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 ABSTRACT 

 

Considerable research has been conducted to evaluate the productivity of biomass 

sorghum hybrids for bioenergy production, but research questions were mostly focused 

on determining the highest yielding hybrid for a single sowing season. Considering that a 

bioenergy refinery requires a sustained supply of biomass, this dissertation explores the 

production of several varieties for various sowing seasons, soil types, water supply 

condition, and irrigation methods to select the most profitable practices. Therefore, the 

main goal of this dissertation was to investigate and evaluate the effect of weather and 

management conditions on growth response and productivity of biomass sorghum for 

bioenergy production using replicated field experiments and computer simulation. It also 

studied the effect of crop parameters, such as radiation use efficiency (RUE) and water 

use efficiency (WUE) on crop growth of several sowing dates and varieties. 

A variance analysis determined that significant differences (p < 0.05) were 

observed among sorghum hybrids and sowing seasons in dry biomass (DB) production, 

leaf area index (LAI), and WUE. The highest DB yields, LAI values, and WUE were 

observed on the energy hybrids sowed between March and May. Energy hybrids also 

exhibited higher maximum and average crop growth rate (CGR) in the early sowing 

seasons of the year. They also could produce up to 66% more biomass than forage hybrids, 

and they also had the potential for producing as much as 33 Mg ha-1 with an average of 

530 mm of water using drip irrigation in south Texas when sown from March to May. 
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Successful calibration of the Environmental Policy Integrated Climate (EPIC) 

model allowed to conduct simulations to determine the total DB, LAI, crop water use 

(CWU), the relationship between crop productivity and crop evapotranspiration (ETc), and 

WUE of biomass sorghum. The most important crop parameters identified in EPIC that 

needed to be adjusted to achieve appropriate DB were the biomass energy-ratio (WA), 

potential heat units (PHU), and the Hargreaves-Samani PET equation coefficient (PARM 

38), and exponent (PARM 13). The statistical parameters derived from measured versus 

simulated dry biomass in the calibrated model indicated that the EPIC model performed 

well, showing a great potential for simulating the total DB of sorghums. Thus, it was 

demonstrated that the EPIC model could be used for the assessment of crop water use and 

total DB production under limited irrigation levels, especially in semi-arid regions. 

It was found that RUE depended on crop variety and sowing seasons. Higher RUE 

values were observed for the energy hybrids in the sowing dates from March to May. 

Therefore, the changing of these RUE values according to the sowing date can improve 

the prediction of DB in crop models. The EPIC model was parameterized using the RUE 

values from field experiments to enhance the effectiveness of the crop simulation model 

to predict the potential DB of biomass sorghum. The statistical parameters derived from 

measured versus simulated DB indicated that the EPIC model performed well at 

estimating DB with an average percent error of 11% at harvest, and an average R2 = 0.91. 

Therefore, the identification of adequate RUE values for different sowing seasons 

enhanced crop simulation effectiveness in predicting sorghum growth and yield response 

for staggered biomass production. 
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1. INTRODUCTION  

 

Biomass sorghum is one of the most attractive alternatives for producing energy 

in many regions of the world because of the high biomass obtained in a short period, high 

efficiency at producing structural carbohydrates, high water use efficiency, drought-

tolerance, and high salt tolerance. The potential growth of biomass sorghum is a function 

of photosynthetically active radiation and its interception, and its biomass productivity is 

constrained by stresses, such as temperature, water, and nutrients. However, as a C4 plant, 

biomass sorghum utilizes many inputs, such as water and nutrients, to satisfy their needs 

and achieve their production potential. To evaluate the yield potential of biomass sorghum, 

crop simulation models are suitable as a decision support tool for assessing the 

management, crop growth, and crop production under different spatial and climatic 

conditions. 

1.1. Problem statement 

Critical information in the literature relates to the use of high biomass sorghum for 

annual production. Many farmlands in Texas’ production region remain idle every year 

due to high crop production costs and low crop return margins, high water delivery costs, 

and limited water supplies. Hence, the introduction of alternative biomass crops, such as 

sorghum for bioenergy production, has become a focus of researchers, agronomists, and 

plant breeders as an option to improve local agricultural economies. Therefore, it is 

essential to explore the biomass yield potential of different feedstocks and varieties and 

study the efficiency in converting solar energy into biomass, and its water use efficiency. 
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Another gap in the current knowledge, according to the literature, is limited 

information regarding the response of these biomass crops on solar energy use. This 

information is important to assess the physiological ability of biomass sorghum to produce 

dry biomass under the effect of different climate conditions. Since many of those biomass 

crops are highly sensitive to climatic conditions, the monitoring of radiation use efficiency 

at several sowing seasons would provide an extensive understanding of biomass 

sorghum’s physiological ability to produce biomass under different climate conditions, 

such as temperature and photoperiod. 

Additionally, in recent years, agriculture has been facing challenges in water 

supply that are critical for increasing agricultural production. Some of these problems are 

high water-delivery costs, high water pumping costs, and limited water availability. 

Therefore, it is essential to investigate the biomass productivity of biomass feedstocks 

under different irrigation scenarios to identify appropriate irrigation strategies, such as 

deficit irrigation, to improve crop water use. An alternative may be to take advantage of 

drought tolerant crops, such as sorghum in South Texas’ water-limiting areas. It is also 

necessary to conduct field experiments and evaluate sorghum’s biomass productivity 

under different irrigation levels so the best strategy can be proposed. 

Another challenge is the lack of crop models suitable for simulating energy 

sorghums to help producers evaluate the impact of environment and crop management 

practices in producing biomass sorghum. Although field experimentation is necessary to 

provide valuable data, crop simulation models can be a useful tool to obtain information 

on possible outcomes without conducting extensive field experiments. The availability of 
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reliable data from field experiments is essential to feed crop simulation models. Once the 

crop models are calibrated and validated, it is necessary to explore the potential growth 

and productivity of biomass sorghum and to explore the opportunities of growing biomass 

sorghum under stress constrictions, such as temperature, water, and nitrogen. 

1.2. Objectives and hypothesis 

Considering the information that exists from weather and 3-year field experiments 

conducted for biomass sorghum in south Texas, this work will have the following 

objectives: 

1.2.1. General objective 

Investigate and evaluate the effect of climate and management conditions on 

growth response and productivity of biomass sorghum for bioenergy production using 

replicated field experiments and computer simulation. 

1.2.1.1. Specific objectives 

i. To evaluate the effects of variable timed sowing dates of three biomass sorghum 

hybrids on dry biomass productivity, crop growth rate, and crop water use 

efficiency. Biomass sorghum is widely recognized among many species by its high 

biomass yield potential and high efficiency in water use. Therefore, it could be an 

excellent substitute for traditional food/feed crops grown in South Texas. Besides, 

to supply future biorefineries, there is a need to sustainably intensify biomass 

production on current agricultural land (Manevski et al., 2017) to obtain sufficient 

feedstock and achieve sufficient annual production rates to run biorefineries. 
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ii. To calibrate and evaluate the EPIC model and evaluate the production of biomass 

sorghum under different irrigation levels. Water availability has been one of the 

most critical factors for crop production. To help offset the reduced availability of 

water in agriculture, cropping patterns may need to adapt to irrigation water 

availability and climate variability to sustain agricultural production. The model 

will be used to simulate dry biomass productivity and crop water use to identify 

appropriate irrigation strategies. 

iii. To determine the RUE and evaluate the EPIC model for biomass sorghum 

production under variable timed sowing dates of three sorghum hybrids. Plant dry 

matter, grown under optimal conditions, depends basically on the quantity of 

radiation absorbed by the crop canopy (Kiniry et al., 1989). Thus, the estimation 

of RUE at several sowing dates under optimal growth conditions provides a deep 

understanding of sorghum hybrids’ physiological ability to producing dry biomass 

under the effect of weather conditions, such as temperature and photoperiod. 

Therefore, simulation of the EPIC model using the RUE results will help identify 

appropriate strategies for annual biomass production. 

1.2.2. Hypothesis 

i. Dry biomass productivity, crop growth rate, and water use efficiency of biomass 

sorghum are affected by sowing dates. 

ii. The EPIC model is capable of simulating dry biomass productivity of biomass 

sorghum under different irrigation levels. 
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iii. RUE is a crop parameter that varies over time and cannot be used as a constant 

parameter in crop models for simulation. 

The study area chosen for this study was the experimental fields of the Texas A&M 

AgriLife Research Center at Weslaco, Texas, US. during the 2013, 2015 and 2016 

growing seasons. The research center is in the Lower Rio Grande Valley, which is in the 

south along the border between the United States and Mexico. It has a semi-arid climate. 

This environment was chosen so as to evaluate the performance of three biomass sorghum 

hybrids sown under different dates, different irrigation systems and irrigation levels. 

The biomass yield potential of three sorghum hybrids and their efficiency in 

converting solar energy into biomass was studied in the South Texas’ environment for 

different management practices. One forage sorghum hybrid from Pioneer, Pioneer 877F, 

and two energy sorghum hybrids from Blade Energy Crops, Blade ES 5140 (photoperiod-

insensitive hybrid) and Blade ES 5200 (photoperiod-sensitive hybrid) were selected for 

field experiments conducted in this study. These three hybrids are recognized to be highly 

efficient in water use, perform well in marginal lands and marginal conditions. Energy 

hybrids have a high yield biomass in as few as 90 to 100 days in many areas and grow 

higher plants that reach up to 6 m. the field experiments consisted basically of evaluating 

the biomass yield responses, leaf area index, and both radiation and water use efficiency. 

The experimental design used for each of the experiments during the growing seasons was 

a randomized complete block design with four replications. The irrigation practices 

evaluated were biomass production grown under optimal conditions and different water-

stress levels.  For the 2013 growing season, it was established two experimental sites. One 
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of them was prepared to be irrigated under deep irrigation and the other was prepared to 

be irrigated under furrow irrigation. For the 2015 growing season, the experimental site 

was prepared to be irrigated under furrow irrigation. Finally, for the 2016 growing season, 

the experimental site was prepared to be irrigated under deep irrigation. 

1.3. Structure of the dissertation 

The objectives formulated in this research were addressed through three chapters. 

Chapter two focuses on the study of the potential for biomass sorghum production 

in staggered production. Dry biomass productivity, leaf area index, and water use 

efficiency were analyzed by analysis of variance for every sowing season to determine 

whether there were significant differences among hybrids through the sowing seasons. 

The accumulated dry biomass was modeled against time using the logistic regression to 

determine the rate at which sorghum grew at each sowing season and the duration of the 

phenological phases of the crop. This analysis defined the crop’s phenological phases, 

which are essential to know to determine when the crop needs an adequate amount of 

water and nutrients to maintain its potential growth. An analysis of the differences in water 

use efficiency was conducted for the sorghum hybrid at each sowing season to identify 

water losses and their possible causes to formulate crop management strategies to improve 

water efficiencies. 

Chapter three focuses on modeling assessments of the productivity of biomass 

sorghum under different irrigation scenarios. Sensitive crop parameters involved in the 

accumulation of dry biomass for biomass sorghum were assessed. Calibration was 

performed by comparing experimental field data to the EPIC simulated data. The data 
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used for calibration was obtained from a full irrigation plot for one of the seasons, 

considering that it reached the potential dry biomass productivity. The calibrated model 

was then validated by comparing measured data to simulated data at the rest of the 

experimental plots. For evaluating the crop model performance, statistical indices were 

calculated and evaluated according to the ranges suggested by Wang et al. (2012) for 

satisfactory water and crop yield. 

Chapter four focuses on the study of the RUE of three biomass sorghum hybrids 

across the sowing seasons. First, it analyzed the capacity of the sorghum to convert solar 

irradiance into biomass for different growing seasons. RUE was estimated by the linear 

regression of the accumulated dry biomass productivity against the sowing season's 

accumulated IPAR. For IPAR estimation, the canopy extinction coefficient was 

calculated, which is a parameter that combines all the factors affecting the interception of 

solar irradiance in the canopy. The accumulated IPAR across sowing seasons is a function 

of the canopy extinction coefficient and leaf area index and environmental factors, such 

as temperature and solar radiation. The RUE values obtained for sorghum at each sowing 

season was used to parameterize the EPIC model. Then, the EPIC model was evaluated to 

demonstrate its capability of simulating dry biomass of sorghum sown under different 

sowing dates. 

Finally, in chapter five, the main research conclusions are articulated, and also, 

more essential recommendations are stated.
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2. AGRONOMIC PERFORMANCE OF POTENTIAL BIOMASS SORGHUM 

PRODUCTION FOR STAGGERED SOWING DATES 1 

 

2.1. Synopsis 

Biomass sorghum [Sorghum bicolor (L.) Moench] is widely recognized, among 

many others, by its high biomass yield potential, high efficiency in converting solar energy 

into biomass, and high efficiency in water use. Therefore, it could be an excellent 

substitute for traditional food/feed crops grown in south Texas. The objectives of this 

chapter were to evaluate the effects of variable timed sowing dates of three biomass 

sorghum hybrids on (i) dry biomass productivity, (ii) crop growth rate, and (iii) crop water 

use efficiency. Experiments were conducted at the Texas A&M AgriLife Research Center 

in Weslaco, Texas, during the 2013 and 2016 growing seasons. Significant differences 

were observed among sorghum hybrids and sowing seasons in dry biomass production 

(DB), leaf area index (LAI), crop growth rate (CGR), and water use efficiency (WUE). 

The sorghum DB ranged as expected from 12.57 to 32.77 Mg ha-1. The highest DB values 

were observed when the sowing took place between March and May, while the lowest DB 

wase observed on the sowings of August and September. Higher LAI values were observed 

on the energy hybrids (LAI > 4.0 m2 m-2). CGR ranged from 0.108 to 0.309 Mg ha-1 d-1 

for the three hybrids during all sowing seasons. There were significant differences among 

 

1 Part of this section is reprinted with permission from “Growth Response and Productivity of Sorghum for 

Bioenergy Production in South Texas” by Chavez J.C., Enciso J., Ganjegunte G., Rajan N., Jifon J., Singh 

V.P. Transactions of the ASABE Vol.62(5): 1207-1218. https://doi.org/10.13031/trans.13317. Copyright 

2019 American Society of Agricultural and Biological Engineers. 

https://doi.org/10.13031/trans.13317
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hybrids during the two years in dry biomass, LAI, and WUE. The highest productivities 

and efficiencies were observed in the energy hybrids. WUE is used for some crop models 

as a crucial crop parameter used to predict the potential dry matter accumulation. WUE 

varied from 3.626 to 7.042 kg m-3. Among sowing seasons, higher WUE values were 

observed from the energy sorghums sown in March, April, and May. The results of this 

chapter show that biomass hybrids can produce up to 66% more biomass than forage 

hybrids, and they also have the potential for producing as much as 33 Mg ha-1 with 530 

mm of water using drip irrigation in south Texas. 

2.2. Introduction 

Production of fuel ethanol from high biomass crops can be a sustainable alternative 

for energy production. Some crops such as sugarcane [Saccaharum officinarum L.], corn 

or maize [Zea mays L.], sorghum [Sorghum bicolor (L.) Moench], and miscanthus 

[Miscanthus spp.] are warm-season C4 plants that achieve high biomass. Plants that use 

the C4 photosynthetic pathway are more efficient than C3 crops in converting solar energy 

into biomass (Zhu et al., 2008). They fix CO2 into a compound containing four carbon 

atoms before entering the Calvin cycle of photosynthesis, making them highly efficient in 

converting solar energy to biomass. However, some C4 plant species require a 

considerable amount of input, such as water and nutrients, to satisfy their needs and 

achieve their production potential. 

Forage and energy sorghums have been identified as important biomass feedstock 

crops because of their high biomass production, drought tolerance, short growing cycle, 

and high water-use efficiency (Monge et al., 2014; Sharma et al., 2017). Forage sorghum, 
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which includes both Sudan grass and silage sorghum, is primarily used for grazing and 

silage production. Photoperiod-sensitive hybrids of forage sorghum offer higher biomass 

yield potential compared to other sorghum cultivars and continue growing until the day 

lengths are less than 12:20 h (Rooney et al., 2007). These are considered dual-purpose 

because these hybrids are used for both energy and forage production (Shoemaker and 

Bransby, 2010). Energy sorghums have more significant biomass potential than forage 

sorghums; however, they differ in forage quality and harvest timings because of their 

delayed flowering (Maughan et al., 2012; Rooney and Aydin, 1999). Energy sorghum has 

several advantages compared to conventional energy crops. They are more tolerant of 

water stress, have higher efficiency in producing structural carbohydrates, have higher 

biomass potential and water use efficiency, and have the potential for genetic 

improvement using both traditional and genomic approaches (Enciso et al., 2013; Enciso 

et al., 2015b; Rooney et al., 2007). Other distinctive characteristics of energy sorghums 

are that they can remain in the vegetative growth phase throughout the growing season at 

most latitudes and can grow for more than 200 days in subtropical regions (Marsalis et al., 

2010). Therefore, with crop genetic improvements, better cultural practices, and efficient 

use of irrigation water, sustained production of energy sorghums could be achieved in 

subtropical regions. 

