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ABSTRACT 

 

A 49-d study was conducted to evaluate preweaning in a feedlot to increase performance 

and health during postweaning. Eighty-four 7 8⁄  Angus × 1 8⁄  Nellore cows with their calves 

were assigned to one of two treatments: preweaning in a feedlot or on pasture. For 21 d prior 

to weaning, LOT cow-calf pairs were placed in feedlot pens, while PAS remained on pasture 

until weaning. All calves remained in the feedlot for 28 d postweaning. Preweaning calves 

in confinement resulted in greater (P  ≤ 0.01) pre- and postweaning performance. Antibody 

production response to vaccinations were not affected by preweaning strategy (P  >  0.50).  

 A 104-d study was conducted to evaluate timing of grain feeding on animal 

performance, carcass traits, and economic outcome in beef heifers. Twenty-one 7 8⁄  Angus × 

1
8⁄  Nellore heifers were provided one of two diets 1) fiber-based and 2) corn-based. Heifers 

were assigned to one of three feeding period treatments: 1) C from month 12 through 15 and 

F from month 16 through 23 (CFF); 2) F from month 12 through 15, C from month 16 

through 19, and F from month 16 through 23 (FCF); 3) F from month 12 through 19 and C 

from month 20 through 23 (FFC). Treatment × period interactions (P < 0.01) were detected 

for performance measurements. During periods of grain feeding, ADG was greater as was 

G:F. Ultrasonic measurements did not differ between treatments (P > 0.05). Period effects 

were detected for ultrasonic measurements (P < 0.01). Rib fat and rump fat were greater 

with each period. Ratios of IMF to subcutaneous fat decreased in period 1 from initial and 

were not different after that time.  Significant differences for carcass characteristics were not 

observed (P ≥ 0.17). Feed costs and profitability were not significantly different between 

treatments (P ≥ 0.22).  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Weaning is the act of removing calves from their dam’s nutrient supply. This process can 

be accomplished through several strategies. During natural weaning, occurring 7 to 14 mo 

of age, the dam physically prevents the calf from suckling. Traditional management 

strategies wean calves abruptly by physically separating calves from their dams to 

accomplish this dietary change. Abrupt weaning, or traditional weaning (TW), occurs 

around 7 mo of age and causes a number of stressors associated with the dietary, 

environmental, and social disruptions. One of the best ways to quantify the effects of the 

stressors following weaning is through measuring ADG. Average daily gain (ADG) 

decreased from 30 to 124% in the 7 to 14 d postweaning period (Price et al., 2003; Haley 

et al., 2005). In the first 48 hours following weaning, weaned calves lost 3.6 kg versus non-

weaned calves, who gained 1.8 kg (Fanning et al., 1995). Weight loss and reduced ADG 

result from decreased intake and increased energy expenditure as a result of shifting 

behavior from feeding to increased vocalization and pacing. Time spent eating decreased 

between 60% and 100% for up to four days postweaning, until calves adjusted to a new 

diet, environment, and loss of their dam (Price et al., 2003; Solano et al., 2007). In some 

cases weaning causes cell-mediated functions to decrease by 21 to 60% which can increase 

likelihood of morbidity (Lynch et al., 2010). Accordingly, cow-calf producers and 

researchers work to develop strategies to ameliorate the effects of weaning (Figure 1) by 

reducing the number of potential stressors occurring simultaneously. 
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Figure 1. Weaning outcomes and their relationships. 
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Two-stage processes to mitigate the negative effects of weaning  

 

Two-stage management protocols attempt to separate the dietary, environmental, 

and social disruptions in order to mitigate performance losses and negative health 

outcomes and increase animal well-being. Implementation of two-stage protocols, 

including: nose-flap, fence-line, creep feeding, and confinement weaning, potentially 

alleviates commonly observed negative responses to changes in diet, environment, and 

social structure. Nose-flap weaning is designed to separate obstruction from dams’ milk 

from social and environmental disruptions by utilizing anti-suckling devices prior to 

physical separation. Fence-line weaning is designed to separate social change from milk 

obstruction, allowing visual and auditory contact between cow-calf pairs before remote 

separation. Creep feeding is a preweaning strategy designed to introduce a weaning diet 

while allowing calves to remain in physical contact with their dam and milk supply. 

Confinement weaning is a postweaning management strategy designed to introduce a 

weaning diet, comparable environment, and eating from a feed bunk to enhance long-term 

acclimation. Responses to two-stage protocols are quantified at the application of the first 

stage and then again during the second stage. For example, in the case of nose-flaps, 

responses are quantified after nose-flap insertion and after physical separation, also known 

as the postweaning period. Responses to creep feeding are quantified during the 

preweaning and postweaning period. In the case of fence-line weaning, responses are 

quantified after calves are fence-line separated and after they are remotely separated. 

Responses to confinement weaning are gathered postweaning and during subsequent 

feedlot entry. Data from two-stage management practices (Boyles et al., 2007; Enriquez et 
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al., 2010; Krebs et al., 2010) suggest two-stage strategies do not completely prevent the 

performance losses observed at weaning nor physical separation.  

Haley et al. (2005) evaluated short- and long-duration two-stage, nose-flap weaning 

(3 and 14 d, respectively) compared to traditional weaning (TW). During first stage, a 14-d 

period, TW calves gained more than nose-flap weaned calves in both the short- and long-

duration groups due to obstruction of suckling (0.81 vs. 0.38 and 0.04 kg/d, respectively). 

At separation (d 0) nose-flaps were removed from short- and long-duration nose-flap 

calves and all treatments were remotely separated from their dams. For the 8 d following 

separation from their dams both short- and long-duration groups gained more than TW 

calves (1.18 and 0.68 vs. 0.37 kg/d). Reduced gain responses of TW calves following 

separation are similar to that of calves after nose-flaps were inserted due to cessation of 

milk supply. Separating the disruptions associated with TW does not result in mitigated 

gain responses.  Instead separating these disruptions shifts the period of time when reduced 

gains are exhibited, which is succeeding the withdrawal from milk.  

Similar to the data reported by Haley et al. (2005), other researchers have 

demonstrated reductions in ADG of 50% to 100% compared to TW calves during the first 

stage when suckling was obstructed (Enriques et al., 2010; Lippolis et al., 2016). Enriquez 

et al. (2010) evaluated a 24 d period in which calves were either fitted with nose-flaps or 

fence-line weaned before remote separation on d 0 compared to TW. Average daily gain of 

nose-flap weaned calves was 80% less than ADG of TW calves the first 14 d of stage one. 

However, from d -11 to 0 nose-flap weaned calves resulted in an ADG 50% greater than 

TW calves who were still with their dams. Greater gains exhibited by nose-flap calves 

compared to TW, as the weaning date approached, demonstrates the calf receives limited 



 

 

 

 

 

5 

nutritional supply from the dam during late lactation and obstruction from milk is a short-

term stressor. Despite the period of adjustment to a forage-only diet prior to separation, 

nose-flap calves experienced a second reduction of 0.53 kg/day after separation from their 

dams, which lasted up to 7 d (Enriques et al., 2010), while TW calves’ ADG increased by 

70% compared to the decrease exhibited 11 days prior to weaning. Greater postweaning 

gains of TW calves after separation is an unexpected response. However, this suggests 

complete separation results in fewer stressors than separating the disruptions associated 

with TW. These studies demonstrate separating timing of dietary, social, and 

environmental changes does not completely mitigate performance responses as a result of 

weaning, and TW increases postweaning ADG by 80% compared to nose-flap insertion 

prior to separation  (Enriquez et al., 2010) in contrast to (Price et al., 2003; Haley et al., 

2005), likely due in part to length of the period before physical separation.  

Like nose-flap weaned calves, fence-line weaned calves are able to remain in visual 

and auditory contact with their dam. Fence-line weaned calves do not exhibit significantly 

different ADG compared to TW calves after fence-line separation (0.90 vs. 0.88 kg/d); 

however, fence-line weaned calves gain 45% more compared to TW calves as weaning 

date approaches (Enriquez et al., 2010), likely as a result of relying on nutrients from 

forage-only compared to milk supply from dam. Seven days postweaning TW calves’ 

ADG is 60% greater than fence-line weaned calves (Enriquez et al., 2010). According to 

Enriquez et al. (2010) this may have occurred as a result of proximity to dam and the 

perceived potential for nursing preventing calves from progressing. In other studies, fence-

line weaning improved postweaning ADG by at least 95% compared to TW (Price et al., 

2003; Stookey et al., 1997) as a result of 60% greater feeding activity after fence-line 
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weaning (Price et al., 2003). Separating dietary, environmental, and social changes alter 

performance responses postweaning, however, in the case of both nose-flap and fence-line 

weaning, decreased ADG is exhibited after suckling is obstructed. Additionally, nose-flap 

and fence-line weaning create the potential for a second negative performance response 

once calves are physically, visually, and auditorily separated from their dams (Enriquez et 

al., 2010). Based on the gain results of TW compared to nose-flap and fence-line weaning, 

all calves experience a period of decreased ADG as a result of separation from milk 

supply. 

Another strategy is the introduction of a high-concentrate creep-feed to calves prior 

to weaning. Creep-feeding has significant results during the preweaning period; however, 

differences in ADG after weaning are not significant between creep-fed and non-creep fed 

calves. Creep-feeding as a strategy to acclimate calves to a weaning diet prior to weaning 

has resulted in 5 to 60% greater ADG during the preweaning period and 7 to 30 kg heavier 

weights at weaning, however, postweaning gains and intake are not significantly affected 

(Myers et al., 1999; Aguiar et al., 2015; Sayre et al., 2018). Additionally, non-creep fed 

calves exhibit 7% greater ADG postweaning compared to creep-fed calves, resulting in 

comparable weights at 365 d of age (309 vs. 315 kg, respectively; Martin et al., 1981). 

