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ABSTRACT

Prognostics in manufacturing systems help forecast the future state using the data logs from

the integrated sensors. Prognostics can be especially helpful in the current plant floor automation

scenario where IoT devices are being utilized to the best possible extent. These devices gener-

ate large volumes of data that could provide value to the business when used in conjunction with

analytic tools and allow businesses to take preventive measures before a breakdown could halt

the plant machinery. Survival Analysis could be useful to learn the trend and forecast the event

propagation using the data logs from these devices. This thesis attempts to apply modern machine

learning techniques to learn the fault propagation trend from historical timestamps of the data and

flag any impending breakdowns to take preventive action. DeepSurv, a python module intended

for the treatment recommender setting in survival analysis, is used as a prognostic model for the

manufacturing plant use case. The method is applied to the data collected from a 25-machine man-

ufacturing plant floor. The results show that the model can forecast the future state of a machine

using the historical patterns of the data logs with a Brier score of less than 0.15.
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1. INTRODUCTION

1.1 Background

Mechanical components and machinery in a complex manufacturing system are subjected to

degradation over time, which can lead to malfunctioning, and increased maintenance costs. One

possible way for reliable operation is by monitoring the condition of the equipment, their break-

downs, and performing diagnostics and prognostics to layout the maintenance strategies. This

process is often called prognostics and health management (PHM) [1].

There are two widely used categories of diagnostic and prognostic tools determined based on

the process of monitoring data: data-driven, and model-based. The knowledge of monitoring, diag-

nostics, and prognostics is one of the fundamental areas to be familiar with, for its practical usage

in continuous maintenance. With technological advancements like the Internet of Things (IoT)

and the shift towards Industry 4.0, there has been a rapid increase in terms of the velocity, verac-

ity, and volume of data generated from the sensors integrated with the machines. The availability

of the data paves the way for a better understanding of machinery, mechanical components, and

remaining useful life, thereby optimizing the operational impact of the machinery. This can also

help in system-level monitoring rather than component-level monitoring, as well as in preventive

maintenance with the proper usage of the model-based prognostic tools [2].

Nevertheless, significant challenges are associated with the model-based prognostic tools. One

of which is the assumptions underlying the degradation of the mechanical component during the

model development. One such model that has been used widely to determine the nature of the

degradation process is Cox proportional hazards (CPH) [3]. This is often treated as the gold-

standard for survival analysis. The recent advancements in the machine learning, especially the

development of deep learning, relaxed the need to make some of these assumptions. Models de-

veloped from the CPH approach, however, suffer from the drawbacks of many other assumptions

and are discussed in detail in Section 2.

1



Also, some critical technological challenges are associated with PHM and some of those perti-

nent to survival modeling for manufacturing systems are addressed below..

In the form of either historical time stamps or real-time, data act as the base for the entire PHM

system. The raw data collected from sensors on harnessing and feeding into a model can help

make actionable decisions on impending breakdowns in a manufacturing facility. However, the

main limitation is addressing the uncertainties involved in the process. Even though model-based

prognostic tools employ robust mathematical framework to track the degradation of a component,

they cannot handle uncertainties that the modeling error, data quality, or randomness in future

breakdowns causes [4]. Also, the models developed for component-level monitoring, and progno-

sis may not be ideal for generalization at the system-level.

In this thesis, we employ a deep learning based model, Deepsurv for breakdown prognostics.

1.2 Motivation and Objective

With machines getting more robust and the systems getting even more complicated by inte-

grating new technology over time, the true potential of deep learning-based prognostic tools could

come in handy for utilizing the vast amount of data and the resources available to harness the

data. When deployed into production shop floors, the models can help make strategic plans for

preventive maintenance by observing the current status of the machine or the component, thereby

preventing the impending breakdowns. Notably, the use of such prognostic models can save about

50% in the form of maintenance costs [5].

This thesis gives a brief overview of Deepsurv that is developed from a CPH approach but

harnesses the potential of deep learning. The underlying assumptions of the CPH model still

hold for Deepsurv except that the latter model can embed the capability to model the non-linear

distribution of the data.

Even though Deepsurv was developed for analysis in medical care, its true potential can be

extended beyond the treatment recommender system. The main objective here is to provide an

alternative form of survival analysis method that can employ deep learning, unlike the Random

Survival Forest method, which has severe memory limitations. The aim of this work is presented

2



below with the highlights of Deepsurv overcoming some of the shortcomings in the survival anal-

ysis field. The aims are to:

1. Make risk predictions that could help make decisions about the future status of the machine

or the mechanical component and

2. Provide a viable alternative that could be production-ready to take preventive measures as-

sessing the risk at the component-level.

1.3 Outline

The remainder of the thesis is organized as follows:

Section 2 presents a literature review of survival analysis and artificial neural networks. The

first part of the section provides a brief overview of the statistical concepts of survival analysis,

common survival models, and the estimation of baseline hazard. Artificial neural networks are

introduced in the latter part, and various survival models developed using artificial neural networks

are discussed.

Section 3 has an overview of Deepsurv, a deep learning-based model.

Section 4 presents the analysis of a case study. The data collected from integrated sensors in a

manufacturing plant are analyzed using Deepsurv, and the results from the analysis are discussed

in detail.

Section 5 summarizes the thesis and presents the limitations of the model and suggestions for

future work.
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2. LITERATURE REVIEW

2.1 A Brief Overview of Survival Analysis

The flexibility in defining an event in time-to-event analysis has given rise to the development

of various statistical methods across different fields. The collection of methods to explain why a

specific event of interest occurs defines survival analysis on a broader horizon. Survival Analysis

in economics is often referred to as the duration analysis or hazard analysis or transition analysis,

and in engineering, it is often called failure-time analysis or reliability analysis. The following sec-

tions define some basic notations in survival analysis to better understand the statistical concepts

and review some early methods developed in this field to analyze time-to-event data. The later

part of this section reviews some growing popular methods with the rapid advancements in ma-

chine learning, especially deep learning, to handle a large amount of data by effectively handling

complexity.

In most cases of survival analysis applications, the variable of interest is the time at which a

specified event of interest might happen in the future (Harrell Jr, 2018). Therefore, it is crucial

to carefully define the survival time represented by a random variable T and censoring associated

with the information on the start and endpoints of a study to model the underlying distribution

effectively. The distribution of T, a non-negative random variable corresponding to the subject’s

survival time, is characterized by its probability density function (PDF) denoted by f(t) and cu-

mulative density function (CDF) denoted by F (t). This characterization of T helps define some

important terms, namely the survival function and hazard function, which helps determine the

overall state of the sample/subject under consideration.

2.1.1 Survival function

Let T be a random variable representing the time to "failure" or the time to "loss" or the cen-

sored time. The survival function returns the probability of survival beyond time t and is expressed

as

4



S(t) = Pr(T > t) = 1− F (t) =

∫ ∞
t

f(u)du (2.1)

2.1.2 Hazard function

The hazard function is defined as the ratio of the conditional probability of an event happening

in the interval [t, t + δt), given the event has not occurred until time t to that of the infinitesimal

time frame δt. It usually describes the instantaneous rate of failure, rather than the probability of

the event happening in the short interval of time. The hazard function is denoted by λ(t) and is

mathematically expressed as

λ(t) = lim
δt→0+

Pr(t ≤ T < t+ δt | t ≤ T )

δt
=
f(t)

S(t)
(2.2)

In other words, the hazard function can be viewed as the ratio of the density of events at t to

that of the survival probability at t.

From Equation 2.1, it can be seen that the derivative of S(t) is −f(t), and hence Equation 2.2

can be written as

λ(t) = − d

dt
logS(t) (2.3)

On applying the boundary condition S(0) = 1 , Equation 2.3 can then be written in the form

S(t) = exp (−
∫ t

0

λ(u)du) = exp(−Λ(t)) (2.4)

Λ(t) =

∫ t

0

λ(u)du (2.5)

where Λ(t) in Equation 2.5 denotes the cumulative hazard function.

Thus, clearly a one-to-one correspondence exists between the functions, i.e., knowing one of

either hazard function or the survival function, the other function can be obtained.
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2.1.3 Censoring

Censoring is the most common consideration in Survival Analysis. Missing data in general

statistical parlance is referred to as censoring in survival analysis. For instance, when a population

is being observed for a particular event of interest, the observations are censored if the information

of survival times is incomplete. Censoring can be classified into different categories based on the

time at which the study begins and terminates, both of which make an integral part of survival time,

as defined earlier. Censoring is explained by the censoring mechanisms and is broadly classified

into two classes, namely,

1. Point censoring occurs when the exact time at which the event has happened is known. Point

censoring can be further classified into two types, namely,

(a) Right censoring: In a medical scenario, when individuals under study were lost to

follow-up or when the individuals did not experience the event of interest at study ter-

mination, the individuals (or observations, commonly) are defined to be right-censored.

This is the most common form of censoring observed, and almost all the methods (sta-

tistical or machine-learning) developed can handle right-censored data.