Information about staggered sowing for sorghum is limited in scope, and very few 

studies exist in the literature. Almodares and Darany (2006) and Balole (2001) reported 

that late sweet sorghum typically had lower yields of stalks and sugar than earlier sowings. 

Hipp et al. (1970) evaluated the influence of sowing dates and solar radiation on sweet 
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sorghum in the Rio Grande Valley. They observed that the highest sugar yield was found 

in crops sown in May. The plants’ solar radiation received during the period between boot 

and early seed formation accounted for about 75% of the variation in yield. There is a little 

information about staggered sowing, probably because farmers looked at optimal 

production in a single crop cycle. The need for continuous feedstock supplies for 

biorefineries makes it necessary to understand better the yield response under different 

sowing seasons and environmental factors such as solar irradiance and temperature, 

influencing canopy development, and biomass production. 

Water is essential in rainfed agriculture, critically crucial in semiarid dryland 

agriculture, and explicitly important in irrigated agriculture (Howell, 2001). One of the 

most important indices used to evaluate crop’s response to specific climatic conditions or 

crop management is the water use efficiency (WUE). The WUE of a biomass crop is 

generally defined in agronomy (Viets, 1962) as the amount of total biomass yield produced 

divided by the amount of water used by the plant to produce the yield. WUE is used by 

practitioners as an indicator in specific regions to identify differences between irrigation 

methods and irrigation management. Hsiao (1993) reported that a correlation between the 

above-ground DB and water used tends to remain linear in both well-watered and water 

deficit conditions. Increasing biomass production and reducing crop water consumption 

trigger substantial improvements in WUE (Chavez et al., 2018). Some management 

strategies can increase WUE, such as irrigation scheduling to reduce water losses during 

the periods of stress (Enciso et al., 2009), reducing the number of irrigation events (Enciso-

Medina et al., 1998), or improving the uniformity of the irrigation system (Rajan et al., 
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2015). Hao et al. (2014) conducted field experiments to improve biomass yield and 

maximize the WUE in photoperiod-sensitive sorghum in the Texas High Plains. They 

found that higher WUE was due to increased biomass rather than reduced ET, which 

indicates that photoperiod-sensitive sorghum may achieve high biomass yield under 

deficit irrigation. 

Production of bioenergy in a bio-refinery requires a continuous supply of feedstock 

during the year, and consequently, a plan to staggered sowing dates. Most bioenergy 

experiments involving sorghum are conducted to determine an optimum sowing date, 

seeking maximum biomass yields with minimum use of inputs such as water and 

fertilizers. However, there is a need to continuously supply feedstock to biorefineries, 

which require strategically distribute sowing dates to maximize sorghum dry biomass 

production during a year. Therefore, it is essential to investigate the biomass sorghum’s 

crop growth rate, and its water productivity with staggered sowing dates under optimal 

growth conditions. The objective of this chapter is to evaluate the effects of variable timed 

sowing dates of three biomass sorghum hybrids on (i) dry biomass productivity, (ii) crop 

growth rate, and (iii) crop water use efficiency. The results obtained in this chapter may 

allow crop modelers to increase the ability to determine the optimal crop parameters for a 

more precise prediction of dry biomass productivity of biomass sorghums in staggered 

production systems. 
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2.3. Material and methods 

2.3.1. Description of field experiments 

Field experiments were conducted during the 2013 and 2016 growing seasons at 

the Texas A&M AgriLife Research Center in Weslaco, Texas (latitude 26° 09’ 26’’ N, 

longitude 97° 57’ 32’’ W; elevation 24 m above sea level) (Figure 2.1). The study area 

has a semi-arid climate with an average annual precipitation of 558 mm. According to the 

SSURGO database (USDA, 2013), the soil type is a Hidalgo silt clay loam. 

 

 

 

 

Figure 2.1 Map of Texas showing the location where the experiment was located. 

 

 

 

Two biomass sorghum hybrids from Blade® Energy Crops (Blade ES 5140 and 

Blade ES 5200) and one forage sorghum hybrid from Pioneer® (Pioneer 877F) were sown 

in 1.02 m wide rows oriented north to south. The plots used for experiments were 4.1 m 
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wide and 91.4 m long. The plant density in all plots was approximately 140,000 seeds per 

hectare, with a sowing depth of 30 to 45 mm. The plant density after emergence showed 

no differences among the sowing seasons. 

A subsurface drip irrigation system was installed to assure uniform germination 

and better control in measuring water inputs (Henggeler et al., 2002). Drip tape with 15 

mm thickness was placed in the center of each bed. Drip emitters were spaced 0.60 m 

apart laterally with a nominal discharge of 1.5 L h-1 per emitter, resulting in a water 

application rate of 2.5 mm h-1. Urea ammonium nitrate (UAN; 32% mass fraction of N) 

was applied through the drip irrigation system in two equal split applications at a rate of 

100 kg ha-1. The same total fertilizer was applied to all experimental units. 

The field experiments were arranged in a randomized complete block design 

(RCBD) with three sorghum hybrid levels and four replications. Full irrigation was 

applied in all experimental plots. It was achieved by replacing water used by the crop, 

which was calculated using the Sudan grass crop coefficients suggested by FAO 56 and 

using the Penman-Monteith equation for reference evapotranspiration (ETo) (Allen et al., 

1998). The actual evapotranspiration (ETc) requirement for sorghum is estimated based on 

a linear relationship for a well-watered reference grass using the equation: 

 

 𝐸𝑇𝑐 = 𝐾𝑐 × 𝐸𝑇𝑜 (1) 

 

where Kc is the crop coefficient (Enciso and Wiedenfeld, 2005). The standard Kc ini, Kc mid, 

and Kc end values of 0.15, 1.15, and 1.1, respectively, were applied to ETo to calculate ETc 
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using the Penman-Monteith approach (Rajan et al., 2015). Soil water content was 

measured using gravimetric methods at the beginning and end of each sowing season. The 

South Texas Weather Program (STWP), which is an internet-based program developed by 

Texas A&M AgriLife Research, http://southtexasweather.tamu.edu/ (Enciso et al., 2015), 

was used to create an irrigation schedule for each sowing season. This program calculates 

the number of irrigation events during each sowing season and the timing and amount of 

irrigation water required using a predetermined allowable depletion level of 90%. The 

irrigation system was assumed to have a 100% efficiency. Weather data used for ET 

calculations were collected at a weather station (model ET106, Campbell Scientific, 

Logan, Utah) located 100 m away from the experimental plots. The weather station is 

equipped with a tipping bucket rain gauge (model TE525, Texas Electronics, USA) for 

measuring rainfall; a temperature sensor (model CS500, Vaisala, Helsinki, Finland) for 

measuring maximum and minimum air temperature, and relative humidity; a pyranometer 

(model LI200X, LI-COR Biosciences, Lincoln, Nebraska) for measuring total solar 

radiation; and a wind set (model 034A Campbell Scientific, Logan, Utah) for measuring 

average wind speed. All weather data were recorded hourly using a CR10X data logger. 

2.3.2. Field data measurement 

Table 2.1 shows the agronomic data on dates in which crop development was 

monitored. This study used the same plant sampling methodology as described by Meki 

et al. (2017) who evaluated the performance of biomass sorghum in Hawaii and Texas. 

Measured plant variables were fresh and dry weight, plant height, stalk diameter, and green 

LAI. Plant sampling was conducted on each of the experimental units four to five times 

http://southtexasweather.tamu.edu/


 

16 

 

throughout the sowing season if weather conditions were favorable. Plant height 

measurements were performed before each biomass harvest by randomly selecting three 

plants to measure them from the ground to the tip of the longest leaf. Actual LAI and 

biomass were determined using destructive sampling. The destructive samples were 

randomly collected from 1 m2 area at the center of each plot to avoid the border effects. 

Dry biomass and tissue moisture content percentage were determined after drying all plant 

materials in a forced-air oven at 60°C until the material reached a constant mass 

(approximately 72 h). After the end of each sowing season, field plots were harvested 

using a forage harvester (model Jaguar 940, Claas, Herzerbrock, Germany). 
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Table 2.1 Agronomic data of sorghum at the Texas A&M AgriLife Research Center at Weslaco, TX. in 2013 and 2016 

growing seasons. 

Activity ------------- 2013 ------------- ------------------------------------------------------- 2016 ------------------------------------------------------- 

Sowing date 23 Apr 1 Sep 1 Mar 4 Apr 11 May 15 June 14 July 25 Aug 

Harvest date 8 Aug 15 Dec 29 June 2 Aug 8 Sep 13 Oct 11 Nov 23 Dec 

Length of sowing season 107 days 105 days 120 days 120 days 120 days 120 days 120 days 120 days 

Sampling dates 29 May, 8 

July, 25 July, 

and 13 Aug. 

11 Sep., 30 

Oct., 20 Nov., 

and 15 Dec. 

11 Apr., 9 

May, 9 June, 

and 29 June 

6 May, 7 June, 

26 July, and 2 

Aug. 

2 June, 10 

July, 8 Aug., 

and 8 Sep. 

11 July, 30 

Aug., 27 Sep., 

and 13 Oct. 

8 Aug., 30 

Sep., 4 Nov., 

and 11 Nov. 

28 Sep., 8 

Nov., 28 Nov., 

and 23 Dec. 

Mean minimum T° 23.4°C 17.6°C 21.3°C 23.7°C 25.1°C 24.9°C 23.6°C 19.0°C 

Mean maximum T° 33.7°C 27.7°C 31.5°C 33.9°C 35.4°C 35.8°C 37.7°C 30.3°C 

Precipitation 152 mm 306 mm 177 mm 131 mm 201 mm 118 mm 130 mm 140 mm 

Irrigation water applied 457 mm 25 mm 279 mm 432 mm 381 mm 406 mm 381 mm 254 mm 

Reference ET 740 mm 435 mm 520 mm 595 mm 612 mm 611 mm 533 mm 402 mm 

Estimated sorghum ET  638 mm 332 mm 493 mm 585 mm 595 mm 549 mm 473 mm 365 mm 

Total solar radiation 2327 MJ m-2 1394 MJ m-2 2452 MJ m-2 2742 MJ m-2 2824 MJ m-2 2782 MJ m-2 2473 MJ m-2 1832 MJ m-2 

Cumulative GDD at harvest 2155 °D 1555 °D 1959 °D 2177 °D 2336 °D 2342 °D 2224 °D 1761 °D 

Days with daylight > 12:20 h 120 days 13 days 94 days 120 days 120 days 91 days 62 days 20 days 
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2.3.3. Computation and statistical analysis of the data 

Sorghum phenological progress was obtained for every sowing season across the 

two-year growing season of study. They were recorded in calendar days and converted to 

growing degree days (GDD, °D). The cardinal temperatures for phenological development 

were: base temperature (tbase) = 8°C, lower optimal temperature (topt1) = 30°C, upper 

optimal temperature (topt2) = 37°C, and ceiling temperature (tceil) = 45°C (Soltani and 

Sinclair, 2012). A 3-segment linear function, as described by Soltani and Sinclair (2012), 

was used to calculate GDD for each treatment from the sowing date until 120 days after 

sowing. GDD was calculated as follows: 

 

 𝐺𝐷𝐷 = (𝑡𝑜𝑝𝑡1 − 𝑡𝑏𝑎𝑠𝑒) × 𝑡𝑓𝑢𝑛 (2) 

 

where: 

𝑡𝑓𝑢𝑛 = 0    𝑖𝑓    𝑡𝑚𝑒𝑎𝑛 ≤ 𝑡𝑏𝑎𝑠𝑒 

𝑡𝑓𝑢𝑛 =
𝑡𝑚𝑒𝑎𝑛 − 𝑡𝑏𝑎𝑠𝑒

𝑡𝑜𝑝𝑡1 − 𝑡𝑏𝑎𝑠𝑒
    𝑖𝑓    𝑡𝑏𝑎𝑠𝑒 < 𝑡𝑚𝑒𝑎𝑛 < 𝑡𝑜𝑝𝑡1 

𝑡𝑓𝑢𝑛 = 1    𝑖𝑓    𝑡𝑜𝑝𝑡1 ≤ 𝑡𝑚𝑒𝑎𝑛 ≤ 𝑡𝑜𝑝𝑡2 

𝑡𝑓𝑢𝑛 =
𝑡𝑐𝑒𝑖𝑙 − 𝑡𝑚𝑒𝑎𝑛

𝑡𝑐𝑒𝑖𝑙 − 𝑡𝑜𝑝𝑡2
    𝑖𝑓    𝑡𝑜𝑝𝑡2 < 𝑡𝑚𝑒𝑎𝑛 < 𝑡𝑐𝑒𝑖𝑙 

𝑡𝑓𝑢𝑛 = 0    𝑖𝑓    𝑡𝑚𝑒𝑎𝑛 ≥ 𝑡𝑐𝑒𝑖𝑙 
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where tfun is a scalar factor between 0 and 1, and tmean is the average of daily maximum 

and minimum temperatures. The GDD values were summed for the growth period of each 

growing season. 

Changes in the dry biomass to the time of three sorghum hybrids over the sowing 

seasons were fitted to a sigmoidal model using the logistic growth function (Richards, 

1959), as given in the following equation: 

 

 𝐷𝐵 =
𝐷𝐵𝑚𝑎𝑥

1 + 𝑎 ∙ 𝑒𝑥𝑝(−c∙𝑡)
 (3) 

 

where DBmax is the maximal end value of growth, a is a constant parameter (a > 0), c is 

the crop growth rate (c > 0), and t is the duration from sowing to harvest. Parameter 

estimates were derived for each experimental unit following the procedures described by 

Gregorczyk (1991). After deriving the relationship between DB with time from the logistic 

growth function, the slope of the curve or the crop growth rate (CGR, Mg ha-1 d-1) was 

calculated. CGR was defined as the rate of change of DB with time (∆𝐷𝐵 ∆𝑡⁄ ). CGR was 

calculated as the increase in biomass (∆𝐷𝐵) between two dates divided by the increase in 

time (∆𝑡). For more accurate values, the first derivative (𝑑𝐷𝐵 𝑑𝑡⁄ ) of Eq. (3) was taken. 

The CGR for each sorghum hybrid at each sowing season was obtained. The first 

derivative was equated to zero (𝑑𝐷𝐵 𝑑𝑡⁄ = 0) (which is the time when the tangent to the 

curve is horizontal) to obtain the day when maximum growth occurred during the sowing 

season. Finally, the second derivative of the growth function (𝑑2𝐷𝐵 𝑑𝑡2⁄ ), which is the 
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crop growth acceleration, was calculated and then equaled 0 to determine its inflection 

points (also known as maximum and minimum points of a function). The inflection points 

of the growth acceleration function of the crop were used to determine the duration of the 

crop growth phases of crop development. 

The seasonal crop water use (CWU, mm) was calculated according to the 

simplified water balance equation: 

 

 𝐶𝑊𝑈 = 𝑅 + 𝐼 ± 𝑆𝑊 (4) 

 

where R is the in-season effective rainfall (mm), I is the in-season irrigation (mm), and 

SW is the soil water depletion from the root zone during the sowing season. Eq. (4) is a 

surrogate estimate of the water used to produce the crop, depending on the neglect of 

percolation, groundwater use, and surface runoff. The daily CWU values were summed to 

determine the cumulative CWU (mm). The WUE for each sorghum hybrid at each sowing 

season was estimated as the slope of the fitted regression of the first-order equation 

between DB and the cumulative CWU. The WUE was also calculated for each hybrid as 

follows: 

 

 𝑊𝑈𝐸 =
𝐷𝐵

∑ 𝐶𝑊𝑈
𝑑 =𝑠 𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑎𝑡𝑒
𝑑 = 𝑠𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑡𝑒

 (5) 
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where WUE (g m-2 mm-1) is the ratio between total DB and the cumulative CWU that is 

also expressed as kg m-3. 

The x-axis intercept of the DB versus the cumulative CWU determined the amount 

of water that did not contribute to biomass production during the sowing season, i.e., the 

amount of water that did not produce dry biomass (𝐷𝐵 = 0). This intercept indicates the 

loss of water from the soil by evaporation, percolation, or runoff (Passioura, 2006). The 

amount of water lost during the growing season was determined as follows: 

 

 𝑊𝐿 =
−𝑏

𝑊𝑈𝐸
 (6) 

 

where 𝑊𝐿 is a rough estimate of the water loss (mm), 𝑏 (g m-2) is the intercept coefficient 

taken from a linear equation, and WUE (kg m-3) is the water-use efficiency (or slope) of 

the hybrid. 

Analyses of variance (ANOVA) were conducted for the two years of sorghum 

experiments. Sorghum data were analyzed separately over seasons (sowing seasons). Data 

from all sowing seasons were examined in a combined analysis of variance to explore both 

how sorghum hybrids responded to different environmental conditions that could occur 

during a year and to provide information on the nature of the interaction between 

treatments (sorghum hybrids) and seasons. These analyses were conducted on sorghum 

hybrids using the SAS PROC GLM (SAS Institute, 2014) for DB, LAI, and WUE 

variables at harvest time. For analysis, the treatment was set as a fixed effect and the season 

as a random effect. Mean comparisons among treatments were conducted using the least 
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significant difference (LSD) at the alpha level of 0.05. The canopy extinction coefficient 

was estimated for each hybrid using the REG procedure in SAS. Also, the REG procedure 

in SAS was used to conduct regression analyses to describe the relationship between DB 

on cumulative IPAR and DB on cumulative CWU. 

