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ABSTRACT 

 

Degree day methods are used in the estimation of building energy consumption and 

climate classification for buildings (e.g. in ASHRAE Standard 169-2013, which is adopted in 

ASHRAE Standard 90.1-2016). This study, first assessed the effectiveness of the conventional 

degree days in estimating building energy consumption in different moisture regimes. The 

analysis was done by comparing the energy performance of the DOE/PNNL medium office 

prototype building models in the 801 locations in the U.S. The results revealed large variations in 

the annual energy consumption of the models in the different moisture regimes within each 

climate zone. Furthermore, large differences in the estimated energy savings by utilization of 

daylight were shown in different locations. In addition, detailed pairwise analyses were 

performed to analyze the large variation in the cooling or heating energy consumption in sites 

with similar Cooling Degree Days (CDD) or Heating Degree Days (HDD), respectively. The 

analysis revealed that the influential weather parameters that affected the building energy 

consumption were not fully accounted for in a conventional degree day method. In other words, 

the level of aggregation of the data in the conventional degree day method masks some of the 

informative characteristics of the outdoor dry-bulb temperature. 

To resolve these discrepancies, a split-degree day method was proposed to calculate the 

split-Cooling Degree Days (sCDD) and the split-Heating Degree Days (sHDD). The results show 

that in the regression models using the split degree days compared to the conventional degree 

days, the coefficient of determination of the estimations of the energy consumption increased for 

the total annual energy use (from 0.913 to 0.965), the heating energy use (from 0.891 to 0.981), 

the cooling energy use (from 0.979 to 0.982), and the fan energy use (from 0.383 to 0.722). 
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Similar results were shown for the models with higher thermal mass. The proposed method can 

be used for building energy consumption estimation, weather-normalized building energy 

savings calculation, and climate classification. Moreover, a new adjustment method was 

developed using the proposed split-degree day method that reduces the variations in the above 

code values in the performance compliance path in different locations from 14% to 2%. 
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CHAPTER I    

INTRODUCTION 

 

1.1. Background 

Buildings are responsible for a considerable amount of global energy consumption and 

consume a large portion of the electricity generated all over the world. Currently, a considerable 

portion of this electricity is generated by the combustion of the non-renewable fuels, which lead 

to increasing amounts of emissions that have been shown to contribute to air pollution and 

climate change (EIA, 2018). Therefore, building energy efficiency is vital to help reduce future 

energy budgets and the related environmental issues. 

Energy efficient buildings play an important role in national, statewide, and local energy 

policies. Building energy codes create an opportunity to reduce building energy use (Nelson, 

2012). The minimum building energy codes (e.g. the American Society of Heating, Refrigerating 

and Air-Conditioning (ASHRAE) Standard 90.1 and International Code Council (ICC)) provide 

minimum efficiency provisions for various climate zones. Overall, the stringencies of the 

minimum standards and codes increase in each new revision to step forward toward the long- 

term energy-efficiency plans for various climates. ASHRAE Standard 90.1-2016 (ASHRAE, 

2016) is the basis of most commercial codes in the U.S. (EPA, 2009). It provides the 

requirements for different climate zones mainly based on the analysis conducted using the 

prototype building energy simulation models (DOE, 2018). Besides the mandatory provisions, 

the requirements in Standard 90.1-2016 include either the prescriptive path provisions or the 

requisites for the performance path, which includes the Building Performance Factors (BPFs) 

that are updated in each version of the Standard 90.1 to assure a certain energy-efficiency level. 
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1.2. Motivation 

The tabulated requirements in the prescriptive path are separated for different climate 

zones based on degree days. The BPFs in the performance path are also based on the prototype 

models, in which the envelope configurations are identical within each climate zone. However, 

each climate zone may have different moisture regimes, which can significantly influence 

building energy consumption. 

A 2018 analysis conducted by the Pacific Northwest National Laboratory (PNNL) 

showed a 34.2% energy savings and energy cost savings for the buildings that meet the 

requirements of the ASHRAE Standard 90.1-2016 compared to ASHRAE Standard 90.1-2004 

(Liu et al., 2018). The energy savings analysis for ASHRAE Standard 90.1-2016  compared to 

the previous version (ASHRAE Standard 90.1-2013) showed a 7.9% source energy savings with 

an approximate 5.2% source energy savings for medium office buildings (U.S. Department of 

Energy, 2017). 

The analysis in the current study shows that the difference of the source energy 

consumption of the ASHRAE Standard 90.1-2016 medium office prototype models of different 

climate subtypes within one climate zone can vary up to 28%. The source energy savings of the 

ASHRAE Standard 90.1-2016 medium office prototype models versus the ASHRAE Standard 

90.1-2004 medium office prototype models in different locations within one climate zone can 

vary up to 7.5%, which is considerable compared to the 7.9% average energy savings from 2013 

to 2016 edition of the ASHRAE Standard 90.1. 

Furthermore, there are certain requirements in ASHRAE 90.1-2016, such as the 

implementation of daylight responsive controls, which are mandated for certain types of the 

building (e.g., office buildings) regardless of the climate zone of the proposed building. 
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However, the associated energy savings with the implementation of daylight responsive controls 

can vary considerably in different climate conditions. Furthermore, previous studies have 

included discussions about daylighting design strategies that point to the need to refine 

daylighting design criteria because not all climates benefit uniformly from daylighting systems 

(Konis, 2013). 

 

1.3. Objectives 

The objective of this research is to develop a new improved procedure for a climate-

based adjustment for code-compliant commercial buildings. The new procedure will be 

demonstrated using medium office prototype models that show that building energy loads in 

various moisture regimes (i.e., moist, dry, and marine) within each climate zone. The first task to 

resolve the current discrepancies in the predicted energy consumption of the different moisture 

regimes within each climate zone is to identify an improved climate indicator that captures the 

energy-related variations in different moisture regimes within each climate zone. Next, the 

adjustments for each location will then be demonstrated using the proposed new climate 

indicator applied to different locations within different climate zones and climate subtypes. 

 

1.4. Significance and Limitations of the Study 

This study is significant for the following reasons: 

 It illustrates the variations in the simulated energy consumption of code-

compliant, ASHRAE Standard 90.1-2016 medium office buildings in different 

moisture regimes. 
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 It reveals the energy savings related to daylighting in code-compliant, ASHRAE 

Standard 90.1-2016 medium office buildings in different climates and climate 

subtypes of the United States. 

 It discusses the deficiencies in the conventional degree day methods. 

 It develops a new, improved method, the split-degree day method, which 

overcomes some of the deficiencies in the conventional degree day methods1 and 

allows better climate classifications. 

 It proposes an adjustment procedure for the performance path of the ASHRAE 

Standard 90.1-2016 based on the new split-degree day method. 

The current study has the following limitations: 

 The analyses in this study were based on building energy simulation results using 

the EnergyPlus program, version 8.9.0. 

 This study only focused on the eight climate zones in the United States. 

 This study used the third version of Typical Meteorological Year (TMY3) 

weather files as the representative weather files. Hence, it assumes the TMY3 

weather file limitations2. 

                                                 

1 Examples of the deficiencies in conventional degree day methods includes not fully accounting for 

various influential weather-related parameters on building energy performance (e.g., humidity, wind, and solar 

radiation) and the significant dependence of the accuracy of the energy consumption estimated using the 

conventional degree days on the base-temperature. 
2 Examples of the limitations in TMY3 weather files include that a TMY3 weather file is a typical 

representation rather than the actual representation of the weather in a location in TMY3 and the higher priorities on 

certain parameters, such as solar radiation, in creating the representative TMY3 weather files results in less accurate 

representation of the weather file for other parameters, such as wind 
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 The analyses in this study were only applied to the Department of Energy (DOE) 

medium office prototype models that were used by the PNNL and U.S.D.O.E. to 

analyze Standard 90.1. 

 The improved method in this study is a modification of the degree day method, 

which ASHRAE uses to define the climate classifications in ASHRAE Standard 

169-2013, which is used in ASHRAE Standard 90.1-2016. 

 The analysis for daylighting in this study was restricted to the specifications of the 

DOE medium office prototype models and does not include other geometrical 

configurations, such as different shading, light-shelves, and/or dynamic glazing 

systems. 

 

1.5. Document Overview 

This dissertation is organized as follows: 

In Chapter I, the study background is provided as well as the study motivation and 

objectives, followed by the study significance and the limitations. 

In Chapter II, the literature review of the related materials is provided. This section 

includes the literature review of the building energy codes and standards, thermal and 

daylighting analysis and simulation tools, and different weather normalization methods. 

In Chapter III, the new methodology is explained. The methodology includes an 

illustration of the DOE prototype model, the procedure for simulation and analysis, and the 

procedure for weather normalization. Discussions related to the new split-degree day method are 

also provided. 
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In Chapter IV the first part of the results are presented. This chapter includes the results 

of the medium office prototype models in different locations. Then, it illustrates the impact of 

different influential, weather-related parameters on building energy consumption. Finally, the 

results of the impact of the variations due to the weather-related parameters on energy savings 

and commercial code-compliant procedure are illustrated. 

In Chapter V, the second part of the results are presented. This chapter includes the 

results of applying the improved method for building energy predictions as well as the results of 

applying the improved method in commercial, code-compliant office buildings. 

In Chapter VI, a summary of this study is presented. Furthermore, potential future studies 

that can expand the analysis in this study are mentioned.  
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CHAPTER II    

LITERATURE REVIEW 

 

2.1. Overview 

During the past decades, minimum building energy standards and codes (e.g. ASHRAE 

Standard 90.1 and IECC) have improved the energy-efficiency in the building sector by 

regulating the minimum efficiency requirements in buildings in the U.S. ASHRAE Standard 

90.1-2016 (ASHRAE, 2016) is the basis of most commercial building energy codes in the U.S. 

(EPA, 2009). In ASHRAE Standard 90.1, mandatory provisions are included as well as tabulated 

provisions in the prescriptive path or performance path. Each newer version of the ASHRAE 

Standard 90.1 delivers a more stringent version of the code when compared to previous versions. 

The stringencies are compared to 2004 edition of the ASHRAE Standard 90.1, which is the 

baseline building energy code. In the building energy code the user must choose one of the 

prescriptive or performance paths. To address the varying building requirements in different 

climate zones, the prescriptive path provides tabulated values to be followed for different climate 

zones. On the other hand, performance path specifies certain calculation procedures to assure 

that the proposed building has an improved energy performance compared to a reference case. 

Therefore, the performance path is more flexible and has been widely used in commercial 

building code-compliance. 

The building energy codes program of the U.S. Department of Energy (DOE) supports 

the Pacific Northwest National Laboratory (PNNL) to analyze the energy savings from code-

compliant buildings using DOE commercial prototype building models, which are provided for 

different climate zones and climate zone subtypes (DOE, 2018). The envelope configurations in 
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these models are identical for the prototype models within each climate zone. While an average 

reduction in building energy consumption can be achieved by the different requirements for 

different climate zones, the weather-related parameters can vary the building energy 

consumption to a considerable extent within each climate zone. This is mainly due to the fact 

that the degree days, which is the basis for the classification by the ASHRAE Standard 169-2013 

(ASHRAE, 2013a), does not fully account for the influence of the weather-related parameters on 

a building’s energy and daylighting performance. 

 

2.2. Daylighting 

Daylighting is the utilization of natural light in a building while considering visual 

comfort issues. Effective daylighting can offset supplemental artificial lighting loads in a 

building without causing visual discomfort in a space. Since artificial, electric lighting has one of 

the highest end-use, energy uses in commercial buildings, daylighting can be utilized as a means 

of energy savings in buildings. In office buildings in particular, daylighting can reduce the 

annual energy consumption to a considerable extent. In addition, recently there have been studies 

showing the significance of the impact of daylighting on building occupant comfort, health, and 

performance (Boyce, et al. 2003; Edwards and Torcellini, 2002). These studies showed that the 

utilization of the daylighting can improve occupants’ performance, health, and comfort, when 

compared to buildings without daylighting. 

However, although daylighting has positive effects on occupants and can save energy, 

care should be taken to make sure that it does not cause visual discomfort, such as glare (Nazzal, 

2000; Suk, et al. 2013; Wienold, 2009). Furthermore, energy savings in daylighting should be 

investigated carefully because it impacts the heating and cooling loads in a building as well as 
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lighting loads (Hee et al., 2015; Li and Lam, 2003). Daylight utilization can also reduce 

supplemental lighting loads, which can be a major internal heat source. Therefore, the use of 

daylighting can reduce the cooling load or increase the heating load depending on the 

orientation, fenestration layers, shading, climate zone, etc. Consequently, the use of daylighting 

requires careful assessment (Raji et al., 2015; Shen & Tzempelikos, 2013). 

The assessment of daylighting covers direct, diffuse, and reflected light from the sun, 

sky, and surroundings. The origins of daylight assessments goes back to the measurement of 

outdoor illumination in 1895 (Walsh, 1951). Over time, different methods have been proposed to 

assess daylighting performance in a building. These methods include initial graphical methods 

derived from mathematical formulae, such as Waldram diagrams (as cited in Hopkinson et al., 

1966), Pliejel’s pepper-pot diagrams (as cited in Hopkinson et al., 1966), Building Research 

Establishment (BRE) daylight protractors (as cited in Hopkinson et al., 1966), the Graphic 

Daylight Design Method (GDDM) method (Moore, 1985), as well as empirical methods 

(Hopkinson et al., 1966), quick calculation tools (Altman, 2005; Moore, 1985), and sophisticated 

daylighting analysis tools, such as Radiance (Ward and Rubinstein, 1988), Daysim (Reinhart & 

Herkel, 2000). 

 

2.2.1. Complex Fenestration Systems 

Complex Fenestration Systems (CFS) seek to improve the distribution of indoor 

daylighting, typically by collecting and redirecting the daylight (Basurto et al., 2017). Due to the 

two main functions of CFS, lighting redirection and sun shading, an appropriate CFS can 

decrease the risk of glare and overheating normally associated with a daylighting system. Hence, 

it can contribute to improving visual and thermal comfort (Basurto et al., 2017).  
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There are different types of CFS currently used to enhance the building daylight 

performance, including laser-cut panels, daylight redirecting film, and micro-structured 

daylighting systems. A laser-cut panel is a type of CFS, which is based on the principles of light 

deflection and internal reflection. A laser-cut panel is made up of arrays of laser cut plastic or 

acrylic sheets that produces internal reflecting interfaces in the material (Edmonds, 1993; Ruck 

et al., 2000). Daylight redirecting film is another CFS that uses microstructure prisms to redirect 

the light towards the ceiling (Padiyath, 2013; Padiyath et al., 2013). Micro-structured daylighting 

systems are another type of CFS that redirect incident solar radiation for angles of incidence 

between 15° and 65° from the horizontal surface. Therefore, micro-structured daylighting 

systems can broaden the range of solar altitude angles that it efficiently redirects (Klammt et al., 

2012). 

The daylight propagation through CFS typically requires the measurement of the 

photometric properties of the CFS (e.g., visible transmittance and reflectance) to be assessed by a 

gonio-photometer, that is capable of measuring the intensity of light at varying angles. Once 

these measurements are made, a RADIANCE (Ward, 1989) simulation using a Bi-directional 

Scattering Distribution Function (BSDF) can be carried out to assess the CFS daylight 

performance. 

 

2.2.2. Lighting Controls and the Daylighting Associated Energy Savings 

Energy savings associated with lighting controls have been the focus of different studies 

for more than 30 years (Williams et al., 2011). Automatic daylighting control is a lighting control  

system that generally dims the indoor electric lighting to a lower level or switches it off in 

response to the available daylighting levels measured by a photosensor. In order to determine 
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what information is available and what actions the system can take, a control strategy should be 

selected before choosing a photosensor (Bierman, 2007). 

One of the main distinctions between control strategies is whether the control is open-

loop or close-loop. In the open-loop control system the electric lighting is controlled by the 

outside daylight level and the photocell is not influenced by the lighting, which means there is no 

feedback3. On the other hand, in the closed-loop, the sensor is influenced by the light that it is 

controlling. Therefore, the feedback can differ based on the daylight sensor placement and its 

optics (Bierman, 2007). 

The current lighting control systems include on-off switched, bi-level, and continuous 

dimming systems, each of which can be chosen for the open- or closed-loop strategies. In the 

switched daylighting system, electric lights are turned-off when the daylight satisfies a minimum 

lighting level. In order to avoid frequent on-off behavior, the switched system uses hysteresis, 

which delays the system response (Lutron Co., 2014). The duration of the delay to turn the 

electric light off is controlled by the threshold of the minimum daylighting (e.g., 20% or more) 

(Bierman, 2007). A bi-level system is another daylighting control system similar to a switched 

system with the difference that in the bi-level system an intermediate state of 50% electric 

lighting can be used when the daylight availability exceeds 50% of the desired illuminance 

(Lutron Co., 2014). Finally, a continuous dimming system smoothly adjusts the electric lighting 

based on the available daylight level ensuring that the minimum desired illumination is met 

(Lutron Co., 2014). The effectiveness of a controller is defined as the “control effectiveness”, 

                                                 

3 The term feedback is used when the output influences the input in a system (Bierman, 2007). 
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which is the division of the actual savings over ideal achievable savings (Hackel and Schuetter, 

2013). 

 

2.3. Building Energy Standards and Codes 

Reducing the energy use in the building sector is one of the goals of minimum building 

energy standards as well as high-performance building energy standards. In general, building 

energy codes create an opportunity to reduce building energy use (Nelson, 2012). There are 

different minimum building energy codes and standards, such as ASHRAE Standard 90.1 and 

the International Energy Conservation Code. This section describes different compliance paths 

and discusses the related provisions to the daylighting in ASHRAE Standard 90.1-2016 

(ASHRAE, 2016). 

 

2.3.1. ASHRAE Standard 90.1 

ASHRAE Standard 90.1 is the basis of most of the non-residential (i.e., commercial) 

codes in the United States. Currently, there are several different compliance paths to determine if 

a candidate building meets the standard (ASHRAE, 2016). ASHRAE Standard 90.1-2016 

contains two paths for compliance, including: a prescriptive path; and performance path. There 

are two methods for performance path: the Energy Cost Budget (ECB) method, and the 

Performance Rating Method (PRM). Regardless of which path is chosen, the proposed designs 

must meet mandatory provisions, such as the provisions for Heating, Ventilation, and Air 

Conditioning (HVAC) system construction and insulation, equipment efficiencies, verification, 

and labeling requirements, etc. The three compliance paths in ASHRAE Standard 90.1-2016 are 

illustrated in Figure 1. 



 

13 

 

The prescriptive path specifies energy-related criteria for each building component that 

must be met. Therefore, compliance using the prescriptive path requires meeting all the specified 

provisions in the path. On the other hand, performance-based paths provide more flexibility to 

meet code compliance. The ECB method allows trade-offs of some of the prescriptive 

requirements not met through the use of more stringent requirements for other areas of the 

energy code. In order to comply with Standard 90.1-2016 in the ECB method, the total annual 

energy cost of the proposed design should not be greater than the total annual energy cost of the 

baseline design that meets the code. In addition to the ECB method, Appendix G of the Standard 

90.1-2016 provides the PRM, which is the second performance-based path for code compliance. 

Compliance using the PRM requires calculating a Performance Cost Index (PCI) using a whole-

building energy simulation that must be less than the target PCI that meets the ASHRAE 

Standard 90.1-2016 for the building type being considered (Rosenberg and Hart, 2016). 

 

 

Figure 1: ASHRAE Standard 90.1 Compliance Paths for Building Envelope (ASHRAE, 

2016) 
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Although the ECB method and PRM are both simulation-based methods, there are some 

differences between them. For example, in the ECB method, the specifications of the baseline 

design must match with the proposed building for all components meeting the prescriptive 

requirements. Whereas, in the PRM, there is one standard baseline design that meets the code, 

which is then compared against all the proposed designs (Rosenberg and Eley, 2013). While both 

the ECB method and PRM can demonstrate code compliance and both benefit from the 

simulated annual performance of selected components of the proposed design, the PRM has 

other advantages as well. One of the advantages of the PRM over the ECB method is that the 

baseline design remains the same for the minimum codes and the beyond code evaluations (i.e., 

ANSI/ASHRAE/ U.S. Green Building Council (USGBC)/ Illuminating Engineering Society 

(IES) Standard 189, the International Green Construction Code (IgCC), etc.). Also, in the PRM, 

the baseline design, which is based on ASHRAE Standard 90.1-2004, will remain the same and 

only the PCI will be updated (i.e., more stringent) in newer codes and above code rating systems 

(Rosenberg and Hart, 2016). Overall, performance paths provide more flexibility and have been 

widely-used in commercial building energy code compliance.  

 

2.3.2. Daylighting in ASHRAE Standard 90.1 

Besides the performance path, beginning with Standard 90.1-2010, the prescriptive path 

has mandatory requirements and credits for daylighting. These requirements are based on the 

analysis by the PNNL collaborated with Heschong Mahone Group (HMG) (Athalye et al., 2013). 

However, further investigations that account for all the different parameters are required to fully 

credit the daylighting saving potentials for different building configurations in different climates. 

As described in Section 4.2.1.1 of the ASHRAE Standard 90.1-2016 (ASHRAE, 2016), in order 
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to comply using the Prescriptive Method, provisions of the “Building Envelope”, “Heating, 

Ventilating, and Air Conditioning”, “Service Water Heating”, “Power”, “Lighting”, and “Other 

Equipment” shall be met. Among these provisions, “Building Envelope” (Section 5 of the 

ASHRAE 90.1-2016) and “Lighting” includes provisions, such as fenestration configurations 

and daylight responsive controls, which are related to daylight utilization. 

The fenestration provisions in ASHRAE Standard 90.1-2016 (Section 5.5.4) provides the 

requirements in the building envelope that highly impact thermal and daylighting performance of 

a building. The U-factor and SHGC indicate the thermal conductivity and the fraction of incident 

solar radiation admitted through a window, respectively, which identify the main thermal 

characteristics of the window. On the other hand, the Visible Transmittance (VT), which is an 

optical property of a window that shows the fraction of visible light transmitted through the 

window, can significantly impact the daylighting performance of a window. General provisions 

for fenestrations in ASHRAE 90.1-2016 include U-factor, SHGC, and VT/SHGC compliance 

requirements provided for different climate zones. Furthermore, there are provisions for the 

fenestration area, such as the maximum allowed Window-to-Wall Ratio (WWR) for vertical 

fenestration, maximum/minimum skylight area, and fenestration orientation. In general, 

fenestration area and orientation directly impact the heat transfer and the daylighting of a 

building. 

There are two types of daylight zones defined in ASHRAE Standard 90.1, primary 

sidelighted area and secondary sidelighted area. Within each space, the total primary sidelighted 

area is the combination of each primary sidelighted area, which is directly adjacent to vertical 

fenestration below the ceiling. The total secondary sidelighted area is the combination of each 

secondary sidelighted area, which is directly adjacent to primary sidelighted area. Figure 2 and 
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Figure 3 illustrate how to compute primary and secondary sidelighted area, respectively 

(ASHRAE, 2016). 

 

 

Figure 2: Computing the Primary Sidelighted Area. ©ASHRAE, www.ashrae.org. Original 

figure used with permission from 2016 ASHRAE Standard-90.1 (ASHRAE, 2016)  
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Figure 3: Computing the Secondary Sidelighted Area. ©ASHRAE, www.ashrae.org. 

Original figure used with permission from 2016 ASHRAE Standard-90.1 (ASHRAE, 2016) 

 

Besides the fenestration provisions, ASHRAE Standard 90.1-2016 requires specific 

lighting controls for different types of the buildings. These provisions include specific 
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requirements for office buildings As indicated in Section 9.2.1 of the ASHRAE Standard 90.1-

2016, the proposed lighting systems must comply with all “General”, “Mandatory Provisions”, 

“Submittals”, and prescriptive requirements in the Standard 90.1-2016. The prescriptive 

requirements must also comply with either Section 9.5, “Building Area Method Compliance 

Path”, or Section 9.6, “Alternative Compliance Path: Space-by-Space Method”. The “Building 

Area Method” is a simplified approach that determines the interior lighting power allowance 

while the “Space-by-Space Method” allows more flexibility. 

The required controls in office buildings related to daylighting include “automatic 

daylight responsive controls for sidelighting” with equal or greater than 150 W combined input 

power of general lighting completely or partially in the primary sidelighted areas and 300 W 

combined input power of general lighting in the primary and secondary sidelighted areas as 

indicated in Section 9.4.1.1, Interior Lighting Controls of the ASHRAE Standard 90.1-2016 

(ASHRAE, 2016). Similar requirements are established for the “automatic daylight responsive 

controls for toplighting” as indicated in Section 9.4.1.1, Interior Lighting Controls of the 

ASHRAE Standard 90.1-2016 (ASHRAE, 2016). Automatic control devices, which are capable 

of turning loads on and off without manual intervention, can reduce lighting load. Consequently, 

the reduction in the lighting load will impact the internal heat gain loads with possibly 

decreasing the cooling loads and increasing the heating loads. All of the lighting control 

functions listed in Table 9.6.1 of the ASHRAE Standard 90.1-2016 must be implemented for 

each affected space in the building (Figure 4). 

Additional lighting power allowance can be calculated using a control factor, which is 

based on the installment of the identified non-mandatory controls, “automatic continuous 

daylight dimming in secondary sidelighted area”. As indicated in Section 9.6.3 of the ASHRAE 
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Standard 90.1-2016 (ASHRAE, 2016), the “Additional Interior Lighting Power Allowance” can 

be calculated by multiplying the “Lighting Power Under Control” and the “Control Factor”. The 

“Lighting Power Under Control” is the total input Watts of all lamps being controlled using the 

controlled method, and the “Control Factor” is the value given in Table 9.6.3 of the ASHRAE 

Standard 90.1-2016 (see Figure 5) for the corresponding space type and control method. 

 

 

Figure 4: Lighting Power Density Allowance Using the Space-by-Space Method and 

Minimum Control Requirements Using Either Building Area Method or Space-by-Space 

Method in ASHRAE Standard 90.1-2016. ©ASHRAE, www.ashrae.org. Original table used 

with permission from 2016 ASHRAE Standard-90.1 (ASHRAE, 2016) 
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Figure 5: Control Factors Used in Calculating Additional Interior Lighting Power 

Allowance in ASHRAE Standard 90.1-2016, Table 9.6.3. ©ASHRAE, www.ashrae.org. 

Original table used with permission from 2016 ASHRAE Standard-90.1 (ASHRAE, 2016) 

 

2.4. Building Energy and Daylighting Assessment Tools 

There are different methods and tools developed to assess building energy and 

daylighting performance. This section includes a discussions about the related materials 

regarding the assessment of daylighting in a building as well as an overview of building energy 

assessment tools. 

 

2.4.1. Daylighting 

This section discusses the related materials regarding the assessment of daylighting in a 

building. It includes the discussions on different sky models, daylighting performance indicators, 

daylighting calculation methods, and daylighting simulation tools. 
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2.4.1.1.  Sky Models 

Illumination from the sky can impact interior lighting levels if properly designed daylight 

systems are installed and maintained. The measurement of the sky brightness and daylight 

illumination began with Kimball and Hand in 1922 (Kimball and Hand, 1922). In 1921, an 

equation was proposed by Pokrowski to calculate the luminance distribution of a clear sky 

(Hopkinson et al., 1966).  Later in 1942, an empirical formulae was proposed by Moon and 

Spencer to estimate the luminance distribution of an overcast sky, which was adopted by 

International Commission on Illumination (CIE) to calculate the overcast sky luminance 

distribution in 1955 (Hopkinson et al., 1966). In 1965, the CIE adopted the formulae proposed by 

Kettler for clear sky (Hopkinson et al., 1966). In the 1960s, a new formula to calculate the 

luminance distribution of fully overcast sky was proposed by McDermott and Gordon-Smith 

(Hopkinson et al., 1966). Finally, in 1993 Perez et al. (Perez et al., 1993) proposed new sky 

models for all clear, overcast and partly cloudy skies. 

 

2.4.1.2.  Daylighting Performance Indicators 

Daylight performance indicators specify the daylighting performance of a building. In 

order to comprehensively analyze daylighting performance of a building the available daylight 

should be assessed while considering the visual comfort criteria of the space being lite. There 

have been different methods proposed to analyze the daylighting performance of a building. 

These methods include the quantification of the available daylight, including the Daylight Factor, 

Daylight Autonomy, Useful Daylight Illuminance, etc., as well as the analysis of the visual 

comfort in a building, including British Glare Index, Discomfort Glare Index, CIE Glare Index, 

etc. 
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2.4.1.2.1. Daylight Factor 

In 1895, the Daylight Factor (DF) method was proposed by Trotter (Trotter, 1911) to 

evaluate the daylight availability of an interior space. The DF is defined as the ratio of daylight 

illuminance at an interior point in a space to the exterior illuminance under an unobstructed 

overcast sky. Hopkinson et al. (1966) mentions the advantages of the DF method as it can 

evaluate the daylighting performance of a room and also that it is in accordance with human 

perception, which is a relative perception rather than absolute. However, the DF method was 

proposed for an overcast sky. Therefore, sky conditions other than an overcast sky cannot be 

evaluated by DF method. Furthermore, because of the fact that in the overcast sky the luminance 

of the sky patches are radially the same with respect to the zenith, the DF is not sensitive to the 

orientation of the window. Furthermore, the DF is not an informative metric for glare. 

Later, the Coefficient of Utilization method was developed for analyzing daylighting by 

providing illuminations on a work-plane with given sky conditions (Brackett, 1983). However, 

the Coefficient of Utilization covers only a limited number of cases (Love and Navvab, 1994). 

Currently, different software have the capability to calculate a DF fast and efficiently. Although, 

the limitations with DF method should still be considered while using these tools. Finally, neither 

the DF method nor Coefficient of Utilization method accounts for glare. 

 

2.4.1.2.2. Daylight Autonomy 

In 1985, the Association Suisse des Electriciens, proposed the Daylight Autonomy (DA) 

metric as the first dynamic daylight assessment. The DA is an annual daylight metric, defined as 

the percentage of annual daytime hours that the illumination level at a given point in a space is 

above a specified illumination level. 
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As stated by Galatioto and Beccali (Galatioto and Beccali, 2016), the DA accounts for 

different variables, such as the time frame, spatial consideration, target illuminance and the 

location and climate. However, the DA does not provide for lighting values below the specified 

lighting threshold nor for lighting values over the lighting threshold. Besides the incremental 

method of using the DA calculation, which adds one point for daylight illuminance exceeding 

the required illuminance for the given time, the continuous Daylight Autonomy (cDA) is another 

variation for calculating DA, which accounts for the fractional levels of daylight (Rogers, 2006). 

 

2.4.1.2.3. Useful Daylight Illuminance 

Nabil and Mardaljevic (Nabil and Mardaljevic, 2005) developed the Useful daylight 

illuminance (UDI), defined as the annual occurrence of illumination across the work plane where 

all the illuminances are within the specified range. Although both DA and UDI consider a 

fraction of the annual daytime hours and the illumination level at a given point in a space for the 

daylighting assessment, there are major differences between these two metrics. Unlike the DA, 

which is developed for an overcast sky, the UDI is based on an annual absolute illuminance 

values predicted under realistic skies generated from standard meteorological datasets. 

Furthermore, a high-threshold for the illumination level at a given point in a space is included in 

the UDI. Therefore, the UDI considers the visual discomfort created by excessive daylight. 

 

2.4.1.2.4. Glare Indices 

Glare is the visual discomfort caused by excessive natural or artificial light. Insuring 

visual comfort is an indispensable part of daylighting assessment. Glare not only depends on 
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absolute luminance value, but also depends on the contrast and relative luminance (Carlucci et 

al., 2015). 

 

2.4.1.2.4.1. British Glare Index 

Petherbridge and Hopkinson developed the British Glare Index (BGI) empirical equation 

at the Building Research Station (BRS) (Petherbridge and Hopkinson, 1950). The BGI was 

developed for small light sources (Chauvel et al., 1982). Therefore, the BGI is better suited for 

artificial light sources. However, it cannot accurately evaluate the glare associated with windows 

because of the large area that covers. BGI also does not account for the effect of adaptation 

(Carlucci et al., 2015). 

 

2.4.1.2.4.2. Daylight Glare Probability 

The Daylight Glare Probability (DGP) is derived from the experimental studies on office 

buildings with the involvement of subjects (Guth, 1963; Luckiesh and Guth, 1949). According to 

the equation proposed by Wienold and Christoffersen (Wienold and Christoffersen, 2006), the 

DGP provides a comprehensive annual analysis of glare and is calculated based on the vertical 

illuminance at the eye, luminance of the source, solid angle of the source, and Guth position 

index, which is a function of the glare source position in the observer’s field of view and varies 

smoothly with the horizontal and vertical viewing angles (Ashdown, 2005). DGP considers 

occupants lighting perception during that time. However, different glare sources are not 

considered in DGP (Galatioto and Beccali, 2016). 
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2.4.1.2.4.3. Discomfort Glare Index 

Daylight Glare Index (DGI) is a version of the BGI that was originally developed to 

determine the discomfort glare from large artificial light sources based on the Cornell Formulae 

(Bellia et al., 2008). DGI and DGP are two of the most widely used indices for assessing daylight 

glare (McNeil and Burrell, 2016). However, DGI works only when the direct sunlight does not 

enter the space (Jakubiec and Reinhart, 2012) and is based on a human subject study performed 

in a large open office space. Also, DGI is unable to accurately evaluate the discomfort glare 

experienced by the participants (Hirning et al., 2014; Hirning et al., 2013). 

 

2.4.1.2.4.4. CIE Glare Index 

The CIE Glare Index (CGI) is used to evaluate the perceived degree of glare intensity. 

Einhorn (Einhorn, 1979) proposed this new index, later called the CGI, to fix the mathematical 

inconsistency of the BGI for multiple glare sources. The CGI calculation requires the 

illuminances due to both direct and diffuse lighting evaluated on the horizontal plane passing 

through observer׳s eyes (Carlucci et al., 2015). Navvab and Altland (1997) stated that the 

calculated CGI are correlated to human assessment of glare impression. However, the results 

have not been consistent in the related studies. For example, in an experimental study by Suk et 

al. (2017) it was concluded that the CGI tends to overestimate glare levels. 

 

2.4.1.2.5. Summary of Daylight Performance Indicators 

While most of the previous studies have focused on the assessment of daylight 

availability and glare, common daylighting performance indices generally do not consider the 

uniformity of the illuminance level of a room (Galatioto and Beccali, 2016). In addition, another 
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issue in daylighting assessment is the variations in available daylight. Finally, in addition to the 

previously discussed shortcomings, daylight assessment methods and daylight analysis tools can 

also impact the evaluation of daylighting performance. 

 

2.4.1.3.  Daylight Calculation Methods 

In general, in order to analyze the daylighting performance of a building, three 

components should be considered: the Sky Component (SC), the External Reflected Component 

(ERC), and the Internal Reflected Component (IRC). To date, to model the sky component four 

different methods have been developed, including: a clear cloudless sky model, an intermediate 

or partly cloudy sky model, a fully overcast sky model (Hopkinson et al., 1966), and the all-

weather sky model (Perez et al., 1993). Finally, there are also different daylighting calculation 

methods for the IRC. These methods include: the daylight factor method (Trotter, 1911; Walsh, 

1951), the daylight coefficient method (Tregenza and Waters, 1983), and the Ray-Tracing 

method (Whitted, 1979). 

 

2.4.1.3.1. Daylight Factor Method 

The Daylight Factor (DF) is a ratio of the illuminance at a point on a plane (e.g., vertical 

or horizontal) to the simultaneous illuminance on a horizontal exterior plane. The illuminance at 

the point on the plane is the summation of the SC, ERC, and IRC. Each of these three 

components can be calculated using different methods, including: graphical methods, non-

graphical methods or computational methods such as, the split-flux Method, the radiosity 

Method, etc. 
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2.4.1.3.2. Daylight Coefficient Methods 

The Daylight Coefficient (DC) method was proposed by Tregenza and Waters (Tregenza 

and Waters, 1983) to overcome the deficiencies of the DF method (Kota and Haberl, 2009). The 

issues with the DF method include the fact that the DF method cannot predict the illumination 

levels at a point on a plane for time varying sun and sky luminance distribution. To resolve this 

issue in the DC method, the sky is divided into small segments (Tregenza and Waters, 1983). 

Also, the DCs are calculated based on the space dimensions and surface characteristics.  Internal 

illumination is then calculated by multiplying the calculated DCs, sky luminance values and 

solid angle constants. In the DC method the illumination on the reference point on a plane 

accounts for the illumination of each segment. Therefore, unlike the DF method, the illumination 

level at the reference point can be predicted for different sky conditions using the DCs (Tregenza 

and Waters, 1983). In addition, in the DC method, the illumination on more than a single 

reference point can be predicted using Finite Element Methods (FEMs) (Kota and Haberl, 2009). 

 

2.4.1.3.2.1. Graphical Methods 

Graphical methods have been used to calculate the DF or a component of the DF. The 

Waldram diagram, proposed by Waldram in 1923, and the pepper-dot chart method, developed 

by Pleijel in 1954, are two graphical methods to calculate the SC of the DF (Hopkinson et al., 

1966). In addition, the dot-chart method by Turner in 1969 (as cited in Moore, 1985) and the 

Graphic Daylight Design Method (GDDM) by Millet in 1978 (as cited in Moore, 1985) are other 

graphical mehods that can be used to calculate the overall DF (Moore, 1985). 
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2.4.1.3.2.2. Non-graphical Methods 

There are several different non-graphical methods proposed to calculate the DF or a 

component of the DF. These methods include geometrical devices such as daylight protractor 

developed by Dufton in 1946 for an overcast sky and the daylight protractors developed by 

Bryan and Clasberg for clear sky in 1982, slide rulers, empirical formulae, such as the Lumen 

Method (Dresler, 1954), as well as the methods that use graphs, and tables (Hopkinson et al., 

1966). 

 

2.4.1.3.2.3. Split-Flux Method 

The split-flux method, proposed by Hopkinson et al. in 1954, is an empirical formula for 

calculating the IRC based on the formula proposed by Arndt (Hopkinson et al.1954). The split-

flux method splits the luminous flux coming into a space into two parts; with one coming from 

the sky and external obstructions passing downward through a horizontal plane that bisects a 

vertical window; and the flux coming up from the ground and external obstructions passing 

through a horizontal plane that bisects a vertical window. The summation of the flux passing up 

through the window plane is then multiplied by the reflectance of the surfaces above the 

horizontal line passing through the middle of the window. The summation of the flux passing 

down through the middle plane is multiplied by the average reflectance of the surfaces below the 

horizontal line passing through the middle of the window. In the next step, the unit sphere 

method is applied for the inter-reflection of light (Figure 6 and Figure 7). 
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Figure 6: Components of the DF (Bryan and Clear, 1980) 

 

 

Figure 7: The Split-Flux Concept (Bryan and Clear, 1980) 
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One of the drawbacks of the split-flux method is that it was proposed for spherical 

spaces. Consequently, it works fine for cube-shaped spaces. However, the further the geometry 

of the space deviates from a cube shape, the more the accuracy will decrease (Hopkinson et al., 

1966). In general, it is not recommended to use the split-flux method to calculate the DF of 

spaces with the depth/height ratio of more than three (Winkelmann and Selkowitz, 1985). The 

other limitation of the split-flux is that it cannot be used to analyze certain complex fenestration 

systems, such as light shelves (Baker, 1990). 

 

2.4.1.3.2.4. Radiosity Method 

In the radiosity method, the surfaces are divided into multiple patches, which are 

considered as Lambertian reflectors. In an iterative process, all the reflected fluxes between 

different patches are calculated using Lambert’s cosine law (Tsangrassoulis and Bourdakis, 

2003). A limitation of the radiosity method is that it assumes that all the surfaces are Lambertian. 

Therefore, it does not account for the specular reflectances in the IRC calculation. 

 

2.4.1.3.3. Ray-tracing Methods 

Ray-tracing is a computer graphic technique, first developed by Whitted in 1979 

(Whitted, 1979), which can be used to analyze the interreflections between Lambertian and 

specular surfaces. There are two different types of ray-tracing, forward ray-tracing and backward 

ray-tracing. In forward ray-tracing the rays are distributed from the light source in all directions. 

Then, based on the scene being viewed geometry characteristics and surfaces specifications, the 

light rays are scattered and dispersed. Finally, in the forward ray-tracing method a portion of the 

lights reaches the viewpoint through an image plane (Kota and Haberl, 2009; Oh and Haberl, 
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2016). Therefore, although accurate, the forward ray-tracing is computationally time consuming 

process. 

On the other hand, in 1986, the concept of the backward ray-tracing method was 

introduced by Arvo to generate images more efficiently (Arvo, 1986). Backward ray-tracing 

distributes the rays from the viewpoint toward the image plane and determines if they reach light 

sources after all interreflections and before the light has decayed. Therefore, backward ray-

tracing is a more efficient ray-tracing technique for daylight analysis. However, as the backward 

ray-tracing distributes the light rays from a specific viewpoint, the ray-tracing process should be 

repeated whenever the viewpoint of interest changes. 

 

2.4.1.3.4. Summary of Daylight Calculation Methods 

In this section the daylight factor, daylight coefficient, and the ray-tracing methods have 

been reviewed. In general, there are different methods to estimate the daylight performance of a 

building. The DF method can be used to assess building daylighting performance. However, 

there are limitations and assumptions that should be considered while using DF method. For 

example, the DF method is designed for a spherical geometry. Therefore, the inaccuracy in DF 

method calculation will increase in rooms with higher depth to height ratios. Another deficiency 

in the DF method is that the sky is only considered as fully-overcast. Furthermore, the DF 

method can not account for certain advanced fenestration systems such as light shelves. On the 

other hand, the DC method resolves some of the issues in the DF by accounting for different sky 

types and sunlight. However, in order to analyze the impact of fenestration systems more 

accurately, ray-tracing method can be used. The ray-tracing method accounts for both diffuse 



 

32 

 

and specular surfaces and can be considered as one of the most reliable methods for daylighting 

analysis. 

 

2.4.1.4.  Daylighting Simulation Tools 

Beginning in the 1960s a number of different daylighting simulation tools were 

developed. These daylighting simulation tools can be divided into different groups, including 

daylight factor tools and daylight coefficient tools. 

 

2.4.1.4.1. Daylight Factor Tools 

There are different tools that utilize the DF to assess the daylighting. This section 

provides the overview of the DF tools, including: DF Quick Tools, SUPERLITE, DOE-2, 

eQuest, EnergyPlus, and Ecotect. 

 

2.4.1.4.1.1. Daylight Factor Quick Tools 

Different tools has been developed that use the DF method for daylighting calculation, 

including quick tools such as Lumen_I, Lumen-II, Lumen-III, Lumen-Micro, Quicklite-I, and 

ENERGY. Lumen-I, the lighting simulation tool developed by DiLaura in 1968 is among the 

earliest computer packages that used the DF method. Lumen-II was later developed by DiLaura 

in 1970 (as cited in Altman, 2005) and in 1981, Lumen-III was developed by DiLaura and 

Kambich. Lumen-Micro version 1.0, the enhanced version of Lumen III, was released in 1983 

for use on a PC. Lumen-Micro 2000, which uses the CIE clear, partly cloudy or overcast sky 

models, is the latest version of this tool, which uses the radiosity approach to calculate the IRC. 

Lumen-Micro accounts for diffuse glazing, overhangs, and selected controls such as venetian 
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blinds, external obstructions, and sky lit surfaces inside and outside the room (Moore, 1985). 

Other quick tools that use the DF method include: Quicklite-I, developed by Bryan in 1981, and 

ENERGY, developed by DiLaura and the Lighting Technologies company (Moore, 1985).  

 

2.4.1.4.1.2. SUPERLITE 

SUPERLITE, developed by Selkowitz et al. (1982), is a program that can be used to 

predict the spatial distribution of the illumination in a building. SUPERLITE uses uniformly 

overcast; CIE standard overcast and CIE clear sky (Hopkinson et al., 1966) with or without sun 

for daylighting (Ubbelohde and Humann, 1998). SUPERLITE uses a modified radiosity 

algorithm for computing the IRC (as cited in Hitchcock and Carroll, 2003). 

 

2.4.1.4.1.3. DOE-2 

DOE-2 is a detailed hourly whole-building energy simulation. A daylighting module was 

added to DOE-2 in version 2.1B for determining the impact of daylighting strategies on the 

energy consumption of the building, which uses the following three stages: 

Stage I: In this stage a preprocessor calculates the DF, which will be used later in the 

hourly load calculation. DOE-2 integrates over the area of each window or skylight to obtain the 

contribution of direct light and reflected light from the walls, floors, and ceiling before reaching 

the one or two user-defined reference points. Parameters that are taken into account includes 

luminance distribution of the sky, geometrical properties (i.e., window size, slope, and 

orientation, sun control devices, such as drapes and overhangs, and external obstructions) and 

material properties (i.e., glass transmittance, and interior surface reflectances). 
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Stage II: In stage II for every hour that the sun is above the horizon, the illuminance of 

the window is calculated by multiplying the stored DF for the sun position and cloud cover of 

each specific hour, by exterior horizontal illuminance at that hour. If the glare control option is 

specified, the program automatically closes blinds or drapes, or uses window shading devices to 

reduce the glare below the specified comfort level. 

Stage III: In this stage, the lighting control determines the required electric lighting to 

satisfy the design illuminance considering the daylighting level. After this stage, the lighting 

electricity requirements will be transferred for thermal analysis. 

