxia Farm [25], Articulation Station [26], ArtikPix [27], Tiga 

Talk [28]). Children often enjoy using digital therapy interventions in short-term tests, and 

sometimes even play beyond the required time [29, 30]. However, applications often 

employ an arcade or casual game with simple play mechanics, which do not lend 

themselves to long periods of gameplay/speech practice and can quickly become tedious 

[31, 32]. Furthermore, many games do not include production feedback, which means that 

the therapy practice must still be closely supervised by caregivers. A handful of speech 

therapy games include pronunciation feedback [31, 33, 34], but much of this work is still 

preliminary. 

To address the motivation and independence issues associated with home practice, 

we have designed a mobile game for speech therapy called Apraxia World that delivers 

repetition-based therapy to address childhood apraxia of speech (CAS). CAS is a 

neurological SSD that affects speech movements and can slow learning appropriate 

intensity, duration, and pitch for speech sounds [43]. Apraxia World was developed based 

on child feedback from early prototypes, and is intended for extended use to accommodate 

lengthy therapy treatments; we employed a participatory design approach [135] where 
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children, caregivers, and clinicians acted as informants and testers as the game progressed 

from prototype to the version presented here. Children play Apraxia World like a 

traditional mobile game with an on-screen joystick and buttons, but must complete short 

speech exercises to collect specific in-game assets that are needed to progress through the 

levels. In a pilot study [25], we evaluated a prototype version of Apraxia World to simulate 

a single therapy session conducted in an SLP office setting. In general, children were 

enthusiastic about playing the game and reported that the game made their speech exercises 

more fun than normal. However, that study did not assess long-term engagement and 

usage, or possible therapeutic benefits (i.e., pronunciation improvements).  

In this article, we present the full-fledged version of Apraxia World and a 

longitudinal study to explore system usage, therapeutic benefit of home therapy with the 

game, and speech evaluation accuracy. In contrast to the prototype used for pilot testing, 

Apraxia World now includes automatic pronunciation evaluation to afford more child 

independence during practice. With this version of the game, we set out to answer the 

following research questions: 

• RQ1: Do children remain engaged in the game-based therapy practice over a long 

period of play? 

• RQ2: What level of pronunciation improvement do children achieve while playing 

Apraxia World? 

• RQ3: How accurately do caregivers and our automated system evaluate 

pronunciation? 
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To answer these questions, we designed a longitudinal study that allowed us to 

examine child engagement and interest in the game over time, and compare therapeutic 

improvements to those reported for traditional practice. The study consisted of two four-

week treatment phases with a two-week break in between. In one phase, children received 

pronunciation feedback from their caregivers in a Wizard-of-Oz manner (the system 

appeared automated, but actually had a human operator). In the other phase, children 

received feedback from the template matching framework. From our investigation, we 

found that: 

• Children enjoyed the game, even over the long treatment period 

• Game personalization was a popular aspect of Apraxia World 

• Children made pronunciation gains with Apraxia World comparable to those 

reported for traditional clinician plus home-based speech therapy of similar 

intensity 

• Caregivers tended to be lenient pronunciation evaluators, and  

• Template matching outperformed goodness of pronunciation scoring in offline 

mispronunciation detection tests 

The rest of this article is organized as follows. In Section 2 we present relevant 

background for digital speech therapy tools and automatic mispronunciation detection. 

Section 3 describes Apraxia World, the speech therapy program it delivers, and the 

mispronunciation detection framework. Section 4 details the experimental design of our 

longitudinal study, and the remaining sections present our results, discussion of findings, 

and concluding remarks. This article expands upon preliminary results that will be 
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presented as late-breaking work at the 2020 ACM CHI Conference on Human Factors in 

Computing Systems [35]. 

4.3. Background and related work 

4.3.1. Digital speech therapy tools 

Child speech therapy approaches can be grouped into two categories: linguistic- or 

articulation-based practice. Linguistic-based approaches address difficulties in using the 

correct sound to convey meaning [136]. As such, these therapy plans focus on organizing 

a child’s sound system so they produce sounds in the appropriate context. Articulation-

based approaches focus on the movement of articulators (e.g., tongue, lips) to produce 

speech sounds correctly [136]. A child will first learn the correct phoneme pronunciation 

by itself or in a simple word before practicing the sound in longer words or sentences. Both 

therapy approaches focus on drills and repetition. Previous work suggests that children 

receive the most benefit from frequent short sessions with randomly presented prompts, 

instead of repeated practice of one prompt [137]. The repetitive nature of these short 

sessions makes them excellent candidates for delivery via digital methods.  

A variety of digital speech therapy interventions have been developed over the last 

30 years. The Indiana Speech Training Aid (ISTRA) is a foundational project introduced 

in the late 1980s that used digital speech processing technology to provide speech therapy 

feedback to patients [61, 62]. ISTRA offered patient-specific computerized drill sessions 

with graphical feedback representing utterance scores (e.g., bar graphs, bull’s-eye 

displays) and pronunciation quality reports. Some speech exercises were also delivered 

through game-like applications such as Baseball and Bowling, where pronunciation scores 
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were displayed as game performance [64]. Some 10-15 years later, researchers presented 

the Articulation Tutor (ARTUR), another computer-based speech training aid that 

provided specific feedback on how to remedy incorrect articulations and showed a 

graphical model of the correct articulator positioning [138]. Their evaluations revealed that 

feedback delivered through the system helped children improve articulator positioning. 

The Comunica Project is a digital speech therapy system from the mid-to-late 2000s for 

Spanish speakers [123] with three distinct components: PreLingua (basic phonation skills), 

Vocaliza [128] (articulation skills), and Cuéntame (language understanding). PreLingua 

contained a game-like child interface, Vocaliza mimicked flashcards, and Cuéntame 

presented simple open-ended responses or commands. Both Vocaliza and Cuéntame 

contained automatic pronunciation verification that allowed an SLP to track progress over 

time. Tabby Talks [65, 66] is a more recent therapy application that included a mobile 

interface for patients, a clinician interface with progress reports, and a speech-processing 

engine. Speech exercises were delivered through a flashcard or memory game interface, 

both of which recorded utterances for later evaluation. The system processed audio on a 

remote server and included pronunciation progress in the clinician reports, but did not 

provide real-time feedback to the child. Results from a pilot test [16] indicated that this 

type of application is a viable complement to traditional clinic-based sessions, but that 

additional engaging features are needed to make the application more interesting for 

children. These previous projects illustrate the rich history of working to improve digital 

speech therapy and provide a strong foundation for future speech therapy tools. 
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To address the issue of low motivation due to the repetitive and boring nature of 

home therapy practice, researchers have also worked to deliver speech therapy exercises 

through standalone digital games. Lan et al. [34] developed Flappy Voice, a game where 

players fly a bird through obstacles by modulating their vocal loudness and pitch to change 

altitude. Following this concept, Lopes et al. [139] presented a game where the player 

helps the main character reach objects by producing a constant-intensity sustained vowel 

sound while the character moves. Feedback is provided by moving the character up or 

down to represent intensity changes. While these two games focused on modulating or 

maintaining specific sounds, the majority of speech therapy games have focused on 

keyword repetitions. For example, Navarro-Newball et al. [32] designed Talking to Teo, a 

story-driven game in which the player must correctly complete a series of utterance 

repetitions to complete actions for the main character. Utterances are evaluated with a 

custom speech recognizer and the success of in-game actions depends on the quality of 

production. Cler et al. [140] proposed a ninja versus robot fighting game for 

velopharyngeal dysfunction therapy where the player must repeat nasal keywords correctly 

to attack the enemy character. Nasality was measured with an accelerometer worn on the 

player’s nostril. Duval et al. [68, 141] introduced SpokeIt, a storybook-based game 

designed for cleft palate therapy, where the player helps voiceless characters navigate an 

unfamiliar world by producing target words associated with actions. This game provides 

pronunciation feedback using built-in speech recognition and is designed to afford long-

term play by procedurally generating level content. Ahmed et al. [26] evaluated five 

speech-driven arcade-style therapy games with stakeholders and typically-developing 
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children. Children preferred games with rewards, challenges, and multiple difficulty 

levels, indicating that overly simple games may not be suitable for speech therapy. These 

studies demonstrate the variety of methods available to integrate speech exercises into 

digital games and the diversity of genres that can facilitate gamified speech therapy. 

4.3.2. Automatic mispronunciation detection 

Techniques based on automatic speech recognition (ASR) show the potential to 

improve child pronunciation skills by enabling automatic mispronunciation detection 

within speech therapy applications [142]. The standard method for detecting 

mispronunciations is the goodness of pronunciation (GOP) proposed by Witt and Young 

[90]. The GOP method scores phoneme segments based on a probability ratio between the 

segment containing the target phoneme and the most probable phoneme. Although the 

GOP method was originally developed for second language learning, it has also been 

adapted to process speech from children with SSDs [38, 39]. In addition to GOP, 

researchers have presented various methods to evaluate child speech for pronunciation 

training and speech therapy applications. For example, Saz et al. [143] deployed speaker 

normalization techniques to reduce the effects of signal variance so that their pronunciation 

verifier could better detect variance in phoneme productions. Specifically, the authors 

examined score normalization and maximum a posteriori model adaptation to increase 

separation in the log likelihood outputs of a Hidden Markov Model (HMM) pronunciation 

verifier. Their approaches reached 21.6% and 15.6% equal error rates, respectively. Shahin 

et al. [37] proposed a phoneme-based search lattice to model possible mispronunciations 

during speech decoding. Their system identified incorrectly pronounced phonemes with 
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over 85% accuracy. In later work [144], the authors developed a mispronunciation 

detection approach using one-class Support Vector Machines (SVM). Their method used 

a deep neural network (multilayer perceptron) to extract 26 speech attribute features before 

training an SVM per phoneme using correctly pronounced samples. This method 

outperformed GOP for both typically-developing and disordered speech from children. In 

contrast to the above methods that only examine phoneme correctness, Parnandi et al. [65] 

presented a series of speech recognition modules to identify errors associated with CAS. 

These included an energy-based voice activity detector, a multilayer perceptron with 

energy, pitch, and duration features to identify lexical stress patterns, and an HMM to 

detect error phonemes. They achieved 96% accuracy detecting voice delay, 78% accuracy 

classifying lexical stress, and 89% accuracy identifying incorrect phonemes. Although the 

described methods demonstrate performance close to or above the clinically-acceptable 

threshold of 80% accuracy [142], they require phonetically-annotated data. This means 

researchers often must annotate custom corpora or rely on forced alignment, which can 

yield inaccurate segment times on mispronounced or child speech.  

Detecting child mispronunciations is made even more challenging by the inherent 

difficulty of processing child speech due to inconsistencies in speech features. For 

example, Lee, Potamiamos, and Narayanan [35] reported that children, specifically those 

under 10 years of age, exhibit “wider dynamic range of vowel duration, longer segmental 

and suprasegmental durations, higher pitch and formant values, and larger within-subject 

variability.” Compounding these issues is the limited number of appropriate child speech 

corpora; for example, the OGI Kids’ Speech Corpus [145] and PF-STAR [146] only 
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contain typically-developing speech, the PhonBank [147] collection contains corpora of 

disordered speech from children [148-150], but without ready-to-use recording 

annotations, and the recently released BioVisualSpeech corpus only contains European 

Portuguese speech [151]. As a result, acoustic models tend to be built using adult speech 

corpora, which severely limits system accuracy. In situations where speaker data are 

limited, template matching [152] may be an appropriate method to provide speaker-

specific pronunciation feedback. Template matching is a well-established speech 

recognition technique that uses dynamic time warping to compare a test utterance to 

previously collected examples of target words (“templates”). These templates can also be 

used to model the correct pronunciation of words. For example, this method has been used 

within a pronunciation practice application for second-language learners [64]. Template 

matching has also been successfully incorporated into child speech therapy systems as a 

pronunciation evaluator [61, 63, 153].  Template matching evaluations have been shown 

to correlate with human evaluations when using high-quality productions from the speaker 

as pronunciation templates [63]. This method successfully takes advantage of small 

amounts of child speech and can lower the burden of collecting calibration utterances for 

SLPs, caregivers, and children. Additionally, template matching does not require phonetic 

transcriptions, as words are evaluated holistically, which makes curating speech recordings 

even simpler for end users. 
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4.4. Apraxia World 

4.4.1. Game design 

Apraxia World is a brightly-themed 2D platformer game built by customizing and 

expanding an existing game demo (Ekume Engine 2D) using the Unity Game Engine. We 

explored building a game from scratch, but due to cost and time constraints, we instead 

opted to modify an available game. The Ekume Engine 2D was selected for its rich 

collection of pre-made assets, age-appropriate theming, and familiar gameplay mechanics. 

Players control a monkey-like avatar to navigate platforms, collect items, and fight 

enemies as they work to get across the finish line. Apraxia World includes 40 levels (eight 

levels for each of the five worlds), seven different characters, and an in-game store. These 

features align with recommendations that digital speech therapy systems include more 

game-like elements [26]. Figure 6 (a) and (b) show the level design from two different 

worlds (jungle and desert). 

From pilot testing, we found that children enjoyed the gameplay, speech exercises 

did not impede gameplay, and the game made the exercises more fun, although children 

generally completed the minimum number of exercises, even when offered in-game 

rewards [25]. Since these initial tests, we modified the game as follows: we count all 

utterance attempts towards the session goal, similar to traditional practice; we added an 

“energy” timer that encourages regular star collection; we implemented an exercise 

progress save mechanism so children can take a break; and we added automatic speech 

processing (technical details in Section 4.4.3). The game mechanics are described below. 
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(a) 

 

(b) 

 

(c) 

Figure 6 (a) A level from the jungle world (b) A level from the desert world (c) Speech 

exercise popup with both pictorial and text cues. 
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There are a handful of popular strategies for controlling speech therapy games: 

producing sustained sounds [34, 114, 139], speaking target words corresponding to actions 

[33, 68], or controlling specific aspects of speech [24]. While these strategies have the 

benefit of providing implicit feedback (progress in the game means the speech sounds are 

being correctly produced), they can be problematic if the player struggles to form the target 

sounds. Additionally, it can be difficult to navigate a character through a two-dimensional 

world using only speech to control complex movements or simultaneous commands (i.e., 

running and jumping). As such, Apraxia World incorporates speech as a secondary input 

used to collect in-game assets, specifically, yellow stars spread throughout the levels; see 

Figure 6 (a).  

When the player attempts to collect the star by touching it with their character, the 

game pauses and a themed speech exercise popup appears; see Figure 6 (c). Within the 

exercise, the player is prompted to capture pronunciation attempts using separate button 

presses to start and stop an audio recorder. As the player follows the exercise prompts, a 

human listener or automated system evaluates their utterances and the game displays the 

appropriate feedback (e.g., “Good job!” or “Not quite!”). Once the player attempts the 

specified number of utterances (either correctly or incorrectly pronounced), the popup 

disappears and the star is added to their inventory. Collecting the exercise stars is 

mandatory, as the game requires a certain number of stars to complete the level; the 

required number of stars per level and utterances per star can be configured by clinicians. 

Levels have between 7 and 12 stars scattered throughout, which reappear after a short delay 

to encourage the player to continue to explore.  
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Apraxia World displays a timer showing how long until the avatar’s “energy” runs 

out. This timer depletes continuously and must be replenished by doing speech exercises. 

When the character runs out of “energy,” it starts to move slowly, which makes the game 

more challenging. This encourages players to complete speech exercises regularly during 

gameplay. When players complete speech exercises, they earn 10 seconds for a correct 

pronunciation and 5 seconds for an incorrect pronunciation. In this way, players are 

rewarded for all pronunciation attempts, but correct attempts are more strongly rewarded 

to motivate them to maintain practice effort.  

Apraxia World provides players the option to purchase six additional characters 

and buy items in the store to encourage personalization. Players buy these items using 

coins (in-game currency) that they collected throughout the levels or that were awarded 

for doing speech exercises. The store sells costume items (pants, shirts, hats, and 

accessories) to dress up the characters, different weapons, and power-ups that give the 

characters “superpowers.” Some of the items available for purchase are displayed in Figure 

7. The power-ups last only briefly and provide the player a protector shield (invincibility), 

allow them to fly, attract coins “magnetically,” or increase gathered points by a multiplier. 

Power-up duration can be extended via purchase, but is always temporary. The different 

characters and costume items are purely for cosmetic personalization; they have no effect 

on how the game plays. The different weapons and power-ups do impact gameplay, in 

order to accommodate different play strategies. 

Apraxia World saves exercise progress when a player leaves the level, so they can 

take a break from their exercises and come back without losing their work. Once the player 
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comes back to the level, their character starts back at the beginning, but the previous 

therapy progress is reloaded so that they do not have to repeat exercise attempts. After the 

player completes the required number of speech exercises, the game does not allow them 

to do additional exercises. At this point, the player can continue until they finish the level 

or lose, whichever comes first. The game then locks the levels until the next day, as players 

are only allowed to complete one level per day to limit therapy exposure and avoid game 

fatigue.  