2.4. Results 

2.4.1. Environmental conditions 

The weather data recorded during the study period, January to December 2013 and 

2016, compared with the long-term averages (30 years), is shown in Table 2.2. The 

patterns of daily mean temperature recorded during the study are shown in Figure 2.2. In 

general, the monthly minimum and maximum air temperatures were higher in 2016 than 

both 2013 and the 30-year period. Warm conditions were observed with a remarkable 

heatwave at the end of July and beginning of August in 2016, with maximum daily 

temperatures over 40°C. Differences in daily air temperatures through the sowing seasons 

caused variation in total GDD across the sowing seasons (Table 2.1). The sorghum sown 

on June 15 and harvested on October 13 in 2016 attained the highest cumulative GDDs 

(2342°D), followed by the one planted on May 11 and harvested on September 08 

(2336°D) as a result of higher temperatures recorded during that summer. The lowest 

cumulative GDDs were observed in the sorghum sown in September in 2013 (1555°D) 

and August 25 and March 01 in 2016 (1959 and 1761°D, respectively), probably it was 

due to the lower daily temperature recorded during those months and the shorter days. In 

general, the total GDD data and plant maturity corresponded well with the accepted GDDs 

and sorghum development. 



 

23 

 

Table 2.2 Monthly average minimum (T min, °C) and maximum (T max, °C) air temperature, monthly total precipitation 

(mm), monthly total solar radiation (MJ m-2), and monthly average relative humidity at the Texas A&M AgriLife 

Research Center, Weslaco, TX. in 2013, 2016, and 30-year average. 

Parameter Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. 

Average 

/ Total 

 

---------- 2013 ---------- 

T min 11.5 14.8 15.2 17.4 21.8 24.5 24.6 24.8 23.6 20.5 13.8 10.0 18.6 

T max 21.7 26.5 27.2 29.1 31.3 35.4 35.4 35.6 32.1 31.3 24.0 19.8 29.1 

Precipitation  35.1 0 0 71.6 29.2 33.5 18.3 59.7 193.4 17.5 93.0 91.4 642.4 

Solar radiation  318.2 404.7 560.4 539.3 643.6 708.2 672.0 661.5 457.1 492.9 324.0 256.4 6038.4 

Relative humidity 0.74 0.66 0.62 0.72 0.73 0.70 0.69 0.70 0.80 0.71 0.75 0.78 0.72 

 

 ---------- 2016 ---------- 

T min 9.6 13.3 18.0 20.4 23.0 24.0 26.2 25.8 24.4 20.7 16.8 13.3 21.26 

T max 21.4 27.1 28.3 31.1 33.0 34.4 36.6 36.6 35.3 33.1 27.3 23.4 31.91 

Precipitation  37.3 0 62.5 29.5 56.6 167.6 4.1 32.8 56.6 3.0 47.5 12.2 472.4 

Solar radiation  350.0 527.0 537.3 601.9 611.1 727.5 810.3 733.2 581.8 580.6 363.1 218.0 6641.7 

Relative humidity 0.73 0.63 0.75 0.75 0.75 0.75 0.68 0.68 0.71 0.69 0.75 0.78 0.73 

 

 ---------- 30-year ---------- 

T min 9.4 11.3 14.7 18.2 21.6 23.7 24.2 24.1 22.4 18.6 14.4 10.9 19.28 

T max 21.5 23.6 26.8 29.9 32.4 34.7 35.6 36.0 33.6 30.9 26.2 22.7 30.88 

Precipitation  21.2 21.8 26.1 31.3 47.3 57.4 46.2 51.3 106.2 50.1 33.9 26.4 476.2 

Solar radiation  465.0 522.0 533.2 588.0 716.1 732.0 740.9 716.1 576.0 530.1 378.0 344.1 6841.5 

Relative humidity 0.70 0.68 0.65 0.65 0.68 0.68 0.68 0.65 0.69 0.68 0.70 0.70 0.68 
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Figure 2.2 Mean daily air temperature and daily total rainfall in years 2013 and 2016 

in Weslaco, TX. 
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Total precipitation (Table 2.2 and Figure 2.2) was excessive in 2013 with 642 mm 

compared to 472 mm in 2016 and 476 mm in the 30-yr average. Precipitation patterns 

were highly variable during each month during the study periods, resulting in different 

irrigation needs for each of the sowing seasons (Table 2.1). In 2013, the sorghums sown 

on April 23 needed more irrigation water (457 mm) due to the dry conditions observed in 

the previous months and during the beginning of the sowing season. While in 2016, the 

sorghums sowed on April 04, May 11, June 15, and July 14 (432, 381, 406, and 381 mm, 

respectively, required more irrigation water due to the interaction of high ET and low 

precipitation observed during that particular study period. 

During the study, monthly solar radiation values were like those recorded on the 

last 30-year average (Table 2.2). However, in 2013 less Rs was observed through the 

growing season because of the variations in cloud cover and the number of days with 

precipitation. September and December of 2013 observed (21 and 25%, respectively) less 

Rs than the 30-year average. While in 2016, July was the month with the most solar 

radiation received with a monthly value of 810 MJ m-2, followed by August and June with 

733.2 and 727.5 MJ m-2, respectively. As a result of the differences in Rs, the cumulative 

IPAR varied significantly for each sorghum hybrid throughout each sowing season and 

gradually declined through the end of each year. In general, mean daily PAR and 

cumulative IPAR were lower for those sorghums sown on early and late sowings.  

Photoperiod-sensitive sorghums continue in vegetative growth if the day’s length 

is more than the photoperiod trigger of 12:20 h, less than that will induce flowering. The 

number of days with the daylight of more than 12:20 h varied significantly throughout the 
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sowing seasons (Table 2.1). Sorghum hybrids sown between early April and the late May 

were those that received equal or more than 12:20 h of daylight during their time of 

growing. 

2.4.2. Dry biomass accumulation 

Total DB differed significantly among hybrids and sowing seasons during the two-

year study period (Table 2.3). There were significant differences in DB among the three 

hybrids (p < 0.05) at harvest for every sowing season in the two-year experiment, except 

for the experiments on the sowing dates of September 01, 2013 (p = 0.714) and August 

25, 2016 (p = 0.905). The calculated p-value for both Hybrid treatment and Season × 

Hybrid (S × H) interaction were significant. This significance implies that DB is 

responsive to the hybrids, but there is a difference in yield responses with respect to 

sowing seasons. A higher DB was observed in treatments that were sown between March 

and June during the study period. This higher productivity was due to the better weather 

conditions compared to the treatments sown from July to September. For the two-year 

study period, the DB ranged from 12.1 to 32.8 Mg ha-1 for all hybrids in all experiments 

(Figure 2.3). The lowest average DB observed was on the sowing date of September 01, 

2013 (12.1, 13.0, and 12.9 Mg ha-1 for Pioneer 877F, Blade ES 5140, and Blade ES 5200, 

respectively), and August 25, 2016 (12.6, 13.5, and 13.4 Mg ha-1 for Pioneer 877F, Blade 

ES 5140, and Blade ES 5200, respectively). While the highest average DB was observed 

on the sowing date of April 04, 2016 (22.7, 28.3, and 32.8 Mg ha-1 for Pioneer 877F, Blade 

ES 5140, and Blade ES 5200, respectively), and May 11, 2016 (24.7, 26.8, and 32.0 Mg 

ha-1 for Pioneer 877F, Blade ES 5140, and Blade ES 5200, respectively) (Table 2.4). 
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Table 2.3 Analysis of variance (p-values) of dry biomass productivity (DB), leaf area 

index (LAI), and water use efficiency (WUE) during the two-year study period. 

Year Effect / sowing date DB LAI WUE 

2013 Hybrid / 23 April < 0.001 < 0.001 0.001 

 Hybrid / 01 Sep. 0.714 0.330 0.281 

 Season (S) a a a 

 Hybrid (H) 0.002 < 0.001 0.003 

 S × H < 0.001 < 0.001 0.544 

2016 Hybrid / 01 March 0.001 < 0.001 0.042 

 Hybrid / 04 April 0.003 < 0.001 0.012 

 Hybrid / 11 May 0.015 < 0.001 0.039 

 Hybrid / 15 June 0.006 < 0.001 0.036 

 Hybrid / 14 July < 0.001 < 0.001 <0.001 

 Hybrid / 25 Aug. 0.905 0.236 0.910 

 Season (S) < 0.001 < 0.001 <0.001 

 Hybrid (H) < 0.001 < 0.001 <0.001 

 S × H < 0.001 < 0.001 0.008 

a = As the degree freedom is not adequate, a valid test of significance 

cannot be performed. 
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Figure 2.3 Modeled and averaged accumulation of total dry biomass productivity on 

all sowing seasons of 2016 for the three sorghum hybrids over time. The first 

inflection point is the end of the exponential phase and the beginning of the vegetative 

phase. The second inflection point is the end of the vegetative phase and the 

beginning of maturity. See Table 2.5. 
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Table 2.4 Mean dry biomass productivity (DB), green leaf area index (LAI), and 

cumulative intercepted photosynthetically active radiation (CIPAR) for the three 

sorghum hybrids in the two-year study period.[a] 

Sowing 

date 

Sorghum 

hybrid 

DB 

(Mg ha-1) 

LAI 

(m2 m-2) 

23 April, 2013 Pioneer 877F 19.500 b 3.39 c 

 Blade ES 5140 21.114 b 4.75 b 

 Blade ES 5200 28.350 a 5.55 a 

 LSD 1.938 0.316 

01 Sep., 2013 Pioneer 877F 12.057 n.s. 2.68 n.s. 

 Blade ES 5140 13.003 n.s. 2.57 n.s. 

 Blade ES 5200 12.886 n.s. 2.74 n.s. 

 LSD --- --- 

01 March, 2016 Pioneer 877F 24.606 b 3.27 c 

 Blade ES 5140 25.263 b 4.07 b 

 Blade ES 5200 30.370 a 4.43 a 

 LSD 1.745 0.137 

04 April, 2016 Pioneer 877F 22.711 c 3.23 c 

 Blade ES 5140 28.285 b 4.36 b 

 Blade ES 5200 32.774 a 5.04 a 

 LSD 3.358 0.213 

11 May, 2016 Pioneer 877F 24.667 b 3.25 c 

 Blade ES 5140 26.806 b 4.14 b 

 Blade ES 5200 31.998 a 5.41 a 

 LSD 3.881 0.344 

15 June, 2016 Pioneer 877F 22.464 b 3.23 c 

 Blade ES 5140 23.009 b 3.82 b 

 Blade ES 5200 28.101 a 4.67 a 

 LSD 2.462 0.153 

14 July, 2016 Pioneer 877F 17.839 b 2.91 b 

 Blade ES 5140 17.908 b 3.66 a 

 Blade ES 5200 23.047 a 3.67 a 

 LSD 1.146 0.144 

25 Aug.2016 Pioneer 877F 12.595 n.s. 2.92 n.s. 

 Blade ES 5140 13.504 n.s. 2.79 n.s. 

 Blade ES 5200 13.345 n.s. 3.09 n.s. 

 LSD --- --- 
[a] Means followed by different letters are significantly different 

according to LSD test at α < 0.05; n.s = not significant. 
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2.4.3. Leaf area index 

Leaf area index (LAI) differed significantly among hybrids and sowing seasons 

during the two-year experiment (Table 2.3). There were significant differences in LAI 

among the three hybrids (p < 0.05) at harvest for every sowing season in the two-year 

experiment, except for the experiments on the sowing dates of September 01, 2013 (p = 

0.330) and August 25, 2016 (p = 0.236). The calculated p-values for the Hybrid treatment 

and the Season × Hybrid (S × H) interaction were significant (p < 0.001). This result 

implies that LAI responses were different among hybrids, and in responses among sowing 

seasons. Higher LAI values were observed in sorghums that were sown between April and 

May, then decreased to half of the maximum LAI values through the rest of the sowing 

seasons (Table 2.4). The hybrids’ ranking over the sowing seasons was consistent among 

cultivars (Blade ES 5200 > Blade ES 5140 > Pioneer 877F), except for those sown on 

September 01, 2013, and August 25, 2016. The LAI of the hybrid Blade ES 5200 showed 

averaged values higher than 5 m2 m-2 when sown in April (in the two-year study) (Table 

2.4). While the Pioneer 877F hybrid showed the lowest LAI values during most of the 

experimental period except when sown on September 01, 2013, and August 25, 2016, 

since it was observed on those sowing dates no statistical differences among the three 

hybrids and the averaged LAI values were the lowest of the experiment. 

2.4.4. Crop growth rate 

Crop growth rate (CGR) of sorghum hybrids was analyzed under optimal water and 

nutrient condition for all the sowing seasons in the two-year study to define the dates of 

growth development phases (Figure 2.3). Table 2.5 presents the average CGR ranged from 
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0.108 to 0.309 Mg ha-1 d-1, and the maximum CGR values ranged from 0.167 to 0.636 Mg 

ha-1 d-1. For the Pioneer 877F, the average CGR varied from 0.108 to 0.203 Mg ha-1 d-1 

across the sowing seasons. The highest CGR of the hybrid Pioneer 877F was observed 

when sown on the dates of March 01, 2016, and May 11, 2016, with 0.203 and 0.202 Mg 

ha-1 d-1, respectively; while the lowest values were observed on September 01, 2013, and 

August 25, 2016, with 0.115 and 0.108 Mg ha-1 d-1, respectively. For the Blade ES 5140, 

the average CGR varied from 0.113 to 0.230 Mg ha-1 d-1 across the sowing seasons. The 

highest CGR values of Blade ES 5140 were observed when sown on the dates of April 04, 

2016, and May 11, 2016, with 0.203 and 0.202 Mg ha-1 d-1, respectively; while the lowest 

values were observed on September 01, 2013, and August 25, 2016, with 0.125 and 0.113 

Mg ha-1 d-1, respectively. For the Blade ES 5200, the average CGR varied from 0.120 to 

0.309 Mg ha-1 d-1 across the sowing seasons. The highest CGR values of Blade ES 5200 

were observed when sown on the dates of March 01, 2016, and April 04, 2016, with 0.309 

and 0.265 Mg ha-1 d-1, respectively; while the lowest values were observed on September 

01, 2013, and August 25, 2016, with 0.126 and 0.120 Mg ha-1 d-1, respectively. 
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Table 2.5 Results of the growth curve fitting and crop growth rate (CGR, Mg ha-1 d-1) of the three sorghum hybrids at 

each sowing season. 
Sowing  

date 

Sorghum 

hybrid 

P1 

(doy) 

P2 

(doy) 

CGR at  

P1 and P2 

Pmax 

(doy) 

Maximum 

CGR 

Average  

CGR 

Apr. 23, 2013 Pioneer 877F 160 192 0.267 176 0.401 0.173 

 Blade ES 5140 174 197 0.424 185 0.636 0.201 

 Blade ES 5200 173 208 0.389 190 0.583 0.259 

Sep. 01, 2013 Pioneer 877F 279 319 0.139 299 0.209 0.115 

 Blade ES 5140 277 317 0.153 297 0.230 0.125 

 Blade ES 5200 277 315 0.161 296 0.241 0.126 

Mar. 01, 2016 Pioneer 877F 126 167 0.289 146 0.433 0.203 

 Blade ES 5140 120 156 0.316 138 0.474 0.207 

 Blade ES 5200 124 169 0.326 147 0.489 0.309 

Apr. 04, 2016 Pioneer 877F 153 194 0.255 174 0.382 0.185 

 Blade ES 5140 153 195 0.314 174 0.470 0.230 

 Blade ES 5200 153 189 0.404 171 0.606 0.265 

May 11, 2016 Pioneer 877F 185 232 0.249 209 0.374 0.202 

 Blade ES 5140 179 220 0.302 200 0.453 0.222 

 Blade ES 5200 184 235 0.306 209 0.460 0.261 

June 15, 2016 Pioneer 877F 212 273 0.189 243 0.283 0.183 

 Blade ES 5140 210 259 0.214 235 0.321 0.185 

 Blade ES 5200 211 261 0.262 236 0.393 0.228 

July 14, 2016 Pioneer 877F 230 277 0.175 253 0.263 0.146 

 Blade ES 5140 225 277 0.160 251 0.240 0.142 

 Blade ES 5200 234 278 0.250 256 0.375 0.195 

Aug. 25, 2016 Pioneer 877F 259 319 0.111 289 0.167 0.108 

 Blade ES 5140 261 314 0.126 288 0.190 0.113 

 Blade ES 5200 261 304 0.158 283 0.237 0.120 

P1 = the first inflection of the growth curve rate. It indicates: (1) the end of the exponential phase, (2) the beginning of the linear 

(vegetative) phase of the crop, and (3) is where the maximum acceleration of growth occurs. 