Creep-feeding increases preweaning growth and has the ability to acclimate calves to a 

familiar diet postweaning. However, similar to other weaning strategies postweaning 

performance as a result of creep-feeding is not significantly affected .  

Observed reductions in ADG are not exclusively the result of decreased feeding 

behavior. Reduced ADG is also observed during periods of increased morbidity (Walker et 

al., 2007), which is often interpreted as a suppression in immunological function. Because 
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immune function consists of  humoral (antibody responses) and cell-mediated immunity 

(white blood cell responses), researchers assess immunocompetence by measuring cell-

mediated and humoral functional activity. Stress can increase morbidity by increasing 

cortisol concentrations, which suppress lymphocyte activity, therefore, cortisol is often 

evaluated as an indicator of potential immunosuppression. Lymphocytes act directly (T-

cells) by killing infectious microorganisms and indirectly (B-cells) by producing 

antibodies. Lymphocyte and neutrophil counts, indicative of inflammation, increase by 

20% two days after weaning compared to non-weaned calves (Lynch et al., 2010). 

Similarly, Hickey et al. (2003) reported significant increases in lymphocyte and neutrophil 

count 24 hours postweaning compared to non-weaned calves. Destruction of foreign 

bodies by neutrophils and immunocompetence of lymphocytes also decreases by 21% and 

60% after TW, respectively (Lynch et al., 2010). In addition to increased white blood cell 

count, Hickey et al. (2003) reported weaned calves have cortisol concentrations 15% 

greater than non-weaned calves, which can lead to reductions in antibody production. 

However, cortisol concentrations, white blood cell count and their functional activity 

return to baseline levels between 2 and 4 d postweaning, suggesting cell-mediated and 

hormonal responses to weaning are short-term (Hickey et al., 2003; Lynch et al., 2010).  

Humoral immunity consists of production of antibodies and can be quantified by 

measuring antibody responses to vaccination. Titer values, used to measure effective 

antibody response, increase up to 100% seven days postweaning in response to bovine 

viral diarrhea (BVD) vaccination (Sayre et al. 2018). Responses to infectious bovine 

rhinotracheitis (IBR) vaccination increases by 40% 7 days, postweaning (Sayre et al., 

2018). High titer values after vaccination demonstrates a functional humoral immune 
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system (Ross, 2003). Based on previous research, degree of humoral and cell-mediated 

immunity after weaning is altered depending on management practices such as vaccination, 

nutrition, and two-stage protocols (Krebs et al., 2010; Lynch et al., 2012).  

According to Lippolis et al. (2016), nose-flap weaning decreased antibody response 

to BVD vaccinations by 50% 24 h after separation compared to TW calves. In contrast, 

other studies reported that titer values for BVD and IBR vaccinations did not significantly 

differ between TW and nose-flap weaned calves (Sayre et al., 2019; Krebs et al., 2010). 

Nose-flap weaning did not result in differences in lymphocyte or neutrophil counts after 

separation compared to TW (Krebs et al., 2010). In contrast to nose-flap weaning, 

separating dietary disruption from social and environmental disruptions, introduction of a 

creep-feed during the preweaning period increased humoral and cell-mediated immunity 

(Lynch et al., 2012; Sayre et al., 2019). Providing creep-feed during preweaning increased 

antibody responses to BVD and IBR vaccinations after weaning by 60 and 20%, 

respectively, compared to non-creep fed calves (Sayre et al., 2019). Greater antibody 

response in creep-fed calves may have occurred due to the high-energy ration providing 

additional energy for antibody production. Immunocompetence postweaning, quantified as 

lymphocyte activity, was increased from 20 to 50% with concentrate supplementation 

during preweaning compared to unsupplemented calves (Lynch et al., 2012). Despite 

significant changes in lymphocyte count after weaning, and regardless of strategy 

implemented, numbers and activity return to baseline levels 3 to 7 d following separation 

(Hickey et al., 2003; Lynch et al., 2010; Lynch et al., 2012; Sayre et al., 2019).  

 Similar to short-term health responses, stress responses observed after TW persist 

for 3 to 4 d postweaning (Price et al., 2003; Haley et al., 2005). Stress responses observed 
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after TW include increased frequency of vocalization and pacing with decreased time spent 

grazing, ruminating, and playing (Enriquez et al., 2011). Compared to behaviors exhibited 

prior to TW, calves spend 30% more time pacing, 70 to 95% less time eating, and vocalize 

1166% more frequently up to 72 hours postweaning (Price et al., 2003; Haley and Stookey, 

2005; Solano et al., 2007). Vocalizations are used to evoke attention for maternal care; 

however, high frequency of calling after weaning is considered a signal of “yearning” for 

reunion with dam and “frustration” due to obstruction from dietary and social security 

(Watts and Stookey, 2000; Latham and Mason, 2008). Vocalization unrelated to maternal 

care provokes cows to ignore calls over time, suggesting calves strictly increase 

vocalization to solicit maternal care and security (Weary and Hötzel, 2008). While time 

spent playing ceased after weaning, activities returned to normal 4 d postweaning 

(Enriquez et al., 2010).  

Compared to TW, insertion of nose-flaps prior to physical separation decreased 

vocalization by 97% and increased time spent eating by 20% 3 d after separation (Haley et 

al., 2005). Enriquez et al. (2010) reported 3% and 13% increase in vocalization after nose-

flap insertion and fence-line weaning, respectively, compared to TW calves. However, a 

second stress response is evoked after calves are separated. Enriquez et al. (2010) recorded 

no observations of vocalization the day prior to separation and reported 5% of nose-flap 

weaned calves vocalized after separation from their dams. After remote separation, fence-

line weaned calves had a smaller percentage of observed calf vocalizations compared to 

TW and nose-flap weaned calves during the postweaning period (3% vs. 23% and 5%, 

respectively; Enriquez et al., 2010). Additionally, fence-line weaned calves spent 50% 

more time eating compared to TW (Price et al., 2003). Fence-line weaned calves spent 60 
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to 70% of their time within close proximity to the fence-line. However, after 3 d this 

behavior was no longer exhibited (Price et al., 2003; Enriquez et al., 2010). Stress 

behaviors observed after weaning do not persist more than 5 d postweaning, indicating 

weaning and separation are short-term stressors (Price et al., 2003; Haley et al., 2005; 

Enriquez et al., 2010). 

In an attempt to alleviate future stressors, such as placement into the feedlot, 

confinement weaning is used as a strategy to introduce calves to an environment and diet 

similar to that of a feedlot by placing calves in drylot pens after separation from dam. 

Bailey et al. (2016) evaluated a 28-d postweaning period in which calves were separated 

and placed in a drylot or fence-line weaned with and without supplementation before 

feedlot entry. Fence-line weaned calves were supplemented with the same diet received by 

the confinement weaned calves. During the 28-day postweaning period calves weaned in 

confinement gained more than fence-line weaned with or without supplementation (0.31 

vs. -0.22 and -0.31 kg/d, respectively; Bailey et al., 2016). Additionally, confinement 

weaned calves exhibited 15% and 10% greater ADG the first and last 30 days in a feedlot, 

respectively, compared to fence-line weaned calves without supplementation. However, 

confinement weaned calves’ ADG was not significantly different than fence-line weaned 

with supplement during the finishing period (1.12 vs. 1.06 kg/d, respectively; Bailey et al., 

2016). Furthermore, intake and G:F increased by 0.10 kg/d and 10% respectively, 

compared to fence-line weaned calves, but did not significantly differ from fence-line 

weaning with supplementation (Bailey et al., 2016). Advantages of weaning in 

confinement may include acclimatization to a feedlot environment, improved diet, as well 

as eating from a feed bunk. However, if confinement weaning is infeasible, providing 
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supplementation to pasture weaned calves during the postweaning period introduces calves 

to new diet which may assist in adjustment to future dietary disruptions (Bailey et al., 

2016).    

 Boyles et al. (2007) compared confinement weaned calves (30 d before trucking), 

fence-line weaned calves (30 d before trucking), and calves weaned at trucking.  In 

contrast to findings by Bailey et al (2016), weaning in confinement resulted in weight loss 

of 0.6 kg/d during the first week in a feedlot compared to positive gain exhibited by calves 

fence-line weaned 30 d before trucking and calves weaned at trucking (0.4 and 0.5 kg/d, 

respectively); however, this decrease was a short-term response (7 d), and confinement 

weaned calves’ intake during the first week was 8% greater than calves weaned at trucking 

(Boyles et al., 2007). Overall ADG of fence-line weaned calves and those weaned at 

trucking was 56% greater than confinement weaned calves.  

In addition to observed weight losses the first week in a feedlot, Boyles et al. 

(2007) reported greater percentage of morbidity as a result of confinement weaning 

compared to weaning calves at trucking or fence-line weaning calves 30 d before trucking 

(38% vs. 28% or 15%, respectively). Similarly, Bailey et al. (2016) observed greater 

morbidity of confinement weaned calves during the 28-d postweaning period compared to 

fence-line weaned with and without supplementation (5.16% vs. 1.97% and 0.65%, 

respectively); however, during the feedlot receiving period, both fence-line weaned groups 

had greater morbidity rates than confinement weaned (1.97% and 0.65% vs. 0%, 

respectively). These results suggest feedlot entry did not present as many new stressors for 

confinement weaned calves as it did for calves not previously acclimated to a similar diet 

and environment prior to entry. Additionally, Bailey et al. (2016) suggests that acclimation 
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to the feedlot environment allowed confinement weaned calves to overcome sickness more 

effectively than other weaning strategies upon receiving.  

 Acclimation to a feedlot environment can include both acclimation to the drylot 

pen and to consuming feed from a bunk. Walker et al. (2007) observed that weaning calves 

in confinement for 21 d before returning to pasture, and training animals to eat from the 

bunk during confinement weaning both increased feeding behavior and immune response 

to vaccination the first week in a feedlot by 60% and 17%, respectively. Moreover, 

confinement weaned and yard trained calves’ feedlot ADG was 20% and 8% greater ADG 

than TW calves., respectively.  While greater feeding behaviors and increased intake were 

observed the first week in the feedlot as a result of confinement weaning and training, after 

2 days no significant differences were observed between confinement weaned, yard 

trained, and TW calves (Walker et al. 2007). Based on previous research, the overall 

performance and health differences between weaning calves in confinement versus pasture 

vary. 