For example, observations A and B in Figure 2.1 show an example of right-censored ob-

servations. Observation A experienced the event of interest after the study termination,

and this phenomenon is called end-of-study censoring. On the other hand, observation

B was lost-to-follow-up during the study, and this is often referred to as lost-to-follow-

up censoring. In both cases, the observations are classified as right-censored but differ

in the way the censored cases are handled during the analysis. In most cases of right-

censored data, especially in the event of end-of-study censoring, there is no harm in an

independent assumption for handling censored data.

Independent assumption in censoring described by Leung et al. in [6] can be stated as,

"time of entry to the study is independent of the risk period." This can also be stated as

a risk at time t does not alter by having the information of censoring before any time
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t. Leung et al.[6] also states that except for type I and type II censoring designs, the

censoring mechanisms in most cases of right censoring are unknown, and as a result,

some need exists to make certain assumptions before using the statistical methods to

handle special cases like the lost-to-follow-up censoring data.

Figure 2.1: Illustration of right, left, and interval censoring

(b) Left censoring: In a medical scenario, when an individual has already experienced an

event of interest before enrollment into the study, then that individual is said to be

left-censored.

A special case of left censoring is the left truncation when an individual under study is

at risk before enrollment into the study. Observation C in Figure 2.1 is one example of

left truncation as the individual is at risk even before entering the study.

2. Interval censoring, a censoring mechanism encountered when individuals under study are

observed periodically for the event of interest. Observation D in Figure 2.1 shows an interval-

censored case, where the event is known to happen with certainty in a period (SL, SR], except

that the exact time at which the event has happened is unknown. One interesting aspect of this

type of censoring is that theoretically it includes both the cases of point censoring; Hence, it

is integral for handling the interval-censored observations.
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With the knowledge of various censoring mechanisms, it is evident that censoring time gives

more information than the fact that it exceeds the survival time, and, in such a scenario, the analysis

conducted by omitting the censored data is biased as the valuable information of survival times

from the censored observations is not taken into account. Four approaches have been discussed in

[6] for the analysis of censored data and are listed as follows:

1. Complete data analysis, where the censored observations are completely ignored, and the

analysis is conducted on the uncensored data, leading to a biased outcome.

2. The imputation approach can be further classified into left-point and right-point imputation.

Left-point imputation assumes that all the censored cases fail right after the censoring time

resulting in underestimating the survival probabilities. On the other hand, right-point impu-

tation assumes that the censored cases never fail resulting in the overestimation of survival

probabilities.

3. Analysis with dichotomized data considers a fixed period during the study, and analysis

is conducted for the incidence of occurrence versus non-occurrence. The survival time is

disregarded in this case. This method has severe limitations and is acceptable under the

following conditions:

(a) When the risk of failure is low, i.e., the risk-periods are longer.

(b) When the aim is to study the covariates to prevent the event rather than to prolong the

survival time.

4. The likelihood-based approach is, by far, the most effective estimation approach that adjusts

depending on the censoring of individual observations.

2.1.4 Common survival models

Preliminary work in survival analysis mainly focused on the population as a whole rather than

the factors affecting the population. Kaplan and Meier [7] conducted the first systematic study

on estimating survival curve. Cox in 1972 [3] was among the first to incorporate covariates into

8



modelling its effect on the underlying degradation process. Many attempts have been made [8],

[9], [10] aimed at using neural networks to ease some of the assumptions of the Cox Proportional

Hazards (CPH) model and capture the degradation process. In a major advance in 2008, Ishwaran

et al. [11] reported the usage of random forests for survival analysis. Later, several studies, for

instance [12], [13], [14], [15], [16], [17], [18], and more recently [19], conducted an analysis using

deep neural networks, further alleviating the assumptions of CPH and presenting novel robust

methods that are capable of estimating the baseline hazard function.

The most common survival models are as follows:

2.1.4.1 Kaplan-Meier estimator

Kaplan and Meier [7] provided a non-parametric method for estimation of the survival curve

from incomplete observations in 1958. The method aims to plot the survival curve of different

cohorts at population level and one limitation is that it does not incorporate individual covariates

to estimate the risk predictions.

Let di be the number of events at time ti, and let t(1) < t(2) < ... < t(m) denote the ordered

distinct event times and let ri denote the number of subjects still at risk at time ti. Then the

Kaplan-Meier’s maximum likelihood estimator of the survival function is given by

Ŝ(t) =
∏
i:ti<t

(1− di
ri

) (2.6)

The ratio di
ri

estimates the conditional probability of subjects’ survival past time ti, and the

conditional probability of surviving until time ti is given by the compliment of di
ri

, i.e. 1 − di
ri

.

The intuition behind the estimation of Ŝ(t) is that the survival probability at time t is obtained by

multiplying the conditional probabilities for all the event times up to time t.

The survival curve on using KM estimator is estimated only at the event times, and censoring

is not considered, although the risk set ri changes with respect to censored observations.
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2.1.4.2 Cox proportional hazards model

Cox [3] incorporated covariates into modelling the degradation process considering the effects

of different covariates in 1972. This method of estimating survival times or the time to failure is

commonly referred to as proportional hazards model due to the underlying assumption that the

ratio of two hazards at any time are proportional in nature.

The CPH model in general form is outlined as follows

λ(t|X) = λ0(t) exp(Xβ) (2.7)

where, λ(t|X) is a product of two non-negative terms, namely λ0(t), a baseline hazard function

and exp(Xβ) generalized to include any risk function exp(h(X))[3], referred to as risk score. This

model can often be regarded as a multiplicative model where the effect of predictor variables act

to multiply the baseline hazard.

An unknown p × 1 regression vector β, is estimated using partial likelihood estimation (PLE)

and the β vector is tuned while training to optimize the Cox partial likelihood represented by Lc(β)

and given by the equation

Lc(β) =
∏
i:Ei=1

exp(ĥβ(xi))∑
j∈R(Ti)

exp(ĥβ(xj))
(2.8)

where the values of Ti, Ei, and xi are the respective event time, event indicator, and baseline data

for the ith observation.

The partial likelihood is the product of the probability at each event time Ti that the event has

occurred to individual i, given the set of individuals still at risk at time Ti.

The negative log partial likelihood can then be written as

lc(β) = −
∑
i:Ei=1

(Xiβ − log
∑

j∈R(Ti)

exp(Xjβ)) (2.9)

The loss function lc(β) is minimized while training the model by tuning the weights and the model
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performance is assessed using concordance index (C-index) as the metric. The respective β coef-

ficients obtained represent the increase in the log-hazard ratio for one unit increase of a predictor

variable xi, assuming the rest of the predictor variables are held constant. Similarly, exp(βi) rep-

resent the hazard ratio for one unit increase of xi.

The Cox method of estimating the hazard function is often regarded as semi-parametric be-

cause that it involves the parameters, λ0(t), baseline hazard which is an unknown function that

determines the hazard at state space X = 0, and exp(h(X)), estimated using parametric methods.

There are some basic assumptions outlined by Cox in using this method and Kumar, Klefsjö in

[20] outlined them as follows:

1. "The times to failures are independent and identically distributed".

2. "All the influential covariates are included in the model".

3. "The ratio of any two hazard rates are constant with respect to time".

Often times, survival function is to be estimated to understand the survival distribution of pop-

ulation. To estimate the survival function, the cumulative hazard is estimated and then using Equa-

tion 2.4, survival function at any time point is estimated. Nelson-Aalen estimator [21] [22], and

Breslow’s estimator [23] are two popular choices to estimate the cumulative hazard function.

2.1.5 Baseline hazard estimation

Breslow’s estimator [23] is used for estimation of the survival analysis in the later part of this

thesis. If the observed event times contain no tied events, the cumulative baseline hazard estimate

following Breslow’s method [23] is given by

Λ̂0(t) =
∑
ti≤t

λ̂0(ti) (2.10a)

=
∑
ti≤t

1∑
j∈Ri exp(ĥβ(xj))

(2.10b)
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where Ri is the risk set, i.e., set of subjects still at risk at the event time ti, and Λ̂0(t) is considered

to be the non-parametric maximum likelihood estimator of the cumulative baseline hazard function

[24].

From equation 2.4, the baseline survival estimate can be estimated as follows,

Ŝ(0,BR)(t) = exp(−Λ̂0(t)) (2.11)

which gives the baseline estimate of the survival function at distinct event times.

For a subject with covariate vector X = x∗, the survival function at any time t can be estimated

as [25]

Ŝ(t | X = x∗) = Ŝ(0,BR)(t)
exp(ĥβ(x

∗)). (2.12)

2.2 Deep Learning

2.2.1 Artificial neural networks

2.2.1.1 Artificial neuron

The most fundamental unit of the artificial neural network is called an artificial neuron. Mc-

Culloch and Pitts in 1943 [26] proposed the simplified model of a neuron, as shown in Figure

2.2.