Even though the controls employed in Apraxia World are standard for tablet games, 

they may not be completely accessible for populations undergoing speech therapy. For 

example, some children with movement-based speech disorders, such as CAS, have motor 

impairments [154]. Other groups going through speech therapy may also experience 

difficulties with specific movements (e.g., children with Autism Spectrum Disorder [155]). 

Although not implemented in this study, the controls could easily be mapped to an external 

joystick or adaptive controller to make the game more accessible to those who want to use 

it. 
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(a) (b) 

 

 

(c) (d) 

Figure 7 (a) Various characters available for purchase (b) Costume items to dress up 

the character (c) Power-ups to give the character “superpowers” (d) Weapons with 

different attack behaviors. 

 

 

4.4.2. Speech therapy program 

Apraxia World offers two types of feedback: knowledge of response (KR) and 

knowledge of correct response (KCR). KR informs the learner of the correctness of their 

response, whereas KCR informs the learner of the correct response, so that they can judge 

the correctness of their response themselves [156]. KR has been shown to help people 

using digital speech therapy systems make improvements comparable to those from 
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traditional speech therapy [157], although it is up to system designers to decide what 

granularity of feedback to deliver. Apraxia World provides word-level KR feedback 

alongside the speech exercises by telling the child if an utterance was correct (“Great job!”) 

or incorrect (“Try again!” “Not quite!”), i.e., the correctness of the response. The game 

also offers KCR by providing the child with an example of the correct pronunciation 

whenever they need help, thereby informing them of the “correct response;” the child can 

hear the pronunciation sample by pressing a button displayed on the speech exercise 

popup. These example pronunciations were generated in advance using the Google Text-

to-Speech service [158]. 

The speech exercises in Apraxia World are based on a Principles of Motor Learning 

approach [137, 159], which prescribes a structure of practice and feedback to stimulate 

long-term learning. This means that Apraxia World can accommodate both linguistic- or 

articulation-based practice, depending on the target words selected by the SLP. First, an 

SLP assessed each child to determine problematic speech sounds and stimulability for 

correct production of the problematic sounds in real words. For our purposes, a sound was 

stimulable if the child could accurately imitate it multiple times and produce it without a 

model on at least 5 attempts within a 30-minute session. The SLP then selected one or two 

stimulable speech behaviors to address during treatment. Selecting stimulable behaviors 

increases the likelihood that the children have some internal reference of correctness, 

enabling them to benefit from simple KR feedback (i.e., word-level correct/incorrect 

feedback). Additionally, caregivers were asked to conduct five minutes of pre-practice 

before each home therapy session to remind the child how to produce a correct response 
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and interpret the feedback provided in the game. The principles of motor learning 

employed during practice with the game were random presentation order of stimulus, 

variable practice (i.e., varied phonetic contexts for each target sound), moderate 

complexity for the child’s current production level, and high intensity (100 production 

attempts per session). To give clinicians flexibility when selecting target words, we curated 

a word pool that includes approximately 1,000 words, with both single- and compound-

word targets. Each of these targets has a corresponding cartoon-style image to use as a 

pictorial prompt; see Figure 8 for examples of prompt images. 

 

 

   

(a) (b) (c) 

Figure 8 Pictorial prompts for (a) pumpkin, (b) unicorn, and (c) banjo. 

 

 

4.4.3. Pronunciation evaluation 

Apraxia World provides pronunciation feedback based on either automatic 

pronunciation evaluation or human evaluator input via a Bluetooth keyboard. Automatic 

pronunciation evaluation is carried out using template matching (TM) [152]. This method 
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compares a test recording against sets of “template” recordings to identify which set it 

most closely matches. We selected TM because it has very low data requirements (i.e., a 

small set of speech recordings per player), an important consideration for child speech 

therapy applications due to limited available data. This allows us to collect minimal speech 

data from each child, making the system easier for clinicians to configure, while still 

delivering child-specific pronunciation feedback. Additionally, TM does not require 

phonetic labels, making setup even simpler for clinicians. Our algorithm runs directly on 

the tablet, which avoids data transmission delays and allows the game to be played with 

limited or unstable internet connectivity.  

In our approach, correct and incorrect pronunciations of a word collected from the 

child are used as templates when determining if a new recording of the same word is 

pronounced correctly. The speech processing pipeline is illustrated in Figure 9 (a). Given 

a recorded utterance (16 kHz), the audio signal is pre-emphasized before 13 Mel-frequency 

cepstral coefficients are extracted from 32 ms frames with 8 ms overlap, which are then 

normalized with mean cepstral normalization (MCN) [160]. Leading and trailing silence 

segments are removed using an energy threshold to form the final feature vector.  
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Figure 9 (a) Spectral information is extracted from an utterance, mean cepstral 

normalized (MCN), and trimmed (b) Template and test utterances are aligned and 

scored based on RMSE. 

 

 

The TM process is shown in Figure 9 (b). Template 𝑡 and test utterance 𝑢  are 

aligned end-to-end using dynamic time warping (DTW). From this alignment, we compute 

a pronunciation distance between the two as: 

𝑑(𝑡, 𝑢) = {

‖𝑑𝑡𝑤(𝑢,𝑡)−𝑡‖2

𝑙𝑒𝑛(t)
, if 𝑙𝑒𝑛(𝑡) > 𝑙𝑒𝑛(𝑢)

‖𝑑𝑡𝑤(𝑡,𝑢)−𝑢‖2

𝑙𝑒𝑛(u)
, otherwise

, 

(1) 

where 𝑑𝑡𝑤(𝑥, 𝑦)  time-aligns the frames in 𝑥  to 𝑦 . To classify the test utterance, we 

compare its distance against those for pairs of correct and incorrect pronunciation 

templates for that target word. Let 𝑇𝐶 be the set of correct pronunciation templates and 𝑇𝐼 

be the set of incorrect pronunciation templates. The correct pronunciation score 𝑠𝐶 is the 

median TM distance for all unique pairs of correct pronunciation templates: 
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𝑠𝐶 = median({𝑑(𝑗, 𝑘)|∀𝑗, 𝑘 ∈ 𝑇𝐶 , j ≠ k}), (2) 

whereas the incorrect pronunciation score 𝑠𝐼 is the median TM distance for all pairs of 

correct and incorrect pronunciation templates:  

𝑠𝐼 = median({𝑑(𝑗, 𝑖)|∀𝑗 ∈ TC, ∀i ∈ TI}). (3) 

The score for a test utterance 𝑢 is the median TM distance to all correct pronunciation 

templates: 

𝑠𝑢 = median({𝑑(𝑗, 𝑢)|∀𝑗 ∈ TC}). (4) 

In a final step, we label the test utterance pronunciation as incorrect (0) or correct (1) as: 

𝑙𝑎𝑏𝑒𝑙(𝑢) =  {
1, |𝑠𝑢 − 𝑠𝐶  | ≤ |𝑠𝑢 − 𝑠𝐼|

0, otherwise
. (5) 

To enable real-time evaluation, correct and incorrect pronunciation scores 𝑠𝐶 and 𝑠𝐼 are 

pre-computed; only the test utterance needs to be scored at runtime. Test utterances are 

scored against correct pronunciation templates, as we expect the child to form correct 

pronunciations similarly, but there are likely multiple incorrect pronunciations due to the 

child struggling to produce sounds consistently.  

As part of the experimental setup, an SLP collects the necessary template 

recordings from the child. This is done using a separate companion app called Apraxia 

World Recorder (AWR) to make it easy for clinicians to select speech targets, which is 

critical when including ASR in speech therapy [161]. AWR allows the SLP to select a 

tailored set of target words for the child, collect calibration recordings and labels, and 

export the pre-processed templates for Apraxia World to use during real-time 

pronunciation evaluations. AWR also enables the SLP to swap target words as the child 
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makes progress in their therapy, which is important for customization. Figure 10 shows 

the recording interface for a target word in AWR. 

 

 

 

Figure 10 Word recording interface in AWR. Recordings are labeled as correctly 

(green check) or incorrectly (red x) pronounced. 

 

 

4.5. Experimental design 

4.5.1. Participants 

We recruited eleven children (10 male, 5-12 years old) with SSDs in the Sydney 

(Australia) area via print ads in local magazines, word-of-mouth, and clinician 

recommendations. Although this sample size may appear small, recruiting a large number 
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of participants was infeasible given that the target population is limited and the protocol 

requires considerable time investment on the part of caregivers. All children were native 

Australian-English speakers with a diagnosis of SSD from their referring clinician. For the 

purposes of this article, SSDs were determined by difficulty producing multiple speech 

sounds by the expected age. All had previously received community-based therapy, but 

were previously discharged or on break during our study. Participants had normal receptive 

language, hearing and vision, and no developmental diagnosis or oral-facial structural 

anomalies. One participant (male) unenrolled from the study due to schedule conflicts, so 

his data were not included in this analysis. The remaining ten participants completed the 

treatment protocol. Nine participants had an idiopathic SSD (i.e., unknown cause) and the 

tenth had a genetic condition causing mixed CAS and dysarthria. All procedures were 

approved by the University of Sydney’s Human Research Ethics Committee and all 

children and guardians provided written informed assent/consent, respectively, before 

participating in the study. 

4.5.2. Protocol 

In this study, we examined child engagement over time, pronunciation 

improvements, and caregiver and automated pronunciation evaluation (TM) accuracy. The 

study consisted of five phases: setup, two treatment blocks, a between-treatments break, 

and a post-treatments break. We do not report on the post-treatment break in this article, 

as observations from the break are addressed in a forthcoming clinician-focused 

manuscript. Setup involved selecting appropriate target words based on the child’s therapy 

needs, recording the calibration utterances in AWR (see Figure 10), and familiarizing the 
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child and caregiver with Apraxia World. Children practiced over two counterbalanced 

phases (five participants received automated feedback first and five participants received 

caregiver feedback first) so that we could examine the effects of utterance evaluation 

source (caregiver versus automated system). In one treatment block, children received 

pronunciation assessments from their caregivers in a Wizard-of-Oz fashion (the system 

appears automated, but actually has a human operator). In the other treatment block, they 

received automatic pronunciation assessment from the TM framework. At the end of each 

treatment block, a representative random subset of utterances was selected for 

pronunciation evaluation by an SLP. The experimental protocol is illustrated in Figure 11. 

During the treatment blocks, children played Apraxia World as long as needed to complete 

their speech exercises, four days per week. The children played Apraxia World on 

Samsung Tab A 10.1 tablets and wore a headset with a microphone to record their speech 

during exercises. 

 

 

 

Figure 11 Experimental protocol with two treatment blocks. Pronunciation is probed 

before treatment and weekly during treatment. 
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Each treatment block repeatedly presented a different set of 10 words selected by 

an SLP to correspond with the child’s specific speech difficulties. During gameplay, 

Apraxia World prompted the child to say one of their target words selected at random. 

Target words were not repeated until all had been presented the same number of times. In 

total, each child practiced 20 different words across the two treatment blocks; see Table 1. 

Pronunciation abilities were probed before each treatment block and weekly during the 

treatment blocks. Pronunciation probes contained both practiced (included in Apraxia 

World) and non-practiced (not included in Apraxia World) words to measure carryover 

effects (not reported here). A child’s pronunciation ability was scored as the percentage of 

utterances containing the correctly produced target sound within a given probe. During the 

probe, children were not penalized for production errors on any sound other than the 

stimulable sounds selected by the SLP. Subjective questionnaires were administered twice 

during each treatment block and again following treatment to track and compare 

engagement during both treatment conditions (children were asked how hard they were 

trying in the game and if they wanted to continue playing; caregivers were asked if the 

children were engaged).  Gameplay logs were captured for analysis of how children spent 

time in the game. Furthermore, all speech exercise attempts were recorded and stored for 

offline examination.  
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Speaker Phase 1 words Phase 2 words 

m1 chair, chasing, cheese, chimpanzee, 

chopping, ginger beer, giraffe, jaguar, jam, 

jumping 

eagle, eating, egg, elephant, kennel, key, 

pebble, seven, telescope, tennis 

m2 bus, horse, house, kiss, mice, sail, saw, sea, 

seat, sun 

lady, lake, lamb, lava, leaf, licking, light, 

lion, lip, loud 

m3 binoculars, boa constrictor, kingfisher, 

ladder, leopard, letter, lizard, lobster, 

possum, stomach 

biscuit, bulldozer, button, calculator, 

cauliflower, lettuce, pattern, pocket, 

salmon, scissors 

m4 lair, lake, laughing, lawn mower, leak, 

letter, licking, lip, lobster, look 

back, bat, cactus, dagger, magic, packet, 

pattern, shack, tap, taxi 

m5 bed, bird, dirty, earth, egg, fur, girl, men, 

stem, ted 

barber, bathroom, beehive, dinner, 

hammer, ladder, paper, peanut, tiger, toilet 

m7 claw, climber, clip, flamingo, flash, 

slower, fly, glass, globe, glove 

garage, garbage, jam, jumping, jungle, 

kitchen, teach, teacher, torch, watch 

m8 shark, sharp, shed, sheep, shelf, shirt, shoe, 

shop, shovel, shower 

chair, cheese, chicken, chocolate, 

chopping, jail, jam, jelly, juggle, jumping 

m9 shampoo, shave, shed, sheep, shirt, shoe, 

shop, shore, shovel, shower 

beach, giraffe, jam, jaw, jelly, jellyfish, 

jumping, kitchen, teacher, torch 

m10 earth, earthquake, feather, mammoth, 

python, stethoscope, tablecloth, teeth, 

there, toothpaste 

barber, climber, cucumber, dancer, 

deliver, diver, goalkeeper, kingfisher, 

pencil sharpener, toilet paper 

f1 binoculars, burglar, caterpillar, curl, earth, 

hamburger, purr, purse, turkey, unicorn 

chair, garbage, kitchen, peach, pencil 

sharpener, sponge, teacher, torch, watch, 

witch 

Table 1 Words selected to address speaker-specific speech difficulties. 
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4.6. Results 

We conducted four types of analysis: gameplay, therapeutic progress, audio 

quality, and pronunciation evaluation. To analyze gameplay, we investigated how long 

participants spent playing the levels, how far they progressed in the game, what slowed 

them down, and what they purchased in the in-game store. We also collated surveys to 

identify response trends; child and caregiver surveys from participant m9 were not 

returned, so only his game logs and audio could be explored. To examine therapeutic 

progress, we compared speech performance at baseline against performance at the final 

probe (after each treatment phase). We measured audio quality by inspecting the collected 

child audio and then gathered ground-truth correct/incorrect labels from an SLP for a 

subset of recordings. Finally, we analyzed caregiver and automated evaluations using the 

SLP labels as ground-truth, and compared their performance against goodness-of-

pronunciation scoring. 

4.6.1. Gameplay analysis 

In a first step, we examined how long children spent within a level throughout the 

study. On average, participants spent just under 20 minutes per day playing a level (𝜇 =

19.5, 𝜎 = 14.3). Results are shown in Figure 12. When comparing the two treatment 

phases, for all participants but one4, there was no significant difference in the amount of 

 

4 The significant difference in playtime for participant m4 arose due to a clinician reducing the 

number of stars required to finish the level, but increasing the number of exercises needed to earn each star. 

This resulted in less gameplay, while maintaining the same therapy dosage. 



 

79 
 

time spent in a level between the TM feedback phase and caregiver (CG) feedback phase. 

Large play time values where a child left the game unattended for long periods with a level 

open were excluded from the graph. 

 

 

 

Figure 12 Minutes spent within a level per day for treatment phases one (P1) and two 

(P2) (** indicates 𝒑 <  𝟎. 𝟎𝟓, two-sample t-test). 

 

 

Next, we analyzed game difficulty by examining the highest level each player was 

able to reach; see Table 2. Game progress was varied; four participants made it to level 25 

and one progressed all the way to the penultimate level, while only two struggled to leave 

the first world (m4 and m8). This indicates that level 25 may be a reasonable upper limit 

on how far most children can progress over the two phases, which suggests that the game 

may support even longer treatments. Given the age range of our participants, we calculated 
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the correlation between progress in the game and age, and found that these factors were 

weakly correlated (Pearson’s 𝑟 = 0.29, 𝑝 = 0.41, 𝑛 = 10). This indicates that age did not 

significantly influence progress, so progress was more likely affected by interest or skill 

with tablet-based games (e.g., the participant who made it farthest in the game was in the 

middle of our age range). To identify which aspect of the game prevented children from 

progressing through levels, we examined the causes of the in-game characters to “die.” For 

all participants, character deaths were significantly more likely to be caused by obstacles 

than by enemies (𝑝 ≪ 0.01, paired t-test).  

 

 

Participant m1 m2 m3 m4 m5 m7 m8 m9 m10 f1 

Max level 25 19 21 7 25 25 5 19 39 25 

Table 2 Maximum progress in the game for each player. 