Effects of finishing cattle on grain-based diets 

 Inclusion of grain in finishing diets increases animal performance (often measured 

as  average daily gain (ADG) and feed efficiency (gain to feed ratio, G:F) and carcass traits 

(hot carcass weight, HCW; quality grade) by increasing available energy concentration of 

the diet. Increasing available energy concentration of the diet can indirectly affect 

profitability by reducing the unit cost of energy and increasing quality grades of carcasses. 

Finishing diets are typically formulated to provide 2.70 to 3.45 Mcal of ME/kg of DM 

(Kreihbel et al., 2006). Increased ADG during finishing affects profitability by reducing 

days on feed and increasing carcass gain (Meissner et al., 1995). Feeding grain-based 
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versus forage-based diets to finishing cattle increases ADG by 20 to 50% (Oltjen et al., 

1971; Bennett et al., 1995), and increases feed conversion by 40 to 75% (Oltjen et al., 

1971; Berthiaume et al., 2006). Fat deposition increases by 9 to 50% in intramuscular 

depots and up to 100% in subcutaneous adipose tissue, by feeding grain-based diets 

(Bowling et al., 1977; Aberle et al., 1981; Strachan et al., 1993). During finishing, fat 

deposition is energetically more efficient than lean deposition because fat contains more 

calories per kg than muscle. Additionally, a large proportion of BW gain is water with 

protein deposition. Therefore, fat deposition can decrease efficiency of gain as proportion 

of fat increases (Meissner et al., 1995; Krehbiel et al., 2006). Additionally, the presence of 

excess external fat by providing greater energy concentrations results in lower product 

yield, reducing profitability (Sharman et al., 2013; Feuz et al., 1993). 

Cattle consuming grain-based diets consume more dry matter (DM) and digestible 

energy per day compared to their forage-fed counterparts. This occurs because as 

digestible energy concentration in a ration increases, DM intake, once limited by ruminal 

fill, increases. However, voluntary feed consumption decreases when available energy 

intake exceeds the animal’s maintenance and genetic capacity for growth through 

chemostatic and/or thermostatic mechanisms (Brokken et al., 1976; Dinius et al., 1976). By 

decreasing intake as digestible energy in the diet increases, the animal is efficiently 

meeting its requirements for maintenance and growth (Brokken et al., 1976). Thus, if the 

relationship between DM intake and increasing available energy is quadratic, increasing 

available energy in a finishing ration would result in more efficient gains. Dinius et al. 

(1976) evaluated five diets ranging from 1.43 to 1.99 Mcal NEg/kg that were made by 
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increasing the proportion of corn. Net energy intake available for gain increased while DM 

intake decreased with increased available energy in the ration (see Figure 2).  

 

Figure 2. Relationship between energy concentration in the diet, dry matter intake, 

and NEg intake 1. 

 

 
1Reprinted with permission from Dinius, 1976. Copyright by Oxford University Press.  

 

 

 

Similar to intake, ADG is affected by digestible energy concentration in grain-based 

diets as well as composition of growth. Rate of gain increases as available energy in the 

ration increases (Brokken et al., 1976). Results from Dinius et al. (1976) demonstrate that 

ADG of steers fed a ration consisting of 1.99 Mcal NEg/kg was 100% greater than steers 

fed the lowest-energy diet (1.43 Mcal DE/kg), despite a 20% lower intake for 1.99 Mcal 

NEg/kg. Furthermore, ADG of the highest-energy fed steers tended to be 11 to 32% 

greater than those fed lower energy rations (Dinius et al., 1976). Greater ADG 

accompanied with lower DM intake as NE available for gain in the ration increased, 

demonstrates as energy increases, cattle require less feed to produce a unit of gain. 

6

6.2

6.4

6.6

6.8

7

7.2

7.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

D
M

 i
n
ta

k
e,

 k
g
/d

N
E

g
 i
n
ta

k
e,

 M
ca

l/
d

Ration NEg, Mcal/kg

NEg intake DM intake



 

 

 

 

 

15 

Accordingly, because grain-based are higher in NEg than roughage based-diets, grain-

finished cattle will require less feed to produce a unit of gain. According to Oltjen et al. 

(1971), grain-finished cattle required 40% less feed to produce a kg of gain compared to 

cattle finished on an all-forage diet. Meissner et al. (1995) evaluated 5 finishing trials 

varying in ME concentration, DOF, intake, and ADG. Cattle were grouped by feeding 

periods of 90 and 140 with average DMI of 7 and 9 kg/d, respectively. Cattle consuming 9 

kg versus 7 kg/d gained more per d as a result, and were considered “fast-growing”, 

whereas cattle gaining less were considered “slow-growing” (Meissner et al., 1995). As 

energy in the ration increased from 2.5 to 2.75 and 2.5 to 3.0 Mcal of ME/kg DM, so did 

ADG and G:F of slow-growing cattle; however, as ME increased from 2.75 to 2.87 

Mcal/kg, ADG and G:F of fast-growing cattle plateaued and began to decrease with 

persistent increases in ME. According to researchers, this occurred as a result of greater 

ME intake contributing to inefficient gains associated with fat deposition (Meissner et al., 

1995).    

Increased ADG, as a result of greater available energy in the ration, increased hot 

carcass weight (HCW) 50 to 80% (Fishell et al., 1985; Meissner et al., 1995). Cattle 

evaluated in the study by Fishell et al. (1985) were fed diets with varying amounts of 

energy and protein to allow maximum growth rate (1.42 kg/d; high-energy diet), near-

maximum protein deposition and minimum fat deposition (0.77 kg/d; medium-energy 

diet), and restricted protein and fat deposition (0.34 kg/d; low-energy diet). Animals 

gaining 1.42 kg/d had HCWs 84 and 108 kg heavier than those gaining 0.77 and 0.34 kg/d, 

respectively (Fishell et al., 1985). Because of greater available energy in grain versus 

forage, HCW is expected to be greater for grain-finished compared to forage-finished if 
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animals are slaughtered with comparable days on feed. Berthiaume et al. (2006) recorded 

13 kg heavier HCW for steers fed a high-grain diet compared to a forage-finishing diet. 

Similarly, Bennett et al. (1995) reported grain-finished steers had HCW that were 66 kg 

heavier than pasture-finished steers. Significantly greater HCW of grain-finished versus 

pasture-finished cattle in the study by Bennett et al. (1995) was potentially affected by 

energy expenditure of grazing versus confined cattle and number of days on feed. As DOF 

increases, cattle continue to deposit fat and lean, regardless of ADG, contributing to 

heavier carcasses (Dinius and Cross, 1978; Strachan et al., 1993; Muir et al., 1998). Cattle 

finished on grain for 70, 105, and 175 d had similar ADG during the finishing period, 

however, HCW increased linearly with DOF as expected (Strachan et al., 1993). In 

contrast to these findings, Strachan et al. (1993) results show HCW did not significantly 

differ between 0, 21, and 42 d of grain feeding, but increased by 40 kg when grain was fed 

for 63 d compared to 0 and 21 d. Furthermore, HCW gained per d increased by 64% after 

grain was fed to steers for 21 d versus 0 d; however, as DOF increased by 21 and 42 more 

d, HCW gained per d did not differ (Strachan et al., 1993). This is likely due to similar 

ADG of cattle fed grain for 0, 21, 42, and 63 d, composition of growth (fat versus lean), or 

composition of fat deposition (external versus internal).   

Intramuscular and subcutaneous fat deposition increases in response to dietary energy 

and rate of gain. While highly marbled carcasses affect profitability associated with greater 

yield grades and premiums, excess subcutaneous fat lowers carcass yields, decreasing 

returns (Schoonmaker et al., 2004; Sharman et al., 2013). Feeding grain-based diets 

increases IMF deposition because fermentation of starch increases production and 

proportion of propionate, provides glucose for intestinal absorption, and increases blood 
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glucose concentrations (Smith and Crouse, 1984). According to research by Smith and 

Crouse (1984) glucose provided 50-75% of acetyl units for in vitro lipogenesis in 

intramuscular adipose tissue compared to 1-10% of acetyl units for subcutaneous adipose 

tissue. Fermentation of fiber results in a greater proportion of acetate, which is 

preferentially used by subcutaneous adipocytes. Acetate, provided 70-80% acetyl units for 

lipogenesis in subcutaneous adipose tissue while only10-20% acetyl units to lipogenesis in 

intramuscular adipose tissue (Smith and Crouse, 1984). Dissimilar results are shown by 

Bowling et al. (1977), evaluating 30 pairs of carcasses (one forage-finished, one grain-

finished) of identical quality grades and skeletal maturity to compare external fat thickness. 

Carcasses from grain-finished cattle had external fat thickness 2x greater than forage-

finished carcasses. Similarly, grain-finished carcasses resulted in 20 to 80% greater fat 

thickness than forage-finished carcasses (Oltjen et al., 1971; Utley et al., 1975; Bennett et 

al., 1995). Increasing energy intake above an animal’s maintenance increases subcutaneous 

fat deposition (Sainz and Paganini, 2004). Greater external fat thickness of grain-fed 

carcasses may have been a result of differences in available energy between grain and 

forage diets; however, nutrient composition of diets fed before slaughter was not given in 

the 1977 study. If forage-finished cattle consumed similar amounts of digestible energy as 

grain-finished, differences in external fat may not have been detected by Bowling et al. 

(1977).  