Figure 2.2: McCulloch Pitts neuron
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MuCulloch Pits neuron takes in binary input and outputs a binary result where function g

aggregates the inputs, i.e. {g(x) =
∑n

i=i xi}, and function f takes a decision based on g(x) and a

preset threshold θ. The function can be mathematically represented as

y = f(g(x)) =


1 if g(x) ≥ θ

0 if g(x) < θ

(2.13)

Later in 1958, Frank Rosenblatt proposed the so-called classic perceptron algorithm [27] which

alleviates feeding binary inputs to the neuron, and can take real values as input and outputs a

binary result. Rosenblatt introduced weights {w1, w2, . . . , wn;wi ∈ <}, expressing the relative

importance of inputs to an output. The output of the Rosenblatt perceptron is mathematically

expressed as

y =


1 if

∑n
i=1wi ∗ xi ≥ θ

0 if
∑n

i=1wi ∗ xi < θ

(2.14)

The threshold θ can be set to an arbitrary value to generalize the above model of representing

an artificial neuron, and the weights can then be allowed to learn by following a mechanism. For

this reason, bias b = −θ is introduced, and the mathematical representation for this generalization

is as follows

y =


1 if

∑n
i=1wi ∗ xi + b ≥ 0

0 if
∑n

i=1wi ∗ xi + b < 0

(2.15a)

=


1 if

∑n
i=0wi ∗ xi ≥ 0

0 if
∑n

i=0wi ∗ xi < 0

(2.15b)

where x0 = 1 is called a bias neuron, and the weight associated with the bias neuron is −θ. The

advantage of using bias is twofold, as a bias neuron and to assess the model for bias vs. variance

trade-off. Figure 2.3 illustrates a simple perceptron with bias and weights associated with each of
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the associated inputs.

Figure 2.3: Rosenblatt perceptron

The output value of y can be changed based on the execution of an activation function, which

triggers whether the neuron can fire. Several commonly-used activation functions, such as the step

function (used to fire a neuron in McCulloch Pitts neuron), sigmoid function, tanh function, and

ReLu, are in use depending on the problem.

Below is the list of the changes in the output y with use of different activation functions:

1. Sigmoid function:

y = σ(z) (2.16a)

= σ(w · x+ b) (2.16b)

=
1

1 + exp(−z)
(2.16c)

2. ReLu:

y = max(0, z) (2.17)
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3. Tanh function:

y = tanh(z) (2.18a)

=
2

1 + exp(−2z)
− 1 (2.18b)

= 2σ(2z)− 1 (2.18c)

2.2.1.2 Artificial neural networks

Most of the results using neural networks are achieved by using a network of perceptrons,

usually called architecture and not just with one perceptron. Multilayer perceptrons (MLP) are one

particular case of artificial neural networks consisting of more than one perceptron. MLPs consist

of an input layer, an output layer, and an arbitrary number of hidden layers. The hidden layers are

an integral part of the architecture, as this is where the non-linear transformations of the input data

take place. The ability to learn the highly complex data increases with the number of hidden layers

at the expense of computational time, i.e., the network takes a very long time to train to adjust the

weights of the network to get the desired output. A multilayer perceptron with four or more layers,

like the one shown in Figure 2.4 [28], is called a deep neural network. A simple illustration of the

deep neural network is shown below,

Figure 2.4: Representation of deep neural network

15



where the leftmost layer in the network is called the input layer, and the rightmost layer is

called the output layer. The two layers in the middle are called the hidden layers.

There are different types of neural network architectures in use today such as a recurrent neural

network (RNN), convolutional neural network (CNN), generative adversarial network (GAN) and

the most common of all is the deep feedforward neural network (DFFN) where the output from

one layer is passed as input to the next layer. DFF neural networks are fully connected in general,

which means that the information from the input layer is passed through the hidden layers to the

output layer employing various activation functions.

Every node in the network is arbitrarily assigned a weight during the initialization of the net-

work. These weights are later tuned while training the network using the most widely used back

propagation algorithm [9], which is discussed in the next section.

2.2.1.3 Training artificial neural networks

The mode of training the network depends on the type of problem under consideration, i.e.,

supervised or unsupervised. The network is trained, in case of supervised learning, to minimize the

prediction error, or in case of unsupervised learning, to compress the input information. Emphasis

is made on supervised learning in this section.

In supervised learning, the network is given with the input data and the labels associated with

it. The aim of training the network is to update the weights of the network and to find the right

balance between bias and variance of the model, i.e., to update the weights and biases so that the

network then makes predictions as close as the target values. The process of updating the weights

and biases is accomplished by learning algorithms.

The learning of the network is quantified in terms of deviation of the predictions from expected

output with a cost function (C) i.e., the cost for a poorly learned network is higher and this is

an indication for the weights and biases to be adjusted. Also, the choice of selection of the cost

function depends on whether it is a regression or a classification problem. For example, squared

error loss or multi-class cross-entropy loss is used as cost function respectively, for the above two

cases. A simple illustration of the network with bias representation in the hidden layers is shown
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in Figure 2.5 [28]. The topmost node in input layer, and each hidden layer is a bias node. The

inclusion of a bias node increases the flexibility of the model.

Figure 2.5: Representation of deep neural network with bias

The initial loss is calculated during the forward pass and the learning process involves comput-

ing the gradients of the cost function during back propagation at each iteration and then minimizing

the cost function on the updated weights (w′) and biases(b′) i.e.,

w′ = w − ηδC
δw

(2.19a)

b′ = b− ηδC
δb

(2.19b)

where η is the learning rate, which could be controlled to vary the speed at which the network learns

and updates the parameters. Setting a very small learning rate could lead to slow convergence,

while a large learning rate can hinder convergence and causes the cost function to fluctuate.

Several supervised learning algorithms applied to the network employ optimizers to update

weights and baises, some of which as explained by Meireles et al. in [29] are as follows:

1. Early Supervised Learning Algorithms:
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While these algorithms are widely employed on a single neuron with varied input size, they

are not particularly beneficial in solving MLPs.

(a) Perceptron learning

(b) LMS or Widrow-Hoff learning

(c) Grossberg learning

2. Gradient Descent Methods:

When dealing with a collection of perceptrons to handle huge data, the learning process also

becomes complex, resulting in increasing time complexity with the amount of data. For

this reason, there is a trade-off between the measure of model performance vs the time for

learning the parameters, and as a result, gradient descent methods are broadly categorized

into three variants [30], namely,

(a) Batch gradient descent

Let weights and biases collectively be represented by θ, then θ in batch gradient descent

is updated as follows:

θ = θ − η · ∇θC(θ) (2.20)

The gradient of the cost function w.r.t weights and biases is computed for the entire

dataset at each iteration and as a result, the time complexity of batch gradient descent

is huge. Thus, for a relatively huge dataset, the batch gradient descent can be very

slow and can also cause redundancy because of the gradients recomputed for similar

examples at each iteration.

(b) Stochastic gradient descent

Let xi represent the ith training sample, the stochastic gradient descent computes the

gradient at each training sample, and simultaneously updates the parameters. Hence,
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the parameters are updated as follows:

θ = θ − η · ∇θC(θ;xi) (2.21)

As the gradient is computed at every training sample and the updates are performed

simultaneously, stochastic gradient descent is prone to high variance and can cause the

cost function to fluctuate heavily. This fluctuation in the cost function can sometimes

lead to a better local optimum. Hence, with careful setting of the learning rate, this

method can eventually converge to a local or global optimum like the batch gradient

descent.

(c) Mini-batch gradient descent

When the number of training samples are large, computing gradients of the cost func-

tion for each input, as is performed in the batch gradient descent, can take very long

time and thus make the learning very slow. Conversely, mini-batch gradient descent

can be used to speed up learning by only computing the gradient of the cost function at

randomly selected sub-sample from the training input.

Let a sub-sample of m training inputs (say xi; i = 1, . . . ,m) be taken from the training

data of size n, the parameter updates in mini-batch gradient descent is as follows:

θ = θ − η · ∇θC(θ;xi) (2.22)

The weights and biases of the network are randomly initialized, which acts as a starting point

for random initialization of learning algorithms. Some of the several optimization techniques em-

ployed while training the network using gradient descent methods are broadly classified as follows:

1. First-Order Gradient Methods:

(a) Backpropagation

(b) Backpropagation with momentum
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2. Second-Order Gradient Methods:

(a) Newton method

(b) Gauss-Newton method

(c) Levenberg-Marquardt (LM) method

Of all the supervised learning methods listed above, gradient descent methods have proven to

be very successful in training the neural networks.

2.2.2 Artificial neural network approach to survival analysis

The development of deep learning and improved hardware architecture showed promising re-

sults in applying the neural networks to survival analysis. This helped researchers implement a

broad variety of network architectures to recognize patterns in the data and achieve state-of-the-art

results. This section briefly discusses some of the deep learning techniques in survival analysis and

the key distinctions of the techniques in achieving the desired output.