 

 

We found that shopping was popular across participants, according to the number 

of purchases made from the in-game store and child survey responses. Caregivers also 

confirmed in their surveys that children enjoyed shopping in the Apraxia World store. All 

participants bought at least one power-up from the store. By far, the most popular power-

up was flight; see Figure 13 (a). This was often used by children to navigate around 

challenging portions of levels, which makes sense given that the obstacles were 

significantly more likely to cause character “deaths.” Progress in the game and the 
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purchase of the flying power were weakly correlated (Pearson’s 𝑟 = 0.18, 𝑝 = 0.62, 𝑛 =

10), indicating that powerups did not unduly aid players in their progress. All players 

purchased clothes, and most purchased additional weapons for their characters, but not all 

players purchased new characters. See Table 3 for the number of items purchased by each 

player. 

 

 

  

(a) (b) 

Figure 13 (a) Powerup purchases across all participants (b) Exercises completed per 

day. 

 

 

In their survey responses, children reported enjoying the game (𝑛 = 9 𝑜𝑓 9) and 

many indicated that they would like to continue playing (𝑛 = 8 𝑜𝑓 9). Nine children 

actually played the game at least once after the study concluded according to the game 

logs, which confirms that they enjoyed AW enough to want to play without external 

pressure. Children also said that they were trying “very hard” while playing the game (𝑛 =

8 𝑜𝑓 9), corroborating that they put effort into playing the game and stayed engaged. We 
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found a few repeated themes in what the children enjoyed about the game. Specifically, 

they reported enjoying fighting the enemies (“defeating the big gorillas,” “fighting the bad 

guys”), making purchases in the store (“buying the gear,” “I bought a lot of characters,” 

“buying things for my character,” “buying clothes and accessories”), riding animals with 

their character (“I liked the fox,” “Level 4 had a fox – I liked that”), and making progress 

through the game (“Unlocking new levels,” “Moving up a level [every day],” “that every 

level has new things”). One of the younger players (7 years old) was very proud of his 

progress in the game, stating “I am up to the next map… I am up to level 10 now” during 

a check-in with the SLPs. Caregivers reinforced via survey response that children enjoyed 

the game (𝑛 = 9 𝑜𝑓 9) and some emphasized how much the children found the game 

motivating (𝑛 = 8 𝑜𝑓 9 said motivating or highly motivating) or enjoyable. One caregiver 

said that their “son wanted/asked to do practice, which [had] never happened before.” All 

caregivers said that the children were engaged in the game (𝑛 = 9 𝑜𝑓 9). 

Although the children generally liked the game, they did dislike a few aspects. The 

children reported that they found the word repetitions boring (“Getting bored because I 

just need to get coins and stars,” “Saying the same words got boring after a while”) and 

that the game became too difficult (“I didn’t like defeating some of the bad guys because 

it was sometimes hard,” “Sometimes tricky bouncing high enough,” “Not being able to get 

past a spot”). They also disliked the software bugs (“Game freezing,” “Freezing”), which 

will be eliminated with further code testing. 
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Participant m1 m2 m3 m4 m5 m7 m8 m9 m10 f1 

Clothing 29 13 7 11 5 6 35 23 23 27 

Weapons  8 5 9 7 3 6 0 6 7 2 

Characters  5 1 2 1 0 3 0 2 3 6 

Table 3 In-game purchases made by players during the study. 

 

 

4.6.2. Therapy analysis 

As a measure of therapy adherence, we examined the number of speech exercises 

completed daily by the participants, according to the game logs. Results are shown in 

Figure 13 (b). On average, children completed 76.0 speech exercises (i.e., word production 

attempts) per day during treatment ( 𝜎 = 43.3 ). The average number of exercises 

completed daily was lower than the target dosage because, aside from caregiver 

supervision, there was nothing forcing children to complete all of their exercises before 

putting down the tablet for the day. As such, it is notable that children came somewhat 

close to the target dosage with the game being their primary motivation. Although therapy 

dosage was set at 100 exercises per day, children sometimes completed more exercises 

than prescribed, as seen in Figure 13 (b). This could have occurred if a player completed 

exercises in a level, exited before reaching 100 exercises (meaning the game had yet to 

lock for the day), started a different level, and then completed exercises in the new level.  

Pronunciation improvements were measured according to the absolute percent 

change in correct target sounds produced in the probes immediately before and after a 
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treatment phase. Results are shown in Figure 14. Children experienced an average absolute 

improvement of 56.6 percent (𝜎 = 35.7) when receiving TM feedback and 61.5 percent 

(𝜎 = 22.8) when receiving caregiver feedback, and these differences were not statistically 

significant (𝑝 = 0.73, two-sample t-test). Children who received caregiver feedback first 

showed a stronger improvement across both treatment phases (𝜇 = 67.3 , 𝜎 = 33.5 ) 

compared to children who received TM feedback first (𝜇 = 50.8, 𝜎 = 23.3), although the 

order effects were not significant; one-way Analysis of Variance : 𝐹(2,7) = 0.85, 𝑝 =

0.47. Neither treatment group showed significant differences in improvement between the 

first and second phase of treatment (caregiver first: 𝑝 = 0.76, TM first: 𝑝 = 0.89, two-

sample t-test). 

 

 

 

Figure 14 Absolute increase in pronunciation scores at the beginning and end of each 

treatment phase for caregivers (CG) and template matching (TM). 
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Children felt that the TM did not provide accurate feedback, which implies that 

they must have been doing some self-evaluation while playing the game (“sometimes it is 

wrong,” “Game gives the wrong feedback,” “The computer is wrong a lot,” “Sometimes it 

is right but sometimes it is wrong”). Regardless of how children perceived the automated 

feedback, they still made pronunciation improvements with both evaluation methods. 

Importantly, caregivers reported in their survey responses that this type of therapy 

generally fit easily into daily life (𝑛 = 7 𝑜𝑓 9) and that they felt confident using the tablets 

to deliver the therapy (𝑛 = 9 𝑜𝑓 9). They also responded that they were satisfied with the 

children’s speech therapy progress (𝑛 = 9 𝑜𝑓 9 said satisfied or extremely satisfied) and 

that they would like to use Apraxia World either exclusively (𝑛 = 5 𝑜𝑓 9) or combined 

with traditional paper worksheets (𝑛 = 4 𝑜𝑓 9) to help with future speech practice. 

4.6.3. Quality of audio recordings  

Before we computed evaluator performance, we needed to determine the quality of 

the recordings to make sure that the participants were able to successfully capture entire 

utterances with limited background noise and distortions. Therefore, we manually listened 

to each recording to assign them into five categories: clipped (part of the recording cut 

off), containing background noise, unusable (speaker unintelligible), containing 

significant microphone noise, or good (usable for ASR analysis). Statistics on the gathered 

audio are displayed in Table 4. Overall, roughly 46% of the 27,700 recordings collected 

are of sufficiently good quality to use in our analysis. Clipped audio accounted for the 

majority of the remaining recordings (~33%). The percentage of usable recordings 
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compares favorably to that reported in another study where a tablet-based learning 

application was used to collect child audio for offline analysis [162]. 

 

 

Total Utterances 27,700 

Good Utterances 12,742 (46%) 

Clipped Utterances 9,141 (33%) 

Unusable Utterances 3,878 (14%) 

Background Noise 1,385 (5%) 

Microphone Noise 554 (2%) 

Table 4 Recorded utterances gathered during gameplay. 

 

 

On average, children wore their headset during 92% of their therapy sessions (the 

game logged if the headphones were plugged in). Given such high level of adherence, it 

was surprising that many of the recordings were of low quality. This suggests that the 

microphone may have not been properly placed in front of the children’s mouth and was 

instead either too far (many of the recordings were quiet and difficult to hear) or too close 

(other recordings included puffs). A number of the recordings included significant 

distortions consistent with children accidentally holding their hand over the microphone 

or brushing it while speaking.  
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4.6.4. Manual and automatic pronunciation evaluation  

We examined pronunciation evaluation performance using a representative subset 

of recordings (selected evenly from across both treatment phases) from those that had been 

classified as “good;” see previous subsection. Each of these recordings (𝑛 = 2,336) was 

manually labeled by an SLP, who identified if the utterance contained pronunciation errors 

(sound substitution or deletion).  Overall, 82% of the utterances were labeled as having an 

error, or an average of 1.2 phoneme errors per utterance.  The probability density for the 

number of phoneme errors per utterance is shown in Figure 15. We also identified where 

the phoneme errors occurred: 30% of errors occurred on the first phoneme, 27% occurred 

on the final phoneme, and the rest occurred in the middle of the utterance. 

 

 

 

Figure 15 Probability density for the number of phoneme errors per utterance. 
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We used the SLP labels as ground-truth to calculate word-level performance of the 

TM algorithm and caregivers’ pronunciation evaluation. For our calculations, we defined 

a true positive as a successfully identified mispronunciation and a true negative as a 

successfully identified correct pronunciation, which is the common notation in 

mispronunciation detection literature. Using these definitions, we computed the true 

positive rate (TPR) and true negative rate (TNR) for the caregivers and TM evaluations 

pooled across all participants. For caregivers, the TPR (27%) was much lower than the 

TNR (87%), indicating that they may have been lenient in their evaluations or that they 

struggled to identify mispronunciations. In contrast, the TM algorithm had higher TPR 

(65%) and lower TNR (28%), suggesting that the system was better at identifying 

mispronunciations than correct productions.  

To examine if the location of the mispronounced sound affected TM performance, 

we took the subset of SLP-labeled utterances with only one mispronounced sound and split 

the recordings into three sets: error on the starting sound, error on a middle sound, or error 

on the final sound. We only calculated TPR because all of these utterances contain an error, 

so there are no true negatives. With these sets, we found that the TM yielded TPRs of 64%, 

65%, and 61% for starting errors, middle errors, and ending errors, respectively. This 

suggests that the TM framework is somewhat robust to error location, although the 

detection of final sound errors was slightly less than for other error locations. We similarly 

split the SLP-labeled subset with only one mispronounced sound by whether the error 

occurred on a vowel or consonant. TM was better at identifying vowel errors (67% TPR) 
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than consonant errors (62% TPR). This is expected behavior, as vowels are defined by 

specific frequencies (formants) that show up well in the MFCC features used by our TM. 

At the conclusion of the study, we compared the TM evaluation performance 

against a baseline algorithm based on the goodness of pronunciation (GOP) measure. We 

considered this to be a hard baseline since it was computed off-line on a desktop computer, 

whereas the TM evaluations had executed in real time on the tablet. The GOP algorithm 

used Kaldi acoustic models trained on the Librispeech corpus (960 hours of adult speech) 

[163], according to the implementation described by Witt and Young [90]. As GOP is a 

phoneme-level score, an utterance was labeled correctly pronounced if all phonemes 

scored above a specified threshold, otherwise it was labeled incorrectly pronounced. The 

GOP achieved similar performance detecting both incorrect and correct pronunciations, 

according to TPR and TNR (57% and 59%, respectively). This behavior is more balanced 

than that of TM, but at the cost of fewer detected mispronunciations. We also calculated 

the performance for a random binary classifier to show the minimum expected 

performance, given that our data is skewed with more incorrect than correct productions. 

Evaluation performance for all methods is displayed in Table 5. TM outperformed all other 

methods according to F1 score (harmonic mean of precision and recall); caregiver 

evaluations had the lowest F1 score, which was well below random classification 

performance. Although TM had a higher F1 score than GOP, both outperformed random 

classification in all measures.  
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 Random Classifier TM Caregiver GOP 

Precision 82% 80% 90% 87% 

Recall 50% 65% 27% 57% 

F1 Score 62% 72% 41% 69% 

Table 5 Evaluator performance (True positive is an identified mispronunciation). 

 

 

4.7. Discussion 

In this article, we set out to investigate three research questions relating to our 

speech therapy game and pronunciation evaluation accuracy. Here, we discuss the results 

in relation to these questions. 

• RQ1: Do children remain engaged in the game-based therapy practice over a long 

period of play? 

We found that children did stay engaged in their tablet-based therapy throughout 

the study. For all children but one, average play time remained the same in both treatment 

phases, suggesting that they maintained consistent levels of effort across the protocol, 

rather than dawdling as time went on. Eight participants reported trying “very hard” while 

playing the game, which aligns with the consistent average playtime across treatment 

phases. On average, children spent 19.5 minutes playing a level on the days they used the 

game. Eight participants also responded in the surveys that they would like to continue 

playing, and nine participants actually played Apraxia World at least once after the 

treatment concluded. Playing beyond the required time, especially after two months of 

mandatory play, suggests that the children genuinely enjoyed the type of play offered by 
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Apraxia World. Additionally, all nine caregivers for whom we have surveys also said that 

the children were engaged with the game.  

Children indicated that they liked the store aspect of the game and made numerous 

purchases. All children purchased clothing/costume items, which indicates that the 

children enjoyed being able to customize their game experience; children each purchased 

an average of 26 items. We found a similar positive response to game and therapy 

experience personalization in pilot testing for Apraxia World [25]. These purchase 

behaviors suggest that children are interested in tailoring their gameplay, and it is 

important to provide different mechanisms for customizing the game and therapy 

experience.  

Even though the children remained engaged in their therapy during the treatment 

period, some found practicing a limited set of words grew boring. However, the desire for 

variety must be balanced against the considerable time investment to collect calibration 

recordings for target words. The per-speaker pronunciation verification approach used in 

Apraxia World allows SLPs to create highly customized therapy plans that accommodate 

a child’s current speech production abilities, but this comes at the cost of increased setup 

complexity and decreased target variation. One compromise may be to configure extra 

target words during the initial calibration session with the clinician so that caregivers can 

swap out target words when they become tedious.  

• RQ2: What level of pronunciation improvement do children achieve while playing 

Apraxia World? 

In our study, participants improved their pronunciation accuracy in both feedback 

conditions. Children improved an average of 56.6 percent absolute with automated 
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feedback and 61.5 percent absolute with caregiver feedback. These improvements are 

similar to those reported for traditional clinician [8, 133] and clinician plus caregiver [164] 

speech therapy of similar intensity. They also align with results from previous studies 

demonstrating the efficacy of digital speech therapy applications [19, 165]. Given that 

Apraxia World delivers therapy through pictorial and text prompts, the game is 

customizable to deliver stimuli and exercises for a range of conditions (e.g., motor and 

phonological speech sound disorders, literacy) and across a range of skills levels (e.g., 

sound, word, phrase level). 

While we did not detect significant order effects, the five children receiving 

caregiver feedback first appeared to have a greater magnitude of change across both phases 

(67.3 versus 50.8 percent average absolute improvement). If this trend held up in a larger 

study, it would suggest that children may need some initial support as they start this type 

of therapy, before they become more independent with TM-guided practice. This transition 

from high to low support is also more pedagogically valid than increasing support towards 

the end of treatment. As some children may need less support in the beginning, the duration 

of caregiver support could be adjusted to fit each child, while still ensuring that game and 

therapy requirements are established.  

• RQ3: How accurately do caregivers and our automated system evaluate pronunciation? 

We found that our TM framework was moderately successful at identifying 

mispronunciations (72% F1), but caregivers let many mispronunciations go unidentified 

(41% F1). TM outperformed caregivers and GOP (69% F1), aligning with previous results 

that report TM working well for child speech therapy [63, 153]. TM may also be a better 
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option than GOP in this application because it does not require forced alignment to score 

utterances. This is valuable because forced alignment segmentation can be affected by the 

presence of mispronunciations and inaccurate phoneme times lower pronunciation scoring 

accuracy. The caregivers evaluated pronunciation with high precision, but low recall, 

suggesting that they were more lenient than a clinician may have been. It is possible that 

some of the productions were on the verge of being correct and the caregivers only 

indicated major mispronunciations. Caregivers may have also used visual cues instead of 

only auditory cues when determining utterance correctness. In spite of any caregiver 

lenience or perceived TM severity in the utterance evaluations, children still made 

meaningful therapy progress.  

Although the TM framework outperformed GOP on the labeled recordings set, 

roughly 54% of in-home recordings had quality issues. Because TM directly compares 

feature vectors to classify utterances, recording quality can have a large impact on its 

performance. Audio containing extra words or prematurely stopped recordings may be 

processed incorrectly by the system. These issues were also reported by Strommen and 

Frome [166]. They found that children’s unpredictable speaking behavior and tendency to 

pause or repeat words lowered system performance compared to adults. Given that this 

method is somewhat brittle, extra care must be taken to capture high-quality recordings. If 

the system fails to provide accurate feedback for a child, the automatic pronunciation 

evaluations can always be overridden with the external keyboard. 
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4.7.1. Implications for future work 

A potential criticism of this work is the gender imbalance (only having one female 

participant). In elementary-school-aged populations, males are 2.85 times more likely to 

have an SSD than females [6], which makes recruiting a balanced population difficult. 