Greater rates of gain (1.42 vs. 0.77 and 0.34 kg/d) as a result of dietary energy to 

manipulate composition of gain, increases marbling score (4.5 vs. 2.0 and 1.6; Fishell et 

al., 1985). Similarly, conclusions by Aberle et al. (1981) reveal cattle with unrestricted 

ADG resulted in marbling scores 48% greater than cattle restricted to gain of 0.68 kg/d. 
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Thus, feeding grain- versus forage-based diets result in greater marbling scores as a result 

of differences in available energy in rations (Utley et al., 1975; Bennett et al., 1995). In 

addition to greater external fat thickness, researchers recorded marbling scores 16% greater 

for grain-finished calf- and yearling-fed carcasses compared to forage-finished calf- and 

yearling-fed carcasses (Utley et al., 1975). Similarly, Bennett et al. (1995) reported 20% 

greater marbling scores for carcasses from grain- versus forage-finished cattle. According 

to Krehbiel et al. (2006), increased RE as a result of increased metabolizable energy intake, 

is associated with increased proportion of fat in gain and slightly decreased proportion of 

protein in gain when grain diets are fed. However, some researchers indicate marbling does 

not differ between grain- and forage-based diets (Oltjen et al., 1971; Muir et al., 1998). 

Muir et al. (1998) reported no differences in IMF between pasture- and grain-finished 

cattle in two experiments. However, carcass IMF of cattle (pasture- and grain-finished) in 

experiment 1 was 60% greater than those in experiment 2 due to the 0.2 Mcal ME/kg 

difference in rations. According to these researchers, carcasses from cattle finished on 

pasture or forage can exhibit similar marbling scores to those of grain-fed cattle as long as 

they achieve growth rates similar to those observed in a feedlot (Muir et al., 1998).  
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CHAPTER II 

 

PREWEANING IN CONFINEMENT TO PROMOTE POSTWEANING 

PERFORMANCE AND HEALTH 

Overview 

A 49-d study was conducted to evaluate an alternative preweaning system in which 

calves are pre-weaned in a feedlot setting prior to separation to increase postweaning 

performance and ameliorate immune function during weaning. Eighty-four 7 8⁄  Angus × 1 8⁄  

Nellore cows with Angus-sired calves (40 heifers, and 44 steers; initial BW = 217.8 kg ± 

9.2)  were assigned to one of two treatments:  preweaning in a feedlot (LOT; n = 41) or  

preweaning on pasture (PAS; n = 43). For 21 d prior to weaning, LOT cow-calf pairs were 

placed in feedlot pens, while those assigned to PAS remained on pasture. After weaning,  

calves assigned to the LOT treatment remained in the feedlot , while those assigned to  

PAS calves were placed into the feedlot. All calves remained in the feedlot for the  28-d 

postweaning period. Cows in PAS had heavier weights on day of weaning compared to 

LOT cows (P < 0.05).Preweaning calves in confinement resulted in greater (P ≤ 0.01) 

ADG during the preweaning period, postweaning period, and overall ADG. Calves 

preweaned in confinement converted feed more efficiently than PAS calves (P < 0.05) 

following weaning. Calves in LOT gained 13.3 kg more (P < 0.01) than PAS calves over 

the duration of the trial. Feed intake postweaning was not different between LOT and PAS 

calves (P = 0.38). Antibody production response to IBR and BVD vaccinations were not 

affected by preweaning strategy (P > 0.50). Preweaning in confinement increased 

postweaning performance without compromising responsiveness to vaccinations. 
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Introduction 

Weaning is the act of removing calves from their dam’s milk supply and is often 

considered one of the two most stressful events in the calf’s life, followed by placement in 

a feedlot (Boyles et al., 2007). Beef calves are typically weaned at 7 to 8 months of age by 

abrupt separation of cow-calf pairs. Nutritional and environmental disruptions occurring at 

weaning in addition to loss of maternal contact results in a period of postweaning stress, 

which is indicated by endocrine responses (Hickey et al., 2003; Lefcourt and Elasser, 

1995) and may be expressed through increased vocalization (Smith et al., 2003; Lambertz 

et al., 2015), reduced ADG (Price et al., 2003; Haley et al., 2005), weight loss (Fanning et 

al., 1995; Arthington et al., 2005), decreased feed intake (Price et al., 2003), and 

suppressed immune function (Hickey et al., 2003; Lefcourt and Elasser, 1995). 

Performance, behavior, and health responses to related to weaning may persist for five 

days postweaning (Enriquez et al., 2011) or longer (beyond 10 weeks, Price et al., 2003). 

Some calf responses postweaning are inevitable; however, minimizing the effects 

of weaning disruptions may improve both productivity and animal well-being, motivating 

research of various strategies to mitigate stress responses of traditional weaning (TW) 

methods. Disruptions in nutrition leading to performance losses and negative health 

outcomes can be minimized through nutritional management, such as creep feeding a 

weaning diet prior to separation. Changes in housing and social contact with dam can be 

minimized by allowing visual and auditory contact with dam through a fence-line or nose-

flap insertion to prevent suckling prior to remote separation. Fence-line weaned calves 

gained 8.0 kg more and exhibited fewer stress-related behaviors (e.g. vocalization, 
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decreased grazing, walking) during the first 2 weeks postweaning than calves TW (Price et 

al., 2003). Nose-flap weaned calves gained 44% more, vocalized 96.6% less, and spent 

23.0% more time eating compared to TW calves 7 d postweaning (Haley et al., 2005). 

However, fence-line and nose-flap weaning strategies may not always successfully 

alleviate weaning impacts and may result in adverse effects (Enriquez et al., 2010).  

The objective of this research study was to evaluate an alternative weaning practice 

in which calves are pre-weaned in a feedlot prior to separation as a means to mitigate 

effects of weaning by addressing changes in diet through creep feeding and acclimating 

animals to a similar environment prior to separation. Preweaning calves in a feedlot with 

their dams’ is expected to increase postweaning productivity and immune responses 

compared to calves that are naïve to feedlot at weaning, and thus must cope with both 

dietary and maternal separation and housing transition stressors simultaneously.  

Materials and methods 

Experimental procedures used in this feeding trial were approved by the 

Agricultural Animal Care and Use Committee of Texas A&M AgriLife Research.  

Eighty-four cows 7 8⁄  Angus × 1 8⁄  Nellore with Angus-sired calves (40 heifers, 44 

steers; initial BW = 217.8 kg ± 9.2) originating from resident populations at the McGregor 

Research Center, (McGregor, Texas, USA) were used to evaluate the effect of preweaning 

system on calf health and performance. Calves were born between January and March 

2019 (average age = 180 d). Calfhood management included vaccination with a clostridial 

vaccine (Covexin®8; Merck Animal Health, Madison, NJ, USA), castration and dehorning 

at < 75 d of age. Calves were vaccinated 21 d prior to weaning a second dose of the same 

clostridial vaccine and a killed, multivalent respiratory viral vaccine (Triangle®5; 
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Boehringer Ingelheim Vetmedica, Ft. Dodge, IA, USA) to aid in prevention of clostridial 

and respiratory diseases, respectively. At weaning calves received a multivalent modified-

live viral vaccination (Titanium®5; Elanco Animal Health, Greenfield, IN, USA).  

Cow-calf pairs were stratified by calf BW and randomly assigned to 1 of 8 groups. 

Four groups were assigned to each of two treatments: preweaning in a feedlot (LOT; n = 

41) or on pasture (PAS; n = 43). For 21 d prior to weaning, LOT cow-calf pairs were 

placed in feedlot pens (110 × 360 m), while those assigned to PAS remained on pasture. 

At weaning (d 0), all cattle were individually weighed, and calves were weaned from their 

dams. Calves from LOT and PAS were held in a common lot for 7 days for similar 

exposure before transitioning to designated pens. Calves belonging to the PAS groups were 

placed in one of four confinement pens interspersed among those containing LOT calves. 

All dams were returned to pasture. Calves were weighed on days -21, 0, 7, 28, while cows 

were weighed on days -21 and 0.   

Blood samples were collected on days -21, 0, 7, and 28, and antibody titers were 

analyzed to evaluate antibody response to BVDV2 and IBR1 vaccines. Collected blood 

samples were sent to Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL) 

for assessment of antibody production by viral neutralization. Viral strains used in viral 

neutralizing tests included Bovine Viral Diarrhea Virus Type II (BVDV2-VN) and Bovine 

Herpes Virus Type 1 (IBR1-VN). Titer values resulting in <4 were assigned a value of 1 

for subsequent data transformation and analysis. Titer values were transformed as the base 

2 logarithm for analysis and results are reported on that basis.  

Calves assigned to PAS had access to milk from their dams and the same forage 

and hay sources as cows prior to weaning. Calves assigned to LOT were co-housed with 



 

 

 

 

 

23 

dams prior to weaning, and so had access to dams’ milk, but were also provided with 

access through creep gates to feed bunks containing the same diet provided to cows (Table 

1). Feed delivered in the creep feeders was determined with standard bunk management 

procedures for growing cattle exercised at the McGregor Research Center. If calves 

consumed all the feed delivered to the bunk for two consecutive days, amount of feed 

delivered to the bunk increased the third day.  

Cows on pasture grazed available forage, and were offered additional hay. Cows 

assigned to LOT were fed a daily ration to meet energy requirements estimated as 80% of 

NASEM (2016) maintenance, plus requirements based on days of pregnancy and lactation 

(Trubenbach et al., 2019). Limit-feeding of cows according to this formulation results in 

substantial fill adjustment upon transition but has been shown to allow cows to maintain 

BW over periods of at least 56 d (Trubenbach et al., 2019; Boardman et al., 2020).  