Ranganath et al. [12] in 2016, Alaa and Schaar [14] in 2017 proposed network architectures

based on Bayesian framework. Ranganath et al. [12] introduced a hierarchical generative model

called the deep survival analysis using the deep exponential families to capture the dependencies

between the covariates and the failure time. Alaa and Schaar [14] used a deep multi-task Gaus-

sian process to capture complex interactions between covariates and cause-specific survival times,

without any parametric assumptions on the hazard rates.

Later in 2017, Katzman et al. [13] introduced Deepsurv, a deep neural network extension

of the CPH model to effectively model complex interactions between the covariates and risk of

failure. Section 3 of this document provides a detailed explanation of this method and its use in

manufacturing systems is discussed in Section 4.

Giunchiglia et al. [17] in 2018 and Ren et al. [18] in 2019 proposed alternative approaches

using recurrent neural networks. Giunchiglia et al. [17] proposed a fully parametric survival

model to compute the risk score and the survival function of each subject for personalized survival

analysis called RNN-SURV. On the other hand, Ren et al. [18] proposed a model called Deep
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Recurrent Survival Analysis that combines deep learning to model the conditional probability of

each event for each sample and survival analysis that handles censoring.
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3. DEEPSURV

3.1 Overview of Deepsurv

The inability of the CPH model to capture the complex relationships among covariates in non-

linear risk surfaces and the inability of the single hidden layer neural networks [9] to outperform

CPH is the primary motivation behind employing the deep learning techniques to model the com-

plex interactions between the covariates and the risk of failure. Deepsurv, a non-linear extension

to the Cox proportional hazards model, is developed from the drawbacks of the CPH model and

the Faraggi-Simon network. Deepsurv is a multi-layer perceptron and employs deep architecture

to model the complex association among the covariates without any prior assumptions on the un-

derlying risk surface.

Generally, covariates data (X), event indicator (e), and event time (t) make up survival data.

Deepsurv is a feed forward neural network that takes input as an n-dimensional array of the co-

variates. The network can be configured with any arbitrary number of hidden layers, and the input

data is propagated through these layers. Each hidden layer is set to have a non-linear activation

function and can be configured to include a dropout layer, and a batch normalization layer. The

output layer of the network is a single node with linear activation function, and the output is the

estimated log partial hazard (ĥθ(x)).

Deepsurv employs a fully connected deep neural network architecture that uses average nega-

tive log-likelihood as loss function. The loss function of the Deepsurv model is derived from Cox

partial likelihood and Faraggi Simon network. In regard to the general training of the CPH model,

the weights β are tuned to optimize the Cox partial likelihood, given by Lc(β).

Lc(β) =
∏
i:Ei=1

exp(ĥβ(xi))∑
j∈R(Ti)

exp(ĥβ(xj))
(3.1)

Faraggi-Simon’s network, a preliminary attempt of nonlinear extension of the CPH model,
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optimizes weights of the network using a modified version of Lc(β) (ĥβ(x) replaced by the out-

put of the network ĥθ(x)) coupled with l2 regularization. The "penalized likelihood function" of

Faraggi-Simon’s network [9] is thus given by

Lc(θ) + λ

p∑
k=1

θ2k (3.2)

where Lc(θ) is the modified Cox partial likelihood parameterized by the weights of the Faraggi-

Simon’s network, λ is the l2 regularization parameter, and p is the number of predictor variables

(X: n× p data matrix).

Similar to Faraggi-Simon’s network, Deepsurv employs the penalized negative average log-

likelihood function given by the equation:

{− 1

N

∑
i∈D

(ĥθ(xi)− log(
∑
j∈Ri

eĥθ(xj)))}+ λθ2k (3.3)

where D is the set of subjects with observed event (e = 1), N is the total number of subjects with

event observed, and ĥθ(x), output of the network, is the estimated log partial hazard.

The advantage of Deepsurv lies in the usage of modern techniques in deep learning such as

dropout [31], weight decay regularization, batch normalization [32], learning rate scheduling [33],

gradient clipping and some of the advanced optimizers used as part of the gradient descent meth-

ods. These modern optimizers or the update functions are readily available with the Lasagne

python library [34], built on top of Theano [35], which Deepsurv uses for constructing the fully

connected deep neural network. Some of the update functions that can be used with Deepsurv are

listed in Table 3.1.
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Update Function Description

sgd Stochastic Gradient Descent updates

momentum [36] Stochastic Gradient Descent updates with momentum

nesterov_momentum [37] Stochastic Gradient Descent updates with Nesterov momentum

adagrad[38] Adagrad updates

rmsprop [39] RMSprop updates

adadelta [40] Adadelta updates

adam [41] Adam updates

adamax [41] Adamax updates

amsgrad [41] AMSGrad updates

Table 3.1: List of update functions

While maintaining the constant hazard ratio assumption from the CPH model, Deepsurv also

assumes the data is void of any tied events while training and measures are to be taken while dealing

with the tied events. Methods like Breslow approximation or the Efron approximation are generally

employed to handle the ties. Nonetheless, Deepsurv is capable of learning the complex relationship

among the covariates. The model’s predictive capability is validated against the metric widely used

in survival analysis called the concordance-index (c-index). The implementation details of this

method on a manufacturing plant floor data are discussed in Section 4.
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4. CASE STUDY AND ANALYSIS

The objective is to apply Deepsurv to derive a data-driven prognostic model to assess the risk of

any impending breakdowns of machinery and mechanical components in a manufacturing system.

For this purpose, a manufacturing plant floor consisting of 25 machines integrated with sensors is

considered for this analysis, and Deepsurv is used to train and validate the analysis. The results

validated at the machine level show that the model can accurately estimate the risk of failure 75%

of the time. The analysis also shows that this type of data-driven model can be used for preventive

maintenance.

4.1 Overview of the Dataset

The data collected from the sensors integrated with the machines, consisting of timestamps and

fault codes for a breakdown, is processed to a general survival analysis data format (X: covariates

data, e: event indicator, and t: event time).

A dataset for each machine is generated from the fault codes and time stamps. The dataset

contains the columns indicating event times and indicators, and for each target machine, a column

named ’time_from_event’ provides information regarding the target machine while training the

model. Figure 4.1 shows the overview of a dataset of machine 1.

Figure 4.1: Overview of machine 1 dataset

The columns ’time_1’ and ’status_1’ are treated as target variables. The column ’time_1’
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indicates the time till the next event, and any time beyond 1800 sec is treated as censored. For

instance, where an event is observed, say 1791 from Figure 4.1, ’time_1 = 1791’ represents

the time until the next event. The corresponding columns in the row represent the state of other

machines at this particular timestamp.

The column ’status_1’ acts as an indicator, and the value equals one if an event is observed

and 0 if either the instance is censored, or no event is observed.

The column ’time_from_event_1’ gives information about the time elapsed since the last

restoration from a breakdown. Likewise, for ’time_1 = 1791’, it indicates that the last event was

observed 9333 seconds ago, and the next event is likely to happen in 1791 seconds. The inclusion

of this column in the covariates makes the model less biased towards the target machine, as the

valuable information about the target machine is passed onto the model in the training phase.

The columns from ’time_2’ to ’status_27’ are treated as covariates, and these columns provide

the information of time elapsed since the last restoration of other machines and corresponding

status, respectively. Considering ’time_1 = 1791’ again, at this timestamp, the ’time_2’ column

indicates that an event has not been observed yet, and hence the ’status_2’ of machine 2 is 0. In

this case, the state of machine 2 is likely to change in the future after 1791 seconds. If not, then

the time gets accumulated, and this kind of behavior is observed in the case of ’time_26.’

Although the overview of this dataset is presented when machine one is treated as a target

machine, the terminology holds for the data of other machines too. The corresponding target

variables and covariates vary with the target machine.

4.2 Implementation Details

A fully connected deep neural network is considered for the analysis. The network consists of

two hidden layers of 40 nodes each and an output layer of one node. The size of the input layer is

determined by the number of observations passed while training the network. The source code for

implementing the Deepsurv model is available in Appendix A.

26



4.2.1 Hyperparameter tuning

Features or covariates are first normalized, and the data is processed to a survival data for-

mat {X , e, and t} before feeding the data for model training. The hyperparameters of the model,

namely learning rate, learning rate decay, and momentum, are tuned by conducting a series of ex-

periments to obtain optimum results. Also, different update functions or optimizers are tested for

optimum results. Table 4.1 gives an overview of the sequential steps taken to optimize the hyper-

parameters. The data is shuffled, and the first step in the series is started by selecting the first 1000

observations for training. The sample size is gradually increased, and the model’s performance

is assessed based on the concordance index. Deepsurv uses the lifelines package to calculate the

c-index between two series of event times, one series being the actual events times and the other

being the estimated partial hazard. The best result is obtained from the last experiment listed in

Table 4.1, and the c-index of the model on validation and test data is above 0.78, and hyperparam-

eters from this experiment are considered for further analysis. The optimal hyperparameters for

the model are listed in Table 4.2.