P2 = the second inflection point of the growth rate curve. It indicates: (1) the end of the linear phase, (2) the beginning of the mature or 

senescent phase, and (3) the maximal negative acceleration of growth. 

Pmax = inflection of the sigmoid curve. It indicates: (1) the point where the growth rate attains its maximum, and (2) where zero 

acceleration of growth occurs. 
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2.4.5. Water use efficiency 

Water use efficiency (WUE) was determined as the slope of a first-order linear 

regression between DB observed on all sampling dates versus the corresponding 

cumulative crop water use (Table 2.6 and Figure 2.4). Analysis of variance (Table 2.3) of 

the WUE values showed significant differences among the three sorghum hybrids (p < 

0.05) at harvest in the two-year experiment, except for those experiments sown on 

September 01, 2013 (p = 0.281), and August 25, 2016 (p = 0.910). In the “over the season” 

analysis of variance, the calculated p-values for the Hybrid treatment and the Season × 

Hybrid interaction were significant. This significance implied that WUE varied among 

sorghum hybrids, but there was a difference in response among the sowing seasons. Table 

2.7 shows the statistics for the linear regression between DB and cumulative CWU for 

each sorghum hybrid at every sowing season. The highest values of WUE were observed 

in the energy hybrids (Blade ES 5200 > Blade ES 5140 > Pioneer 877F). The response in 

WUE varied significantly among the sowing seasons (Figure 2.4a). The average WUE 

varied from 3.634 to 7.042 kg m-3 among all experimental units. For the Pioneer 877F, the 

highest WUE value was observed on those sorghums sown on March 01, 2016, and May 

11, 2016, with 6.395 and 5.055 kg m-3, respectively; and the lowest when sown on July 14 

and August 25, 2016, with 3.634 and 3.854 kg m-3, respectively. For the hybrid Blade ES 

5140, the highest WUE values were observed on those sorghums sown on March 01, 2016, 

and April 04, 2016, with 6.587 and 5.897 kg m-3, respectively, and the lowest on August 

25, 2016, and April 23, 2013, with 4.003 and 4.229 kg m-3. For the hybrid Blade ES 5200, 

the highest WUE values were observed on the sowing dates of March 01, 2016, and April 
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04, 2016, with 7.042 and 6.654 kg m-3, respectively; and the lowest values were observed 

on August 25, 216, and July 14, 2016, with 4.002 and 4.973 kg m-3, respectively. 
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Table 2.6 Precipitation (P, mm), irrigation water applied (I, mm), change in soil water content (ΔSW, mm), seasonal crop 

water use (CWU, mm), slope (WUE, kg m-3), coefficient of determination (R2), standard error of the slope (SE), 

significance probability (p-value), intercept coefficient (b) for the linear regression, and water loss (WL, mm) between 

dry biomass productivity (DB, g m-2) and accumulated crop water use (mm). 
Sowing date Sorghum hybrid P I ΔSW CWU WUE[a] R2 SE[b] p-value[c] b WL 

April 23, 2013 Pioneer 877F 152 457 18 627 3.872 a 0.97 0.4795 0.0150 -362.86 94 

 
Blade ES 5140 152 457 30 639 4.229 b 0.96 0.5863 0.0187 -434.83 103 

 
Blade ES 5200 152 457 37 646 5.296 b 0.98 0.5251 0.0097 -626.86 118 

 
LSD --- --- --- --- 0.485 --- --- --- --- --- 

Sep. 01, 2013 Pioneer 877F 306 25 27 358 4.92 ns 0.73 2.1152 0.1455 -447.24 91 

 
Blade ES 5140 306 25 32 363 5.286 ns 0.76 2.1126 0.1294 -496.81 94 

 
Blade ES 5200 306 25 30 361 5.808 ns 0.76 2.2774 0.1255 -660.05 114 

 
LSD --- --- --- --- 1.228 --- --- --- --- --- 

Mar. 01, 2016 Pioneer 877F 177 279 23 479 6.395 b 0.99 0.215 0.0011 -670.68 105 

 
Blade ES 5140 177 279 30 486 6.587 ab 0.99 0.487 0.0054 -622.68 95 

 
Blade ES 5200 177 279 44 500 7.042 a 0.97 0.912 0.0164 -574.63 82 

 
LSD --- --- --- --- 0.468 --- --- --- --- --- 

April 04, 2016 Pioneer 877F 131 432 5 568 4.688 b 0.99 0.283 0.0036 -478.98 102 

 
Blade ES 5140 131 432 12 575 5.897 a 0.99 0.512 0.0075 -651.40 110 

 
Blade ES 5200 131 432 23 586 6.654 a 0.99 0.227 0.0012 -664.87 100 

 
LSD --- --- --- --- 0.960 --- --- --- --- --- 
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Table 2.6 Continued. 
Sowing date Sorghum hybrid P I ΔSW CWU WUE[a] R2 SE[b] p-value[c] b WL 

May 11, 2016 Pioneer 877F 201 381 10 592 5.055 b 0.99 0.1123 0.0005 -502.74 99 

 
Blade ES 5140 201 381 19 601 5.384 b 0.99 0.15 0.0009 -512.72 95 

 
Blade ES 5200 201 381 31 613 6.288 a 0.99 0.1643 0.0007 -613.91 98 

 
LSD --- --- --- --- 0.870 --- --- --- --- --- 

June 15, 2016 Pioneer 877F 118 406 15 539 4.500 b 0.97 0.5414 0.0142 -260.65 58 

 
Blade ES 5140 118 406 26 550 4.653 b 0.99 0.1011 0.0005 -226.48 49 

 
Blade ES 5200 118 406 29 553 5.572 a 0.97 0.7372 0.0171 -406.30 73 

 
LSD --- --- --- --- 0.779 --- --- --- --- --- 

July 14, 2016 Pioneer 877F 130 381 8 519 3.634 b 0.95 0.5970 0.0260 -20.00 6 

 
Blade ES 5140 130 381 22 533 3.626 b 0.96 0.5086 0.0191 -22.39 6 

 
Blade ES 5200 130 381 31 542 4.973 a 0.96 0.6874 0.0187 -158.55 32 

 
LSD --- --- --- --- 0.170 --- --- --- --- --- 

Aug. 25, 2016 Pioneer 877F 140 254 25 419 3.854 ns 0.83 1.2308 0.0886 -97.81 25 

 
Blade ES 5140 140 254 24 418 4.003 ns 0.82 1.3423 0.0964 -125.62 31 

 
Blade ES 5200 140 254 31 425 4.002 ns 0.68 1.9514 0.1768 -26.97 7 

 
LSD --- --- --- --- 1.078 --- --- --- --- --- 

[a] Means followed by different letters are significantly different according to LSD test at α < 0.05; ns = not significant. 
[b] SE measures the precision of the regression analysis. The smaller the number, the more confidence about the regression equation. 
[c] For regression analysis, a p-value less than 0.05 means the model is acceptable; if a p-value greater than 0.05 means the independent (explanatory) 

variable does not influence the dependent variable. 
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Figure 2.4 a) Linear regressions between dry biomass productivity and accumulated 

crop water use for the three sorghum hybrids at each sowing season, and b) averaged 

WUE on each sowing season of the growing season of 2016. 

 

 

 

2.5. Discussion 

This chapter evaluated the potential productivity and growth response of three 

biomass sorghums under variable timed sowing dates regarding the accumulation of DB 

and LAI with time, growth rate, and dry biomass per unit of water. The experiments 
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conducted in this chapter were designed to provide optimal growth conditions for the three 

sorghum hybrids. 

The accumulated DB was different among the three hybrids across different 

sowing seasons. Sorghums sown from March to June showed similar yields, while the 

yield was lower for those sown from July to September (Table 2.3). The DB yield was 

lower by more than 50% when the sorghum hybrids were sown in August or later despite 

being well irrigated and fertilized. The observed low DB in all hybrids sown on September 

01, 2013, July 14, 2016, and August 25, 2016, was possibly due to the following causes: 

late sowings, variation in the weather conditions, lower ET demands (332, 473 and 365 

mm, respectively), a small amount of solar radiation captured by the plants (1394, 2473 

and 1832 MJ m-2, respectively) causing low accumulated IPAR, the low GDD, and for the 

limited number of days with more than 12:20 h of daylength (13, 62 and 20 days, 

respectively) (Table 2.1) during the time that the crop was standing. These causes indicate 

that biomass accumulation in sorghum hybrids is affected combinedly by weather 

conditions, crop management, and the plant’s efficiency to intercept solar energy and 

convert it in dry biomass (this last point is studied in Chapter 4). The maximum averaged 

yields observed on the hybrid Blade ES 5200 (32.8 Mg ha-1 from the sowing date of April 

04, 2016, and 32.0 Mg ha-1 from the sowing date of May 11, 2016) were comparable to 

those reported in Temple, TX, by Meki et al. (2017) who obtained a maximum yield of 

37.4 Mg ha-1. Similarly, Rinaldi and Garofalo (2011) obtained 34.07 Mg ha-1 under full 

irrigation in Southern Italy; and Dercas and Liakatas (2007) reported 31 Mg ha-1 in Greece 

with 680 mm of cumulative ET.  
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The term LAI describes the sum of areas of all leaves in the foliage per unit area 

of ground. Leaf area development is critical for crop light interception and dry matter 

production, and hence it has a substantial influence on crop yield (Sinclair, 1984). With a 

decrease in LAI, also the interception of solar radiation and photosynthesis are both 

reduced. Therefore, LAI is a determinant parameter that affects the amount of IPAR and 

respiration, both of which are essential functions to achieve maximum crop production. 

The LAI values obtained in our study are similar to those reported by Rinaldi and Garofalo 

(2011), who reported the LAI values between 5.52 and 6.39 m2 m-2 of biomass sorghum 

in a full irrigation experiment. However, Ceotto et al. (2013) and Olson et al. (2012), in a 

similar experiment, reported higher LAI values that ranged from 7.0 to 8.4 m2 m-2, 

respectively. According to Bégué (1993), the crops with LAI greater than 4.0 can intercept 

more than 90% of the incident PAR. The hybrids Blade ES 5140 and Blade ES 5200 

showed a high capacity to intercept PAR when they were sown from March to June.  

Crop growth rate (CGR) is the principal determinant analyzing biomass sorghum 

growth and its relation to light interception. Based on the sorghum DB obtained in the 

field experiments across all sowing seasons, the DB accumulation was modeled for each 

sorghum hybrid at each sowing season. The constant parameters that describe the shape 

of the growth curve were obtained by nonlinear regression analysis. After deriving a 

relationship between productivity and sowing date from a sigmoidal equation, it was 

fundamental to know the rate at which sorghum grew at each sowing season (Table 2.5). 

The curve slope is known as the CGR, defined as the rate of DB change with time. The 

results obtained from those analyses were similar to those reported by Meki et al. (2017), 



 

40 

 

who observed an average CGR in biomass sorghum of 0.225 Mg ha-1 d-1 in 2013 in 

Temple, Texas. The potential DB of a crop can be obtained from the product of the growth 

rate times the duration of growth (Ritchie, 1998).  

The rate of biomass accumulation is primarily influenced by the amount of light 

intercepted by plants over an optimum temperature range (Ritchie et al., 1998). Therefore, 

sorghum hybrids are entirely regulated by the accumulation of growing degree days and 

daylength photoperiod triggers; because, according to Childs et al. (1997), daylength is 

the most critical climatic factor that regulates flowering in sorghum hybrids. This relation 

between growing degree days, day length, and biomass yield was observed in this study. 

According to Rooney et al. (2007), photo-sensitive sorghums will not flower or produce 

high biomass through continued vegetative growth if sown when the day length is more 

than the photoperiod trigger of 12:20 h. Sorghum entered a linear (vegetative) period when 

it reached a full canopy cover, and light interception and photosynthesis were maximal. 

So, the sorghum growth rate varied mainly with changes in solar radiation and sowing 

seasons. Then, the sorghum declining phase of crop growth was due to maturation and 

senescence. The sorghum growth rate also declined as solar radiation and temperature 

decreased towards the end of summer or late sowings. Seasonal sorghum production was 

highest when the full cover was achieved early in the sowing seasons and maintained 

through the growing season with favorable weather conditions. Water and nutrient uptake 

occurred meanly during the vegetative growth phase when large amounts of water and 

nutrients were needed to create a photosynthesis mechanism in leaves. Thus, a more 

significant portion of biomass accumulation was obtained during the linear growth period. 



 

41 

 

Differences in WUE occurred among hybrids across sowing seasons or years due 

to differences in weather conditions, crop management, and crop capacity to extract water 

from the soil and produce biomass. In this study, irrigation demands varied across sowing 

seasons (Table 2.6). During the sowing season of April 23, 2013, April 04, 2016, and June 

15, 2016, more irrigation was applied (457, 432, and 406 mm) to meet the needs of the 

crop (Table 2.6) due to the higher water demand caused by high temperatures (which were 

higher than the 30-year average) and the scarce rainfall observed. In general, rainfall 

pattern across sowing seasons was not uniform, resulting in fewer events with more 

rainfall, which produced less effective rainfall for crop growth. Thus, it was necessary to 

increase the number of irrigation events to keep the soil close to field capacity by providing 

the water needed for the crop during most sowing seasons.  

This study’s WUE results are within the range of 2.8 to 12.6 kg m-3 for 49 sorghum 

lines reported by Hammer et al. (1997). Other authors observed WUE values similar to 

those presented in this chapter. For instance, this chapter results agree with those reported 

by Narayanan et al. (2013), who reported WUE values ranging from 3.39 to 7.63 kg m-3. 

In another study in the High Plains of Texas, the WUE values between 3.0 and 4.7 kg m-

3 were observed (Rooney et al., 2007). Higher WUE values were observed because of the 

higher biomass productivity observed, notably, in those sowing seasons under better 

weather conditions for biomass sorghum growth. 

The water lost during the study period ranged from 6 to 118 mm (Table 2.6). In 

most cases, weather conditions were the principal factor related to water loss. The higher 

water loss observed during the study period resulted from the atypical weather conditions. 
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The crop used only a minimal proportion of that excessive, intensive, and nonuniform 

rainfall between late May, early June, and early September; therefore, the rest was lost. 

2.6. Conclusion 

The results obtained in this study show that the effect of crop variety and sowing 

date has a crucial impact on the sorghum development. Sorghum development among 

hybrids was sensitive to temperature, solar irradiance, and photoperiod. Differences in 

response among sorghum hybrids were observed on DB, LAI, CGR, and WUE under 

different sowing seasons. 

Energy sorghums exhibited the highest potential in DB productivity and LAI. They 

were most cost-effective when sown during March, April, and May, producing more than 

30 Mg per ha in South Texas if supplied with adequate water and nutrients. 

The biomass sorghum growth rate is influenced mainly by the hybrid, solar 

radiation, and temperature. Maximum growth rates are obtained with energy sorghums 

when they are sown in early sowings. Higher growth rates are observed when sorghum is 

sown from March to early June. 

Higher WUE values can be obtained in early sowings, despite the higher amount 

of irrigation water applied, because of the high biomass productivity of biomass sorghum 

when the sowing took place from March to early June. The WUE results suggest that the 

energy sorghum hybrids have a high potential for producing up to 33 Mg of dry biomass 

ha-1 with 530 mm of water using drip irrigation. In comparison, the forage hybrid produced 

approximately 20 Mg of dry biomass ha-1 with 476 mm of water. 
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Yearlong production of biomass sorghum is required for the optimum operation of 

a biorefinery. Therefore, staggered sowing of biomass sorghum hybrids is an excellent 

alternative for providing a continuous supply of feedstock for a biorefinery to ensure its 

optimum function. It should be considered that the land area may need to be staggered 

sown with different sorghum hybrids and adapted according to the sowing date.
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3. CALIBRATION AND EVALUATION OF THE EPIC MODEL FOR FULL AND 

LIMITED IRRIGATED BIOMASS SORGHUM PRODUCTION 2 

 

3.1. Synopsis 

Crop simulation models are suitable decision support tools for assessing biomass 

production and crop water use under different spatial and climatic conditions. Calibration 

of simulation models to local conditions is a necessary procedure to improve model’s 

reliability. This chapter’s objective was to calibrate and evaluate the Environmental Policy 

Integrated Climate (EPIC) model to produce biomass sorghum under different irrigation 

levels. The calibrated model was then used to simulate crop biomass productivity and crop 

water use to identify appropriate irrigation strategies. This study was conducted at the 

Texas A&M AgriLife Research Center in Weslaco, Texas, during the growing seasons of 

2013 and 2015. Simulations were performed to determine the total dry biomass, leaf area 

index (LAI), crop water use (CWU), the relationship between crop productivity and crop 

evapotranspiration (ETc), and water use efficiency (WUE). Simulated ETc agreed well 

with estimates from a weather station, except for a few simulation events. The statistical 

parameters derived from measured versus simulated dry biomass indicated that the model 

performed well (R2 = 0.99 and PBIAS = -5.35%). The calibrated model showed great 

potential for simulating the total dry biomass. At full irrigation, the difference between 

 

2 Part of this section is reprinted with permission “Simulation of Energy Sorghum under Limited Irrigation 

Levels using the EPIC Model” by Chavez J.C., Enciso J., Meki M.N., Jeong J., Singh V.P. Transactions of 

the ASABE Vol.61(1): 121-131. https://doi.org/10.13031/trans.12470. Copyright 2018 American Society 

of Agricultural and Biological Engineers. 

https://doi.org/10.13031/trans.12470
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measured and simulated total dry biomass was 4.3% in 2013 and 3.0% in 2015. This study 

showed that biomass sorghum requires approximately 600 mm of water for up to 24 Mg 

ha-1 of total dry biomass production. It also demonstrated that the EPIC model could assess 

crop water use and total biomass under limited irrigation levels, especially in semi-arid 

regions. 