 

Table 1. Ingredient and nutrient composition of the diet fed to cow-calf 

pairs during preweaning and postweaning periods 

Item % of diet 

Ingredient Composition  

  Milo stalk 35.0 

  Dry rolled corn 35.0 

  Dried distillers grain 27.5 

  Molasses 6.0 

  Premixa 2.0 

Nutrient Compositionb  

  CP,% 13.1 

  Ca, % 0.66 

  P, % 0.37 

  NEm, Mcal/kg 1.73 

  NEg, Mcal/kg 1.11 
aContained 19-21% Ca, 0.01% P, 0.20% K, 0.10% Mg, 20% NaCl, 450 ppm Cu, 

2800 ppm Zn, 10 ppm Se, 100,000 IU/lb Vit. A, 9,000 IU/lb Vit. D3, 1600 IU/lb 

Vit. E. 
bCalculated from nutrient analyses according to NRC (2016) table values. 
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Statistical Analysis 

Data were analyzed using MIXED procedures of SAS (SAS Inst. Inc., Cary, NC ). 

Fixed effects included pen, and treatment. Experimental unit for this project was pen. 

Significance was declared at  (P ≤ 0.05). 

Results and discussion 

During the preweaning period (d-21 to 0), LOT calves had 37% greater (P < 0.01; 

Table 2) ADG compared to PAS calves, likely the result of having access to feed. 

Allowing calves access to supplemental or creep feed  may result in 5 to 60% greater 

preweaning ADG compared to control calves  and 7 to 30 kg heavier weaning weights 

(Myers at al., 1999; Aguiar et al., 2015; Sayre et al., 2018). In contrast to these findings, 

creep fed calves in the current study did not have significantly different weaning weights 

compared to PAS calves; however, CON calves tended to have heavier weaning weights 

(242 vs. 235 kg; P = 0.31). 

 

Table 2. Effect of preweaning strategy on pre- and postweaning performance of 

calves1 

 Treatments2   

Item LOT PAS SEM P-value 

No. of Obs 41 42   

ADG, kg/day     

   D -21 to 0 1.16 0.82 0.05 < 0.01 

   D 7 to 28 1.41 0.62 0.06 < 0.001 

   D 0 to 28 0.89 0.68 0.05 0.03 

   Overall ADG 1.01 0.74 0.03 <0.01 

Total Weight Gain, kg 49.5 36.2 1.56 < 0.01 

Pre-wean intake, kg/day 2.66  0.18  

Post-wean intake, kg/day 6.97 6.74 0.18 0.38 

G:F 0.13 0.10 0.008 0.05 
1LOT = calves in confinement during weaning trial; PAS = calves on pasture during weaning trial 
2LOT = calves pre-weaned (21 d) in confinement before weaning; PAS = calves pre-weaned (21 d) on 

pasture before weaned in confinement   
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Calves subjected to LOT had 30% greater ADG (P = 0.03) postweaning, 36% 

greater overall ADG, and gained 13.3 kg more over the duration of the trial (P < 0.01). 

Results as such were expected as a result of LOT calves consuming the concentrate ration 

21 d longer than PAS calves and were acclimated to the diet and environment prior to 

separation. Similarly, Blanco et al. (2008) reported calves supplemented with a high-

concentrate diet during the 60-d preweaning period resulted in 99% greater ADG 

postweaning. However, other researchers have reported no significant differences in 

postweaning ADG between creep fed and non-creep fed calves (Myers et al., 1999; Aguiar 

et al., 2015; Sayre et al., 2018) or reduced postweaning ADG in creep fed calves, resulting 

in comparable weights at 365 d of age (309 vs. 315 kg, respectively; Martin et al., 1981).   

 

Table 3. Effect of preweaning management on pre- and postweaning cow-calf weights 

 Treatments2   

Item LOT PAS SE P-value 

No. of Obs 41 41   

Calves     

   Initial BW, kg 217.5 218.1 4.18 0.91 

   D 0 Weight, kg 242.0 235.3 4.64 0.31 

   D 7 Weight, kg 237.3 241.4 4.54 0.52 

   D 28 Weight, kg 266.9 254.4 4.90 0.07 

Cows     

   Initial BW, kg 513.8 505.6 9.78 0.55 

   D 0 Weight 438.2 509.9 9.98 0.05 
1LOT = cow-calf pairs in confinement during weaning trial; PAS = cow-calf pairs on pasture during 

preweaning  
2LOT = calves pre-weaned (21 d) in confinement with dam before weaning; PAS = calves pre-weaned (21 d) 

on pasture with dam before weaned in confinement 

 

 

 

Preweaning calves in confinement with their dams has not been extensively 

researched; however some research has evaluated placing calves in confinement after 
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separation compared to calves remaining on pasture (confinement weaning). Confinement 

weaning is designed to introduce calves to an environment and diet similar to that of a 

feedlot to mitigate stressors associated with future disruptions. During a 28-d postweaning 

period calves weaned in confinement gained more than supplemented and 

unsupplemented, fence-line weaned calves (0.31 vs. -0.22 and -0.31 kg/d, respectively; 

Bailey et al., 2016). Additionally, results of Bailey et al. (2016) show confinement weaned 

calves exhibited 15% and 10% greater ADG the first and last 30 days in a feedlot, 

respectively, compared to unsupplemented, fence-line weaned calves. According to a study 

by Walker et al. (2007), calves confinement weaned and trained to eat from bunks before 

arrival to a feedlot resulted in 5% greater ADG and displayed 40% greater feed activity 

(attendance at the feed bunk) on d 1 in the feedlot compared to animals unaccustomed to  

eating from bunks. In contrast, if confinement weaning is infeasible, supplementing grain 

to pasture weaned calves results in similar feedlot ADG compared to confinement weaned 

calves (Bailey et al., 2016). Calves previously acquainted with concentrate have greater 

concentrate and total dry matter intake postweaning and during the feedlot period (Moriel 

and Arthington, 2013; Arthington et al., 2008). However, in the current study, calves kept 

in confinement and creep fed during preweaning did not result in significantly different 

feed intake postweaning compared to PAS calves (P > 0.38), and feed conversions 

postweaning were 30% greater (P < 0.05) for LOT calves.  

Cows assigned to PAS treatment were 72 kg heavier (P < 0.05) at weaning 

compared to LOT cows. Confined cows were fed the same concentrate diet creep fed to the 

calves; however, their daily ration was formulated to meet 80% of maintenance energy 

requirements, plus requirements based on days of pregnancy and lactation. Lighter BW of 
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LOT  cows at weaning is likely due to difference in ruminal fill compared to cows on  

PAS. Trubenbach et al. (2019) reported intake restriction decreased ruminal DM fill, and 

Hemphill (2017) observed ad libitum forage intake increased ruminal fill by 37 kg 

compared with ruminal fill during a period of restricted intake.  

No differences were observed between treatments in immune response to 

vaccination based on titer values for IBR and BVD Type II from preweaning to conclusion 

of trial (P ≥ 0.5; Table 4.). Calves in the current study were vaccinated on d -21 and 

received a booster at weaning (d 0). According to a study by Ross (2003), high and low 

titer values for BVDV are considered >1:128 and <1:64, respectively. In the current study 

IBR and BVD titer values on d -21 were <1:64 for LOT and PAS groups, representing 

values at an unvaccinated state. At the end of the trial (d 28) titer values for IBR and BVD 

were >1:128 for both LOT and PAS groups, but did not differ from each other (P = 0.45). 

Increased titer values of both treatments indicate immune system of calves responded 

positively to both vaccinations. However, there were no significant differences between 

treatments for IBR and BVD titer values nor changes in titer values throughout the trial. In 

contrast, Sayre et al. (2018) observed a greater antibody response to BVD after weaning in 

creep fed versus non-creep fed calves, but similarly found no differences in antibody 

response to IBR between treatments. Providing creep feed during a preweaning period may 

mitigate reduction in white blood cell activity by reducing nutritional stress which can 

result in a suppressed immunological response (Lynch et al., 2012). 
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Table 4. Immunological responses based on antibody titer values of IBR and BVD 

Type II for two preweaning methods1 

 Treatments2   

Item LOT PAS SEM P-value 

IBR Titer3     

D -21 0.71 0.98 0.19 0.33 

D 28 4.32 4.63 0.30 0.45 

D -21 to 0 1.29 0.75 0.49 0.46 

D 0 to 7 2.90 2.88 0.31 0.97 

D 7 to 28 -0.59 0.02 0.21 0.08 

D 0 to 28 2.32 2.91 0.37 0.29 

Total Change 3.61 3.65 0.45 0.95 

BVD Titer     

D -21 1.12 1.53 0.27 0.27 

D 28 8.56 8.67 0.31 0.79 

D -21 to 0 1.37 0.07 0.53 0.13 

D 0 to 7 1.29 1.23 0.28 0.88 

D 7 to 28 4.78 5.84 0.40 0.11 

D 0 to 28 6.07 7.07 0.45 0.16 

Total Change 7.44 7.14 0.45 0.65 
1Titer values resulting in < 4 were assigned a value of 1 for data analysis. Before analysis the log of titer 

values were taken 
2LOT = calves pre-weaned (21 d) in confinement before weaning; PAS = calves pre-weaned (21 d) on 

pasture before weaned in confinement 
3IBR = infectious bovine rhinotracheitis; BVD = Bovine viral diarrhea virus 
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Disruptions in dietary and environmental familiarity can increase rates of 

morbidity. Morbidity increases when the immune system is unable to prevent illness, while 

an uncompromised immune system is able to fight infection and disease through antibody 

and white blood cell responses. Boyles et al. (2007) reported greater percentage of 

morbidity the first week in the feedlot as a result of confinement weaning compared to 

weaning calves at trucking and fence-line weaning 30 d before trucking (38% vs. 28% and 

15%, respectively). Similarly, results of Bailey et al. (2016) demonstrate greater morbidity 

of confinement weaned calves during the 28 d postweaning period compared to 

supplemented and unsupplemented, fence-line weaned calves (5.16% vs. 1.97% and 

0.65%, respectively); however, during the feedlot receiving period, both fence-line weaned 

groups had greater morbidity rates than confinement weaned (1.97% and 0.65% vs. 0%, 

respectively). These results suggest confinement weaned calves did not experience as 

many new stressors during feedlot entry compared to fence-line weaned calves. 