DOE-2 uses the split-flux Method (Bryan and Clear, 1980) to calculate the Internally 

Reflected Component (IRC). DOE-2 also calculates the daylight discomfort glare (Winkelmann, 

1983; Winkelmann and Selkowitz, 1985). The discomfort glare is calculated using the Cornell-

BRS “large-source” formulae (Hopkinson, 1970, 1972). In order to calculate the discomfort glare 

constant, in a similar fashion to the process of calculating the direct component of interior 

illuminance, the window surface is divided into rectangular subdivisions to calculate the average 

luminance of the window as seen from the reference point. The average illuminance from the 

window, and other parameters, including the solid angle subtended by the window with respect 

to the reference point, and solid angle subtended by the window, modified to take account for the 

direction of the occupant view. In addition, the luminance of the background area surrounding 

the window, is taken into account in the glare calculation process. The net daylight glare at a 

reference point, then, accounts for glare constant at the reference point due to each window. 
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2.4.1.4.1.4. eQuest 

eQuest (eQUEST, 2017) uses the DOE-2.2 or DOE-2.3 simulation engines, which are 

derivatives of the DOE-2.1E program, as the simulation engine. The daylight calculation method 

in eQUEST is similar to DOE-2.1E, which uses the split-flux method. Therefore, the benefits and 

limitations of using eQuest (DOE-2.2 and DOE-2.3) for daylighting analysis is similar to DOE-2. 

 

2.4.1.4.1.5. EnergyPlus 

The daylighting calculations in EnergyPlus can be performed using either the split flux 

method, which is derived from the daylighting calculation in DOE-2.1E and is described in 

Winkelmann and Selkowitz (1985), or DElight, a simulation engine for daylight and electric 

lighting analysis in buildings (EnergyPlus, 2016). DElight version 1.0 was proposed based on the 

DOE-2.1E daylighting algorithms (Hitchcock and Carroll, 2003) and uses the split-flux method. 

As stated by Hitchcock and Caroll (2003), the IRC calculation method in DElight daylighting 

analysis incorporated the radiosity method in version 2. Furthermore, in DElight version 2, the 

new algorithms for analyzing Complex Fenestration Systems (CFS) were implemented. The 

daylighting simulation engine in DElight version 2.0 was further enhanced compared to version 

1.0 through the implementation of the radiosity interreflection calculations, derived from 

SUPERLITE (Hitchcock and Carroll, 2003). 

 

2.4.1.4.1.6. Ecotect 

Ecotect can also be used to analyze the daylighting performance of a building. There are 

two approaches to analyze the daylighting performance of a building in Ecotect. One approach 

uses a built-in engine, which uses the split-flux method to compute the IRC and has three CIE 
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sky models—overcast, intermediate, and clear (Marsh, 2003). The built-in daylighting analysis 

module of Ecotect performs the analysis for a single day (Kota and Haberl, 2009). The other 

approach exports the geometry to a more sophisticated daylighting analysis tools, such as 

Radiance (Ward, 1989) and Daysim (Reinhart and Herkel, 2000). In this approach, Ecotect acts 

as an interface for Radiance and Daysim to model and visualize the results (Kota and Haberl, 

2009). 

 

2.4.1.4.2. Daylight Coefficient Tools 

Different tools have been developed to assess the daylighting performance of a building 

using Daylight Coefficients (DCs). This section provides an overview of the daylight coefficient 

tools, including the Radiance, Daysim, and ESP-r. 

 

2.4.1.4.2.1. Radiance 

Radiance, developed by Lawrence Berkeley National Laboratories (LBNL), is a hybrid 

finite element analysis program that uses Monte-Carlo techniques to compute the interreflection 

between specular surfaces in complex geometries using ray-tracing methods (Ward and 

Rubinstein, 1988). There are two Radiance sky generators. The Gensky program offers sky 

model types based on CIE standard (CIE, 2002). Besides the standard CIE overcast model, 

gensky can also generate the sun descriptions and sky brightness distributions for the CIE clear 

or intermediate skies. Another Radiance sky generator program is Gendaylit, which generates 

sky conditions such as overcast, intermediate, clear, etc. based on the Perez All-Weather model 

(Mardaljevic, 2000). 
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2.4.1.4.2.2. Daysim 

Daysim, (Reinhart and Herkel, 2000) is a Radiance-based program for estimating annual 

lighting and daylighting illuminance distribution. Daysim uses the Daylight Coefficient method 

and the Perez all-weather sky luminance model to calculate the illumination at a point in a space 

for the 8,760 hours of the year (Kota and Haberl, 2009). Daysim can be also used for simulating 

complex fenestration systems (CFS) and light-shelves. 

 

2.4.1.4.2.3. ESP-r 

ESP-r, initially developed in 1974, is a transient energy simulation system that can be 

used for different building performance analyses (Clarke et al., 1998). Energy and fluid flows 

within combined building and plant systems can be modeled considering control actions. 

The central Program Manager (PM) in ESP-r performs the daylighting analysis using 

Radiance. After the daylight component is determined by Radiance, the ESP-r control algorithm 

adds the artificial lighting component (Janak, 1997). 

 

2.4.1.4.3. Summary of Daylighting Simulation Tools 

This section provided a review of daylighting simulation tools. The daylighting 

simulation tools reviewed in this section were classified into daylight factor tools and daylight 

coefficient tools. The pros and cons of different daylighting simulation tool were discussed in 

this section. 

In a survey of one hundred and eighty five lighting simulation experts from 27 countries, 

it was determined that the complexity of tools and insufficient program documentation were the 

two main weaknesses of the current daylighting simulation programs currently in use for 
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daylighting simulations (Reinhart and Fitz, 2006). In the survey it was found that the usage of 

these tools were significantly higher in the later stages of design, such as in design development, 

compared to schematic design phase. Therefore, daylighting simulation tools are seldom used to 

inform design (Cutler et al., 2008). 

Daylighting simulation is a complex process. In general, the time consuming process of 

modeling  and simulation using Radiance was felt to be a hindrance by 50% of the survey 

respondents (Cutler et al., 2008; Reinhart and Fitz, 2006). On the other hand, easy-to-use 

software that performs both thermal and daylighting analysis have limitations in the daylighting 

analysis. For example, the DOE-2 and eQUEST uses the split-flux Method, which cannot model 

advanced fenestration systems, such as light shelves. On the other hand, the EnergyPlus program 

uses either the split flux or radiosity methods. Although the radiosity methid is an improvement 

over the split flux method, it also has limitations in diffuse interreflection calculation (Willmott 

and Heckbert, 1997). 

 

2.4.2. Building Thermal Assessment Tools 

Heat transfer in buildings involve non-linear heat flow through and among its 

components, including surfaces and volumes, which corresponds to a set of coupled differential 

equations with complex boundary and initial conditions (Birdsall et al., 1985). Detailed building 

energy simulation tools are used to solve the mathematical equations to simulate the dynamic 

behavior of the building (Birdsall et al., 1985). Over time, there have been different whole-

building energy simulation programs introduced to assist engineers/architects in calculating the 

energy consumption of proposed buildings. Programs such as TRNSYS (Klein, 1976), DOE-

2.1E (Winkelmann et al. 1993) and eQUEST/DOE-2.2 (Lawrence Berkeley National Laboratory 
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[LBNL] and James J. Hirsch & Associates [JJH] 1998), TRACE (Trance, 2010), and EnergyPlus 

(Crawley et al. 2001), are some of the most widely–used programs that have been applied in 

building energy analysis area. 

Today, such whole-building energy simulation tools are used to assess annual building 

energy consumption. Currently, there are different methods used in the detailed building energy 

simulation tools. These methods include: the Transfer Function Method (TFM) or Weighting 

Factor Method (WFM) (Cumali et al. , 1979) and the Heat Balance Method (HBM) for 

calculating time-varying cooling loads for energy analysis (Pedersen et al., 1997). However, in 

all the above tools there are limitations in the daylighting performance analysis procedures 

currently being used in detailed building energy simulation tools. These limitations include the 

limitations of the analysis methods as well as other limitations such as the indices, number of 

sensors, etc. that are used in the analysis. Consequently, in order to have an accurate 

comprehensive analysis of building thermal and daylighting performance, there is a need to 

utilize the most accurate tools for each analysis. 

 

2.4.2.1.  TRNSYS 

TRNSYS (TRaNsient SYstem Simulation) is a transient simulation program of HVAC 

and solar systems for multi-zone buildings that uses a modular structure (Klein, 2010). It has 

been available since 1975 and continues to be developed by an international collaboration of the 

United States, France, and Germany (Klein et al., 2018). TRNSYS is well suited to the detailed 

analyses of any system with the time-varying behavior (Klein et al., 2018). Furthermore, the 

source code of TRNSYS (the kernel and the component models) is publically available for all 
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users. This simplifies the extension of existing models to make them better fit a user’s specific 

needs (Klein et al., 2018). 

TRNSYS consists of two parts, an engine called the kernel and a library of components. 

The kernel reads and processes the input file, iteratively solves the system, determines the 

convergence, plots system variables, and provides utilities that determine the thermophysical 

properties, inverts matrices, perform linear regressions, and interpolate external data files. The 

TRNSYS library of components models the performance of each part of the system. TRNSYS 

models are constructed in such a way that users can modify existing components or write their 

own models, extending the capabilities of the environment (Klein et al., 2018). In addition, users 

can add custom components by creating new components, compiling them and linking them into 

an external Dynamic Link Library (DLL) (Solar Energy Laboratory-UWM et al., 2017). 

In the TRNBuild sub-program, where the detailed information about every zone of the 

building is described, the user specifies the building properties such as, the thermal 

characteristics, structural components, schedules, infiltration etc. In addition, fenestration 

systems can be chosen from the available TRNSYS library. Currently, in TRNSYS 18 (Klein et 

al., 2018), a model for simulating Complex Fenestration Systems (CFSs) has been developed and 

has been integrated into the multi-zone building model (Type 56) that allows the user to 

represent the bidirectional scattering of radiation that occurs in slat systems or honeycomb 

structures. These features enable the users to simulate the optical model based on BSDF, 

including up to six layers with different gas mixtures, modeling infrared transparent systems, 

natural convection around shading layers, and mechanical ventilation (up to two gaps). 
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2.4.2.2.  DOE-2 

The DOE-2 building energy analysis computer program allows architects and engineers 

to simulate the whole-building energy use under varying weather conditions (Birdsall et al., 

1985). The energy analysis in DOE-2 is performed in the four sequential steps: LOADS, 

SYSTEMS, PLANT, ECONOMICS.  Birdsall et al. (1985) described these steps: 

The LOADS program is defined as the energy rate (i.e., heating or cooling) that must be 

added or removed from a space (a user-defined subsection of a building) to maintain the pre-

defined set-point temperature in the space. The calculation of the cooling and heating loads of a 

space has two steps in DOE-2, including the calculation of the space heat gains or heat losses and 

the total space loads, which are calculated from the sum of the space loads. DOE-2 uses either 

pre-calculated or custom weighting factors together with transfer functions to calculate the 

dynamic heat conduction into or out of a space, which involve one dimensional dynamic heat 

transfer equations. DOE-2 uses triangular temperature pulses as excitation functions in the time-

series solution. The hourly simulation then uses these solutions, called “response factors”, to 

account for the heat gain or loss from the indoor and outdoor temperatures. 

The SYSTEMS program simulates HVAC systems that provide the hourly heating or 

cooling defined by the LOADS program. The interaction between the equipment and the 

envelope are calculated by the simultaneous solution of the space air-temperature weighting 

factor equation with the equipment controller relation. The calculated sensible and latent coil 

loads are then either passed to the PLANT program, or the energy conversion is simulated 

directly in SYSTEMS in the case of direct-expansion systems or packaged cooling equipment. 

The PLANT program simulates the primary hourly HVAC systems using empirically 

determined performance curves to determine the thermal performance of the equipment based on 
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the user-defined parameters, such as the part load, entering fluid temperatures, duct supply 

temperature, etc. The PLANT program also allows the users to define the time schedules and/or 

load ranges for every piece of equipment. 

The ECONOMICS program calculates the costs of the hourly energy consumed by each 

piece of equipment. The program provides various tariff or cost schedules so the user can 

evaluate the different costs of operations of the building system and plant equipments. 

ECONOMICS can also simulate the purchase or sale of the electricity that is generated at the 

building. Furthermore, the user can simulate the life-cycle costs of the building over a multi-year 

period using the ECONOMICS program. In general, DOE-2 is a widely used, whole-building 

energy simulation program that has been verified against other software programs and against 

field measurements on existing buildings (LANL, 1981). 

 

2.4.2.3.  TRACE 

TRACE 700 is a comprehensive analysis software for the energy and economic analysis 

of different architectural features, HVAC systems, HVAC equipment, building utilization or 

scheduling and financial options in a building. TRACE 700 was developed by the Trane 

company. In TRACE 700, zones divide the building to separate areas. Each zone contains one or 

more rooms. A room is the smallest space for calculating heating and cooling loads. The 

distribution of air to and from the conditioned spaces in the building is handled by the system. 

TRACE 700 includes more than 30 types of systems in five categories, including: variable 

volume, constant-volume mixing, constant volume non-mixing, heating only, and induction. The 

TRACE 700 Plant refers to the mechanical equipment that conditions the air in the conditioned 

spaces. Templates are also provided that can be used for applying a set of predetermined settings 
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for the different rooms. Also, Libraries include common design parameters for construction 

materials, equipment, base utilities, weather, and scheduling, which are mostly derived from the 

ASHRAE Handbook–Fundamentals or similar industry references (Trane, 2010). 

 

2.4.2.4.  EnergyPlus 

EnergyPlus is a whole-building energy simulation program designed for modeling and 

simulating buildings and HVAC equipment based on fundamental heat balance principles. Many 

of the simulation characteristics of EnergyPlus have been inherited from the BLAST (Building 

Loads Analysis and System Thermodynamics) (Hittle, 1977) and DOE–2 energy and load 

simulation tools, which were developed and released in the late 1970s and early 1980s. There 

have been improvements implemented in EnergyPlus such as the structure and simulation 

management, modularity (which enables established links to other popular simulation 

environments/components), integration of loads, systems, and plants, feedback from the HVAC 

system to the zone conditions etc. (US Department of Energy, 2015). 

One of the advancements of EnergyPlus over other programs is the integration of the 

simulation, which means, unlike sequential programs, such as BLAST and DOE-2, that all three 

parts of the building, systems, and plants, are solved simultaneously, which overcomes the 

unmatched loads in the sequential solution process. In the sequential solution, the process starts 

with a zone heat balance, which updates the zone conditions and determines the heating/cooling 

loads of the zone at all time steps. This information is then passed to the air-handling simulation 

where the system response is determined. However, if this system response does not resolve zone 

heating/cooling conditions, it is possible that the sequential process end up to unmatched loads. 

To decrease the unmatched loads issue in the sequential method, the system response should be a 
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well-defined function of the air temperature of the zone. However, in most situations, the air 

temperature of the zone is not the only influential parameter on system capacity and system 

capacity is dependent on outside conditions and/or other parameters of the zone (US Department 

of Energy, 2015). 

EnergyPlus overcomes this issue by integrating functional elements connected by loops, 

divided into supply and demand sides, using the Integrated Solution Manage (ISM). The ISM 

uses a successive substitution iteration using the Gauss-Seidell philosophy to continuously 

update the supply and demand in the integrated process (US Department of Energy, 2015). 

EnergyPlus Simulation Manager integrates different internal elements, including Surface 

Heat Balance Manager, Air Heat Balance Manager, Building Systems Simulation Manager, each 

of which is linked to different modules. Consequently, similar to other simulation programs, 

EnergyPlus consists of more than just an executable file. For example, the EP-Launch Program 

assists running the program in the Windows environment, which includes finding input files and 

storing or further processing the output files. There are also advanced techniques of executing 

the EnergyPlus program, including the advanced uses of the EP-Launch program, command line 

DOS commands, etc. (US Department of Energy, 2015). 

 

2.4.2.5.  Window Modeling Methods in Building Energy Simulation 

The solar transmittance, reflectance, and absorptance properties of the individual layers 

in a window impact the direct solar gains by the interior surfaces of the building that then effect 

building thermal loads. Furthermore, the visible transmittance of the glazing affects the interior 

daylight illuminance, which impacts the building energy consumption of buildings with daylight 

responsive controls. 
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In general, there are two modeling approaches for windows in building energy 

simulation. These approaches include a simplified method or the Transmittance, Absorptance and 

Reflectance (TAR) method (Mitalas and Stephenson, 1962) and a more detailed layer-by-layer 

approach, the Multi-Layer Window (MLW) method (Mitchell et al., 2017). 

The Energyplus simple window model4 allows users to model window components using 

simple performance parameters of the entire glazing system, the U-Factor, and the SHGC. This 

model converts the inputs into an equivalent single layer window (EnergyPlus, 2016). 

Building codes, standards, and voluntary code programs are developed that allow the use 

of a simplified model in the prescriptive path. The simplified window model in EnergyPlus only 

requires the U-Factor and SHGC indices. Energy codes and standards use these terms to provide 

a generic classification of the code-complied windows. However, as stated by Arasteh (2010), 

although there are beneficial points about using only the U-Factor and SHGC for window 

modeling, any method that uses only these two indices for modeling window components in 

building simulation software may provide less accurate results due to the following factors: 

 The directly transmitted solar radiation and solar radiation that is absorbed by the glass 

that flows inward are combined in the SHGC. However, the directly transmitted and 

absorbed solar radiation have different implications for space heating and cooling. In 

addition, different windows with the same SHGC usually have different ratios of 

transmitted to absorbed solar radiation. 

                                                 

4 This model can be accessed with “WindowMaterial:SimpleGlazingSystem” input object in EnergyPlus 

8.9.0. 
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 The SHGC is determined at a normal incidence angle. However, since angular properties 

of glazing varies with the number of layers, tints, coatings, and angle of incident, 

products with the same SHGC can have different angular properties. 

 U-factors vary with temperatures. However, the U-factors used in the simplified TAR 

window model is a fixed value. 

The U-value/SHGC window modeling method uses a simple “Block Model” concept to 

map a given U-value, SHGC, VT to the properties of a fictitious “layer” in EnergyPlus. The 

effective conductivity of this single layer model represents the whole window component using a 

given U-Factor. In addition, the solar transmittances at normal incidence are defined based on the 

given SHGC while for the non-normal incidence angles properties the angular properties of 

multiple glazing layers are used. 

In EnergyPlus the following steps are used to model the energy impacts of windows in 

whole buildings using the common window indices U-factor and SHGC (and optionally VT) 

(Arasteh, 2010): 

Step 1: EnergyPlus determines the glass-to-glass resistance by calculating interior and 

exterior film coefficients for every time step. 

Step 2: The thickness of the window will be determined by the U-factor. A 2 mm thick 

glass is used for U-factor of 7 W/m2-K and a 52 mm thick glass for U-factor of 1 W/m2-K. The 

fitted line interpolates glass thickness for the U-factors between 1-7 W/m2-k. For a U-factor 

greater than 7 W/m2-K, a thickness of 2 mm is selected for the glass. 

Step 3: The effective thermal conductivity is determined by dividing the thickness of the 

window by the resistance of “Representative Layer” (m2-K/W) under winter conditions (also 

referred to as the glass-to-glass resistance). 
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Step 4: A reasonable solar transmittance will be determined for a given SHGC using the 

LBNL International Glazing Data-Base (IGDB) (Lawrence Berkeley National Laboratory, 2019) 

considering that the SHGC equals solar transmittance plus the multiplication of the inward 

flowing fraction for the Representative Layer and the absorptance of the Representative Layer. It 

also differentiates the relationship between solar transmittance and SHGC for single and double 

glazing. 

Step 5: The front side, solar reflectance at a normal incidence angle is determined by 

knowing the sum of the solar transmittance, front side solar reflectance, at normal incidence, and 

the solar absorptance of the Representative Layer (As), which is equal to one. The SHGC is then 

divided by the inward flowing fraction for the Representative Layer (N), where N is calculated 

with the assumption that the absorbed solar radiation is absorbed in the center of the 

representative layer. The back side solar reflectance, at normal incidence is set equal to the front 

side solar reflectance at normal incidence. 

Step 6: The visible transmittance of the window is equal to the VT, if given. If VT is not 

given, it will be assumed that the visible properties for the Representative Layer are the same as 

the solar properties. 

Step 7: The angular properties of the glazing system are determined using the U-factor 

and SHGC that are used to determine the most probable window properties as well as the 

normalized transmission and reflectance. 

Step 8: The hemispherical or diffuse transmittance is calculated by integrating the 

transmittance at angles of incidence from 0 to 90 in EnergyPlus. 
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2.4.2.6.  Summary of Building Thermal Assessment Tools 

The analysis of the building energy consumption can be carried out using building energy 

simulation tools, where the outputs are translated into suitable quantifications of performance 

indicators (Malkawi and Augenbroe, 2003). The advancements in hardware and software have 

increased the use of building energy simulation tools in the building design analysis process. 

Depending on the purpose of the analysis, different building energy simulation tools, such as 

TRNSYS, DOE-2/eQUEST, EnergyPlus, TRACE, etc. can be used to analyze a building’s 

energy performance.  

 

2.5. Weather-Normalized Building Energy Comparisons 

Weather-related parameters influence building energy consumption. Therefore, different 

weather-normalization methods have been proposed over the years to account for the weather-

related varying parameters when comparing building energy consumption or savings. These 

methods can be used to either remove the inconsistencies of the weather parameters before and 

after the retrofit periods in the same location or they can be used to account for weather 

parameters when comparing the energy consumption in various climates, such as in 

benchmarking. This section discusses different weather-normalization methods, including the 

degree day methods, the Modified Utilization Factor (MUF) method used in EN-ISO 13790, the 

Climate Severity Index (CSI) method, and the Climate Coefficients for the U.S. Building Energy 

Asset Score, that can be used to adjust the building energy use in different climates. 
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2.5.1. Degree-Days 

The concept of degree days was initially proposed by Sir Richard Strachey (1878) in 

England to analyze a farmer’s crop growth, where the base temperature was determined 

according to the temperature required for the plant growth. In addition to the early discussions of 

the temperature sums above a critical threshold in agriculture (Hann, 1903), since the 1940s, the 

history of the snowmelt runoff (Braithwaite, 2011) also included the discussions of the 

application of degree days in the calculation of the snow and ice runoff (Wilson, 1941). It was 

not until the 1920s (ASHVE, 1933) in the United States when the American Gas Association 

used degree days for the first time in buildings (CIBSE TM41, 2006). This section includes an 

introductory discussion of the degree days and its different variations, the calculation of the 

balance-point temperature, and the calculation of building heating and cooling loads using 

degree days. 

Degree day methods are methods used in the energy analysis of the buildings that have 

constant internal energy use and HVAC equipment efficiency (ASHRAE, 2001). Consequently, 

Heating Degree-Days (HDD) and Cooling Degree-Days (CDD) measurements have been used to 

classify weather conditions with respect to the expected heating or cooling loads, respectively. In 

the degree day methods, the average daily temperature and a critical threshold is used to 

calculate the degree days (A more detailed discussion on the various degree day calculation 

methods is provided in Section 2.5.1.2). As stated by Day (CIBSE TM41, 2006), Strachey and 

the Meteorological Office in England initiated the use of daily minimum and maximum 

temperature measurements in the degree day calculation to facilitate the calculation process (The 

Meteorological Office, 1928). The use of minimum and maximum temperature was facilitated by 
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the invention and widespread use of the minimum–maximum thermometers, which simplified 

and standardized daily minimum–maximum temperature measurements.  

Besides the use of daily minimum and maximum temperature measurements in the 

degree day calculation, another approach is the arithmetic average daily method to calculate the 

degree day. In the arithmetic average daily method the average temperatures from different hours 

of a day is used to calculate the degree day. 

Various methods have also been proposed to calculate degree days based on the monthly 

temperatures. The monthly mean temperature is one of the simplest methods to estimate degree 

days. It is calculated by dividing the difference between the base temperature and monthly mean 

temperature by the number of the days in the month (Hitchin, 1981). However, it may not fully 

represent the data that is available in smaller time interval measurements. Also, the hourly data 

may not be available for long, continuous period of time for a given location. Several methods 

have been proposed for more accurate estimations of the degree days based on the monthly data. 

For example, Thom’s method can be used to estimate the mean values of the heating degree days 

that are below the base temperatures (Thom, 1954a) and above base temperatures for cooling 

degree days (Thom, 1966) using the monthly averages air temperature, standard deviations, and 

empirical correction factors (Thom, 1954b). Thom’s procedure assumes that the daily mean 

temperature is normally distributed within the month (Hitchin, 1983). The empirical term in 

Thom’s method varies with the standard deviation of the normal distribution of the daily mean 

temperatures within the month. 

Similarly, Steadman proposed a method to estimate the degree-days based on the average 

monthly temperature and the standard deviation of the temperature (Steadman, 1978). Compared 

to Thom’s method, Steadman's method does not use empirical correction factors. Another 
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method is the Choffe's method, in which the degree day is estimated using the average and 

minimum temperature in the period of interest. Schoenau–Kehrig’s monthly mean temperature 

method (Schoenau and Kehrig, 1990) is also a widely adopted method to calculate monthly 

degree days using the number of days in the month, the difference between base temperature and 

monthly mean temperature, and the standard deviation of the daily mean temperature. Other 

studies have analyzed the relationship of the degree days and the annual mean temperature and 

standard deviation of monthly mean temperature to calculate degree days for low resolution 

weather data. In addition, Mourshed (2012) proposed non-linear regression models to estimate 

HDD and CDD based on the annual mean temperatures. In this method, he found the accuracy of 

the estimation can be increased by including the standard deviation of monthly mean temperature 

and the latitude in the calculation. 

 

2.5.1.1.  Balance-Point Temperatures in Degree-Day Calculations 

In the degree day calculation, the critical threshold is often called the balance-point 

temperature, Tb, which is defined as the outdoor temperature at which the total heat loss, qgain, 

equals the heat gain from various sources, including solar gain and internal heat gains 

(ASHRAE, 2001). Therefore, typically, the base temperature is lower than the thermostat set-

point since the internal heat gain is considered in the determination of the base temperature 

(CIBSE TM41, 2006), which lowers the ambient temperature that signifies the onset of heating. 

The qgain can be calculated using equation 2.1. 

 

𝑞𝑔𝑎𝑖𝑛 = 𝐾𝑡(𝑇𝑖 − 𝑇𝑏) (2.1)  
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where, Kt is the total heat loss coefficient of the building. By rearranging equation 2.1, the 

balance-point temperature can be calculated using equation 2.2. 

 

𝑇𝑏 = 𝑇𝑖 −
𝑞𝑔𝑎𝑖𝑛

𝐾𝑡
 (2.2)  

 

 

Determination of the base temperature depends on various parameters, including the 

building heat loss coefficient, the thermal capacity, infiltration, and the internal heat gains. 

However, for the most part, these influential parameters vary during a day. For example, the heat 

gains in a space are not always constant for most buildings. In addition, the indoor temperature 

can be controlled by thermostat setback controls, which result in varying indoor temperatures 

during the day. In the case of these varying parameters, the average values of these parameters 

can be used to determine the base temperature (CIBSE TM41, 2006). However, the 

intermittencies of various parameters (some parameters may have different daily periodicities) 

and the thermal storage effect in a building can make the degree day method less accurate in 

representing the dynamic heat transfer between a building and its surrounding. Consequently, the 

uncertainty in the estimation of the energy consumption increases when one decreases the time 

scale (Day and Karayiannis, 1999a). Therefore, different methods have been proposed to account 

for the variability of solar gains, the effect of building mass, and the different aspects of heating 

system control and performance. These methods try to account for the variabilities in internal 

and solar gains and variable part load ratios using utilization factors (Hitchin, 1990) as well as 

calculating the degree days with varying Tb is also used. 
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Various methods have been proposed to determine the base temperatures. These methods 

vary based on the calculation methods for Tb, Ti, and qgain. For example, daily base methods use 

average daily values for Ti and qgain. There are two variations for the daily base methods with 

different definitions for Tb, which can be either average daily or, in the case of varying set point 

temperatures during a day, the desired indoor temperature during occupied hours (Knight and 

Cornell, 1958). In a similar fashion to the daily base methods, there are monthly base methods, 

where the Tb and qgain are average monthly values. In the monthly methods, the Ti can also be 

determined using either the average monthly value or the desired indoor temperature during 

occupied hours (Day and Karayiannis, 1999a). 

The hourly-based methods are another approach that uses hourly values for Tb and qgain. 

The Ti in the hourly methods, however, has three variations, including: the hourly value; the 

desired indoor temperature during occupied hours; or the average daily value. In general, in 

many cases in the hourly methods, the assumption of instantaneous response to the heat gains 

ignores the thermal storage effects in the building. 

In cases where the desired indoor temperature during occupied hours is used for Tb, 

correction factors are needed to account for the unoccupied periods (Day and Karayiannis, 

1999a). In the previous literature several studies have developed correction factors. However, the 

use of average indoor temperature to determine the base temperature is more reliable than 

applying correction factors that require additional measurements. 

In practice, the mean indoor temperature, the magnitude of heat gains, and the heat loss 

coefficients are not known for a given building and have to be estimated, which may increase the 

uncertainties. The previous studies includes methods to estimate the base temperature for heating 

and cooling degree days in different locations using regression models (Bakirci et al. 2008; 
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Büyükalaca et al. 2001; Idchabani et al. 2015; Ihm et al. 2014; Indraganti and Boussaa, 2017; 

Lee et al. 2014; Papakostas and Kyriakis, 2005). 

 

2.5.1.2.  Degree-Day Calculation Methods 

There are different methods that have been proposed to calculate degree days. This 

section describes the degree day calculation methods, including the Mean Daily Temperature, the 

Mean Degree Day method, the Meteorological Office (MO) equation, Variable Base Degree Day 

(VBDD) method, and the degree day estimation methods based on monthly temperatures. 

 

2.5.1.2.1. Mean Daily Temperature 

In the Mean Daily Temperature method, the average daily temperature is used to 

calculate the degree day. The HDD for each day is calculated by subtracting the mean daily 

temperature from the base temperature for the HDD, if it is a positive value. Similarly, the CDD 

for each day is calculated by subtracting the base temperature for CDD from the mean daily 

temperature, if it is a positive value.  Figure 8 shows an example for the HDD calculation using 

Mean Daily Temperature method. The daily HDD in the Mean Daily Temperature method can 

be calculated using equation 2.3. 
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Figure 8: Degree Day Calculation Using Average Daily Temperature 

 

𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − �̅�𝑜)
+

 (2.3) 

 

where, Tbase,HDD is the base temperature for HDD, which is typically assumed to be 18⁰C, �̅�𝑜 is 

the average daily outdoor air temperature. The positive sign denotes that only positive values 

should be summed. 

Similarly, equation 2.4 shows how to calculate CDD in the Mean Daily Temperature 

method. 

 

𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = (�̅�𝑜 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)
+

 
(2.4) 

 

where, Tbase,CDD is the base temperature for CDD, which is typically assumed to be 10⁰C. 
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As shown in equation 2.5, there are two different approaches to calculate �̅�𝑜. It can be either 

calculated using the daily maximum and minimum temperature or it can be the average daily 

temperature. 

 

�̅�𝑜 =

{
 
 

 
 
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
, 𝐷𝑎𝑖𝑙𝑦 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 −𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 

∑ 𝑇𝑜,𝑛
24

𝑛=1

24
, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 
(2.5) 

 

where, Tmax is the maximum daily outdoor temperature, Tmin is the minimum outdoor daily 

temperature, and To,n is the outdoor temperature at hour n of a day. 

The annual sum of the HDD and CDD can then be calculated using equations 2.6 and 2.7, 

respectively, for the daily minimum-maximum approach, and with equations 2.8 and 2.9, 

respectively, for the daily average approach. 

 

𝐻𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙 =∑{𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − [(𝑇𝑖,𝑚𝑎𝑥 + 𝑇𝑖,𝑚𝑖𝑛) 2)⁄ ]}
+

365

𝑖=1

 
(2.6) 

 

where, Tbase,HDD is the base temperature for HDD, Ti,max is the maximum outdoor temperature at 

day i of the year, and Ti,min is the minimum outdoor temperature at day i of the year. 

 

𝐶𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙 =∑{[(𝑇𝑖,𝑚𝑎𝑥 + 𝑇𝑖,𝑚𝑖𝑛) 2)⁄ ] − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷}
+

365

𝑖=1

 
(2.7) 
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where, Tbase,CDD is the base temperature for CDD 

𝐻𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙 =∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
∑ 𝑇𝑜,𝑖,𝑛

24

𝑛=1

24
)

+365

𝑖=1

 (2.8) 

 

where, To,i,n is the outdoor temperature at hour n of day i of the year. 

 

𝐶𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙 =∑(
∑ 𝑇𝑜,𝑖,𝑛

24

𝑛=1

24
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+365

𝑖=1

 (2.9) 

 

2.5.1.2.2. Mean Degree-Day 

The calculation of degree day using the Mean Degree-Day method requires calculating 

the Heating Degree Hours (HDH) or Cooling Degree Hours (CDH) and then taking the average 

of these values for each day. Figure 9 shows an example of the calculation of the HDH. The 

average HDH is the HDD for that day in the Mean Degree-Day method.  

 

 

Figure 9: HDH Calculation 
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The HDDdaily in the mean degree day method can be calculated using equation 2.10: 

 

𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = (1 24⁄ ) ∙∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑜,𝑛)
+

24

𝑛=1

 
(2.10) 

 

where, Tbase,HDD is the base temperature for HDD, which is typically assumed to be 18⁰C, 𝑇𝑜,𝑛 is 

the outdoor air temperature in hour n. The positive sign denotes that only positive values should 

be summed. 

Similarly, equation 2.11 shows how to calculate CDD in the mean degree day method. 

 

𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = (1 24⁄ ) ∙∑(𝑇𝑜,𝑛 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)
+

24

𝑛=1

 
(2.11) 

 

where, Tbase,CDD is the base temperature for CDD, which is typically assumed to be 10⁰C. 

The annual HDD and CDD can then be calculated using equations 2.12 and 2.13, respectively. 

 

𝐻𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙 = (1 24⁄ ) ∙∑∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑜,𝑖,𝑛)
+

24

𝑛=1

365

𝑖=1

 
(2.12) 

 

𝐶𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙 = (1 24⁄ ) ∙∑∑(𝑇𝑜,𝑖,𝑛 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)
+

24

𝑛=1

365

𝑖=1

 
(2.13) 
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2.5.1.2.3. The Meteorological Office Equations 

The Meteorological Office (MO) equations, also called the UK Meteorological Office 

equations, ‘McVicker’, or the ‘British Gas’ formulae, is an approximation for the equations 2.14 

and 2.15 using daily maximum and minimum temperature (The Meteorological Office, 1928). 

 

𝐻𝐷𝐷 = ∫(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑜)𝑑𝑡 (2.14) 

 

𝐶𝐷𝐷 = ∫(𝑇𝑜 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)𝑑𝑡 (2.15) 

 

The Meteorological Office equations for HDD and CDD are represented in Figure 10 and 

equations 2.16 and 2.17 respectively. 

 

 

Figure 10: Representation for the Meteorological Office (MO) Equations 
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{
 
 
 
 

 
 
 
 

𝑖𝑓 𝑇𝑚𝑎𝑥 ≤ 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 → 𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 0.5(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)
 

𝑖𝑓 𝑇𝑚𝑖𝑛 < 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷; 𝑎𝑛𝑑 (𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷) < (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑚𝑖𝑛) →

𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0.5(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑚𝑖𝑛) − 0.25(𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷)
 

𝑖𝑓 𝑇𝑚𝑎𝑥 > 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷; 𝑎𝑛𝑑 (𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷) > (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑚𝑖𝑛) →

𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0.25(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑚𝑖𝑛)
 

𝑖𝑓 𝑇𝑚𝑎𝑥 ≥ 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 → 𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0

 (2.16) 

 

 

{
 
 
 
 

 
 
 
 

𝑖𝑓 𝑇𝑚𝑖𝑛 ≥ 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷  → 𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0.5(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛) − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷
 

𝑖𝑓 𝑇𝑚𝑎𝑥 > 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷; 𝑎𝑛𝑑 (𝑇𝑚𝑖𝑛 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷) > (𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷 − 𝑇𝑚𝑖𝑛) →

𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0.5(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑚𝑖𝑛) − 0.25(𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷)
 

𝑖𝑓 𝑇𝑚𝑖𝑛 < 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷; 𝑎𝑛𝑑 (𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷) < (𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷 − 𝑇𝑚𝑖𝑛)  →

𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0.25(𝑇𝑚𝑎𝑥 − 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)
 

𝑖𝑓 𝑇𝑚𝑎𝑥 ≤ 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷 → 𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦 = 0

 (2.17) 

 

Similar to the previous methods, the annual HDD and CDD using the Meteorological 

Office equations can be calculated by summing the HDD and CDD for the 365 days of the year. 

 

2.5.1.2.4. Variable Base Degree Day (VBDD) 

The standard 10⁰C for cooling base temperature and 18⁰C for heating base temperature 

may not represent the actual temperatures, above or below which the building requires cooling or 

heating, respectively. Therefore, a Variable Base Degree Day method (VBDD) was developed. 

The VBDD method determines the heating and cooling loads by first determining the appropriate 

base temperature for each building. VBDD requires determining the base temperature that 

appropriately represents the cooling and heating requirements of a building. 
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The PRInceton Scorekeeping Method (PRISM) was one of the earliest VBDD methods. 

The application of different variations of PRISM to heating and cooling models of electrically 

heated houses was studied by Stram and Fels (Stram & Fels, 1986). Results showed reliable 

savings estimations using the PRISM model. The VBDD method has been widely used to 

determine appropriate base temperatures (Bakirci et al., 2008; Shanmuga Priya Selvanathan & 

Joanna Migdalska, 2015), calculate building energy loads (Degelman, 1985), and estimate the 

building energy savings (Wortman & Christensen, 1985). The VBDD method is also included in 

the ASHRAE Inverse Model Toolkit (IMT) although the algorithm used in the IMT differs from 

the algorithm used in PRISM (Haberl et al., 2003). 

 

2.5.1.2.5. Degree-Day Estimation Methods Based on Monthly Temperatures 

Different methods have been proposed to estimate the daily HDD or CDD based on the 

monthly temperatures. A number of widely used methods and variations of these methods are 

discussed in this section, including Thom’s method, Hitchin’s method, and Schoenau’s and 

Kehrig’s method. 

Thom (1954b) proposed the following equation to estimate the mean monthly HDD, 

which is denoted as 𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : 

 

𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑁(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇�̅� + 𝑙√𝑁𝜎𝑚) (2.18) 
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where, N is the number of days in the month, Tbase,HDD is the base temperature, 𝑇�̅� is the mean 

monthly air temperature, l can be function of (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇�̅�)/𝜎,  is the standard deviation for 

the average day5, and m the standard deviation of the monthly average. 

Hitchin (1983) proposed another equation to estimate the mean monthly HDD. Equation 

2.19 shows Hitchin’s equation, in which with large positive (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑜), the HDD value 

approaches 𝑁(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑜), and with large negative (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇𝑜), the HDD approaches 

zero. 

 

𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑁(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇�̅�)

1 − 𝑒−𝑘(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷−𝑇𝑜)
 (2.19) 

 

where, N is the number of days in the month, Tbase,HDD is the base temperature, 𝑇�̅� is the mean 

monthly air temperature, k is a constant for the location. The importance of the value of k is more 

pronounced in small (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇�̅�) and when the weather is cold enough to result in large 

(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 − 𝑇�̅�), the variations in different days is less important hence the value of k is not 

critical (Hitchin, 1990).  

Hitchin’s method is simpler to Thom’s method, in which k can be calculated using 2.5/ 

when the standard deviation of daily mean temperature within a month, , is known. However,   

is often not known. Hitchin (Hitchin, 1983) argued that √𝑁𝜎𝑚 results in poor estimate of  and 

although the empirical term in Thom’s method compensates a portion of the error, major errors 

                                                 

5 The average day is a hypothetical day with a mean and standard deviation that results in the mean degree 

days for the month after the conversion is made to degree days and the result is multiplied by the number of days in 

the month (Thom, 1954b). 
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remain. An study by Erbs et al. (Erbs et al., 1981) shows that the actual values of  are 

approximately half of the estimations using √𝑁𝜎𝑚 with a dispersed scatter. This impacts the 

accuracy of Thom’s procedure since the errors in estimation are larger than the errors when the 

base temperature is close to the external temperature (Hitchin, 1981). In the case of not knowing 

, when the standard deviation of the monthly mean temperature is available, √𝑁𝜎𝑚, the values 

of k calculated using 5.26/√𝑁𝜎𝑚 are identical to the Thom’s procedure (Hitchin, 1983). 

However, Hitchin has provided the best values of k for different sites (Hitchin, 1983). 

Schoenau and Kehrig (1990) proposed a normal distribution method assuming an annual 

normal distribution of the daily mean temperatures around the monthly mean temperature to 

calculate degree days at any base temperature. 

 

𝐻𝐷𝐷𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 𝑁𝑆𝑑∫ (𝑍𝑏 − 𝑍)𝑓(𝑍)𝑑𝑍
𝑍𝑏

−∞

 
(2.20) 

 

where, N is the number of days in the month, Sd is the standard deviation of the monthly mean 

temperature, Z is equal to (𝑇 − 𝑇𝑚)𝑆𝑑
−1, where T is the daily mean temperature and Tm is the 

mean monthly temperature, and Zb is equal to (𝑇𝑏 − 𝑇𝑚)𝑆𝑑
−1, where Tb is the  base temperature. 

The function f(Z) is the Gaussian probability density function: 

 

𝑓(𝑍) =
1

√2𝜋
𝑒
(
−𝑍2

2
)
 

(2.21) 

 

By integrating equation 2.20, the estimation of the monthly HDD can be calculated using: 
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𝐹(𝑍𝑏) = ∫ 𝑓(𝑍)𝑑𝑍

𝑍𝑏

−∞

 (2.22) 

 

The value of F(Zb) can be calculated or retrieved from normal probability tables as there 

is no explicit solution of the integral. Similarly, the monthly CDD can be calculated using: 

 

𝐶𝐷𝐷𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 𝑁𝑆𝑑∫ (𝑍𝑏 − 𝑍)𝑓(𝑍)𝑑𝑍
+∞

𝑍𝑏

 
(2.23) 

 

Other equations, retrieved from regression models, have also provided by different 

researchers (e.g., as in (Mourshed, 2012)) that yield HDD and/or CDD based on the monthly 

temperatures. 

 

2.5.1.3.  Calculating the Building Energy Consumption Using the Degree-Days 

There are different approaches to estimate building energy consumption, including 

forward methods (i.e., a law-driven method) and backward methods (i.e., data-driven methods or 

inverse methods) (ASHRAE, 2013b; Coakley et al. 2014). The previous literature includes 

estimations based on the forward methods, in which the physical properties of a building are 

taken into account to calculate building energy use or savings using a system of first principle 

equations. Backward methods are also widely used to estimate the energy consumption and 

savings of the buildings, such as the Inverse Model Toolkit (Haberl et al. 2003), in which the 

savings are estimated using the numerical algorithms. To account for the impact of the weather 

on building energy estimations, the weather parameters can be either used directly (e.g. using 
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outdoor temperature to estimate the heating or cooling loads) or processed to reveal specific 

points of interest for building energy load calculations (e.g., as in CDD, which only add up the 

temperature values larger than a designated base temperature). 

Building energy consumption can be calculated using degree day method. The rate of 

heating energy consumption and the annual heating energy consumption of a building can be 

calculated using the equations 2.24 and 2.25, respectively. 

 

𝑞ℎ =
𝐾𝑡

ℎ

[𝑇𝑏 − 𝑇𝑜(𝑡)]
+ (2.24)  

 

 

where, 
ℎ
 is the Annual Fuel Use Efficiency (AFUE) of the heating system, t is time, and 

the plus sign indicates that only positive values should be added. 

 

𝑄ℎ =
𝐾𝑡

ℎ

∫[𝑇𝑏 − 𝑇𝑜(𝑡)]
+𝑑𝑡 (2.25)  

 

 

The discrete form of the equation yields: 

 

𝑄ℎ =
24. 𝐾𝑡. 𝐻𝐷𝐷𝑏


ℎ

 (2.26)  

 

 

Similarly, the cooling energy consumption can be calculated using equation 2.27. To use 

this equation the assumptions for instantaneous steady-state sensible cooling rate extended to 
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longer time spans requires replacing the quantities by appropriate average values for that period 

(Claridge et al. 1987). 

 

𝑄𝑐 =
24.𝐾𝑡. 𝐶𝐷𝐷𝑏

𝐶𝑂𝑃
 (2.27)  

 

 

where, the COP is the coefficient of performance of the cooling system. 

There are two approaches to account for the ground losses in this equation (Claridge et 

al., 1987). In one approach, the ground losses can be included in the calculation of the base 

temperature as a negative heat gain (equations 2.28 to 2.30). 

 

𝑄𝑐 =
24.𝐾𝑡1 . 𝐶𝐷𝐷𝑇𝑏1 + 𝑄𝐿

𝐶𝑂𝑃
 (2.28)  

 

 

where, 𝑄𝐿 is the latent load (Btu) of the building in the period of the analysis. 

 

𝑇𝑏1 = 𝑇𝑖 −
𝑄𝐼𝐺 + 𝑄𝑆𝐺 − 𝑄𝐺𝑟

𝐾𝑡1
 (2.29)  

 

 

where, 𝑄𝐼𝐺 is the average internal gain rate (Btu/h), 𝑄𝑆𝐺 is the average solar gain rate (Btu/h), 

𝑄𝐺𝑟 is the average rate of below grade heat loss (Btu/h) of the building in the period of the 

analysis. The parameter 𝐾𝑡1 can be calculated with: 
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𝐾𝑡1 =∑𝑈𝐴𝑖
𝑖

+∑𝑈𝐴𝑖𝑛𝑓
𝑖

 (2.30)  

 

 

where, i is the number of above-grade components, 𝑈𝐴𝑖 is the product of the heat loss coefficient 

and the area for each of the above-grade components, and the 𝑈𝐴𝑖𝑛𝑓 is the effective UA for 

infiltration. 