4.2.2 Model training

The model is trained on 70% of the data, validated on 20% of the data using the optimal hy-

perparameters from Table 4.2. The remaining 10% is left for testing the trained model’s efficiency.

The training data is shuffled to ensure randomness in the data, and as many as 500k observations

covering a wide range of possible instances from the original dataset are provided for training.

A penalized negative log-likelihood loss function is used while training the model, as explained

in section 3.1. A large value of l2 regularization coefficient (15.0) is selected to penalize large

weights. Figure 4.2 explains the reduction of the loss during training and the model’s performance

validated at every 250 epochs using the concordance index as an evaluation metric. As shown in

Figure 4.2, although the decrease in loss is significantly smaller, there is a substantial increase in

the model’s accuracy beyond 250 epochs. However, due to time complexity, the model is trained

only for 2000 epochs.
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Hyperparamater Value

L2_reg 15.0

batch_norm True

dropout 0.1

hidden_layers_sizes [40,40]

learning_rate 1.00E-02

lr_decay 0.025

momentum 1.0

standardize False

Table 4.2: Optimal hyperparameters

Figure 4.2: Training curve of Deepsurv model
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The model’s output, log partial hazard (hθ(x)), is used to estimate the baseline hazard function

and the baseline survival function using Breslow’s method, as described in Section 2.1.5. Both

the cumulative hazard function (Λ(t)) and survival function S(t|x) are estimated from the baseline

hazard function using the equations 2.10 and 2.12, respectively. The following section explains the

results and analysis of data collected from five different machines.

4.3 Results

The distribution of the estimated log partial hazard for censored and uncensored observations is

shown in Figure 4.3. The boxplot shows that almost 75% of the censored observations (status=0)

in the test data have log partial-hazard less than or equal to 0.84. On the other hand, for the

observations where an event is observed, the model can estimate for almost 75% of the cases, a log

partial hazard value greater than 0.747.

Figure 4.3: Distribution of estimated log partial hazard

The model output (log partial hazard) is in line with what is expected in case of the censored

observations, and in case an event is observed. The model can correctly classify an event with a
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higher log partial hazard and shows an increased risk with an increase in log partial-hazard.

Figure 4.4: Survival probability estimates using Kaplan Meier estimator

To further demonstrate the Deepsurv model’s effectiveness, survival probability estimates com-

puted using log partial-hazard (output of the model), and Breslow’s estimator are compared to the

survival probability estimates from the Kaplan-Meier estimator, which does not take into account

the effect of covariates. The survival function plot in Figure 4.4 indicates the Kaplan-Meier es-

timates of the survival function at distinct event times. The survival function plot in Figure 4.5

indicates the survival function estimates from the Deepsurv model. Here, the Kaplan Meier esti-

mation of survival probability is considered as a baseline, and the Breslow’s method estimates are

compared against the baseline Kaplan-Meier estimates.

Breslow’s estimation of survival probability appeared to produce much better results than

Kaplan-Meier estimation, and consideration of the effect of covariates while Breslow’s estima-

tion decreased the overall survival probability at distinct event times. This is especially helpful in
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a manufacturing plant scenario where the breakdown of one machine impacts the status of other

machines, and the inclusion of the information from various machines into the model can help in

better estimation of the survival probability.

Figure 4.5: Survival probability estimates using log partial hazard and Breslow estimator

The model is also assessed on the data collected from five machines and the analysis is sum-

marized in the Figures 4.6 and 4.7. The low Brier scores (< 0.25) of the model shown in Figure

4.6 at different timestamps on all the machines indicate the superior predictability at all possible

event times, and the overall performance of the model at all times is shown in Figure 4.7. The

model’s reliable ranking of the survival times is shown in Figure 4.8. As the Deepsurv model re-

sults outperformed the survival probability estimation from known-best methods, further analysis

is conducted to plot the hazardogram to demonstrate the change in survival probability when an

impending breakdown is evident to happen.
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Figure 4.6: Brier score of Deepsurv model

Figure 4.7: Integrated Brier score of Deepsurv model
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Figure 4.8: Accuracy of Deepsurv model

4.3.1 Hazardogram

A hazardogram, essentially a color plot is used to flag any impending breakdown based on the

estimated survival probability for an episode. The prediction horizon considered is up to 1800

seconds. The plot explains the variation of survival probability over the prediction horizon, and

the variability is explained for different episodes.

The hazardogram of machine 1 data is shown in Figure 4.9, and the code to plot the hazardo-

gram is provided in Appendix A.

The hazardogram plots for all of the 5 machines training and test data are included in Appendix

B.

The preliminary results from the hazardogram show that the model can capture some of the

impending breakdowns at the early stages of the fault propagation. Here, the fault propagation

is measured in terms of the survival probability shifting from a safe level to a critical level. The

threshold for the safe level is assumed to be 0.5, i.e., at any point, when the survival probability

shifts below 0.5, the instance is categorized as critical.
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Figure 4.9: Hazardogram

The dots overlaid on top of the color plot are the actual event times of that particular episode.

It is evident from the hazardogram that the Deepsurv model can flag an impending breakdown

at early stages in most cases when the survival probability drops below the set threshold of 0.5.

This leads us to the conclusion, that the Deepsurv can be used as a prognostic model to detect the

impending breakdowns from the historical timestamps at early stages of fault propagation.
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5. SUMMARY

5.1 Summary and Conclusions

In an attempt to analyze the fault propagation in manufacturing systems using modern-day

prognostic tools in conjunction with survival analysis, Deepsurv, a non-linear Cox proportional

hazards model, is used to forecast the state of a system to prevent any impending breakdowns. An

industrial plant floor with machinery integrated with IoT devices is considered for this case study.

The work consists of processing the IoT data logs into a survival data format, hyperparameter

tuning, and analyzing the risk predictions. The survival probability of a sample is estimated using

Breslow’s estimator, and the shift in the survival probability below a threshold is used to flag any

impending breakdowns through hazardogram.

The Deepsurv model trained on data from 5 machines shows that the model can learn the

fault propagation trend with a Brier score of less than 0.2 at all possible event times. This is also

validated with the high c-index on the data from corresponding machines. The shift in the survival

probability observed in the hazardogram suggests the model’s ability to flag any breakdowns in the

future at least 1800sec ahead. This provides a viable option to use the data logs from IoT devices

and predict the future state of a machine through historical patterns in the data.

5.2 Limitations

Although Deepsurv performed better with the assumption of no-ties while learning the fault

propagation trend, the analysis could be even better when advanced methods of handling tied

event times are employed. Deepsurv can generalize well only when a large sample is provided

while training, and this is a bottleneck for handling tied event times with some better-performing

methods like the Exact method as the computations are nearly infeasible.

5.3 Discussion

Earlier in the thesis, the Cox proportional hazards model and Kaplan-Meier estimator are dis-

cussed. However, the survival probability estimates of the Deepsurv model are compared only
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against Kaplan-Meier survival probability estimates. The motivation to compare the Deepsurv

estimates with that of Kaplan-Meier estimates goes back to the analysis presented in [5]. Here,

a new technique called manufacturing system-wide balanced random survival forest (MBRSF) is

developed, and its performance is compared against a variant of Cox proportional hazards model,

a balanced Cox proportional hazards model as well as Kaplan-Meier model. For all these models,

Kaplan Meier served as the baseline and hence to maintain consistency, the same baseline is used

to compare the Deepsurv model.

Initially, the Deepsurv model network is chosen to have 5000 input nodes in the first hidden

layer and 2500 in the second hidden layer, but the network’s ability to generalize turned out to be

poor, and the computations have become complicated with such an extensive network. Multiple

network architectures with hidden layer nodes in the range of 25 to 40 are experimented with to

test for the model’s ability to generalize, and the best output on a sample data is achieved with the

nodes listed in Table 4.2. The hazardogram plots for the training and test data of all five machines

are presented and discussed to address any overfitting/underfitting of the model in Appendix B.

5.4 Future Work

A more advanced way of handling tied event times, which, when employed, can improve the

identification of the fault propagation trends. Simultaneously, the network of the Deepsurv model

can be experimented with, and a more stable release of deep learning frameworks like PyTorch

or Tensorflow can be used instead of Theano, which has significantly less user community when

writing this thesis.
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APPENDIX A

SOURCE CODE

1 i m p o r t pandas as pd

2 i m p o r t numpy as np

3 from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler

4 from s k l e a r n . m o d e l _ s e l e c t i o n i m p o r t t r a i n _ t e s t _ s p l i t

5 from s k l e a r n . m e t r i c s i m p o r t b r i e r _ s c o r e _ l o s s

6 i m p o r t s e a b o r n as s n s

7 i m p o r t m a t p l o t l i b . p y p l o t a s p l t

8 %m a t p l o t l i b i n l i n e

9 i m p o r t d e e p _ s u r v

10 from d e e p s u r v _ l o g g e r i m p o r t DeepSurvLogger , Ten so rb oa rd Log ge r

11 i m p o r t u t i l s

12 i m p o r t v i z

13 i m p o r t l a s a g n e

14

15 # De f i n e h e l p e r f u n c t i o n s f o r b a s e l i n e e s t i m a t i o n u s i n g Bres low ’ s method .