3.2. Introduction 

Simulation models are increasingly gaining favor as decision support tools for 

managing and assessing crop production and crop water use (Ko et al., 2009). Food and 

fiber production face many challenges, particularly in regions where water resources are 

limited. Several studies have demonstrated the utility of crop simulation models as useful 

technological tools to determine crop productivity and irrigation requirements at the farm, 

county, and state levels (Rinaldi, 2001; Guerra et al., 2003, 2005, 2007; Heinemann et al., 

2002; Liu et al., 2007). These crop modeling studies were focused on finding management 

strategies to maximize food production without compromising land and water resources. 

However, crop simulation models must be calibrated and validated before being used as 

decision tools. 

One of the most robust crop models is the Environmental Policy Integrated Climate 

(EPIC) model, which was originally developed to evaluate the relationship between soil 

erosion and soil productivity in the U.S. (Williams et al., 1985). EPIC has been 

continuously improved to allow simulations of many environmental processes (Sharpley 

and Williams, 1990; Williams et al., 1985). Ko et al. (2009) used the EPIC crop model to 

evaluate its application as a decision support tool for irrigation and management of cotton 
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and maize to determine crop yield, crop water use, and the relationship between yield and 

crop water parameters in southern Texas regions. Balkovič et al. (2013) evaluated the 

ability of a Pan-European EPIC implementation to predict long-term average crop yields 

at a regional level and reproduced interannual variability of winter wheat, spring barley, 

rainfed and irrigated maize, and winter rye. In a study carried out in southern Italy, the 

EPIC model was used to assess climate change effects on sorghum hay production under 

different future climate scenarios (Rinaldi and De Luca, 2012). 

Wang et al. (2012) described procedures for field-scale calibration and validation 

of EPIC, emphasizing relevant calibration parameters and guidance regarding logical 

sequences of calibration steps. Some studies have calibrated EPIC for crop-growing 

regions. For instance, Wang et al. (2014) presented a study conducted at an experimental 

station in China in which they calibrated and validated a model based on CHAIN_2D 

(Šimůnek et al., 2008) coupled with the EPIC growth model to simulate dynamic root 

growth, root water uptake, and crop yield under furrow irrigation. Xiong et al. (2014) 

examined the effects of calibration, step by step, of EPIC for a global implementation of 

rice cropping systems, identifying four important parameters controlling plant growth 

(potential heat units, planting density, harvest index, and biomass energy ratio). Because 

of the growing interest in applying simulation models to evaluate crop production better, 

calibration is necessary to improve model reliability. 

A significant portion of marginal croplands remains idle every year because of 

low-profit margins, high water pumping costs, and limited water supplies. In recent years, 

water availability has been one of the critical factors for crop production. To offset the 
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reduced availability of water in agriculture, cropping patterns may need to adapt to 

irrigation water availability and climate variability to sustain agricultural production in 

these areas. Although field experimentation is necessary to provide data for model 

evaluation, crop models may be useful tools for obtaining information on possible 

outcomes without extensive and expensive field experiments. 

This chapter’s objective was to calibrate and evaluate the EPIC model for the production 

of biomass sorghum under different irrigation levels using data derived from field 

experiments conducted at the Texas A&M AgriLife Research Center in Weslaco, Texas, 

over two years. The model was used to simulate crop biomass productivity and crop water 

use to identify appropriate irrigation strategies. The results of this study will allow farmers 

and other stakeholders to identify opportunities for saving water while improving biofuel 

crop production. 

3.3. Material and methods 

3.3.1. Model description 

The EPIC model was chosen due to its proven high performance in simulating 

different cropping systems under diverse climatic conditions (Williams et al., 1989; 

Sharpley and Williams, 1990; Rinaldi and De Luca, 2012). EPIC consists of components 

that include crop growth, hydrology, weather simulation, nutrient cycling, pesticide fate, 

erosion and sedimentation, soil temperature, tillage, economics, and plant environment 

control (Williams et al., 1989). EPIC performs long-term simulations continuously using 

a daily time step. EPIC provides five options for estimating potential evapotranspiration 

(PET) that allow the user to simulate ETc for different regions. The PET equations are as 
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follows: Penman (Penman, 1948), Penman-Monteith (Monteith, 1965), Priestley-Taylor 

(Priestley and Taylor, 1972), Hargreaves-Samani (Hargreaves and Samani, 1985), and 

Baier-Robertson (Baier and Robertson, 1965). Daily precipitation, maximum and 

minimum air temperature, and solar radiation are weather input variables that are 

considered essential. Wind speed and relative humidity are also needed if the Penman 

methods are selected to estimate reference evapotranspiration. These weather variables 

can all be entered by the user or generated by the model at runtime. Crop development is 

simulated, based on daily heat unit accumulation (Williams et al., 1989). Potential biomass 

weight is calculated daily based on photosynthetically active radiation and radiation-use 

efficiency. It is then adjusted to the actual biomass through daily stresses due to extreme 

temperatures, inadequate aeration, and water or nutrient deficiencies. EPIC calculates crop 

yield using the ratio of economic yield to aboveground biomass at harvest, defined as the 

harvest index. 

The plant growth sub-model in EPIC simulates crop rotations and other 

cropping/vegetation systems, such as agronomic crops, pasture, and trees (Wang et al., 

2012). Each crop has unique values of model parameters. The values of several yield-

related parameters used for crop simulation in this study are listed in Table 3.1. The 

biomass to energy ratio (WA) is the crop parameter for converting solar energy into 

biomass, also called radiation-use efficiency. The Soil Conservation Service (SCS) curve 

number index coefficient (PARM 42) regulates PET’s effect in driving the SCS curve 

number retention parameter. The retention parameter impacts the runoff volume and the 

changes in soil water content. The root soil strength (PARM 2) is set to minimize the soil 
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strength constraint on root growth. Potential heat units (PHU) are the total heat units 

required by the crop to reach maturity. The harvest index (HI) is the ratio of economic 

yield to aboveground biomass. The maximum leaf area index (DMLA) is the maximum 

leaf area index that the crop can attain. Optimum temperature (TOP) is when the crop will 

grow without being damaged by heat. Base temperature (TBS) is the minimum 

temperature at which the crop will grow without being damaged by cold. Available soil 

water capacity, which is the amount of water stored in the soil and available for growing 

crops, is also a critical parameter in EPIC. 
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Table 3.1 Default and adjusted of the most important parameters for simulation of biomass sorghum. 

Parameter Description Default value Range Adjusted value 

WA Biomass-energy ratio, which is the potential growth 

rate per unit of IPAR (also called radiation-use 

efficiency) (kg ha-1 MJ-1 m2) 

33.9 10 - 100 36.9 

PARM 42 SCS curve number index coefficient 1.5 0.5 – 1.5 0.5 

PARM 2 Root growth soil strength 1.5 1.15 – 2.0 1.15 

PHU Potential heat units required by the plant from 

germination to reach maturity (degree days) 

0 1 - 5000 2200 

 

PARM 13 Hargreaves-Samani PET equation exponent 0.6 0.5 - 0.6 0.5 

PARM 38 Hargreaves-Samani PET equation coefficient  0.0032 0.0023 – 0.0032 0.0027 

ORHI Ratio of economic yield to the total aboveground 

biomass (g g-1) 

0.95 0 – 1.0 0.95 

DMLA Maximum potential of leaf area index (m2 m-2) 6.34 1 - 15 6.34 

TOP Optimal temperature for plant growth (°C) 25 0.5 – 100 25 

TBS Minimum temperature at which the crop will grow 

without being physiologically damaged by cold (°C) 

8 0 - 130 8 

HMX The greatest potential height the crop will reach (m) 3.99 0.1 – 30 3.99 
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3.3.2. Field experiment and measured data 

Measured data for evaluating the EPIC crop model’s performance in simulating 

biomass sorghum growth and productivity were obtained from field experiments 

conducted during the spring growing seasons of 2013 and 2015 at the Texas A&M 

AgriLife Research Center located in Weslaco, Texas (26° 10’ 1.76’’ N, 97° 56’ 25.85’’ 

W, 24 m above sea level). The study area (Figure 2.1) has a semi-arid climate, and the 

average annual rainfall is 558 mm. The soil is a Hidalgo silt clay loam (fine-loamy, mixed, 

hyperthermic Typic Calciustolls). Table 3.2 lists the data for each layer in the top 2 m of 

the soil profile. Preliminary soil data were measured at the 0.2 m depth. The 0.2 m soil 

depth presented the following characteristics: organic matter = 0.67%, nitrate-N = 0.009 

g kg-1, phosphorus = 0.057 g kg-1, soil pH = 8.2, upper limit of available water = 0.24 m3 

m-3, lower limit of available water = 0.16 m3 m-3, clay = 27%, sand = 40.1%, and electrical 

conductivity = 0.274 dS m-1. The remaining soil layers’ properties were determined, based 

on the Hidalgo sandy loam data in the Soil Survey Geographic (SSURGO) database 

(USDA, 2013). 
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Table 3.2 Soil conditions of the study area. The soil properties obtained from the 

NRCS SSURGO database (USDA, 2013) for the soil type: Hidalgo silt clay loam (0-

1%). 

Soil Property 

Soil Layers 

1 2 3 4 5 

Depth (m) 0.2 0.43 0.71 0.97 2.00 

Bulk density (Mg m-3) 1.45 1.45 1.4 1.4 1.5 

Available water:      

     Lower limit (m3 m-3) 0.16 0.08 0.14 0.14 0.14 

     Upper limit (m3 m-3) 0.24 0.2 0.23 0.23 0.23 

Sand content (g kg-1) 401 630 480 350 300 

Silt content (g kg-1) 329 190 250 350 400 

Soil pH 8.2 8.2 8.2 8.2 8.2 

Organic matter content (%) 0.67 1 0.65 0.3 0.2 

Calcium carbonate content (g kg-1) 30 30 90 230 230 

Cation exchange capacity (cmol kg-1) 9.5 9.5 13 14 16 

Electrical conductivity (dS m-1) 0.27 1.0 1.5 2.0 2.0 

 

 

 

 

Weather inputs were obtained using an automatic weather station (model ET106, 

Campbell Scientific, Logan, Utah) located 100 m away from the experimental plots. This 

weather station uses a TE525 tipping-bucket rain gauge (Texas Electronics, Dallas, Tex) 

for measuring rainfall, a CS500 sensor (Vaisala, Helsinki, Finland) placed 2 m above 

ground level for measuring of maximum and minimum air temperature and relative 

humidity, a LI200X pyranometer (LI-COR Biosciences, Lincoln, Neb.) for measuring 

total irradiance, and a 034A wind set (Campbell Scientific, Logan, Utah) placed 3 m above 

ground level for measuring wind speed. All weather data were averaged at hourly intervals 

using a CR10X data logger. The weather data were used for irrigation scheduling with the 

South Texas Weather Program (STWP, http://southtexasweather.tamu.edu) (Enciso et al., 

http://southtexasweather.tamu.edu/
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2015), which is an internet program posted online. The STWP used for field experiments 

used a water balance approach and estimated ETo with the FAO-56 Penman-Monteith 

equation, which was multiplied by specific crop coefficients (Kc) recommended by FAO-

56 for Sudan grass to get crop evapotranspiration (ETc) (Allen et al., 1998). The irrigation 

scheduling program estimated the irrigation timing and amount needed to achieve a 

predetermined allowed depletion level, which is 60% for the soil at the experimental site. 

Table 3.3 provides a monthly summary of the observed weather data for the two-year 

growing seasons. 
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Table 3.3 Summary of monthly weather data for 2013 and 2015 growing seasons at the Texas A&M AgriLife Research 

Center, Weslaco, Texas.[a] 

Year Parameter March April May June July August Total Mean 

2013 

T max (°C) - 29.1 31.3 35.4 35.4 35.6 - 33.4 

T min (°C) - 17.5 21.8 24.5 24.6 24.8 - 22.6 

Srad (MJ m-2) - 539.3 643.5 708.2 672.0 661.5 3224.5 - 

Prec (mm) - 72 29 34 18 60 213 - 

RH (%) - 72 73 70 69 70 - 71 

Wv (m s-2) - 3.00 3.05 2.80 2.69 2.36 - 2.78 

2015 

T max (°C) 23.5 29.1 31.3 34.0 37.3 - - 31.0 

T min (°C) 14.5 20.7 22.9 24.0 24.8 - - 21.4 

Srad (MJ m-2) 337.7 421.5 528.2 597.3 693.2 - 2577.8 - 

Prec (mm) 108 106 100 48 25 - 387 - 

RH (%) 83 81 79 75 71 - - 78 

Wv (m s-2) 1.99 2.52 3.11 2.46 3.23 - - 2.66 
[a] T max = maximum daily air temperature, T min = minimum daily air temperature, Srad = solar radiation, Prec = precipitation, 

RH = relative humidity, Wv = wind velocity. 
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A biomass sorghum hybrid, Blade ES 5200, was sown on 1.02 m (40 in.) wide 

rows on 23 April 2013 and 24 March 2015. The plots used for the experiments were 4.06 

m wide and 91.44 m long. Sorghum seeds were sown at a plant density of 115,000 plants 

ha-1 on raised beds to accommodate furrow irrigation. The plant density after emergence 

was about 100,000 plants ha-1 in both years. Fertilization and irrigation management are 

shown in Table 3.4. All plots received nitrogen fertilizer at a rate of 100 kg ha-1 as urea 

ammonium nitrate (UAN; 32% mass fraction of N) applied in two equal split applications. 

The same total fertilizer amount was used on all plots in the experiment. 

 

 

 

Table 3.4 Agronomic and irrigation data of energy sorghum at the Texas A&M 

AgriLife Research Center, Weslaco, Texas, in 2013 and 2015. 

Activity 2013 2015 

Sowing date 4/23 3/24 

Harvesting date 8/13 7/08 

Length of growing season (days) 112 106 

Growing season precipitation (mm) 163 284 

Limited irrigation treatment; planting irrigation (mm) 125 0 

Full irrigation treatment; four irrigations (mm) 304 54 

Reference ET (mm) 613 442 

Sorghum ET (mm)[a] 598 424 

Fertilizer: N32 (kg ha-1) 100 100 
[a] ET was estimated by the STWP using the FAO-56 Penman-Monteith equation 

and crop coefficients suggested by FAO-56 for Sudan grass (Allen et al., 1998). 

 

 

 

Two water application levels were used in this study: limited irrigation and full 

irrigation. There were three replications for the limited and full irrigation levels in both 

years. Full irrigation was achieved by irrigation to replace crop water use as determined 
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by the irrigation scheduling program previously described. In 2013, full irrigation was 

conducted with four irrigation events, and limited irrigation was conducted with one 

irrigation at sowing. However, 2015 was a wet year, and only one irrigation was applied 

for the full irrigation treatment and none for the limited treatment. The sorghum was 

irrigated using furrow irrigation. In 2013, irrigation at sowing (125 mm) was applied to 

the limited irrigation treatment to facilitate seed germination. However, irrigation at 

sowing was not necessary for 2015, because it was wet enough to ensure germination. The 

amount of water applied was recorded with totalizing water meters connected to the 

irrigation system. One flowmeter was used for all the furrow-irrigated plots. The furrows 

were blocked at the end. Irrigation was stopped when the water reached the lower end of 

the furrow to avoid runoff. 

Crop development was monitored four times in 2013 between May and August 

and seven times in 2015 between April and July through destructive and non-destructive 

measurements. Measured plant variables included fresh and dry weight, open and closed 

leaves, plant height, stalk diameter, and leaf area index. Before harvesting, a subsample 

of five to six plants was randomly selected from the center two rows and oven-dried at 

60°C until the plants reached constant weight to determine the dry matter and tissue 

moisture content. Field plots were harvested at the end of each season using a forage 

harvester (Jaguar 940, Claas, Herzebrock, Germany) (Figure 3.1). A separate weighing 

wagon, pulled alongside the harvester, was used to collect and measure harvested plots’ 

fresh weight. 
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Figure 3.1 Biomass sorghum (Blade ES 5200) after 113 days of growth in 2013 at the 

Texas A&M AgriLife Research Center in Weslaco, TX. 