In the other approach, the ground heat loss can be included the calculation of the building 

loss coefficient (equations 2.31 to 2.33). 

 

𝑄𝑐 =
24.𝐾𝑡2 . 𝐶𝐷𝐷𝑇𝑏2 + 𝑄𝐿

𝐶𝑂𝑃
 (2.31)  

 

 

𝑇𝑏2 = 𝑇𝑖 −
𝑄𝐼𝐺 + 𝑄𝑆𝐺

𝐾𝑡2
 (2.32)  

 

 

𝐾𝑡2 =∑𝑈𝐴𝑖
𝑖

+∑𝑈𝐴𝑖𝑛𝑓
𝑖

+∑𝑈𝐴𝐺𝑟
𝑖

 (2.33)  

 

 

where, 𝑈𝐴𝐺𝑟 can be calculated using equation 2.34. 

 

𝑈𝐴𝐺𝑟 =
𝑄𝐺𝑟

�̅�𝑖 − �̅�𝑜
 (2.34)  

 

 

where, �̅�𝑖 is the average indoor temperature and �̅�𝑜 is the average ambient temperature. 
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The concept and application of degree day methods and balance-point temperature are 

still considered as a valuable tool. In case of relatively constant indoor temperature and internal 

gains, degree day methods can be used to estimate building annual energy load. Since the degree 

day is the summation of temperature differences between a reference temperature and the 

outdoor air temperature over time, it represents both the extremity and duration of outdoor 

temperatures (CIBSE TM41, 2006). However, degree days do not fully account for several 

influential weather parameters that impact building energy consumption, including solar 

radiation, humidity, and wind speed. While the previous research have proposed different 

variations of the degree day to account for the time-varying parameters within one day, such as 

the varying internal gains or setpoints, the standard degree day remains a crude proxy of several 

weather-related parameters that impact building energy consumption. Furthermore, the degree 

day does not account for the daily fluctuations in outdoor temperature, which makes the building 

energy consumption differ with varying operation schedules. 

Uncertainties in the degree day calculation have also been the focus of different research. 

Holmes et al. (2017) discussed higher uncertainties in the estimation of the building heating and 

cooling energy use when the temperature is close to the threshold temperature. Furthermore, the 

variations of the HDD and CDD due to various data sources used in the calculation of the degree 

day also adds to the uncertainties. Significant statistical variability has been reported by 

OrtizBeviá et al. (2012) in an investigation on the evolution of the HDD and CDD obtained from 

temperature records at 31 stations in Spain for the period of 1958–2005 as well as future 

atmosphere composition, which were estimated with simulations performed under scenario A1B 

of the IPCC scenario conditions for the period of 2001–2050.  
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Consequently, various researchers have proposed modifications to the degree day 

calculation to increase the accuracy of the predictions of the energy consumption when using 

regression models developed from degree days. The proposed modifications to increase the 

accuracy of the energy consumption predictions using the degree day calculation try to either 

improve the accounting of the weather parameters or include the geometrical features of 

buildings. The previous literature also includes studies that have compared the accuracy of the 

prediction of the energy use and savings using various methods (Eto, 1988). 

Huang et al. (1987) recommended including enthalpy and solar insolation along with 

degree day equation to better correlate building loads with weather parameters. Results of this 

study showed that the total heating loads can be better estimated with moderate accuracy using 

the variable-based daily HDD. However, this study also showed that adding the heating 

insolation-hours, defined as the total insolation incident on a one-square-foot vertical surface 

during the hours when temperature is below a certain value, will improve the correlation and 

allows using the standard HDD base temperature of 65 ⁰F. A reliable estimation of the total 

cooling loads, however, requires at least two weather-related parameters. These parameters are 

the latent enthalpy hours, defined as the amount of energy that must be removed from the air at 

each hour that without changing the drybulb temperature lowers the enthalpy so that the indoor 

conditions are in the ASHRAE comfort zone, and either variable-base hourly cooling degree-

days with the 75 ⁰F base temperature modified to omit vented hours, or the cooling insolation-

hours with the 70 ⁰F base temperature.  

The enthalpy-latent load has also been used in other research to estimate the cooling 

loads using regression models (Krese et al., 2011; Sailor, 2001; Sailor and Muñoz, 1997). In 

order to account for the latent loads into the cooling degree days concept, a performance surface 
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was proposed, which is represented as the 3-D plot of electric energy consumption as a function 

of cooling degree days and latent enthalpy days (Krese et al., 2011). In addition, Shin and Do 

(Shin and Do, 2016) proposed an enthalpy-based CDD method to account for latent and sensible 

heat. Comparisons of the measured data and the linear regression models derived from the 

temperature-based and enthalpy-based CDDs showed a 2% increase in the accuracy of predicting 

the cooling energy consumption using the enthalpy-based CDD versus the temperature-based 

CDD. 

Similar to the concept to enthalpy latent days, Ihara et al. (2008) included specific air 

humidity to account for both air temperature and humidity in the estimation of building 

electricity use. Another approach to account for the humidity in load estimations was carried out 

by Krese et al. (2012), where a wet bulb CDD was proposed to better account for the latent loads 

as well as sensible loads. The comparisons of the correlations of the actual electric energy 

consumption and the wet bulb CDD showed a 5% higher explained variance compared to the 

conventional CDD. The wet-bulb based temperature is also shown to have less dependence on 

the chosen determination method, such as energy signature and performance line method. 

However, it should be mentioned that while the percentage differences between actual and 

predicted monthly electric energy consumption in the comparison conducted in this study shows 

better estimations by the wet bulb CDD compared to the conventional CDD in the period of July 

through October, the conventional CDD better estimated the monthly electric energy 

consumption in other months. 

Non-climatic features of a building have also been proposed as independent variables in 

regressions to estimate building heating and cooling loads. Ciulla et al. (2016) analyzed 

including several building-related specifications along with the degree day and other weather-
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related parameters. The parameters included in this analysis were the wind speed, shape factor 

(surface-to-volume ratio), the window-to-opaque surface ratio, the window transmittance, the 

global average of opaque transmittance surfaces, the global average of transmittance, the solar 

gains, and the yearly total hours of heating operation. 

An analysis conducted by D'Amico et al. (2019) is another study that included building 

geometrical features to better estimate the energy consumption of a building using degree day. In 

this analysis, the relation between HDD and heating energy consumption of non-residential 

buildings was investigated using three climate data-sets in Italy. The analysis continued with 

correlations of the HDD and surface-to-volume ratio versus building heating energy consumption. 

This study emphasized that the validity of the assessment of building energy consumption using 

degree day method depends on the determination of the climate index as a function of the same 

weather data, as the results showed higher correlation coefficients when the climate index was 

calculated using the same weather file in the simulations. 

 

2.5.1.4.  Degree-Day Summary 

Overall, the degree day calculation has been widely used to estimate building heating and 

cooling energy consumption. Various researchers have proposed different methods to increase the 

accuracy of the estimations of building heating and/or cooling loads using the conventional degree 

day calculation. The proposed methods are mainly modifications to the original degree day 

calculation, calculations that include weather-related parameters other than dry bulb temperature, 

or calculations that account for building geometrical features in the estimations. 
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2.5.2. Modified Utilization Factor-EN-ISO 13790 

Having its root in the European standard of International Organization for 

Standardization (prEN-ISO 13790) (EN ISO, 2008), the Modified Utilization Factor (MUF) 

method was proposed to normalize the space heating energy use while taking into account the 

solar gains and the intermittent set-point temperature by applying a quasi, steady-state 

approximation (Roulet, 2002; Santamouris, 2004). In the prEN-ISO 13790 method, the dynamic 

effect of passive solar and internal heat gains were taken into account using a utilization factor. 

The utilization factor for the internal and passive solar heat gains treated part of the internal and 

passive solar heat gains as an offset in the heating load and allows for extra heat gains that can 

lead to cooling needs (Roulet, 2002). The following equations described the procedure of 

calculating the heating and cooling loads in prEN-ISO 13790 method (EN ISO, 2008). 

In the prEN-ISO 13790 method the total heating energy requirement for a space can be 

calculated using:  

 

𝑄ℎ,𝑛 = [𝑄ℎ,𝑖 − 𝜂ℎ,𝑔𝑄ℎ,𝑔]
+

 (2.35)  

 

 

where Qh,i is the total heat transfer for the heating mode in MJ, Qh,g is the total heat gains for the 

heating mode in MJ, 𝜂ℎ,𝑔 is the gain utilization factor for heating and can be calculated using the 

equation 2.36. The plus sign indicates only the positive values should be considered. 
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𝜂ℎ,𝑔 =

{
 
 
 

 
 
 
1 − 𝛾ℎ

𝑎ℎ

1 − 𝛾ℎ
𝑎ℎ+1

𝑖𝑓 𝛾ℎ > 0 𝑎𝑛𝑑 𝛾ℎ ≠ 1 

  
𝛾ℎ

𝛾ℎ + 1
𝑖𝑓𝛾ℎ = 1

  
1

𝛾ℎ
𝑖𝑓𝛾ℎ < 0

 (2.36)  

 

 

In the method 𝛾ℎ is the heat balance ratio for the heating mode that can be calculated 

using equation 2.37, and ah is a parameter that includes a time constant, 𝜏ℎ, that can be calculated 

using equation 2.38. 

 

𝛾ℎ =
𝑄ℎ,𝑔

𝑄ℎ,𝑖
 (2.37)  

 

 

𝑎ℎ = 𝑎ℎ,𝑟 +
𝜏ℎ
𝜏ℎ,𝑟

 (2.38)  

 

 

In equation 2.38 ah,r is a dimensionless reference numerical parameter that can be found 

from tabulated data for continuously heated buildings and building heated during day-time only 

(Roulet, 2002), 𝜏ℎ is the time constant of the building or building zone, and 𝜏ℎ,𝑟 is a reference 

time constant that can be found in tabulated data for continuously heated buildings and building 

heated during day-time only (Roulet, 2002). 

The Qh,g, is the sum of the solar heat gains and the internal heat gains for the calculation 

period, which consists of the heat flow rate from occupants, appliances, lighting, hot and mains 

water and swege, HVAC system, and processes and goods. For the monthly and seasonal periods 
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as well as the hourly periods in simple hourly method, the sum of solar or internal heat gains 

during the considered month or season, 𝑄∝ (MJ), can be calculated using the equation 2.39. 

 

𝑄∝ = 𝑡 ∙∑𝜙∝,𝑚𝑛,𝑘
𝑘

+ 𝑡 ∙∑(1 − 𝑏𝑙)𝜙∝,𝑚𝑛,𝑙
𝑙

 (2.39)  

 

 

where 𝜙∝,𝑚𝑛,𝑘 (W) is the time-average heat flow rate from internal heat source k or solar heat 

gains, 𝜙∝,𝑚𝑛,𝑙 (W) is the time-average heat flow rate from internal heat source l or solar heat 

gains in the adjacent unconditioned space, ∝ can be either internal heat gains or solar heat gains, 

𝑏𝑙 is the reduction factor for the adjacent unconditioned space with internal heat source l, defined 

in ISO/DIS 13789:2005 (ISO 13789, 2006). 

The total cooling energy requirement for a space can be calculated using:  

 

𝑄𝑐,𝑛 = [𝑄𝑐,𝑖 − 𝜂𝑐,𝑔𝑄𝑐,𝑔]
+

 (2.40)  

 

 

where Qc,i, in MJ, is the total heat transfer for the cooling mode, Qc,g, in MJ, is the total heat 

gains for the cooling mode, 𝜂𝑐,𝑔 is the utilization factor for heat losses and can be calculated 

using the equation 2.41, and the plus sign indicates only the positive values should be 

considered. 
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𝜂𝑐,𝑔 =

{
 
 
 

 
 
 
1 − 𝛾𝑐

𝑎𝑐

1 − 𝛾𝑐
𝑎𝑐+1

𝑖𝑓 𝛾𝑐 > 0 𝑎𝑛𝑑 𝛾𝑐 ≠ 1 

  
𝛾𝑐

𝛾𝑐 + 1
𝑖𝑓𝛾𝑐 = 1

  
1

𝛾𝑐
𝑖𝑓𝛾𝑐 < 0

 (2.41)  

 

 

where 𝛾𝑐 is the heat balance ratio for the cooling mode and can be calculated using the equation 

2.42, and ac is a parameter depending on the time constant, 𝜏𝑐, and can be calculated using 

equation 2.43.  

 

𝛾𝑐 =
𝑄𝑐,𝑔

𝑄𝑐,𝑖
 (2.42)  

 

 

𝑎𝑐 = 𝑎𝑐,𝑟 +
𝜏𝑐
𝜏𝑐,𝑟

 (2.43)  

 

 

where ac,r is a dimensionless reference numerical parameter that can be retrieved from a 

tabulated data, 𝜏𝑐 is the time constant of the building or building zone, and 𝜏𝑐,𝑟 is a reference 

time constant that can be retrieved from a tabulated data. 

While the prEN-ISO 13790 takes into account the solar gains and the intermittent set-

point temperature, the limitations of the MUF method are more pronounced when applying to 

commercial buildings and the calculations become complicated by including the space cooling 

(Wang et al., 2017). A study by Jokisalo and Kurnitski (2007) on the numerical parameters of the 

EN ISO 13790, showed that although there is a reasonable application for the parameters in 
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residential buildings, they are not applicable for office buildings. Measuring the indoor and 

outdoor temperature profiles throughout the year, estimating the solar gains delivered to the 

space according to the energy auditor’s judgment and site experience are other complications 

that can increase the uncertainties (Santamouris, 2004; Wang et al., 2017). 

 

2.5.3. Climate Severity Index (CSI) 

The Climate Severity Index (CSI) can be used as a weather normalization method that 

accounts for the ambient air temperature, useful solar radiation, and wind (Markus, 1982). The 

development of CSI can be either developed using multiple regression models (equation 2.44), 

actual measurements, or detailed building energy simulations. One of the early formulation of 

the CSI was proposed by Markus (1982) and is shown in equation 2.44. 

 

𝐶𝑆𝐼 = 𝐾(𝑎𝑇 − 𝑏𝑅 + 𝑐𝑊) (2.44)  

 

 

Where, T is a selected value of outdoor temperature, R is a selected value of total solar 

radiation (W/m2), W is a selected value of wind velocity (m/s), and a, b, and c are appropriate 

coefficients for each type of the buildings. The term (𝑎𝑇 − 𝑏𝑅 + 𝑐𝑊) is the annual heat loss Q 

(kWh/m3). 

The coefficient a corresponds to defining the mass/insulation, the coefficient b 

corresponds to defining the solar admittance, and the coefficient c corresponds to defining the 

wind permeability characteristics of houses. Assuming that a single linear index can define the 

relationship between the mass/insulation and temperature (e.g., using Muncey's Response Factor 

technique (Muncey, 1979)), a can be interpreted as the slope for specific construction with a 
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certain mass/insulation. Similarly, assuming a linear relationship between the radiation 

admittance and the solar radiation, b represents the slope of the relation between Q and solar 

radiation. The wind permeability coefficient, c, was defined as the combined effect of wind 

speed and stack ventilation caused by the temperature difference of the indoor and outdoor. The 

combined effect of wind speed and stack effect was expressed as a relation between heat loss and 

wind permeability with a speed at which the building has zero loss. 

Later, Markus et al. (1984) formulated the CSIs using regression models from simulation 

results. The multiple linear regression model estimates the monthly energy consumption (kWh), 

E, using: 

 

𝐸 = 𝑎𝑡 + 𝑏𝑅𝑑 + 𝑐𝑅𝑓 + 𝑑𝑉 + 𝑒 (2.45)  

 

 

where, t is the average monthly temperature (°C), Rd is the average monthly direct normal solar 

radiation (W/m2), Rf is the average monthly diffuse horizontal radiation, V is the average 

monthly wind speed (m/s), and the a, b, c, d, and e are the coefficients in regression model. 

The following procedure was used to generate the CSI (Markus et al., 1984): 

 The difference between the maximum and minimum energy loads for each 

climatic variable and house type are determined using the maximum and 

minimum of that climate variable and the appropriate regression model. 

 The relative contribution of each parameter to the energy loads for each building 

type is calculated by dividing the difference, described in previous step, by the 

total difference. 
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 The contribution of each individual climatic parameter to the CSI is then 

determined by normalization based on the values of the lowest and highest energy 

loads. 

 A group of curves can then be determined for the CSI for the energy consumption 

of each type of the houses. 

While the CSI accounts for various weather-related parameters, it still does not account 

for the diurnal temperature variations in the ambient temperature. Also, it requires separate 

calculations for different weather-related parameters. Similar to the concept of the base 

temperature in degree days, each of these parameters has an intercept where the energy load is 

zero. Therefore, all the limitations in degree days base temperature applies to the determination 

of the value of each of these parameters, at which the building load will be zero. Consequently, 

the accuracy of the CSI index depends on the accurate determination of the base values. 

Finally, the utilization of the CSI method depends highly on the availability of the 

climate data for the location of interest (Wang et al., 2017). While there is only a limited number 

of pre-calculated CSIs that were developed, the accuracy of using this method, specifically for 

the locations that do not have a CSI remains to be seen (Wang et al., 2017). 

 

2.5.4. Climate Coefficients for U.S. Building Energy Asset Score 

Wang et al. (2017) developed simulation-based climate coefficients for each weather 

station in the U.S. to separately adjust building heating, cooling, and fan energy consumption. 

The simulations of multiple building types with 1,020 TMY3 weather station files in the U.S. 

revealed that representative cities were not adequate for summarizing building performance in all 

cities in each climate zone (Makhmalbaf et al., 2013). In this study, the location-specific 
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normalized EUI for each site, denoted as the site EUI-ratio for an arbiturary site m, was 

calculated separately for weather-sensitive loads, such as space heating, space cooling, fan, and 

pumps using: 

 

𝐸𝑈𝐼 − 𝑟𝑎𝑡𝑖𝑜𝑗,𝑚
𝛼 =

𝐸𝑈𝐼𝑚
𝛼

1
𝑛
∑ 𝐸𝑈𝐼𝑖

𝛼𝑛
𝑖=1

 (2.46)  

 

 

where, 𝛼 is the end-use (space heating, space cooling, fan, or pumps), j is the building prototype, 

n is the number of weather sites, and i is the site number. 

Based on values calculated from equation 2.46, specific climate adjustment coefficients 

were developed for a prototype building j, weather site m, and end-use 𝛼, using: 

 

𝐶𝑗,𝑚
𝛼 =

1

𝐸𝑈𝐼𝑗,𝑚
𝛼  (2.47)  

 

 

For the energy asset score, three sets of coefficients for heating, cooling, and fan were 

developed for each of the 1,020 available weather stations in the U.S. The EUI for each end-use 

of each site was then normalized using: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑈𝐼𝑚
𝛼 = 𝐶𝑚

𝛼 ∙ 𝐸𝑈𝐼𝑚
𝛼  (2.48)  

 

 

where, 𝛼 is the end-use (space heating, space cooling, or fan) and i is the site number. 
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This method resulted in the reduction of the variations of the energy consumption in each 

climate zone and allowed for a fair comparison of the building energy performance that was 

normalized for the weather-related parameters in different locations. 

The utilization of this methods required the available climate coefficients for the location 

or coefficients that are extrapolated from nearby locations. This method was developed based on 

TMY3 weather files, therefore the proposed climate coefficients may not necessarily agree with 

the coefficients from an actual weather file. While this method captures the variations due to the 

weather-related parameters, there is the limitation that this method requires the data in different 

locations to calculate the adjustments for each location. Also, development of new coefficients 

requires a large number of simulations to achieve the normalization for each site. 

 

2.5.5. Summary of the Weather-Normalization Methods for Building Energy Consumption 

Use of the previously-developed weather-normalization methods allows one to account 

for the weather-related influences on the energy consumption of buildings in different locations. 

The degree day method is a widely used method that is currently the main basis for the climate 

classification in ASHRAE Standard 169-2013 (ASHRAE, 2013a), which is used in ASHRAE 

Standard 90.1-2016 (ASHRAE, 2016) and ASHRAE 189.1-2018 (ASHRAE, 2018). However, 

there are several limitations in the degree day method: 

 First, the degree day method does not fully account for all influential weather 

parameters (e.g., solar radiation, humidity, and wind). 

 Second, defining the optimal base temperature requires detailed information about 

the building thermal configurations, which is not always known for a given 

building at certain location. 
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 Third, the degree day method does not account for the varying performance of a 

building’s heating and cooling equipment during each day.  

 Fourth, while there has been previous research addressing varying internal gains, 

a diurnal variation of the heat loss coefficient that includes sol-air and wind speed 

variables cannot be accounted for in the degree day method. 

Different studies have proposed various methods to increase the accuracy of the 

estimation of building heating and/or cooling energy consumption using the conventional degree 

days. These methods include the modifications in the degree day calculation by including more 

weather-related parameters (e.g., solar radiation, humidity, wind speed, etc.) and/or geometrical 

features of buildings. While overall the correlations of the proposed methods show improved 

results compared to the results of the conventional degree day, in these studies the results were 

for certain cases with designated base temperatures, which can be different for other building 

types. Therefore, it limited their application in climate classification where the method should 

account for various building types without having the geometrical information of the buildings. 

Another shortcoming is where new methods show better results in specific periods of 

time while in other periods, the conventional degree day method shows better estimations. In 

addition, various studies have proposed site-specific correction factors. However, the 

development of new correction factors for the weather data that does not have a correction 

factors require simulating buildings for all other weather files. Also, not all the previous methods 

were tested for the impact of various end-uses. Therefore, while they have a slight improvement 

in one end-use, there may be no guarantee to have improved predictions in other end-uses. 

Finally, adding more variables, which is the case in a considerable number in the proposed new 

methods, can introduce more complexities and can add to uncertainties if the data is not available 
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with the preferred resolution. Therefore, there is a need for an improved degree day method that 

accounts for influential weather parameters on building energy consumption, maintains the 

improved accuracy for different base temperatures, and can be easily applied for each location. 
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CHAPTER III    

METHODOLOGY 

 

This chapter illustrates the new methodology used in this dissertation. The description 

includes the general specifications of the DOE medium office prototype models for ASHRAE 

Standard 90.1-2016. In addition, it includes the procedures used for the simulation and analysis. 

Finally, the procedure used for applying the new weather normalization is provided.  

 

3.1.General Specifications of the ASHRAE Standard 90.1-2016 Medium Office Prototype 

Models 

In the U.S., the Building Energy Codes Program of the U.S. Department of Energy 

supports the development, adoption, and implementation of building energy standards and codes. 

To support the U.S. Department of Energy Building Energy Codes Program PNNL developed a 

suite of prototype buildings covering 80% of the commercial building floor area in the United 

States for new construction, including medium office buildings, across all U.S. climate zones. 

The Standard 90.1 medium office prototype building models, retrieved from the Building Energy 

Codes Program of the U.S. Department of Energy (DOE, 2018), were used to carry out this 

analysis. In this analysis seventeen prototype office models were analyzed for each climate zone 

and subtype across the U.S. Figure 11 shows the 3D view of the DOE medium office prototype 

building model (left) and a plan view of the thermal zoning (right). 
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3.1.1. Geometry and Envelope Configurations 

The DOE medium office building prototypes are three-story models with the length of 

163.8 ft, width of 109.2 ft, and the total conditioned floor area of 53,600 ft2. The floor-to-floor 

height is 13 ft and the floor-to-ceiling height is 9 ft. The Window-to-Wall Ratio (WWR) is 33% 

for each exterior wall. The model includes six exterior doors, two doors on the south side, two 

doors on the north side, one door on the east side, and one door on the west side. Table 1 and 

Table 2 show the gross area and general specifications of the ASHRAE Standard 90.1-2016 

medium office prototypes. Figure 13 through Figure 18 show the schedules of lighting, 

equipment, elevator, fan, heating set-point, and cooling set-point of the ASHRAE Standard 90.1-

2016 medium office, respectively. 

 

Figure 11: DOE Medium Office Prototype Model; Left: 3D View of the Building Model; 

Right: Plan View of the Thermal Zoning (DOE Medium Office Prototype Models (DOE, 

2018)) 

 

Table 1: Gross Areas of the ASHRAE Standard 90.1-2016 Medium Office Prototypes (Data 

Retrieved from DOE Medium Office Prototype Models (DOE, 2018)) 

 

Gross Wall 

Area

Gross Roof 

Area

Window Opening 

Area

Window-Wall 

Ratio

[ft
2
] [ft

2
] [ft

2
] [%]

North and South 6386 2107 33

East and West 4257 1405 33

Total 21287 17876 7025 33

Location
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Table 2: General specifications of the ASHRAE Standard 90.1-2016 Medium Office 

Prototypes (Data retrieved from DOE Medium Office Prototype Models (DOE, 2018)) 

 

 

3.1.2. Schedules 

This section represents the schedules used in the DOE medium office prototype models. 

The schedules include occupancy (Figure 12), lighting (Figure 13), equipment (Figure 14), 

elevator (Figure 15), fan (Figure 16), heating setpoint (Figure 17), and cooling setpoint (Figure 

18). Each of these figures represent the corresponding schedules for weekdays and weekends 

(which were also used for the holidays and all other days not defined in other categories), as well 

as the schedules for summer and winter design days, which are used for sizing the HVAC 

system. 

Area

Part of 

Total 

Floor 

Area

Volume

Gross 

Wall 

Area

Window 

Glass 

Area

Lighting People
Plug and 

Process

[ft
2
] (Y/N) [ft

3
] [ft

2
] [ft

2
] [W/m2] [m

2
/person] [W/m2]

10587 Yes 95280 0 0 0.79 18.58 3.79

10587 Yes 95280 0 0 0.79 18.58 0.75

10587 Yes 95280 0 0 0.79 18.58 0.75

South Zone 2232 Yes 20086 1474 702 0.79 18.58 0.75

East Zone 1413 Yes 12716 983 468 0.79 18.58 0.75

West 2232 Yes 20086 1474 702 0.79 18.58 0.75

North 1413 Yes 12715 983 468 0.79 18.58 0.75

South Zone 2232 Yes 20086 1474 702 0.79 18.58 0.75

East Zone 1413 Yes 12716 983 468 0.79 18.58 0.75

West 2232 Yes 20086 1474 702 0.79 18.58 0.75

North 1413 Yes 12715 983 468 0.79 18.58 0.75

South Zone 2232 Yes 20086 1474 702 0.79 18.58 0.75

East Zone 1413 Yes 12716 983 468 0.79 18.58 0.75

West 2232 Yes 20086 1474 702 0.79 18.58 0.75

North 1413 Yes 12715 983 468 0.79 18.58 0.75

17876 No 71504 2183 0 0.00 0.00 0.00

17876 No 71504 2183 0 0.00 0.00 0.00

17876 No 71504 2183 0 0.00 0.00 0.00

53628 482650 14738 7025 0.79 18.58 1.35

Zone Location

Core 

Zones

First Floor

Second Floor

Third Floor

Total

Perimeter 

Zones

First Floor

Second Floor

Third Floor

Plenums

First Floor

Second Floor

Third Floor
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Figure 12: Occupancy Schedule of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 

2018)) 

 

 

Figure 13: Lighting Schedule of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 

2018)) 
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Figure 14: Equipment Schedules of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 

2018)) 

 

 

Figure 15: Elevator Schedules of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 

2018)) 
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Figure 16: Fan Schedules of the ASHRAE Standard 90.1-2016 Medium Office Prototype 

Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 2018)) 

 

 

Figure 17: Heating Setpoint Schedule of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 

2018)) 
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Figure 18: Cooling Setpoint Schedule of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models (Data Retrieved from the DOE Medium Office Prototype Models (DOE, 

2018)) 

 

3.1.3. HVAC Systems Configurations 

The HVAC system consists of a packaged air-conditioning unit as the cooling system 

type and a gas furnace as the heating system type. The distribution and terminal units include 

Variable Air Volume (VAV) terminal box with dampers and an electric reheating coil. The 

service water temperature setpoint is 140 ⁰F, and has a 100 gallon storage tank. Equation 3.1 

shows the total capacity of the direct expansion coil as a function of cooling coil inlet air 

temperature. 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 

1.39072 −  0.05291 ∙ 𝑇𝑤𝑏,𝑖 + 0.001842 ∙ 𝑇𝑤𝑏,𝑖
2 + 0.000583 ∙ 𝑇𝑐,𝑖

−  0.00019 ∙ 𝑇𝑐,𝑖
2 + 0.000265 ∙ 𝑇𝑤𝑏,𝑖 ∙ 𝑇𝑐,𝑖 

(3.1)  
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where, Twb,i is the cooling coil inlet air wet-bulb temperature (⁰C) and Tc,i  is the outdoor 

condenser inlet air dry-bulb temperature (⁰C). 

 

3.1.4. Energy Efficiency Measures and Daylight Responsive Controls 

The energy efficiency measures include daylight responsive controls that were 

implemented in the perimeter zones of the medium office prototype model. In these measures 

stepped lighting controls with 3-steps were implemented in the perimeter zones. Each perimeter 

zone included two daylight reference points; one for primary sidelighted area and the second one 

for secondary sidelighted area. The fraction of the zone controlled by the daylight reference 

points for primary sidelighted area and primary sidelighted area are 38.35% and 13.95% of the 

area of the zone, respectively. The illumination setpoint for all the daylight reference point was 

set to 375 lux (35 fc). 

 

3.2. Split-Degree Days 

In the degree day method, the overall heat transfer coefficient, the area, and the degree 

days are used in the calculation of the energy consumption (equation 3.2). However, in this 

method the heat transfer coefficient and the temperature difference vary in each time step. Figure 

19 provides an example of the steady-state resistances in a multilayer wall and equation 3.3 

shows the equation of the overall heat transfer coefficient. Since the surface convective heat 

transfer varies in each time-step, the overall heat transfer coefficient also varies. The temperature 

difference also varies based on the fluctuations in outdoor temperature for a fixed indoor 

temperature. These variations cause inaccuracies in the estimated energy consumption using the 
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conventional degree day method. Therefore, there is a need to define a more accurate accounting 

procedure that accounts for these variations. 

One such procedure would be a split-Heating Degree Day (sHDD) and split-Cooling 

Degree Day (sCDD). The sHDD and sCDD are defined as shown in Figure 20 and Figure 21, 

respectively, in which the calculation of the sHDD and sCDD are shown for three days. In Figure 

20 and Figure 21, typical sinusoidal daily temperature profile that constantly increases over three 

consecutive days is presented as an example to show different scenarios (i.e., Day 1, Day 2, 

Day3). In Figure 20 and Figure 21 each day is divided into two sections. The first section 

represents the beginning of the day up until hour n and the period of the day from hour m until 

the end of the day, where hour n and hour m represent the beginning and end of a symmetrical 

period around the peak daily temperature. The second section of the day represents the period 

from hour n to hour m. In Day 1, the average of both the split sections (i.e., section 1 and 2) are 

lower than the base temperature. In Day 2, the average of split section 1 is lower than the base 

temperature while the average of section 2 is higher than the base temperature. In Day 3, the 

average of both split sections (i.e., section 1 and 2) are higher than the base temperature. 

Equations 3.4 and 3.5 denote the calculation of the sHDD and sCDD, respectively, where 

the same approach in the calculation of the degree day is applied to two intervals within one day, 

one interval between hour n and m (1 ≤ 𝑛,𝑚 ≤ 24), denoted as {n,m}, and the other interval for 

the complement hours of the day, represented as {n,m}’. 

 

𝑄𝑑 = 24 ∙ 𝑈 ∙ 𝐴 ∙ 𝐷𝐷 (3.2)  

 

 

Where, U is the overall heat transfer coefficient, A is the area, and DD is the degree day. 
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Figure 19: Representation of Steady-State Thermal Resistances in a Multilayer Wall 

(Adopted from Incropera et al. (2007)) 

 

𝑈 =
1

1
ℎ1
+ ∑

𝐿𝑖
𝑘𝑖
𝑖 +

1
ℎ2

 
(3.3)  

 

where, h1 and h2 are the convective/radiative heat transfer coefficients of the two sides of the 

wall, L is the thickness and k is the thermal conductivity of the material layer i. 
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Figure 20: Representation of the sHDD 

 

 

Figure 21: Representation of the sCDD 
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𝑠𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦−𝑠𝑝𝑙𝑖𝑡 1,{𝑛∶ 𝑚} = (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇{𝑛 ∶𝑚},𝑚𝑎𝑥 + 𝑇{𝑛 ∶𝑚},𝑚𝑖𝑛

2
)

+

 

(3.4)  

𝑠𝐻𝐷𝐷𝑑𝑎𝑖𝑙𝑦−𝑠𝑝𝑙𝑖𝑡 2,{𝑛∶ 𝑚}′ = (𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇{𝑛 ∶𝑚}′,𝑚𝑎𝑥 + 𝑇{𝑛 ∶𝑚}′,𝑚𝑖𝑛

2
)

+

 

 

where, Tbase,HDD is the base temperature for HDD, which is assumed to be 18⁰C. 

 

𝑠𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦−𝑠𝑝𝑙𝑖𝑡 1,{𝑛∶ 𝑚} = (
𝑇{𝑛 ∶𝑚},𝑚𝑎𝑥 + 𝑇{𝑛 ∶𝑚},𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+

 

(3.5)  

𝑠𝐶𝐷𝐷𝑑𝑎𝑖𝑙𝑦−𝑠𝑝𝑙𝑖𝑡 2,{𝑛∶ 𝑚}′ = (
𝑇{𝑛 ∶𝑚}′,𝑚𝑎𝑥 + 𝑇{𝑛 ∶𝑚}′,𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+

 

 

where, Tbase,CDD is the base temperature for CDD, which is assumed to be 10⁰C 

The annual sHDD and sCDD can then be calculated using equations 3.6 and 3.7. 

 

𝑠𝐻𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙−𝑠𝑝𝑙𝑖𝑡 1,{𝑛∶ 𝑚} =∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇𝑛{𝑛 ∶𝑚},𝑚𝑎𝑥 + 𝑇𝑛{𝑛 ∶𝑚},𝑚𝑖𝑛

2
)

+365

𝑖=1

 

(3.6)  

𝑠𝐻𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙−𝑠𝑝𝑙𝑖𝑡 2,{𝑛∶ 𝑚}′ =∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇𝑖
{𝑛 ∶𝑚}′

,𝑚𝑎𝑥 + 𝑇𝑖
{𝑛 ∶𝑚}′

,𝑚𝑖𝑛

2
)

+365

𝑖=1
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𝑠𝐶𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙−𝑠𝑝𝑙𝑖𝑡 1,{𝑛∶ 𝑚} =∑(
𝑇𝑖{𝑛 ∶𝑚},𝑚𝑎𝑥 + 𝑇𝑖{𝑛 ∶𝑚},𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+365

𝑖=1

 

(3.7)  

𝑠𝐶𝐷𝐷𝑎𝑛𝑛𝑢𝑎𝑙−𝑠𝑝𝑙𝑖𝑡 2,{𝑛∶ 𝑚}′ =∑(
𝑇𝑖
{𝑛 ∶𝑚}′

,𝑚𝑎𝑥 + 𝑇𝑖
{𝑛 ∶𝑚}′

,𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+365

𝑖=1

 

 

In the split-degree days methods similar procedure for the degree days calculation is 

applied for two time spans during the day. Therefore, the split-degree days include more 

information about the diurnal temperature range compared to the degree days. Also, separate 

heat loss coefficients can be calculated for the two time spans. Similar to the calculation of the 

daily energy consumption using the degree days method (equation 3.2), the daily energy 

consumption can be calculated using the split-degree days as shown in equation 3.8. 

 

𝑄𝑑 = 𝑛𝑠𝑝𝑙𝑖𝑡1 ∙ 𝑈𝑠𝑝𝑙𝑖𝑡1 ∙ 𝐴 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 + 𝑛𝑠𝑝𝑙𝑖𝑡2 ∙ 𝑈𝑠𝑝𝑙𝑖𝑡2 ∙ 𝐴 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡2 (3.8)  

 

 

where, nsplit1 and nsplit2 are the number of hours in each of the time spans, Usplit1 and Usplit2  are the 

overall heat transfer coefficients in the two daily time spans, A is the area, 𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 and 𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 

are the HDD or CDD of the two daily time spans. 

Due to the thermal storage effect in buildings, the energy consumption in a building in 

each of the two time spans during a day may require accounting for the energy use in previous 

intervals. This effect may be more pronounced for smaller time intervals within each time span. 

Such dependence between the two variables can be included using the interaction term in a 

regression model. Equation 3.9 shows the calculation of the daily energy consumption including 

an interaction term. 
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𝑄𝑑 = 𝑛𝑠𝑝𝑙𝑖𝑡1 ∙ 𝑈𝑠𝑝𝑙𝑖𝑡1 ∙ 𝐴 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 + 𝑛𝑠𝑝𝑙𝑖𝑡2 ∙ 𝑈𝑠𝑝𝑙𝑖𝑡2 ∙ 𝐴 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡2 + 𝑐

∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡2 

(3.9)  

 

 

where, c is a factor to control the impact of the interaction term. 

The annual energy consumption can be calculated using equation 3.10 by summing the 

daily energy consumptions over the period of a year. 

 

𝑄𝑎 =∑(𝑛𝑠𝑝𝑙𝑖𝑡1 ∙ 𝑈𝑠𝑝𝑙𝑖𝑡1 ∙ 𝐴 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡1(𝑖) + 𝑛𝑠𝑝𝑙𝑖𝑡2 ∙ 𝑈𝑠𝑝𝑙𝑖𝑡2 ∙ 𝐴 ∙ 𝐷𝐷𝑠𝑝𝑙𝑖𝑡2(𝑖))

365

𝑖=1

 (3.10)  

 

 

The daily heating and cooling energy consumption can be calculated using equations 3.11 

and 3.12, respectively. 

 

𝑄ℎ,𝑑 =
𝑛𝑠𝑝𝑙𝑖𝑡1. 𝐾𝑡1. 𝑠𝐻𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 + 𝑛𝑠𝑝𝑙𝑖𝑡2. 𝐾𝑡2. 𝑠𝐻𝐷𝐷𝑠𝑝𝑙𝑖𝑡2


ℎ

 (3.11)  

 

 

where, Kt1 and Kt2 are the total heat loss coefficients of the building in the two time-spans and 
ℎ
 

is the Annual Fuel Use Efficiency (AFUE) of the heating system. 

 

𝑄𝑐,𝑑 =
𝑛𝑠𝑝𝑙𝑖𝑡1. 𝐾𝑡1. 𝑠𝐶𝐷𝐷𝑠𝑝𝑙𝑖𝑡1 + 𝑛𝑠𝑝𝑙𝑖𝑡2. 𝐾𝑡2. 𝑠𝐶𝐷𝐷𝑠𝑝𝑙𝑖𝑡2

𝐶𝑂𝑃
 (3.12)  

 

 

where, COP is the coefficient of performance of the cooling system. 
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3.3. Prediction of the Annual Energy Consumption by Regression Models Using Degree 

Day Methods 

The energy consumption of a building can be estimated using ambient temperature 

(Figure 22). Similarly, degree days can be used to estimate the energy consumption of a building. 

Equations 3.14 and 3.15 show the estimation of building heating and cooling energy 

consumption, respectively, where the coefficients are derived from a regression model based on 

measured or simulated data. In a similar fashion to the estimation of heating and cooling energy 

use, the total energy consumption can be estimated using the HDD and CDD (equation 3.15). 

APPENDIX A provides the discussions for developing simple and multiple linear regression 

models as well as calculating the coefficients of determination. 

 

𝑄ℎ,𝑝 = 𝛽ℎ,0 + 𝛽ℎ,1 ∙ 𝐻𝐷𝐷𝑝 (3.13)  

 
 

where, p is the period of time, 𝛽ℎ,0 is the constant and 𝛽ℎ,1 is the slope of the model derived from 

the regression analysis. 

 

𝑄𝑐,𝑝 = 𝛽𝑐,0 + 𝛽𝑐,1 ∙ 𝐶𝐷𝐷𝑝 (3.14)  

 

 

where, 𝛽𝑐,0 and 𝛽𝑐,1 are the constant and slope of the model derived from the regression analysis. 

 

𝑄𝑡,𝑝 = 𝛽𝑡,0 + 𝛽𝑡,1 ∙ 𝐻𝐷𝐷𝑝 + 𝛽𝑡,2 ∙ 𝐶𝐷𝐷𝑝 (3.15)  

 

 

where, 𝛽𝑡,0, is the constant and 𝛽𝑡,1 and 𝛽𝑡,2 are the slopes of the model derived from the 

regression analysis. 
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Figure 22: Estimation of Building Energy Consumption Using linear and Change-Point 

Linear Models with Ambient Temperature (ASHRAE, 2002) 
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3.4. Simulations and Analysis Procedure 

This section describes the procedure for the simulations and analyses carried out in this 

study. It also describes the format for the representation of the results. 

 

3.4.1. Simulation Procedure 

This section describes the different steps for the building energy simulations that used the 

ASHRAE Standard 90.1-2016 medium office prototype models with and without daylight-

responsive controls, and the ASHRAE Standard 90.1-2004 medium office prototype models 

(without daylighting) as the baseline buildings for this study where 2004 was defined as the 

baseline in the ASHRAE Standard 90.1-2016. 

The procedure for the preparation of the building energy simulation models, and the post-

processing analysis of the results can be divided into three main parts. As shown in Figure 23, 

these three parts are: data collection, pre-processing of building energy simulation models, and 

the simulation and post-processing. The preparation, simulation, and extraction of the results are 

carried out using a custom Python 3.7.0 script. 

 

3.4.1.1.  Data Collection 

There are several tasks in data collection section, including: retrieving the medium office 

prototype models; weather files and the design day files; calculation of the CDD and HDD for 

each weather file; retrieving the subtype from ASHRAE Standard 169-2013; and generating a 

master list that lists the weather file name, design day file name, and climate zone and subtype 

for each location. 
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In order to quantify the variations of the energy consumption and energy savings in 

different climates, 801 simulations were carried out using the available EnergyPlus Weather 

Files (EPW) that have corresponding Design Day Files (DDY) for the cities in the U.S. 

Seventeen ASHRAE Standard 90.1-2016 medium office prototypes and seventeen ASHRAE 

Standard 90.1-2004 medium office prototypes were retrieved from the DOE Website (DOE, 

2018). Also, 1,030 available TMY3-EPW were retrieved from the EnergyPlus weather data 

online source (DOE-NREL, 2018), of the 1,030 available TMY3-EPW files 801 EPW files that 

had available Design Day files (DDY) were selected across the continental U.S. to carry out the 

analysis. Figure 24 shows the number of the weather files selected in each climate zone. 

The moisture classification was retrieved from the ASHRAE Standard 169-2013 

(ASHRAE, 2013a), which classifies locations in climate zones 1 to 6 into different moisture 

regimes. Moist, dry, and marine moisture classification are defined as subtype A (moist), B 

(dry), and C (marine), respectively. Finally, a master list was generated that includes the EPW 

and DDY file names with the corresponding climate zone for each location (APPENDIX B). 
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Figure 23: Flowchart of the Analysis of the Energy Consumption of ASHRAE Standard 

90.1-2016 with and without Daylight Responsive Controls and -2004 Prototype Models 
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Figure 24: Number of the Weather Files Selected in Each Climate Zone 

 

For each weather file, the HDD and CDD were calculated using equations 3.16 and 3.17, 

respectively (ASHRAE, 2013a). 

 

𝐻𝐷𝐷 =∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇𝑛,𝑚𝑎𝑥 + 𝑇𝑛,𝑚𝑖𝑛

2
)
+365

𝑛=1

 
(3.16)  

 

Where Tbase,HDD is the base temperature, which is assumed to be 18 ⁰C (64.4 ⁰F), and 

Tn,max and Tn,min are the maximum and minimum outdoor air dry-bulb temperatures for the nth day 

of the year. 
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𝐶𝐷𝐷 =∑(
𝑇𝑛,𝑚𝑎𝑥 + 𝑇𝑛,𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+365

𝑛=1

 
(3.17)  

 

Where Tbase,CDD is the base temperature, which is assumed to be 10⁰C (50⁰F), and Tn,max 

and Tn,min are the maximum and minimum outdoor air dry-bulb temperatures for the nth day of 

the year. 

 

3.4.1.2.  Pre-Processing of the Building Energy Simulation Models 

The simulation for each file required selecting the appropriate medium office prototype 

model paramers for the corresponding climate zone (e.g., U-value, SHGC, etc.). Also, the 

simulation model required input for each locations (e.g., location, water mains temperature, 

design day, etc.) and modifying the model using the weather variables. This process was 

repeated for the 801 locations in the U.S. The parameters modified included the location, sizing, 

and water mains temperature. 

There are different classes in an EnergyPlus model that include the location, sizing, and 

water mains temperature parameters. These classes include “Site:Location”, 

“SizingPeriod:DesignDay”, “Site:WaterMainsTemperature”, and 

“Site:GroundTemperature:BuildingSurface”. 

The “Site:Location” class in EneryPlus, under the “Location and Climate” group, 

includes the name, latitude, longitude, time zone, and elevation, which were retrieved from the 

DDY file. These had to be modified for each of the 801 locations. 