However, this does not eliminate the need for diverse populations, especially when 

collecting subjective data such as enjoyment and engagement with new applications. 

Given that general participant solicitation (this article and references [25, 65]) has failed 

to provide balanced sex ratios, or even ones that approach the 2.85 to 1 ratio found in the 

clinical population, perhaps targeted recruitment for female participants is warranted in 

future work. As caregivers are the ones who need to be convinced to respond to 

solicitations, we should emphasize the opportunity to provide a voice to girls with SSDs 

in regards to what type of therapy tools they want to use. Recruiting participants for these 

types of studies can be challenging, but making efforts to find more female participants 

will yield more meaningful and generalizable results. 

Even though the children wore headsets for the majority of the study, we 

encountered issues with microphone placement and children adjusting or touching the 

microphone. Additionally, we observed that when some of our participants became 

discouraged or excited, they spoke in ways that made it difficult for the TM to 

meaningfully evaluate their speech (mumbling, yelling, etc.). As such, future systems 

would benefit from monitoring microphone distortions, speaking volume, and speaking 

rate to recommend a correction. These reminders should help children produce utterances 

of better quality for automated speech processing, which would result in them receiving 
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more meaningful feedback on pronunciations. This may also have the added benefit of 

helping children increase self-evaluation of loudness and intelligibility. 

Future speech therapy games would also benefit from adopting a different 

recording method than the one implemented in this version of Apraxia World. The touch-

to-start/touch-to-stop mechanism proved difficult for the children to accurately control, as 

evidenced by the high percentage of clipped audio. Many of the clipped utterances were 

missing just a small portion of the utterance, so a more child-friendly mechanism could 

yield better recordings, which would again improve ASR performance and provide more 

audio for offline processing. Ahmed et al. [26] also reported that children had trouble 

controlling the recording mechanism in their games, but their ASRs performed better when 

the games used discreet start and stop actions, instead of stopping the recording 

automatically. As such, a better mechanism may be to start recording once the prompt is 

displayed and trim the audio around a window defined by the button presses extended with 

padding to start earlier and stop later than when the child actually pressed the buttons. 

Since incomplete recordings oftentimes result in inaccurate automated feedback, it is 

essential to empower children to capture the entirety of their utterance. This replacement 

recording control mechanism should be the subject of future study. 

Although the TM outperformed caregivers for successfully-captured recordings, 

children sometimes felt the system provided inaccurate feedback. Given that around 54% 

of recordings had some type of quality issue, it is likely that these incorrectly-processed 

utterances are part of why the system behaved unexpectedly for some players. In order to 

build trust in intelligent systems, algorithms such as the TM framework need to offer 
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appropriate transparency [167, 168]; one way to move towards this goal would be to 

inform the player if a recording has issues that impede correct processing, rather than 

providing the same feedback as if a mispronunciation had been detected. Transparency 

could also be improved by informing the child which specific speech sound was incorrect, 

which would also provide actionable information for practice. This was not implemented 

in Apraxia World due to technological constraints and limited child speech corpora, but is 

the subject of ongoing work.  

One benefit of Apraxia World we have yet to examine is the effect of normalizing 

speech therapy practice by including it in a game format not specific to children receiving 

therapy. In this way, children could talk about or share their experiences playing the game 

with their peers, without standing out as different. Children were enthusiastic about 

playing the game and some seemed very proud of their in-game accomplishments, which 

we hope they felt free to share with their friends. It could be interesting to explore how 

reframing speech therapy exercises as a “regular” game changes how they are perceived 

both by children undergoing therapy and their peers with less exposure to speech therapy. 

As evidenced by the large quantity of speech samples collected in our study, digital 

speech-based applications may be a valuable tool when building child corpora. Although 

we only presented the audio collected from participants discussed in this manuscript while 

they completed the protocol, we actually gathered more than 5,000 additional utterances 

from the game for future mispronunciation detection improvements. Using digital 

applications to build a custom corpora extends beyond the speech therapy domain; 

researchers have also deployed engaging applications to gather child speech for offline 
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analysis of reading fluency [162] and English acquisition in foreign-language speakers 

[169].  

One key takeaway for the human-computer interaction community is that less may 

be more when dealing with therapy games. We found that children enjoyed the game 

throughout their treatment and some even played after the study ended so that they could 

make additional in-game progress. By limiting the daily gameplay, we built anticipation 

for the next session and extended gameplay to last the entire two-month study duration; if 

there were no limit, children could have easily completed the game in a couple of days, 

depending on their skill level. We recommend other designers consider implementing this 

mechanic to extend therapy game engagement over lengthy treatment periods. 

4.8. Conclusion 

Children with speech sound disorders struggle to produce and perceive certain 

sounds, and typically undergo clinical speech therapy to address these difficulties. 

However, speech therapy is often less frequent than it needs to be for children to learn new 

skills. Home practice commonly complements clinic sessions to increase practice 

frequency, but it depends on caregiver availability and can be tedious for children. In this 

article, we presented Apraxia World, a speech therapy game designed to give children 

more independence and make therapy practice more enjoyable. Apraxia World is unique 

from other speech therapy games in that players control the game using traditional joystick 

and button inputs, while speech input is used to collect in-game assets necessary to 

complete the level. The game also supports pronunciation feedback provided by caregivers 

or an automatic evaluation framework. 
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To validate our game design and speech therapy delivery approach, we evaluated 

the long-term home use and clinical benefit of Apraxia World over a multi-month period. 

Children reported enjoying the game, even over the long play period. Game 

personalization through in-game purchases of costumes, weapons, and avatars proved to 

be a widely popular aspect of the game. We found that children made clinically-significant 

therapy gains while playing Apraxia World; this result aligns with previous studies that 

show computerized and tablet-based speech therapy is as effective as traditional speech 

therapy [19, 20]. We also found that TM outperformed GOP in detecting 

mispronunciations and that caregivers were lenient evaluators. The results of this 

examination support the use of Apraxia World to supplement home-based speech therapy 

by increasing practice frequency and reducing caregiver burden.  
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5. EVALUATING AUTOMATIC SPEECH RECOGNITION FOR CHILD SPEECH 

THERAPY APPLICATIONS* 

 

5.1. Overview 

Digital speech therapy games are an increasingly popular method to make speech 

therapy practice more engaging for children. An especially promising aspect of these 

applications is the potential to provide automatic pronunciation feedback, which would 

empower children to complete their practice with limited caregiver supervision. However, 

due to technological constraints, it is currently more feasible to deploy word recognition 

in place of phoneme-level mispronunciation detection. This would allow the therapy 

application to check if a child’s utterance was close to the intended target, thereby 

verifying that they actually tried to say the word. As such, we investigated performance of 

two automatic speech recognition techniques on disordered speech from children. 

Specifically, we compared the word recognition accuracy of the open-source 

PocketSphinx (PS) recognizer using adapted acoustic models and a custom template-

matching (TM) recognizer. In our tests, TM and the adapted models significantly out-

performed the default PS model. On average, maximum likelihood linear regression and 

maximum a posteriori model adaptation increased PS accuracy to 63.8% and 80.0%, 

respectively, suggesting that the adapted models successfully captured speaker-specific 

 

* A portion of this chapter was published at ASSETS 2019. Reprinted with permission. Hair, A., Ballard, K. 

J., Ahmed, B., & Gutierrez-Osuna, R. (2019, October). Evaluating Automatic Speech Recognition for Child 

Speech Therapy Applications. In The 21st International ACM SIGACCESS Conference on Computers and 

Accessibility (pp. 578-580). https://doi.org/10.1145/3308561.3354606 
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word production variations. TM reached a mean accuracy of 75.8%. These results indicate 

that limited training data can be used to improve ASR performance to clinically-acceptable 

levels, as specified by speech-language pathologists. 

5.2. Introduction 

Speech sound disorders (SSDs) are a group of disorders that affect development of 

accurate speech sound and prosody production [1]. Although SSDs can impair 

communication skills development [3], children often improve speech quality and reduce 

symptoms by working with speech-language pathologists (SLPs) [43]. Given that speech 

therapy practice must be frequent and high-intensity [7], clinic sessions need to be 

supplemented with considerable home practice, which can become tedious for children. 

Primary caregivers typically administer home practice, but busy schedules decrease 

practice frequency [14]. As such, there is a need for speech therapy tools that decrease the 

amount of direct caregiver involvement required and make the practice itself more 

engaging for children.  

To address issues stemming from boring and infrequent home practice, we 

previously developed a mobile speech therapy game called Apraxia World [25] built upon 

lessons learned from designing the Tabby Talks therapy system [65]. Apraxia World 

includes speech exercises with pronunciation feedback, which was handled via a human 

operator through a Wizard of Oz protocol during pilot tests. However, in order for children 

to practice independently and take ownership of their therapy, speech therapy games such 

as Apraxia World need to include automated pronunciation verification technology. 

Although the eventual goal for this technology is to identify phoneme-level errors, research 
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into improving the accuracy of child pronunciation verification is still ongoing. As such, 

speech therapy systems may benefit from an interim solution: using automatic speech 

recognition (ASR) technology to recognize therapy target words. ASR would decrease the 

time that caregivers spend closely supervising home practice and this increased 

independence may also improve self-motivation in the children, according to self-

determination theory [170]. Accordingly, the therapy application could verify if an 

utterance is close to the intended target, as done previously by Ahmed et al. [26]. This 

process ensures that the child is making an appropriate effort to say the word (they cannot 

say something completely different than the target word), while reserving deeper analysis 

(i.e., phonological) for trained SLPs. ASR word recognition accuracy has been explored 

with disordered speech from adults [171, 172] and typically-developing child speech 

[121], however, it remains unclear what levels of accuracy can be expected from 

disordered speech from children. 

In this paper, we investigate ASR word recognition performance on disordered 

speech from children using limited child training data and mobile-device-friendly 

techniques. For this task, we employed a custom child speech corpus to examine two low-

resource ASR methods: adapting an existing acoustic model and template matching. Both 

of these approaches capture speaker-specific pronunciation variants, which is important 

when recognizing utterances from speakers who struggle to form the canonical 

pronunciation. Acoustic model adaptation uses sample recordings from a speaker to update 

the statistical representation of sounds within the model, which creates a speaker-

dependent model based on how that person speaks. To test adapted acoustic models, we 
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consider the PocketSphinx speech recognizer [79], which has previously been used within 

mobile child speech therapy applications [26, 173]. In contrast to model adaptation, 

template matching uses the utterances directly to represent how specific words should 

sound. In our approach, samples of words produced by the speaker are used as templates 

to determine if a new recording matches the target word. Both template matching and 

speaker-dependent acoustic models expand gracefully to accommodate new target words; 

this makes them ideal for use in speech therapy applications, since words must be replaced 

as a child makes therapy progress so they can practice new sounds. 

We found that both template matching and PocketSphinx with an adapted model 

performed at the desired accuracy level; however, the adapted model significantly 

outperformed template matching. This suggests that both methods successfully make use 

of the limited training data to capture speaker-specific word production variants within 

disordered speech from children. The main contributions of this paper are (1) an empirical 

test of PocketSphinx performance on disordered speech from children and (2) 

recommendations for recognizing this speech when training data are limited.  

5.3. Related work 

To make practice more fun and increase motivation, researchers have examined 

incorporating speech therapy into game-like digital systems. For example, Ahmed et al. 

[12] evaluated five speech-controlled arcade-style therapy games with therapists, 

caregivers, and children. They found that children preferred games with various rewards 

and challenges. Lan et al. [15] created Flappy Voice, a Flappy Bird clone for prosody 

(stress and intonation) practice; children enjoyed the game, but reported that voice control 
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could be difficult. Hoque et al. [16] investigated using a turtle race game to help children 

with autism speak more slowly. The game successfully helped children control their 

speaking rate and engage with their practice. Children often enjoy using digital therapy 

interventions in short-term tests and sometimes even play beyond the required time [6, 16]; 

however, it remains unclear how these game-like applications hold children’s attention 

over a longer period.  

McKechnie et al. [17] suggested that ASR tools show potential for improving child 

pronunciation within therapy applications like those described above. However, off-the-

shelf ASR tools struggle to recognize speech from children, even typically-developing 

speech [11]. Researchers have investigated ASR performance on imperfect adult speech, 

such as speech from dysarthric speakers [9, 18] or deaf and hard-of-hearing speakers [10], 

and their findings show that ASR methods often generate inaccurate speech transcripts. 

One way to improve performance is through acoustic model adaptation, which uses data 

from a specific population or speaker to improve recognition by updating how sounds are 

represented in the model [19]. Speaker-dependent adaptation methods have been used to 

improve recognition rates on typically-developing child speech [20]; however, it remains 

unclear if similar improvements will arise when adapting to disordered speech from 

children. 

Template matching is a well-established speech recognition technique [21]. This 

method, which is based on dynamic time warping (DTW), compares a test utterance to 

previously collected examples of target words (“templates”) to see which it most closely 

matches. This method can yield performance that comes close to that of more standard 
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Hidden Markov Model speech recognizers when processing adult speech [22]. 

Furthermore, template matching has been successfully incorporated into child speech 

therapy while using limited speech data [23, 24]. As such, template matching may be a 

viable candidate for automatic recognition of disordered speech from children. 

5.4. Automatic speech recognition 

Detecting mispronunciations in disordered speech from children is a developing 

research area (e.g., [37, 39, 143, 144]). Although similar research is ongoing in the 

language-learning domain (e.g., [93, 174, 175]), investigations into techniques for 

disordered speech from children have been slowed by limited data and difficulty 

processing child speech due to age-related production variance [35, 104]. While these 

systems are developed and accuracy is improved, speech therapy applications would 

benefit from an interim pronunciation verification stand-in that can be deployed using 

current technology. Therefore, we focus on whole word recognition instead of locating 

specific speech errors; this is more feasible because analyzing an utterance holistically 

allows systems to match against correctly-produced portions of the word during 

recognition. As this approach only verifies that a pronunciation attempt is close to correct, 

it should be paired with regular visits with SLPs who can provide sound-specific 

pronunciation feedback as needed. Below we describe the two ASR methods we evaluated. 

5.4.1. PocketSphinx 

PocketSphinx is a mobile-ready version of the Sphinx ASR engine developed at 

CMU [79], which recognizes both conversational speech or a limited set of words specified 

in a lexicon. We selected this ASR because it can easily be configured on-the-fly to 
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recognize different words, thereby allowing SLPs to swap out target words in the field; 

additionally, at the time of our experiments, PocketSphinx was one of the best mobile-

ready ASR libraries available. Performing speech recognition directly on the mobile 

device is important because Internet access is not guaranteed and we want to preserve child 

privacy during therapy by avoiding unnecessary data transmission.  

 The acoustic model provides information about how specific speech elements 

“sound” to the ASR using a combination of hidden Markov models (HMM) and Gaussian 

mixture models (GMM) to represent speech. Specifically, the HMM models transitions 

between the sounds and GMMs are used to model the HMM states for each sound. 

PocketSphinx comes with an existing speaker-independent acoustic model, which can be 

converted into a speaker-dependent acoustic model through model adaptation. This 

process improves speech recognition by providing the acoustic model with samples that 

demonstrate how a specific speaker produces certain sounds. PocketSphinx acoustic 

models support two types of adaptation, maximum likelihood linear regression (MLLR) 

[176] and maximum a posteriori (MAP) [177]. Both methods update the acoustic model 

parameters based on speech from the target speaker. MLLR estimates linear 

transformations for the Gaussian means and variances, whereas MAP uses prior 

information about the parameter distribution combined with the adaptation data to re-

estimate all model parameters [178]. Recognition performance can be further improved by 

using a constrained lexicon that only contains words the child should be practicing in their 

speech therapy session; this keeps the ASR from searching for irrelevant words when 

decoding the speech. 
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5.4.2. Template matching 

In contrast to the statistical models used by PocketSphinx, template matching 

recognizes words by directly comparing a test utterance against previously-collected 

utterances. Prior to performing template matching, utterances must be transformed into 

sequences of acoustic feature vectors. Our implementation of this feature-extraction 

process is illustrated in Figure 16a. Given a recorded utterance (16 kHz), we trim leading 

and trailing silence using an energy threshold. The signal is then pre-emphasized using the 

filter 1 − 𝛼𝑧−1, where 𝛼 = 0.97. Spectral information is extracted as 13 Mel-frequency 

cepstral coefficients (MFCCs) over 32 ms (512-sample) frames with an 8 ms (128-sample) 

shift. We discard the first coefficient (spectral energy) to focus only on 𝑀𝐹𝐶𝐶1−12 for 

word recognition. Lastly, the MFCCs are normalized by applying cepstral mean 

normalization (CMN) [160]. 