 

 

 

3.3.3. Evaluation of model performance 

The model was calibrated and evaluated to simulate biomass sorghum dry biomass 

productivity by comparing measured and simulated data from the limited and fully 

irrigated treatments in 2013 and 2015. The EPIC model for biomass sorghum was 

calibrated using measured data from the full irrigation treatment in 2013, which was 

expected to represent the minimum or no stress conditions. Data from the remaining 

treatments, including the limited irrigation treatment in 2013 and the limited irrigation and 

full irrigation treatments in 2015, were used for validation. 

EPIC does not calculate ETo as defined in FAO-56, in which the reference surface 

is described as “a hypothetical reference crop with an assumed crop height of 0.12 m, a 

fixed surface resistance of 70 s m-1 and albedo of 0.23” (Allen et al., 1998). Instead, the 

model estimates PET using the five previously listed methods and then uses PET as a 
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reference in calculating actual evapotranspiration. Actual evapotranspiration is estimated 

as the sum of soil evaporation and canopy transpiration. FAO-56 indicates that the 

Hargreaves-Samani method can be used as an alternative to the Penman-Monteith method 

to estimate PET. After preliminary test runs of the ET methods in EPIC, the Hargreaves-

Samani (Hargreaves and Samani, 1985) ET method was selected to simulate ETc in this 

study because it was the most robust among the available methods, including the Penman-

Monteith method, and because it could be calibrated easily by varying its linear coefficient 

and an exponent (BREC, 2015). 

A calibration was carried out by adjusting sensitive influential model parameters 

and inputs within their reasonable ranges so that the model results were consistent with 

the available measured data. The modeled process’ effects were analyzed by comparing 

the simulated versus measured crop growth and productivity data and simultaneously 

assessing the model performance statistics. After calibration and validation, the model was 

used to conduct long-term (30-year) simulations using actual 30-year weather data (1986 

to 2015). Irrigation regimes and agronomic activities used for the long-term simulations 

were applied based on the field experiment conducted in 2013 (Table 3.4). In addition to 

irrigation, rainfall measurements were incorporated from each of the 30 weather years in 

the long-term simulations in order to explore crop responses to water. Model simulation 

results were evaluated for dry biomass productivity responses and the relationships 

between WUE and dry biomass productivity. 
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3.3.4. Test statistics 

Linear regression, coefficient of correlation (r), and coefficient of determination 

(R2) were used to compare the simulated and measured productivity data during both 

calibration and validation. The linear model is 𝑦 =∝ +𝛽𝑥 + 𝜀, where α and β are the 

regression intercept and slope, respectively, and ε is the random error. The t-test was used 

to test the null hypothesis H0: α = 0 and H0: β = 1. H0 is maintained when α and β are not 

significantly different from 0 and 1, respectively. The goodness of fit estimators used the 

p-value from the t-test. R2 measures the proportion of the variation in y, which is accounted 

for by the linear model. Therefore, R2 tests the “goodness of fit” of the linear model. The 

R2 value ranges from 0 to 1 and describes the degree of collinearity between measured 

and simulated data (Moriasi et al., 2007), where higher values indicating a minimum 

variance. However, R2 only estimates the linear relationship between two variables and is 

not sensitive to the regression intercept (α). Other statistics used to assess this study’s 

model performance included the root mean square error (RMSE): 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑠𝑖 − 𝑀𝑖)2

𝑛

𝑖=1

 (7) 

 

where Si is the ith simulated value, Mi is the ith measured value, and n is the number of 

data pairs. RMSE represents the discrepancy between observations and predictions. A 

value of 0 indicates a perfect fit. The Nash and Sutcliffe model efficiency (NSE) was also 
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used to quantify the model performance. It was used to show how well the measured mean 

versus the simulated data fit the measured data. The NSE was calculated as: 

 

 𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖 − 𝑀1)2𝑛

𝑖=1

∑ (𝑀𝑖 − 𝑀𝑎)2𝑛
𝑖=1

 (8) 

 

where Ma is the mean of the measured values. The NSE ranges from -∞ (poor model) to 

1 (perfect model). A value from 0 to 1 indicates that the model is better than using the 

measured mean as a predictor, while values less than zero indicates an unacceptable model 

performance. Percent of bias (PBIAS) was also used: 

 

 𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑀𝑖 − 𝑆𝑖)

𝑛
𝑖=1

∑ 𝑀𝑖
𝑛
𝑖=1

] × 100 (9) 

 

PBIAS measures the average tendency of the simulated data to be higher or less than the 

measured data. The optimal PBIAS is zero. A value of low magnitude indicates accurate 

model simulation. Positive values indicate model underestimation bias, and negatives 

indicate model overestimation bias. According to Wang et al. (2012), model performance 

is considered satisfactory when R2 ≥ 0.60, NSE ≥ 0.55, and PBIAS within ±25% for water 

yield; and R2 ≥ 0.60 and PBIAS ≤ ±25% for crop yield. 

 The following procedure was carried out to adjust the simulated crop productivity. 

First, the cultivar-specific parameters affecting crop phenology stages from sowing to 

harvest were adjusted until the simulated results matched as close as possible to the 
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measured data. Second, the parameters affecting crop growth were adjusted until there 

was a reasonable match between measured and simulated LAI and crop canopy. Finally, 

parameters that affect crop biomass productivity were adjusted until there was a good 

match between the measured and simulated data. 

In this study, the cumulative crop water use was estimated as the sum of daily crop 

water use during the growing season (112 days for 2013 and 106 days for 2015). The 

WUE, which is critically essential in semi-arid agriculture (Howell, 2001), is defined in 

agronomy (Viets, 1962) with Eq. (4). The WUE was calculated as follows: 

 

 𝑊𝑈𝐸 =
𝐷𝐵

𝐶𝑊𝑈
 (10) 

 

where DB is the dry biomass productivity (g m-2), CWU is the crop water use (mm) or 

seasonal water input (irrigation + rainfall ± SW), and WUE is the water use efficiency in 

terms of seasonal crop water use (g m-2 mm-1), which can also be expressed in alternative 

units (kg m-3). 

3.4. Results 

3.4.1. Model calibration 

The calibration procedure used in this study can be observed in Figure 3.2. The 

first calibration process was conducted using the energy sorghum crop parameters 

developed by Meki et al. (2017) with productivity data from field trials conducted in 

Hawaii and Texas. The model showed less than a 25% error in dry biomass productivity 

and LAI across the growing season with these cultivar parameters. EPIC does not provide 
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predictions of crop stages during the growing season, but it gives plant emergence 

predictions. The simulated emergence was six days after sowing compared to the five to 

seven days measured, indicating high predictive capability. Because appropriate 

parameter calibration is crucial for accurate simulation of crop growth and development 

under field conditions, a local parameterization was performed, as described by Wang et 

al. (2012). Six parameters were identified in EPIC that needed to be adjusted to achieve 

appropriate crop biomass productivity for biomass sorghum (Table 3.1). They were the 

biomass to energy ratio (WA), the NRCS curve number coefficient (PARM 42), root 

growth-soil strength (PARM 2), potential heat units (PHU), the Hargreaves-Samani PET 

equation exponent (PARM 13), and the Hargreaves-Samani PET equation coefficient 

(PARM 38). The model simulated biomass sorghum growth without any water and 

nitrogen stress during calibration. 
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Figure 3.2. Steps followed in the calibration procedure of biomass sorghum. 
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The exponent of the Hargreaves-Samani PET equation in the EPIC model, with a 

default value of 0.6, was returned to its original value of 0.5 and the linear coefficient of 

was modified from 0.0032 to 0.0027 because the default equation’s values underestimated 

ETc as compared to the ETc from the automatic FAO-56 Penman-Monteith estimation 

with the online weather program. By trial and error, the PHUs were adjusted until HUSC 

(fraction of total base-zero heat units at which operation takes place) at harvest ranged 

between 0.9 and 1.1. The PHUs were finally set to 2200 growing degree days. PARM 2 

was adjusted from 2.0 to 1.15. PARM 42 was changed from 1.5 to 0.5. WA was the last 

parameter to be modified due to its high sensitivity. It was adjusted to 36.9 kg ha-1 MJ-1 

m2, while the default value was 33.9 kg ha-1 MJ-1 m2. 

The simulated EPIC ETc agreed with the estimated ETc from FAO-56 Penman-

Monteith, with R2 of 0.63. However, some variations of ETc were observed, possibly due 

to the Hargreaves-Samani method, which did not account for wind speed, which directly 

caused the underestimation of simulated ETc (Figure 3.3a). For satisfactory calibration of 

crop yield, Wang et al. (2012) suggested that R2 ≥ 0.60 and PBIAS within 25% should be 

achieved. After calibration, the statistical parameters indicated that the predictive 

capability of the EPIC model for dry biomass was satisfactory, with R2 = 0.99, NSE = 

0.97, PBIAS = -5.35%, and RMSE = 1.60 Mg ha-1 (Table 5). As well, calibration 

parameters for LAI showed satisfactory results, with R2 = 0.88, NSE = 0.85, PBIAS = -

7.64%, and RMSE = 0.70 m2 m-2 (Table 3.5). 
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Figure 3.3 a) Comparison between estimated daily crop evapotranspiration (ETc) 

calculated using FAO-56 Penman-Monteith versus simulated ETc from EPIC using 

Hargreaves-Samani, and b) cumulative crop evapotranspiration (ETc) using FAO-

56 Penman-Monteith versus EPIC-simulated crop evapotranspiration using 

Hargreaves-Samani for biomass sorghum. Estimated ETc data were obtained from 

the STWP (Kc varies between 0.5 and 1.1 for sorghum) for the growing seasons of 

2013 and 2015 at the Texas A&M AgriLife Research Center in Weslaco, Texas. 
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Table 3.5 Statistical indices to assess simulation efficiency during calibration and 

validation of the EPIC model for biomass sorghum.[a]  

 Variable Dry Biomass LAI 

Calibration R2 0.99 0.88 

 NSE 0.97 0.85 

 PBIAS -5.35% -7.64% 

 RMSE 1.60 Mg ha-1 0.70 m2 m-2 

Validation R2 0.96 0.90 

 NSE 0.95 0.83 

 PBIAS -7.53% -7.62% 

 RMSE 1.98 Mg ha-1 0.69 m2 m-2 
[a] R2 = determination coefficient, NSE = Nash-Sutcliffe efficiency, 

PBIAS = percent bias, RMSE = root mean square error. 

 

 

 

3.4.2. Model validation 

The calibrated EPIC model for biomass sorghum was validated using the other 

three irrigation scheduling treatments: limited irrigation in 2013, and limited and full 

irrigation in 2015. These three treatments had the same experimental setup as the treatment 

used for calibration. The total irrigation amounts applied during the growing seasons for 

validation were 288 mm for limited irrigation in 2013, 284 mm for limited irrigation in 

2015, and 338 mm for full irrigation in 2015. The agreement between measured and 

simulated dry biomass productivity (Table 3.5) resulted in R2 = 0.96, NSE = 0.95, PBIAS 

= -7.53%, and RMSE = 1.98 Mg ha-1, while the simulated LAI had error statistics of R2 = 

0.90, NSE = 0.83, PBIAS = -7.62%, and RMSE = 0.69 Mg ha-1. Although the EPIC model 

simulated dry biomass at validation reasonably well compared to calibration, it slightly 

overestimated dry biomass and LAI among all treatments (Figure 3.4). Overall, the 

simulated crop biomass productivity for the three treatments matched well, as shown in 

Table 3.5. 
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Figure 3.4 a) Measured versus simulated biomass sorghum dry biomass and b) 

biomass sorghum leaf area index (LAI) in 2013 and 2015 at the Texas A&M AgriLife 

Research Center, Weslaco, Texas. Dotted lines represent linear regression trendlines. 
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3.4.3. Crop simulations 

The EPIC model for biomass sorghum was further evaluated using data from the 

two-year field study of biomass sorghum development and furrow irrigation management. 

During both growing seasons, both daily and cumulative EPIC-simulated ETc values 

diverged in an error of 6.41% from the ETc values estimated with the online STWP due to 

EPIC’s method (Hargraves-Samani) to calculate actual ET (Figure 3.3).  

A high correlation was observed between simulated and measured dry biomass of 

biomass sorghum at full and limited irrigation levels in 2013 and 2015. The EPIC model 

was able to simulate dry biomass productivity and LAI with acceptable accuracy. The 

slopes and intercepts of the linear regressions, shown in Figure 4.4, were not significantly 

different from 1 and 0, respectively. 

The measured total dry biomass productivity of biomass sorghum with limited 

irrigation was 19.6 Mg ha-1 in 2013 and 22.3 Mg ha-1 in 2015, while the simulated 

productivity was 20.6 Mg ha-1 in 2013 and 24.9 Mg ha-1 in 2015. For full irrigation, the 

measured total dry biomass productivity was 28.1 Mg ha-1 in 2013 and 26.6 Mg ha-1 in 

2015, while the simulated productivity was 26.9 Mg ha-1 in 2013 and 25.8 Mg ha-1 in 2015 

(Table 6). An error of 5.88% was calculated between measured and simulated 

productivities. Also, student t-tests were conducted to demonstrate that simulated 

productivity was not significantly different from measured productivity (p > 0.05) with 16 

degrees of freedom. Regression statistics also showed that the slope was close to the 1:1 

line (p < 0.05). These results agree with those obtained by Meki et al. (2013). They used 

the ALMANAC crop model to evaluate energy sorghum dry biomass productivity under 
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different biomass removal rates and tillage cropping systems in Alabama. The irrigation 

water use efficiency (WUE) was estimated using the simulated results and then compared 

to the measured efficiencies. The WUE results are shown in Table 3.6. A student t-test 

showed no statistical differences between measured and simulated WUE (p = 0.48) at a 

significance level of 0.05. Higher efficiencies were calculated under limited irrigation for 

both measured and simulated data. 

 

 

 

Table 3.6 Comparison of measured and simulated total dry biomass productivity and 

water use efficiencies at the Texas A&M AgriLife Research Center, Weslaco, Texas. 

Year 

Irrigation 

level 

Total dry biomass 

(Mg ha-1) 

 WUE  

 (kg m-3)  

Measured Simulated  Measured Simulated  

2013 
Limited 19.55 20.57  6.79 7.04  

Full 28.05 26.90  6.01 4.90  

2015 
Limited 22.33 24.87  7.86 8.02  

Full 26.57 25.83  7.86 7.67  

 

 

 

3.4.4. Long-term simulations 

Average simulated dry biomass productivity and WUE from the 30-year 

simulations for full and limited irrigation are shown in Table 3.7. Based on the long-term 

simulation results, the simulated dry biomass of biomass sorghum showed a sigmoid curve 

response to total water applied (irrigation + rainfall ± soil water content) during the 

growing season (Figure 3.5). The constant parameters that describe the shape of the 

growth curve were obtained by numerical analysis. After deriving the relationship between 

productivity and irrigation water applied from the logistic equation, it was essential to 
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know the crop growth rate. Therefore, the first derivative was obtained from the logistic 

function and then plotted (Figure 3.6a) to observe the biomass sorghum’s growth rate. The 

second derivative was obtained and plotted to observe the growth acceleration of the 

biomass sorghum (Figure 3.6b) and then equated to zero to show the amount of water 

applied at which the maximum and minimum acceleration occurred. This maximum and 

minimum points are also the inflection point of the sigmoid response curve. It can be 

observed in Figure 3.6a that the maximum rate of absolute growth was attained at 310 mm 

with a rate of increase of 0.072 Mg ha-1 mm-1. The first critical point was found at 

coordinates 201, 5.062, indicating the end of the exponential phase and the beginning of 

the linear phase (Figure 3.5). Biomass productivity, as a function of accumulated applied 

water, increased with exponential growth up to 201 mm with productivity of 5.062 Mg ha-

1. The second critical point was found at coordinates 419, 18.893, indicating the end of the 

linear (vegetative) phase and the beginning of the stationary phase (Figure 3.5). 

 

 

 

Table 3.7 Means ± 95% confidence intervals of dry biomass and water use efficiency 

concerning water input (irrigation + rainfall ± soil water content), regarding 

simulated dry biomass productivity. Data are mean annual values based on a 30-year 

simulation (1986 to 2015). The calibrated model was used to run the 30-year 

simulations. 

Irrigation level Dry biomass (Mg ha-1) WUE (kg m-3) 

Limited 20.89 ± 1.34 7.31 ± 0.51 

Full 24.46 ± 0.59 4.60 ± 0.27 
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Figure 3.5 Sorghum dry biomass response as a function of cumulative water applied 

(irrigation + rainfall ± soil water content) as simulated with full irrigation. Data are 

averages for 30 years (1986 to 2015) at the Texas A&M AgriLife Research Center, 

Weslaco, Texas. Vertical bars indicate errors at 95% confidence intervals for means 

of data points. The first infection point (indicated by a triangle) is the end of the 

exponential phase and the beginning of the vegetative phase. The second inflection 

point (indicated by a rhombus) is the end of the vegetative phase and the beginning 

of the mature phase. The square indicates the point of maximum crop growth rate. 
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Figure 3.6 a) Sorghum dry biomass growth rate and b) sorghum dry biomass growth 

acceleration as a function of cumulative water applied (irrigation + rainfall ± soil 

water content) as simulated with full irrigation. Data are averages for 30 years (1986 

to 2015) at the Texas A&M AgriLife Research Center, Weslaco, Texas. 
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3.5. Discussion 

In general, the calibration results showed a reasonable agreement between 

measured and simulated crop productivity and crop water use during the growing season. 