Additionally, researchers suggest acclimation to a similar environment allows weaned 

calves to overcome sickness more effectively than unacclimated calves and can reduce 

illness throughout the finishing period (Walker et al., 2007; Bailey et al., 2016).  

Conclusion 

 Preweaning in confinement resulted in increased ADG prior to weaning and after 

weaning, suggesting adjusting calves to a similar diet and environment serves to acclimate 

animals. Neither weaning strategy resulted in sufficient stress to reduce immunological 

response to vaccination, indicating that stress levels were not sufficiently high to limit 

immunological function. Results of this study support the hypothesis that preweaning in 
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confinement will increase performance during the pre- and postweaning periods. 

Replication of this study would be beneficial to follow the animals through receiving 

period and first week in a feedlot to witness long-term effects of preweaning in 

confinement on gain, feed conversion, and heath. 
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CHAPTER III 

EFFECT OF TIMING OF GRAIN FEEDING ON ANIMAL PERFORMANCE, 

CARCASS CHARACTERISTICS, AND PROFITABILITY 

Overview 

A 104 d study was conducted to evaluate timing of grain feeding during stages of 

production on animal performance, carcass characteristics, and profitability. Twenty-one 

7
8⁄  Angus × 1 8⁄  Nellore heifers (initial BW = 282 kg ± 67.2) were provided one of two 

diets 1) fiber (F; 65% chopped alfalfa, 35% dried distillers’ grains) and 2) corn (C; 40% 

dry-rolled corn, 25% alfalfa hay, and 35% dried distillers’ grains). Heifers were assigned to 

one of three feeding period treatments for 4 month intervals: 1) C from month 12 through 

15 and F from month 16 through 23 (CFF); 2) F from month 12 through 15, C from month 

16 through 19, and F from month 16 through 23 (FCF); 3) F from month 12 through 19 

and C from month 20 through 23 (FFC). Treatment × period interactions (P < 0.01) were 

detected for ADG, feed intake, feed conversion (G:F), and BW (P < 0.01). During periods 

when cattle were fed grain, ADG was consistently greater as was G:F. Ultrasonic 

measurements for intramuscular fat (IMF), 12th-rib fat (RBFT), rump fat, IMF:RBFT, and 

IMF:rump fat did not differ between treatments (P > 0.05). Period effects were detected 

for ultrasonic measurements (P < 0.01) with IMF being significantly greater in period 3, 

the final period, than the other periods. Subcutaneous fat thickness, RBFT and rump fat, 

was greater as heifers advanced through the feeding periods. The ratios of IMF to 

subcutaneous fat decreased markedly in period 1 from initial and were not different after 

that time.  Significant differences for carcass characteristics were not observed (P ≥ 0.17), 

and all heifers graded Select or Choice. Feed costs and profitability were not significantly 
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different between treatments (P ≥ 0.22). Timing of grain feeding does not significantly 

affect animal performance, carcass characteristics, and profitability.  

Introduction 

Feeding grain-based diets to cattle increases available energy concentration of the diet 

and results in increased energy intake, ADG, feed efficiency, and fat deposition by . 

Increased ADG during finishing directly affects profitability by reducing days on feed 

(DOF) and increasing carcass gain, and indirectly based on its relationship to feed 

conversion (Meissner et al., 1995). Additionally, grain-based diets result in 10 to 30% 

greater marbling (intramuscular fat, IMF) compared to forage-based diets, resulting in 

improvement in  quality grade and carcass value (Utley et al., 1975; Bennett et al., 1995; 

Berthiaume et al., 2006). However, increased IMF deposition is accompanied by increased 

fat deposition in other regions, including subcutaneous fat (Bowling et al., 1977; Anderson 

and Gleghorn, 2007; Albrecht et al., 2017). Excessive external fat at slaughter results in 

decreased profitability as a result of less retail product. Our objective was to evaluate 

ADG, intake, G:F, fat deposition, and profitability of heifers fed grain-based diets during 

different periods of growth. We hypothesize finishing heifers earlier in production will 

affect profitability by increasing feed conversions as they relate to intake and ADG. 

Additionally, feeding grain-based diets earlier in production will increase carcass value by 

increasing marbling, thus increasing profitability.  
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Materials and methods 

 

Experimental procedures used in this trial were approved by the Agricultural Animal Care 

and Use Committee of Texas A&M AgriLife Research.  

Twenty-one 7 8⁄  Angus × 1 8⁄  Nellore heifers (initial BW = 282 kg ± 67.2) 

originating from McGregor Research Center, McGregor, Texas were used to evaluate 

timing of grain feeding on growth performance, carcass quality, and profitability. Heifers 

were born between January 15 and February 22 (2018) and weaned at approximately 189 d 

of age. Heifers were vaccinated with killed viral vaccine during spring management (63 d 

of age) Covexin®8 and two killed viral vaccines at preweaning (169 d of age) Covexin®8 

and Triangle®5, to aid in prevention of clostridial and respiratory diseases, respectively. 

Twenty-one days later at weaning heifer calves were vaccinated again with a modified-live 

viral vaccination (Titanium®5). 

Heifers were stratified by BW, randomly assigned to one of three treatment groups 

(n=7), and fed at Texas A&M Research Center, McGregor, Texas. After treatments were 

assigned, heifers were placed in three pens (n = 7) with GrowSafe Systems® and fed a diet 

consisting of chopped alfalfa and dried distillers’ grains for 84 d. Two diets were 

formulated: 1) fiber (F; 65% chopped alfalfa, 35% dried distillers’ grains) and corn (C; 

40% dry-rolled corn, 25% alfalfa hay, and 35% dried distillers’ grains) and heifers were 

provided ad libitum access to a mineral/vitamin supplement (Table 5). Feeding periods 

were divided into 4 month periods creating three dietary regimes: 1) C from month 12 

through 15 and F from month 16 through 23 (CFF); 2) F from month 12 through 15, C 

from month 16 through 19, and F from month 16 through 23 (FCF); 3) F from month 12 
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through 19 and C from month 20 through 23 (FFC). Heifers were fed diets C or F through 

GrowSafe Systems®, which measured individual intake each day. Heifers were weighed 

prior to feeding at 14-day intervals.  Ultrasound measurement was conducted at 120-d 

intervals, corresponding with dietary changes, to provide an estimate of backfat thickness 

over the 12th- and 13th-rib, rump fat thickness,  and intramuscular fat percentage (IMF). 

Ultrasonography was performed by an Ultrasound Guidelines Council field-certified 

technician, using an Aloka 500V instrument with a 17-cm 3.5-MHz transducer (Aloka Co. 

Ltd., Wallingford, CT). Images were collected and interpreted using Beef Image Analysis 

Pro software (Designer Genes, Inc., Harrison, AR). Ultrasound IMF was converted to 

marbling scores and quality grades based on a standard equation (Leblanc, personal 

communication).  

Diet samples were analyzed by SDK Laboratories (Hutchinson, KS), and vitamin 

mineral premix was provided to each group ad libitum during each period. Cost of diet C 

and F were $198.80 and $222.80 per ton, and costs of NEg were $0.27 and $0.29/Mcal, 

respectively.  
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Table 5. Nutritive values and ingredient composition of diets fed  

during the growing and finishing phase 

Nutritive Composition1 Ingredient composition 

Item Concentrate Forage 

Dry-rolled corn, % 40 0 

Chopped alfalfa, % 25 65 

Dried distillers’ grain, % 35 25 

   NEm, Mcal/kg 1.89 1.56 

   NEg, Mcal/kg 1.20 0.86 

   CP, % 17.86 20.89 

   Ca, % 0.34 0.82 

   P, % 0.56 0.55 

NEg Cost, $/Mcal 0.27 0.29 
*Premix was provided ad libitum and contained 19-21% Ca, 0.01% P, 0.20% K, 0.10% 

Mg, 19-21% NaCl, 450 ppm Cu, 2800 ppm Zn, 10 ppm Se, 100,000 IU/lb Vit. A, 9,000 

IU/lb Vit. D3, 1600 IU/lb Vit. E. 
1Analysis conducted by SDK Laboratories, Hutchinson, KS. 2019.  

 

 

At the end of the feeding trial, heifers were transported 164.2 km to the Texas A&M 

University Rosenthal Meat Science & Technology Center (College Station, Texas). Prior 

to harvest, heifers were fasted for 18 h, and HCW was recorded after slaughter. Harvest 

was completed over a period of 4 days with an equal representation of treatment groups 

each day. Heifers were slaughtered by humane, industry standard procedures. After a 48-h 

chilling period at 4°C, carcasses were graded by Texas A&M personnel according to 

USDA grading standards (USDA, 1997). Fat thickness, Longissimus muscle area (LM), 

kidney, heart, and pelvic fat percentage (KPH), marbling score, lean maturity, and skeletal 

maturity, and quality grade were collected . Yield grades were calculated using the 

following formula:  

YG = 2.5 + (2.5 × adjusted fat thickness) + (0.2 × KPH) + (0.0038 × HCW) – (0.32 × 

ribeye area) 
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 Animal purchase price was determined using Texas weekly weighted average price 

for base weights between 250 and 300 kg with  medium and large framed feeder heifers 

weighing 227 to 295 kg from 01-06-2019 to 01-27-2019.  A price slide (up and down) of  

$0.22 per 100 kg, based on observed market prices, was used to establiush price for each 

heifer (USDA AMS, 2019). Corn and alfalfa prices were $160 and $220 per ton, 

respectively, in Texas during 2019 (USDA NASS, 2019). Actual delivered prices for dried 

distillers’ grains ($228 per ton) and trace mineral premix ($820 per ton) were applied.  A 

yardage cost of  $0.37 per heifer per day was applied. Freight from Texas AgriLife 

Research-McGregor Center (McGregor, TX) to Rosenthal Meat Science & Technology 

Center (College Station, TX), 164.2 km, was calculated using local commercial livestock 

rates, $4.00 per mile per truck capacity, 22,727.7 kg. Carcass price was calculated using 

grid prices from 10-17-19 (USDA AMS, 2019). Quality and yield grades were used to 

determine carcass value using grid prices from USDA Beef Carcass Price Equivalent Index 

Value and carcass weights (642.4 kg ±  47.8). Carcass weights from Choice and Select 

carcasses ranging from 272.7 kg to 409.1 kg were used to derive base values of $410.98 

and $355.34 per 100 kg, respectively. Carcasses below weight range resulted in a discount 

of $17.64 per 100 kg. Carcasses with quality grades 400 and greater resulted in a $5.21 

premium. Yield grades of 1 and 2 resulted in premium of $3.79/45.4 kg and $1.70/45.4 kg, 

respectively. Marbling score was used to determine quality grade, and heifers with quality 

grades between 200-299, 300-399, and 400-499 were considered Low, Select, Low 

Choice, and Premium Choice, respectively.   
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Statistical analysis 

 

Effects of treatment, period and their interaction were analyzed using MIXED 

procedures of SAS (SAS Inst. Inc., Cary, NC). Terms in the model included treatment, 

period, and treatment × period. The repeated term was period, with animal within 

treatment serving as the subject. Autoregressive was used for the covariance structure.. 