The template-matching process itself is illustrated in Figure 16b. Following feature 

extraction, template and test utterances (𝑡 and 𝑢, respectively) are aligned end-to-end using 

DTW. The distance (root-mean-squared-error) between the template and test utterance is 

computed as: 

𝑑(𝑡, 𝑢) =

{
 
 

 
 ‖𝑑𝑡𝑤(𝑢, 𝑡) − 𝑡‖2

𝑙𝑒𝑛(𝑡)
if 𝑙𝑒𝑛(𝑡) > 𝑙𝑒𝑛(𝑢)

‖𝑑𝑡𝑤(𝑡, 𝑢) − 𝑢‖2
𝑙𝑒𝑛(𝑢)

otherwise

 

(1) 

where 𝑑𝑡𝑤(𝑡, 𝑢) time-aligns the frames in 𝑡 to 𝑢. 

The framework classifies a test utterance by comparing it against templates for all 

possible word classes. Let T𝑤 be the set of templates for word 𝑤. The test utterance score 
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is the mean template matching score from comparing a new utterance 𝑢  against all 

templates in Tw (Eq. 2). The test utterance is assigned to the class w with the lowest score 

(Eq. 3). 

𝑠𝑐𝑜𝑟𝑒(𝑢, T) = 𝑚𝑒𝑎𝑛(𝑑(𝑗, 𝑢)|∀𝑗 ∈ T) (2) 

𝑙𝑎𝑏𝑒𝑙(𝑢) =  𝑎𝑟𝑔min
𝑤
𝑠𝑐𝑜𝑟𝑒(𝑢, T𝑤) (3) 

 

 

 

Figure 16 (a) Spectral information is extracted from a trimmed utterance and then 

normalized (b) Template and test utterances are aligned and scored based on RMSE 

 

 

5.5. Experiments 

In this section, we describe how we evaluated the two ASR systems. For this task, 

we used the Apraxia World speech therapy game [25] to gather disordered speech from 

children in their homes. Although some child speech datasets exist (e.g., the OGI kids’ 

speech corpus [145]), they usually contain speech from typically-developing children, with 
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few mispronunciations. Therefore, we gathered a real-world corpus to better evaluate 

speech recognition performance on disordered speech. All speech recognition tests were 

conducted offline after collecting the data; children did not receive utterance feedback 

from the ASRs. 

5.5.1. Data collection 

Disordered speech data were collected from seven Australian children (1f, 6m, 7-

9 y.o.) with speech sound disorders while they played Apraxia World for eight weeks under 

caregiver supervision. This provided a large set of scripted single-word recordings. Audio 

was recorded at 16 kHz using a headset attached to a Samsung Tab A 10.1 tablet. The 

children started and stopped the recordings on their own, so some recordings were stopped 

prematurely or “clipped.” At the time of conducting these experiments, 21,198 utterances 

had been recorded. Recordings that were clipped or that contained substantial background 

noise were discarded, leaving 10,415 recordings. 

Children went through two phases of playing Apraxia World for about 30 minutes, 

four days per week. Phases lasted for four weeks with a two-week break between them.  

Each phase repeatedly drilled a different set of 10 words (for 100 words per session) 

selected by SLPs working with the children to target specific speech difficulties (e.g., 

words to practice ‘cl,’ ‘fl,’ and ‘gl’, ‘a’ like in ‘bat’, or leading ‘l’ sounds). During a phase, 

Apraxia World prompted the child to say one of the 10 words selected at random and no 

words were repeated until all 10 words had been presented. In total, each child practiced 

20 different words across the two treatment phases.  
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5.5.2. Experiment setup 

To examine speech recognition performance using limited training data, we 

compare PocketSphinx (with a limited lexicon) against template matching (with an 

increasing number of templates per word). We tested PocketSphinx with both the default 

and speaker-dependent (adapted) acoustic models. Performance for both speech 

recognizers was measured as word-level accuracy. 

To evaluate the template-matching framework, we developed a prototype system 

using the librosa audio processing library for Python [179]. For convenience, we ran tests 

on a desktop computer, but this framework can also be used on mobile devices and lends 

itself to parallelization. We randomly selected 𝑛 child-specific templates per target word 

where 𝑛 ∈ [1,15] and used the remaining recordings of the child saying the target as test 

data. This process was repeated 5 times, each with new templates selected at random. Since 

the children only practiced 10 words at a time, each recording can only be labeled as one 

of the words practiced in that phase (using 10 sets of 𝑛 templates). 

For tests with PocketSphinx (PS), we started with the default American English 

acoustic model trained on adult speech5. To account for dialect and age differences, we 

created two speaker-dependent acoustic models by adapting the default model with MLLR 

and MAP separately. For both adaptation methods, the acoustic model was adapted using 

15 samples for each of the 20 practiced words (300 utterances total per speaker), which is 

the maximum amount of data used in the template-matching approach. The PS decoder 

 

5 https://github.com/cmusphinx/pocketsphinx/tree/master/model/ 
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was configured with a 10-word lexicon to only recognize words practiced in the respective 

treatment phase. The remaining 8,315 utterances were used as test data, which were passed 

to the PS decoder without any additional preprocessing. 

5.6. Results 

Figure 17 shows the per-speaker, per-word classification accuracy for template 

matching over the five repetitions. Even with only one template per word, template 

matching performs well above chance level (10%). Unsurprisingly, increasing the number 

of templates per word improves word recognition; however, there is no significant increase 

in accuracy when using nine or more templates (t-test, 𝑝 > 0.05), where mean accuracy is 

between 71.3% and 75.8%. This illustrates the diminishing returns for using additional 

templates beyond a certain quantity; even though overall accuracy generally improves as 

more templates are used, the increases may not be significant. The performance plateau 

suggests that there is a fixed amount of information about pronunciation variation that the 

templates can represent with the method as implemented. 
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Figure 17 Per-speaker, per-word word recognition accuracy for template matching 

with an increasing number of templates 

 

 

To compare template matching and PS performance, we tested word recognition 

using the same amount of speaker-dependent training/adaptation data. Figure 18 shows the 

per-speaker, per-word accuracy for all speakers when using 15 utterances per word, both 

for adapting the PS acoustic model and for template matching. The MAP-adapted models 

yield the best recognition performance. Both the MAP-adapted models and template 

matching correctly recognize all words at least some of the time; this is in contrast to PS 

with the non-adapted and MLLR-adapted models, which fail to recognize some of the 

words. Regardless, MLLR- and MAP-adapted models both performed significantly better 

than the non-adapted model (paired t-test, 𝑝 << 0.01). Template matching performed 

significantly better than the non-adapted model (paired t-test, 𝑝 << 0.01) and the MLLR-

adapted model (paired t-test, 𝑝 << 0.01 ). The MAP-adapted model performed 

significantly better than the MLLR-adapted model ((paired t-test, 𝑝 << 0.01 ) and 
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template matching (paired t-test, 𝑝 = 0.03). We used an alpha level of 0.05 for tests of 

significance. 

 

 

 

Figure 18 Per-speaker, per-word accuracy (Using 15 utterances per word for 

adaptation and template matching) 

 

 

Table 6 displays the per-speaker word recognition accuracy for PS and template 

matching when using 15 utterances per word for adaptation and template matching. For all 

speakers, both MLLR and MAP adaptation significantly outperform the default PS 

baseline, which suggests that the adaptation process successfully captured how the 

children produce their utterances. The MAP-adapted acoustic models outperform the 

MLLR-adapted models for all speakers, indicating that MAP adaptation made better use 

of the limited training data. Due to speech quality differences resulting from age and SSD 

severity, word recognition accuracy varied across speakers in our corpus. As such, 



 

113 
 

recognition rate improvements should be considered within-speakers. On average, MLLR 

and MAP adaptation increased PS accuracy by 4.2% and 20.4%, respectively. 

 

 

Speaker PS PS (MLLR) PS (MAP) TM 

f1 53.8 59.1 78.2 79.3 

m1 52.3 56.7 79.1 79.2 

m2 29.1 31.5 47.9 35.4 

m3 84.4 88.2 95.7 90.4 

m4 59.1 65.7 83.0 67.3 

m5 74.0 76.2 92.8 86.4 

m6 54.0 57.6 72.6 84.3 

avg (std) 59.6 (29.0) 63.8 (28.7) 80.0 (21.6) 75.8 (22.2) 

Table 6 Average word recognition accuracy (%) using 15 utterances per word for 

adaptation and template matching 

 

 

5.7. Discussion and conclusion 

Speech therapy games, such as Apraxia World, would benefit from automatic 

pronunciation verification so that they can afford independent practice. While research 

into phoneme-level mispronunciation detection for disordered speech from children 

continues, therapy applications may benefit from using automatic word recognition as a 

temporary stand-in. As such, in this paper we examined speech recognition performance 
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on disordered speech from children when using limited training data. Specifically, we 

compared template matching word recognition and the open-source PocketSphinx 

recognizer with two types of speaker adaptation.  

In our tests, we found that both template matching and PocketSphinx were able to 

recognize the child speech in our data set well above chance level and, most importantly, 

at the accuracy levels recommended by speech-language pathologists. Template matching 

performance increased as more word templates are used, but accuracy improvements level 

off at nine or more templates per word. Template matching was able to out-perform 

PocketSphinx using the default acoustic model and MLLR-adapted models. However, the 

PocketSphinx MAP-adapted models achieve the overall best accuracy. As PocketSphinx 

is easier to configure than a template matching pipeline due to documentation and online 

support, we recommend that accessibility developers use the off-the-shelf PocketSphinx 

ASR and adapt the acoustic model for increased performance. Regardless of the ASR 

method used, whole-word recognition is not a substitute for SLP-led speech therapy and 

should only be used to augment regular clinic visits where the child receives specific 

feedback. 

Using the MAP-adapted model allows PocketSphinx to reach the suggested 80% 

accuracy threshold given that it updated all relevant parameters in the acoustic model. This 

contrasts with the MLLR-adapted models, which improve performance, but fall short of 

the suggested threshold because PocketSphinx treats this method as a transform applied to 

the original model, instead of re-estimating the parameters. It is likely that MAP-

adaptation outperformed template matching because template matching is limited to only 
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recognize word productions for which it has a similar template. In contrast, PocketSphinx 

benefits from having an acoustic model that captures general production information, 

which helps it recognize words correctly, even if an exact match was not included in the 

training data. Typical variations in child speech production (e.g., high/low energy, drawing 

certain sounds out) are likely to lower template matching accuracy; model-based speech 

recognition is more robust to these variants because utterances are evaluated based on 

statistical features, not direct measurement against another utterance. 

Based on these results, adapting acoustic models is a viable method for automatic 

speech recognition with limited disordered speech data. Accent and age-related speaking 

differences were reduced by the MAP adaptation, which significantly improved 

performance over the default American English acoustic model. Additional improvements 

may be gained by training a speaker-independent child model and adapting that to each 

child, but we leave that analysis for future study. Although this paper focuses only on word 

recognition, further work should investigate the relationship between child pronunciation 

quality and speech recognition accuracy with a pathologist-annotated corpus.  
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6. EXPLORING CLASSIFIER-BASED MISPRONUNCIATION DETECTION FOR 

CHILD SPEECH THERAPY 

 

6.1. Overview 

A critical component of child speech therapy is home practice, where caregivers 

typically lead sessions and provide feedback. However, caregivers and untrained adults 

have been found to struggle with accurately rating speech and generally perceiving pro-

nunciation errors. One potential solution to inconsistent and inaccurate feedback is to use 

automatic mispronunciation-detection algorithms within digital speech therapy applica-

tions. To address the need for automated pronunciation evaluation within child speech 

therapy, we investigated classifier-based mispronunciation detection using a custom cor-

pus of disordered speech from children with expert clinician annotations. We trained a 

series of phoneme-specific logistic regression classifiers (LRC) and support vector ma-

chines (SVM) on log posterior probability and log posterior ratio features. Our results show 

that these classifiers outperformed baseline Goodness of Pronunciation scoring by 11.1% 

and 10.4%, respectively. Even more importantly, in an offline test, the LRCs and SVMs 

outperformed student clinicians at identifying mispronunciations by 18.1% and 16.1%, 

respectively. These results suggest that classifier-based mispronunciation detection may 

be suitable to provide at-home therapy feedback for children. 

6.2. Introduction 

Children with speech disorders benefit from frequent and high-intensity speech 

therapy [7] to provide opportunities to practice new skills [8]. Clinician-led therapy 
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sessions are often scheduled infrequently.  As such, caregiver-guided home practice is 

commonly employed to increase treatment dosage [56]. Home practice relies on the 

caregiver to lead activities and provide pronunciation feedback. However, clinicians have 

encountered issues with home practice delivered by caregivers, primarily, low completion 

rates and incorrect implementation [56]. These problems can be attributed to difficulties 

making time to complete the therapy practice [180, 181] and an absence of caregiver 

training; many caregivers feel they lack knowledge or experience to support their child 

themselves [182] and others report that they sometimes feel unsure how to provide proper 

feedback [180]. Caregivers have also been found to rate pronunciations leniently during 

home therapy practice [40, 41], and untrained adults may generally have difficulty 

perceiving errors in child speech [183]. While caregivers can be trained to deliver effective 

phonological interventions [184], the training takes time (on the order of a couple of 

months [184]) and ignores scheduling-related barriers to home practice. 

A potential solution to limited caregiver availability and inconsistent pronunciation 

feedback is to incorporate automatic mispronunciation-detection algorithms into digital 

speech therapy applications, thus empowering children to practice more independently. 

This would allow caregivers to lightly supervise therapy practice, instead of directly 

administering the activities. Automatic pronunciation evaluation systems will invariably 

be less accurate than trained clinicians, but they may rate productions more accurately and 

consistently than caregivers. For example, in previous work [40] we found that automatic 

mispronunciation detection overwhelmingly outperformed caregivers at word-level 

mispronunciation detection in-the-field. Although some digital child therapy projects have 
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provided word-level feedback [26, 61, 68], systems like these eventually need phoneme-

level feedback so that speech therapy practice can target specific problematic sounds [185]. 

This is a substantially more challenging task because the system needs to model individual 

errors, rather than matching whole utterances to a certain word label. Furthermore, even 

though phoneme-level mispronunciation detection (MPD) is an active research area for 

second-language (L2) learners (e.g., [93, 99, 186, 187]), less attention has been paid to 

detecting mispronunciations in disordered speech from children.  

In this article, we investigate whether existing techniques from the L2 literature 

could be used for child speech therapy mispronunciation detection with a limited corpus 

of disordered speech from children collected during speech therapy practice. Specifically, 

we train phoneme-specific classifiers to identify mispronunciations using posterior-

probability-based features. These features are a concatenation of log posterior probabilities 

and log posterior ratios, as proposed by Hu et al. [174]. These features are derived from an 

off-the-shelf acoustic model in a manner similar to the traditional Goodness of 

Pronunciation (GOP) score. However, these features have been shown to outperform 

standalone GOP when applied to mispronunciation detection for adult L2 learners [91, 

174]. The ability to extract features with a generic speaker-independent acoustic model is 

especially important in the context of child speech therapy, as there is a general lack of 

corpora containing disordered speech from children for system building. Following feature 

generation, we trained phoneme-specific classifiers for mispronunciation detection.  

Results from this study show that phoneme-specific classifiers predicted 

mispronunciations significantly better than a baseline GOP system, even though both 
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systems use features based on the same acoustic model outputs. More importantly, the 

classifier-based mispronunciation detection significantly outperformed student clinicians 

in an offline pronunciation labeling test, suggesting that our automated approach may 

better mimic expert clinician evaluations. As such, this type of mispronunciation detection 

may be useful within child speech therapy applications to improve the quality of 

pronunciation feedback received and alleviate caregiver scheduling burden. 

6.3. Background 

Current research efforts within mispronunciation detection can generally be 

grouped into three categories: posterior-based, classifier-based, or rule-based. Posterior-

based mispronunciation detection methods score phoneme segment pronunciation quality 

according to the posterior likelihood output of the production matching the target 

phoneme.  These continuous-valued scores are often converted into binary pronunciation 

classifications by comparing against a set threshold [188, 189], which yields the same 

output as classifier-based methods. Posterior probabilities are often derived from the 

output of an automatic speech recognizer acoustic model and frequently take the form of 

a Goodness of Pronunciation (GOP) metric [90]. These methods are commonly used as 

mispronunciation detection baselines [94, 190], but have also served as the foundation for 

novel methods [93, 191]. For example, the GOP has been used as a standalone method to 

process L2 speech [192] and disordered speech [92] from adults. For child speakers, Dudy 

et al. [38] combined the GOP with rule-based error modeling and explicit acoustic 

modeling of the phonetic errors. Saz et al. [143] also deployed posterior-based 
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mispronunciation detection for child speakers and increased likelihood score separation by 

using speaker normalization and acoustic model adaptation. 

Classifier-based approaches treat mispronunciation detection as a binary 

classification problem, where a phoneme can either be correct or incorrect 

(mispronunciation) [193]. Individual phoneme segments are converted into feature 

vectors, which are passed through a classifier to obtain a pronunciation prediction [91, 94]. 