The “SizingPeriod:DesignDay” class of EnergyPlus is a common method used to provide 

the required information for performing the sizing simulation. The “SizingPeriod:DesignDay” 
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included one or more extreme weather conditions for each heating and cooling, typically 

representing 99.6% or 99% weather conditions, and allows for generating a daily weather profile 

used for sizing. The design days information for one heating day and one cooling day were 

retrieved from the corresponding DDY file and inserted in the EnergyPlus file for each location. 

The “Site:WaterMainsTemperature” is another class that had to be modified for each 

weather station. The “Site:WaterMainsTemperature” includes annual average outdoor air 

temperature and maximum difference in monthly average outdoor air temperature. These values 

were calculated for each weather file using the hourly outdoor dry-bulb temperatures provided in 

the weather file. These values should be modified for all 801 locations as the water mains 

temperature impacts the energy consumption in a building. 

It should also be mentioned that the “Site:GroundTemperature:BuildingSurface” class, 

which is specially used for the surfaces that are in contact with the ground, depends on the local 

weather information and can differ significantly in different locations. Although weather files 

include the “undisturbed” ground temperature, which represents the ground temperature for each 

month, these values are significantly different from the ground temperature under the 

conditioned building zones. Therefore, in this study the monthly ground temperature for each 

representative city in the seventeen climate zones and subtypes (i.e., 1A, 1B, etc.) were used for 

the simulation of all the models in that climate zone and subtype. 

In order to analyze the impact of weather variables on the building total regulated energy 

consumption of the buildings in different climates, a set of simulations was carried out using an 

identical prototype model, the ASHRAE Standard 90.1-2016 Medium Office Prototype Model 

for climate zone 4B, for all climate zones to remove the impact of varying parameters in the 

prototype models. The preparation of the models for the simulation was the same as the process 
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described for the ASHRAE Standard 90.1-2016 Medium Office Prototype Models, in which the 

models complied with the requirements for each climate zone. The 

“Site:GroundTemperature:BuildingSurface” provided in the prototype model for the 

corresponding climate zone was used for the simulation. 

Therefore, the parameters related to the location and weather (e.g. location, water mains 

temperature, sizing, and ground temperature) were modified for each location. 

After the building model was modified for each weather location, a set of 801 EnergyPlus 

files was generated by removing the daylighting controls and reference points from the models to 

perform the simulations without daylight-responsive controls, leaving all other variables the 

same. 

The ASHRAE Standard 90.1-2004 medium office prototypes were used in the analysis 

related to the performance path.  It should be mentioned that since the ASHRAE Standard 90.1-

2004 does not require the implementation of the daylight-responsive controls, the 2004 version 

of the medium office prototype models does not have daylight-responsive controls. 

 

3.4.1.3.  Simulation and Post-Processing 

In this step, first the models with and without daylight-responsive controls were 

simulated using EnergyPlus and the corresponding EPW file for the 801 locations. Then, the 

annual electricity and natural gas consumption for the different end-uses was extracted from the 

output from each simulation. The regulated energy consumption was calculated by summing the 

total electricity and natural gas energy consumptions except for interior equipment. The site 

energy was converted to source energy using the 3.167 and 1.084 multipliers for the electricity 
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and natural gas, respectively (ICC, 2018).  Overall, the following simulations were carried out in 

this study: 

 801 simulations using code-compliant 2016 DOE medium office prototype 

models, complied with the requirements for each location 

 801 simulations using 2016 DOE medium office prototype models without 

daylight responsive controls  

 801 simulations using an identical 2016 DOE medium office prototype model 

 801 simulations using an identical 2016 DOE medium office prototype model 

with high-thermal mass 

 801 simulations using an identical 2016 DOE medium office prototype model 

with 24 hour operating schedule 

 3204 (4 × 801) simulations using code-compliant 2004 DOE medium office 

prototype models, rotated 0, 90, 180, and 270 degrees, complied with the 

requirements for each location. 

 

3.4.2. Analysis of the efficiency of the algorithm 

In order to compare the efficiency of the algorithms, a function can be used to map the 

size of the input to the number of execution steps (time complexity) or the amount of memory 

required for the algorithm (space complexity) (Knuth, 1998). 

The big O notation is an asymptotic analysis that is used to quantify the time complexity 

of an algorithm by estimating the upper-bound of an algorithm’s runtime and to show how the 

processing time of an algorithm changes as the problem size becomes sufficiently large 

(Dasgupta et al., 2006). Given the functions  f : ℝ  ℝ, and  g : ℝ  ℝ, f(x) = O(g(x)), if and 



 

107 

 

only if there exists a positive constant M and a constant x0, such that the |f(x)| ≤ M|g(x))| for x ≥ 

x0. 

 

3.4.3. Analysis of the Impact of Schedules 

The ASHRAE Standard 90.1-2016 and 90.1-2004 medium office prototype models used 

the typical office schedules. In order to analyze the impact of the operating schedule on the 

results, the schedules of the ASHRAE Standard 90.1-2016 medium office prototype models are 

modified to represent a 24-hours operation schedule for the 801 simulations. 

In order to modify the model to represent 24-hour operating schedule, temperature set-

points and different schedules were modified to have a flat value for all 24 hours of the day, 

during the whole year. The maximum values used in the typical office operating hours were used 

in the 24-hours models. The heating and cooling set-points were set to 21 °C and 24 °C, 

respectively. The schedules that were changed include: the HVAC operation schedule was set to 

1, the lighting schedule was set to 0.776, the equipment schedule was set to 0.858, the occupancy 

schedule was set to 0.950, the elevator schedule was set to 0.690, the minimum outdoor air 

motorized damper schedule was set to 1, and all the infiltration schedules were set to 1. 

 

3.4.4. Analysis of the Impact of Thermal Mass 

To analyze the accuracy of the estimations of the conventional degree days and the split-

degree days, a set of 801 simulations were carried out using an identical simulation model that 

has higher thermal mass compared to the DOE medium office prototype models. The modified 

model has the same specifications compared to the DOE medium office prototype model 

compliant with the requirements for the ASHRAE Standard 90.1-2016 for climate zone 4B, 
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except the changes mentioned in Table 3. Layers shown in bold and italic in Table 3 indicate the 

modified or added materials. The properties for the materials mentioned in Table 3 are provided 

in Table 4. 

 

Table 3: Comparison of the Modified Building Components  
 Layers Building Component/Configurations 

  Prototype Model Model with High Thermal Mass 

Interior 

Slab: Floor 
Layer 1* 100 mm Normal-Weight Concrete 200 mm Normal-Weight Concrete 

Layer 2 Carpet Carpet 

Exterior 

Wall 
Layer 1* 25 mm stucco 25 mm stucco 

Layer 2 16 mm Gypsum Board 16 mm Gypsum Board 

Layer 3 Exterior Wall Insulation Exterior Wall Insulation 

Layer 4 16 mm Gypsum Board 100 mm Normal-Weight Concrete 

Layer 5  G01 16mm gypsum board 

Interior Wall Layer 1* 13 mm Gypsum Board 13 mm Gypsum Board 

Layer 2 13 mm Gypsum Board 100 mm Normal-Weight Concrete 

Layer 3  13 mm Gypsum Board 

Roof Layer 1* Built-up Roofing Built-up Roofing 

Layer 2 Roof Insulation Roof Insulation 

Layer 3 Metal Surface Metal Surface 

Layer 4  200 mm Normal-Weight Concrete 
* Outside Layer 

 

Table 4: Description of the Materials Properties in Modified Building Model 
Name Unit 13 mm 

Gypsum 

Board 

16 mm 

Gypsum 

Board 

25 mm 

stucco 

100 mm 

Normal-

Weight 

Concrete 

200 mm 

Normal-

Weight 

Concrete 

Built-

up 

Roofing 

Carpet Exterior 

Wall 

Insulation 

Metal 

Surface 

Roof 

Insulation 

Roughness - Smooth Medium 

Smooth 

Smooth Medium 

Rough 

Medium 

Rough 

Rough Very 

Rough 

Medium 

Smooth 

Smooth Medium 

Smooth 

Thickness m 0.0127 0.0159 0.0254 0.1016 0.2032 0.0095 - - 0.0008 - 

Conductivity  W/m°K 0.16 0.16 0.72 2.31 2.31 0.16 - - 45.28 - 

Density Kg/m3 800 800 1856 2322 2322 1120 - - 7824 - 

Specific Heat J/kg°K 1090 1090 840 832 832 1460 - - 500 - 

Thermal 

Resistance 
m2°K/W - - - - - - 0.216 2.368 - 5.307 

Thermal 

Absorptance 

- 0.9 - 0.9 - - 0.9 0.9 0.9 - 0.9 

Solar 

Absorptance 

- 0.7 - 0.7 - - 0.7 0.7 0.7 - 0.7 

Visible 

Absorptance 

- 0.5 - 0.7 - - - 0.8 0.7 - 0.7 



 

109 

 

3.4.5. Analysis of the Influential Parameters of the Weather Files 

The weather files used in this study were the EPW files based on TMY3 weather files. 

The data in each file contains various weather information, including: psychrometric parameters, 

solar radiation, illumination, and wind. 

In a comparative analysis of the two locations, in order to analyze the impact of each of 

the influential parameters on the building energy consumption, a fictitious weather file was 

generated by replacing specific parts of one weather file with another. In the pairwise 

comparisons, one site was determined as the base case and the parameters in the other file were 

modified one-at-a-time. For example, to analyze the impact of the dry-bulb temperature on the 

energy consumption in a pairwise comparison, the dry-bulb temperature of the base-case weather 

file was used in the modified weather file of the other location while keeping other values as they 

were in the original weather file. Similarly, to analyze the impact of humidity, the dew-point 

temperature, relative humidity, and liquid precipitation depth were replaced, and to analyze the 

impact of wind, the wind speed and wind direction are replaced. For the analysis of the impact of 

solar radiation, the solar radiation and illuminance data are replaced. The reason that the 

illuminance data are changed along with the solar radiation data is that the illuminance data are 

calculated using luminous efficacy models developed by Perez et al. (1990) in TMY3 files 

(Wilcox and Marion, 2008). These parameters include extraterrestrial horizontal radiation, 

extraterrestrial direct normal radiation, horizontal infrared radiation intensity, global horizontal 

radiation, direct normal radiation, diffuse horizontal radiation, global horizontal illuminance, 

direct normal illuminance, diffuse horizontal illuminance, and zenith luminance. 

The temperature diurnal profile is also a characteristic of a weather that can affect 

building energy consumption. However, using the data from another weather file might not 
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reveal the impact of temperature diurnal profile on building energy consumption. Therefore, for 

each comparative analysis, two sets of dry-bulb temperature data that yielded the same HDD or 

CDD were generated while all other parameters except atmospheric station pressure6 were set to 

zero. These two sets include one with a constant value repeated throughout the weather file (i.e., 

one temperature for the year) and one with a sinusoidal profile with the same daily average 

temperature as the constant temperature cases (i.e., one cycle in 24-hours). The average dry-bulb 

temperature is calculated using the two weather files in the analyses so that the generated file has 

the same HDD or CDD. The temperature swing in the sinusoidal case was derived from the 

average diurnal swing of the two weather files in the analyses. 

 

3.4.6. Analysis of the Energy Savings Associated with the Implementation of the Daylight 

Responsive Controls 

The energy savings associated with the implementation of daylight responsive controls in 

ASHRAE Standard 90.1 medium office prototype models were calculated using equations 3.18 

and 3.19, respectively. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑣,   𝑒,   𝑤𝑜𝐷𝐿 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑣,   𝑒,   𝑤𝐷𝐿 

 

(3.18)  

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

=
100 × (𝐸𝑛𝑒𝑟𝑔𝑦𝑣,   𝑒,   𝑤𝑜𝐷𝐿 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑣,   𝑒,   𝑤𝐷𝐿)

𝐸𝑛𝑒𝑟𝑔𝑦𝑣,   𝑒,   𝑤𝑜𝐷𝐿
 

(3.19)  

 

                                                 

6 The atmospheric station pressure was set to 101,325 Pascal (1 Atmosphere) throughout the weather file. 
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where, v is the version of the ASHRAE 90.1 medium office prototype models, e is the end-use or 

the total regulated energy consumption, and woDL and wDL mean without and with daylight 

responsive control, respectively. 

 

3.4.7. Analysis of the Code-Compliance Using Performance Path-Appendix G 

The Appendix G of the ASHRAE 90.1-2016 (ASHRAE, 2016) requires each building to 

have the Performance Cost Index (PCI) lower than the defined target Performance Cost Index 

(PCIt), which is the maximum PCI for a proposed design to comply with a particular edition of 

Standard 90.1. The PCIt is provided for each climate zone and subtype. The PCI and PCIt can be 

calculated using equations 3.20 and 3.21, respectively. The Building Performance Factor (BPF) 

in equation 3.21 is calculated using the equation 3.22.  

 

PCI =
𝐵𝑃𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝐵𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

3.20 

 

Where, the BPproposed is the proposed building performance, which is the annual energy 

cost for a proposed design calculated according to Standard 90.1-2016, Appendix G. The 

BPbaseline is the baseline building performance is the annual energy cost for a baseline design 

calculated according to Standard 90.1-2016, Appendix G. 

 

PCI𝑡 =
(BBUEC + (BPF × BBREC))

BBP
 3.21 
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Where, the Baseline Building Unregulated Energy Cost (BBUEC) is the portion of the 

annual energy cost of a baseline building design that is due to unregulated energy use. The 

Baseline Building Regulated Energy Cost (BBREC) is the portion of the annual energy cost of a 

baseline building design that is due to regulated energy use. The Building Performance Factor 

(BPF) is calculated using equation 3.22, which can be retrieved from Tables 2.2, 2.3, and 2.4 of 

the ASHRAE Standard 90.1-2016 (ASHRAE, 2016). The Baseline Building Performance (BBP) 

is the annual energy cost of the baseline building design including both regulated and 

unregulated energy use. 

 

BPF𝑦𝑒𝑎𝑟 𝑥 =
(∑
PBREC𝑦𝑒𝑎𝑟 𝑥
 PBREC2004

)

𝑁𝑃
 3.22 

 

Where, the Prototype Building Regulated Energy Costyear x (BPRECyear x) is the portion of 

annual energy cost due to regulated energy use from the DOE prototype buildings for a given 

building prototype, climate zone and edition of Standard 90.1. The Prototype Building Regulated 

Energy Cost2004 (BPREC2004) is the portion of annual energy cost due to regulated energy use 

from the DOE prototype buildings for a given building prototype, climate zone and the 2004 

edition of Standard 90.1, and the Np is the number of prototype building models of a particular 

building type from Table 2.1 of the ASHRAE 90.1-2016 (ASHRAE, 2016). 

The Baseline Building Performance is calculated by averaging the annual energy cost of 

a baseline building design that is due to regulated energy use of the baseline models with rotation 

angles of 0, 90, 180, 270 degrees. 
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The building energy costs were calculated using the 2018 U.S. average commercial 

building energy prices reported by Energy Information Administration (EIA) in Table 2 of the 

March 2017 Short Term Energy Outlook (EIA, 2019), which provides 7.82 $/thousands cubic 

feet for the U.S. natural gas retail prices for the commercial sector and 10.66 ₵/kWh for U.S. 

electricity retail prices for the commercial sector. After conversions, 7.19 $/GJ for natural gas 

and 29.61 $/GJ for electricity were used in this study. 

 

3.4.8. Analysis of the Predictability of the Energy Consumption and Weather-Related 

Parameters by Various Degree Day Calculation Methods 

In order to assess the predictability of the energy consumption and weather-related 

parameters by various degree day calculation methods, the HDD and CDD were calculated using 

the different degree day methods for each of the 801 TMY3 weather files. These methods are 

previously described in Section 2.5.1.2. Then, the annual sum of the HDD and CDD were 

calculated for each site. Next, different regression models were developed using the annual 

energy consumption of the end-use(s) of interest and either the HDD, or CDD, or both HDD and 

CDD values for each site. In these models, the annual energy consumption of the end-use(s) of 

interest for each case was the dependent variable, and the HDD, or CDD, or both HDD and CDD 

were the independent variable(s). Using these models, the appropriateness of the degree day 

predictions were assessed using the R2, Adjusted R2, and RMSE of the predicted values using the 

predicted values by the regression models and the actual simulated values. Similar procedures 

are applied for the calculation of the split Cooling Degree Days (sCDD) and split Heating 

Degree Days (sHDD) resulting in two sCDD and two sHDD for each site. 
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To analyze the impact of the base temperature on the accuracy of the prediction of the 

annual heating and cooling energy consumption, the HDD, CDD, sHDD, and sCDD were 

calculated for the different weather files using different temperatures as the base temperature 

with increments of 1℃. Then, for the heating, for each base temperature, a regression model was 

developed using the sum of the HDD or sHDD for the whole year for each location as the 

independent variable and the annual heating energy consumption for each location as the 

dependent variable. Similarly, for each base temperature, a regression model is developed for the 

cooling using the sum of the CDD or sCDD for the whole year for each location as the 

independent variable and the annual cooling energy consumption in each location as the 

dependent variable. The R2 of the 801 different location predicted values using the regression 

model compared against the simulated annual energy consumption was used as a metric to assess 

the appropriateness of the base temperature. 

 

3.5.Weather-Normalization for Building Energy Comparisons 

First, using the procedure for the performance path defined in Appendix G of the 

ASHRAE Standard 90.1-2016 (ASHRAE, 2016), previously discussed in section 0 of this 

document, the PCI and PCIt for each of the 801 locations were calculated. Next, the difference of 

the PCI and the PCIt were calculated for the different locations. This difference shows that the 

compliant building configuration can differ by using the prescriptive path or performance path. 

In other words, a single BPF for each climate zone and subtype can result in variations in energy 

consumption and energy costs due to the different weather conditions within each climate zone 

and subtype lead. This variation leads to the variation in the differences between PCI and PCIt in 

different locations within each climate zone and subtype. 
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The weather normalization for performance path was carried out with similar goal in the 

prescriptive path, which used the prototype building models provided for each climate zone and 

subtype as the benchmark for all locations within that climate zone and subtype. To achieve this 

goal in the performance path, ideally the PCI should equal PCIt in different locations. 

Different approaches could be used to eliminate the differences of the PCI and PCIt at 

different locations in one climate zone and subtype. One approach could provide a separate BPF 

for each location. However, this would require numerous tabulated values for different building 

types and could not be applied for the locations that are not included in the list. The other 

approach, which was used in this study, was to generate a regression model using split degree 

days in each weather file to adjust the BPF for each location (equation 3.23). Using this 

equation, one can estimate the variation for any location within each climate zone and subtype by 

calculating the sHDD and sCDD for that weather file and then adjust the BPF. 

To estimate the adjustment factor for the BPF: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑃𝐶𝐼𝑡 − 𝑃𝐶𝐼 =
𝐸2004,𝑖
𝑈𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

+ 𝐵𝑃𝐹 ∙ 𝐸2004,𝑖
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

𝐸2004,𝑖
𝑇𝑜𝑡𝑎𝑙 −

𝐸2016,𝑖
𝑇𝑜𝑡𝑎𝑙

𝐸2004,𝑖
𝑇𝑜𝑡𝑎𝑙 ,  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑃𝐶𝐼𝑡 ≥ 𝑃𝐶𝐼 

(3.23)  

 

 

Where, 𝐸2004,𝑖
𝑈𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 is the unregulated energy consumption of the ASHRAE Standard 

90.1-2004 model for site i, 𝐸2004,𝑖
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

 is the regulated energy consumption of the 2004 model for 

site i, 𝐸2004,𝑖
𝑇𝑜𝑡𝑎𝑙  is the total energy consumption of the 2004 model for site i, and 𝐸2016,𝑖

𝑇𝑜𝑡𝑎𝑙  is the total 

energy consumption of the ASHRAE Standard 90.1-2016 model for site i. 
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Equation 3.24 can be retrieved using the equation 3.23 and defining an ideal BPF for 

location i, BPFideal,i. 

 

𝐸2004,𝑖
𝑈𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

+ 𝐵𝑃𝐹𝑖𝑑𝑒𝑎𝑙 ∙ 𝐸2004,𝑖
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

𝐸2004,𝑖
𝑇𝑜𝑡𝑎𝑙 =

𝐸2016,𝑖
𝑇𝑜𝑡𝑎𝑙

𝐸2004,𝑖
𝑇𝑜𝑡𝑎𝑙  (3.24)  

 

 

Rearranging equation 3.24 to solve for BPFideal,i yields equation 3.25. The weather-

related parameters in equation 3.25 (𝐸2016,𝑖
𝑇𝑜𝑡𝑎𝑙  and 𝐸2004,𝑖

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑
) can be estimated by sDD (Section 

5.1). 

 

𝐵𝑃𝐹𝑖𝑑𝑒𝑎𝑙.  𝑖 =
𝐸2016,𝑖
𝑇𝑜𝑡𝑎𝑙 − 𝐸2004,𝑖

𝑈𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑

𝐸2004,𝑖
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑  (3.25)  

 

 

The 𝐵𝑃𝐹𝑖𝑑𝑒𝑎𝑙.𝑖 can be calculated using the multiplication of a coefficient for site i, 

defined as 𝐵𝑃𝐹_𝐹𝑖𝑑𝑒𝑎𝑙.𝑖, and the BPF for the corresponding climate zone and subtype x, called 

BPFx. Therefore, the 𝐵𝑃𝐹_𝐹𝑖𝑑𝑒𝑎𝑙.𝑖 can be calculated by dividing the BPFideal,i over the BPF of the 

corresponding climate zone, BPFx (equation 3.26). 

 

𝐵𝑃𝐹_𝐹𝑖𝑑𝑒𝑎𝑙.𝑖 =
𝐵𝑃𝐹𝑖𝑑𝑒𝑎𝑙.𝑖
𝐵𝑃𝐹𝑥

 (3.26)  

 

 

The 𝐵𝑃𝐹_𝐹𝑖𝑑𝑒𝑎𝑙.𝑖 is the estimated using the sDD. 
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𝐵𝑃𝐹_𝐹̂
𝑖𝑑𝑒𝑎𝑙.𝑖 = 𝛽0 + 𝛽1 ∙ 𝑠𝐶𝐷𝐷1 + 𝛽2 ∙ 𝑠𝐶𝐷𝐷2 + 𝛽3 ∙ 𝑠𝐶𝐷𝐷1 ∙ 𝑠𝐶𝐷𝐷2

+ 𝛽4 ∙ 𝑠𝐻𝐷𝐷1 + 𝛽5 ∙ 𝑠𝐻𝐷𝐷2 + 𝛽6 ∙ 𝑠𝐻𝐷𝐷1 ∙ 𝑠𝐻𝐷𝐷2 

(3.27)  

 

 

where, 𝐵𝑃𝐹_𝐹̂
𝑖𝑑𝑒𝑎𝑙.𝑖 is the estimated ideal BPF for location i. 
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CHAPTER IV    

RESULTS – PART I 

 

4.1.Overview 

This chapter includes the results of simulations of the DOE medium office prototype 

models used for ASHRAE Standard 90.1-2016. The simulation results include the results of the 

simulations of the models that complied with the requirements for each climate zone as well as 

the results of the simulations of one model that complied with the requirements of climate zone 

4B that was used for all locations. In addition, an analysis of the influential weather-related 

parameters is provided for two cities with similar CDD values and two cities with similar HDD 

values with varying energy consumption as calculated by the DOE model. Finally, the results of 

the impact of varying energy consumption values for the code compliant models are illustrated. 

 

4.2. Results of the Office Building Prototype Models 

This section presents the energy consumption of the ASHRAE Standard 90.1-2016 

medium office prototype models in different locations. The results are illustrated in two 

subsections for the models that complied with the requirements in each zone and the results of 

the simulations using one model for all climate zones. 

 

4.2.1. Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype 

Models in Different Locations 

Figure 25 to Figure 28 illustrate the regulated energy consumption of the ASHRAE 

Standard 90.1-2016 medium office prototype models. The results are presented using plots that 
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consist of a scatter plot that shows the energy consumption versus the CDD or HDD values for 

the different weather locations (Figure 25 and Figure 26). These plots include histograms 

illustrating the distribution of the HDD or CDD values, represented on the horizontal axis of the 

scatter plot, and the distribution of the energy consumption or energy savings, represented on the 

vertical axis of the scatter plot. In addition, different climate zones and subtypes are illustrated 

using data labeling and color notation in the scatter plots. In each plot, the average energy 

consumption or savings for each climate subtype is listed on the right hand side of the plot. In 

these plots, the average of energy consumption or savings for the locations in climate zones 7 

and 8 (i.e. 3160 and 4137 for the energy consumption, etc.) are provided for each of these 

climate zones and are not divided into subtypes (see ASHRAE 169, 2013). 

In Figure 25 and Figure 26 the regulated energy consumption is shown with respect to the 

CDD10°C (Figure 25) and HDD18°C (Figure 26) for the 801 locations in the U.S. The 

histograms at the top and right side of each figure shows the frequency of the individual points 

versus CDD10°C or HDD18°C (upper plot) and versus the regulated energy consumption (right 

plot).  

Figure 27 and Figure 28 show the regulated energy consumption and the Energy Use 

Intensity (EUI) from the simulated energy use for the 801 locations. These energy intensity plots 

are used to show the energy consumption or savings of each simulation as scatter plots on the 

HDD versus CDD axis. In these plots, the climate zones and subtypes are illustrated using the 

overlaid boxes and different data labels for each climate subtype. Circles, triangles, and 

diamonds are used to represent climate subtypes A, B, and C, respectively, and the asterisk and 

plus signs represent climate zones 7 and 8, respectively. 
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In Figure 27, the regulated energy consumption from the simulations varies for the 

different climate zones, which is shown with varying colors. In the plots the average regulated 

energy use in different climate zones varied from 2819 GJ (in climate zone 4) to 4142 GJ 

(climate zone 8). In Figure 27, as one progresses from climate zone 1 to climate zone 2, climate 

zone 3, and climate zone 4, the average regulated energy consumption in the climate zone begins 

at 3681 GJ in climate zone 1, then drops across climate zones 2, 3, and 4, as the CDD10°C 

drops, then begins to rise again in climate zones 6, 7, and 8 as the HDD18°C rises. Within each 

climate zone, on average, subtype C has the lowest energy consumption and subtype A has the 

highest energy consumption.  

The results of a study on the feasibility of zero net energy buildings in different climates 

by Eley (2017) has shown similar variations for the minimum Collector-to-Floor Area (CFA) 

ratio needed for net-zero energy office buildings. According to this study, the minimum CFA for 

net-zero energy office buildings that complied with ASHRAE Standard 90.1-2013 ranged from 

0.3 in the Pacific coast to 1.04 in the Arctic. Similarly, the minimum CFA for a net-zero energy 

office buildings with a maximum technical potential range from 0.11 in the Pacific coast to 0.3 in 

the Arctic. 

From the results of the analysis in this analysis, it can be seen that there is a systematic 

difference between the regulated energy consumption of the medium office prototype models in 

different locations. Figure 29 shows an analysis of the variance (ANOVA) of the different 

moisture regimes with a 0.05 level of significance for climate zone subtype A (moist), B (dry), 

and C (marine). The difference is significant with the F-ratio of 311.62 and the p-value of less 

than 0.0001, which means there is a systematic difference in the average regulated energy 

consumption of the medium office prototype models in different subtypes. 
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Figure 25: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models with Respect to the CDD10°C of Different Weather Files 
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Figure 26: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models with Respect to the HDD18°C of Different Weather Files 
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Figure 27: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models in Different Climate Zones 
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Figure 28: Energy Use Intensity of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models in Different Climate Zones 
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Figure 29: Analysis of Variance of the Regulated Energy Consumption in Different 

Subtypes 

 

4.2.2. Energy Consumption of an Identical ASHRAE Standard 90.1-2016 Medium Office 

Prototype Model in Different Locations 

Figure 30 to Figure 32, show the regulated energy consumption of the ASHRAE 

Standard 90.1-2016 medium office prototype model for climate zone 4B in different locations. 

The regulated energy consumption in Figure 30 and Figure 31 are shown with respect to the 

CDD10°C and HDD18°C of the different weather files. The histograms in the top and right side 

of each figure shows the frequency of the CDD10°C or HDD18°C and the regulated energy 

consumptions, respectively. Figure 32 shows the regulated energy consumption of the model in 

different climate zones. 

Results of the simulated energy consumption of the identical model showed similar 
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However, the simulation results of the identical model showed higher energy consumption in 

very hot or very cold climates. This is mainly due to the fact that the identical model for climate 

zone 4B was chosen and the less stringent requirements for reducing heating loads in climate 

zone 4 compared to colder climates lead to significantly higher energy consumption of the model 

in regions with much higher heating loads (i.e. climate zone 8). 

 

 

Figure 30: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B with Respect to the CDD10°C of Different 

Weather Files 
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Figure 31: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B with Respect to the HDD18°C of Different 

Weather Files 
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Figure 32: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B in Different Climate Zones 
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4.3.Analysis of the Influential Weather Parameters Varying the Energy Consumption 

within Each Climate Zone 

As illustrated in Section 4.2, the energy consumption of the DOE office building models 

vary for the different climate zones and within each climate zone. The variations can be 

distinguished between different subtypes. Typically, it can be seen that the simulations in 

subtype A on average show the largest energy consumption and subtype C show the lowest 

energy consumption compared to other subtypes. Section 4.3.1 includes the discussions for the 

variations in the energy consumption of the models in subtype C compared to subtypes A and B. 

Besides the difference between subtype C and the other subtypes, there is a distinct 

difference in the energy consumption of the buildings in subtype A and B in the same climate 

zones. Sections 4.3.2 and 4.3.3 discuss the variation of the energy consumption of the identical 

medium office prototype model in different locations. To analyze the variation of the heating and 

cooling energy consumption within each climate zone, two locations with similar HDD (for the 

variations in heating energy use) and CDD (for the variations in cooling energy use) were 

selected. Then, an identical model is used to remove the impact of code-compliant building-

related parameters in the results. The analysis was mainly focused on a single day with similar 

HDD or CDD. The purpose of the comparative analysis was to reveal the influential weather 

variables that define the variations in energy consumption using time-series representations. 

 

4.3.1. Variations in the Energy Consumption of the Models in Marine Compared to Moist 

and Dry Moisture Regimes 

As mentioned previously, the energy consumption of the models in subtype C is on 

average lower than the average consumption of the models in subtypes A and B. Figure 33 to 
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Figure 37 show the daily profile of the hourly average outdoor dry-bulb temperature for annual, 

spring, summer, fall, and winter, respectively. First, the average outdoor dry-bulb temperature 

for each site represents the average value for each hour of the day in 365 days. Next, the average 

value is calculated for all sites for each hour of the day. As illustrated in Figure 33, while the 

daily profile of climate zone 7 and 8 have lower temperatures compared to other climate zones, 

subtypes A, B, and C have very similar daily profiles for the annual hourly average outdoor dry-

bulb temperature.  

Since Figure 33 does not reveal the seasonal differences in the different subtypes, a 

similar calculation procedure to analyze the annual hourly average temperature was carried out 

for seasonal hourly average temperatures. Figure 34 to Figure 37 show the daily profiles of the 

hourly average outdoor dry-bulb temperature in the different seasons. It can be seen that among 

the different subtypes, by comparing the temperature at each hour in the different seasons, 

subtype C has the lowest difference in different seasons. In other words, while the three subtypes 

have approximately the same profile in spring and fall, there is a higher temperature for subtypes 

A and B in the summer and a lower temperature of subtypes A and B in the winter compared to 

subtype C. Figure 38 shows the daily profile of the maximum seasonal average hourly difference 

of outdoor dry-bulb temperature. This profile shows the difference in subtype C is lower when 

compared to other subtypes. HDD and CDD reflects this difference to some extent when one 

considers the weather files of sites with similar HDD in different subtypes. For example, the 

weather files in subtype C typically have a lower CDD compared to other subtypes. Similarly, by 

comparing the weather files with similar CDD we observe that the subtype C weather files 

typically have lower HDD compared to other subtypes. Therefore, in general, the least building 

energy consumption in each climate zone occur in subtype C. 
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Figure 33: Daily Profile of the Annual Hourly Average Outdoor Dry-Bulb Temperature 

 

 

Figure 34: Daily Profile of the Spring Hourly Average Outdoor Dry-Bulb Temperature 
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Figure 35: Daily Profile of the Summer Hourly Average Outdoor Dry-Bulb Temperature 

 

 

Figure 36: Daily Profile of the Fall Hourly Average Outdoor Dry-Bulb Temperature 
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Figure 37: Daily Profile of the Winter Hourly Average Outdoor Dry-Bulb Temperature 

 

 

 

Figure 38: Daily Profile of the Maximum Seasonal Average Hourly Difference of Outdoor 

Dry-Bulb Temperature 
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4.3.2. Comparative Analysis of the Variations in Heating Energy Consumption in Locations 

with Similar HDD in Moist and Dry Moisture Regimes 

The HDD in buildings is utilized as a method to classify the weather conditions with 

respect to the expected heating load in buildings. However, results of the current study show that 

the heating energy consumption can vary within similar ranges of HDD. For example, Figure 39 

shows the heating energy consumption of the ASHRAE Standard 90.1-2016 medium office 

prototype models in different locations with respect to the calculated HDD of the corresponding 

weather files. This figure illustrates the variations within similar ranges of HDD. In order to 

remove the effect of various building configurations in the analysis, the results of the heating 

energy consumption of an identical ASHRAE Standard 90.1-2016 medium office prototype 

model that complied with climate zone 4B, with respect to the calculated HDD of the 

corresponding weather files are illustrated in Figure 40. Similar to the results of the models that 

complied with the requirements for each climate zone, the results of the simulations of the 

identical model show significant variations in heating energy consumption of the models within 

a similar HDD group. 

In order to analyze the difference in heating energy consumption of the cases with similar 

HDDs, as shown in Figure 39 and Figure 40, two locations from Climate Zone 5 were selected: 

the Omaha-Eppley Airfield weather station (ID: 725500), located in Climate Zone 5, subtype A, 

and the Gallup-Sen Clarke Field weather station (ID: 723627), located in Climate Zone 5, 

subtype B (Figure 41). In the analysis, the same simulation model (ASHRAE Standard 90.1 

prototype building model for climate zone 4B) was used to enable studying only the weather 

impacts (Figure 40). The HDDs of the selected city in climate zone 5A and 5B are 3,232 and 

3241, respectively. The simulated annual heating energy consumption of the models in the 
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selected city in climate zone 5A and 5B were 816 GJ and 356 GJ for the models complied with 

each climate zone and 901 GJ and 388 GJ for the identical model. In Figure 39 it can be seen that 

although the HDD of the selected city in climate zone 5B is even slightly higher than the HDD of 

the selected city in climate zone 5A, the heating energy use was significantly higher in Omaha, 

Nebraska versus Gallup, New Mexico. 

 

Figure 39: Variation of the Heating Energy Consumption of the Prototype Models 

Complied with Each Climate Zone and the Representation of the Two Selected Cases with 

Similar HDD and Different Heating Energy Consumption 



 

136 

 

 

Figure 40: Variation of the Heating Energy Consumption of an Identical Model and the 

Representation of the Two Selected Cases with Similar HDD and Different Heating Energy 

Consumption 
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Figure 41: Selected Weather Stations in Climate Zone 5, subtypes A and B in the Climate 

Zones for United States Counties Map. ©ASHRAE, www.ashrae.org. Original map used 

with permission from 2013 ASHRAE Standard-169 (Map: (ASHRAE, 2013a)) 

 

4.3.2.1. Analysis of the Impact of Solar Radiation, Dry-Bulb Temperature, Humidity, 

and Wind on the Variations in Heating Energy Consumption in Locations with 

Similar HDD 

This section seeks to analyze the impact of different weather parameters on the variations 

in the heating energy consumption using the DOE medium office prototype models. The analysis 

starts with simulating the two selected building models using the corresponding weather files. 

Then, four simulations were carried out to reveal the impact of solar radiation, dry-bulb 
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temperature, wind, and humidity on the building heating energy consumption. Then, to reveal the 

impact of the operating schedule, a 24-hour operating model was simulated using the two weather 

files. 

In the analysis, it was observed that there were several additional influential weather 

variables that were not considered in the HDD groupings that impact the heating energy 

consumption, which can result in different daily energy use values. For example, weather data with 

different daily profiles can have similar HDD. Figure 42 shows the daily profile of the outdoor 

dry-bulb temperature, global horizontal solar radiation, relative humidity, wind speed, and the 

heating energy consumption for the two selected sites in January 11th. Although the two sites have 

almost the same HDD (approximately 16 ⁰C), there is a large difference in the heating energy 

consumption in that day (7.8 GJ and 2.1 GJ for climate zones 5A and 5B, respectively). It can be 

seen that although the HDD is slightly lower in the site located in climate zone 5A (Omaha, 

Nebraska) compared to the site in climate zone 5B (Gallup, New Mexico), the daily heating energy 

consumption in Omaha is more than three times larger compared to Gallup. 

For the two days shown in Figure 42 that both registered 16C HDD, it can be clearly seen 

that the outdoor air temperature had completely different profiles. Although both days had 

approximately 16C HDD, in the case of Omaha, there was overcast sky and very little solar 

radiation, resulting in the daily outdoor temperature remained relatively constant at approximately 

0C, with high humidity levels. In contrast in Gallup, New Mexico, there were clear sky, cold 

temperature during the evenings (approximately -5C), and warmer, drier daytime temperature 

(approximately 10C), which also yielded 16C HDD. However, it should be mentioned that the 
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comparisons in the selected day do not mean that similar variations will necessarily apply for all 

days in different moisture regimes (in this case subtypes A and B). 

Table 5 shows the impact of the weather parameters on both the annual heating energy 

consumption and for one selected day, January 11th. For the analysis, the Gallup, NM, weather 

station (ID: 723627), located in Climate Zone 5B, was selected as the basecase. Figure 43 shows 

the impact of the solar radiation on indoor temperatures for January 11th. Figure 44 to Figure 46 

show the parameters and the results for January 11th, and Figure 48 illustrates the results of the 

simulations of the models with 24-hours operating schedules in January 11th. 

One of the major influential weather variables that impact the heating energy consumption 

of a building is the solar radiation, which is not considered in the HDD calculation. The comparison 

of the solar radiation of the selected cities for January 11th is shown in Figure 42. To reveal the 

impact of solar radiation on heating demand, a model without HVAC systems and infiltration was 

simulated with all other parameters in the weather file set to zero (except the atmospheric station 

pressure, which was set to 101.3 kPa). Figure 43 shows the total transmitted solar radiation energy 

from the windows in middle floor zones and the mean air temperature of the zones. Figure 43 

illustrates a temperature rise of approximately 10 ⁰C in the south zone of the model in the selected 

city in climate zone 5B, which has higher solar radiation compared to the selected city in climate 

zone 5A while there was no significant increase in the zones temperatures of the selected city in 

climate zone 5A, where the model received lower amount of solar radiation. 
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Figure 42: Comparison of the Heating Energy Consumption and the Influential Weather 

Parameters of Two Locations with Similar HDD for January 11th 
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Figure 43: Total Transmitted Solar Radiation through the Windows and the Mean Air 

Temperature of the Middle Floor Zones for January 11th 
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Figure 44: Heating Energy Consumption for January 11th Using the Solar Radiation Data 

from Gallup, NM 

 
Figure 45: Heating Energy Consumption for January 11th Using the Dry-Bulb 

Temperature Data from Gallop, NM 
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Figure 46: Heating Energy Consumption for January 11th Using the Wind Data from 

Gallop, NM 

 

Figure 47: Heating Energy Consumption for January 11th Using the Humidity Data from 

Gallop, NM 
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Figure 48: Comparison of the Heating Energy Consumption and the Influential Weather 

Parameters of the Two Locations with Similar HDD for January 11th in Models with 24-

Hours Operating Schedule 
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To further analyze the impact of the solar radiation on the heating energy consumption, the 

model in climate zone 5A was simulated using a modified weather file, where the solar radiation 

data from the weather file for climate zone 5B was used in the modified weather file for climate 

zone 5A. The results, shown in Figure 44, reveal that similar solar radiation makes the heating 

energy consumption of the two locations much closer to each other. Specifically, the heating 

energy consumption in climate zone 5A was reduced from 7.8 GJ to 3.8 GJ, which is closer to the 

2.1 GJ, which was the heating energy consumption in climate zone 5B. In other words, the heating 

energy consumption was 3.6 times larger in climate zone 5A compared to climate zone 5B using 

the actual weather files and only 1.8 times larger while using the identical solar radiation data, 

which means a large portion of the variation is attributable to the solar radiation parameter. 

Besides the solar radiation data, replacing the dry-bulb temperature will also significantly 

reduce the difference (Figure 45). Furthermore, replacing the wind data also reduces the difference 

(Figure 46). However, compared to the impact of replacing the dry-bulb temperature, replacing 

the wind data had a lower impact in reducing the differences in the energy consumption between 

the two sites. 

Replacing the humidity data only slightly reduces the difference due to the moisture content 

in the air (Figure 47). However, the impact of the humidity is less pronounced compared to other 

parameters. The contribution from the water vapor in the calculation of the heating load is 

relatively small since, as depicted in Figure 49 and illustrated in equation 4.1, the small value of 

the humidity ratio makes the impact of the moisture in the air less pronounced in the calculation 

of the total enthalpy change. 
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Figure 49: Schematic Representation of the Heating Process 

 

𝑑ℎ𝐴–𝐵 = 𝐶𝑝–𝑎𝑖𝑟(𝑇𝐵 − 𝑇𝐴) + 𝑥𝐶𝑝–𝑤𝑎𝑡𝑒𝑟(𝑇𝐵 − 𝑇𝐴) (4.1) 

 

 

Where 𝑑ℎ𝐴–𝐵 represents the enthalpy difference of the moist air between A and B, 𝐶𝑝–𝑎𝑖𝑟 specific 

heat capacity of air, 𝐶𝑝–𝑤𝑎𝑡𝑒𝑟 is the specific heat capacity of water, 𝑇𝐴 and 𝑇𝐵are the dry-bulb 

temperature of points A and B, respectively, and 𝑥 is the humidity ratio.  

Figure 48 shows the heating energy consumption of the model in the 24-hour operating 

configurations at the two selected locations. In Figure 48, the peak demand in the first hours of 

operation using the office schedule (Figure 42) was no longer seen in the results of the heating 

energy use of the 24-hour schedule model due to the continuous operation of the heating equipment 

and internal loads. The lower temperature during the night-time and early morning in the case 

located in climate zone 5B resulted in a higher heating demand during the night and early morning, 

which lead to a closer daily heating use between the two locations. The results show the ratio of 

the heating energy consumption reduces from 3.6 times larger in climate zone 5A compared to 

climate zone 5B to 2.2 times larger in climate zone 5A compared to climate zone 5B. However, 
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although the difference in heating energy consumption was reduced, there was still a significant 

difference between two locations. The significant difference in heating energy use of the 24-hour 

operating model in the two locations shows that the difference in heating energy consumption is 

not only caused by the operation schedules and verifies the impact of other influential parameters 

on the variation in the heating energy consumption of each location. 

As illustrated in Figure 48, it can be seen that while there was a lower temperature at night 

in case of climate zone 5B, the heating energy use during those hours was not significantly higher 

than the case of climate zone 5A. In fact, the thermal mass effect of the building impacts the heating 

demand in the hours proceeding the night. During the day, the direct solar gains result in lower 

energy consumption for the case of climate zone 5B. In fact, the internal gains and the solar 

radiation are shown to be sufficient to eliminate the heating demand for several hours (from 11 am 

to 5 pm) during the day. 

 

Table 5: The Impact of Weather Parameters on the Heating Energy Consumption 

 

Heating 

Energy Use 

Difference

with Base 

Case

Difference / 

Heating 

Energy Use 

Heating 

Energy Use

Difference

with Base 

Case

Difference / 

Heating 

Energy Use 

[GJ] [GJ] [%] [GJ] [GJ] [%]

1 Gallup, NM
1 

(Base Case) 387.86 0.00 0.00% 2.15 0.00 0.00%

2 Omaha, NE
2 901.14 513.28 56.96% 7.81 5.66 72.47%

3
Omaha, NE, Except Solar Radiation 

Data from Gallup, NM
699.33 311.47 44.54% 3.82 1.67 43.75%

4
Omaha, NE, Except Dry-Bulb 

Temperature Data from Gallup, NM
763.43 375.57 49.19% 6.46 4.32 66.76%

5
Omaha, NE, Except Wind Data from 

Gallup, NM
828.61 440.75 53.19% 7.53 5.38 71.47%

6
Omaha, NE, Except Humidity Data 

from Gallup, NM
899.91 512.04 56.90% 7.79 5.64 72.41%

1. Gallup, NM, weather station (ID: 723627) is classified in climate zone 5B

2. Omaha, NE, weather station (ID: 725500) is classified in climate zone 5A

Case No. Weather File

Annual Daily (January 11
th

)
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In summary, the analysis in this section showed that the solar radiation is a measure that 

is not fully accounted in HDD and has high impact on the differences in heating energy 

consumption of the two near-identical HDD locations in climate zone 5A and climate zone 5B.  

 

4.3.2.2.  Analysis of the Impact of Diurnal Temperature Profiles on the Variations in 

Heating Energy Consumption in Locations with Similar HDD 

On average, the diurnal temperature range has different patterns in different moisture 

regimes. Figure 50 shows the annual average outdoor dry-bulb temperature of the two selected 

locations. In the figure it can be seen that location in subtype A has a narrower diurnal 

temperature difference range compared to the one in subtype B. Overall, the diurnal temperature 

in dry subtype has higher probability to have higher temperature swing during a day. 