Treatment means were calculated using the LSMEANS option and the diff function was 

used to separate treatment means. Significance was determined at P ≤ 0.05. 

Results and discussion 

There were treatment × period interactions (P < 0.01; Table 6) for BW, ADG, 

Intake, and G:F. Heifer BW increased in each period regardless of diet offered. In each 

period, ADG was greatest (P < 0.05) for heifers fed C versus F with the greatest gain (1.24 

kg/d) being observed in period 2 when FCF heifers were provided C.  Feeding grain- 

versus forage-based diets to cattle during finishing increased ADG by 20% to 50% (Oltjen 

et al., 1971; Utley et al., 1975; Bennett et al., 1995) as a result of grain-based diets 

providing more ME per kg than forage-based diets. Similarly, within period ADG was 17 - 

46% greater when heifers were fed C versus F in the current project. Heifers subjected to 

FFC did not have significantly different (P = 0.29) ADG between periods 2 and 3 (0.98 

and 1.02 kg/d, respectively), when diets F and C were fed. At the beginning of period 3 

FFC heifers were 82 kg heavier than at the beginning of period 2, increasing the proportion 

of gain deposited as fat versus protein (NASEM, 2016). Fat deposition is energetically 

more efficient than lean deposition; however, BW gain per calorie is less with fat 

deposition than protein deposition because muscle is primarily water. Heifers on the FFC 
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treatment consumed 11.8 kg/d in period 2 and 10.0 kg/d in period 3. Accordingly, FFC 

heifers in period 2 had 6.55 Mcal of NEg available each d and 7.18 Mcal of NEg available 

each d in period 3, which is less of a difference than anticipated. Finally period 3 occurred 

in July, August, and Septamber and cattle may have been attempting to manage heat load 

by reducing intake and potentially experienced heat stress which can increase maintenance 

energy requirements up to 18% (NASEM, 2016).  

Intake was greatest (P < 0.05) during the grain feeding periods for CFF and FCF, while 

FFC heifers consumed the most during period 2 (P < 0.05), when F was fed. As 

metabolizable energy in the diet increases, the animal is able to meet its requirements for 

maintenance and genetic capability for growth with less feed, resulting in improved feed 

conversion (Brokken et al., 1976). Dinius et al. (1976) evaluated five diets ranging from 

1.43 to 1.99 Mcal NEm/kg that were made by increasing the proportion of corn. Steers fed 

rations with the greatest energy concentration (1.85 and 1.99 Mcal NEm/kg) had the lowest 

DM intakes (6.18 and 6.00 kg/d, respectively). Rations consisting of 1.70, 1.54, and 1.42 

Mcal NEm/kg had DM intakes of 7.34, 7.27, and 7.17 kg/d, respectively (Dinius et al., 

1976). Thus, increasing available energy in a finishing ration results in more efficient 

gains. Accordingly, feed conversion was greater in each period when heifers were fed diet 

C. Grain-based diets result in 8 to 70% greater G:F than forage-based rations, during 

finishing when fed ad libitum  (Oltjen et al., 1971; Utley et al., 1976; Meissner et al., 

1995). In heifers fed C, G:F ranged from 25 – 33% greater than F.  
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Table 6. Influence of timing of grain feeding during the growing and finishing phase on animal performance1 

 Treatment  P-value 

Item CFF FCF FFC SEM2 Diet Period  Diet × Period 

BW, kg    11.39 0.62 <0.01 <0.01 

   Initial 288a 284a 278a     

   Period 1 361b 340b 331b     

   Period 2 421c 444c 413c     

   Period 3 491d 512d 498d     

ADG kg/d    0.07 0.03 <0.01 <0.01 

   Period 1 0.87ax 0.67ay 0.63ay     

   Period 2 0.71bx 1.24by  0.98bz     

   Period 3 0.83abx 0.82abx 1.02by     

Intake, kg/d    0.43 0.40 <0.01 <0.01 

   Period 1 11.0a 10.7a 10.6a     

   Period 2 10.3bx 12.0by 11.8by     

   Period 3 10.1b 10.1a 10.0a     

G:F    0.004 0.27 <0.01 <0.01 

   Period 1 0.08x 0.06ay 0.06ay     

   Period 2 0.07x 0.10by 0.08bz     

   Period 3 0.08x 0.08cx 0.10cy     
1CFF = heifers fed diet C from 12-15 mo of age; FCF = heifers fed diet C from 16-19 mo of age; FFC = heifers fed diet C from 20-23 mo of age 
2SEM = standard error of the mean 
a,b,c = means with different superscripts differ within column P < 0.05.   
x,y,z =  means with different superscripts differ within row P < 0.05.  
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There were no significant treatment × period interactions or treatment effects for (P 

≥ 0.10; Table 7) ultrasonic measurements of intramuscular fat (IMF), 12th rib fat thickness 

(RBFT), or rump fat or for the ratio of IMF:RBFT and IMF:rump fat. There was a period 

effect (P < 0.01) for IMF, RBFT, and rump fat. Specifically, IMF was greater across 

dietary regimens at the end of period 3 than other periods, with the largest numerical gains 

in IMF occurring during period 3. In contrast, measures of subcutaneous fat generally 

increased demonstrating that cattle were getting fatter as they progressed throughout the 

feeding periods. There was a period effect (P < 0.01) for the ratio of IMF to subcutaneous 

fat (IMF:RBFT and IMF:rump fat) with initial values being greater for all three dietary 

regimens than at the conclusion of periods 1, 2, or 3, which were similar (P > 0.05). These 

results indicate that subcutaneous fat thickness tended to increase at a faster rate than IMF 

during periods 1 and 2 of the feeding trial (P = 0.07; data not shown).   

Increases in cell number (hyperplasia) and cell size (hypertrophy) both occur as the 

animal matures, and adipose tissue mass is affected by hyperplasia and hypertrophy 

(Cianzo et al., 1985). The majority of accumulated fat is a result of hypertrophy of 

adipocytes (Robelin, 1986), which occurs during growing up to 19 mo of age (Cianzo et 

al., 1985). According to Hood and Allen (1973), hyperplasia of subcutaneous and perirenal 

adipose depots are complete by 8 months of age, and fat deposition occurs in subcutaneous 

tissue before intramuscular tissue (Pethick et al., 2004). Intramuscular adipose tissue 

deposition occurs as a result of both hyperplasia and hypertrophy, and cell hyperplasia 

occurs in IMF depots as early as 11 mo of age (Baik et al., 2017; Cianzo et al., 1985). In 

the current study, timing of grain feeding commenced when heifers were 12 months of age. 

Had timing of grain feeding started between 5 and 6 months of age, differences in 
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ultrasound parameters may have been detected as a result of developing fat depots, and 

exposing animals to grain at a younger age may allow for earlier expression of fat 

deposition.  
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Table 7. Effect of timing of grain feeding on ultrasonic measurements during the growing and finishing phase 1 

 Treatment  P-value 

Item CFF FCF FFC SEM2 Diet Period Diet × Period 

IMF, %    0.44 0.66 <0.01 0.21 

Initial 2.8a 2.9a 2.9a     

Period 1 3.0a 2.7a 2.6a     

Period 2 3.4a 3.4ab 2.7a     

Period 3 4.0b 4.5c 4.0b     

12th rib fat, cm   0.05 0.31 <0.01 0.10 

Initial 0.17a 0.18a 0.16a     

Period 1 0.42bx 0.38bxy 0.32by     

Period 2 0.46bxy 0.54cx 0.44cy     

Period 3 0.57c 0.56c 0.55d     

Rump fat, cm    0.03 0.52 <0.01 0.82 

Initial 0.14a 0.14a 0.15a     

Period 1 0.31b 0.27b 0.27b     

Period 2 0.42c 0.41c 0.36c     

Period 3 0.53d 0.54d 0.50d     

IMF:12th rib fat   1.60 0.90 <0.01 0.81 

Initial 16.5a 18.4a 17.9a     

Period 1 7.4b 7.6b 8.3b     

Period 2 7.5b 6.3b 6.2b     

Period 3 7.3b 8.0b 7.6b     

IMF:Rump fat   1.87 0.84 <0.01 0.99 

Initial 21.3a 22.6a 19.6a     

Period 1 10.0b 10.5b 9.7b     

Period 2 8.5b 8.1b 7.6b     

Period 3 8.2b 8.4b 8.5b     
1CFF = heifers fed diet C from 12-15 mo of age; FCF = heifers fed diet C from 16-19 mo of age; FFC = heifers fed diet C from 20-23 

mo of age 
2SEM = standard error of the mean 
a,b,c = means with different superscripts differ within column P < 0.05. 
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While grain-based diets increase IMF deposition, subcutaneous fat deposition is 

unavoidable with increased energy concentration in the diet and composition of growth 

associated with age. Degree of IMF relative to amount of external fat (rib fat/backfat) can 

be difficult to predict accurately at slaughter. While a high degree of IMF is desirable, 

excess subcutaneous fat lowers carcass yields and increases cost of gain (Schoonmaker et 

al., 2004; Sharman et al., 2013). Feeding grain-based diets increases IMF deposition 

because fermentation of starch increase the production and proportion of propionate and 

provides glucose for intestinal absorption increases blood glucose concentrations (Smith 

and Crouse, 1984). According to research by Smith and Crouse (1984) the lipogenic 

precursor glucose provided 50-75% of acetyl units for in vitro lipogenesis in intramuscular 

adipose tissue compared to 1-10% of acetyl units for subcutaneous adipose tissue. In 

contrast, fermentation of fiber results in a greater proportion of acetate, which is 

preferentially used by subcutaneous adipocytes. Acetate, provided 70-80% acetyl units for 

lipogenesis in subcutaneous adipose tissue while only10-20% acetyl units to lipogenesis in 

intramuscular adipose tissue (Smith and Crouse, 1984). Diet C was formulated to provide 

starch for lipogenesis, however, this did not translate into greater IMF accumulation during 

grain feeding, as measured by ultrasound.  