16 d e f b a s e l i n e _ h a z a r d ( l a b e l _ e , l a b e l _ t , p a r _ h a z ) :

17 i n d _ d f = pd . DataFrame ( { "E" : l a b e l _ e , "T" : l a b e l _ t , " h " : p a r _ h a z } )

18 # group rows by d i s t i n c t e v e n t t i m e s ( T )

19 summed_ove r_dura t i ons = i n d _ d f . groupby ( "T" ) [ [ " h " , "E" ] ] . sum ( )

20 summed_ove r_dura t i ons [ " h " ] = summed_ove r_dura t i ons [ " h " ] . l o c [ : : − 1 ] . cumsum ( )

21 # Bres low ’ s e s t i m a t i o n o f b a s e l i n e h a z a r d

22 b a s e _ h a z = pd . DataFrame (

23 summed_ove r_dura t i ons [ "E" ] / summed_ove r_dura t i ons [ " h " ] , columns =[ "

b a s e _ h a z " ]

24 )

25 r e t u r n b a s e _ h a z

26

27 d e f b a s e l i n e _ c u m u l a t i v e _ h a z a r d ( l a b e l _ e , l a b e l _ t , p a r _ h a z ) :
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28 r e t u r n b a s e l i n e _ h a z a r d ( l a b e l _ e , l a b e l _ t , p a r _ h a z ) . cumsum ( )

29

30 d e f b a s e l i n e _ s u r v i v a l _ f u n c t i o n ( l a b e l _ e , l a b e l _ t , p a r _ h a z ) :

31 base_cum_haz = b a s e l i n e _ c u m u l a t i v e _ h a z a r d ( l a b e l _ e , l a b e l _ t , p a r _ h a z )

32 r e t u r n np . exp(−base_cum_haz )

33

34 # De f i n e h e l p e r f u n c t i o n t o c o n v e r t pandas d a t a f r a m e t o d e e p s u r v i n p u t .

35 d e f d a t a f r a m e _ t o _ d e e p s u r v _ d s ( df , e v e n t _ c o l = ’ Event ’ , t i m e _ c o l = ’ Time ’ ) :

36 # E x t r a c t t h e e v e n t and t ime columns as numpy a r r a y s

37 e = df [ e v e n t _ c o l ] . v a l u e s . a s t y p e ( np . i n t 3 2 )

38 t = d f [ t i m e _ c o l ] . v a l u e s . a s t y p e ( np . f l o a t 3 2 )

39

40 # E x t r a c t t h e p a t i e n t ’ s c o v a r i a t e s a s a numpy a r r a y

41 x_df = df . d rop ( [ e v e n t _ c o l , t i m e _ c o l ] , a x i s = 1 )

42 x = x_df . v a l u e s . a s t y p e ( np . f l o a t 3 2 )

43

44 # R e t u r n t h e d e e p s u r v d a t a f r a m e

45 r e t u r n {

46 ’ x ’ : x ,

47 ’ e ’ : e ,

48 ’ t ’ : t

49 }

50 # Read t h e d a t a o f machine2

51 df_m2 = pd . r e a d _ c s v ( ’ f i n a l _ d f _ m 2 . csv ’ )

52 # S t a n d a r d i z e t h e i n p u t p a r a m e t e r s

53 s c a l e r = MinMaxScaler ( f e a t u r e _ r a n g e = ( 0 , 1 ) )

54 n o r m a l i z e d _ d f = s c a l e r . f i t _ t r a n s f o r m ( df_m2 )

55 d f _ n o r m a l i z e d = pd . DataFrame ( d a t a = n o r m a l i z e d _ d f , columns=df_m2 . columns )

56 d f _ n o r m a l i z e d [ ’ t ime_2 ’ ] = df_m2 . t ime_2 . v a l u e s

57 d f _ n o r m a l i z e d [ ’ s t a t u s _ 2 ’ ] = df_m2 . s t a t u s _ 2 . v a l u e s

58 df_m2 = d f _ n o r m a l i z e d

59 # De f i n e a new column t o s t o r e t h e i n d e x v a l u e s

60 i n d e x = [ i f o r i i n r a n g e ( 1 , df_m2 . shape [ 0 ] + 1 ) ]
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61 df_m2 [ ’ i n d e x ’ ] = i n d e x

62 # S p l i t t h e d a t a s e t i n t o t r a i n i n g , v a l i d a t i o n , and t e s t d a t a

63 d f _ t r a i n , d f _ t e s t = t r a i n _ t e s t _ s p l i t ( df_m2 , t e s t _ s i z e = 0 . 1 5 , r a n d o m _ s t a t e =99 ,

s h u f f l e =True )

64 d f _ t r a i n , d f _ v a l i d = t r a i n _ t e s t _ s p l i t ( d f _ t r a i n , t e s t _ s i z e = 0 . 1 8 , r a n d o m _ s t a t e

=99 , s h u f f l e =True )

65 # S t o r e t h e i n d e x v a l u e s o f r e s p e c t i v e d a t a s e t s s e p a r a t e l y and drop t h e i n d e x

column

66 t r a i n _ i n d e x = d f _ t r a i n [ ’ i n d e x ’ ]

67 v a l i d _ i n d e x = d f _ v a l i d [ ’ i n d e x ’ ]

68 t e s t _ i n d e x = d f _ t e s t [ ’ i n d e x ’ ]

69 d f _ t r a i n = d f _ t r a i n . d rop ( ’ i n d e x ’ , a x i s =1)

70 d f _ v a l i d = d f _ v a l i d . d rop ( ’ i n d e x ’ , a x i s =1)

71 d f _ t e s t = d f _ t e s t . d rop ( ’ i n d e x ’ , a x i s =1)

72 df_m2 = df_m2 . drop ( ’ i n d e x ’ , a x i s =1)

73 # Conve r t t h e pandas d a t a f r a m e t o d e e p s u r v i n p u t

74 df_m2_ds = d a t a f r a m e _ t o _ d e e p s u r v _ d s ( df_m2 ,

75 e v e n t _ c o l = ’ s t a t u s _ 2 ’ ,

76 t i m e _ c o l = ’ t ime_2 ’ )

77 t r a i n _ d a t a _ d s = d a t a f r a m e _ t o _ d e e p s u r v _ d s ( d f _ t r a i n ,

78 e v e n t _ c o l = ’ s t a t u s _ 2 ’ ,

79 t i m e _ c o l = ’ t ime_2 ’ )

80 v a l i d _ d a t a _ d s = d a t a f r a m e _ t o _ d e e p s u r v _ d s ( d f _ v a l i d ,

81 e v e n t _ c o l = ’ s t a t u s _ 2 ’ ,

82 t i m e _ c o l = ’ t ime_2 ’ )

83 t e s t _ d a t a _ d s = d a t a f r a m e _ t o _ d e e p s u r v _ d s ( d f _ t e s t ,

84 e v e n t _ c o l = ’ s t a t u s _ 2 ’ ,

85 t i m e _ c o l = ’ t ime_2 ’ )

86 # De f i n e t h e o p t i m a l h y p e r p a r a m e t e r s o f t h e model

87 hyperpa rams = {

88 ’ L2_reg ’ : 1 5 . 0 ,

89 ’ ba tch_norm ’ : True ,

90 ’ d r o p o u t ’ : 0 . 1 ,
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91 ’ h i d d e n _ l a y e r s _ s i z e s ’ : [ 4 0 , 4 0 ] ,

92 ’ l e a r n i n g _ r a t e ’ : 1e−02 ,

93 ’ l r _ d e c a y ’ : 0 . 0 2 5 ,

94 ’momentum ’ : 1 . 0 ,

95 ’ n_ in ’ : t r a i n _ d a t a _ d s [ ’ x ’ ] . shape [ 1 ] ,

96 ’ s t a n d a r d i z e ’ : F a l s e

97 }

98 # I n s t a n t i a t e t h e d e e p s u r v model i n s t a n c e

99 model = d e e p _ s u r v . DeepSurv (∗∗ hyperpa rams )

100 exper iment_name = ’ mach ine2_da t a ’

101 l o g d i r = ’ . / l o g s / t e n s o r b o a r d / ’

102 l o g g e r = T en so rbo a r dL og ge r ( exper iment_name , l o g d i r = l o g d i r )

103 u p d a t e _ f n = l a s a g n e . u p d a t e s . amsgrad

104 n_epochs = 2000

105 # T r a i n t h e d e e p s u r v model

106 m e t r i c s = model . t r a i n ( t r a i n _ d a t a _ d s ,

107 v a l i d _ d a t a _ d s ,

108 n_epochs =n_epochs ,

109 l o g g e r = l o g g e r ,

110 u p d a t e _ f n = u p d a t e _ f n ,

111 v a l i d a t i o n _ f r e q u e n c y = 250)