 

Figure 50: Comparison of the Annual Average Outdoor Dry-Bulb Temperature of Selected 

Weather Stations in Climate Zone 5, Subtypes A and B  
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This section presents the analysis of the impact of diurnal temperature profile on the 

variations in heating energy use. In the analysis, seven simulations were performed to show the 

impact of the diurnal temperature profile on building heating energy use. In the analysis, an 

identical model was used in all seven simulations to analyze the impact of different diurnal 

temperature profiles. Therefore, the only parameter changed in this analysis was the dry-bulb 

temperature of the weather files used in the simulations. The analysis included two types of daily 

temperature profiles, including a flat and a sinusoidal temperature profiles with one cycle in 24 

hours. In the analysis, six variations of the sinusoidal temperature profile were studied with only 

a difference in the peak hour, ranging from 12:00 PM to 5:00 PM with increments of one hour. 

Figure 51 shows the flat temperature profile and different sinusoidal diurnal temperature profiles. 

 

 

Figure 51: Representation of the Flat Temperature Profile and Different Sinusoidal 

Diurnal Temperature Profiles  

 

A summary of the analysis of the impact of the diurnal temperature profile on the 

variations in heating energy consumption is shown in Table 6. In all six simulations, the heating 
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energy consumption using the sinusoidal temperature profile was higher than the heating energy 

consumption with flat average temperature. Figure 52 shows the cumulative heating energy use 

for the different simulations using the sinusoidal temperature profiles versus the cumulative 

heating energy using a flat average temperature profile. In a cumulative heating energy 

consumption the heating energy use of the previous hours are added in each hour and allows 

comparing the total heating energy consumption up to each hour of the day. While the flat and 

the sinusoidal temperature profile yield the same HDD, the impact of the higher heating demand 

in the early operating hours in sinusoidal temperature profile is more pronounced than the 

slightly lower heating consumption during the day. An example of comparative analysis of the 

flat and sinusoidal temperature profile is shown in Figure 53. Overall, the results for the heating 

energy consumption using sinusoidal temperature profile is slightly higher than the flat 

temperature profile using the identical ASHRAE Standard 90.1-2016 medium office prototype 

model. However, the difference is negligible compared to the variations in the heating energy 

consumption of the two selected cities using the corresponding actual weather file for each city. 

Overall, the diurnal temperature profile has a very small impact on the heating energy 

consumption. Typically, locations in subtype A have a narrower diurnal temperature range 

compared to the one in subtype B. Although the impact of the diurnal temperature range shows 

that flat average temperature profile has slightly less heating energy compared to the sinusoidal 

profiles, the results of heating energy consumption show higher energy consumption in subtype 

A. This is mainly due to the fact that the impact of the other influential parameters are more 

pronounced compared to the diurnal temperature profile shape. Furthermore, the actual weather 

files in subtype A are still sinusoidal, which makes the small difference between the flat and 

sinusoidal temperature profiles even less. 
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Table 6: The Impact of Diurnal Temperature Profile on the Heating Energy Consumption 

 

 

 

Figure 52: Comparison of the Cumulative Heating Energy Consumption of the Simulations 

Using a Sinusoidal Temperature Profile Versus a Flat Average Temperature Profile 

Heating 

Energy Use 

Difference

with Base 

Case

Difference / 

Heating 

Energy Use 

Heating 

Energy Use

Difference

with Base 

Case

Difference / 

Heating 

Energy Use 

[GJ] [GJ] [%] [GJ] [GJ] [%]

1
Flat Dry-Bulb Temperature Profile

(Base Case)
1114.20 0.00 0.00% 3.55 0.00 0.00%

2
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 12:00 PM
1191.06 76.86 6.45% 3.86 0.31 8.15%

3
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 1:00 PM
1177.13 62.93 5.35% 3.75 0.20 5.42%

4
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 2:00 PM
1180.89 66.69 5.65% 3.70 0.15 4.13%

5
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 3:00 PM
1202.60 88.40 7.35% 3.72 0.18 4.78%

6
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 4:00 PM
1240.55 126.35 10.19% 3.82 0.27 7.17%

7
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 5:00 PM
1286.11 171.91 13.37% 3.98 0.43 10.86%

1. Parameters other than the dry-bulb temperature were set to zero  throughout the weather file except the atmospheric station 

pressure, which is set to 101.3 kPa

Case No. Weather File
1

Annual Daily
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Figure 53: The Impact of the Diurnal Temperature Profile on the Heating Energy 

Consumption-The Case with Sinusoidal Peak Temperature at 3:00 PM 

 

In addition to the direct impact of the diurnal temperature profile, it was observed that it 

roughly correlates with other influential parameters (e.g. solar radiation). Figure 54 shows the 

annual average hourly global horizontal radiation versus the annual average diurnal temperature 
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range of 801 different locations. In the figure it can be seen that there is a distinct difference 

between the annual average hourly global horizontal solar radiation between the dry and the 

moist and marine moisture regimes when looking at either the annual average diurnal 

temperature range or the annual average hourly global horizontal radiation. As shown in Figure 

54, there is also a modest agreement between the increase of the annual average diurnal 

temperature range and the increase in annual average hourly global horizontal radiation in 

different subtypes. This correlation is more pronounced when using the exact hourly data instead 

of annual average values. Consequently, more important than the direct impact of the diurnal 

temperature, diurnal temperature can be used to crudely capture the differences in other 

influential weather parameters in different subtypes. 

 

 

Figure 54: The Distinction of the Annual Average Solar Radiation in Dry versus Moist and 

Marine Moisture Regimes and Its General Increasing Trend with the Annual Average 

Diurnal Temperature Range 
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4.3.2.3.  Summary of the Analysis of the Variations in Heating Energy Consumption in 

Locations with Similar HDD 

In general, there are different weather parameters that influence building heating energy 

consumption, which are not accounted in the HDD measurements. Among these influential 

parameters, the highest impact is from the solar radiation. Other influential parameters are the 

wind dry-bulb temperature profile, wind, and humidity. Furthermore, the diurnal temperature 

range impacts building energy consumption. Although dry-bulb temperature is included in the 

calculations of the HDD, the replacement of the dry-bulb temperature still impacts the heating 

energy consumption. Besides the direct impact of the diurnal temperature range on building 

energy consumption, the diurnal temperature range roughly correlates with other influential 

weather parameters on heating energy use (e.g., global horizontal radiation). 

 

4.3.3. Comparative analysis of the Variations in Cooling Energy Consumption in Locations 

with Similar CDD in Moist and Dry Moisture Regimes 

While the CDD is a measurement used to classify the weather condition with respect to 

the anticipated cooling load in buildings, the results show that the cooling energy consumption 

can vary within the same ranges of CDD. Figure 55 shows the cooling energy consumption of 

the ASHRAE Standard 90.1-2016 medium office prototype models, complied with the 

requirements of each climate zone, in different locations with respect to the calculated CDD of 

the corresponding weather files and illustrates the variations within similar ranges of the CDD. 

Besides the overall trend of increasing the cooling energy consumption with increased CDD, it 

can be seen that, on average, the cooling energy consumption of the locations with similar CDD 

tends to be higher in moist areas compared to dry areas. 
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Therefore, to study this further, two locations with similar CDDs that have different 

cooling energy consumption were chosen in moist (Subtype A) and dry (Subtype B) areas for 

further analysis. As shown in Figure 55, these locations are: the Chattanooga-Lovell Field 

Airport (weather station ID: 723240), located in Hamilton county, Tennessee, classified in 

climate zone 3A, and the Truth or Consequences Municipal Airport (weather station ID: 

722710), located in Sierra county, New Mexico, classified in climate zone 3B. It can be seen that 

while the CDD in the Truth or Consequences Municipal Airport was slightly higher than the 

CDD in the Chattanooga-Lovell Field Airport (2687 versus 2678), the cooling energy 

consumption in Chattanooga-Lovell Field Airport was significantly higher than in Truth or 

Consequences Municipal Airport (1025 GJ versus 869 GJ). 

In order to remove the impact of various building configurations in the analysis, the 

results of the cooling energy consumption of an identical ASHRAE Standard 90.1-2016 medium 

office prototype model that complied with climate zone 4B with respect to the calculated CDD 

of the corresponding weather files are illustrated in Figure 56. Similar to the results of the 

models complied with the requirements for each climate zone, the results of the simulations of 

the identical model show variations in cooling energy consumption of the models within similar 

CDD. In the analysis it was observed that the moisture regimes seemed to have distinct separate 

patterns in cooling energy consumption. By comparing the cooling energy consumption in 

locations with similar CDD, on average, the dry locations seems to have lower cooling energy 

consumption compared to the moist locations. 

The two selected locations with similar CDD and different cooling energy consumption 

in the two moisture regimes, shown in Figure 55, are also illustrated in Figure 56. Figure 57 

locates the selected cities on the county-wide U.S. climate classification map. In this analysis, the 
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same simulation model (ASHRAE Standard 90.1 prototype building model for climate zone 4B) 

was used to enable studying only the weather impacts (Figure 40). The CDD of the selected city 

in climate zone 3A and 3B were 2678 and 2687, respectively. The annual cooling energy 

consumption of the models in the selected city in climate zone 3A and 3B were 1025 GJ and 869 

GJ for the models complied with each climate zone and 1160 GJ and 996 GJ for the identical 

model. It can be seen that although the CDD of the selected city in climate zone 3B was slightly 

higher than the CDD of the selected city in climate zone 3A, the cooling energy was significantly 

higher in the selected city in climate zone 3A compared to the selected city in 3B. 

Similar to HDD, there are different influential weather variables that are not considered in 

the CDD measurement that impact the heating energy consumption. For example, weather data 

with different daily profiles can have similar CDD. These different daily profiles can lead to 

varying cooling energy consumption in locations with similar CDD. 
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Figure 55: Variation of the Cooling Energy Consumption Using the Prototype Models 

Complied with Each Zone and the Representation of the Two Selected Cases with Similar 

CDD and Different Cooling Energy Consumption 
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Figure 56: Variation of the Cooling Energy Consumption Using an Identical Model and the 

Representation of the Two Selected Cases with Similar CDD and Different Cooling Energy 

Consumption 
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Figure 57: Selected Weather Stations in Climate Zone 3, Subtypes A and B. ©ASHRAE, 

www.ashrae.org. Original map used with permission from 2013 ASHRAE Standard-169 

(Map: (ASHRAE, 2013a)) 

 

4.3.3.1. Analysis of the Impact of Solar Radiation, Dry-Bulb Temperature, Humidity, 

and Wind on the Variations in Cooling Energy Consumption in Locations with 

Similar CDD 

This section seeks to analyze the variations in cooling energy consumption for locations 

with similar CDDs. The analysis starts by simulating a similar selected building model using the 

corresponding weather files. Then, four simulations are carried out to reveal the impact of solar 

radiation, dry-bulb temperature, wind, and humidity on the building cooling energy consumption. 
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Finally, to reveal the impact of the operating schedule, a 24-hour operating model was simulated 

using these two weather files. 

Figure 58 shows the daily profile of the outdoor dry-bulb temperature, global horizontal 

solar radiation, relative humidity, wind speed, and the heating energy consumption at the two 

selected sites on June 22nd. Although the two sites have almost the same CDD (approximately 15 

⁰C), there was a difference in the cooling energy consumption on that day (8.74 GJ and 6.22 GJ 

for climate zones 3A and 3B, respectively). In the analysis it could be seen that although the CDD 

was slightly lower at the site located in climate zone 3A compared to the site in climate zone 3B, 

the daily cooling energy consumption in the site located in climate zone 3A was more than the the 

site located in climate zone 3B. It is worthwhile to mention that the comparisons in the selected 

day do not mean that similar variations will necessarily apply for all days in different moisture 

regimes (in this case subtypes A and B). 

Table 7 shows the impact of the weather parameters on both the annual cooling energy 

consumption and for the selected day, June 22nd. Truth or Consequences Municipal Airport 

weather station (ID: 722710), located in Climate Zone 3B, is selected as the basecase. Figure 59 

to Figure 62 show the parameters and the results for June 22nd and Figure 63 illustrates the results 

of the simulations of the models with 24-hours operating schedules in June 22nd. 

Similar to the analysis of the variations in hearing energy consumption, the cooling energy 

consumption is also affected by the weather parameters that are not included in CDD. However, 

the weather parameters affect the cooling energy consumption differently compared to the analysis 

on heating energy consumption in section 4.3.2.1. 

First, the main difference with the results of the analysis conducted for the variations in 

heating energy consumption is the more pronounced impact of humidity on cooling energy 
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consumption. In fact, replacing the humidity data variable of the Chattanooga-Lovell Field Airport 

weather station (ID: 723240), located in Climate Zone 3A with the corresponding data the Truth 

or Consequences Municipal Airport weather station (ID: 722710), located in Climate Zone 3B 

creates a large enough difference to make the cooling energy consumption in 3A lower than 3B 

(Figure 62). The contribution from the water vapor in the calculation of the cooling load is much 

higher than in the calculation of heating loads since besides the sensible cooling load, the cooling 

procedure may include dehumidification, which impacts the total enthalpy change. 

Furthermore, unlike the analysis on heating energy consumption in Section 4.3.2.1, 

replacing the solar radiation variable (Figure 59) and dry-bulb temperature variable (Figure 60) of 

the location in 3A with the corresponding data from 3B increased the difference. This increase is 

mainly due to the higher solar radiation in 3B and higher dry-bulb temperature during the operation 

hours. Replacing the wind data trivially reduces the difference (Figure 61). 

 

Table 7: The Impact of Weather Parameters on the Cooling Energy Consumption 

 

Cooling 

Energy Use 

Difference

with Base 

Case

Difference / 

Cooling 

Energy Use 

Cooling 

Energy Use

Difference

with Base 

Case

Difference / 

Cooling 

Energy Use 

[GJ] [GJ] [%] [GJ] [GJ] [%]

1 Truth or Consequences, NM
1
 (Base Case) 996.0 0.00 0.00% 6.22 0.00 0.00%

2 Chattanooga, TN
2 1160.0 164.06 14.14% 8.74 2.52 28.83%

3
Chattanooga, TN, Except Solar Radiation Data 

from Truth or Consequences, NM
1242.8 246.78 19.86% 8.78 2.56 29.16%

4
Chattanooga, TN, Except Dry-Bulb Temperature 

Data from Truth or Consequences, NM
1260.4 264.42 20.98% 9.08 2.86 31.52%

5
Chattanooga, TN, Except Wind Data from Truth 

or Consequences, NM
1154.3 158.31 13.71% 8.67 2.44 28.21%

6
Chattanooga, TN, Except Humidity Data from 

Truth or Consequences, NM
857.2 -138.75 -16.19% 5.55 -0.67 -12.09%

1. Truth or Consequences, NM, weather station (ID: 722710) is classified in climate zone 3B

2. Chattanooga, TN, weather station (ID: 723240) is classified in climate zone 3A

Weather FileCase No.

Annual Daily (June 22
nd

)
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Figure 58: Comparison of the Cooling Energy Consumption and the Influential Weather 

Parameters of Two Locations with Similar CDD on June 22nd 
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Figure 59: Cooling Energy Consumption Using the Solar Radiation Data from Truth or 

Consequences, NM 

 

 

Figure 60: Cooling Energy Consumption Using the Dry-Bulb Temperature Data from 

Truth or Consequences, NM 
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Figure 61: Cooling Energy Consumption Using the Wind Data from Truth or 

Consequences, NM 
 

 

Figure 62: Cooling Energy Consumption Using the Humidity Data from Truth or 

Consequences, NM 
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Figure 63 shows the cooling energy consumption of the model in the 24-hour operating 

configuration in the two selected locations. In the figure it can be seen that the peak demand in 

the first hours of operation in the case with regular office schedule (Figure 58) is no longer seen 

in the results of the cooling energy use of the 24-hour schedule due to the continuous operation 

of the cooling equipment and internal loads. Unlike the cases discussed in Section 4.3.2.1, the 

solar radiation and dry-bulb temperature in the analysis of the cooling energy consumption in the 

two locations have similar patterns since the chosen date was June 22nd and both sites have 

almost clear sky conditions during the day. While the lower temperature during the night 

requires less cooling, the higher humidity during the night in 3A requires more cooling than 3B. 

However, it can be seen that the ratio of the cooling energy consumption reduces from 2.2 times 

larger in 3A compared to 3B to 1.6 times larger in 3A compared to 3B in the 24-hours operating 

schedule. Therefore, although the difference in cooling energy consumption is reduced, there still 

is a significant difference between the two locations. This invalidates justifying the difference in 

cooling energy consumption only by the operation schedules and verifies the impact of other 

influential parameters on the cooling energy consumption of each location. 

Overall, the analysis in this section shows that the difference in the humidity data in the 

different moisture regimes is an important parameter that varies the cooling energy consumption 

in the locations with similar CDDs. Figure 64 shows the annual average of the daily average hourly 

dew-point temperature versus annual average diurnal temperature range in 801 different locations. 

In the figure there is a distinct separation between dry and moist/marine regimes using the annual 

average diurnal temperature range. It can also be seen that the dry locations have an average lower 

humidity compared to the moist and marine locations. Therefore, besides the direct impact of the 
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diurnal temperature range, diurnal temperature can be used to crudely capture the differences in 

other influential weather parameters in different subtypes. 

 

 

Figure 63: Comparison of the Cooling Energy Consumption and the Influential Weather 

Parameters of the Two Locations with Similar CDD on June 22nd in Models with 24-Hour 

Operating Schedule 



 

167 

 

 

Figure 64: The Distinction of the Annual Average of the Daily Average Hourly Dew-Point 

Temperature in Dry (Subtype B) versus Moist (Subtype A) and Marine (Subtype C) 

Moisture Regimes 

 

4.3.3.2.  Analysis of the Impact of Diurnal Temperature Profiles on the Variations in 

Cooling Energy Consumption in Locations with Similar CDD 

This section presents the analysis of the impact of the diurnal temperature profile on the 

variations in cooling energy consumption. In the analysis seven simulations were carried out to 

show the impact of the diurnal temperature profile on the building heating energy use. In the 

analysis an identical model was used for all seven simulations to review the impact of different 

diurnal temperature profiles. Therefore, the only parameter changing in this analysis is the dry-

bulb temperature of the weather files used in the simulations. This analysis includes two types of 

daily temperature profiles, a flat and a sinusoidal temperature profile with a 24-hour cycle. Six 
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variations of the sinusoidal temperature profile were studied where the only difference was the 

peak hour, ranging from 12:00 PM to 5:00 PM with increments of one hour. 

The summary of the results of the analysis of the impact of diurnal temperature profile on 

the variations in cooling energy consumption is shown in Table 8, which shows the cooling 

energy consumption in all six simulations using the sinusoidal temperature profile was higher 

than the one with a flat average temperature. Figure 65 shows the cumulative cooling energy use 

for the different simulations using the sinusoidal temperature profiles versus the cumulative 

cooling energy using a flat average temperature profile. While the flat and the sinusoidal 

temperature profiles yielded the same CDD, unlike in the heating energy consumption, the 

impact of the lower cooling demand in the early operating hours in the sinusoidal temperature 

profile was less pronounced than the largely higher cooling consumption during the day. An 

example comparative analysis of the flat and sinusoidal temperature profile is shown in Figure 

66, which juxtaposes the case with flat profile and the case with sinusoidal profile with the peak 

temperature at 2:00 PM. Consequently, the results for the cooling energy consumption using 

sinusoidal temperature profile is higher than the flat temperature profile using the identical 

ASHRAE Standard 90.1 medium office prototype.  
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Table 8: The Impact of Diurnal Temperature Profile on the Cooling Energy Consumption 

 

 

 

Figure 65: Comparison of the Cumulative Cooling Energy Consumption of the Simulations 

Using a Sinusoidal Temperature Profile versus a Flat Average Temperature Profile 

Cooling 

Energy 

Use 

Difference

with Base 

Case

Difference 

/ Cooling 

Energy 

Use 

Cooling 

Energy 

Use

Difference

with Base 

Case

Difference 

/ Cooling 

Energy 

Use 

[GJ] [GJ] [%] [GJ] [GJ] [%]

1
Flat Dry-Bulb Temperature Profile

(Base Case)
376.68 0.00 0.00% 1.34 0.00 0.00%

2
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 12:00 PM
597.17 220.49 36.92% 2.10 0.76 36.19%

3
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 1:00 PM
604.02 227.34 37.64% 2.13 0.79 37.06%

4
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 2:00 PM
596.78 220.10 36.88% 2.11 0.77 36.50%

5
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 3:00 PM
577.33 200.65 34.75% 2.05 0.71 34.58%

6
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 4:00 PM
547.25 170.58 31.17% 1.94 0.60 31.08%

7
Sinusoidal Dry-Bulb Temperature Profile

with Maximum at 5:00 PM
507.74 131.06 25.81% 1.80 0.46 25.76%

1. Parameters other than the dry-bulb temperature are set to zero  throughout the weather file except the atmospheric station pressure, 

which is …set to 101325 Pa
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Figure 66: The Impact of the Diurnal Temperature Profile on the Cooling Energy 

Consumption-The Case with Sinusoidal Peak Temperature at 2:00 PM 
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4.3.3.3.  Summary of the Analysis of the Variations in Cooling Energy Consumption in 

Locations with Similar CDD 

In summary, this section has shown that there are different weather parameters that 

influence building cooling energy consumption, which are not accounted in CDD measurements. 

By comparing the two locations with similar CDD in different moisture regimes, the highest 

impact of these influential parameters was led by the various humidity in the two locations. 

Other influential parameters were the solar radiation, the dry-bulb temperature, and the wind. 

Although dry-bulb temperature is included in the calculations of the CDD, the replacement of the 

dry-bulb temperature still impacts the cooling energy consumption. Furthermore, the diurnal 

temperature range impacts building energy consumption. Besides the direct impact of the diurnal 

temperature range on building energy consumption, the diurnal temperature range roughly 

correlates with other influential weather parameters on heating energy use (e.g., humidity). 

 

4.4. The Impact of Varying Energy Consumption on Code-Compliant Office Buildings 

This section discusses the impact of the varying energy consumption from the medium 

office prototype models (DOE, 2018). In this Section there are two Sub-Sections: Section 4.4.1 

discusses the variation in energy savings associated with the implementation of the daylight 

responsive controls, in which the variations in energy savings in different locations are 

discussed, indicating how the variations in the baseline energy consumption impact the total 

savings percentages; and section 4.4.2 discusses how the variations in the energy consumption 

impact the compliance using performance path. 
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4.4.1. Variation of the Energy Savings: A Case Study of the Associated Energy Savings with 

the Implementation of the Daylight Responsive Controls 

This section includes the results of the simulations performed using the ASHRAE 

Standard 90.1-2016 medium office prototype models, which were complied with the code 

requirements for each climate zone, in different locations. The results include the regulated 

energy consumption of the models with and without daylight responsive controls followed by the 

total energy savings and the total energy savings percentage for each case. 

APPENDIX C presents the results for the ASHRAE Standard 90.1-2016 medium office 

prototype models in each climate zone. It also includes the results for the analysis that used the 

identical model and the model for 24-hour operation schedule. The results of the regulated 

energy consumption, total energy savings, and total energy savings percentages in each climate 

zone are provided in Appendix C.1. The results of the simulations carried out using the identical 

ASHRAE Standard 90.1-2016 medium office prototype model in different climate zones is 

provided in Appendix C.2. The results of the models with 24-hour operating schedule is shown 

in Appendix C.3. 

The results of the regulated energy consumption of the ASHRAE Standard 90.1-2016 

medium office prototype models, which has the daylight responsive controls as required by the 

code, are presented in Section 4.2.1. Figure 67 through Figure 69 illustrate the regulated energy 

consumption of the models without daylight responsive controls. Similar trends and variations 

can be seen in the simulation of the models without daylight responsive controls. 

Figure 67 consists of different plots. The main plot in Figure 67 shows the regulated 

energy consumption of an identical model with respect to the CDD10 C. The frequencies of the 

CDD10 C of the different subtypes is juxtaposed in the top plot. The frequencies of the 
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locations in Subtypes A and B sharply increases with increasing the CDD10 C and meets their 

maximum in the 1250 to 1500 CDD10 C. Then they gently decrease with increasing the CDD10 

C. Subtype C, climate zone 7, and climate zone 8 are less spread across the CDD10 C 

frequencies and are spread across lower ranges of CDD10 C. Similar to the representation of the 

frequencies of the CDD10 C in the top frequency plot, the frequencies of the total regulated 

energy consumption is shown on the frequency plot on the right side of the main plot. The 

frequency plots show that the largest number of locations are in Subtype A. Subtype B has the 

second largest number of locations. 

One important feature that the frequency plots for CDD10 C and total regulated energy 

consumption show is that the frequencies of CDD10 C for Subtype A and Subtype B are mixed 

in the frequency plot for CDD10 C. However, there is a distinct separation between the 

frequencies of Subtype A and Subtype B in the frequency plot for the total regulated energy 

consumption, which shows that the CDD10 C has not discriminated these two Subtypes 

effectively in terms of their energy consumption. Similar feature can be seen in Figure 68. While 

the frequency plot for the HDD18 C, represented in the top frequency plot in Figure 68 shows a 

mixed pattern for Subtype A and Subtype B, the total regulated frequency plot on the right side 

of the main plot in Figure 68 (which is the same as in Figure 67) shows a distinct separation 

between the frequencies for the total regulated energy consumption of these two Subtypes. 

Similar results are shown in Figure 69, which represents the results shown in Figure 67 

and Figure 68 by including both CDD10 C and HDD18 C. Figure 69 also shows that the total 

regulated energy consumption can vary more than two times within one climate zone. For 

example, by looking at the results in climate zone 3, it can be seen that there are different 
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locations in Subtype A with total regulated energy consumption as more than twice higher than 

the sites in Subtype C. The difference between the regulated energy consumption in different 

Subtypes can be seen in other climate zones as well.  

 

Figure 67: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models without Daylight Responsive Controls with Respect to the 

CDD10°C of Different Weather Files 
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Figure 68: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models without Daylight Responsive Controls with Respect to the 

HDD18°C of Different Weather Files 
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Figure 69: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models without Daylight Responsive Controls in Different Climate Zones 
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The results of the analysis show a difference in the energy consumption of the models 

with and without daylight controls that show different patterns in lighting, heating, and cooling 

use. Figure 70 shows that the implementation of the daylight responsive controls results in 

approximately similar lighting energy savings in different locations in climate zones 1 to 6. In 

addition, it can be observed that there was no considerable difference between the lighting 

energy savings in different subtypes. However, climate zones 7 and 8 tended to have lower 

lighting energy savings. 

 

Figure 70: Lighting Energy Difference of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 
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As shown in Figure 71, apart from a few exceptions, the heating energy increases with 

the implementation of the daylight responsive controls at the different sites. This is mainly due to 

the reduction in the lighting internal heat gains. Similar results that have the opposite impact can 

be seen in the cooling energy consumption in Figure 72, where the cooling energy consumption 

of different locations decreased with reduction in the lighting internal loads.

 

Figure 71: Heating Energy Difference of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 
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Figure 72: Cooling Energy Difference of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 
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(mainly climate zones 1 to 6) (Figure 70), the impact of the electrical lighting on the internal heat 

gains varies the total energy savings differently based on the heating/cooling demand (Figure 71 

and Figure 72). For example, in the climate zones with higher cooling demand the reduction in 

electrical lighting will have a more advantageous effect on reducing the cooling load than the 

adverse effect on increasing the heating load. However, in the climates with higher heating 

demand, the effect of the increase in the heating demand is more pronounced than the reduction 

of the cooling demand, resulting in lower total energy savings. Therefore, it can be concluded 

that the daylight harvesting strategies in medium office prototype models are more beneficial for 

hot climates, whereas they can result in trivial energy savings in very cold climates.
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Figure 73: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 

with Respect to the CDD10°C of Different Weather Files 
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Figure 74: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 

with Respect to the HDD18°C of Different Weather Files 
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Figure 75: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models associated with the implementation of Daylight Responsive Controls in 

Different Climate Zones 
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In order to have a comparative point of view on the energy savings associated with the 

implementation of daylight responsive controls with respect to the total energy consumption, the 

total energy savings percentages are shown in Figure 76 to Figure 78. Figure 76 and Figure 77 

show the energy savings for the daylighting in different sites with respect to CDD10 C and 

HDD18 C, respectively. Figure 78 shows these results with respect to CDD10 C and HDD18 

C, allowing to represent the variations in energy savings percentages within each climate zone.  

It can be seen that the total energy savings percentage starts with average values of the 

whole range of savings in hot climates zones (climate zones 1 and 2), then the total savings 

percentages peak at climate zone 3, subtype C (represented with light blue color), and in general, 

the savings start to decrease by moving toward colder climates until it reaches the minimum 

savings at the very cold climates. Also, in general it can be seen that subtype C has the highest 

energy savings percentages within each climate zone and the energy savings percentages in 

subtype B is higher than A. The most influential parameter in this variation is the trend of the 

energy consumption in the denominator. Also, the variation in the energy savings impacts the 

percentages. Altogether, the total savings percentages show that while the implementation of the 

daylight responsive controls can play an important role as an energy reduction strategy in certain 

climates, it may only have a small impact in other climates. 
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Figure 76: Total Energy Savings (%) of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 

with Respect to the CDD10°C of Different Weather Files 
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Figure 77: Total Energy Savings (%) of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls 

with Respect to the HDD18°C of Different Weather Files 

7

7

7

77 7
7

7

7

7

7

7
7 7

7

7

7
7

7

7

7

7
7

7

7

7
7

7

7

7

7

7

7

7
7
7

7

7

8

8

8

8

8

8

8

8

8

8

8
8

8
8

88

6.5%

7.4%

8.7%

4.5%

3.5%

11
1

1
111

1

22
22222

222 22
22

2222
2

222
22 22222

2
2

2
22222

22
2222222

2
2

2
2

2222 22
2
2 2222

2
2
2

2
2

222
2
2 2

22
22

2
22

22
333

3

333
3

3
3

33

3
333

33
3
333

3
3

3
3

333
33

333

33
3

3
3

33

3

3
3

3
3

3
33

3

3
333

3
3

333
3

333
3

33
333
3

3

3

3

33
3
3

3
3

3
33

3
3 33

3
3

33
3

3
3

4

444
44

4
4 444

4
4

4

4 44
4

4
44

4
444

44
4

444
44

4 4
4

4

4 44
4
4

4 44
4

4
4

4

4444

4
4 4

4
4

4
4

4

4
44

4

444
4
4

4
4

44
4
4
4

44
44

4
4

4
444

4
444

4

4

4
44

4
4

44
4

444
444

4444
44

4
444
4

4

4 4
4

4
444

44

4
4

4

44
4
4
4

44

4

444
4

555 5
5

55
5

5

55
5

5
5

555
555
5555

5

5

5

5
5

5

5

5
55

55

55

555
5

5
5

55 555
5

5
55
5

5
5 55

5
555 5

5
5
5

5

55

5
5

5
5

5

555 5

55
5

5

5

5
5

5
5 55

5
5

5

55
5

5
55

5

55
55

5
55

5
55

5

5 555555
5

5
5

5
5
5
5
55

5
5

55

5

5

5

5
5

5

55
555

66
6
666
6
6

6
666

66

6
6

6
6

6

6

6 66
6
6 666

6
6

666
6
6
6
6

6

6
6

6
66
6

6
6 66

6

66
6

6
66

66
66

6
6
6666

6

6
666
6

66
666

6

6
66

66

66

6 6

6

6
6

66
6
666
6

1111
1 2

22 2
2

2 2

22 2
2

2
2

2
222

3

3

3

3

3
3

3 333

33

3 333

3

3

3

33

3
3

3

3
33

33
3

3
3

33

3

3
33

3

33

3
3 3

33

4

4

4
444

4

4

4
4

4

4
4
4

4
44

4
4

4

4

4

44
444

44
5 55

5

5

5

5
5
5

5

5

5

5

55
5

5

5 555

5 5

5 5
5

55 5

55

5

5

5
5 5

5

5
55

5

5
5 5

5

55 5
5
5
55

6
6
6

6 66
6

6

6

6

6
6

6

6

6

6

6

6

66
6

33
3
33 3

3

33

3

3
3

3

3

3
3

3

3

4

4

4

4

44
44
4 4

4

4

4
4

44
4

4
4

555

55

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

0 2000 4000 6000 8000 10000 12000

T
o
ta

l 
E

n
e

rg
y

 S
a
v

in
g
s 

(%
)

HDD18⁰C

Average of Subtype A
Average of Subtype B
Average of Subtype C
Average of Climate Zone 7
Average of Climate Zone 8
Climate Zone Limits

0 25 50 75 100

Frequency

0

20

40

60

80

100
F

re
q

u
e

n
cy

200 225

Frequency of Subtype A
Frequency of Subtype B
Frequency of Subtype C
Frequency of Climae Zone 7
Frequency of Climae Zone 8



 

187 

 

 

Figure 78: Total Energy Savings (%) of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Models Associated with the Implementation of Daylight Responsive Controls in 

Different Climates 
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4.4.2. Variation in Code-Compliance Using Performance Path 

Compliance of  a building using Appendix G performance path requires demonstrating a 

lower Performance Cost Index (PCI) compared to a target PCI, which is called PCIt. The PCI of 

1 represents that the building has the same stringency as required by ASHRAE Standard 90.1-

2004 and PCI of 0 represents a net zero building. ASHRAE Standard 90.1-2016 requires at least 

a certain reduction in building annual source energy cost compared to ASHRAE Standard 90.1-

2004. To acomplish this goal, a specific Building Performance Factor (BPF) is proposed for each 

building type in each climate zone and subtype to ensure the preferred reduction in the annual 

regulated energy consumption in each case. Table 9 shows the BPF for the office building type 

in different ASHRAE Standard 90.1 editions and shows the decreasing trend of the BPF for 

office buildings in each climate zone as the versions of ASHRAE Standard 90.1 progresses. In 

the table it can be seen that, on average, the BPF has decreased The required BPF will then 

impact the calculated PCIt as shown in equation 3.21 in Section 0 of this document. 

 

Table 9: Building Performance Factors (BPF) for Compliance of Office Buildings with 

Standard 90.1 (Rosenberg and Hart, 2016) 

 

 

The calculated PCIt and PCI for the ASHRAE Standard 90.1-2016 medium office 

prototype models in different locations are illustrated in Figure 79 and Figure 80, respectively. In 

these figures, subtype A is represented in dark blue, subtype B sis represented in red, subtype C 

1A 1B 2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 5C 6A 6B 7 8

2010 0.74 0.77 0.73 0.76 0.72 0.76 0.66 0.70 0.73 0.70 0.72 0.73 0.70 0.71 0.72 0.70 0.75 0.72

2013 0.63 0.67 0.62 0.67 0.65 0.69 0.59 0.63 0.65 0.63 0.65 0.66 0.63 0.66 0.66 0.62 0.66 0.65

2016 0.58 0.62 0.57 0.62 0.60 0.64 0.54 0.58 0.60 0.58 0.60 0.61 0.58 0.61 0.61 0.57 0.61 0.60

2019 0.52 0.57 0.50 0.56 0.53 0.56 0.48 0.51 0.52 0.49 0.51 0.51 0.49 0.52 0.51 0.49 0.51 0.51

ASHRAE 

Standard 90.1 

Edition

Climate Zone
Average



 

189 

 

is represented in light blue, and climate zones 7 and 8 are represented in grey and black, 

respectively. It can be seen in the figure that the average PCIt and PCI is 0.72 and 0.63, 

respectively.7 The PCIt of 0.72 is 0.28 lower than the 2004 baseline. 

Commercial buildings meeting the requirements of ASHRAE Standard 90.1-2016 show 

8.2% in energy cost savings, 7.9% in source energy savings, and 6.7% in site energy savings 

compared to the ASHRAE Standard 90.1-2013 (US DOE, 2017). The difference of PCIt and 

PCI, shown in Figure 81, is within the range of 0.06 to 0.12 with the average 0.09 difference. It 

can be seen that the average difference of 0.09 and the range of 0.06 are significant compared to 

0.28 difference with 2004 baseline and 0.08 energy cost savings compared to ASHRAE 

Stanbdard 90.1-2013.  

Figure 82 shows the difference of PCIt and PCI in different climate zones and subtypes, 

respectively, which are the box plot representaion of the same data shown in Figure 81. Figure 

83 show similar data by grouping the data for each subtype in different climate zones. In Figure 

82 and Figure 83 it can be seen that the difference varies with climate zone and subtype. Subtype 

A is shown to have a lower difference of PCIt and PCI compared to subtype B and subtype C. 

For example in climate zone 3, all the locations in subtype A have lower difference of PCIt and 

PCI compared to subtype B and C. Similar pattern can be seen by comparing the average values 

in diffirent subtypes within each climate zone (Figure 82). Furthermore, by grouping the data for 

each subtype in different climate zone, subtype A shows to have lower difference of PCIt and 

PCI compared to subtype B and subtype C (Figure 83). 

                                                 

7 Note that the PCIt in this study is calculated only for the ASHRAE Standard 90.1-2016 DOE medium 

office prototype models while DOE small, medium, and large office prototype models are used for the calculation of 

the BPF of the office buildings in ASHRAE Standard 90.1-2016. 
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The difference of PCI and PCIt in Figure 82, which shows how much above code is the 

building in each location, shows that the medium office prototype passes the code using the 

performance path. However, while the BPFs are provided for each climate zone and subtype, the 

variation within each climate zone and subtype can be substantially different compared to others. 

This means certain climates take benefit of the weather-related parameters that are not 

considered in the code, which will allow some locations to escape from the stringencies in the 

building energy Standard 90.1-2016. Therefore, the conventional degree-day for climate 

classification can not group different locations for their estimated energy consumption and 

results in giving extra credits for subtypes B and C compared to subtype A. 
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Figure 79: PCIt of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Different Locations 
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Figure 80: PCI of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Different Locations 
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Figure 81: Difference of the PCI and PCIt of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Different 

Locations 
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Figure 82: Difference of the PCI and PCIt of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models in Different Climate Zones 

 

 

Figure 83: Difference of the PCI and PCIt of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models in Different Climate Subtypes 
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regimes within each climate zone. The variation leads to varying energy saving in different 

locations associated with the daylight responsive controls. 

On average, in many cases the inconsistency of the energy consumption in different 

moisture regimes is even more substantial compared to the inconsistency of the energy 

consumption in different climate zones. One main reason is that there are differences in the 

climate conditions of the different subtypes that are not accounted in the degree day method. 

Based on the analysis in this section, the influential weather-related parameters that are not fully 

accounted in the degree day method are the solar radiation, humidity, and wind speed. 

Furthermore, the diurnal temperature range is a weather-related characteristic that is an indicator 

for the energy consumption that is not accounted in the degree day method. Consequently, the 

degree day method as a classification index fails to discriminate the potential varying energy 

consumption in different moisture regimes. 
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CHAPTER V    

RESULTS – PART II 

 

This chapter, discusses the potential improvements in the degree day method to better 

discriminate the difference in energy consumption of the ASHRAE Standard 90.1-2016 medium 

office prototype building models used at different locations. As discussed in the previous 

chapter, there are varying influential parameters in different moisture regimes that impact 

buildings energy consumption, however, they are not fully accounted for in the degree day 

method. The discussions in this chapter will introduce the shortcomings in the degree day 

method and describe a new approach to overcome these issues. This is then followed by the 

comparison of the accuracy of the estimation of the influential weather parameters using the 

conventional degree day method and the new approach. In these estimations, the simulation 

results from an identical model, compliant with the requirements for climate zone 4, were used to 

eliminate parameters other than climate variables. Therefore, the estimations are based on the 

results of specific models with specific thermal properties and the utilization of the same models 

with the same coefficients may not be the best representative model for other building 

configurations. However, this analysis allows for the comparison of the accuracy of the 

estimation of the building energy consumption using the conventional degree day versus the 

proposed method and allows to quantify the differences in the accuracies. Then, a comparison of 

the estimation of the building energy consumption using the conventional degree day method 

and the new approach is provided. Finally, the application of the proposed method in the 

prescriptive and performance compliance paths of ASHRAE Standard 90.1-2016 is discussed. 
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5.1. Improved Method to Predict the Building Energy Consumption 

The high-level of aggregation of the data in the traditional degree day method can 

invalidate the representation of the heating and cooling requirements of a building in each 

location. Figure 84 illustrates two daily temperature profiles with different diurnal temperature 

ranges. In Figure 84 it can be seen that while the two temperature profiles fluctuate differently 

during the day, the daily average temperature of the two profiles is the same, which leads to the 

same CDD or HDD. Therefore, conventional degree day method does not account for the diurnal 

temperature range. 

 

 

Figure 84: Representation of Two Daily Temperature Profiles in the Conventional Degree 

day Method 

 

Consequently, conventional degree day or degree hour methods do not discriminate 

between different moisture regimes8. Figure 85 shows the normalized frequencies of the annual 

                                                 

8 The lower consumption in marine (subtype C) locations compared to the moist (sybtype A) and dry 

(subtype B) locations is discussed in Section 4.3.1 of this dissertation. 
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sum of the minimum, maximum, and average outdoor dry-bulb temperature, as well as the CDD, 

HDD, CDH, and HDH for different locations in moist and dry areas. The distributions are 

normalized by dividing the counts in each bin by the total number of sites in that subtype. In the 

top part of the Figure 85, it can be seen that the distributions for the minimum and maximum in 

the two subtypes are mixed, which results in a mixed distribution for the average values and then 

eventually results in mixed distributions for degree days and degree hours in different locations 

in moist and dry regions. 

However, the daily fluctuation of the outdoor temperature is an essential weather-related 

characteristic that is normally associated with other influential weather-related parameters that 

are not included in the conventional degree day method. While the diurnal temperature range can 

directly impact the energy consumption of a building (as discussed in Sections 4.3.2.2 and 

4.3.3.2 of this dissertation), the significance of accounting for the diurnal temperature range is 

the discriminatory attribute of this quantity that discriminates the locations with different 

moisture regimes. 
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Figure 85: Nondiscriminatory attribute of the conventional degree days and degree hours 

approaches for moist (subtype A) and dry (subtype B) locations 
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As shown in Figure 86 the annual sum of the diurnal temperature range varies 

considerably in different locations. Among all 801 weather files used in this study, the annual 

sum varies from 2,439 to 5,168. In Figure 86, in general, subtype A, which is shown in dark blue 

color, has a relatively close annual sum of the diurnal temperature range to subtype C, which is 

shown in light blue color. Subtype B, however, has a higher annual sum of the diurnal 

temperature range compared to A and C. This trend can also be seen in Figure 87 where the total 

annual regulated energy consumption is shown versus the annual sum of the diurnal temperature 

range. In the figure it can be seen that how the subtype B points, shown in red, are separated 

from other subtypes by comparing their distributions along the horizontal axis. In fact, the higher 

annual sum of the diurnal temperature range in subtype B separates the majority of the subtype B 

points from the other locations. A comparison of the distribution of the normalized frequencies 

of the annual sum of the diurnal temperature range in locations in subtype A versus subtype B is 

provided in Figure 88. In Figure 88, it can be seen that in contrary to the minimum, maximum, 

and consequently the average values (shown in Figure 85), the diurnal temperature better 

discriminates the two moist and dry subtypes, which allows for better energy use estimations. 

However, while the diurnal temperature range can be included in the models, in this study the 

diurnal temperature range is captured through the split-degree day approach rather than directly 

including the diurnal temperature range in the models. While the selected split-degree day and 

the model with the conventional degree days along with the diurnal temperature range showed to 

have comparable R-square values, the split-degree day is selected as the coefficients in this 

regression model have more meaningful insights and associates the split-degree day values with 

varying U-values. 

 



 

201 

 

 

Figure 86: Annual Sum of the Diurnal Temperature Range in Different Locations 

 

 

Figure 87: Plot of the Annual Total Regulated Energy Use versus the Annual Sum of the 

Diurnal Temperature Range 
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Figure 88: Discriminatory attribute of the diurnal temperature range for moist (subtype A) 

and dry (subtype B) locations 

 

One approach to overcome the issue that the degree day method does not account for the 

diurnal temperature range is to divide the average 24-hour temperature span used in the 

calculation of degree days into two sections. Figure 89 shows an example of splitting the daily 

temperature profile into two sections and then determining how it impacts the averages in each 

section. Without splitting the temperature profile, the two profiles yield the same average 

temperature for the degree days calculation. Splitting the temperature profile into two sections, 

however, yields two averages for each temperature profile, one for each interval. In this example, 

the section of the intervals in the morning and night is called section 1 and the section of the 

interval in the middle of the day is called section 2. The average for each section is calculated 

using the average of the maximum and minimum hourly temperatures in that section. In Figure 
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89 an imaginary HDD base temperature, which is assumed to be in between the maximum and 

minimum temperatures in the day, is represented as well. The same principle applies in the 

calculation of the CDD as well. 

 As shown in Figure 89, the difference in the average temperatures in the two sections is 

larger in the temperature profile with larger diurnal temperature range. This implies that splitting 

a daily temperature profile and taking the average for each section includes the information for 

the diurnal temperature range. Specifically, the averages in section 1 of the temperature profile 1 

is lower than the corresponding value for temperature profile 2 while the averages in section 2 of 

the temperature profile 1 is higher than the corresponding value for temperature profile 2. This 

could lead to a better estimation of the heating and cooling loads. For example, in this example, 

the section 1 of the temperature profile 1 yields a significantly larger heating degree days (HDD) 

for that portion of the day compared to the section 1 of the temperature profile 2. However, 

section 2 of the temperature profile 2 shows zero HDD for that portion of the day compared to a 

small nonzero value for the section 2 of the temperature profile 2. Overall, using the weighted 

average method for the calculated split degree day, the heating degrees in temperature profile 1 

were 88% higher than the temperature profile 2 while the conventional HDD yield the same 

value for both temperature profile. 