Motivation behind grain-feeding to impact carcass characteristics stems from consumer 

perception of forage-finished beef resulting in decreased marbling, palatability, tenderness, 

and juiciness, and undesirable fat and lean color. In the current study HCW (642.4 kg ± 

47.80), LM area (76.8 cm2 ± 0.99), KPH (20%  ± 0.01), dressing percentage (58.3% ± 

1.17), and fat thickness (1.8 cm ± 0.16) at slaughter were not significantly different 

between the treatments (P > 0.05; Table 8). Significant differences due to treatment were 
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also not detected for marbling score, yield grade, or quality grade (P > 0.05), and all 

animals graded Select or higher.  

 

Table 8. Influence of timing of grain feeding during growing and finishing on carcass 

characteristics 1 

 Treatments   

Item CFF FCF FFC SEM2 P-value 

HCW, kg 286 300 290 18 0.51 

LM, cm2 74.8 76.8 78.9 0.4 0.52 

KPH, % 1.8 2.3 2.1 0.01 0.17 

Dressing percentage, % 58 58 58 0.5 0.91 

Skeletal maturity 62.9 69.6 61.4 3.5 0.32 

Lean maturity 60.0 72.9 62.9 5.1 0.20 

Fat thickness, cm 1.5 1.8 1.4 0.1 0.37 

Marbling score3 361 384 373 23 0.78 

Yield grade4 2.9 3.1 2.6 0.2 0.26 

Quality grade      

   % Premium Choice 14.3 42.9 28.6 - - 

   % Low Choice 85.7 42.9 71.4 - - 

   % Select 0.0 14.3 0.0 - - 
1CFF = heifers fed diet C from 12-15 mo of age; FCF = heifers fed diet C from 16-19 mo of age;              

FFC = heifers fed diet C from 20-23 mo of age 
2SEM = standard error of the mean 

3Marbling scores: 200-299 = Slight; 300-399 = Small; 400-500 Modest. 
4Yield grade = 2.5 + (2.5 × adjusted fat thickness) + (0.2 × KPH) + (0.0038 × HCW) – (0.32 × ribeye area) 

 

 

Composition of the diet has been shown to increase marbling score, and grain-finishing 

resulted in marbling scores 16%  greater than forage-finishing (Utley et al., 1975). 

Similarly, Bennett et al. (1995) reported 20% higher marbling scores for carcasses from 

concentrate versus forage-finished cattle. Additionally, grain-finished carcasses result in 20 

to 80% greater fat thickness than forage-finished carcasses (Oltjen et al., 1971; Utley et al., 

1975; Bennett et al., 1995). The forage diet used in the current project contained 0.86 Mcal 

NEg/kg and had greater nutritive value than diets used in other studies. Additionally, the 



 

 

 

 

 

45 

forage diet contained 3% more crude protein, which if digested and absorbed in the small 

intestine can provide precursors required for glucogenesis, which potentially masked 

differences in marbling accumulation. According to Krehbiel et al. (2006), increased RE as 

a result of increased metabolizable energy, is associated with increased proportion of fat in 

gain and slightly decreased proportion of protein in gain when grain diets are fed. 

However, some research indicates marbling does not differ between grain- and forage-

based diets (Oltjen et al., 1971; Muir et al., 1998). Muir et al. (1998) reported no 

differences in intramuscular fat between pasture- and grain-finished cattle. According to 

these researchers, carcasses from cattle finished on pasture or forage can exhibit similar 

marbling scores to those of grain-fed cattle as long as they achieve growth rates similar to 

those observed in a feedlot (Muir et al., 1998). 

No differences (P ≥ 0.22; Table 9) were detected for an of the economic 

comparisons as a result of similar finishing costs and carcass values across the feeding 

regimens. Carcass prices ($403.67, $409.55, and $412.04 /100 kg) and carcass value 

($1158.54, $1229.31, and $1198.24 per heifer) did not differ significantly between CFF, 

FCF, and FFC groups, respectively (P > 0.05). Heifers in groups CFF, FCF, and FFC had 

net losses of $490.00, $437.88, and $459.81, respectively, but losses were not significantly 

different between treatments (P > 0.33). 
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Table 9. Economic comparison of heifers provided a high-grain diet at different stages of production1 

 Treatments   

Item CFF FCF FFC SEM2 P-value 

Cost      

   Initial price of calf, $/100 kg3 295.26 296.49 300.74 2.24 0.22 

   Initial value of calf, $/heifer 849.01 842.37 835.03 25.87 0.93 

   Feed cost, $/head 666.75 691.65 690.11 14.31 0.41 

   Freight cost, $/head 8.98 9.38 9.12 0.22 0.45 

   Yardage cost, $/head 123.79 123.79 123.79 - - 

Revenue      

   Carcass price, $/100 kg 403.67 409.55 412.04 7.67 0.73 

   Carcass value, $/heifer4 1158.54 1229.31 1198.24 81.08 0.62 

Net Loss, $/heifer -490.00 -437.88 -459.81 50.83 0.33 
1CFF = heifers fed diet C from 12-15 mo of age; FCF = heifers fed diet C from 16-19 mo of age; FFC = heifers fed diet C from 20-23 mo of age 
2SEM = standard error of the mean 
3Initial price of calf based on USDA Market Reports for Texas (2019).  
4Carcass price based on USDA Beef Carcass Price Equivalent Index Value. Report NW-LS410. (October 17, 2019).  
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Conclusion 

 

Timing of grain feeding during finishing did not affect overall performance; however, 

when concentrate was fed ADG and G:F was greater than in those fed forage. Similarly, 

timing of grain feeding did not significantly affect carcass traits nor  profitability. Maturity 

of animals prior to the trial and similar NEg intake may have affected detectable 

differences in performance, ultrasonic measurements, and carcass traits.  
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CHAPTER IV 

 

CONCLUSIONS 

 After weaning differences in performance such as decreased intake and ADG, 

accompanied with stress related behaviors are exhibited. Health outcomes associated with 

stress at weaning can further decrease performance and increase likeliness of morbidity. 

Results from the previous study (CHAPTER II) indicate preweaning in confinement as a 

management strategy positively impacts pre- and postweaning performance of calves. 

These results indicate acclimating calves to a similar environment and weaning diet reduce 

dietary and environmental stress after weaning, leading to greater performance outcomes. 

Adaptation to a similar environment and diet did not impact postweaning antibody 

responses; however, both calf treatments mounted antibody response, suggesting stress 

levels after weaning were not sufficiently high to limit immunological function. 

Replication of this study and following animals through the feedlot receiving period would 

be beneficial witness the long-term term effects of acclimation to a weaning diet and 

feedlot environment.  

 Grain feeding during finishing increases intake, ADG and G:F compared to forage 

finishing. By increasing the available energy in the diet these performance outcomes as 

well as fat deposition, intramuscularly and subcutaneously, increase. However, as animals 

reach physiological maturity rate of fat accretion increases rapidly, while rate of protein 

deposition increases at a decreasing rate, leading to inefficient gains. Feeding grain earlier 

in production may increase efficiency of finishing cattle; however timing of grain feeding 

in the previous study (CHAPTER III) did not affect overall performance, carcass 

characteristics, nor profitability. However, physiological maturity of cattle and similar NEg 
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intakes between treatments in this study may have affected detectable differences in these 

parameters. Replication of this study utilizing cattle immediately after weaning would be 

beneficial to evaluate timing of grain feeding on feeder cattle efficiency.  
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APPENDIX A 

  Table 10. Influence of timing of grain feeding on change in ultrasonic measurements 

 Treatment  P-value 

Item CFF FCF FFC SEM2 Grain feeding 

IMF      

Period 0 to 1 0.22 -0.31 -0.31 0.25 0.21 

Period 1 to 2 0.37 0.68 0.12 0.22 0.24 

Period 2 to 3 0.52 1.10 1.27 0.32 0.24 

12th rib fat, cm      

Period 0 to 1 0.25 0.20 0.16 0.03 0.10 

Period 1 to 2 0.04 0.14 0.12 0.03 0.07 

Period 2 to 3 0.12 0.02 0.11 0.05 0.22 

Rump fat      

Period 0 to 1 0.16 0.13 0.11 0.02 0.37 

Period 1 to 2 0.10 0.15 0.10 0.03 0.40 

Period 2 to 3 -0.02 0.10 0.06 0.09 0.63 
1CFF = heifers fed diet C from 12-15 mo of age; FCF = heifers fed diet C from 16-19 mo of age; 

FFC = heifers fed diet C from 20-23 mo of age 
2SEM = standard error of the mean 

 

 

 

 

 

 

 

 

 