Features vectors may consist of Mel-Frequency Cepstral Coefficients [194], speech 

attribute scores [195, 196], or even posterior probabilities [91, 174]. Researchers have 

explored a variety of classification methods, including decision trees [185, 197], support 

vector machines [95, 198, 199], and more recently, various neural network architectures 

[187, 200, 201]. These methods have also been used with child speakers. For example, 

Shahin and colleagues [36, 144] explored a classifier-based approach using a one-class 

SVM trained on phonetic attribute features to detect anomalous phoneme pronunciations. 

Wang et al. [196] also tested classifier-based mispronunciation detection for child speech, 

wherein they trained binary pronunciation classifiers on the distance from the expected 

phoneme, as measured by a Siamese network.  

Rule-based methods take existing knowledge of mispronunciation patterns to 

identify errors, usually by including these errors to the ASR decoder lattice [97, 100, 202]. 

Obtaining the necessary error patterns requires expert manual curation [97, 100] or using 

large quantities of speech to identify the patterns in a data-driven fashion [99, 203]. Shahin 

et al. [37] deployed rule-based mispronunciation detection for child speech by including 

expected errors as provided by an SLP to the decoding path. They later made the system 
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more generic by including an alternative garbage node at each phoneme along the decoding 

path [66]. 

6.4. Methods 

The proposed mispronunciation detection process involves three components: a 

speaker-independent acoustic model to generate posterior probabilities, phonetic segment 

feature generation, and a set of speaker-independent, phoneme-specific mispronunciation 

detection classifiers. 

6.4.1. Acoustic modeling and posterior probabilities 

We use a deep neural network (DNN) acoustic model to generate the posterior 

probabilities for each speech frame [204]. The acoustic model is trained on the Librispeech 

corpus [163], which contains 960 hours of adult English speech, mostly American English. 

This corpus is not used for any other training or testing. Specifically, we use the Kaldi 

Librispeech recipe6 to train a DNN that contains five fully-connected hidden layers (5,000 

neurons) using the p-norm non-linearity (𝑝 = 2). After the final hidden layer, there is a 

14,000-node softmax layer that is group-summed to produce the final output across 5,816 

senones. We extract 13-dimension Mel-Frequency Cepstral Coefficients (MFCCs) with 7-

frame context, which are transformed with LDA to create a 40-dimension feature vector, 

and these vectors are concatenated into nine-frame inputs (40 × 9) for the DNN; final 

input features are decorrelated using a fixed linear transform. The DNN acoustic model 

 

6 https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech 
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output represents the senone posterior probabilities conditioned on an input observation, 

i.e., 𝑃(𝑠|𝒐) [75]. 

6.4.2. Feature generation and classification 

Our feature generation process follows Hu et al. [174], wherein each phoneme 

segment is represented by a single feature vector containing two types of features:  Log 

Posterior Probabilities (LPP) and Log Posterior Ratios (LPR). The LPP is a log posterior 

normalized over the phoneme duration: 

𝐿𝑃𝑃(𝑝|𝒐) = log 𝑃(𝑝|𝒐; 𝑡𝑠, 𝑡𝑒) ≈
1

𝑡𝑒 − 𝑡𝑠 + 1
∑ log𝑃(𝑝|𝒐𝑡)

𝑡𝑒

𝑡=𝑡𝑠

 (1) 

where the posterior for phoneme 𝑝 is obtained according to: 

for each senone s associated with phoneme 𝑝, i.e., a senone shared by a tied-state triphone 

where the center phoneme is 𝑝 [205]. The posterior 𝑃(𝑠|𝒐) comes directly from the DNN 

acoustic model. The LPR is the difference of the LPPs for phonemes 𝑝𝑖 and 𝑝𝑗, given the 

same observation 𝒐: 

𝐿𝑃𝑅(𝑝𝑗|𝑝𝑖, 𝒐) = 𝐿𝑃𝑃(𝑝𝑗|𝒐) − 𝐿𝑃𝑃(𝑝𝑖|𝒐). (3) 

For each phoneme segment, we compute a series of LPPs and LPRs to form a 

feature vector. LPPs are calculated for all 𝑁 phoneme classes and LPRs are calculated for 

all pairs 𝑝𝑖, 𝑝𝑗 where 𝑝𝑖 is the expected phoneme class and 𝑗 ∈ 𝑁. The final feature vector 

𝑓(𝑝𝑖|𝒐; 𝑡𝑠, 𝑡𝑒) is the concatenation of LPPs and LPRs: 

𝑃(𝑝|𝒐) =∑𝑃(𝑠|𝒐)

𝑠∈𝑝

 (2) 
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𝑓(𝑝𝑖|𝒐; 𝑡𝑠, 𝑡𝑒) = [
𝐿𝑃𝑃(𝑝1|𝒐), 𝐿𝑃𝑃(𝑝2|𝒐),… , 𝐿𝑃𝑃(𝑝𝑁|𝒐),

𝐿𝑃𝑅(𝑝1|𝑝𝑖, 𝒐), 𝐿𝑃𝑅(𝑝2|𝑝𝑖, 𝒐),… , 𝐿𝑃𝑅(𝑝𝑁|𝑝𝑖, 𝒐)
]
𝑇

. (4) 

Recordings are force-aligned against the canonical pronunciation using a pre-

trained aligner [206] to automatically generate the phoneme segments. Silence segments 

are discarded, leaving only speech segments for our analysis. Features are extracted by 

passing individual segments to the acoustic model to generate the posterior probabilities, 

which are transformed into the final feature vector according to the above equations; this 

process is shown in Figure 19. These features are used to train supervised phoneme-

specific classifiers with examples of correct and incorrect phoneme pronunciations. For 

classification, we used support vector machines (SVM) and logistic regression classifiers 

(LRC); SVMs are commonly deployed for mispronunciation detection (e.g., [95, 96, 194]) 

and neural LRCs have also been used successfully for this task [91, 174]. However, given 

our data constraints, we use a traditional LRC instead of a neural-network-based classifier.  

 

 

 

Figure 19 Phoneme-level feature vector feature extraction pipeline 

 

 

The LRC and SVM were implemented using the Scikit-learn Python library [207]. 

The LRC used an L2 penalty and was allowed iterate until convergence during training for 
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each phoneme. The SVM used a fourth-degree polynomial kernel. These hyperparameters 

were determined empirically. Forced alignment was performed with the Montreal Forced 

Aligner [206]. We used a 40-phoneme set, so each feature vector contained 80 features: 

40 LPPs and 40 LPRs.  

6.4.3. Goodness of pronunciation baseline 

In this work, the GOP serves as a baseline for automatic mispronunciation 

detection. Originally, the GOP was defined as the normalized log posterior of phoneme 𝑝, 

which was computed as the ratio between the likelihood of the expected phoneme and the 

most probable phoneme [90]. Given the assumption that priors 𝑃(𝑞𝑖) ≈ 𝑃(𝑞𝑗) for any 

phonemes 𝑞𝑖 , 𝑞𝑗 , and that the sum in the denominator can be approximated by its 

maximum, the GOP is canonically defined as: 

𝐺𝑂𝑃(𝑝|𝒐) =
1

𝑡𝑒 − 𝑡𝑖 + 1
 log

𝑃(𝒐|𝑝)𝑃(𝑝)

∑ 𝑃(𝒐|𝑞)𝑃(𝑞)𝑞∈𝑄
≈ log

𝑃(𝒐|𝑝; 𝑡𝑠, 𝑡𝑒)

max
𝑞∈𝑄

𝑃(𝒐|𝑞; 𝑡𝑠, 𝑡𝑒)
 (5) 

for segment observation o, canonical phoneme p, start and stop frame indices 𝑡𝑠 and 𝑡𝑒, 

and phoneme set Q. Each probability 𝑃(𝒐|𝑝; 𝑡𝑠, 𝑡𝑒) is computed as: 

where s is a senone associated with the phoneme 𝑝  and the likelihood 𝑃(𝒐𝒕|𝑠)  is 

traditionally obtained from a GMM-HMM acoustic model. However, given that we use a 

DNN acoustic model that directly outputs senone posteriors, the original GOP equation 

needs to be modified slightly. Therefore, we use the GOP computation proposed by Hu et 

𝑃(𝒐|𝑝; 𝑡𝑠, 𝑡𝑒) =
1

𝑡𝑒 − 𝑡𝑖 + 1
∑∑𝑃(𝒐𝒕|𝑠)

𝑠∈𝑝

𝑡𝑒

𝑡=𝑡𝑠

 (6) 
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al. [91], where the score is the ratio between the LPPs for the expected phoneme and the 

highest posterior across all phonemes: 

𝐺𝑂𝑃(𝑝|𝒐) = 𝐿𝑃𝑃(𝑝|𝒐) − max
q∈Q

𝐿𝑃𝑃(𝑞|𝒐) (7) 

Following calculation, GOP scores are converted into a binary evaluation by 

comparing the score against a threshold (see section 6.6); if the score is greater than the 

threshold, the phoneme segment is labeled as correctly pronounced, otherwise, the 

segment is labeled as incorrectly pronounced. 

6.5. Experiments 

For our mispronunciation detection tests, we use a custom corpus of disordered 

speech from children. This corpus is an expert-annotated subset of larger collection of 

speech therapy audio recordings, which were gathered as part of a longitudinal evaluation 

of a tablet-based speech therapy game [41]. This corpus contains 2,336 recordings of 

prompted single or compound word utterances from nine children with speech sound 

disorders (native Australian-English speakers), each practicing 20 words. These recordings 

were captured at 16kHz in the children’s homes and contain some distortions and excited 

speech. Children generally spoke at a normal volume. The corpus contains 10,059 non-

silence phonemes, 27.0% of which are mispronounced. The phoneme ZH is not 

represented in this corpus and W only has correct samples; all other phonemes have 

samples with mispronunciations. Table 7 shows the 15 most common phonemes in the 

corpus. Each utterance was annotated for phoneme-level errors by a speech-language 

pathologist at the University of Sydney. All annotations were collected offline and are 
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binary labels of correctness for each phoneme; they do not provide the actual sound 

produced in the case of a substitution error. 

 

 

Phoneme Frequency Phoneme Frequency Phoneme Frequency 

L 8.7% IH 4.8% M 3.5% 

AH 7.6% P 4.8% N 3.4% 

ER 6.8% AE 4.1% SH 3.4% 

T 6.1% S 3.8% EH 3.2% 

K 5.6% IY 3.7% B 3.0% 

Table 7 Top 15 phonemes in the corpus as percent of total non-silence phonemes 

 

 

In this article, we define a true positive (TP) as a pronunciation error that was 

correctly labeled as a pronunciation error, and a true negative (TN) as a correct 

pronunciation labeled as correct. Within speech therapy, providing accurate feedback on 

both correct and incorrect pronunciations is critical for children to make progress. As such, 

we report wholistic system performance according to a combined F1 score (eq. (8)), which 

averages the F1 scores calculated for correct and incorrect pronunciation detection. 

Additionally, since the proposed mispronunciation detection systems cannot handle 

insertion errors, we focus only on substitution and deletion errors. 
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𝐹1𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
𝑇𝑁

2𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
+

𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (8) 

6.6. Results 

To ensure that there were enough samples to train and test the classifiers, we only 

examined phonemes which had at least 60 samples of correct and incorrect pronunciations 

in the child corpus (𝑛 = 8 phonemes). For each phoneme, we trained two phoneme-spe-

cific classifiers: an LRC and an SVM. To accommodate our small corpus, we used 5-fold 

stratified cross-validation (each fold contains the same class distribution) when evaluating 

classifier performance. For each fold, both classifiers were trained, labels were predicted 

for the test data, and the predictions from each classifier were scored against the expert 

labels. As a baseline, we also computed the performance of GOP scoring at each fold. 

Phoneme-specific GOP thresholds were found by exhaustively checking between the min-

imum and maximum scores in the training samples for the threshold that maximized the 

combined F1 score. This threshold was then used to convert the test segment scores into 

labels, which were compared against the expert labels.  Because each phoneme has a dif-

ferent correct/incorrect class distribution, we also calculated the performance of a random 

binary classifier as a measure of chance level. The average combined F1 scores for all 

phonemes are shown in Table 8. All three methods performed above chance level (𝑝 <

0.05, paired t-test). Both the LRC and SVM achieved significantly higher combined F1 

scores than the GOP baseline (𝑝 < 0.05, paired t-test). The LRC and SVM demonstrated 

11.1% and 10.4% relative increases, respectively, compared to GOP. Although the SVM 

outperformed the LRC for six phonemes, on average, there was no significant difference 

between the LRC and SVM (𝑝 > 0.05, paired t-test). The SVM and GOP each failed to 
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classify one phoneme correctly; the SVM had problems with CH and the GOP struggled 

with ER. 

Given the varied number of samples for each phoneme, we also looked at 

correlation between classification performance and sample size. For the LRC, performance 

and sample size were not correlated (𝑟 = −0.21). However, for the SVM and GOP, these 

variables were moderately correlated (𝑟 = −0.48 and 𝑟 = −0.53, respectively). For the 

SVM, this appears to be explained by the poor performance on the phoneme L, which all 

methods struggled to classify; when L is excluded from the correlation calculations, 

sample size and performance is no longer correlated for the SVM (𝑟 = −0.30).  

 

 

 LRC SVM GOP Chance 

AH 57.2 (2.0) 58.0 (2.3) 54.6 (1.4) 48.5 (0.0) 

CH 55.7 (2.4) 43.6 (3.1) 58.4 (1.1) 47.6 (0.0) 

EH 77.7 (1.1) 78.3 (1.6) 69.1 (1.5) 49.7 (0.0) 

ER 58.8 (1.9) 62.9 (2.0) 44.6 (1.6) 49.3 (0.0) 

IY 61.0 (4.4) 62.7 (2.7) 50.9 (1.2) 46.7 (0.0) 

L 50.7 (1.5) 52.0 (2.3) 50.4 (1.6) 42.1 (0.0) 

S 75.0 (2.0) 77.4 (2.0) 52.4 (3.6) 49.9 (0.0) 

SH 59.8 (3.4) 57.6 (2.0) 66.0 (1.4) 49.9 (0.0) 

All 62.0 (1.6) 61.6 (1.9) 55.8 (1.4) 48.0 (0.4) 

Table 8 Average combined F1 score from 5-fold cross validation (std. err.)  
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6.6.1. Comparison against human raters 

To put our mispronunciation detection results in context for speech therapy, we 

compared our performance against that of an independent set of human evaluators. For this 

purpose, we asked 32 student clinicians to annotate a subset of 154 recordings in our 

corpus; due to the annotation process, each evaluator labeled a slightly different quantity 

of the 154 recordings. As the final step in our analysis, we compared these student clinician 

labels against classifier predictions, only considering the eight phonemes analyzed above. 

Phoneme-specific SVMs and LRCs were trained using phoneme samples from all 

recordings in the corpus not annotated by the student clinicians. We treated evaluator 

annotations as another set of predictions, which were scored against the expert annotations, 

which were treated as ground truth. For each evaluator, we calculated their performance 

and the chance level for the phoneme set they annotated. Additionally, each of the 32 sets 

of student-annotated phonemes were labeled by the LRCs and SVMs; these predictions 

were also compared against the expert annotations.  

Average F1 performance on the 154-recording subset for student evaluators and 

classifiers is displayed in Table 9. The student clinicians labeled the phoneme segments 

well above chance level (𝑝 << 0.05, paired t-test), however, both automated approaches 

significantly outperformed the students (𝑝 << 0.05, paired t-test). The LRC and SVM 

obtained combined F1 scores 18.1% and 16.1% higher, respectively, relative to the student 

clinicians. On this subset, the LRC achieved a significantly higher combined F1 score 

compared to the SVM (𝑝 < 0.05, paired t-test). 
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 Student Clinician LRC SVM Chance 

F1 Combined 69.0 (1.6) 81.5 (0.4) 80.1 (0.4) 48.9 (0.1) 

Table 9 Average combined F1 score for each set of student clinician annotations (std. 

err.) 

 

 

6.7. Discussion and conclusion 

Our results show that phoneme-specific classifiers trained using posterior-

probability-based features identify mispronunciations in field-collected disordered speech 

from children significantly better than a baseline GOP system. This follows results 

presented by Hu et al. [174], even though they used a neural-network-based classifier and 

we used traditional classifiers. We found no significant difference between LRC and SVM 

mispronunciation detection on the entire corpus. Notably, both types of phoneme-specific 

classifiers significantly outperformed student clinicians at identifying mispronunciations 

in a subset of our corpus. This suggests that these automated methods may approximate 

expert clinician evaluations better than students with some training. These results further 

strengthen the argument that child speech therapy systems should include automated 

mispronunciation detection to improve the quality of feedback received at home. 

In this investigation, although classifiers were trained with phoneme-specific data, 

we set global classifier hyperparameters (e.g., SVM kernel, LRC penalty). However, future 

work may benefit from setting hyperparameters on a per phoneme basis. Speech 

production is a complex process, with many variables contributing to the final sound 
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(place, manner, voicing, etc.). Accordingly, phoneme-specific hyperparameters may help 

classifiers better identify pronunciation errors. 