 

5.1.1. Determination of the Split Points in the Split-Degree Days 

This section describes the coefficient of determination of the estimation of the energy 

consumption of the medium office prototype building models using split-degree days with 

different split hours, which is the start hour for splitting the day, as well as span hours, which is 

the number of hours from the start hour to split the 24 hours in a day. For example, a split-degree 
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day with a start time of 14 and span of 3 hours splits a day into two spans, one from the 14th hour 

of the day up to 16th hour of the day, which includes the start time as well, and the other span 

includes the rest of the day. Various split and span hours make up the 288 variations (24 

multiplied by 12, considering the symmetry). In this study, the start time is selected to vary 24 

hours and the time span to vary 12 hours. 

 

 

Figure 89: Example of a Split the Daily Temperature Profile for the Degree Day 

Calculation Using Two Sections 

 

The results include the estimations of energy consumption for the total regulated (Figure 

90), heating (Figure 91), cooling (Figure 92), and fan (Figure 93) energy use. Each point in the 

top figures of Figure 90 to Figure 93, and similarly each bar in the bottom figures in Figure 90 to 

Figure 93, represent the R-square for the estimation of the energy consumption for one variation 

of the split-degree days. To calculate the R-square for each point or each bar in Figure 90 to 

Figure 93, the R-square of the estimation of the 801 simulated results of the end-uses of interest 
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in each case (total regulated, heating, cooling, or fan energy use) using the corresponding split-

degree days configuration is calculated.  

Figure 90 shows that the R-square for estimating the total regulated energy consumption 

can vary approximately 3% using different split-degree days with the best configurations of start 

point at 14 and time span of two or three hours. Figure 91 shows that the R-square for estimating 

the heating energy consumption can vary approximately 2% using different split-degree days. 

The R-square for estimating the cooling energy consumption, shown in Figure 92 vary less 

compared to the variations in R-square for the total regulated and heating energy consumption. 

On the other hand, as shown in Figure 93, the R-square for estimating the fan energy 

consumption varies significantly (approximately 35%) using different split-degree days9. 

There are also similarities in the trends of the changes in the R-squares in the estimation 

of each of the total regulated, heating, cooling, and fan energy consumption with different split-

degree day configurations. Moving along the split hour axis, the R-square has two points where 

it drops. As an example, in Figure 90, the R-square in three hours split spans, denoted with black 

lines with solid rectangles, remains approximately constant by varying the split start hour from 1 

to 5. Then it drops to the minimum value when using 9 as the start time. This is mainly due to the 

fact that in general most of the weather files used in this study have the minimum daily 

temperature at night and before sunrise. Therefore, split-degree days with start time of 1 to 5 and 

three hours of time span represent a value close to the minimum daily temperature. 

Considering the values for split-degree days for each split interval, the estimations have 

higher R-square due to the higher discrimination of the diurnal temperature range in these cases. 

                                                 

9 Please note that the vertical axis in Figure 93 is different from the axis used in Figure 90 to Figure 92. 
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However, at the start time of around 9 am, and for the three hour split span the two values of the 

split-degree days for heating and the two values for cooling are very close to each other as in 

general, it is highly expected to experience the average daily temperature at around this time 

span. Therefore, splitting the day will not improve the R-square significantly compared to the 

conventional degree days. By moving along the start hour span, the R-square increases to its 

maximum when it incorporates the hours in which the highest daily temperature of the weather 

files are. The two values in the split-degree days, in this case, represents more information about 

the temperature profile and is more discriminative as it discriminates different diurnal 

temperature range for the temperature profile with similar conventional degree days. It should be 

noted that since the diurnal temperature range is better described, it is a better accounting of 

other weather-related parameters, such as solar radiation and humidity, since these parameters 

associate with diurnal temperature range. Finally, similar to the case of start time at 9 am, by 

moving along the horizontal axis, the R-square drops first and then slightly increases. 

Overall, the split-degree days with start time of 2 pm and span period of three hours is 

selected as the final configuration. This configuration is selected considering various 

considerations. Considering the accuracy of the estimation of different end-uses using different 

split-degree days variation, overall, the split-degree days with start time of 2 pm and span period 

of three hours shows the highest accuracy. While there are other configurations in the case of 

cooling with higher R-square, the difference is trivial and the selected split-degree days is very 

close to the maximum value. Also, in the case of the fan, there are other split-degree days with a 

higher R-square. However, since the portion of the fan energy in the total energy is small and the 

selected split-degree days has high enough accuracy, the split-degree days with start time of 2 

pm and span period of three hours is selected. 
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Figure 90: The Accuracy of the Estimated Total Regulated Energy Consumption Using 

Split-Degree Days with Different Split and Span Hours 
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Figure 91: The Accuracy of the Estimated Heating Energy Consumption Using Split-

Degree Days with Different Split and Span Hours 
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Figure 92: The Accuracy of the Estimated Cooling Energy Consumption Using Split-

Degree Days with Different Split and Span Hours 
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Figure 93: The Accuracy of the Estimated Fan Energy Consumption Using Split-Degree 

Days with Different Split and Span Hours 
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In order to find the best points to split the temperature range, various configurations are 

studied. The analysis included regressing the total regulated energy consumption, heating, 

cooling, and fan energy consumption at various possible split-CDD and split–HDD, hereafter 

called sCDD and sHDD, respectively. Based on the results, the sHDD and sCDD, or in general 

the split-DD, called sDD selected in this study is defined using the following equations: 

 

𝑠𝐻𝐷𝐷𝑃1 = ∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇𝑃1,𝑚𝑎𝑥 + 𝑇𝑃1,𝑚𝑖𝑛

2
)
+365

𝑛=1

 
5.1  

 

𝑠𝐻𝐷𝐷𝑃2 = ∑(𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 −
𝑇𝑃2,𝑚𝑎𝑥 + 𝑇𝑃2,𝑚𝑖𝑛

2
)
+365

𝑛=1

 
5.2  

 

where, 𝑇𝑏𝑎𝑠𝑒,𝐻𝐷𝐷 is the base temperature for the HDD, which is assumed to be 18 ⁰C (65 ⁰F), 

𝑇𝑃1,𝑚𝑎𝑥 and 𝑇𝑃1,𝑚𝑖𝑛 are the maximum and minimum outdoor air dry-bulb temperatures, 

respectively, during the time periods from 12:00 am to 1:00 pm and 5:00 pm to 11:00 pm, and 

𝑇𝑃2,𝑚𝑎𝑥 and 𝑇𝑃2,𝑚𝑖𝑛 are the maximum and minimum outdoor air dry-bulb temperatures, 

respectively, during the hours 2:00 pm, 3:00 pm, and 4:00 pm. 

 

𝑠𝐶𝐷𝐷𝑃1 = ∑(
𝑇𝑃1,𝑚𝑎𝑥 + 𝑇𝑃1,𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+365

𝑛=1

 
5.3  

 

𝑠𝐶𝐷𝐷𝑃2 = ∑(
𝑇𝑃2,𝑚𝑎𝑥 + 𝑇𝑃2,𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷)

+365

𝑛=1

 
5.4  
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where, 𝑇𝑏𝑎𝑠𝑒,𝐶𝐷𝐷 is the base temperature for CDD, which is assumed to be 10⁰C (50 ⁰F). 

The representation of the sDD applied for the two temperature profile examples is shown 

in Figure 94. Figure 95 shows the frequency of each hour of the day. The distribution of the daily 

maximum temperature at the 801 different locations (Figure 95) shows that the maximum daily 

temperature most likely occurs in the 14:00 to 16:00 time intervals. The selected split interval 

allows the sDD to account for the diurnal temperature range by including the average in the 

interval within which mostly the daily peak values occur. The dual values for sCDD and sHDD 

allows for a more accurate estimation of the building cooling and heating energy consumption, 

respectively, by discriminating between the coefficients for the two time-spans. 

 

Figure 94: Representation of the Selected Split-DD Applied on Two Temperature Profiles 
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Figure 95: The Distribution of the Daily Maximum Temperature in 801 Different Locations 

 

While considering the improvement of the accuracy of the estimations of the energy 

consumption, the complexity of the models should also be considered. As described in Appendix 

A.2, to develop multiple regression models, the desired vector of coefficients, �̂�, can be 

calculated using (𝐗T𝐗)−1𝐗T𝐘, where X is an n × (k + 1) matrix of k independent variables and Y 

is an n × 1 vector of outputs.  Assuming m equals k + 1, transposing the n × m matrix of X, 

demoted as 𝐗T, has time complexity of the form O(n⋅m). The multiplication of the n × m matrix 

X and the m × n matrix 𝐗T has n calculation for each element of output, n × m calculations for 

each row in the output matrix, and total O(n⋅m2) time complexity to calculate the m × m matrix 

of 𝐗T𝐗. The time complexity for the matrix inversion, (𝐗T𝐗)−1, is O(m3). The 𝐗T𝐘 has O(n⋅m) 

time complexity and the multiplication of the m × m matrix of (𝐗T𝐗)−1 and the m × 1 matrix of 

𝐗T𝐘 has O(m2) time complexity. By including the terms with higher degrees (m3 instead of m2 
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form O(m2⋅(n+m)). This means that, as the inputs get larger, the execution time for developing 

the regression models exponentially increases relative to the inputs. 

After developing the regression models, the execution time to calculate the energy 

consumption using the regression models that were developed from the conventional degree day 

method and the split-degree day method without the interaction term has time complexity of the 

form O(n). However, including the interaction term(s) in the split-degree day method increases 

the time to O(n2). It should be mentioned, though, that practically, the computation time is higher 

in the estimations using the split-degree day method (either with or without interaction terms) 

compared to the conventional degree day method. In other words, while the O(n) time 

complexity represents the asymptotic behavior of both the conventional degree day method and 

the split-degree day method without the interaction term, the calculations in the estimations using 

the split-degree day method without the interaction term require two more multiplications and 

then their additions for the calculations. Similarly, the numbers in the case with interaction is 

higher for the four more extra multiplications, which is finally summed. Similarly, as the number 

of parameters increase in the models, the space complexity increases. However, for the time 

complexity, to better compare the growth of the models and their scalabilities, the Big-O notation 

is used here. 

A split-degree days can be defined using different number of segmentations in a day (23-

split configurations, from 2-split to 24-split, assuming an hourly resolution for the data). To 

analyze the performance of the split configurations other than the 2-split, two cases were studied. 

One is the 3-split configuration, assuming that the period of hours 2 pm to 4 pm is fixed. The 

total number of possible ways to split the 24-hour in a day into 3 segments is 2048. To analyze a 

number of cases with 3-split configuration, 20 possible cases by fixing one segment of 2 pm to 4 
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pm were used to see the performance of these 3-plit configurations while the fixed period of time 

allows for capturing the diurnal temperature range by separating the hours at which maximum 

ambient temperature in a day is most likely to happen (as discussed in the 2-split configurations).  

Another study was done on the 24-split configuration. This R-square is calculated for the 20 

cases of the 3-split configuration, both with and without interaction terms. However, based on 

the O(m2⋅(n+m)), developing the model for 24 segmentation configuration with interaction terms 

is considerably more complex in terms of runtime. Also, the calculations using the developed 

model for the 24 segmentation without the interaction term has O(n) time complexity while the 

model with all the interaction terms has O(n24). In this case, the R-square is only calculated for 

the model without interaction terms for comparisons. 

Figure 96 shows the comparison of the calculated R-squares for the models with the 

conventional degree days as well as the 2-split configurations, with and without interaction 

terms. The results for both the identical DOE medium office prototype model for ASHRAE 

Standard 90.1, climate zone 4B (top) and the model with higher thermal mass (bottom) are 

provided. In Figure 96, it can be seen that the split-degree days have higher R-square values 

compared to the conventional degree days. Comparing different split configurations, the 24-split 

and the 3-split segmentation with interaction terms have the highest R-square. However, the 3-

split models without interaction terms have significantly lower accuracy. On the other hand, the 

2-split models with and without interaction have comparatively high accuracy. Overall, as a 

balance between the accuracy, complexity, and considering potentially lower resolution of 

ambient temperature data in practice, the 2-split configuration is selected for this study, while 

there is a room to further study the optimal configurations of other split configurations for the 

future studies.  
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Figure 96: Comparisons of the Accuracy of the Estimations of the Selected Cases with 

Different Split Configurations and the Conventional Degree Day Method; Top: Results for 

the Identical DOE Medium Office Prototype Model for Climate Zone 4B for ASHRAE 

Standard 90.1-2016; Bottom: Modified Identical DOE Medium Office Prototype Model 

with Higher Thermal Mass. 
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5.1.2. Association of the Influential Climatic Parameters and the Degree Days and Split-

Degree Days Methods 

 

This section represents the results of the comparative analysis of the predictions of the 

influential climatic parameters using degree days and split-degree days as the dependent 

variables. The results utilize the linear regressions derived from either conventional degree days 

(HDD and CDD) or split-Degree Days (sHDD and sCDD). The plots for the analysis of the 

predictions include the scatter plots of the predicted values using the regression model versus the 

actual simulated values as well as the residuals. The mathematical regression models, R-square, 

adjusted R-square, and the RMSE are included in each result. Except for the diurnal temperature 

range, which yields a single value for each day, daily average hourly values are calculated for 

other parameters. The annual sum of these parameters are then used in the regressions. The bar in 

the regression models indicate the average, the “AnnSum” superscript indicates the annual sum, 

and the “d, h” subscript indicates the daily average hourly. 

 

5.1.2.1.  The Association of Diurnal Temperature Range and the Degree Days and Split-

Degree Days 

As shown in Figure 87, the points for the 801 locations are widely distributed along the 

horizontal axis, which shows that the diurnal temperature range vary significantly in different 

locations. On average, subtype B has higher diurnal temperature range compared to other 

locations. This can be seen in the grouping of the subtype B (red) toward the highest ranges. 

However, this difference and grouping can not be seen when using the average or maximum 

daily values (Figure 97). In other words, the three clusters of the three different moisture regimes 
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in Figure 97 are not horizontally separated by the values on the horizontal axes. Therefore, the 

average values (or maximum or minimum values) do not represent the diurnal temperature range, 

which can be used as a discriminating parameter between different moisture regimes. 

Figure 87 also shows that there is no significant relationship between the climate zone 

numbers and the diurnal temperature range, although the diurnal temperature range in climate 

zones 7 and 8 have slightly lower diurnal temperature range compared to others. 

In order to assess the predictability of the diurnal temperature range using either the 

conventional degree days or split-degree days, the annual sum of the diurnal temperature range 

(DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum) was regressed against the conventional HDD and CDD and then against the sHDD 

and sCDD. Figure 98 shows the prediction of the DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum by conventional HDD and CDD. 

The regression model is shown in equation 5.5. The R2 of the model is 0.032, the adjusted R2 is 

0.029, and the Root Mean Square Error (RMSE) is 859.594. The very low R2 of the linear 

regression shows that there is approximately no indication of the DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum in conventional 

degree days. 

On the other hand, the linear regressions using sHDD and sCDD, either without including 

the interaction term (Figure 99), or with the interaction term of the two sHDDs and two sCDDs 

(Figure 100), shows a significant improvement in the prediction of the DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum with the 

sHDD and sCDD. The regression model using sHDD and sCDD without including the 

interaction term (Figure 99) is shown in equation 5.6. The R2 and the adjusted R2 of the model 

are 0.964, and the RMSE is 165.671. The regression model using sHDD and sCDD with the 

interaction term included (Figure 100) is shown in equation 5.7. The R2 and the adjusted R2 of 

the model are 0.968, and the RMSE is 156.192. 
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Figure 97: Distribution of the Annual Sum of Average Daily Dry-Bulb Temperature (Left) 

and Maximum Daily Dry-Bulb Temperature (Right)  

 

DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum(𝐶𝐷𝐷,  𝐻𝐷𝐷)

= 4572.4826 −  0.066822 · 𝐶𝐷𝐷 −  0.136582 · 𝐻𝐷𝐷 

5.5 

 

DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum(sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 ) =  − 241.5932 −  1.090981 ·

sCDDP1 +  1.3794276 · sCDDP2+  1.8052363 · sHDDP1− 1.617339 · sHDDP2   

5.6 

 

where, sCDDP1 and sCDDP2 are the split cooling degree days in section 1 and 2 of a daily 

temperature profile (Figure 89), respectively, and sHDDP1 and sHDDP2 are the split heating 

degree days in section 1 and 2 of a daily temperature profile (Figure 89), respectively. 
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DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum(sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

= − 659.0309 −  1.016862 · sCDDP1 +  1.4656489 · sCDDP2 

−  0.000018 · sCDDP1 · sCDDP2 +  1.7436697 · sHDDP1

−  1.418671 · sHDDP2  −  0.00001219 · sHDDP1 · sHDDP2 

5.7 

 

The main reason that the DTR̅̅ ̅̅ ̅̅
d,h
Ann.Sum can be well predicted using split-degree days is that 

the two values in the split-degree days correlates well with the diurnal temperature range and 

provides improved information. In contrast to the split-degree days, the average values taken in 

degree days loses all the information related to the diurnal temperature range. 
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Figure 98: Prediction of the Annual Sum of Diurnal Temperature Range Using 

Conventional Degree Day
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Figure 99: Prediction of the Annual Sum of Diurnal Temperature Range Using Split-

Degree Day without Interaction Terms
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Figure 100: Prediction of the Annual Sum of Diurnal Temperature Range Using Split-

Degree Day with Interaction Terms
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5.1.2.2.  The Association of Solar Radiation and the Degree Days and Split-Degree Days 

The global horizontal solar radiation is used to represent the solar radiation characteristics 

of each location. The daily average hourly global horizontal solar radiation (GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum) is 

calculated for each location and then the annual sum provides a single value for each location. 

As shown in Figure 101, similar to the diurnal temperature range, the GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum in dry 

moisture regimes is higher than other subtypes. In other words, the clusters of subtype A and B 

are horizontally separated showing that there is a distinct difference between the GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum in 

subtype A and B. Also, Figure 101 also shows that the GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum decreases with increasing the 

climate zone number. The highest GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum can be seen at climate zones with lower numbers 

and the lowest GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum can be seen at 7 and 8.  

 

Figure 101: Various Global Horizontal Solar Radiation in Different Subtypes for Similar 

Regulated Energy Consumptions 
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Since GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum classifies different moisture regimes into approximately distinct 

clusters, it can be potentially considered as a covariate for the estimation of the building energy 

consumption. To evaluate this, linear regressions were conducted for GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum as the 

dependent variable and either the conventional degree days or the split-degree days as the 

independent variables. Results show that the estimations using the split-degree days were 

considerably better than the estimations using the conventional degree days.  

Figure 102 shows that the estimation of the GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum using the conventional degree 

days. The regression model is shown in equation 5.8. The R2 of the model is 0.578, the adjusted 

R2 is 0.577, and the RMSE is 7.106. Figure 102 shows that the estimation of the GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum 

using the conventional degree days can vary to a large extent within different ranges of 

GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum. The more numbers of point in subtype A play a significant role in the regression 

model. The figure shows that the model underestimates the actual values of GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum for the 

majority of points in subtype B. Also, the prediction for the dry moisture regime is 

underestimated in the majority of the cases while GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum is mainly overestimated in climate 

zone 7. 

 

GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum(𝐶𝐷𝐷,  𝐻𝐷𝐷)

= 75.784278 +  0.0005362 · 𝐶𝐷𝐷 −  0.004884 · 𝐻𝐷𝐷 

5.8 

 

On the other hand, the analysis showed the prediction of the GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum using split-

degree days, either without including the interaction terms (Figure 103) or with the interaction 
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terms (Figure 104) show considerably higher R-square values. The regression model without the 

interaction terms (Figure 103)  is shown in equation 5.9. The R2 of the model is 0.807, the 

adjusted R2 is 0.806, and the RMSE is 4.814.  

 

GHR̅̅ ̅̅ ̅̅
d,   h
Ann. Sum(sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

=  45.335365 −  0.004573 · sCDDP1  +  0.0076949 · sCDDP2 

+  0.0087627 · sHDDP1 −  0.011727 · sHDDP2   

5.9 

 

The regression model with the interaction terms (Figure 104)  is shown in equation 5.10. 

The R2 of the model is 0.811, the adjusted R2 is 0.810, and the RMSE is 4.770. 

 

GHR̅̅ ̅̅ ̅̅
d,   h
Ann. Sum(sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

= 46.327788 −  0.003005 · sCDDP1 +  0.0075216 · sCDDP2 

−  0.0000002633 · sCDDP1 · sCDDP2 +  0.009132 · sHDDP1 

−  0.013858 · sHDDP2  +  0.00000022568 · sHDDP1 · sHDDP2 

5.10 

 

The issue with the underestimation for dry regions and overestimation for very cold 

climates was resolved to a considerable extent in regression models using split-degree days, 

since the dual values provided for sHDD and sCDD associated with different moisture regimes 

indirectly included the information of different subtypes. 
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Figure 102: Prediction of the Annual Sum of the Daily Average Hourly Global Horizontal 

Solar Radiation Using Conventional Degree Days
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Figure 103: Prediction of the Annual Sum of the Daily Average Hourly Global Horizontal 

Solar Radiation Using Split-Degree Days without Interaction Terms
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Figure 104: Prediction of the Annual Sum of the Daily Average Hourly Global Horizontal 

Solar Radiation Using Split-Degree Days with Interaction Terms
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5.1.2.3.  The Association of Humidity with the Degree Days and Split-Degree Days 

Humidity is a weather-related parameter that impacts building energy consumption in 

buildings where cooling and dehumidification occur. In this section, the dew-point temperature is 

selected as the representative parameter for the humidity of each weather file. More specifically, 

the annual sum of the daily average hourly dew-point temperature (DP̅̅ ̅̅ d,h
AnnSum) was used in the 

analysis of this section. Figure 105 shows that within each climate zone number, the DP̅̅ ̅̅ d,h
AnnSum 

is slightly lower in dry locations compared to moist and marine locations. The separation of the 

different moisture regimes in Figure 105 shows that DP̅̅ ̅̅ d,h
AnnSum could be considered as a 

covariate in the estimation of the total regulated energy consumption by including the 

information to discriminate various moisture regimes. 

 

Figure 105: Various Dew-Point Temperature in Different Subtypes for Similar Regulated 

Energy Consumptions 
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The DP̅̅ ̅̅ d,h
AnnSum was used as the dependent variable for either the conventional degree 

days or split-degree days as the independent variables to develop linear regression models. 

Figure 106 shows the estimation of the DP̅̅ ̅̅ d,h
AnnSum using the conventional degree days. The 

regression model is shown in equation 5.11. The R2 and the adjusted R2 of the model are 0.756, 

and the RMSE is 1009.388.  

 

DP̅̅ ̅̅ d,h
AnnSum (𝐶𝐷𝐷,  𝐻𝐷𝐷)

= 3061.7175 +  0.5251119 · 𝐶𝐷𝐷 −  0.775979 · 𝐻𝐷𝐷 

5.11 

 

In the Figure 106 it can be seen that, in general, the DP̅̅ ̅̅ d,h
AnnSum for subtype A is 

underestimated while it is overestimated for subtype B. Also, there is a large variation in the 

estimations of the DP̅̅ ̅̅ d,h
AnnSum for the locations subtype B within similar ranges of the HDD and 

CDD. There is also a slight underestimation in the prediction of DP̅̅ ̅̅ d,h
AnnSum for the locations in 

climate zone 7. 

On the other hand, the estimation of the DP̅̅ ̅̅ d,h
AnnSum using sDD, either without interaction 

terms (Figure 107) or with interaction terms (Figure 108) shows less discrepancies in the 

prediction of the DP̅̅ ̅̅ d,h
AnnSum for different moisture regimes. Furthermore, the issue of the 

overestimation in climate zone 7 is resolved by using sDD as the independent variables. 

The regression model without the interaction terms (Figure 107) is shown in equation 

5.12. The R2 of the model is 0.877, the adjusted R2 is 0.876, and the RMSE is 718.352.  
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DP̅̅ ̅̅ d,h
AnnSum (sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

=  6618.7851 +  2.2461651 · sCDDP1 −  1.757061 · sCDDP2  

−  1.324498 · sHDDP1+  0.2103839 · sHDDP2   

5.12 

 

The regression model with the interaction terms (Figure 108) is shown in equation 5.13. 

The R2 of the model is 0.882, the adjusted R2 is 0.881, and the RMSE is 703.040. 

 

DP̅̅ ̅̅ d,h
AnnSum (sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

= 5752.6857 +  2.761751 · sCDDP1 −  1.571594 · sCDDP2 

−  0.000101 · sCDDP1 · sCDDP2− 1.405983 · sHDDP1

+ 0.2784268 · sHDDP2  +  0.000015527 · sHDDP1 · sHDDP2 

5.13 
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Figure 106: Prediction of the Annual Sum of the Daily Average Hourly Dew-Point 

Temperature Using Conventional Degree Days
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Figure 107: Prediction of the Annual Sum of the Daily Average Hourly Dew-Point 

Temperature Using Split-Degree Days without Interaction Terms
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Figure 108: Prediction of the Annual Sum of the Daily Average Hourly Dew-Point 

Temperature Using Split-Degree Days with Interaction Terms
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5.1.2.4.  The Association of the Wind and the Degree Days and Split-Degree Days 

Wind speed is also a weather-related parameter that can influence building energy 

consumption. The annual sum of the daily average hourly wind speed (WS̅̅ ̅̅ d,h
Ann.Sum) was used to 

represent the wind speed characteristics in each location. However, compared to other influential 

weather-related parameters, there was not a significant difference in WS̅̅ ̅̅ d,h
Ann.Sum of different 

subtypes and the WS̅̅ ̅̅ d,h
Ann.Sum was not expected to be an appropriate covariate. Consequently, this 

section does not discuss the regression models for predicting WS̅̅ ̅̅ d,h
Ann.Sum. 

 

Figure 109: Various Dew-Point Temperature in Different Subtypes for Similar Regulated 

Energy Consumptions 
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5.1.3. Predicting the Regulated Energy Consumption 

This section provides the results of the regression models for predicting the total annual 

regulated energy consumption (ERegulated
Annual ) of the medium office prototype in different locations 

using the conventional degree days, the conventional degree days plus the influential weather-

related parameters, and the split-degree days. In the case of the conventional degree days, the 

predictors were CDD and HDD. In the case of the conventional degree days plus the influential 

weather-related parameters, the regressions used the conventional degree days and other 

influential parameters, CDD, HDD, GHR̅̅ ̅̅ ̅̅
d,h
Ann.Sum, DP̅̅ ̅̅ d,h

AnnSum, WS̅̅ ̅̅ d,h
Ann.Sum, DTR̅̅ ̅̅ ̅̅

d,h
Ann.Sum, and 

DBT̅̅ ̅̅ ̅̅
d,max
Ann.Sum. The split-degree days results included the regression models using sHDD and 

sCDD without and with the interaction terms, where the interaction terms are the interaction 

terms of the sHDDP1 and sHDDP2, and the interaction terms of the sCDDP1 and sCDDP2. 

Figure 110 illustrates the results of the predicted versus actual ERegulated
Annual  using the 

conventional degree days. Figure 111 shows the results for the predictions using the conventional 

degree days and other influential parameters. Figure 112 and Figure 113 show the results using 

split-degree days without the interaction terms and with the interaction terms, respectively. The 

results show that the predictions by split-degree days are less dispersed and have the highest R2 

and adjusted R2 and the lowest RMSE. There is an overestimation in the prediction of the energy 

consumption of the subtype B by the model with the conventional degree days variables (Figure 

110). Also, there is an underestimation for the energy use of the climate zone 8. The regression 

model is shown in equation 5.14. The R2 and the adjusted R2 of the model are 0.913, and the 

RMSE is 143.248.  
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ERegulated
Annual  (𝐶𝐷𝐷,  𝐻𝐷𝐷)

= − 144.4533 +  0.7397604 · 𝐶𝐷𝐷 + 0.5955554 · 𝐻𝐷𝐷 

5.14 

 

The regression model with the conventional degree days and other influential weather 

parameters is shown in equation 5.15. The R2 of the model is 0.958, the adjusted R2 is 0.951, and 

the RMSE is 99.709. Although the overestimation of the energy use in subtype B is resolved in 

the model with the conventional degree days and other influential weather parameters, the 

underestimation of the energy use of climate zone 8 still exists (Figure 111). Also, the model has 

a large number of parameters that require further preparation compared to the degree days and 

split-degree days. 

 

ERegulated
Annual  (𝐶𝐷𝐷,  𝐻𝐷𝐷,  𝐺𝐻𝑅,  𝐷𝑃,  𝑊𝑆,  𝐷𝑇𝑅,  𝐷𝐵𝑇𝑚𝑎𝑥)

= 3162.0099 +  1.0387216 · 𝐶𝐷𝐷 +  0.1220186 · 𝐻𝐷𝐷 

−  8.563456 · 𝐺𝐻𝑅 +  0.0232175 · 𝐷𝑃 +  0.1039635 · 𝑊𝑆 

+  0.2322308 · 𝐷𝑇𝑅 −  0.491139 · 𝐷𝐵𝑇𝑚𝑎𝑥 

5.15 

 

The regression model with the split-degree days parameters without interaction terms 

(Figure 112) is shown in equation 5.16. The R2 and the adjusted R2 of the model are 0.952, and 

the RMSE is 106.295. The model has slightly lower, but a comparable result in terms of 

accuracy to the model with the conventional degree days and other influential weather 

parameters. 
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ERegulated
Annual  (sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

= 451.16497 +  0.5114318 · sCDDP1 +  0.1100748 · sCDDP2 

+  0.0431021 · sHDDP1+  0.5438452 · sHDDP2  

5.16 

 

The regression model with the split-degree days parameters with interaction terms 

(Figure 113) is shown in equation 5.17. The R2 of the model is 0.965, the adjusted R2 is 0.964, 

and the RMSE is 91.773. The model results in the highest accuracy. The issue of the 

overestimation of climate zone 8, which was seen in other models, is resolved in this model. 

 

ERegulated
Annual  (sCDDP1,  sCDDP2, sHDDP1,  sHDDP2 )

= 514.33402 +  0.6379942 · sCDDP1 +  0.0995313 · sCDDP2 

−  0.00002146 · sCDDP1 · sCDDP2 +  0.0700323 · sHDDP1 

+  0.382724 · sHDDP2 + 0.000017385 · sHDDP1 · sHDDP2   

5.17 
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Figure 110: Predicting the Total Regulated Energy Consumption Using the Conventional 

Degree Days
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Figure 111: Predicting the Total Regulated Energy Consumption Using the Conventional 

Degree Days, GHR, DP, WS, DTR, and DBTmax
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Figure 112: Predicting the Total Regulated Energy Consumption Using the Split-Degree 

Days without the Interaction Terms
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Figure 113: Predicting the Total Regulated Energy Consumption Using the Split-Degree 

Days with the Interaction Terms 
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5.1.4. Predicting the Heating Energy Consumption 

This section includes the estimation of the annual heating energy consumption, EHeating
Annual , 

using the Heating Degree Days (HDD) and split-Heating Degree Days (sHDD). Figure 114 

shows the predicted heating energy consumption using the regression model derived from the 

HDD. The regression model is shown in equation 5.18. The R2 and the adjusted R2 of the model 

are 0.898 and the RMSE is 210.614. 

 

EHeating
Annual (HDD) = − 396.3349 +  0.3922467 · 𝐻𝐷𝐷  5.18 

 

The residual pattern in Figure 114 indicates a potential better correlation of the EHeating
Annual  

with higher degrees of HDD. Therefore, a polynomial regression model with the degree of two 

with the HDD as the indicator was also developed to allow for the comparison of the models 

with higher accuracy using the HDD when compared to the models using sHDD. Figure 115 

shows the results of the predicted values EHeating
Annual  by the degree two polynomial model. The 

regression model is shown in equation 5.19. The R2 and the adjusted R2 of the model are 0.957 

and the RMSE is 135.901. 

 

EHeating
Annual (HDD) = − 64.74019 +  0.1390695 · 𝐻𝐷𝐷 +  0.000036447 · 𝐻𝐷𝐷2  5.19 

 

It can be seen that the relation of the heating energy consumption to the outdoor 

temperature is not linear when using the HDD as the independent variable. Previous research has 

shown U-shape relation between the energy consumption, mostly electricity, and the temperature 
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(e.g. Henley and Peirson, 1997; Moral-Carcedo and Vicéns-Otero, 2005; Bessec and Fouquau, 

2008; and Lee and Chiu, 2011). There are several factors that make the energy consumption 

grow faster once the temperature deviates more from the comfort temperature. These parameters 

include: varying heat transfer coefficients (radiation and/or convection) that can result in more 

pronounced heat transfer through the building envelope, which can also result in radiant 

asymmetry and requiring further conditioning in order to reach comfort level; and for different 

systems, the varying efficiencies in different temperatures. However, the U-shape versus the V-

shape energy consumption pattern is typically discussed for the electricity consumption. In this 

case, there seems to be a deficiency in HDD to accurately capture the extreme conditions. Hence, 

in this study, the residual pattern in the plot of the model with degree one of HDD was tried to be 

resolved only using statistical approach without considering the physical interpretation to allow 

for the comparison of the HDD model with higher accuracy versus the models using sHDDs. 

Therefore, a polynomial model was developed to statistically address the residual pattern in the 

model with degree one HDD. Results show that the polynomial model better fits the actual 

EHeating
Annual  as the R2 is increased from 0.898 to 0.957. However, in both cases, the EHeating

Annual  in dry 

locations are overestimated by the model. However, actual EHeating
Annual , is affected by various 

parameters, namely the solar radiation, which reduces the EHeating
Annual  more in dry locations 

compared to the moist and marine areas. The low predictability of the solar radiation by the 

conventional HDD mainly leads to the discrepancy in the estimation of the EHeating
Annual  in various 

moisture regimes. 
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The estimated EHeating
Annual  using the sHDD for the model without including the interaction 

term is presented in Figure 116. The regression model is shown in equation 5.20. The R2 and the 

adjusted R2 of the model are 0.964 and the RMSE is 125.264. 

 

EHeating
Annual (sHDDP1,  sHDDP2 ) = − 40.55628 −  0.197441 · sHDDP1+

 0.6506595 · sHDDP2    

5.20 

 

The estimated EHeating
Annual  using the sHDD for the model with the interaction term is 

presented in Figure 117. The regression model is shown in equation 5.21. The R2 and the 

adjusted R2 of the model are 0.981 and the RMSE is 90.345. 

 

EHeating
Annual (sHDDP1,  sHDDP2 ) = 19.615939 −  0.093186 · sHDDP1 +

 0.3782819 · sHDDP2+  0.0000236 · sHDDP1 · sHDDP2   

5.21 

 

The R2 in both models using sHDD, either with or without the interaction terms, are 

higher than the ones using the conventional HDD. 
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Figure 114: Predicting the Heating Energy Consumption Using the Conventional HDD
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Figure 115: Predicting the Heating Energy Consumption Using the Conventional HDD 

with Degree Two Polynomial
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Figure 116: Predicting the Heating Energy Consumption Using the Split-HDD without the 

Interaction Terms
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Figure 117: Predicting the Heating Energy Consumption Using the Split-HDD with the 

Interaction Terms
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5.1.5. Predicting the Cooling Energy Consumption 

This section presents the accuracy of the predictability of the annual cooling energy 

consumption (ECoolting
Annual ) using the conventional Cooling Degree Days (CDD) and split-Cooling 

Degree Days (sCDD). It includes the predicted ECoolting
Annual  using the conventional CDD and sCDD 

with and without interaction terms. 

The predicted ECoolting
Annual  using the conventional CDD is shown in Figure 118. The 

regression model is shown in equation 5.22. The R2 and the adjusted R2 of the model are 0.979 

and the RMSE is 70.052. 

 

ECooling
Annual (CDD) = − 12.10281 +  0.4257311 · 𝐶𝐷𝐷  5.22 

 

The predicted cooling energy consumption using the sCDD are shown in Figure 119 for 

the model without the interaction term, and in Figure 120 for the model with the interaction term. 

The regression model without the interaction term is shown in equation 5.23. The R2 and the 

adjusted R2 of the model are 0.981 and the RMSE is 67.807. 

 

ECooling
Annual (sCDDP1, sCDDP2)

= 18.074123 +  0.4640176 · sCDDP1 −  0.026039 · sCDDP2  

5.23 

 

The regression model using the sCDD with the interaction term is shown in equation 

5.24. The R2 and the adjusted R2 of the model are 0.982 and the RMSE is 66.058. 
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ECooling
Annual (sCDDP1, sCDDP2)

= 18.074123 +  0.4640176 · sCDDP1 −  0.026039 · sCDDP2  

5.24 

 

Although the predicted ECoolting
Annual  using sCDD shows slightly better predictions, the 

improvement is not as pronounced as the accuracy of the prediction is high even in the models 

developed by the conventional CDD. Humidity is shown to have the highest impact in the 

analysis conducted in section 4.3.3. Therefore, better estimation of the DP̅̅ ̅̅ d,h
AnnSum using the sDD 

compared to the conventional CDD, which was discussed in section 5.1.2.3, plays an important 

role in improving the accuracy of the estimations of ECoolting
Annual . 
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Figure 118: Predicting the Cooling Energy Consumption Using the Conventional CDD
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Figure 119: Predicting the Cooling Energy Consumption Using the Split-CDD without the 

Interaction Terms
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Figure 120: Predicting the Cooling Energy Consumption Using the Split-CDD with the 

Interaction Terms
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5.1.6. Predicting the Fan Energy Consumption 

This section includes the results for the prediction of the annual fan energy consumption 

(EFan
Annual) using the regression models developed by the conventional degree days and split-

degree days. The regression model using the conventional degree days is shown in Figure 121 

and equation 5.25. The R2 of the model is 0.383, the adjusted R2 is 0.381 and the RMSE is 

24.812. 

 

EFan
Annual(CDD, HDD) = 212.93043 +  0.0206718 · 𝐶𝐷𝐷 +  0.0028814 · 𝐻𝐷𝐷 5.25 

 

The predicted fan energy consumption using the sCDD are shown in Figure 122 for the 

model without the interaction term, and in Figure 123 for the model with the interaction term. 

The regression model without the interaction term is shown in equation 5.26. The R2 of the 

model is 0.708 and the adjusted R2 of the model is 0.707 and the RMSE is 17.089. 

 

EHeating
Annual (sCDDP1, sCDDP2, sHDDP1, sHDDP2)

= 110.72467 −  0.002521 · sCDDP1 +  0.0306831 · sCDDP2 

+  0.0427832 · sHDDP1−  0.032883 · sHDDP2  

5.26 

 

The regression model without the interaction term is shown in equation 5.27. The R2 of 

the model is 0.722 and the adjusted R2 of the model is 0.720 and the RMSE is 16.693. 
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EHeating
Annual (sCDDP1, sCDDP2, sHDDP1, sHDDP2)

= 138.93311 −  0.012781 · sCDDP1 +  0.0247612 · sCDDP2 

+  0.0000021314 · sCDDP1 · sCDDP2 +  0.0462724 · sHDDP1 

−  0.041314 · sHDDP2 +  0.00000023126 · sHDDP1 · sHDDP2 

5.27 

 

Results show significant improvements in the prediction of the EHeating
Annual  using split-

degree days compared to degree days. The comparison of the actual EHeating
Annual  versus the predicted 

EHeating
Annual  yields lower R2 (0.383) compared to the predictions models using the split-degree days, 

either without the interaction term (0.708) or with the interaction terms (0.722). This is mainly 

due to the underestimation of EHeating
Annual  in dry locations and the overestimation of EHeating

Annual  in very 

cold climates by the models from the conventional degree days, which is resolved to a 

considerable extent in the models using split-degree days. 
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Figure 121: Predicting the Fan Energy Consumption Using the Conventional Degree Days
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Figure 122: Predicting the Fan Energy Consumption Using the Split-Degree Days without 

the Interaction Terms
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Figure 123: Predicting the Fan Energy Consumption Using the Split-Degree Days with the 

Interaction Terms 
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5.1.7. Estimation of the Annual Heating and Cooling Using the Variable-Degree Day and 

Split-Degree Day methods 

In this section the results of predictions of the annual heating and cooling energy 

consumption in different locations are compared using various base temperatures used in HDD  

and CDD as well as sHDD and sCDD. Figure 124 illustrates the accuracy of the estimation of the 

annual heating and cooling energy consumption in different locations using the degree days and 

split-degree days with different base temperatures (left) and includes a closer representation of 

the predictions near to the optimal base temperatures (right). The results of the accuracy of the 

prediction of the annual heating and cooling energy consumption of different locations in Figure 

124 are presented with red triangles (heating) and blue circles (cooling), respectively. Each point 

represents the R2 of the predicted values using the regression model versus the actual heating or 

cooling of 801 locations for each base temperature. Hollow markers indicate the predictions 

using either  HDD or CDD and the filled marker shows the predictions using either sHDD or 

sCDD. 

As shown in Figure 124, the accuracy of the prediction of the annual heating and cooling 

energy consumption vary significantly with changes to the base temperature. In the case of 

heating, the R2 increases significantly until it reaches an optimal base temperature. Calculating 

the HDD and sHDD using the represented lowest base temperatures yields zero for almost all of 

the 801 locations since there are very few sites with at least one day in which the average daily 

temperature is lower than those very low base temperatures. Therefore, the independent variables 

in the model are mostly the same value (zeros). Therefore, the model does not discriminate 

various heating loads in various locations. The more pronouned difference between the changes 

in the R2 for total regulated energy consumption in the two methods is shown in Figure 125. 
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Figure 124: The Predictability of the Annual Heating and Cooling Energy Consumption Using the Conventional Degree Days 

and Split-Degree Days with Different Base Temperatures; Left: Representation for a Large Span of Base Temperature; Right: 

Representation for the Temperature Range Close to the Optimal Base Temperature. 
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Figure 125: The Predictability of the Total Annual Regulated Energy Consumption Using 

the Conventional Degree Days and Split-Degree Days with Different Base Temperatures 

 

The accuracy in the discrimination of the heating loads among different sites increases 

with increasing the base temperature until the base temperature reaches a certain point (8℃ for 

HDD and 11℃ for sHDD)10. From this point, increasing the base temperature reduces the R2 

since the higher base temperatures does not accurately represent the temperature above which 

heating loads are needed. Eventually, there is a base temperature that the average daily 

                                                 

10 It should be noted that this optimal base temperature is specifically derived from the regressions from the 

energy simulations of the DOE medium office protoype building models and the 801 TMY3 weather files and may 

not apply for other building types, building configurations, and different pool of weather files. 
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temperature in the case of the HDD, and the average temperature in each interval in the case of 

the sHDD, in all days in different locations is lower than the base temperature. Consequently, the 

HDD and sHDD will simply be the base temperature minus the average temperature. Increasing 

the base temperature from this point will only add a constant value to all different sites, which 

does not change the R2. This temperature varies in HDD and sHDD. It should be noted that, 

unlike the cases with very low base temperatures, by increasing the base temperature the R2 does 

not decrease to very low numbers. This is mainly because of the fact that with even with very 

large base temperatures, the HDD or sHDD in various sites to some extents discriminates the 

heating loads in different locations while there is little or no discrimination in heating demands 

of different locations when using very low base temperatures, in which the HDD or sHDD is 

zero for most of the sites. 

Similar but reverse scenario in the heating applies for the cooling. The R2 remains 

approximately constant within the range of very low base temperatures since the base 

temperature is lower than the average daily temperature (or the average of each split interval in 

the case of the sCDD) in almost all days of all 801 weather files; hence, the values of all 

independent variables in very low base temperatures differ by a constant value, which is the 

temperature difference of the base temperatures and does not change the R2. While these 

independet values to some extent discriminates the cooling demands in each location, but they do 

not accurately represent the base temperature, above which the building requires cooling. 

Therefore, the R2 increases until it reaches the optimal base temperature (12℃ for both CDD and 
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sCDD with this building configurations and the 801 used weather files)11. The R2 then 

significantly decreases as most of the days in most of the weather files result in zero CDD or 

sCDD, which will make no discrimination for the cooling loads. 

One of the major advantages of the split-degree days compared to the conventional 

degree days is the roubust estimation of the energy consumption by the split-degree days, which 

plays a crucial rule in weather classification when there is limited or no information about the 

building configurations. As shown in Figure 124, the R2 in both sHDD and sCDD throughout the 

whole range of the base temperatures was higher than the HDD and CDD of the corresponding 

base temperatures. Although the R2 of the two methods are very close around the optimal base 

temperatures, the R2 drops significantly in heating base temperatures above the optimal base 

temperature for heating and cooling temperatures below the optimal base temperature for 

cooling. However, the R2 of the sHDD for the base temperatures above the optimal heating base 

temperature and the R2 of the sCDD for the base temperatures below the optimal cooling base 

temperature remains very close to the optimal R2. The prototype building models are 

representative models based on the surveys and current configurations of the built building. 

However, each building can have a different base temperature based on its unique heat loss and 

heat gains patterns and schedules. Furthermore, different building types can have different base 

temperatures. However, in weather classification, the classification should be inclusive for 

various buildings in different regions. Therefore, in weather classification, where there is limited 

or no information for the buildings, the roubustness of the classification plays an essential role as 

                                                 

11 Similar to the case of heating, this optimal base temperature is specifically derived from the regressions 

of the energy simulations of the medium office protoype building models and the 801 TMY3 weather files and may 

not apply for other building types, building configurations, and different pool of weather files. 
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it should account for various building configurations that have different heat loss coefficients, 

internal gains, schedules, and consquently different base temperatures. 

 

5.1.8. Comparative Analysis on the Estimation of the Energy Consumption using the Split-

Degree Day and the Conventional Degree Day Methods 

This section provides a comprehensive comparison of the accuracy of the estimation of 

energy consumption by various degree day methods. Besides the comparisons between the 

conventional degree days and the split-degree days, which were provided in the previous 

subsections, other methods are compared in this section as well.  