However, the model tended to overestimate dry biomass productivity at the beginning of 

the season. These results agree with observations by Cabelguenne et al. (1990), Ceotto et 

al., (1993), Martin et al. (1993), and Warner et al. (1997), who reported that EPIC tended 

to overestimate low yields. 

EPIC computes plant transpiration (EP) as a fraction of PET using the LAI linear 

relationship developed by Ritchie (1972). So, EPIC assumes that EP increases linearly as 

a function of LAI until LAI reaches 3.0, and then EP is assumed to be the same as PET, 

and no soil evaporation occurs. For most crops, LAI is initially zero. It increases 

exponentially during early vegetative growth when the leaf primordia development rate, 

the leaf appearance, and blade expansion are linear functions of heat unit accumulation 

(Tollenaar et al., 1979; Watts, 1972). In vegetative crops such as biomass sorghum, LAI 

reaches a plateau where leaf senescence and growth are approximately equal. LAI then 

decreases after the maximum LAI is reached and approximates to zero at physiological 

maturity (Williams et al., 1989). Therefore, EPIC uses LAI to split between ETc and PET, 

while the values estimated with the STWP used the growth stages for sorghum and specific 

crop coefficients recommended by FAO-56 for Sudan grass. 

When 30 years of weather data were used in the simulation, the average 

productivity for limited and full irrigation ranged between 21.9 and 26.3 Mg dry biomass 

ha-1 (Table 3.7). The dry biomass value simulated in this study coincided with results 
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reported in other studies, such as Hao et al. (2014), who reported 23.5 Mg ha-1 at full 

irrigation, Rooney et al. (2007), who reported 20 Mg ha-1, and Rocateli et al. (2012), who 

reported 26.0 to 31.6 Mg ha-1, and Palumbo et al. (2014) that reported 20.9 to 26.4 Mg ha-

1 for a Mediterranean environment. 

The EPIC model simulates LAI using a temperature-based method in which 

temperature was the most limiting factor for leaf expansion (Amir and Sinclair, 1991; 

Chapman et al., 1993). However, the carbon-based methods used to estimate LAI indicate 

that plant leaf expansion depends on the amount of dry matter available for leaf growth 

(Soltani and Sinclair, 2012). Carbon-based methods first calculate dry matter production, 

and then leaf area development is estimated as a function of dry matter. For this reason, 

the specific leaf area, which is the ratio of leaf area to leaf weight, was affected by the low 

solar radiation recorded in 2015 (Table 3.3), causing a decrease in the dry matter (m2 g-1). 

In other words, solar radiation determines the daily amount of photosynthate available for 

leaf expansion, while temperature affects the rate of cell division and cell extension 

(Kropff and Van Laar, 1993; Van Delden et al., 2001; Xinyou and Van Laar, 2005). Hence, 

EPIC overestimated LAI in 2015. 

Linear growth, which is the most crucial phase of crop development, was obtained 

from 201 to 419 mm of applied water (Figure 3.5). At the end of this phase, dry biomass 

productivity of ~19.0 Mg ha-1 was obtained. These results demonstrated that 600 mm of 

water was necessary to reach up to 24 Mg ha-1 of sorghum’s dry biomass (Figure 3.5). 

Experiences in Mediterranean environments showed that 350 to 480 mm of water applied 

could produce 19.8 to 34.6 Mg ha-1 (Garofalo et al., 2011). The difference between 
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irrigation input and cumulative ETc was due to irrigation inefficiencies that promote water 

losses by deep percolation. Irmak et al. (2000), who evaluated the yield response of corn 

in a Mediterranean semi-arid climate, reported that the relationship between yield and 

irrigation tended to be linear. 

 

3.6. Conclusion 

The EPIC model satisfactorily simulated plant emergence, ETc, LAI, and dry 

biomass for the full irrigation treatment in 2013. The model also accurately simulated the 

productivity response for the limited irrigation experiments, in which the mean percent 

error of simulation was less than 6% in 2013 and 12% in 2015. 

There was also a close match between measured and simulated ETc and LAI for 

the three other irrigation treatments (limited irrigation in 2013, limited irrigation in 2015, 

and full irrigation in 2015). 

LAI is an essential crop parameter used for the EPIC model to split between ETc 

and PET. It has to be constantly monitored during crop development for satisfactory model 

calibration. 

The EPIC model was used to assess crop productivity and water responses over 30 

years under local conditions. From the long-term simulations, we conclude that it is 

possible for biomass sorghums to produce up to 24 Mg ha-1 of dry mass with 600 mm of 

water. 
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The EPIC model is found to be suitable for use as a decision tool to evaluate 

biomass sorghum experiments conducted under deficit irrigation because it can integrate 

different stress factors that affect crop development. 

WUE results from long-term simulations indicated that switching from full to 

limited irrigation is an appropriate strategy for biomass sorghum production in areas with 

limited water resources. 



 

77 

 

4. ANALYSIS OF RADIATION USE EFFICIENCY AND SIMULATION OF 

BIOMASS SORGHUM PRODUCTION UNDER STAGGERED SOWING DATES 

 

4.1. Synopsis 

Biomass sorghum [Sorghum bicolor (L.) Moench] has been identified as a high 

yield potential crop alternative for producing energy; however, there is a lack of 

information on its performance and yield response under the influence of different sowing 

dates with adequate water and fertilized conditions. This study’s objective was to 

determine the radiation use efficiency (RUE) of biomass sorghum and evaluate the EPIC 

model for the production of biomass sorghum under the effects of variable timed sowing 

dates of three sorghum hybrids. Three sorghum hybrids (one forage sorghum and two 

energy sorghums) were grown and evaluated at staggered sowing seasons under optimal 

growth conditions over two years (2013 and 2016) at the Texas A&M AgriLife Research 

Center in Weslaco, Texas. The dry biomass (DB) ranged from 12.57 to 32.77 Mg ha-1. The 

highest DB values were observed when the sowing took place between March and May, 

while the lowest DB values were observed in the sowings of August and September. 

Higher leaf area index (LAI) values were observed on the energy hybrids (LAI > 4.0), 

which means that they can intercept over 90% of incident photosynthetically active 

radiation (PAR). RUE is mainly a sensitive parameter useful to enhance the effectiveness 

of crop simulation models. It is a crucial parameter used to predict the potential dry matter 

accumulation of a crop. RUE ranged from 2.71 to 4.42 g MJ-1. Higher RUE values were 

observed for the energy hybrids for the sowing dates from March to May. The statistical 
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parameters derived from measured versus simulated DB indicated that the EPIC model 

performed well at estimating DB with an average R2 = 0.91, and an average RMSE = 2.36 

Mg ha-1. This chapter’s results show that RUE values’ adjustments for different sowing 

seasons and varieties will enhance crop simulation effectiveness in predicting sorghum 

growth and yield response for staggered biomass production. 

4.2. Introduction 

Production of bioenergy in a bio-refinery requires a continuous supply of 

feedstocks during the year, and consequently, a plan to staggered sowing dates. Most 

bioenergy experiments involving high-biomass crops are conducted to determine an 

optimum sowing date, seeking maximum biomass yields with minimum use of inputs such 

as water and fertilizers. However, there is a need to continuously supply feedstock to 

biorefineries, which require strategically sowing high-biomass crops to maximize dry 

biomass production during a yearlong duration.  

High-biomass crops, such as sorghum [Sorghum bicolor], sugarcane [Saccaharum 

officinarum L.], corn, maize [Zea mays L. subsp mays], and Miscanthus [Miscanthus spp.], 

are warm-season C4 crops that have often been identified as a feedstock for bioenergy 

production. However, sorghum, especially, is an excellent candidate for bioenergy 

production because of its high biomass potential, water stress tolerance, short growing 

cycle, increased water use efficiency, and highly efficient in converting solar energy into 

biomass (Enciso et al., 2019; Monge et al., 2014). Biomass sorghums have been 

genetically improved to increase its biomass accumulation and maximize its cellulosic 
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content. They can produce high biomass yields in just 90-100 days and can remain their 

vegetative growth phase for more than 200 days at most latitudes (Rooney et al., 2007). 

Information about staggered sowing for sorghum is limited in scope, and very few 

studies exist in the literature, probably because farmers looked at optimal production in a 

single crop cycle. Rao et al. (2013) reported that late of sweet sorghum typically had lower 

yields of stalks and sugar than earlier sowings. Another study conducted in the Rio Grande 

Valley by Hipp et al. (1970) evaluated the influence of sowing dates and solar radiation 

on sweet sorghum. They observed that the highest sugar yield was found in crops sown in 

May. The plants’ solar radiation received during the period between boot and early seed 

formation accounted for about 75% of the variation in yield.  

Connor et al. (2011) stated that photosynthetic rates of crops depended on the 

quantity of radiation intercepted and utilization efficiency. For this reason, the RUE 

measured at several sowing seasons may provide a better understanding of sorghum’s 

physiological ability to produce dry biomass under different weather conditions, such as 

temperature and photoperiod. The amount of PAR received from the sun, and the 

efficiency of crop canopy for the absorption of PAR principally influences the rate of 

biomass accumulation. Hence, total dry plant matter, under optimal crop growth 

conditions, depends on the quantity of radiation absorbed by the crop canopy (Kiniry et 

al., 1989). Consequently, the estimations of dry biomass are based on the concept of RUE 

(g MJ-1), which is defined as the ratio of dry matter produced (g m-2) and the absorbed 

PAR (MJ m-2) (Soltani and Sinclair, 2012). Thus, simulation of DB production is the 

central part of many crop growth models, such as EPIC, CERES and CropSyst, which 
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adopted the concept of RUE as a significant parameter used to predict the accumulation 

of potential DB production.  

According to the literature, RUE has been widely used to evaluate diverse crop 

management conditions and weather environments. Wang et al. (2015) conducted a 3-year 

field experiment to assess the influence of row spacings and plant densities on canola seed 

yield and canopy RUE in Central China. They found that higher LAI and RUE under wide-

narrow row arrangements can lead to more biomass accumulation than uniform ones. Du 

et al. (2015) conducted field experiments in China to study the effects of four cropping 

systems on RUE in wheat-cotton double cropping. They found that the wheat-cotton 

double-cropping improved radiation use by increasing the intercepted PAR and RUE 

compared with monoculture cotton. A handful of studies have explored RUE responses 

among sorghum cultivars specifically. For instance, Houx III and Fritschi (2015) observed 

decreases in RUE and biomass production of four sweet sorghum cultivars in response to 

two late sowing dates in a 2-year study. They observed that even when sown late, sweet 

sorghum converts efficiently intercepted PAR to biomass. Rinaldi and Garofalo (2011) 

conducted a three-year field experiment of sorghum under four different irrigation levels 

in southern Italy. They obtained RUE values that confirmed a high efficiency in biomass 

production with adequate irrigation water supply for a Mediterranean environment.  

Because many crop models use RUE as a parameter to estimate crop growth, it is 

necessary to determine accurate values to account for the agronomic effect on simulating 

DB production at staggered sowing seasons. In the present study, a 2-year experiment with 

diverse weather conditions (solar irradiance, temperature, and photoperiod) was observed 
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to estimate RUE values for three sorghum hybrids sown on different dates. RUE values 

obtained from field experimentation were incorporated into the EPIC model (Williams et 

al. 1989). EPIC is a crop simulation model recognized as one of the most robust crop 

models used as a decision support tool that simulates the physicochemical process that 

occurs in soil and water under agricultural management. EPIC has been widely used in 

many studies under different climatic and management conditions. For instance, EPIC was 

calibrated and evaluated for its potential to simulate maize yield for South Africa 

conditions (Choruma et al., 2019). It was used to assess and manage crop water use and 

crop production of cotton in the USA (Ko et al., 2009), and the assessment of climate 

change impacts on crop yield in southern Italy (Rinaldi and De Luca, 2012). Hence, it was 

imperative to experiment to quantify the effect of weather on biomass sorghum growth 

and yield under staggered sowing seasons. This chapter’s objectives were to determine the 

RUE and evaluate the EPIC model biomass sorghum production under the effects of 

variable timed sowing dates of three sorghum hybrids. The results obtained in this study 

will allow crop modelers to increase the ability to determine the optimal crop parameter 

values for a more precise prediction of dry biomass productivity of high-biomass crops 

under staggered production systems. 

4.3. Material and methods 

4.3.1. Field experiment and measure data 

Measured data were obtained from experiments conducted during the 2013 and 

2016 growing seasons in fields located at the Texas A&M AgriLife Research Center in 

Weslaco, Texas (latitude 26° 09’ 26’’ N, longitude 97° 57’ 32’’ W; elevation 24 m above 
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sea level). The study area (Figure 2.1) has a semi-arid climate with an average annual 

precipitation of 558 mm, and the soil type is a Hidalgo sandy loam. The biomass sorghum 

hybrids used in this study were two energy sorghum hybrids from Blade® Energy Crops, 

Blade ES 5140 and Blade ES 5200, and one forage sorghum hybrid from Pioneer®, Pioneer 

877F. They were sown in 1.02 m wide spacing. The plots used for experiments were 4.1 

m wide and 91.4 m long. The plant density in all plots was approximately 140,000 seeds 

per ha, with a sowing depth of 30 to 45 mm. The plant density after emergence showed no 

differences among the sowing seasons. A subsurface drip irrigation system was installed 

to assure uniform germination of seeds and better control of water inputs (Henggeler et 

al., 2002). Drip tape with 15 mm thickness was placed in each bed’s center, resulting in 

an irrigation water application rate of 2.5 mm h-1. The fertilizer urea ammonium nitrate 

(UAN; 32% mass fraction of N) was applied through the drip irrigation system in two 

equal split applications. The same total fertilizer was applied to all experimental units. 

Full irrigation was applied to all experimental plots. It was achieved by replacing 

the water used by the crop ETc. ETc was calculated using the Sudan grass crop coefficients 

suggested by FAO 56 and using the Penman-Monteith reference evapotranspiration (ETo) 

equation (Allen et al., 1998). ETc requirements for sorghum was based on the relation to 

a well-watered reference grass using the equation: 𝐸𝑇𝑐 = 𝐾𝑐 × 𝐸𝑇𝑜, where ETc is crop 

evapotranspiration, and Kc is the crop coefficient (Enciso and Wiedenfeld, 2005). The 

standard Kc ini, Kc mid, and Kc end values of 0.15, 1.15, and 1.1, respectively, were applied 

to ETo to calculate ETc using the Penman-Monteith approach (Rajan et al., 2015). Soil 

water depletion was calculated at harvest measuring the soil water content at the beginning 
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and end of each sowing season using gravimetric methods. The South Texas Weather 

Program (STWP), an internet-based program developed by Texas A&M AgriLife 

Research Center, http://southtexasweather.tamu.edu/ (Enciso et al., 2015), was used to 

create an irrigation schedule for each sowing season. STWP calculated the number of 

irrigation events during each sowing season and the timing and amount of irrigation water 

required using a predetermined allowable depletion level of 90%. The irrigation system 

was assumed to have a 100% efficiency. Weather data used for ET calculations were 

collected through a weather station (model ET106, Campbell Scientific, Logan, Utah) as 

described by Chavez et al. (2019), installed 100 m away from the field experiments.  

Table 2.1 shows agronomic data and dates in which crop development was 

monitored. Plant sampling was conducted in each of the experimental units four to five 

times throughout the sowing season (as described in Chapter 2) if weather conditions were 

favorable. LAI and biomass were determined using destructive sampling. The destructive 

samples were randomly collected from 1 m2 area at the center of each plot to avoid the 

border effects. DB and plant water content were determined after drying all plant materials 

at 60°C until the material stabilized. Measurements of PAR above and below the canopy 

cover were taken at three locations within each experimental plot using a ceptometer 

(model AccuPAR LP-80, Decagon, Pullman, WA, USA) at noon to eliminate the influence 

of solar zenith angle and within a short period to reduce variations in readings of solar 

irradiance. 

 

 

http://southtexasweather.tamu.edu/
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4.3.2. Computation of field data 

Sorghum phenological development was monitored for every sowing season 

across the 2-year study. This development was recorded daily and then converted into 

growing degree days (GDD, °D) following the 3-segment linear function procedure 

described by Soltani and Sinclair (2012) for each of the sowing seasons from sowing to 

harvest. The cardinal temperatures used for estimation of the phenological development 

for sorghum were: base temperature of 8°C, lower optimal temperature of 30°C, upper 

optimal temperature of 37°C, and ceiling temperature of 45°C (Soltani and Sinclair, 2012). 

Daily GDD values were accumulated for every sowing season. 