Our goal with this type of system is not to replace clinicians or clinic visits, but to 

better approximate clinician evaluations at home. This is especially important given the 

difficulty some adults have identifying errors in child speech [183] and some caregivers 

have been shown to evaluate word-level pronunciation below chance level [41]. 

Additionally, even though caregivers are motivated to help their child, some are reluctant 

to take the lead and want clinicians to do the decision making during therapy practice 

[208]; an automated system that imitates clinician ratings helps to fill this desire. Although 

there is still significant work to be done in the speech therapy mispronunciation domain, 

the results presented in this article suggest that phoneme-specific classifiers perform well 

over chance level and can even outperform student clinicians when comparing against 

expert evaluations. As such, child speech therapy application designers could use these 

methods to provide automated feedback in their systems. Significantly, this can reduce 

caregiver scheduling burdens by allowing them to lightly supervise instead of directly 

managing home practice, thereby increasing the quantity of speech therapy children 

receive. 
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7. CONCLUSIONS FROM THIS DISSERTATION 

 

This dissertation represents an effort to improve the home speech therapy practice 

experience for children with a novel digital speech therapy game called Apraxia World; 

the game increases engagement through extended gameplay and affords independent 

practice with automated pronunciation verification technology. The first two manuscripts 

(Chapters 3 and 4) present the development and evaluation of Apraxia World over a pilot 

and longitudinal study. The last two manuscripts (Chapters 5 and 6) investigate speech 

processing on disordered speech from children. This chapter summarizes the findings from 

the four manuscripts, discusses limitations, offers ideas for future work, and ends with a 

final conclusion. 

7.1. Summary  

Chapter 3 presented the initial prototype of Apraxia World and examined exercise 

integration and delivery. The game offers speech exercises delivered during the level as 

the player collects in-game assets, or at the end of the level when the player crosses the 

finish line. Pronunciation evaluation was handled in a Wizard-of-Oz manner, where the 

administering clinician provided binary utterance ratings via a Bluetooth keyboard paired 

to the tablet running the game. This pilot study examined if children enjoyed the game, if 

the speech exercises detracted from gameplay, and when children wanted the exercises 

delivered. Children were enthusiastic about playing Apraxia World, enjoying both the 

gameplay (e.g., exploring, fighting) and personalization (character costumes). 

Questionnaire responses suggest that neither exercise delivery method (during or after) 
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dramatically altered the game difficulty and that the game made speech exercises more fun 

than normal (paper-based). Exercise delivery timing preferences were mixed; 13 out of 21 

children preferred exercises after the level, and the remaining 8 preferred exercises during 

the level. However, neither exercise delivery method encouraged children to complete 

more than a few extra speech exercises beyond the required minimum, suggesting that 

children are unlikely to do more speech therapy than required.  

 Chapter 4 described the full version of Apraxia World and a corresponding 

longitudinal study. This version of the game improved upon the prototype used in pilot 

testing by rewarding all speech exercises and including automatic pronunciation 

evaluation based on template matching. Although the study in Chapter 2 revealed that 

children preferred to complete their exercises at the end of the level, after consultation with 

clinicians, it was decided that the exercises should be delivered during the level. This 

allowed for a tighter integration of gameplay and the rewards from completing exercises 

(especially once the “energy” timer was added to the game). Delivering exercises during 

the level also avoided a game-first-exercises-later paradigm, which decouples the speech 

exercises from rewards and negates the benefits of a having custom game. The study 

explored the long-term use of Apraxia World, speech therapy benefits arising from 

gameplay, and both caregiver and automated framework pronunciation evaluation 

accuracy. Even over the long period, children remained engaged in the game-based 

therapy. Children reported that they would like to continue playing (eight out of nine 

returned questionnaires) and nine children actually played Apraxia World at least once 

after the study concluded, which suggests that they genuinely enjoy the game. Caregivers 
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also confirmed in their questionnaires that children were engaged with the game. Over the 

game-based treatment period, children achieved pronunciation accuracy improvements on-

par with those reported for traditional clinician and clinician-plus-caregiver speech therapy 

of similar intensity. Finally, results suggested that caregivers were lenient evaluators, 

while the template-matching framework was moderately successful at identifying 

mispronunciations. The template-matching framework also out-performed Goodness of 

Pronunciation scoring for word-level mispronunciation detection in an offline test. 

Chapter 5 explored using limited population-specific data to improve word-level 

ASR accuracy on disordered speech from children. In this way, speech therapy 

applications can verify that the child produced an utterance close to the target, making sure 

that they maintain appropriate effort during practice, while leaving deeper analysis for 

trained clinicians. This chapter compared two approaches: acoustic model adaptation for 

the PocketSphinx ASR engine, and a custom word recognizer based on template matching. 

Both template matching and maximum-a-posteriori-adapted acoustic models 

demonstrated accuracy close to or above the target threshold of 80% for 6 out of 7 test 

speakers. On average, the maximum-a-posteriori-adapted acoustic model yielded a higher 

accuracy than template matching. However, both outperformed the maximum-likelihood-

linear-regression-adapted and non-adapted acoustic models.  

Chapter 6 investigated using an existing phoneme-level mispronunciation 

detection technique from the L2 literature on disordered speech from children. These 

methods are a way to lighten the supervision responsibilities for caregivers and allows 

children to complete their practice more independently. This chapter compared classifier-
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based mispronunciation detection against the standard Goodness of Pronunciation (GOP) 

baseline and student clinician evaluations. Phoneme-specific classifiers were trained on 

posterior-based features extracted from child speech samples gathered during the 

longitudinal evaluation of Apraxia World in Chapter 4. Results showed that these 

classifiers significantly outperformed the GOP approach at identifying mispronunciations 

in field-collected disordered speech from children. More importantly, the phoneme-

specific classifiers detected mispronunciations significantly better than student clinicians.  

7.2. Contributions 

This dissertation contains the following main contributions: 

• Developing Apraxia World, a novel speech therapy game that children play with 

traditional controls and incorporates speech input as a secondary control mechanic 

• Conducting a longitudinal evaluation of Apraxia World that indicates children make 

therapy improvements with the game comparable to traditional home practice 

• Showing that the game held children’s attention over a two-month treatment period, 

with some even continuing to play of their own accord post-study 

• Finding that children prefer Apraxia World to traditional therapy practice and that 

caregivers would like to include the game in future home practice 

• Showing that limited child speech data can be used to increase word recognition rates 

to clinically-desirable levels for pronunciation verification 

• Displaying that classifier-based mispronunciation detection outperforms both 

Goodness of Pronunciation scoring and student clinician evaluations on the collected 

disordered speech from children 
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7.3. Limitations 

While this dissertation presented encouraging results that suggest Apraxia World 

in effective at increasing engagement and improving pronunciation accuracy, there are a 

few limitations to the evaluations, which are discussed below. 

Study sizes: The pilot study in Chapter 3 presented results for 21 participants (14 

with SSDs) and the longitudinal study in Chapter 4 presented results for 10 participants 

(all with SSDs). The low numbers reflect difficulties recruiting children for these types of 

studies, especially considering that they take time away from caregivers, as well. The small 

study sizes mean that results must be interpreted cautiously and taken as a precursor to 

larger-scale studies. 

Gender imbalance: In elementary-school-aged populations, males are 2.85 times 

more likely to have an SSD than females [6], which makes recruiting balanced populations 

difficult. However, this does not eliminate the need for diverse populations, especially 

when collecting subjective data such as enjoyment and engagement with new applications. 

Given that general participant solicitation (Chapters 3 and 4) failed to provide balanced 

sex ratios, or even ones that approach the 2.85 to 1 ratio found in the clinical population, 

targeted recruitment for female participants is warranted in future work. As caregivers are 

the ones who need to be convinced to respond to solicitations, researchers should 

emphasize the opportunity to provide a voice to girls with SSDs in regards to what type of 

therapy tools they want to use. Recruiting participants for these types of studies can be 

challenging, but making efforts to find more female participants will yield more 

meaningful and generalizable results. 
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Novel technology: It is possible to argue that children’s enthusiasm about Apraxia 

World in Chapter 2 was partially due to it being a novel technology and game they had 

never played before, instead of actual excitement about the game itself. However, it 

appears that whatever novelty factor impacted their opinion of the game was relatively 

limited, as in Chapter 3, children still reported enjoying Apraxia World over a two-month 

period and some even played beyond the formal study conclusion. Couse and Chen [209] 

found similar behavior in a study examining tablet use for early childhood education, 

where children remained excited to use tablets for educational activity both over two short 

study sessions and then informally for the remaining two months of the school year. 

However, the effect of novelty on child speech therapy applications remains an important 

consideration.  

No control group (traditional speech therapy): Although the pronunciation 

improvement results reported in Chapter 4 are similar to those reported in studies of more 

traditional speech therapy practice, the study itself did not include a control phase with 

traditional speech therapy exercises. However, Apraxia World is presented as a 

supplement to other forms of practice, not a replacement for traditional practice. As such, 

comparing Apraxia World directly to other forms of speech therapy practice remains open 

for further investigation. 

Lack of comparable corpora: An issue brought up in Chapters 5 and 6 is the lack 

of available child corpora, especially those containing disordered speech from children. 

Because the speech tests presented in this dissertation use a custom-curated corpus that 

cannot be distributed due to human research ethics committee restrictions, it may be 
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difficult for future researchers to replicate the results. Providing the child speech 

processing community with a standard corpus of disordered speech from children is still 

an open challenge. 

7.4. Future work 

The primary focus of this dissertation was to design an engaging speech therapy 

game incorporating mispronunciation detection for disordered speech from children. The 

findings from this work introduce potential directions and implications for further 

research.  

7.4.1. Game work 

Additional therapy game genres: This dissertation demonstrated the success of 

employing a side-scrolling adventure game for speech therapy. Given the variety of 

gaming preferences, future work should go into developing a wide range of speech therapy 

games across genres to give children the option to select the one that they enjoy most, with 

special emphasis placed on providing non-gendered options. These could be additional 

adventure games, building games, puzzle games, social games, racing games, etc. Some 

ideas for how to include speech into these game genres are shown in Table 10. However, 

these suggestions focus only on a few voice interaction techniques. Allison et al. [210] 

described 25 different voice interaction paradigms for games, demonstrating that there are 

many more ways to include speech beyond keyword repetition. Regardless of the speech 

integration method, it is important to design games that offer replay value and allow the 

player to make continual progress over a long period. These new genres and additional 

speech integration techniques offer exciting directions for future investigation. 
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Game genre Genre example Speech Integration 

Action-Adventure 
The Legend of 

Zelda 

• Say words correctly to give the character’s 

attack extra strength 

• Use speech to unlock special items 

• Say “magic words” to heal the character 

Building Minecraft 
• Say words to place blocks 

• Say words to purchase building materials 

Social The Sims 

• Complete speech exercises to earn money to 

buy clothing or decorative items for a virtual 

home 

• Say commands to make the character 

complete tasks 

Racing Mario Kart 
• Say words at consistent volume and prosody 

to get a speed boost 

Table 10 Possible speech therapy game genres and speech integration methods 

 

 

Points, badges, and leaderboards: Three key elements of gamification (applying 

game strategies to non-game scenarios to increase engagement) are points, badges, and 

leaderboards [211]. These strategies have been demonstrated to increase feelings of 

confidence and task meaningfulness when completing task in a simulated environment 

[212], suggesting that they may do the same for digital speech therapy tasks. Although 

creating speech therapy games is more along the lines of traditional game development, 

instead of gamification, the fact that these three aspects are singled out for their ability to 

increase engagement means that researchers should pay special attention to how these are 

implemented within their therapy games.  

One could argue that Apraxia World already includes a points system for 

completing speech exercises by offering high and low rewards (in-game currency and time 

on the “energy” timer) for correct and incorrect pronunciations, respectively. However, 
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the effect of badges and leaderboards has yet to be examined. Badges could be awarded 

for completing a certain number of speech exercises, improving accuracy beyond a 

threshold, or playing the game X days per week (similar to how some mobile games 

encourage frequent play with daily rewards or a play streak counter). Leaderboards have 

also been shown to increase engagement across a variety of otherwise mundane tasks 

[213]. However, introducing a leaderboard into speech therapy applications must be done 

very carefully, as not all information can be shared. Speech therapy outcomes are protected 

health information and could not be displayed on a leaderboard.  Game points or progress 

could be shared between all players, but that rewards gameplay ability, rather than speech 

therapy effort. This dissertation demonstrated that gameplay ability varies greatly, so some 

children may find it discouraging to fall behind their peers. As badges and leaderboards 

are established methods for improving interest in dull tasks, their use in speech therapy 

applications remains an interesting, albeit challenging, research area. 

Collaborative play: Providing other children or caregivers with a complementary 

role in the game, such as a helper character, may increase motivation and turn the therapy 

practice into a social experience. For example, Ganzeboom et al. [113] used separate player 

roles to encourage elderly people with dysarthria to give instructions through a speech 

therapy game, while their speech is analyzed for therapy feedback. In-game collaboration 

may not even need to be with a real human; Sailer et al. [212] demonstrated that including 

virtual teammates and a story motivating simulated tasks increased feelings of social 

relatedness. Virtual social motivation and motivating stories are demonstrated in the 

SpokeIt [68, 141] and Talking to Teo [32] child speech therapy games, where players must 
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speak to help other characters in the game, thus giving meaning to the actions. Further 

studies should explore the extent to which collaborative play increases a child’s 

willingness to complete therapy exercises. 

Accessible controls: Even though the controls employed in Apraxia World are 

standard for tablet games, they may not be completely accessible for populations 

undergoing speech therapy. A subset of children with movement-based speech disorders, 

such as childhood apraxia of speech, have limb coordination difficulties; some children 

during the pilot study were observed to have difficulty with game controls, extraneous 

limb movements, and rapidly timed double clicks. Other groups going through speech 

therapy may also experience difficulties with specific movements (e.g., children with 

Autism Spectrum Disorder [155]). As such, the touch-screen-based controls may not be an 

accessible control strategy and compensatory strategies for these factors, such as an 

external joystick, should be addressed in future speech therapy games. 

Therapy normalization: One benefit of Apraxia World yet to be examined is the 

effect of normalizing speech therapy practice by including it in a game format not specific 

to children receiving therapy. In this way, children could talk about or share their 

experiences playing the game with their peers, without standing out as different. Children 

were enthusiastic about playing the game and some seemed very proud of their in-game 

accomplishments, which hopefully they felt free to share with their friends. It could be 

interesting to explore how reframing speech therapy exercises as a “regular” game changes 

how they are perceived both by children undergoing therapy and their peers with less 

exposure to speech therapy. 
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7.4.2. Speech work 

Audio quality checks: Even though the children wore headsets for the majority of 

the longitudinal study in Chapter 4, there were issues with microphone placement and 

children adjusting or touching the microphone. Additionally, when some of the 

participants became discouraged or excited, they spoke in ways that made it difficult for 

the template matching to meaningfully evaluate their speech (mumbling, yelling, etc.). As 

such, future systems would benefit from monitoring microphone distortions, speaking 

volume, and speaking rate to recommend a correction. These reminders should help 

children produce utterances of better quality for automated speech processing, which 

would result in them receiving more meaningful feedback on pronunciations. This may 

also have the added benefit of helping children increase self-evaluation of loudness and 

intelligibility. 

Combine word-level and phoneme-level verification: In order for phoneme-level 

mispronunciation detection to work correctly, systems must be able to accurately segment 

phonemes for analysis. However, incomplete utterances or productions that vary too much 

from the expected pronunciation are likely to be incorrectly segmented using automated 

approaches such as forced alignment. As such, it may be beneficial to the learner to offer 

feedback that the utterance had an overall issue, rather than trying to process an utterance 

that the system cannot accurately provide feedback for. One way to accomplish this would 

be to adopt the word-level verification approach presented in Chapter 5 as a precursor to 

deeper examination; this method uses ASR system with a speaker-dependent acoustic 

model to make sure that the child attempted to say something close to the target. If the 
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utterance passes this check, it can be passed along for segmentation and phoneme-level 

analysis. Otherwise, the child would receive appropriate word-level feedback asking them 

to try again. Combining the above proposed audio quality checks with this word-level 

verification could allow the system to better communicate why the child received specific 

utterance feedback; this would provide additional transparency and help build trust in the 

intelligent system [168]. 