To begin, the HDD and CDD based on different degree day calculation methods as well 

as the Heating Degree Hours (HDH) and Cooling Degree Hours (CDH) were calculated for the 

801 weather data. Then, regression models were developed using the different parameter as the 

independent variable and total regulated, heating, cooling, and fan annual energy consumption as 

the dependent variable. Results are shown in Figure 126 and Table 10. Figure 126 and Table 10 

include the R2, the adjusted R2, and the RMSE of the developed regression models in 801 

locations for total regulated, heating, cooling, and fan energy consumption. The regression 

models are developed using the conventional degree days with maximum/minimum temperature 

approach, the conventional degree days with average temperature approach, the degree hours, the 

mean degree hours, the meteorological office equations, and the split-degree days. From the 

figure and table it can be seen that the proportion of the variance in the total regulated energy 

consumption that is predictable using the split-degree days is more than 5% higher than the one 

from the degree days. In addition, significant improvement in predictability can be seen for the 
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heating and fan energy use. The high predictability in various methods for cooling, however, 

yields a smaller improvement in the estimation of cooling energy consumption using sCDD. 

Comparisons of different methods with the optimal base temperature for degree day 

method (discussed in Section 5.1.7) are provided in Figure 127 and Table 11. The optimal base 

temperature refers to the optimal values for the conventional CDD and HDD, as illustrated in 

Figure 124. The optimal values differ in different methods. Therefore, the accuracies are lower in 

some cases when compared to the standard base temperature.  In this figure and table it can be 

seen that similar to the comparisons conducted using the standard base temperatures, the results 

of split-degree days outperforms other methods in the estimation of different energy sectors. 

While split-degree days outperforms other methods in predicting different energy end 

uses, there are different ways that the split method can be applied. For example, including or not 

including the interaction terms, utilization of the maximum–minimum or average approach, and 

the number of splits per day are some of the main variations in split-degree days. While 

Appendix C illustrates the determination of the best split time span in a 2-split approach, this 

sections provides the comparison of several other variations. The comparisons include the 2-split 

split-degree days including the interactions terms for the two sHDDP1 and sHDDP2, and also 

sCDDP1 and sCDDP2, each with maximum–minimum approach and the average approach. 

Furthermore, a 24-split approach, which is basically using 24 HDH and 24 CDH values, is also 

analyzed. Results are illustrated for the standard base temperatures (Table 12) and the optimal 

base temperatures (Table 13). 
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Figure 126: Representation of the Predictability of the Energy Consumption by Various 

Degree Day/Hour Methods Using the Standard Base Temperatures 

 

Table 10: Predictability of the Energy Consumption by Various Degree Day/Hour Methods 

Using the Standard Base Temperatures 
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Figure 127: Representation of the Predictability of the Energy Consumption by Various 

Degree Day/Hour Methods Using the Optimal Base Temperatures12 
 

Table 11: Predictability of the Energy Consumption by Various Degree Day/Hour Methods 

Using the Optimal Base Temperatures12 

 

                                                 

12 The optimal base temperatures refers to the temperatures at which the conventional CDD and HDD result 

in the highest accuracy of the estimations for the cooling loads and heating loads, respectively, as illustrated in 

Figure 124. This temperature differ from the optimal values for other methods. Therefore, besides the R2 for the 

cooling and heating loads for CDD and HDD, other R2 may be lower than the standard base temperature. 
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In Table 12, it can be seen that the split-degree days used in this study, which includes 

the interaction terms with the daily maximum–minimum approach has comparatively better 

results compared to other 2-split split-degree days results in the standard base temperatures in the 

predictions of the total regulated, heating, and with high accuracy in the estimation of cooling 

and fan. The average approach has higher R2 in the predictions of the cooling and fan energy 

consumption. However, compared to conventional degree day methods, the accuracy of the 

prediction of all split-degree day methods for the fan energy consumption are much higher that 

the trivial difference between split-degree day methods can be considered negligible. Also, the 

accuracy of the estimation is high in all the cases and the trivial difference can be considered 

negligible. The predictions of the 24-split approach is slightly better than the 2-split approach. 

However, in some cases such as heating, the 2-split split-degree days outperforms the 24-split 

split-degree days. Results for the optimal base temperatures, shown in Table 13, have closer 

accuracy for different methods. Overall, due to the complexity and resolution of the data, and 

considering the relatively smaller improvement in 24-split split-degree days and 2-split split-

degree days versus each split-degree days and conventional degree days, the 2-split split-degree 

days with interactions were selected in this study.  
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Table 12: Predictability of the Energy Consumption by Various Split-Degree Day Methods 

Using the Standard Base Temperatures 

 

 

Table 13: Predictability of the Energy Consumption by Various Split-Degree Day Methods 

Using the Optimal Base Temperatures13 

 

                                                 

13 The optimal base temperature refers to the temperatures at which the conventional CDD and HDD result 

in the highest accuracy of the estimations for the cooling loads and heating loads, respectively, as illustrated in 

Figure 124. 
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The results of the analysis of the accuracy of the estimation of the energy consumption 

using the split-degree days and the conventional degree days for the model with higher thermal 

mass (described in Section 3.4.4), shown in Table 14, showed that the R2 using the split-degree 

days was higher than the R2 using the conventional degree days. Also, the R2 of the estimations 

for the identical model with high thermal mass using split-degree day was only trivially lower 

than the R2 of the estimations of the selected identical DOE prototype model. However, the lower 

accuracy in the estimations of the energy use of the identical model with high thermal mass 

versus the selected identical DOE prototype model using the conventional degree day was more 

significant. For example, the R2 of the estimation of the total regulated energy consumption of 

the cases with higher thermal mass showed to be 0.007 (0.913 to 0.907) lower than the 

corresponding R2 of the selected identical DOE prototype model. However, the corresponding 

comparison for the estimations using the split-degree days shows a 0.001 decrease only, which 

shows that, similar to the analysis of the DOE medium office prototype, the split-degree day 

resulted in more accurate estimations for the energy use of the model with higher thermal mass 

compared to the conventional degree days. 

 

5.2. Application of the Split-Degree Days Method 

This section discusses the potential application of the split-degree days in the ASHRAE 

Standard 90.1. The potential application includes the utilization of the split-degree days in 

climate classification as well as the use of split-degree days as a correction factor in the 

performance path. 
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Table 14: Predictability of the Energy Consumption of the Selected DOE Identical 

Prototype Model and the Identical Model with High Thermal Mass Using the Conventional 

Degree Day and the Split-Degree Day Methods 

 

 

5.2.1. Utilization of the Split-Degree Days method in Climate Classification 

Currently, climate zones classification in ASHRAE Standard 169-2013 and other 
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degree days and is shown to have higher predictability of different moisture regime. Therefore, 

different weather conditions can be more accurately classified using the split-degree days. 

 

5.2.2. Utilization of the Split-Degree Days Method for the PCI Adjustment 

In section 4.4.2, it has been shown that currently, there is a considerable variation in the 

extent at which each location is above-code using the performance path. Therefore, there is a 

need to adjust the BPFs for each weather. This section provides the results of the complied 

buildings using the adjusted BPFs. 

First of all, the extent to which each location is above code is calculated using the PCI – 

PCIt. Then, as described in section 3.5 of this document, the 𝐵𝑃𝐹_𝐹𝑖𝑑𝑒𝑎𝑙.𝑖, which is ratio of the 

BPFideal for location i over the BPF of the corresponding climate zone is calculated. Multiplying 

the 𝐵𝑃𝐹_𝐹𝑖𝑑𝑒𝑎𝑙.𝑖 with the BPF of the corresponding weather file results in zero PCI – PCIt for 

each location. Then, a linear regression model is developed using the sHDD and sCDD as the 

independent variables and the BPF_Fideal for different locations as the dependent variable. Then 

the adjustments are applied using the sHDD and sCDD of each site and the linear equation 

derived for each climate zone. The adjustments are applied using the sHDD and sCDD of each 

site, plugged into a linear equation derived for each climate zone. The calculated adjustment 

factor is multiplied with the provided BPF for each location. 

It should be noted that the above code value is ideally calculated using the developed 

linear regression model. However, although split-degree days is shown to better estimate the 

energy performance of a building compared to the conventional degree days, split-degree days 

does not perfectly define all the variations in different locations. Therefore, there is an error term 

that makes the estimated above code value slightly smaller or larger than the actual calculated 
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above code value, which can result in below code rating in some cases. In order to assure that all 

the estimated above code values are equal or larger than zero, a constant value is added to the 

constant term of the linear regression that, among all cases, yields the minimum value of zero for 

the above code. Figure 128 shows the difference of the PCI and PCIt of the ASHRAE Standard 

90.1-2016 medium office prototype models in different climate zones using the adjustment 

factors. Figure 129 shows the difference in the variations in the above code index of the 

ASHRAE Standard 90.1-2016 medium office prototype models in different locations with and 

without applying the adjustment factors, which is in fact the variations shown in the vertical axis 

of Figure 82 and Figure 128. 

 

 

Figure 128: Difference of the PCI and PCIt of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Models in Different Climate Zones Using the Adjustment Factors 
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Figure 129: The Variations in the Above Code Index of the ASHRAE Standard 90.1-2016 

Medium Office Prototype Models in Different Locations without (Left) and with (Right) 

Applying the Adjustment Factors 

 

5.3. Summary of the Accuracy and Application of the Improved Method 

This chapter illustrated the results of the comparisons between the proposed improved 

split-degree days and the conventional degree days and the application of the split-degree days 

method in commercial code compliance procedure. The results include the comparisons of the 

accuracy of the prediction of the influential weather parameters on building energy consumption 

(diurnal temperature range, solar radiation, and humidity) split-degree days and degree days. 

Then, the accuracy of the prediction of medium office building total regulated, heating, cooling, 

and fan energy consumption are compared using split-degree days versus degree days as the 

independent variable. Results of the comparative analysis shows that using the split-degree days 

as independent variable to estimate the weather parameters or the energy consumption of the 

models results in more accurate estimations compared to using the conventional degree days. 
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Then, the application of the new split-degree days is shown for a commercial building 

code compliance procedure. First, the use of the new split-degree day method is demonstrated for 

climate classification instead of the traditional degree day method. The new procedure more 

accurately classifies the climate of each location according to its weather characteristics by better 

estimating the building energy consumption in that location. Finally, an adjustment procedure is 

defined to help eliminate the variations in the above code values for each climate zone. The 

adjustment factors for each location can be calculated using the new split-degree days for each 

location, which are used with the new multi-linear regression model for the corresponding 

climate zone. 
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CHAPTER VI    

SUMMARY AND FUTURE WORK 

 

This Chapter includes a summary of the results and a discussion about future work. This 

study highlighted the variations in the energy consumption and the energy savings associated 

with the implementation of daylight responsive controls in different climate locations of the 

United States using the DOE medium office prototype models for ASHRAE Standard 90.1-2016 

and 90.1-2004. The analysis of the prototype models that met the requirements in the prescriptive 

path showed a systematic difference in code-compliant buildings in different moisture regimes. 

Similar systematic differences were observed when using the performance path for the 

compliance (Performance Rating Method).  Based on the analysis of the variations in different 

locations, a new index for climate classification was developed and demonstrated. The proposed 

index, called the split-degree day, can be used in the estimation of building energy consumption 

and weather-normalized energy savings calculation. Specifically related to building energy 

standards and codes, the proposed index can be used for an improved weather classification that 

better claassifies the provisions provided for each location. Furthermore, using the proposed 

index, an adjustment procedure was also developed for the performance path of ASHRAE 

Standard 90.1. Figure 130 is the flowchart that summarizes this study. The current status, 

analysis, the proposed method, and the application of the proposed method are shown in the 

figure. Current utilization of the conventional degree day method related to ASHRAE Standard 

90.1 is traced using red arrows. The application of the proposed split-degree day is shown using 

the dashed red lines. 
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Figure 130: Overall Procedure: Current Status, Analysis Procedure, and the Application of 

the Proposed sDD Method 

 

6.1.Summary of the Results of the Simulated Medium Office Models 

The variation in the energy consumption of the DOE medium office models in different 

climatic locations are discussed in the first part of the results. Similarly, the variation in the 
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energy savings of the models with the implementation of the daylight responsive controls are 

discussed in this section. Furthermore, the variations in the amount of above code value at each 

location is also illustrated. 

The analysis in this section shows that there is a systematic difference in the energy 

consumption of the models in different moisture regimes. While the solar radiation, dry-bulb 

temperature, humidity, and wind, impact building energy consumption, the most influential 

parameters in different moisture regimes that lead to different heating and cooling energy 

consumption were shown to be the solar radiation and humidity, respectively. Also, it is shown 

that while different diurnal temperature profiles directly impact building energy consumption, 

diurnal temperature range can be used to estimate other influential weather conditions. 

Finally, the results show that there is a significant difference in energy savings associated 

with the implementation of daylight responsive controls in the different climate zones. The 

results show higher energy savings for buildings with daylighting features in hotter climates 

compared to colder climates. 

 

6.2. Summary of the Proposed Split-Degree-Days Based Climate Classification Method 

The analysis shows that the traditional degree days do not fully discriminate the 

influential parameters. A new modified degree days index for climate classification, split-degree 

days, is defined so that it includes the diurnal temperature range information. These new split-

degree days can be calculated in a similar fashion as degree days, except that the new split-

degree days should be calculated separately for two sections of each day. The analyses on the 

DOE medium office models in this study showed that the best split interval were the hours from 

14:00 to 16:00 in one split and the remainder of the day in the other split. Considering that the 
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diurnal temperature range associates well with influential weather parameters on building 

thermal performance and the fact that the conventional degree days were not sensitive to the 

diurnal temperature range, the new split-degree days had a higher accuracy for predicting the 

building energy consumption compared to the conventional degree days. 

Different regression models were developed to predict the total regulated, heating, 

cooling, and fan energy consumption in the DOE models in different locations as the dependent 

variable and either the degree days or the split-degree days of the corresponding locations as the 

independent variables. The comparisons of the accuracy of the estimations showed that the 

estimated energy consumption using split-degree days is significantly higher than the estimates 

using degree days. Furthermore, it is shown that by using split-degree days, there is less 

discrepancy in the estimated total regulated, heating, cooling, and fan energy consumption in the 

different moisture regimes. 

 

6.3. Summary of the Results of the Application of the Proposed New Method 

Based on the analysis on the energy consumption in different locations, a new index for 

climate classification is proposed. The accuracy of the estimation of the heating and cooling 

energy consumption using the proposed new method is shown to be less sensitive to the base 

temperature above a certain temperature for heating and below a certain temperature for cooling. 

Climate classification covers various building types and configurations, each of which can have a 

different base temperature. Therefore, the utilization of the split-degree days compared to the 

conventional degree days is more appropriate for the climate classification. 

Finally, using the proposed new split-degree days, adjustment factors are proposed for 

use in the ASHRAE Standard 90.1 performance path to reduce the variation of the above code 
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rating at different locations. The adjustment factors are calculated using the new sHDD and 

sCDD values of the weather file in the new derived equations. 

 

6.4. Recommendations for Future Research 

This study showed the variations in building energy consumption in the DOE medium 

office prototype models in different locations of the United States. A new modified degree day 

method was developed to better estimate the energy consumption of the DOE models in different 

locations. Based on the limitations of this study, the following categories are recommended as 

the potential future work: 

 Analysis of the accuracy of the estimation of the building energy consumption 

using the split-degree day method for different building types (i.e., different 

commercial buildings). 

 Analysis of the accuracy of the estimation of the building energy consumption 

using the split-degree day method in weather conditions outside the United States. 

 Comparisons and analysis of the potentially improved methods other than degree 

day methods. 

 Analysis of the impact of various building energy systems on the variation of the 

building models energy consumption in different locations. 

 Analysis of the impact of different configurations of building envelopes (e.g. 

different configurations of shadings, WWR, glazing types, interior space layout 

and materials, etc.) on the daylighting performance of the building models remain 

to be done. 

 Analysis carried out using other thermal and daylighting simulation tools. 
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APPENDIX A  

This appendix describes the process of developing the regression models and calculating 

the coefficient of determination of the models. The appendix consists of three section, describing 

the procedure for simple linear regression, multiple regression models, and the coefficient of 

determination of the models. 

 

A.1. Developing Simple Linear Regression Model 

The simple linear regression model can be formatted as shown in equation A.1. 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀 A.1    

 

where y is the dependent variable, x1 is the independent variable, 𝛽0 is the y-intercept, 𝛽1 is the 

slope, and 𝜀 is the random error term 

𝛽0 and  𝛽1 in equation A.1 are the population properties. The least-squares method 

estimates �̂�0 and  �̂�1 minimizing the total squared prediction error. Lyman Ott and Longnecker 

(2001) has provided detailed information that yields equations A.2 and A.3. 

 

�̂�1 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑖

∑ (𝑥𝑖 − �̅�)2𝑖
 A.2    

 
 

�̂�0 = �̅� − �̂�0�̅� 
A.3    
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where �̅� and �̅�  in equations A.2 and A.3 are average of the independent and dependent variables, 

respectively. 

 

A.2. Developing Multiple Regression Model 

The multiple regression model, relating a dependent variable y to a set of independent 

variables can be written as shown in A.4. 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜀 A.4 

 

 

where y is the dependent variable, x1, …, xk are the independent variables, 𝛽0 is the y-intercept, 

𝛽1, 𝛽2, … , 𝛽𝑘 are the partial slopes, and 𝜀 is the random error term 

As discussed in detail by Lyman Ott and Longnecker (2001), the following procedure 

using matrix notation can be used to calculate the least-squares estimates  �̂�0, �̂�1, …, �̂�𝑘 of the 

intercept and partial slopes: 

Lets define the Y, X, and  �̂� matrices as: 

𝐘 = [

𝑦1
𝑦2
⋮
𝑦𝑛

], 𝐗 = [

1 𝑥11 … 𝑥1𝑘
1 𝑥21 … 𝑥1𝑘
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 … 𝑥𝑛𝑘

], �̂� =

[
 
 
 
�̂�0
�̂�1
⋮
�̂�𝑘]
 
 
 

 

The desired vector of coefficients, �̂�, can be calculated using A.514 

 

�̂� = (𝐗T𝐗)−1𝐗T𝐘 
A.5 

 

                                                 

14 Note that the matrix 𝐗T𝐗 has an inverse as long as no xi is perfectly collinear with other xs. 
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A.3. Calculating the Coefficient of Determination 

As discussed in detail by Lyman Ott and Longnecker (2001), the coefficient of 

determination, 𝑹𝒚.𝒙
𝟐  in simple linear regression models and 𝑹𝒚.𝒙𝟏…𝒙𝒌

𝟐  in multiple regression 

models can be calculated using A.6. 

 

𝑹𝟐 = 𝟏 −
∑(𝒚𝒊 − �̂�𝒊)

𝟐

∑(𝒚𝒊 − �̅�)𝟐
 

A.6 

 

 

where �̂�𝒊 is the ith predicted value and �̅� is the mean value of the dependent parameter. 
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APPENDIX B  

This appendix includes the master list prepared for the simulations. 

Table 15: Weather Files Master List for the Simulations 

 

Number Weather File Name Climate Zone Number Climate Subtype

1 USA_FL_Key.West.Intl.AP.722010_TMY3 1 A

2 USA_FL_Key.West.NAS.722015_TMY3 1 A

3 USA_FL_Marathon.AP.722016_TMY3 1 A

4 USA_FL_Miami.Intl.AP.722020_TMY3 1 A

5 USA_FL_Fort.Lauderdale.Intl.AP.722025_TMY3 1 A

6 USA_FL_Homestead.AFB.722026_TMY3 1 A

7 USA_FL_Fort.Myers-Page.Field.722106_TMY3 1 A

8 USA_AZ_Yuma.MCAS.699604_TMY3 1 B

9 USA_AZ_Phoenix-Sky.Harbor.Intl.AP.722780_TMY3 1 B

10 USA_AZ_Yuma.Intl.AP.722800_TMY3 1 B

11 USA_CA_Palm.Springs.Intl.AP.722868_TMY3 1 B

12 USA_CA_Blythe-Riverside.County.AP.747188_TMY3 1 B

13 USA_FL_Miami-Kendall-Tamiami.Executive.AP.722029_TMY3 2 A

14 USA_FL_West.Palm.Beach.Intl.AP.722030_TMY3 2 A

15 USA_FL_Naples.Muni.AP.722038_TMY3 2 A

16 USA_FL_Melbourne.Rgnl.AP.722040_TMY3 2 A

17 USA_FL_Vero.Beach.Muni.AP.722045_TMY3 2 A

18 USA_FL_Orlando.Intl.AP.722050_TMY3 2 A

19 USA_FL_Orlando.Executive.AP.722053_TMY3 2 A

20 USA_FL_Ocala.Muni.AWOS.722055_TMY3 2 A

21 USA_FL_Daytona.Beach.Intl.AP.722056_TMY3 2 A

22 USA_FL_Orlando-Sanford.AP.722057_TMY3 2 A

23 USA_FL_Jacksonville.Intl.AP.722060_TMY3 2 A

24 USA_FL_Jacksonville.NAS.722065_TMY3 2 A

25 USA_FL_Mayport.NS.722066_TMY3 2 A

26 USA_FL_Jacksonville-Craig.Field.722068_TMY3 2 A

27 USA_GA_Savannah.Intl.AP.722070_TMY3 2 A

28 USA_FL_Southwest.Florida.Intl.AP.722108_TMY3 2 A

29 USA_FL_Tampa.Intl.AP.722110_TMY3 2 A

30 USA_FL_Sarasota-Bradenton.Intl.AP.722115_TMY3 2 A

31 USA_FL_St.Petersburg-Clearwater.Intl.AP.722116_TMY3 2 A

32 USA_GA_Brunswick-Malcolm.McKinnon.AP.722137_TMY3 2 A

33 USA_FL_Tallahassee.Rgnl.AP.722140_TMY3 2 A

34 USA_FL_Gainesville.Rgnl.AP.722146_TMY3 2 A

35 USA_GA_Valdosta.Rgnl.AP.722166_TMY3 2 A

36 USA_FL_Pensacola.Rgnl.AP.722223_TMY3 2 A

37 USA_FL_Pensacola-Forest.Sherman.NAS.722225_TMY3 2 A

38 USA_AL_Mobile-Rgnl.AP.722230_TMY3 2 A

39 USA_FL_Panama.City-Bay.County.AP.722245_TMY3 2 A

40 USA_LA_New.Orleans.Intl.AP.722310_TMY3 2 A

41 USA_LA_New.Orleans-Lakefront.AP.722315_TMY3 2 A

42 USA_LA_New.Orleans-Alvin.Callender.Field.722316_TMY3 2 A

43 USA_LA_Baton.Rouge-Ryan.AP.722317_TMY3 2 A

44 USA_LA_Patterson.Mem.AP.722329_TMY3 2 A

45 USA_LA_Lake.Charles.Rgnl.AP.722400_TMY3 2 A

46 USA_LA_Lafayette.RgnlAP.722405_TMY3 2 A

47 USA_TX_Port.Arthur-Jefferson.Co.AP.722410_TMY3 2 A

48 USA_TX_Galveston.722420_TMY3 2 A

49 USA_TX_Houston-D.W.Hooks.AP.722429_TMY3 2 A

50 USA_TX_Houston-Bush.Intercontinental.AP.722430_TMY3 2 A
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51 USA_TX_Houston-William.P.Hobby.AP.722435_TMY3 2 A

52 USA_TX_Houston-Ellington.AFB.722436_TMY3 2 A

53 USA_TX_College.Station-Easterwood.Field.722445_TMY3 2 A

54 USA_TX_Brownsville-South.Padre.Island.AP.722500_TMY3 2 A

55 USA_TX_Harlingen-Valley.Intl.AP.722505_TMY3 2 A

56 USA_TX_McAllen-Miller.Intl.AP.722506_TMY3 2 A

57 USA_TX_Corpus.Christi.Intl.AP.722510_TMY3 2 A

58 USA_TX_Corpus.Christi.NAS.722515_TMY3 2 A

59 USA_TX_Kingsville.722516_TMY3 2 A

60 USA_TX_Alice.Intl.AP.722517_TMY3 2 A

61 USA_TX_San.Antonio-Stinson.AP.722523_TMY3 2 A

62 USA_TX_Rockport-Aransas.Co.AP.722524_TMY3 2 A

63 USA_TX_San.Antonio.Intl.AP.722530_TMY3 2 A

64 USA_TX_San.Antonio-Kelly.AFB.722535_TMY3 2 A

65 USA_TX_Randolph.AFB.722536_TMY3 2 A

66 USA_TX_Austin-Mueller.Muni.AP.722540_TMY3 2 A

67 USA_TX_Austin-Camp.Mabry.722544_TMY3 2 A

68 USA_TX_Georgetown.AWOS.722547_TMY3 2 A

69 USA_TX_Victoria.Rgnl.AP.722550_TMY3 2 A

70 USA_TX_Palacios.Muni.AP.722555_TMY3 2 A

71 USA_TX_Waco.Rgnl.AP.722560_TMY3 2 A

72 USA_TX_McGregor.AWOS.722563_TMY3 2 A

73 USA_TX_Killeen.Muni.AWOS.722575_TMY3 2 A

74 USA_TX_Killeen-Fort.Hood.Rgnl.AP.722576_TMY3 2 A

75 USA_TX_Draughon-Miller.Central.Texas.AP.722577_TMY3 2 A

76 USA_TX_Dallas-Love.Field.722583_TMY3 2 A

77 USA_TX_Dallas-Fort.Worth.Intl.AP.722590_TMY3 2 A

78 USA_TX_Fort.Worth.NAS.722595_TMY3 2 A

79 USA_TX_Dallas-Redbird.AP.722599_TMY3 2 A

80 USA_LA_Alexandria-England.AFB.747540_TMY3 2 A

81 USA_MS_Biloxi-Keesler.AFB.747686_TMY3 2 A

82 USA_FL_Fort.Walton.Beach-Hurlburt.Field.747770_TMY3 2 A

83 USA_FL_MacDill.AFB.747880_TMY3 2 A

84 USA_FL_NASA.Shuttle.Landing.Facility.747946_TMY3 2 A

85 USA_GA_Albany-Dougherty.County.AP.722160_TMY3 3 A

86 USA_FL_Crestview-Bob.Sikes.AP.722215_TMY3 3 A

87 USA_FL_Whiting.Field.NAS.722226_TMY3 3 A

88 USA_LA_Fort.Polk.722390_TMY3 3 A

89 USA_TX_Lufkin-Angelina.Co.AP.722446_TMY3 3 A

90 USA_TX_Abilene-Dyess.AFB.690190_TMY3 2 B

91 USA_TX_Laredo.Intl.AP.722520_TMY3 2 B

92 USA_TX_Cotulla.AP.722526_TMY3 2 B

93 USA_TX_Hondo.Muni.AP.722533_TMY3 2 B

94 USA_TX_Del.Rio.722610_TMY3 2 B

95 USA_TX_Del.Rio-Laughlin.AFB.722615_TMY3 2 B

96 USA_TX_Wink-Winkler.County.AP.722656_TMY3 2 B

97 USA_AZ_Tucson.Intl.AP.722740_TMY3 2 B

98 USA_AZ_Davis-Monthan.AFB.722745_TMY3 2 B

99 USA_AZ_Safford.AWOS.722747_TMY3 2 B

100 USA_AZ_Casa.Grande.AWOS.722748_TMY3 2 B
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101 USA_AZ_Luke.AFB.722785_TMY3 2 B

102 USA_CA_Barstow.Daggett.AP.723815_TMY3 2 B

103 USA_NV_Las.Vegas-McCarran.Intl.AP.723860_TMY3 2 B

104 USA_NV_Nellis.AFB.723865_TMY3 2 B

105 USA_CA_Imperial.County.AP.747185_TMY3 2 B

106 USA_CA_Palm.Springs-Thermal.AP.747187_TMY3 2 B

107 USA_SC_Charleston.Intl.AP.722080_TMY3 3 A

108 USA_SC_Beaufort.MCAS.722085_TMY3 3 A

109 USA_GA_Macon-Middle.Georgia.Rgnl.AP.722170_TMY3 3 A

110 USA_GA_Warner.Robins.AFB.722175_TMY3 3 A

111 USA_GA_Augusta-Bush-Field.722180_TMY3 3 A

112 USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3 3 A

113 USA_GA_Fulton.County.AP.722195_TMY3 3 A

114 USA_GA_Dekalb.Peachtree.AP.722196_TMY3 3 A

115 USA_FL_Valparaiso-Elgin.AFB.722210_TMY3 3 A

116 USA_GA_Fort.Benning-Lawson.Field.722250_TMY3 3 A

117 USA_GA_Columbus.Metro.AP.722255_TMY3 3 A

118 USA_AL_Montgomery-Dannelly.Field.722260_TMY3 3 A

119 USA_AL_Maxwell.AFB.722265_TMY3 3 A

120 USA_AL_Dothan.Muni.AP.722268_TMY3 3 A

121 USA_AL_Fort.Rucker-Cairns.Field.722269_TMY3 3 A

122 USA_AL_Birmingham.Muni.AP.722280_TMY3 3 A

123 USA_AL_Auburn-Opelika.AP.722284_TMY3 3 A

124 USA_AL_Gadsen.Muni.AWOS.722285_TMY3 3 A

125 USA_AL_Tuscaloosa.Muni.AP.722286_TMY3 3 A

126 USA_AL_Anniston.Metro.AP.722287_TMY3 3 A

127 USA_MS_Meridian-Key.Field.722340_TMY3 3 A

128 USA_MS_Meridian.NAS.722345_TMY3 3 A

129 USA_MS_Hattiesburg-Laurel.AP.722348_TMY3 3 A

130 USA_MS_Jackson.Intl.AP.722350_TMY3 3 A

131 USA_MS_Natchez-Hardy.Anders.Field.722357_TMY3 3 A

132 USA_MS_McComb-Pike.Co.AP.722358_TMY3 3 A

133 USA_MS_Greenwood-Leflore.AP.722359_TMY3 3 A

134 USA_TX_Longview-Gregg.County.AP.722470_TMY3 3 A

135 USA_LA_Shreveport.Rgnl.AP.722480_TMY3 3 A

136 USA_LA_Shreveport.Downtown.722484_TMY3 3 A

137 USA_LA_Barksdale.AFB.722485_TMY3 3 A

138 USA_LA_Monroe.Rgnl.AP.722486_TMY3 3 A

139 USA_LA_Alexandria-Esler.Rgnl.AP.722487_TMY3 3 A

140 USA_TX_Nacogdoches.AWOS.722499_TMY3 3 A

141 USA_TX_Cox.Field.722587_TMY3 3 A

142 USA_TX_Fort.Worth-Alliance.AP.722594_TMY3 3 A

143 USA_TX_Fort.Worth-Meacham.AP.722596_TMY3 3 A

144 USA_TX_Lubbock.Intl.AP.722670_TMY3 3 A

145 USA_NC_Wilmington.Intl.AP.723013_TMY3 3 A

146 USA_NC_Fayetteville-Pope.AFB.723030_TMY3 3 A

147 USA_NC_Fayetteville.Muni.AP.723035_TMY3 3 A

148 USA_NC_Cape.Hatteras.723040_TMY3 3 A

149 USA_NC_Raleigh-Durham.Intl.AP.723060_TMY3 3 A

150 USA_NC_Pitt.Greenville.AP.723065_TMY3 3 A
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151 USA_NC_Goldsboro-Seymour.Johnson.AFB.723066_TMY3 3 A

152 USA_VA_Norfolk.Intl.AP.723080_TMY3 3 A

153 USA_VA_Norfolk.NAS.723085_TMY3 3 A

154 USA_VA_Newport.News.723086_TMY3 3 A

155 USA_NC_Cherry.Point.MCAS.723090_TMY3 3 A

156 USA_NC_New.Bern-Craven.County.Rgnl.AP.723095_TMY3 3 A

157 USA_NC_New.River.MCAS.723096_TMY3 3 A

158 USA_SC_Columbia.Metro.AP.723100_TMY3 3 A

159 USA_SC_Florence.Rgnl.AP.723106_TMY3 3 A

160 USA_GA_Athens-Ben.Epps.AP.723110_TMY3 3 A

161 USA_SC_Greer.Greenville-Spartanburg.AP.723120_TMY3 3 A

162 USA_SC_Anderson.County.AP.723125_TMY3 3 A

163 USA_NC_Charlotte-Douglas.Intl.AP.723140_TMY3 3 A

164 USA_NC_Southern.Pines-Moore.County.AP.723143_TMY3 3 A

165 USA_NC_Hickory.Rgnl.AP.723145_TMY3 3 A

166 USA_NC_Winston.Salem-Smith.Reynolds.AP.723193_TMY3 3 A

167 USA_GA_Rome-Richard.B.Russell.AP.723200_TMY3 3 A

168 USA_AL_Huntsville.Intl.AP-Jones.Field.723230_TMY3 3 A

169 USA_AL_Muscle.Shoals.Rgnl.AP.723235_TMY3 3 A

170 USA_TN_Chattanooga-Lovell.Field.AP.723240_TMY3 3 A

171 USA_MS_Columbus.AFB.723306_TMY3 3 A

172 USA_MS_Golden.Triangle.Rgnl.AWOS.723307_TMY3 3 A

173 USA_MS_Tupelo.Muni-C.D.Lemons.AP.723320_TMY3 3 A

174 USA_TN_Memphis.Intl.AP.723340_TMY3 3 A

175 USA_TN_Jackson-McKellar.Sipes.Rgnl.AP.723346_TMY3 3 A

176 USA_AR_Little.Rock-Adams.Field.723403_TMY3 3 A

177 USA_AR_Little.Rock.AFB.723405_TMY3 3 A

178 USA_AR_Stuttgart.AWOS.723416_TMY3 3 A

179 USA_AR_Pine.Bluff.AP.723417_TMY3 3 A

180 USA_AR_Texarkana-Webb.Field.723418_TMY3 3 A

181 USA_AR_El.Dorado-Goodwin.Field.723419_TMY3 3 A

182 USA_AR_Fort.Smith.Rgnl.AP.723440_TMY3 3 A

183 USA_MO_Joplin.Muni.AP.723495_TMY3 3 A

184 USA_TX_Wichita.Falls.Muni.AP.723510_TMY3 3 A

185 USA_OK_Altus.AFB.723520_TMY3 3 A

186 USA_OK_Hobart.Muni.AP.723525_TMY3 3 A

187 USA_OK_Oklahoma.City-Will.Rogers.World.AP.723530_TMY3 3 A

188 USA_OK_Fort.Sill-Henry.Post.AAF.723550_TMY3 3 A

189 USA_OK_McAlester.Rgnl.AP.723566_TMY3 3 A

190 USA_OK_Lawton.Muni.AP.723575_TMY3 3 A

191 USA_VA_Petersburg.Muni.AP.724014_TMY3 3 A

192 USA_MD_Patuxent.River.NAS.724040_TMY3 3 A

193 USA_VA_Danville.Rgnl.AP.724106_TMY3 3 A

194 USA_NC_Fort.Bragg-Simmons.AAF.746930_TMY3 3 A

195 USA_FL_Tyndall.AFB.747750_TMY3 3 A

196 USA_GA_Savannah-Hunter.AAF.747804_TMY3 3 A

197 USA_GA_Valdosta-Moody.AFB.747810_TMY3 3 A

198 USA_SC_Shaw.AFB.747900_TMY3 3 A

199 USA_SC_Myrtle.Beach.AFB.747910_TMY3 3 A

200 USA_TX_San.Angelo-Mathis.AP.722630_TMY3 3 B
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201 USA_TX_Marfa.AP.722640_TMY3 3 B

202 USA_TX_Midland.Intl.AP.722650_TMY3 3 B

203 USA_TX_Abilene.Rgnl.AP.722660_TMY3 3 B

204 USA_NM_Roswell.Industrial.Air.Park.722680_TMY3 3 B

205 USA_NM_Carlsbad.Cavern.City.Air.Terminal.722687_TMY3 3 B

206 USA_TX_El.Paso.Intl.AP.722700_TMY3 3 B

207 USA_NM_Truth.or.Consequences.Muni.AP.722710_TMY3 3 B

208 USA_AZ_Douglas-Bisbee.Douglas.Intl.AP.722735_TMY3 3 B

209 USA_CA_March.AFB.722860_TMY3 3 B

210 USA_CA_Riverside.Muni.AP.722869_TMY3 3 B

211 USA_CA_Burbank-Glendale-Passadena.Bob.Hope.AP.722880_TMY3 3 B

212 USA_CA_San.Diego-Lindbergh.Field.722900_TMY3 3 B

213 USA_CA_San.Diego-Montgomery.Field.722903_TMY3 3 B

214 USA_CA_Chula.Vista-Brown.Field.Muni.AP.722904_TMY3 3 B

215 USA_CA_San.Diego-North.Island.NAS.722906_TMY3 3 B

216 USA_CA_Camp.Pendleton.MCAS.722926_TMY3 3 B

217 USA_CA_Carlsbad.722927_TMY3 3 B

218 USA_CA_San.Diego-Miramar.NAS.722930_TMY3 3 B

219 USA_CA_Los.Angeles.Intl.AP.722950_TMY3 3 B

220 USA_CA_Hawthorne-Jack.Northrop.Field.722956_TMY3 3 B

221 USA_CA_Long.Beach-Daugherty.Field.722970_TMY3 3 B

222 USA_CA_Fullerton.Muni.AP.722976_TMY3 3 B

223 USA_TX_Childress.Muni.AP.723604_TMY3 3 B

224 USA_AZ_Kingman.AWOS.723700_TMY3 3 B

225 USA_AZ_Page.Muni.AWOS.723710_TMY3 3 B

226 USA_CA_Edwards.AFB.723810_TMY3 3 B

227 USA_CA_Lancaster-Gen.Wm.Fox.Field.723816_TMY3 3 B

228 USA_CA_Bakersfield-Meadows.Field.723840_TMY3 3 B

229 USA_NV_Mercury-Desert.Rock.AP.723870_TMY3 3 B

230 USA_CA_Fresno.Air.Terminal.723890_TMY3 3 B

231 USA_CA_Porterville.AWOS.723895_TMY3 3 B

232 USA_CA_Visalia.Muni.AWOS.723896_TMY3 3 B

233 USA_UT_Saint.George.AWOS.724754_TMY3 3 B

234 USA_CA_Sacramento.Exec.AP.724830_TMY3 3 B

235 USA_CA_Beale.AFB.724837_TMY3 3 B

236 USA_CA_Sacramento.Metro.AP.724839_TMY3 3 B

237 USA_CA_Stockton.Metro.AP.724920_TMY3 3 B

238 USA_CA_Modesto.Muni.AP.724926_TMY3 3 B

239 USA_CA_Red.Bluff.Muni.AP.725910_TMY3 3 B

240 USA_CA_Redding.Muni.AP.725920_TMY3 3 B

241 USA_CA_Fairfield-Travis.AFB.745160_TMY3 3 B

242 USA_CA_Lemoore.NAS.747020_TMY3 3 B

243 USA_NM_Holloman.AFB.747320_TMY3 3 B

244 USA_CA_Sandberg.723830_TMY3 4 B

245 USA_CA_Lompoc.AWOS.722895_TMY3 3 C

246 USA_CA_San.Luis.Obispo.AP.722897_TMY3 3 C

247 USA_CA_Point.Mugu.NAS.723910_TMY3 3 C

248 USA_CA_Santa.Barbara.Muni.AP.723925_TMY3 3 C

249 USA_CA_Camarillo.AWOS.723926_TMY3 3 C

250 USA_CA_Santa.Maria.Public.AP.723940_TMY3 3 C



 

305 

 

Table 15: (Continued) 

 

 

 

Number Weather File Name Climate Zone Number Climate Subtype

251 USA_CA_Paso.Robles.Muni.AP.723965_TMY3 3 C

252 USA_CA_Monterey.NAF.724915_TMY3 3 C

253 USA_CA_Salinas.Muni.AP.724917_TMY3 3 C

254 USA_CA_Livermore.Muni.AP.724927_TMY3 3 C

255 USA_CA_Oakland.Intl.AP.724930_TMY3 3 C

256 USA_CA_Hayward.Air.Terminal.724935_TMY3 3 C

257 USA_CA_San.Francisco.Intl.AP.724940_TMY3 3 C

258 USA_CA_San.Jose.Intl.AP.724945_TMY3 3 C

259 USA_CA_Napa.County.AP.724955_TMY3 3 C

260 USA_CA_Santa.Rosa.AWOS.724957_TMY3 3 C

261 USA_CA_Ukiah.Muni.AP.725905_TMY3 3 C

262 USA_CA_Mountain.View-Moffett.Field.NAS.745090_TMY3 3 C

263 USA_NC_Jacksonville.AWOS.723069_TMY3 3 A

264 USA_TN_Nashville.Intl.AP.723270_TMY3 3 A

265 USA_TN_Dyersburg.Muni.AP.723347_TMY3 3 A

266 USA_AR_Fayetteville-Drake.Field.723445_TMY3 3 A

267 USA_AR_Flippin.AWOS.723447_TMY3 3 A

268 USA_GA_Marietta-Dobbins.AFB.722270_TMY3 4 A

269 USA_NC_Asheville.Rgnl.AP.723150_TMY3 4 A

270 USA_NC_Greensboro-Piedmont.Triad.Intl.AP.723170_TMY3 4 A

271 USA_TN_Bristol-TriCities.Rgnl.AP.723183_TMY3 4 A

272 USA_TN_Knoxville-McGhee.Tyson.AP.723260_TMY3 4 A

273 USA_TN_Crossville.Mem.AP.723265_TMY3 4 A

274 USA_MO_Poplar.Bluff.AWOS.723300_TMY3 4 A

275 USA_AR_Walnut.Ridge.AWOS.723406_TMY3 4 A

276 USA_AR_Jonesboro.Muni.AP.723407_TMY3 4 A

277 USA_AR_Siloam.Spring.AWOS.723443_TMY3 4 A

278 USA_AR_Bentonville.AWOS.723444_TMY3 4 A

279 USA_AR_Harrison.AP.723446_TMY3 4 A

280 USA_AR_Batesville.AWOS.723448_TMY3 4 A

281 USA_AR_Rogers.AWOS.723449_TMY3 4 A

282 USA_MO_Cape.Girardeau.Muni.AP.723489_TMY3 4 A

283 USA_OK_Clinton.Sherman.AP.723526_TMY3 4 A

284 USA_OK_Gage.AP.723527_TMY3 4 A

285 USA_OK_Vance.AFB.723535_TMY3 4 A

286 USA_OK_Oklahoma.City-Tinker.AFB.723540_TMY3 4 A

287 USA_OK_Oklahoma.City-Wiley.Post.Field.723544_TMY3 4 A

288 USA_OK_Stillwater.Rgnl.AP.723545_TMY3 4 A

289 USA_OK_Ponca.City.Muni.AP.723546_TMY3 4 A

290 USA_OK_Tulsa.Intl.AP.723560_TMY3 4 A

291 USA_VA_Richmond.Intl.AP.724010_TMY3 4 A

292 USA_VA_Farmville.Muni.AP.724017_TMY3 4 A

293 USA_VA_Melfa-Accomack.County.AP.724026_TMY3 4 A

294 USA_VA_Sterling-Washington.Dulles.Intl.AP.724030_TMY3 4 A

295 USA_VA_Fredericksburg-Shannon.AP.724033_TMY3 4 A

296 USA_VA_Quantico.MCAS.724035_TMY3 4 A

297 USA_VA_Manassas.Muni.AWOS.724036_TMY3 4 A

298 USA_VA_Davison.AAF.724037_TMY3 4 A

299 USA_MD_Salisbury-Wicomico.County.Rgnl.AP.724045_TMY3 4 A

300 USA_VA_Arlington-Ronald.Reagan.Washington.Natl.AP.724050_TMY3 4 A
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301 USA_VA_Winchester.Rgnl.AP.724053_TMY3 4 A