112 # P r i n t t h e f i n a l m e t r i c s

113 p r i n t ( ’ \ n T r a i n C−Index : ’ , m e t r i c s [ ’ c−i n d e x ’ ] [ −1] )

114 p r i n t ( ’ \ n V a l i d C−Index : ’ , m e t r i c s [ ’ v a l i d _ c−i n d e x ’ ] [ −1] )

115 # P l o t t h e t r a i n i n g / v a l i d a t i o n c u r v e s

116 v i z . p l o t _ l o g ( m e t r i c s )

117 # P r i n t t h e c o n c o r d a n c e i n d e x on t h e d a t a s e t

118 p r i n t ( "C−i n d e x on t r a i n i n g d a t a : {} " . f o r m a t ( f l o a t ( model . g e t _ c o n c o r d a n c e _ i n d e x

(∗∗ t r a i n _ d a t a _ d s ) ) ) )

119 p r i n t ( "C−i n d e x on v a l i d a t i o n d a t a : {} " . f o r m a t ( f l o a t ( model .

g e t _ c o n c o r d a n c e _ i n d e x (∗∗ v a l i d _ d a t a _ d s ) ) ) )

120 p r i n t ( "C−i n d e x on t e s t i n g d a t a : {} " . f o r m a t ( f l o a t ( model . g e t _ c o n c o r d a n c e _ i n d e x

(∗∗ t e s t _ d a t a _ d s ) ) ) )
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121 p r i n t ( "C−i n d e x on t h e whole d a t a : {} " . f o r m a t ( f l o a t ( model . g e t _ c o n c o r d a n c e _ i n d e x

(∗∗ df_m2_ds ) ) ) )

122 # P r e d i c t t h e l o g p a r t i a l h a z a r d and save t h e p r e d i c t i o n s t o a . csv f i l e

123 np . s a v e t x t ( " r i s k _ p r e d _ t e s t _ m 2 . csv " ,

124 model . p r e d i c t _ r i s k ( t e s t _ d a t a _ d s [ ’ x ’ ] ) ,

125 d e l i m i t e r =" , " )

126 np . s a v e t x t ( " r i s k _ p r e d _ v a l i d _ m 2 . csv " ,

127 model . p r e d i c t _ r i s k ( v a l i d _ d a t a _ d s [ ’ x ’ ] ) ,

128 d e l i m i t e r =" , " )

129 np . s a v e t x t ( " r i s k _ p r e d _ t r a i n _ m 2 . csv " ,

130 model . p r e d i c t _ r i s k ( t r a i n _ d a t a _ d s [ ’ x ’ ] ) ,

131 d e l i m i t e r =" , " )

132 np . s a v e t x t ( " r i s k _ p r e d _ d f _ m 2 . csv " ,

133 model . p r e d i c t _ r i s k ( df_m2_ds [ ’ x ’ ] ) ,

134 d e l i m i t e r =" , " )

135 # Load t h e r i s k p r e d i c t i o n s

136 r i s k _ t r a i n = pd . r e a d _ c s v ( ’ r i s k _ p r e d _ t r a i n _ m 2 . csv ’ , h e a d e r =None )

137 r i s k _ v a l i d = pd . r e a d _ c s v ( ’ r i s k _ p r e d _ v a l i d _ m 2 . csv ’ , h e a d e r =None )

138 r i s k _ t e s t = pd . r e a d _ c s v ( ’ r i s k _ p r e d _ t e s t _ m 2 . csv ’ , h e a d e r =None )

139 r i s k _ d f = pd . r e a d _ c s v ( ’ r i s k _ p r e d _ d f _ m 2 . csv ’ , h e a d e r =None )

140 # Append t h e l o g p a r t i a l h a z a r d and p a r t i a l h a z a r d columns t o t h e d a t a s e t

141 d f _ t r a i n [ ’ l o g _ h a z ’ ] = r i s k _ t r a i n [ 0 ] . v a l u e s

142 d f _ t r a i n [ ’ p a r _ h a z ’ ] = np . exp ( d f _ t r a i n . l o g _ h a z )

143 d f _ t r a i n [ ’ i n d e x ’ ] = t r a i n _ i n d e x

144

145 d f _ v a l i d [ ’ l o g _ h a z ’ ] = r i s k _ v a l i d [ 0 ] . v a l u e s

146 d f _ v a l i d [ ’ p a r _ h a z ’ ] = np . exp ( d f _ v a l i d . l o g _ h a z )

147 d f _ v a l i d [ ’ i n d e x ’ ] = v a l i d _ i n d e x

148

149 d f _ t e s t [ ’ l o g _ h a z ’ ] = r i s k _ t e s t [ 0 ] . v a l u e s

150 d f _ t e s t [ ’ p a r _ h a z ’ ] = np . exp ( d f _ t e s t . l o g _ h a z )

151 d f _ t e s t [ ’ i n d e x ’ ] = t e s t _ i n d e x

152
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153 df_m2 [ ’ l o g _ h a z ’ ] = r i s k _ d f [ 0 ] . v a l u e s

154 df_m2 [ ’ p a r _ h a z ’ ] = np . exp ( df_m2 . l o g _ h a z )

155 # Save t h e u p d a t e d d a t a f r a m e s t o a . csv f i l e

156 d f _ t r a i n . t o _ c s v ( ’ t r a i n _ m 2 . csv ’ , i n d e x = F a l s e , h e a d e r =True )

157 d f _ v a l i d . t o _ c s v ( ’ va l id_m2 . csv ’ , i n d e x = F a l s e , h e a d e r =True )

158 d f _ t e s t . t o _ c s v ( ’ t e s t _ m 2 . csv ’ , i n d e x = F a l s e , h e a d e r =True )

159 df_m2 . t o _ c s v ( ’ df_m2 . csv ’ , i n d e x = F a l s e , h e a d e r =True )

160 # E s t i m a t e t h e b a s e l i n e h a z a r d e s t i m a t e s o f t h e d a t a u s i n g Bres low ’ s method

161 b a s e _ d f = pd . DataFrame ( )

162 b a s e _ d f [ ’ t ime ’ ] = df_m2 . t ime_2 . s o r t _ v a l u e s ( ) . un i qu e ( )

163 b a s e _ d f = b a s e _ d f . s e t _ i n d e x ( ’ t ime ’ , d rop = F a l s e )

164 b a s e _ d f [ ’ b a s e _ h a z ’ ] = b a s e l i n e _ h a z a r d ( df_m2 . s t a t u s _ 2 ,

165 df_m2 . t ime_2 ,

166 df_m2 . p a r _ h a z )

167 b a s e _ d f [ ’ base_cum_haz ’ ] = b a s e l i n e _ c u m u l a t i v e _ h a z a r d ( df_m2 . s t a t u s _ 2 ,

168 df_m2 . t ime_2 ,

169 df_m2 . p a r _ h a z )

170 b a s e _ d f [ ’ b a s e _ s u r v ’ ] = b a s e l i n e _ s u r v i v a l _ f u n c t i o n ( df_m2 . s t a t u s _ 2 ,

171 df_m2 . t ime_2 ,

172 df_m2 . p a r _ h a z )

173 haz = d i c t ( z i p ( b a s e _ d f . t ime , b a s e _ d f . b a s e _ h a z ) )

174 cum_haz = d i c t ( z i p ( b a s e _ d f . t ime , b a s e _ d f . base_cum_haz ) )

175 s u r v = d i c t ( z i p ( b a s e _ d f . t ime , b a s e _ d f . b a s e _ s u r v ) )

176 df_m2 [ ’ b a s e _ h a z ’ ] = df_m2 [ ’ t ime_2 ’ ] . map ( haz )

177 df_m2 [ ’ cum_base_haz ’ ] = df_m2 [ ’ t ime_2 ’ ] . map ( cum_haz )

178 df_m2 [ ’ b a s e _ s u r v ’ ] = df_m2 [ ’ t ime_2 ’ ] . map ( s u r v )

179 df_m2 [ ’ haz ’ ] = df_m2 . b a s e _ h a z ∗ df_m2 . p a r _ h a z

180 df_m2 [ ’ s u r v ’ ] = df_m2 . b a s e _ s u r v ∗∗ df_m2 . p a r _ h a z

181 # C a l c u l a t e t h e B r i e r s c o r e o f t h e model

182 b r i e r _ s c o r e = b r i e r _ s c o r e _ l o s s ( df_m2 [ df_m2 . t ime_2 ! = 1 8 0 0 ] . s t a t u s _ 2 ,

183 df_m2 [ df_m2 . t ime_2 ! = 1 8 0 0 ] . surv ,

184 p o s _ l a b e l =1)

185 round ( b r i e r _ s c o r e , 3 )
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186 # P r e p a r e t h e d a t a t o p l o t hazardogram

187 survp_m2 = pd . DataFrame ( )