Recording control mechanism: The touch-to-start/touch-to-stop mechanism 

implemented in Apraxia World proved difficult for the children to accurately control, as 

evidenced by the high percentage of clipped audio collected in the longitudinal study 

(Chapter 4). Many of the clipped utterances were missing just a small portion of the 

utterance, so a more child-friendly mechanism could yield better recordings, which would 

again improve ASR performance and provide more audio for offline processing. Ahmed 

et al. [26] also reported that children had trouble controlling the recording mechanism in 

their games, but their ASRs performed better when the games used discreet start and stop 

actions, instead of stopping the recording automatically. As such, a better mechanism may 

be to start recording once the prompt is displayed and trim the audio around a window 

defined by the button presses extended with padding to start earlier and stop later than 

when the child actually pressed the buttons. Since incomplete recordings oftentimes result 

in inaccurate automated feedback, it is essential to empower children to capture the entirety 

of their utterance. This replacement recording control mechanism should be the subject of 

future study. 
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One-Class Neural Network: Recent work by Shahin et al. [36, 144] suggests that 

an anomaly detection approach to mispronunciation detection may be able to identify child 

pronunciation errors, without the need for large amounts of error annotations. Their one-

class SVM successfully discriminates between correct and incorrect pronunciations in 

disordered speech from children. Although their results are not replicated in this 

dissertation, this method poses interesting further steps, specifically the investigation of 

one-class neural networks, which have been shown to outperform one-class SVMs for 

anomaly detection tasks [214]. These performance improvements may also apply to the 

mispronunciation detection domain. Additionally, the one-class neural network can 

process higher-dimensional inputs better than one-class SVMs [214]; this means that 

features such as phonetic posteriorgrams, which describe the phonetic content in fine 

detail, could be used for anomaly-detection-based pronunciation evaluation. Phonetic 

posteriorgrams have been shown to better represent phonetic content than MFCCs during 

frame matching [215], suggesting that they may be appropriate for anomaly detection. 

Shahin et al. [36, 144] implemented phonetic attribute features for their mispronunciation 

detection pipeline, which requires a dedicated feature extraction network. However, 

phonetic posteriorgrams can be obtained from pre-existing, high quality acoustic models, 

which may simplify the mispronunciation detection framework.  
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APPENDIX A  

HUMAN RESEARCH ETHICS COMMITTEE MATERIALS 

 

This section contains the consent forms and questionnaires used during the 

longitudinal study of Apraxia World in Chapters 3. The consent forms and questionnaires 

used for the pilot study in chapter 2 were largely similar to those shown here, so only the 

latest versions are presented here. They are ordered as follows: 

• Caregiver consent form 

• Child consent form 

• Caregiver information sheet 

• Child information sheet 

• Caregiver questionnaire (Longitudinal study only) 

• Child questionnaire 

During the longitudinal study, the caregivers only answered questions 13-16 on 

their questionnaire at the end of the study. All other questions were answered both during 

and after the study  

 



 

162 
 

 



 

163 
 

 



 

164 
 

 



 

165 
 

 



 

166 
 

 



 

167 
 

 



 

168 
 

 



 

169 
 

 



 

170 
 

 



 

171 
 

 



 

172 
 

 



 

173 
 

 



 

174 
 

 



 

175 
 

 



 

176 
 

 



 

177 
 

 



 

178 
 

 



 

179 
 

 



 

180 
 

 



 

181 
 

 



 

182 
 

APPENDIX B  

APRAXIA WORLD USER GUIDE 

 

B.1. Overview 

Apraxia World has 40 full levels, 8 bonus levels that consist only of coins and 

power-up collectables, and a training level in World One where the player cannot die. 

Players can buy additional characters (1,500 coins each), items of clothing (250 coins per 

item), weapons (300 – 6000 coins each), or power-ups (50 coins per use, 150 – 2,400 coins 

to increase duration). Full levels have between 7 and 9 regenerative stars (10-second delay 

between award of star and regeneration).  

B.2. Installation   

To properly run the game, you need an Android 6 or above device. First, copy the 

Apraxia World Images and Pronunciation Models folders (both will be provided) to the 

root folder of the device. Download the app from the Google Play Store to install. 

B.3. Main screens 

When you open the app for the first time, or after it has been force-closed, you will 

see the start screen (Figure 20). Once you press Play, select the username associated with 

the calibration profile you want and then press “Ok” (Figure 21). If you want to later select 

a different calibration profile, you need to force close the app so the start screen will appear 

again. 
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Figure 20 Apraxia World start screen only appears when the app starts anew, not 

after the application is paused. 

 

 

 

Figure 21 Select the user profile associated with the calibration data you want to use. 
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Once you have selected a user profile, you will see the world selection screen 

(Figure 22). After selecting the desired world, the level selection screen will display 

(Figure 23). The shown levels are for World One, which includes a training level (marked 

by the T) where the player cannot die. 

 

 

 

Figure 22 World selection screen. Bottom menu has buttons for the character store, 

costume store, world selection screen, weapon store, powerup store, and settings 

screen. 
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Figure 23 Level selection example. This is World One, which has a training level 

marked by the T. 

 

 

B.4. Game settings 

All exercise settings are located in a single settings page (indicated by the gear tab 

at the bottom of all menu screens). Any options changed on this screen are saved and will 

persist until changed again. The right half of Figure 24 shows the Exercise Parameter 

selection. The “Stars required” option selects how many stars are necessary to complete a 

level (increments/decrements one at a time). “Exercises per star” allows the SLP to 

determine how many utterances must be spoken before awarding a star 

(increments/decrements one at a time). The game has two evaluation options, ASR or 

keyboard. These two options are toggled by tapping the evaluation source. The “Coins per 

star” option determines how many bonus coins are awarded on exercise completion 
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(increments/decrements five at a time).  The Word List settings are no longer used, since 

Apraxia World imports exercises from Apraxia World Recorder. 

When the keyboard option is selected, during speech exercises, the game will wait 

to advance the prompt until it receives external evaluation. If a keyboard is not connected, 

the game will not advance past the speech exercise. 

Some administrative options are hidden to the right in the settings screen and are 

accessed by dragging the screen to the left. These options are shown in Figure 25. The 

“Ignore playtime restrictions” toggle will keep the game from limiting game access when 

selected. The “Reset everything” button resets all game settings such that it acts like a new 

installation again. The “Reset progress” resets the progress the player has made in the 

game, while leaving the settings alone. 
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Figure 24 Settings page with the word list selected for each level (left) and exercise-

specific parameters (right). 

 

 

 

Figure 25 Administrative options hidden to the right in the settings page. 
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B.5. Gameplay 

The game is controlled by overlaid buttons, shown in Figure 26. The joystick on 

the left controls motion, A activates the weapon, and B makes the character jump. The 

character can do a double jump, that is, press B, wait for the character to get into the air, 

and press B again to jump even higher. The heads-up display shows (clockwise from 

bottom left) collected coins, character health (yellow bar), points, stars, weapon selected, 

how much time is left before the character slows down, and if the exercises are done (“Say 

more words” or “Exercises done!”). If game timer runs out, the character will move at half 

speed until more time is earned by doing exercises. Figure 27 shows the level checkpoint, 

represented as a blue anchor. Once you touch the anchor, your character will restart here 

instead of the beginning if you die. Each level is won by going to the right to reach the 

finish line (Figure 29) once you have completed enough exercises. 

 

 



 

189 
 

 

Figure 26 Example level with heads-up display and overlaid controls. 

 

 

 

Figure 27 The blue anchor represents the checkpoint. After crossing this point, the 

player will reset here if they die. 
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B.6. Exercise delivery 

The game delivers exercises during gameplay. To simplify the explanations below, 

E is “Exercises per star,” S is “Stars per level,” and C is “Coins per star,” all as defined by 

the SLP in the settings page. 

The game displays an exercise popup when the player attempts to collect a star and 

then the player must complete E prompts. An example exercise popup is displayed in 

Figure 28. Each correct utterance adds 10 seconds to the game timer, and each incorrect 

utterance adds 5 seconds to the game timer. When the child has completed E prompts 

(correct or incorrect), the popup window disappears, a star is awarded, and C coins are 

awarded. If the player attempts to complete the level before completing 𝐸 × 𝑆 prompts, 

then they see the text banner shown in Figure 29. Once the child completes their exercises 

and they cross the goal line, the level ends. 

If a child says a word incorrectly three times in a row, the game will present a new 

prompt (a skip). If three words are skipped during an attempt to collect a star, the exercise 

will end without awarding the star or coins. Therefore, the exercise ending without reward 

will only happen if E is greater than nine. All prompts are randomly selected from the 

exercise list such that they do not repeat until all words have been prompted. 

It is important to capture the entire utterance when doing the exercises (press start, 

speak, press stop). If the child needs help with the pronunciation, they can press the 

Pronunciation Example button to hear a sample pronunciation. 
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Figure 28 Exercise popup with an image and text prompt. 

 

 

 

Figure 29 A prompt that the child should go collect more stars before finishing the 

level. 
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B.7. Keyboard Evaluation 

When the evaluation source is set to keyboard, someone must evaluate the child’s 

utterances with a Bluetooth keyboard. All evaluations are binary: if the utterance is correct, 

the evaluator should press “C”; if the utterance is incorrect, the evaluator should press “I”. 

The game will only act on the human evaluation once both human and ASR evaluations 

have been captured. Both evaluations are saved to the game logs. 

B.8. Logging 

Apraxia World is set to upload that day's audio and game logs to the server any 

time the app is paused (home button pressed, screen turned off), as long as a username has 

been selected. This means that some days may have multiple uploads, but the most recent 

upload can be identified by the timestamp in its filename. This will all happen 

automatically while the tablet is connected to the internet, unless turned off in the settings. 
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APPENDIX C  

APRAXIA WORLD RECORDER USER GUIDE 

 

C.1. Summary 

Apraxia World Recorder is how clinicians and caregivers configure which target 

words are included in Apraxia World and collect the appropriate calibration data. The app 

allows for different usernames, each of which can be configured with different therapy 

targets; these are the usernames that display when first opening the Apraxia World game. 

Apraxia World Recorder also contains a probe function, where the clinician can probe 

target words and collect recordings to track a child’s progress. 

C.2. Start screen 

Before you can do anything in Apraxia World Recorder, you must select the 

username you want to work with. Pick the desired username from the dropdown list and 

press “Enter” (see Figure 30 a). If no username has been created, or you simply need a new 

one, select “Create new profile” and enter the desired username and child’s age, and then 

select “Create” (Figure 30 b) Both selecting a username and creating a new one will take 

you to the main screen, where you can modify the therapy words or complete a probe. 
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(a) (b) 

Figure 30 Apraxia World Recorder start (a) and username creation (b) screens.  

 

 

C.3. Calibration 

Once you have created or selected a username, you’ll see the main screen. The 

menu button (Figure 31 a) shows additional functions, such as probe and export. The word 

list is initially empty, but will fill in automatically as you type (Figure 31 b). Selecting a 

word takes you to the recording screen (Figure 31 c). For a word to be included in Apraxia 

World, you must record five correct and five incorrect pronunciation samples of the target. 

The order in which these are recorded does not matter. Once you’ve recorded the 10 
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utterances, press “Test ASR” to see the effect size between scores for correct utterances 

and incorrect utterances. In general, the system does well with words that show an effect 

size greater than one. After testing the ASR, you can select the “Include word in game” 

option, which will not appear until you’ve tested the ASR. Only words that are marked to 

be included in the game will export to Apraxia World or appear in probes; it a word should 

no longer be used, simply deselect “Include word in game.” For quick access of words 

marked for inclusion in Apraxia World, you can use the “Show Selected Words” option in 

the menu on the main screen (Figure 31 a). 

 

 

   

(a) (b) (c) 

Figure 31 Apraxia World Recorder prompt calibration screens. 
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Once you have marked at least 10 words to be included in Apraxia World, you can 

select “Export to Game” from the menu on the main screen (Figure 31 a). This option pre-

processes the recordings so that the ASR will run faster during gameplay and configures 

the necessary metadata. You will see an indicator showing that the game is processing the 

export and it will tell you once it has successfully completed exporting the words. At this 

point, you’re ready to play Apraxia World with the selected targets. 

C.4. Probes 

This functionality allows clinicians to record pronunciation probes for later 

analysis. Similarly to the audio export function, at least 10 words must be marked to be 

included in the game before you can access probe functionality. To start or view a probe, 

select “Probe Words” from the menu on the main screen (Figure 31 a). You will then see 

a list of past probes and the option to create a new probe (Figure 32 a); previous probes 

are named with the format DAY-MONTH-YEAR HOUR_MINUTE_SECOND. When 

you create a new probe, you’ll see the words marked to be included in the game (Figure 

32 b). These words can be selected in any order, so you can match them to any external 

prompting (PowerPoint, booklet, etc.). Once you select a word, a popup will appear with 

a pictorial and text prompt, recording and playback functions, and a correct or incorrect 

label (Figure 32 c). When you press the record button to start the recording, the label will 

change to “Stop;” press the button again to stop the recording and then select the 

appropriate label (green check for correct, red x for incorrect). Once the word is recorded 

and labeled, press OK to dismiss the popup. After recording and labeling an utterance for 

each word, you can press “Upload Probe” to send the probe to our server. The files are 
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also stored locally. The ASR does not run during probes, so only clinician labels are 

recorded. 

 

 

   

(a) (b) (c) 

Figure 32 Apraxia World Recorder probe screens. 

 

 

If you select an existing probe, you’ll see the same screen as when you created a 

new prompt (Figure 32 b). This screen will contain the recordings and labels from that 

probe session so that you can review the probe. The probe labels can be changed here, so 

be careful not to change labels when viewing past probes. 
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APPENDIX D  

CHILD SPEECH CORPORA 

As a majority of speech recognition work focuses on adults, the amount of availa-

ble adult speech data vastly outweighs the amount of child speech data. However, there 

are a handful of notable corpora that can be used within child speech recognition research. 

D.1. Typically-developing speech 

The Oregon Graduate Institute (OGI) Kids’ Corpus [145]: This corpus contains 

both prompted and spontaneous American English speech collected from approximately 

1,100 children ranging in school grade from Kindergarten all the way to 10th grade. The 

prompted speech contains 205 isolated words, 100 sentences, and 10 numeric sequences. 

The spontaneous speech contains open-ended responses to questions asked by the 

experimenter; each child recorded between eight to ten minutes of spontaneous speech, 

which was orthographically transcribed. In total, the corpus contains 101 hours of child 

speech (70 hours scripted). 

The PF-STAR Corpus [146, 216]: This corpus contains prompted British English 

child speech collected from 158 children between the ages of 4 and 14. The speech prompts 

included 30 sentences, 40 isolated words, 20 “generic phrases,” and 20 digit triples. The 

corpus contains orthographic transcriptions and contains 7.5 hours of child speech. 

The Boulder Learning MyST Corpus [217]: This recently-released corpus contains 

conversational speech collected from 1,371 third through fifth grade students. The 

conversations took place between the student and a virtual science tutor, and as such, the 

conversations focus on basic science topics including physics, chemistry, astronomy, and 
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biology. In total, the corpus contains over 393 hours of child speech and 197 hours have 

been transcribed at the word-level, with more transcriptions being added as a community 

effort.  

D.2. Disordered speech from children 

UltraSuite [218]: This corpus contains three collections of prompted Scottish 

English speech, one from typically-developing children and two from children with speech 

sound disorders. In addition to speech data, the corpus also contains ultrasound files 

showing the midsagittal view of child’s tongue. Prompts consist of words, non-words used 

to elicit certain phonemes, sentences, phonemes produced at differing speeds, and non-

speech (swallowing, coughs). The corpus contains a limited quantity of conversational 

speech from children with speech sound disorders, but not from typically-developing 

children. A small portion of the disordered speech has been annotated by a clinician to 

note the boundaries of words and phonemes of interest, but error tags are unavailable. 

Some of the typically-developing speech is transcribed, and the disordered speech has been 

aligned to the expected pronunciation. In total, the corpus contains 13 hours child speech 

(11 hours of disordered speech from children. 

PhonBank Clinical Corpora [147]: TalkBank [219] is a project focused on sharing 

and studying spoken communication, and as such, contains databases of speech 

representing a variety of populations (e.g., people with dementia, second-language 

learners, students). Within the TalkBank system, PhonBank a collection of databases to 

facilitate research on child phonology. The clinical database contains speech from children 

with speech sound disorders, although not all corpora are from English-speakers and some 
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contain speech from a relatively limited number of speakers. Of specific interest are the 

corpora from Torrington Eaton and Bernstein Ratner [148], Cummings and Barlowe [149], 

and Preston et al. [150]. The Torrington Eaton corpus contains typically-developing and 

disordered speech from children completing picture naming tasks and non-word 

repetitions, in addition to spontaneous speech from a play session. Recordings were 

collected from 51 children between the ages of four and five years old. The Cummings 

corpus contains disordered speech from children during clinical probes with single-word 

utterances. Recordings were collected from 30 children between the ages of three and six 

years old. The Preston corpus contains disordered speech from children completing a 

picture naming task. Recordings were collected from 44 children between the ages of four 

and five. All corpora contain phonetic transcriptions of actual and expected productions, 

however, these transcripts are not time-aligned and recording quality varies between 

recording sessions; as such, these corpora were not in a usable state at the time of 

completing this dissertation. 
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