302 USA_VA_Leesburg.Muni.AP-Godfrey.Field.724055_TMY3 4 A

303 USA_VA_Marion-Wytheville-Mountain.Empire.AP.724056_TMY3 4 A

304 USA_VA_Abingdon-Virgina.Highlands.AP.724058_TMY3 4 A

305 USA_MD_Baltimore-Washington.Intl.AP.724060_TMY3 4 A

306 USA_NJ_Atlantic.City.Intl.AP.724070_TMY3 4 A

307 USA_NJ_Millville.Muni.AP.724075_TMY3 4 A

308 USA_PA_Philadelphia.Intl.AP.724080_TMY3 4 A

309 USA_NJ_Belmar-Monmouth.County.AP.724084_TMY3 4 A

310 USA_PA_Philadelphia-NE.Philadelphia.AP.724085_TMY3 4 A

311 USA_PA_Willow.Grove.NAS.724086_TMY3 4 A

312 USA_DE_Dover.AFB.724088_TMY3 4 A

313 USA_DE_Wilmington-New.Castle.County.AP.724089_TMY3 4 A

314 USA_NJ_Trenton-Mercer.County.AP.724095_TMY3 4 A

315 USA_NJ_McGuire.AFB.724096_TMY3 4 A

316 USA_VA_Lynchburg.Rgnl.AP-Preston.Glen.Field.724100_TMY3 4 A

317 USA_VA_Staunton-Shenandoah.Valley.Rgnl.AP.724105_TMY3 4 A

318 USA_VA_Hillsville-Twin.County.AP.724107_TMY3 4 A

319 USA_VA_Roanoke.Rgnl.AP-Woodrum.Field.724110_TMY3 4 A

320 USA_VA_Blacksburg-Virginia.Tech.AP.724113_TMY3 4 A

321 USA_VA_Wise-Lonesome.Pine.AP.724117_TMY3 4 A

322 USA_WV_Beckley-Raleigh.County.Mem.AP.724120_TMY3 4 A

323 USA_WV_Bluefield-Mercer.County.AP.724125_TMY3 4 A

324 USA_WV_Charleston-Yeager.AP.724140_TMY3 4 A

325 USA_WV_Clarksburg-Harrison.Marion.Rgnl.AP.724175_TMY3 4 A

326 USA_WV_Morgantown.Muni-Hart.Field.724176_TMY3 4 A

327 USA_WV_Martinsburg-Eastern.WV.Rgnl.AP.724177_TMY3 4 A

328 USA_KY_Cincinnati-Northern.Kentucky.AP.724210_TMY3 4 A

329 USA_KY_Lexington-Bluegrass.AP.724220_TMY3 4 A

330 USA_KY_Louisville-Standiford.Field.724230_TMY3 4 A

331 USA_KY_Louisville-Bowman.Field.724235_TMY3 4 A

332 USA_KY_Jackson-Julian.Carroll.AP.724236_TMY3 4 A

333 USA_KY_Henderson.City.County.AP.724238_TMY3 4 A

334 USA_KY_Fort.Knox-Godman.AAF.724240_TMY3 4 A

335 USA_KY_London-Corbin-Magee.Field.724243_TMY3 4 A

336 USA_WV_Huntington-Tri.State.Walker.Long.Field.724250_TMY3 4 A

337 USA_WV_Parkersburg-Wood.County-Gill.Robb.Wilson.AP.724273_TMY3 4 A

338 USA_OH_Zanesville.Muni.AP.724286_TMY3 4 A

339 USA_OH_Ohio.State.University.AP.724288_TMY3 4 A

340 USA_OH_Cincinnati.Muni.AP-Lunken.Field.724297_TMY3 4 A

341 USA_IN_Evansville.Rgnl.AP.724320_TMY3 4 A

342 USA_IL_Mount.Vernon.AWOS.724335_TMY3 4 A

343 USA_IL_Carbondale-Southern.Illinois.AP.724336_TMY3 4 A

344 USA_IL_Belleville-Scott.AFB.724338_TMY3 4 A

345 USA_MO_St.Louis-Lambert.Intl.AP.724340_TMY3 4 A

346 USA_MO_St.Louis-Spirit.of.St.Louis.AP.724345_TMY3 4 A

347 USA_KY_Paducah-Barkley.Rgnl.AP.724350_TMY3 4 A

348 USA_KY_Somerset-Pulaski.County.AWOS.724354_TMY3 4 A

349 USA_IN_Huntingburg.Muni.AP.724365_TMY3 4 A

350 USA_IN_Terre.Haute-Hulman.Rgnl.AP.724373_TMY3 4 A
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351 USA_IN_Monroe.County.AP.724375_TMY3 4 A

352 USA_IL_Springfield-Capital.AP.724390_TMY3 4 A

353 USA_IL_Quincy.Muni.AP.724396_TMY3 4 A

354 USA_MO_Springfield.Rgnl.AP.724400_TMY3 4 A

355 USA_MO_Columbia.Rgnl.AP.724450_TMY3 4 A

356 USA_MO_Rolla.National.AP.724456_TMY3 4 A

357 USA_MO_Jefferson.City.Mem.AP.724458_TMY3 4 A

358 USA_MO_Kaiser-Lee.Fine.Mem.AWOS.724459_TMY3 4 A

359 USA_MO_Kansas.City.Intl.AP.724460_TMY3 4 A

360 USA_MO_Kansas.City.Downtown.AP.724463_TMY3 4 A

361 USA_MO_Whiteman.AFB.724467_TMY3 4 A

362 USA_KS_Olathe-Johnson.County.Executive.AP.724468_TMY3 4 A

363 USA_KS_Wichita-Mid.Continent.AP.724500_TMY3 4 A

364 USA_KS_Wichita-Col.Jabara.Field.724504_TMY3 4 A

365 USA_KS_Wichita-McConnell.AFB.724505_TMY3 4 A

366 USA_KS_Chanute-Martin.Johnson.AP.724507_TMY3 4 A

367 USA_KS_Newton.AWOS.724509_TMY3 4 A

368 USA_KS_Dodge.City.Rgnl.AP.724510_TMY3 4 A

369 USA_KS_Garden.City.Muni.AP.724515_TMY3 4 A

370 USA_KS_Liberal.Muni.AP.724516_TMY3 4 A

371 USA_KS_Great.Bend.AWOS.724517_TMY3 4 A

372 USA_KS_Hays.Muni.AWOS.724518_TMY3 4 A

373 USA_KS_Fort.Riley-Marshall.AAF.724550_TMY3 4 A

374 USA_KS_Manhattan.Rgnl.AP.724555_TMY3 4 A

375 USA_KS_Topeka-Phillip.Billard.Muni.AP.724560_TMY3 4 A

376 USA_KS_Topeka-Forbes.AFB.724565_TMY3 4 A

377 USA_KS_Concordia-Blosser.Muni.AP.724580_TMY3 4 A

378 USA_KS_Russell.Muni.AP.724585_TMY3 4 A

379 USA_KS_Salina.Muni.AP.724586_TMY3 4 A

380 USA_NJ_Newark.Intl.AP.725020_TMY3 4 A

381 USA_NJ_Teterboro.AP.725025_TMY3 4 A

382 USA_NY_New.York-LaGuardia.AP.725030_TMY3 4 A

383 USA_NY_Islip-Long.Island.MacArthur.AP.725035_TMY3 4 A

384 USA_CT_Bridgeport-Sikorsky.Mem.AP.725040_TMY3 4 A

385 USA_RI_Block.Island.State.AP.725058_TMY3 4 A

386 USA_CT_Hartford-Brainard.Field.725087_TMY3 4 A

387 USA_PA_Reading.Mem.AP-Spaatz.Field.725103_TMY3 4 A

388 USA_PA_Harrisburg-Capital.City.AP.725118_TMY3 4 A

389 USA_PA_Pittsburgh-Allegheny.County.AP.725205_TMY3 4 A

390 USA_IL_Cahokia.AP.725314_TMY3 4 A

391 USA_IL_Decatur.AP.725316_TMY3 4 A

392 USA_IA_Keokuk.Muni.AP.725456_TMY3 4 A

393 USA_NY_New.York-J.F.Kennedy.Intl.AP.744860_TMY3 4 A

394 USA_NY_Republic.AP.744864_TMY3 4 A

395 USA_MD_Andrews.AFB.745940_TMY3 4 A

396 USA_NJ_Cape.May.County.AP.745966_TMY3 4 A

397 USA_VA_Langley.AFB.745980_TMY3 4 A

398 USA_VA_Martinsville-Blue.Ridge.AP.745985_TMY3 4 A

399 USA_KY_Fort.Campbell.AAF.746710_TMY3 4 A

400 USA_KY_Bowling.Green-Warren.County.AP.746716_TMY3 4 A
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401 USA_TX_Dalhart.Muni.AP.722636_TMY3 4 B

402 USA_NM_Ruidoso-Sierra.Blanca.Rgnl.AP.722683_TMY3 4 B

403 USA_NM_Clovis-Cannon.AFB.722686_TMY3 4 B

404 USA_NM_Clovis.Muni.AWOS.722689_TMY3 4 B

405 USA_NM_Clayton.Muni.AP.723600_TMY3 4 B

406 USA_TX_Amarillo.Intl.AP.723630_TMY3 4 B

407 USA_NM_Albuquerque.Intl.AP.723650_TMY3 4 B

408 USA_NM_Farmington-Four.Corners.Rgnl.AP.723658_TMY3 4 B

409 USA_AZ_Prescott-Love.Field.723723_TMY3 4 B

410 USA_AZ_Winslow.Muni.AP.723740_TMY3 4 B

411 USA_CO_La.Junta.Muni.AP.724635_TMY3 4 B

412 USA_CO_Pueblo.Mem.AP.724640_TMY3 4 B

413 USA_CO_Trinidad-Las.Animas.County.AP.724645_TMY3 4 B

414 USA_CO_Grand.Junction-Walker.Field.724760_TMY3 4 B

415 USA_CA_Bishop.AP.724800_TMY3 4 B

416 USA_NV_Reno-Tahoe.Intl.AP.724880_TMY3 4 B

417 USA_NV_Fallon.NAS.724885_TMY3 4 B

418 USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3 4 B

419 USA_NV_Lovelock-Derby.Field.725805_TMY3 4 B

420 USA_CA_Blue.Canyon.AP.725845_TMY3 4 B

421 USA_CA_Crescent.City-Jack.McNamara.Field.725946_TMY3 4 B

422 USA_CA_Montague-Siskiyou.County.AP.725955_TMY3 4 B

423 USA_ID_Boise.Air.Terminal.726810_TMY3 4 B

424 USA_OR_Pendleton-Eastern.Oregon.Rgnl.AP.726880_TMY3 4 B

425 USA_ID_Lewiston-Nez.Perce.County.AP.727830_TMY3 4 B

426 USA_WA_Pasco-Tri.Cities.AP.727845_TMY3 4 B

427 USA_WA_Walla.Walla.City-County.AP.727846_TMY3 4 B

428 USA_NV_Tonopah.AP.724855_TMY3 5 B

429 USA_WA_Whidbey.Island.NAS.690230_TMY3 4 C

430 USA_CA_Arcata.AP.725945_TMY3 4 C

431 USA_OR_Medford-Rogue.Valley.Intl.AP.725970_TMY3 4 C

432 USA_OR_North.Bend.Muni.AP.726917_TMY3 4 C

433 USA_OR_Eugene-Mahlon.Sweet.AP.726930_TMY3 4 C

434 USA_OR_Salem-McNary.Field.726940_TMY3 4 C

435 USA_OR_Corvallis.Muni.AP.726945_TMY3 4 C

436 USA_OR_Aurora.State.AP.726959_TMY3 4 C

437 USA_OR_Portland.Intl.AP.726980_TMY3 4 C

438 USA_OR_Portland-Hillsboro.AP.726986_TMY3 4 C

439 USA_OR_Astoria.Rgnl.AP.727910_TMY3 4 C

440 USA_WA_Olympia.AP.727920_TMY3 4 C

441 USA_WA_Hoquiam.AP.727923_TMY3 4 C

442 USA_WA_Kelso.AP.727924_TMY3 4 C

443 USA_WA_Bremerton.National.AP.727928_TMY3 4 C

444 USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3 4 C

445 USA_WA_Seattle-Boeing.Field.727935_TMY3 4 C

446 USA_WA_Snohomish.County.AP.727937_TMY3 4 C

447 USA_WA_Tacoma.Narrows.AP.727938_TMY3 4 C

448 USA_OH_Columbus-Port.Columbus.Intl.AP.724280_TMY3 4 A

449 USA_MA_Marthas.Vineyard.AP.725066_TMY3 4 A

450 USA_OH_Findlay.AP.725366_TMY3 4 A



 

309 

 

Table 15: (Continued) 

 

 

 

Number Weather File Name Climate Zone Number Climate Subtype

451 USA_VA_Hot.Springs-Ingalls.Field.724115_TMY3 5 A

452 USA_WV_Elkins-Randolph.County.AP.724170_TMY3 5 A

453 USA_OH_Dayton.Intl.AP.724290_TMY3 5 A

454 USA_IN_Indianapolis.Intl.AP.724380_TMY3 5 A

455 USA_IN_Lafayette-Purdue.University.AP.724386_TMY3 5 A

456 USA_MO_Kirksville.Muni.AP.724455_TMY3 5 A

457 USA_KS_Goodland-Renner.Field.724650_TMY3 5 A

458 USA_KS_Hill.City.Muni.AP.724655_TMY3 5 A

459 USA_CT_Oxford.AWOS.725029_TMY3 5 A

460 USA_NY_Poughkeepsie-Dutchess.County.AP.725036_TMY3 5 A

461 USA_NY_White.Plains-Westchester.County.AP.725037_TMY3 5 A

462 USA_NY_Newburgh-Stewart.Intl.AP.725038_TMY3 5 A

463 USA_RI_Pawtucket.AWOS.725054_TMY3 5 A

464 USA_MA_Otis.ANGB.725060_TMY3 5 A

465 USA_MA_Plymouth.Muni.AP.725064_TMY3 5 A

466 USA_MA_New.Bedford.Rgnl.AP.725065_TMY3 5 A

467 USA_MA_Barnstable-Boardman.Poland.AP.725067_TMY3 5 A

468 USA_RI_Providence-T.F.Green.State.AP.725070_TMY3 5 A

469 USA_MA_Provincetown.AWOS.725073_TMY3 5 A

470 USA_CT_Hartford-Bradley.Intl.AP.725080_TMY3 5 A

471 USA_MA_Boston-Logan.Intl.AP.725090_TMY3 5 A

472 USA_MA_Worcester.Rgnl.AP.725095_TMY3 5 A

473 USA_MA_Norwood.Mem.AP.725098_TMY3 5 A

474 USA_PA_Harrisburg.Intl.AP.725115_TMY3 5 A

475 USA_PA_Washington.AWOS.725117_TMY3 5 A

476 USA_PA_Butler.County.AWOS.725124_TMY3 5 A

477 USA_PA_DuBois-Jefferson.County.AP.725125_TMY3 5 A

478 USA_PA_Altoona-Blair.County.AP.725126_TMY3 5 A

479 USA_PA_Johnstown-Cambria.County.AP.725127_TMY3 5 A

480 USA_PA_Wilkes-Barre-Scranton.Intl.AP.725130_TMY3 5 A

481 USA_PA_Williamsport.Rgnl.AP.725140_TMY3 5 A

482 USA_NY_Monticello.AWOS.725145_TMY3 5 A

483 USA_NY_Binghamton-Edwin.A.Link.Field.725150_TMY3 5 A

484 USA_NY_Elmira.Rgnl.AP.725156_TMY3 5 A

485 USA_PA_Allentown-Lehigh.Valley.Intl.AP.725170_TMY3 5 A

486 USA_NY_Albany.County.AP.725180_TMY3 5 A

487 USA_NY_Glens.Falls-Bennett.Mem.AP.725185_TMY3 5 A

488 USA_NY_Syracuse-Hancock.Intl.AP.725190_TMY3 5 A

489 USA_NY_Utica-Oneida.County.AP.725197_TMY3 5 A

490 USA_PA_Pittsburgh.Intl.AP.725200_TMY3 5 A

491 USA_OH_Akron.Canton.Rgnl.AP.725210_TMY3 5 A

492 USA_NY_Jamestown.AWOS.725235_TMY3 5 A

493 USA_OH_Cleveland-Hopkins.Intl.AP.725240_TMY3 5 A

494 USA_OH_Mansfield-Lahm.Muni.AP.725246_TMY3 5 A

495 USA_OH_Youngstown.Rgnl.AP.725250_TMY3 5 A

496 USA_PA_Erie.Intl.AP.725260_TMY3 5 A

497 USA_PA_Franklin-Chess.Lemberton.AP.725267_TMY3 5 A

498 USA_NY_Buffalo-Greater.Buffalo.Intl.AP.725280_TMY3 5 A

499 USA_NY_Niagara.Falls.Intl.AP.725287_TMY3 5 A

500 USA_NY_Rochester-Greater.Rochester.Intl.AP.725290_TMY3 5 A
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501 USA_IL_Chicago-OHare.Intl.AP.725300_TMY3 5 A

502 USA_IL_Du.Page.AP.725305_TMY3 5 A

503 USA_IL_University.of.Illinois-Willard.AP.725315_TMY3 5 A

504 USA_IL_Peoria-Greater.Peoria.AP.725320_TMY3 5 A

505 USA_IL_Sterling-Rock.Falls-Whiteside.County.AP.725326_TMY3 5 A

506 USA_IN_Fort.Wayne.Intl.AP.725330_TMY3 5 A

507 USA_IN_Grissom.AFB.725335_TMY3 5 A

508 USA_IL_Chicago-Midway.AP.725340_TMY3 5 A

509 USA_IN_South.Bend-Michiana.Rgnl.AP.725350_TMY3 5 A

510 USA_OH_Toledo.Express.AP.725360_TMY3 5 A

511 USA_MI_Detroit.Metro.AP.725370_TMY3 5 A

512 USA_MI_Detroit-City.AP.725375_TMY3 5 A

513 USA_MI_Detroit-Willow.Run.AP.725376_TMY3 5 A

514 USA_MI_Mount.Clemens-Selfridge.ANGB.725377_TMY3 5 A

515 USA_MI_Howell-Livingston.County.AP.725378_TMY3 5 A

516 USA_MI_St.Clair.County.Intl.AP.725384_TMY3 5 A

517 USA_MI_Lansing-Capital.City.AP.725390_TMY3 5 A

518 USA_MI_Jackson-Reynolds.Field.725395_TMY3 5 A

519 USA_IL_Rockford-Greater.Rockford.AP.725430_TMY3 5 A

520 USA_IL_Moline-Quad.City.Intl.AP.725440_TMY3 5 A

521 USA_IA_Cedar.Rapids.Muni.AP.725450_TMY3 5 A

522 USA_IA_Atlantic.Muni.AP.725453_TMY3 5 A

523 USA_IA_Washington.Muni.AP.725454_TMY3 5 A

524 USA_IA_Burlington.Muni.AP.725455_TMY3 5 A

525 USA_IA_Des.Moines.Intl.AP.725460_TMY3 5 A

526 USA_IA_Charles.City.Muni.AP.725463_TMY3 5 A

527 USA_IA_Ottumwa.Industrial.AP.725465_TMY3 5 A

528 USA_IA_Carroll.Muni.AP.725468_TMY3 5 A

529 USA_IA_Chariton.Muni.AP.725469_TMY3 5 A

530 USA_IA_Clinton.Muni.AWOS.725473_TMY3 5 A

531 USA_IA_Creston.Muni.AP.725474_TMY3 5 A

532 USA_IA_Webster.City.Muni.AP.725478_TMY3 5 A

533 USA_IA_Waterloo.Muni.AP.725480_TMY3 5 A

534 USA_IA_Boone.Muni.AP.725486_TMY3 5 A

535 USA_IA_Fort.Dodge.AWOS.725490_TMY3 5 A

536 USA_IA_Storm.Lake.Muni.AP.725496_TMY3 5 A

537 USA_NE_Omaha-Eppley.Airfield.725500_TMY3 5 A

538 USA_NE_Lincoln.Muni.AP.725510_TMY3 5 A

539 USA_NE_Beatrice.Muni.AP.725515_TMY3 5 A

540 USA_NE_Grand.Island-Central.Nebraska.Rgnl.AP.725520_TMY3 5 A

541 USA_NE_Hastings.Muni.AP.725525_TMY3 5 A

542 USA_NE_Kearney.Muni.AWOS.725526_TMY3 5 A

543 USA_NE_Tekamah.AWOS.725527_TMY3 5 A

544 USA_NE_Omaha.WSFO.725530_TMY3 5 A

545 USA_NE_Bellevue-Offutt.AFB.725540_TMY3 5 A

546 USA_NE_Ainsworth.Muni.AP.725556_TMY3 5 A

547 USA_NE_Norfolk-Karl.Stefan.Mem.AP.725560_TMY3 5 A

548 USA_NE_Fremont.Muni.AP.725564_TMY3 5 A

549 USA_NE_Columbus.Muni.AP.725565_TMY3 5 A

550 USA_IA_Sioux.City-Sioux.Gateway.AP.725570_TMY3 5 A
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551 USA_NE_Sidney.Muni.AP.725610_TMY3 5 A

552 USA_NE_North.Platte.Rgnl.AP.725620_TMY3 5 A

553 USA_NE_McCook.Muni.AP.725625_TMY3 5 A

554 USA_NE_Holdrege-Brewster.Field.725628_TMY3 5 A

555 USA_NE_Alliance.Muni.AP.725635_TMY3 5 A

556 USA_NE_Scottsbluff-W.B.Heilig.Field.725660_TMY3 5 A

557 USA_NE_Valentine-Miller.Field.725670_TMY3 5 A

558 USA_NH_Pease.Intl.Tradeport.726055_TMY3 5 A

559 USA_VT_Springfield-Hartnes.State.AP.726115_TMY3 5 A

560 USA_NH_Lebanon.Muni.AP.726116_TMY3 5 A

561 USA_NH_Laconia.Muni.AWOS.726155_TMY3 5 A

562 USA_NH_Keene-Dillant.Hopkins.AP.726165_TMY3 5 A

563 USA_MI_Grand.Rapids-Kent.County.Intl.AP.726350_TMY3 5 A

564 USA_MI_Benton.Harbor-Ross.Field-Twin.Cities.AP.726355_TMY3 5 A

565 USA_MI_Kalamazoo-Battle.Creek.Intl.AP.726357_TMY3 5 A

566 USA_MI_Muskegon.County.AP.726360_TMY3 5 A

567 USA_MI_Flint-Bishop.Intl.AP.726370_TMY3 5 A

568 USA_MI_Oakland.County.Intl.AP.726375_TMY3 5 A

569 USA_MI_Saginaw-Tri.City.Intl.AP.726379_TMY3 5 A

570 USA_MI_Manistee.AWOS.726385_TMY3 5 A

571 USA_MI_Oscoda-Wurtsmith.AFB.726395_TMY3 5 A

572 USA_WI_Milwaukee-Mitchell.Intl.AP.726400_TMY3 5 A

573 USA_WI_Manitowac.Muni.AWOS.726455_TMY3 5 A

574 USA_WI_Appleton-Outagamie.County.AP.726457_TMY3 5 A

575 USA_WI_Sturgeon.Bay-Door.County.AP.726458_TMY3 5 A

576 USA_WI_Watertown.Muni.AP.726464_TMY3 5 A

577 USA_IA_Fairfield.Muni.AP.726498_TMY3 5 A

578 USA_SD_Yankton-Chan.Gurney.Muni.AP.726525_TMY3 5 A

579 USA_SD_Rapid.City.Rgnl.AP.726620_TMY3 5 A

580 USA_SD_Pierre.Muni.AP.726686_TMY3 5 A

581 USA_ME_Wiscasset.AP.727135_TMY3 5 A

582 USA_NH_Manchester.Muni.AP.743945_TMY3 5 A

583 USA_IL_Aurora.Muni.AP.744655_TMY3 5 A

584 USA_MA_Lawrence.Muni.AP.744904_TMY3 5 A

585 USA_OH_Dayton-Wright.Patterson.AFB.745700_TMY3 5 A

586 USA_NM_Gallup-Sen.Clarke.Field.723627_TMY3 5 B

587 USA_NM_Taos.Muni.AP.723663_TMY3 5 B

588 USA_AZ_Grand.Canyon.National.Park.AP.723783_TMY3 5 B

589 USA_CO_Durango-La.Plata.County.AP.724625_TMY3 5 B

590 USA_CO_Lamar.Muni.AP.724636_TMY3 5 B

591 USA_CO_Colorado.Springs-Peterson.Field.724660_TMY3 5 B

592 USA_CO_Limon.Muni.AP.724665_TMY3 5 B

593 USA_CO_Golden-NREL.724666_TMY3 5 B

594 USA_CO_Aurora-Buckley.Field.ANGB.724695_TMY3 5 B

595 USA_CO_Akron-Washington.County.AP.724698_TMY3 5 B

596 USA_UT_Cedar.City.Muni.AP.724755_TMY3 5 B

597 USA_CO_Montrose.County.AP.724765_TMY3 5 B

598 USA_CO_Cortez-Montezuma.County.AP.724767_TMY3 5 B

599 USA_CO_Greeley-Weld.County.AWOS.724768_TMY3 5 B

600 USA_CO_Fort.Collins.AWOS.724769_TMY3 5 B
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601 USA_NV_Ely-Yelland.Field.724860_TMY3 5 B

602 USA_WY_Cheyenne.Muni.AP.725640_TMY3 5 B

603 USA_CO_Denver.Intl.AP.725650_TMY3 5 B

604 USA_UT_Vernal.AP.725705_TMY3 5 B

605 USA_CO_Rifle-Garfield.County.Rgnl.AP.725717_TMY3 5 B

606 USA_UT_Provo.Muni.AWOS.725724_TMY3 5 B

607 USA_UT_Ogden-Hill.AFB.725755_TMY3 5 B

608 USA_ID_Pocatello.Muni.AP.725780_TMY3 5 B

609 USA_UT_Wendover.USAF.Auxiliary.Field.725810_TMY3 5 B

610 USA_NV_Elko.Muni.AP.725825_TMY3 5 B

611 USA_NV_Winnemucca.Muni.AP.725830_TMY3 5 B

612 USA_ID_Twin.Falls-Magic.Valley.Rgnl.AP-Joslin.Field.725866_TMY3 5 B

613 USA_ID_Burley.Muni.AP.725867_TMY3 5 B

614 USA_OR_Lakeview.AWOS.725976_TMY3 5 B

615 USA_WY_Gillette-Gillette.County.AP.726650_TMY3 5 B

616 USA_WY_Sheridan.County.AP.726660_TMY3 5 B

617 USA_WY_Cody.Muni.AWOS.726700_TMY3 5 B

618 USA_MT_Billings-Logan.Intl.AP.726770_TMY3 5 B

619 USA_ID_Caldwell.AWOS.726813_TMY3 5 B

620 USA_ID_Mountain.Home.AFB.726815_TMY3 5 B

621 USA_OR_Burns.Muni.AP.726830_TMY3 5 B

622 USA_OR_Redmond-Roberts.Field.726835_TMY3 5 B

623 USA_OR_La.Grande.Muni.AP.726884_TMY3 5 B

624 USA_OR_Baker.Muni.AP.726886_TMY3 5 B

625 USA_WA_Yakima.Air.Terminal-McAllister.Field.727810_TMY3 5 B

626 USA_WA_Wenatchee-Pangborn.Mem.AP.727825_TMY3 5 B

627 USA_ID_Coeur.dAlene.AWOS.727834_TMY3 5 B

628 USA_WA_Hanford.727840_TMY3 5 B

629 USA_WA_Spokane.Intl.AP.727850_TMY3 5 B

630 USA_WA_Fairchild.AFB.727855_TMY3 5 B

631 USA_WA_Spokane-Felts.Field.727856_TMY3 5 B

632 USA_WA_Pullman-Moscow.Rgnl.AP.727857_TMY3 5 B

633 USA_WY_Worland.Muni.AP.726665_TMY3 6 B

634 USA_MT_Missoula.Intl.AP.727730_TMY3 6 B

635 USA_OR_Sexton.Summit.725975_TMY3 5 C

636 USA_WA_Port.Angeles-William.R.Fairchild.Intl.AP.727885_TMY3 5 C

637 USA_WA_Quillayute.State.AP.727970_TMY3 5 C

638 USA_WA_Bellingham.Intl.AP.727976_TMY3 5 C

639 USA_WA_Tacoma-McChord.AFB.742060_TMY3 5 C

640 USA_NH_Concord.Muni.AP.726050_TMY3 5 A

641 USA_ME_Rockland-Knox.AWOS.726079_TMY3 5 A

642 USA_VT_Burlington.Intl.AP.726170_TMY3 5 A

643 USA_NY_Watertown.AP.726227_TMY3 5 A

644 USA_WI_Marshfield.Muni.AP.726574_TMY3 5 A

645 USA_MI_Pellston-Emmet.County.AP.727347_TMY3 5 A

646 USA_ME_Brunswick.NAS.743920_TMY3 5 A

647 USA_VT_Rutland.State.AP.725165_TMY3 6 A

648 USA_PA_Bradford.Rgnl.AP.725266_TMY3 6 A

649 USA_IA_Dubuque.Rgnl.AP.725470_TMY3 6 A

650 USA_IA_Mason.City.Muni.AP.725485_TMY3 6 A
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Table 15: (Continued) 

 

 

 

Number Weather File Name Climate Zone Number Climate Subtype

651 USA_NE_ONeill-Baker.Field.725566_TMY3 6 A

652 USA_ME_Portland.Intl.Jetport.726060_TMY3 6 A

653 USA_ME_Sanford.Muni.AWOS.726064_TMY3 6 A

654 USA_ME_Waterville.AWOS.726073_TMY3 6 A

655 USA_ME_Bar.Harbor.AWOS.726077_TMY3 6 A

656 USA_ME_Bangor.Intl.AP.726088_TMY3 6 A

657 USA_VT_Montpelier.AP.726145_TMY3 6 A

658 USA_NH_Berlin.Muni.AP.726160_TMY3 6 A

659 USA_ME_Auburn-Lewiston.Muni.AP.726184_TMY3 6 A

660 USA_ME_Augusta.AP.726185_TMY3 6 A

661 USA_NY_Massena.AP.726223_TMY3 6 A

662 USA_MI_Houghton-Lake.Roscommon.County.AP.726380_TMY3 6 A

663 USA_MI_Cadillac-Wexford.County.AP.726384_TMY3 6 A

664 USA_MI_Traverse.City-Cherry.Capital.AP.726387_TMY3 6 A

665 USA_MI_Alpena.County.Rgnl.AP.726390_TMY3 6 A

666 USA_WI_Madison-Dane.County.Rgnl.AP.726410_TMY3 6 A

667 USA_WI_La.Crosse.Muni.AP.726430_TMY3 6 A

668 USA_WI_Eau.Claire.County.AP.726435_TMY3 6 A

669 USA_MN_Rochester.Intl.AP.726440_TMY3 6 A

670 USA_WI_Green.Bay-Austin.Straubel.Intl.AP.726450_TMY3 6 A

671 USA_WI_Wittman.Rgnl.AP.726456_TMY3 6 A

672 USA_WI_Wausau.Muni.AP.726463_TMY3 6 A

673 USA_WI_Mosinee-Central.Wisconsin.AP.726465_TMY3 6 A

674 USA_WI_Rice.Lake.Muni.AP.726467_TMY3 6 A

675 USA_WI_Phillips-Price.County.AP.726468_TMY3 6 A

676 USA_MI_Escanaba.AWOS.726480_TMY3 6 A

677 USA_MI_Menominee.AWOS.726487_TMY3 6 A

678 USA_IA_Estherville.Muni.AP.726499_TMY3 6 A

679 USA_IA_Spencer.Muni.AP.726500_TMY3 6 A

680 USA_SD_Sioux.Falls-Foss.Field.726510_TMY3 6 A

681 USA_SD_Brookings.AWOS.726515_TMY3 6 A

682 USA_SD_Huron.Rgnl.AP.726540_TMY3 6 A

683 USA_SD_Mitchell.AWOS.726545_TMY3 6 A

684 USA_SD_Watertown.Muni.AP.726546_TMY3 6 A

685 USA_MN_Glenwood.AWOS.726547_TMY3 6 A

686 USA_MN_St.Cloud.Muni.AP.726550_TMY3 6 A

687 USA_MN_Redwood.Falls.Muni.AP.726556_TMY3 6 A

688 USA_MN_Alexandria.Muni.AP.726557_TMY3 6 A

689 USA_MN_Marshall.Muni-Ryan.Field.AWOS.726559_TMY3 6 A

690 USA_MN_Fergus.Falls.AWOS.726560_TMY3 6 A

691 USA_MN_Faribault.Muni.AWOS.726563_TMY3 6 A

692 USA_MN_Red.Wing.Muni.AP.726564_TMY3 6 A

693 USA_MN_Morris.Muni.AWOS.726565_TMY3 6 A

694 USA_MN_Pipestone.AWOS.726566_TMY3 6 A

695 USA_MN_New.Ulm.Muni.AWOS.726567_TMY3 6 A

696 USA_MN_Owatonna.AWOS.726568_TMY3 6 A

697 USA_MN_Hutchinson.AWOS.726569_TMY3 6 A

698 USA_MN_Minneapolis-Crystal.AP.726575_TMY3 6 A

699 USA_MN_Willmar.Muni.AP.726576_TMY3 6 A

700 USA_MN_Edin.Prairie-Flying.Cloud.AP.726579_TMY3 6 A
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Table 15: (Continued) 

 

 

 

Number Weather File Name Climate Zone Number Climate Subtype

701 USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3 6 A

702 USA_MN_Litchfield.Muni.AP.726583_TMY3 6 A

703 USA_MN_St.Paul-Downtown.AP.726584_TMY3 6 A

704 USA_MN_Mankato.AWOS.726585_TMY3 6 A

705 USA_MN_Fairmont.Muni.AWOS.726586_TMY3 6 A

706 USA_MN_Worthington.AWOS.726587_TMY3 6 A

707 USA_MN_Winona.Muni.AWOS.726588_TMY3 6 A

708 USA_SD_Aberdeen.Rgnl.AP.726590_TMY3 6 A

709 USA_MN_South.St.Paul.Muni.AP.726603_TMY3 6 A

710 USA_SD_Ellsworth.AFB.726625_TMY3 6 A

711 USA_WI_Ephraim.AWOS.726626_TMY3 6 A

712 USA_SD_Mobridge.Muni.AP.726685_TMY3 6 A

713 USA_MI_Sault.Ste.Marie-Sanderson.Field.727340_TMY3 6 A

714 USA_MI_Chippewa.County.Intl.AP.727344_TMY3 6 A

715 USA_MI_Rhinelander-Oneida.County.AP.727415_TMY3 6 A

716 USA_MI_Iron.Mountain-Ford.Field.727437_TMY3 6 A

717 USA_MI_Hancock-Houghton.County.AP.727440_TMY3 6 A

718 USA_MI_Ironwood.AWOS.727445_TMY3 6 A

719 USA_MN_Detroit.Lakes.AWOS.727457_TMY3 6 A

720 USA_MN_Mora.Muni.AWOS.727475_TMY3 6 A

721 USA_MN_Cambridge.Muni.AP.727503_TMY3 6 A

722 USA_MN_Benson.Muni.AP.727507_TMY3 6 A

723 USA_MN_Wheaton.AWOS.727533_TMY3 6 A

724 USA_MN_Austin.Muni.AP.727566_TMY3 6 A

725 USA_ND_Bismarck.Muni.AP.727640_TMY3 6 A

726 USA_ND_Dickinson.Muni.AP.727645_TMY3 6 A

727 USA_ND_Williston-Sloulin.Field.Intl.AP.727670_TMY3 6 A

728 USA_NY_Fort.Drum-Wheeler.Sack.AAF.743700_TMY3 6 A

729 USA_MN_Little.Falls.AWOS.726578_TMY3 6 A

730 USA_ND_Fargo-Hector.Intl.AP.727530_TMY3 6 A

731 USA_CO_Alamosa.Muni.AP.724620_TMY3 6 B

732 USA_CO_Eagle.County.Rgnl.AP.724675_TMY3 6 B

733 USA_WY_Laramie-General.Brees.Field.725645_TMY3 6 B

734 USA_WY_Casper-Natrona.County.Intl.AP.725690_TMY3 6 B

735 USA_CO_Craig.Moffat.AP.725700_TMY3 6 B

736 USA_WY_Green.River-Greater.Green.River.Intergalactic.Spaceport.725744_TMY3 6 B

737 USA_WY_Lander-Hunt.Field.725760_TMY3 6 B

738 USA_ID_Idaho.Falls-Fanning.Field.725785_TMY3 6 B

739 USA_CA_Truckee.Tahoe.AP.725846_TMY3 6 B

740 USA_MT_Glendive.AWOS.726676_TMY3 6 B

741 USA_MT_Lewistown.Muni.AP.726776_TMY3 6 B

742 USA_MT_Butte-Bert.Mooney.AP.726785_TMY3 6 B

743 USA_MT_Bozeman-Gallatin.Field.726797_TMY3 6 B

744 USA_ID_Salmon-Lemhi.AWOS.726865_TMY3 6 B

745 USA_MT_Glasgow.Intl.AP.727680_TMY3 6 B

746 USA_MT_Helena.Rgnl.AP.727720_TMY3 6 B

747 USA_MT_Great.Falls.Intl.AP.727750_TMY3 6 B

748 USA_MT_Havre.City-County.AP.727770_TMY3 6 B

749 USA_MT_Kalispell-Glacier.Park.Intl.AP.727790_TMY3 6 B

750 USA_MT_Cut.Bank.Muni.AP.727796_TMY3 6 B
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Table 15: (Continued) 

 

Number Weather File Name Climate Zone Number Climate Subtype

751 USA_MT_Miles.City.Muni.AP.742300_TMY3 6 B

752 USA_MN_Orr.Rgnl.AP.726544_TMY3 7 —

753 USA_MN_Cloquet.AWOS.726558_TMY3 7 —

754 USA_MN_Ely.Muni.AP.727459_TMY3 7 —

755 USA_MN_Crane.Lake.AWOS.727473_TMY3 7 —

756 USA_MN_Eveleth.Muni.AWOS.727474_TMY3 7 —

757 USA_ND_Jamestown.Muni.AP.727535_TMY3 7 —

758 USA_CO_Gunnison.County.AWOS.724677_TMY3 7 —

759 USA_MT_Sidney-Richland.Muni.AP.727687_TMY3 7 —

760 USA_AK_Anchorage.Intl.AP.702730_TMY3 7 —

761 USA_AK_Anvik.702075_TMY3 7 —

762 USA_AK_Bethel.AP.702190_TMY3 7 —

763 USA_AK_Big.Delta-Allen.AAF.702670_TMY3 7 —

764 USA_AK_Cold.Bay.AP.703160_TMY3 7 —

765 USA_AK_Cordova.702960_TMY3 7 —

766 USA_AK_Dillingham.AWOS.703210_TMY3 7 —

767 USA_AK_Eielson.AFB.702650_TMY3 7 —

768 USA_AK_Homer.AP.703410_TMY3 7 —

769 USA_AK_Hooper.Bay.702186_TMY3 7 —

770 USA_AK_Iliamna.AP.703400_TMY3 7 —

771 USA_AK_Kenai.Muni.AP.702590_TMY3 7 —

772 USA_AK_King.Salmon.AP.703260_TMY3 7 —

773 USA_AK_Mekoryuk.702185_TMY3 7 —

774 USA_AK_Minchumina.702460_TMY3 7 —

775 USA_AK_Port.Heiden.703330_TMY3 7 —

776 USA_AK_Saint.Marys.AWOS.702005_TMY3 7 —

777 USA_AK_Shemya.AFB.704140_TMY3 7 —

778 USA_AK_Soldotna.702595_TMY3 7 —

779 USA_AK_St.Paul.Island.AP.703080_TMY3 7 —

780 USA_AK_Talkeetna.State.AP.702510_TMY3 7 —

781 USA_AK_Togiak.Village.AWOS.703606_TMY3 7 —

782 USA_AK_Unalakleet.Field.702070_TMY3 7 —

783 USA_AK_Valdez-Pioneer.Field.702756_TMY3 7 —

784 USA_AK_Valdez.702750_TMY3 7 —

785 USA_AK_Whittier.702757_TMY3 7 —

786 USA_NH_Mount.Washington.726130_TMY3 8 —

787 USA_AK_Ambler.701718_TMY3 8 —

788 USA_AK_Anaktuvuk.Pass.701625_TMY3 8 —

789 USA_AK_Barrow-W.Post-W.Rogers.AP.700260_TMY3 8 —

790 USA_AK_Bettles.Field.701740_TMY3 8 —

791 USA_AK_Deadhorse.700637_TMY3 8 —

792 USA_AK_Fairbanks.Intl.AP.702610_TMY3 8 —

793 USA_AK_Fort.Yukon.701940_TMY3 8 —

794 USA_AK_Gulkana.702710_TMY3 8 —

795 USA_AK_Kotzebue-Ralph.Wein.Mem.AP.701330_TMY3 8 —

796 USA_AK_McGrath.AP.702310_TMY3 8 —

797 USA_AK_Nenana.Muni.AP.702600_TMY3 8 —

798 USA_AK_Nome.Muni.AP.702000_TMY3 8 —

799 USA_AK_Northway.AP.702910_TMY3 8 —

800 USA_AK_Point.Hope.AWOS.701043_TMY3 8 —

801 USA_AK_Shishmaref.AWOS.701195_TMY3 8 —
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APPENDIX C 

C.1. Results of the Regulated Energy Consumption, Total Energy Savings, and Total 

Energy Savings Percentages in Each Climate Zone 

This appendix includes the results of the building energy simulations of the ASHRAE 

Standard 90.1-2016 medium office prototype in each climate zone. The results include the 

regulated energy consumption of the models with and without daylight-responsive controls, the 

total energy savings, and the total energy savings percentages. The climate zone subtypes are 

discriminated using different shapes and colors to reveal the differences within each climate 

zone. 

Figure 131 to Figure 138 show the regulated energy consumption of the ASHRAE 

Standard 90.1-2016 medium office prototype models in different climate zones. Figure 139 to 

Figure 146 show the regulated energy consumption of the ASHRAE Standard 90.1-2016 

medium office prototype models without daylight responsive controls in different climate zones. 

The total energy savings are illustrated in Figure 147 to Figure 154 and the total energy savings 

percentage are shown in Figure 155 to Figure 162. 
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Figure 131: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 
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Figure 132: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 2 
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Figure 133: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 3 
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Figure 134: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 4 
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Figure 135: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 5 
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Figure 136: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 6 
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Figure 137: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 7 
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Figure 138: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models in Climate 

Zone 8 
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Figure 139: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 1 
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Figure 140: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 2 
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Figure 141: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 3 
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Figure 142: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 4 
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Figure 143: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 5 
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Figure 144: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 6 
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Figure 145: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 7 
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Figure 146: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models without 

Daylight Responsive Controls in Climate Zone 8 
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Figure 147: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 1 
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Figure 148: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 2 

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000

T
o

ta
l 

E
n

e
r
g

y
 S

a
v
in

g
s 

(G
J

)

CDD10⁰C

Subtype A

Subtype B

Average of Subtype A

Average of Subtype B

Climate Zone Limits

0 5 10 15 20 25 30

Frequency

Frequency of Subtype A

Frequency of Subtype B

249

247

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

HDD18⁰C

0

5

10

15

20

25

30

35
F

r
e
q

u
e
n

c
y

0

5

10

15

20

25

30

35

40

45

50



 

335 

 

 

Figure 149: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 3 
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Figure 150: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 4 
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Figure 151: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 5 
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Figure 152: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 6 
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Figure 153: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 7 
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Figure 154: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models Associated with the 

Implementation of Daylight Responsive Controls in Climate Zone 8 
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Figure 155: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 1 
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Figure 156: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 2 
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Figure 157: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 3 
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Figure 158: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 4 
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Figure 159: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 5 
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Figure 160: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 6 
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Figure 161: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 7 
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Figure 162: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium Office Prototype Models 

Associated with the Implementation of Daylight Responsive Controls in Climate Zone 8
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C.2. Results for the Identical ASHRAE Standard 90.1-2016 Medium Office Prototype 

Model 

This section includes the results of the simulations carried out on the identical ASHRAE 

Standard 90.1-2016 medium office prototype model, the model complied with the code for 

climate zone 4B, in different climates. Results include the regulated energy consumptions of the 

models with and without daylight responsive controls followed by the total energy savings and 

the total energy savings percentage for each case. 

Figure 163 to Figure 165 show the regulated energy consumptions for the porotype 

model without daylight responsive control in different climates. Figure 166 to Figure 168 and 

Figure 169 to Figure 171 illustrate the total energy savings and the total energy savings 

percentages, respectively. 
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Figure 163: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B without Daylight Responsive Controls with 

Respect to the HDD18°C of Different Weather Files 
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Figure 164: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B without Daylight Responsive Controls with 

Respect to the HDD18°C of Different Weather Files 
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Figure 165: Regulated Energy Consumption of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B without Daylight Responsive Controls in 

Different Climate Zones 
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Figure 166: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Model for Climate Zone 4B Associated with the Implementation of Daylight 

Responsive Controls with Respect to the CDD10°C of Different Weather Files 
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Figure 167: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Model for Climate Zone 4B Associated with the Implementation of Daylight 

Responsive Controls with Respect to the HDD18°C of Different Weather Files 
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Figure 168: Total Energy Savings of the ASHRAE Standard 90.1-2016 Medium Office 

Prototype Model for Climate Zone 4B Associated with the Implementation of Daylight 

Responsive Controls in Different Climate Zones 
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Figure 169: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B Associated with the Implementation of 

Daylight Responsive Controls with Respect to the CDD10°C of Different Weather Files 
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Figure 170: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B Associated with the Implementation of 

Daylight Responsive Controls with Respect to the HDD18°C of Different Weather Files 
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Figure 171: Total Energy Savings Percentage of the ASHRAE Standard 90.1-2016 Medium 

Office Prototype Model for Climate Zone 4B Associated with the Implementation of 

Daylight Responsive Controls in Different Climate Zones
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C.3. Results for the Identical 24-Hour Operating Schedule Model 

This section includes the results of the simulations carried out on the identical ASHRAE 

Standard 90.1-2016 medium office prototype model with 24-hour operation schedule. The model 

complied with the code for climate zone 4B and was modified as described in Section 3.4.3 for 

the 24-hour operation.  

Figure 172 and Figure 173 show the regulated energy consumption of the model in 

different locations with respect to HDD18 C and CDD10 C, respectively. Results showed 

discrepancies between the energy consumption of the models with 24-hour operation schedule in 

different subtypes, similar to the discrepancies seen in the results of the models with office 

schedule. This shows the operating schedule of the models is not the main cause of the difference 

in energy consumption of the models in different subtypes. 
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Figure 172: Regulated Energy Consumption of the 24-Hour Operating Schedule Model 

with Respect to the HDD18 °C of Different Weather Files 
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Figure 173: Regulated Energy Consumption of the 24-Hour Operating Schedule Model 

with Respect to the CDD10 °C of Different Weather Files 
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