188 survp_m2 [ ’ t ime ’ ] = df_m2 . i l o c [ : 1 0 0 0 0 ] . t ime_2

189 survp_m2 [ ’ p a r _ h a z ’ ] = df_m2 . i l o c [ : 1 0 0 0 0 ] . p a r _ h a z

190 f o r i i n survp_m2 . t ime . s o r t _ v a l u e s ( ) . u n i que ( ) :

191 survp_m2 [ i ] = b a s e _ d f . b a s e _ s u r v [ i ] ∗∗ survp_m2 . p a r _ h a z

192 a c t u a l _ t i m e _ m 2 = survp_m2 . t ime . v a l u e s

193 survp_t ime_m2 = survp_m2 . t ime . s o r t _ v a l u e s ( ) . u n iq ue ( )

194 survp_m2 = survp_m2 . drop ( [ ’ t ime ’ , ’ p a r _ h a z ’ ] , a x i s =1)

195 # Save t h e d a t a f o r hazardogram i n . csv f i l e s

196 survp_m2 . t o _ c s v ( ’ survp_m2 . csv ’ ,

197 i n d e x = F a l s e ,

198 h e a d e r = F a l s e )

199 pd . S e r i e s ( survp_t ime_m2 ) . t o _ c s v ( ’ survp_t ime_m2 . csv ’ ,

200 i n d e x = F a l s e ,

201 h e a d e r = F a l s e )

202 pd . S e r i e s ( a c t u a l _ t i m e _ m 2 ) . t o _ c s v ( ’ s u r v p _ a c t u a l t i m e _ m 2 . csv ’ ,

203 i n d e x = F a l s e ,

204 h e a d e r = F a l s e )

205 # P l o t t h e hazardogram

206 s u r v p _ a r r = s u r v p . T . v a l u e s

207 co lor_map = p l t . cm . get_cmap ( ’ j e t ’ )

208 r ev_co lo r_map = color_map . r e v e r s e d ( )

209 f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 1 6 , 1 0 ) )

210 g = s n s . heatmap ( s u r v p _ a r r , cmap = rev_co lo r_map )

211 g . s e t _ y l a b e l ( ’ P r e d i c t i o n Hor izon ’ )

212 g . s e t _ x l a b e l ( ’ Ep i sode Time ’ )

213 y_coun t = np . a r r a y ( r a n g e ( 0 , l e n ( s u r v p . columns . t o _ l i s t ( ) ) , 20) )

214 g . s e t _ y t i c k s ( y_coun t )

215 g . s e t _ y t i c k l a b e l s ( [ s u r v p . columns [ i ] f o r i i n y_coun t ] )

216 x_coun t = np . a r r a y ( r a n g e ( 0 , s u r v p . shape [ 0 ] , 20) )

217 g . s e t _ x t i c k s ( x_coun t )

218 g . s e t _ x t i c k l a b e l s ( [ ’ { : d} ’ . f o r m a t ( i +1) f o r i i n x_coun t ] )
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219 g . i n v e r t _ y a x i s ( )

220 p l t . s c a t t e r ( r a n g e ( s u r v p . shape [ 0 ] ) , a c t u a l _ t i m e , c o l o r = ’ k ’ )

221 p l t . show ( )
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APPENDIX B

HAZARDOGRAM PLOTS OF TRAINING AND TEST DATA

The hazardogram plots of training and test data of five different machines are plotted to measure

the model’s efficacy and check for any overfitting cases.

In all the cases described below, the model’s predictability is checked for higher risk values

and lower risk values, i.e., the edge cases. To achieve this, the training data and test data are

sorted according to the estimated log partial hazard, and the top 100 and the bottom 20 records are

considered for plotting the hazardogram.

Figure B.1: Hazardogram: Training data of machine 1

Figure B.1 and Figure B.2 show the hazardogram plots of the training data and test data of
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machine 1, respectively. The integrated Brier score of Deepsurv model at all available event times

of machine 1 data shown in Figure 4.7 indicates the model’s ability to classify the events reasonably

well. This is reflected in Figure B.1, where most of the episodes with an event in the time range

of 150 - 400 are correctly flagged based on the survival probability estimates. Additionally, the

episodes with low values of hazard tend to have a survival probability greater than 0.9. In a nutshell,

the Deepsurv model is able to flag the impending breakdowns reasonably well on the training data

of machine 1. The hazardogram on test data of machine 1 shown in Figure B.2 explains the

relatively poor ability to flag breakdowns for prediction horizons of over 1200 sec. This is because

the Brier score of the Deepsurv model on machine 1 tends to increase as the prediction horizon

reaches the censoring time as observed in Figure 4.6. Apart from those episodes with higher

prediction horizons, the Deepsurv model on machine 1 test data performed well on the records that

fall in the mid-range of the prediction horizon.

Figure B.2: Hazardogram: Test data of machine 1
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Figure B.3: Hazardogram: Training data of machine 2

Figure B.3 and Figure B.4 explain the hazardogram plots on machine 2 training data and test

data, respectively. The relatively low concordance index of the Deepsurv model on machine 2 data

shown in Figure 4.8 explains the imperfect ability to order the event times based on log hazard

predictions. This is also seen in the case of training data where the episodes that have a higher

prediction horizon tend to have a higher risk at the beginning of Figure B.3. This is also why

some of the episodes in the range 15 - 30 with a high prediction horizon have a higher risk of

breakdown. Simultaneously, the model can flag the events perfectly well that have a prediction

horizon in the range 400 - 1000. As seen on the test data in Figure B.4, the episodes that fall in

this range are flagged early in their fault propagation, and the least risky episodes tend to have a

survival probability of greater than 0.9.

Figure B.5 and Figure B.6 explain the hazardogram plots on machine 3 training and test data,

respectively. The Deepsurv model predictions on machine 3 data show similarities with machine 2
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Figure B.4: Hazardogram: Test data of machine 2

data, i.e., most mid-range prediction horizon episodes are flagged reasonably well with a threshold

set at 0.5. However, the Deepsurv model trained on machine 3 data tends to be inaccurate for

episodes with a higher prediction horizon. This could be explained with the IBS score shown in

Figure 4.7. Also, the model’s Brier score tends to increase with a greater prediction horizon, as

shown in Figure 4.6, which is in line with the poor behavior of the model observed in both Figure

B.5 and Figure B.6. Similar to other machine cases explained above, the model estimates the

survival probability greater than 0.9 for those episodes that have low-risk values.
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Figure B.5: Hazardogram: Training data of machine 3

Figure B.6: Hazardogram: Test data of machine 3
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Figure B.7: Hazardogram: Training data of machine 4

Figure B.7 and Figure B.8 explain the hazardogram plots on machine 4 training and test data,

respectively. The integrated Brier score of the Deepsurv model on machine 4 is the highest among

all the machines, and this is reflected in the survival probability estimates at different episode times

in Figure B.7 and Figure B.8. Also, the high Brier score at distinct event times, as shown in Figure

4.6, explains why some of the episodes with a prediction horizon greater than 1000 are incorrectly

flagged. Also, both the training and the test data contain most episodes with a prediction horizon

of 1800 sec, and the model is observed to generalize very poorly in such a case. In fact, an accurate

model should classify episodes with a prediction horizon near 1800sec with a survival probability

of greater than 0.8. This behavior is not observed in the Deepsurv model trained on machine 4

data, even though the trained model has a concordance index of 0.8.
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Figure B.8: Hazardogram: Test data of machine 4

Figure B.9: Hazardogram: Training data of machine 5
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Figure B.9 and Figure B.10 show the hazardogram plots of machine 5 training and test data,

respectively. The highest concordance index on the data is achieved from the model trained on

machine 5. However, the model’s ability to correctly order the event times is not observed in the

test data hazardogram plot. Also, the relatively high integrated Brier score shown in Figure 4.7

suggests that the model is not able to classify the episode times with a prediction horizon of above

1600 sec. This is a possible case where the model is overfitting on the training data, and the poor

performance of the model on test data suffices the statement.

Figure B.10: Hazardogram: Test data of machine 5

Breslow’s method of baseline estimation in this analysis does not take tied event times into

account. Also, the Deepsurv model is built with the assumption of no ties in the data. In summary,

the results from the hazardogram would have come out as expected when the tied event times are

accounted for in the analysis.

57


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	Motivation and Objective
	Outline

	Literature Review
	A Brief Overview of Survival Analysis
	Survival function
	Hazard function
	Censoring
	Common survival models
	Kaplan-Meier estimator
	Cox proportional hazards model

	Baseline hazard estimation

	Deep Learning
	Artificial neural networks
	Artificial neuron
	Artificial neural networks
	Training artificial neural networks

	Artificial neural network approach to survival analysis


	Deepsurv
	Overview of Deepsurv

	Case Study and Analysis
	Overview of the Dataset
	Implementation Details
	Hyperparameter tuning
	Model training

	Results
	Hazardogram


	SUMMARY 
	Summary and Conclusions
	Limitations
	Discussion
	Future Work

	REFERENCES
	APPENDIX Source Code
	APPENDIX Hazardogram plots of training and test data