According to Salisbury and Ross (1985), the total irradiance that hits at the upper 

boundary of the Earth’s atmosphere is 1360 J m-2 s-1 (called solar constant), which includes 

ultraviolet and infrared wavelengths. While this irradiance passes through the atmosphere 

to the Earth’s surface, energy is lost by absorption and scattering caused by water vapor, 

dust, CO2, and ozone, so that only about 900 J m-2 s-1 reach plants, which depends on 

latitude, elevation, time of day and other factors. About 50% of this energy is in the 

infrared, and about 5% is ultraviolet. The rest (approximately 400 J m-2 s-1) has 

wavelengths between 400 – 700 nm capable of causing photosynthesis. It is called 

photosynthetically active radiation (PAR). The actual amount of energy in the PAR range 

can vary with atmospheric conditions, depending on cloud cover, location, and date. 

Monteith and Unsworth (2007) reported that PAR represents about 48% of total solar 

radiation. Therefore, solar radiation (Rs) was converted into PAR using the following 

equation: 
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 𝑃𝐴𝑅 = 0.48 × 𝑅𝑠 (11) 

 

Biomass accumulation deals with the absorption of PAR for the assimilation of 

plant biomass. Therefore, biomass growth is dependent on the amount of PAR received 

from the sun and the amount of leaf surface available for the absorption of PAR for 

photosynthesis (Ritchie et al., 1998). The canopy extinction coefficient (K) is a parameter 

that describes the efficiency of the light interception for the canopy (Zhang et al, 2014). K 

is determined by the leaf inclined angle and the solar zenith angle, and is usually calculated 

with the Beer Lambert Law (Monsi and Saeki, 1953), which in many cases is simply 

expressed as: 

 

 𝐾 =
−𝑙𝑛 (

𝐼𝑖
𝐼0

⁄ )

𝐿𝐴𝐼
 

(12) 

 

where Ii is the solar radiation under the canopy, I0 is the solar radiation above the canopy, 

and LAI is the leaf area index. The ratio of Ii to I0 is known as transmittance (τ), which is 

the fraction of irradiance transmitted by the canopy. The τ values and LAI were measured 

on all the plots at locations with adequate crop stand in order to estimate K for every 

sorghum hybrid on all sowing seasons. Additionally, the K values were also estimated for 

each sorghum hybrid as the slope of the fitted regression of the first-order equation 

between the negative natural logarithm of transmittance (-ln τ) and the LAI of the plant 
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canopy on the date of sampling of the appropriate treatment. Therefore, the intercepted 

photosynthetically active radiation (IPAR) by the crop canopy was calculated as follows: 

 

 𝐼𝑃𝐴𝑅 = 𝑃𝐴𝑅 × [1 − 𝑒𝑥𝑝(−𝑘×𝐿𝐴𝐼)] (13) 

 

The RUE is the dry matter produced per unit of IPAR, and its units are expressed 

as g MJ-1 of IPAR or kg ha-1 MJ-1 m2. RUE was experimentally estimated as the slope of 

the fitted regression of the first-order equation between dry biomass productivity and 

accumulated IPAR for each hybrid at each sampling date. The regression equation for 

RUE was fitted to four sampling dates. The RUE values were determined for each 

sorghum hybrid at each sowing season of the experiment. Also, the RUE was calculated 

for each sampling date by determining the dry biomass productivity (DB, g m-2) and the 

accumulated IPAR using the following equation: 

 

 𝑅𝑈𝐸 =
𝐷𝐵

∑ 𝐼𝑃𝐴𝑅
𝑑 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑎𝑡𝑒
𝑑 = 𝑠𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑡𝑒

 (14) 

   

4.3.3. Model description 

The EPIC model was chosen due to its proven performance on simulating cropping 

systems under diverse climatic conditions (Rinaldi and De Luca, 2012; Sharpley and 

Williams, 1990; Williams et al., 1989). EPIC consists of various model components that 

include crop growth, hydrology, weather simulation, nutrient cycling, pesticide fate, 
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erosion-sedimentation, soil temperature, tillage, economics, and plant environment 

control (Williams et al., 1989). It has the capability of performing long-term continuous 

simulations using a daily time step. Penman (Penman, 1948), Penman-Monteith 

(Monteith, 1965), Baier-Robertson (Baier and Robertson, 1965), Priestley-Taylor (Priestly 

and Taylor, 1972), and Hargreaves-Samani (Hargreaves and Samani, 1985) are the five 

options for estimating potential evapotranspiration (PET) that allows users to simulate ETc 

under different climatic conditions. Maximum and minimum air temperature, solar 

radiation, and daily precipitation are required weather input variables for PET estimation; 

wind speed and relative humidity are also needed if the Penman or Penman-Monteith 

methods are selected. These weather variables are entered by the user or generated by the 

runtime model from long-term averages. Crop development is simulated based on daily 

heat unit accumulation (Williams et al., 1989). Daily potential DB is calculated using PAR 

and RUE and then adjusted to the actual biomass through daily stresses such as extreme 

temperatures, inadequate aeration, water deficit, and nutrient deficiencies. Finally, EPIC 

calculates crop yield by the ratio of economic yield to the aboveground biomass at 

maturity, defined by the harvest index (HI). 

4.3.4. Sorghum simulations 

Chavez et al. (2018) calibrated and validated an EPIC model developed for energy 

sorghum for the south Texas conditions (Table 3.1). Sensitive model parameters and inputs 

were adjusted to obtain an acceptable performance of the model. Those calibrated crop 

parameters were used for the simulation of biomass sorghum in the present study. 

However, the crop parameter that refers to RUE (biomass to energy ratio, WA) was 
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readjusted for each sowing season simulation based on the measured RUE values obtained 

from field experiments. All of the management details regarding cropping practices listed 

in Table 2.1 were incorporated into the model for simulation. Predominant soil properties 

of the field experiment site are described in Table 3.2. Additionally, Table 4.1 lists the 

EPIC parameters adjusted to set auto irrigation ensuring the full irrigation. 

 

 

 

Table 4.1 Adjusted EPIC parameters to set auto irrigation for simulation of biomass 

sorghum. 

Parameter Description 

Default 

value Range 

Adjusted 

value 

BIR Irrigation trigger. Irrigation will be triggered at 

specified plant stress 

0 0 - 1 0.95 

EFI Runoff volume / volume irrigation water applied 0 0 - 1 0.1 

VIMX Maximum annual irrigation water allowed (mm) 2000 0 – 2000 600 

ARMN Minimum single application volume allowed 

(mm) 

199.9 --- 10 

ARMX Maximum single application volume allowed 

(mm) 

1000 --- 100 

 

 

 

EPIC outputs used for model evaluation were ETc, DB and LAI. Daily measured 

ETc was determined using the STWP, assuming unstressed crop growth conditions. The 

Hargreaves-Samani PET equation was selected to simulate ETc in this study, because it 

performs better for the South Texas climatic conditions (Chavez et al., 2018). After the 

preliminary run test, the measured ETc from the South Texas Weather program was 

compared to EPIC simulated using the Hargreaves-Samani. As a result, no statistical 

difference was found between the seasonal ETc from STWP using FAO-56 Penman-

Monteith formula and those simulated with EPIC. 
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4.3.5. Test statistics 

Linear regression, correlation coefficient (r), and coefficient of determination (R2) 

were used for model evaluation. The linear model is 𝑦 =∝ +𝛽𝑥 + 𝜀, where α and β are 

the regression intercept and slope, respectively, and ε is the random error. The student t-

test was used to test the null hypothesis H0: α = 0, β = 1. H0 is maintained when α and β 

are not significantly different from 0 and 1, respectively. The goodness of fit estimators 

used the p-value from the t-test. R2 measures the proportion of the variation in y, which is 

accounted for by the linear model. Therefore, R2 tests the “goodness of fit” of the linear 

model. The R2 value ranges from 0 to 1 and describes the degree of collinearity between 

measured and simulated data (Moriasi et al., 2007), where higher values indicating a 

minimum variance. However, R2 only estimates the linear relationship between two 

variables and is not sensitive to the regression intercept (α). Additional useful statistics 

were used to assess the model performance: Root Mean Square Error (RMSE), eq. (7); 

Nash-Sutcliffe Efficiency (NSE), eq. (8); and Percent Bias (PBIAS), eq. (9). RMSE 

represents the discrepancy between observations and predictions. For RMSE, the values 

closer to zero imply an excellent fit between measured and simulated data, and RMSE 

equal to 0 indicates a perfect fit. NSE is used to quantify the model performance and shows 

how well the average of the measured data versus the simulated data fit the measured data. 

NSE ranges from -∞ (poor model) to 1 (perfect model). NSE < 0 indicates an unacceptable 

model performance, while NSE values from 0 to 1 indicates the model is better than 

merely using measured data as a predictor. PBIAS measures the average tendency of the 

simulated data to be greater or less than measured data. The optimal PBIAS is zero, while 
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positive values indicate underestimation bias, and negative values indicate overestimation 

bias. According to Wang et al. (2012), model performance is considered satisfactory when 

R2 ≥ 0.60, NSE ≥ 0.55, and PBIAS within ±25% for water yield; and R2 ≥ 0.60 and PBIAS 

≤ ±25% for crop yield. 

4.4. Results 

4.4.1. Environmental conditions 

The weather data recorded for the study period, January to December 2013 and 

2016, compared with the long-term averages (30 years), is shown in Table 2.2. The daily 

mean air temperature was recorded during the study period, as shown in Figure 2.2. The 

monthly minimum and maximum air temperatures were higher in 2016 than in 2013 and 

the 30 year-period. Warm conditions were observed with a remarkable heatwave at the 

end of July and beginning of August in 2016, with maximum daily temperatures over 

40°C. Differences in daily air temperatures through the growing seasons caused variation 

in total GDD across the sowing seasons (Table 2.1). The sorghum sown on June 15 and 

harvested on October 13 in 2016 attained the highest cumulative GDDs (2342°D), 

followed by the one planted on May 11 and harvested on September 08 (2336°D); this 

occurred as a result of high temperatures recorded during that summer. The lowest 

cumulative GDDs were observed in the sorghum sown in September in 2013 (1555°D) 

and August 25 and March 01 in 2016 (1959°D and 1761°D, respectively). The variation 

was due to the lower daily temperature recorded during those months and shorter days. In 

general, the total GDD data and plant maturity corresponded well with the accepted GDDs 

and sorghum development. 
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Total precipitation (Table 2.2 and Figure 2.2) was excessive in 2013 with 642 mm 

compared to 472 mm in 2016 and 476 mm in the 30-yr average. Precipitation patterns 

were highly variable during each month during the study periods, resulting in different 

irrigation needs for each of the sowing seasons (Table 2.1). In 2013, the sorghum sown on 

April 23 needed more irrigation water (457 mm) due to the dry conditions observed in the 

months previous and during the beginning of the sowing season. While in 2016, sorghum 

sowed on April 04 and June 15 (432 and 406 mm, respectively) required more irrigation 

water due to the interaction of high ET and low precipitation observed during that 

particular study period. 

During the study period, monthly Rs values were like those recorded on the last 

30-year average (Table 2.2). However, the less Rs that was observed in 2013 was due to 

the variations in cloud cover and in the number of days with precipitation. September and 

December of 2013 observed (21 and 25%, respectively) less Rs than the 30-year average. 

While in 2016, July was the month with the most solar radiation received with a monthly 

value of 810 MJ m-2, followed by August and June with 733.2 and 727.5 MJ m-2, 

respectively (Table 3). Because of Rs differences, the cumulative IPAR varied 

significantly throughout each sowing season and for each hybrid and gradually declined 

through the end of each year. In general, mean daily PAR and cumulative IPAR were 

lower for those sorghum sown on early and late sowings.  

Photoperiod-sensitive sorghums continue in vegetative growth as long as the 

daylength be more than the photoperiod trigger of 12:20 h, less than that will induce 

flowering. The number of days with the daylight of more than 12:20 h varied significantly 
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throughout the sowing seasons (Table 2.1). Sorghum hybrids sown between the beginning 

of April and the end of May were those that received equal to or more than 12:20 h of 

daylight during the growing season. 

4.4.2. Biomass accumulation 

For the 2-year study period, the DB ranged from 12.1 to 32.8 Mg ha-1 for all 

hybrids in all experiments (Table 4.2). The highest average DB was observed on the 

sowing date of April 04, 2016 (22.7, 28.3, and 32.8 Mg ha-1 for Pioneer 877F, Blade ES 

5140, and Blade ES 5200, respectively), and May 11, 2016 (24.7, 26.8, and 32.0 Mg ha-1 

for Pioneer 877F, Blade ES 5140, and Blade ES 5200, respectively; while the lowest 

average measured DB was on the sowing date of September 01, 2013 (12.1, 13.0, and 12.9 

Mg ha-1 for Pioneer 877F, Blade ES 5140, and Blade ES 5200, respectively), and August 

25, 2016 (12.6, 13.5, and 13.4 Mg ha-1 for Pioneer 877F, Blade ES 5140, and Blade ES 

5200, respectively). Sorghums sown between April and May reached the highest DB 

values, then decreased through the rest of the sowing seasons (Figure 2.3). Overall, the 

sorghum hybrids’ ranking at most of the sowing season were stable (Blade ES 5200 > 

Blade ES 5140 > Pioneer 877F). The DB of the hybrid Blade ES 5200 showed averaged 

values higher than 30 Mg ha-1 when sown between April and May (in the 2-year study) 

(Table 4.2), while the Pioneer 877F hybrid showed the lowest DB values during most of 

the experimental period, except for those sown on September 01, 2013, and August 25, 

2016, where there were observed no statistical differences among the three hybrids, and 

the averaged DB values were the lowest of the experiment. 
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Table 4.2 Measured mean dry biomass (DB, Mg ha-1), and simulated dry biomass (DB, 

Mg ha-1), measured mean leaf area index (LAI, m2 m-2), and simulated leaf area index 

(LAI, m2 m-2) from the EPIC model at the final harvest date for the three sorghum 

hybrids for every crop cycle in the 2-year study period. 

Sowing date 

Sorghum 

hybrid 

Measured 

DB 

Simulated 

DB 

Measured 

LAI 

Simulated 

LAI 

23 April, 2013 Pioneer 877F 19.500 21.631 3.39 4.03 

 Blade ES 5140 21.114 23.351 4.75 4.80 

 Blade ES 5200 28.350 28.054 5.55 5.58 

01 Sep., 2013 Pioneer 877F 12.057 10.020 2.68 3.00 

 Blade ES 5140 13.003 10.720 2.57 3.08 

 Blade ES 5200 12.886 10.862 2.74 3.27 

01 Mar, 2016 Pioneer 877F 24.606 22.070 3.27 3.30 

 Blade ES 5140 25.263 25.528 4.07 4.08 

 Blade ES 5200 30.370 28.317 4.43 4.45 

04 April, 2016 Pioneer 877F 22.711 21.959 3.23 3.69 

 Blade ES 5140 28.285 26.231 4.36 4.47 

 Blade ES 5200 32.774 29.933 5.04 5.25 

11 May, 2016 Pioneer 877F 24.667 22.343 3.25 3.12 

 Blade ES 5140 26.806 24.401 4.14 3.97 

 Blade ES 5200 31.998 27.981 5.41 5.52 

15 June, 2016 Pioneer 877F 22.464 20.474 3.23 3.74 

 Blade ES 5140 23.009 19.964 3.82 4.21 

 Blade ES 5200 28.101 25.537 4.67 4.59 

14 July, 2016 Pioneer 877F 17.839 17.830 2.91 3.52 

 Blade ES 5140 17.908 19.901 3.66 3.61 

 Blade ES 5200 23.047 19.401 3.67 3.84 

25 Aug.2016 Pioneer 877F 12.595 9.371 2.92 3.34 

 Blade ES 5140 13.504 11.157 2.79 2.99 

 Blade ES 5200 13.345 10.093 3.09 3.64 
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4.4.3. Leaf area index 

Generally, higher LAI values were observed in those hybrids that were sown 

between March and June during the study period (Figure 4.1). Those higher LAI values 

were due to the better weather conditions for sorghum growth than the hybrids sown from 

July to September. For the 2-year study period, the average measured LAI ranged from 

2.57 to 5.55 m2 m-2 for all hybrids in all experiments (Table 4.2). The highest average 

measured LAI was observed in the sowing dates of April 23, 2013 (3.39, 4.75, and 5.55 

m2 m-2 for Pioneer 877F, Blade ES 5140, and Blade ES 5200, respectively, and May 11, 

2016 (3.25, 4.14, and 5.41 m2 m-2 for Pioneer 877F, Blade ES 5140, and Blade ES 5200, 

respectively), while the lowest average LAI observed was on the sowing date of 

September 01, 2013 (2.68, 2.57, and 2.74 m2 m-2 for Pioneer 877F, Blade ES 5140, and 

Blade ES 5200, respectively, and August 25, 2016 (2.92, 2.79, and 3.09 for Pioneer 877F, 

Blade ES 5140, and Blade ES 5200, respectively). It means that sorghums sown between 

April and May reached higher LAI values, then decreased to half through the rest of the 

crop seasons (Table 4.2). The sorghum hybrid’s ranking at each sowing season was stable 

(Blade ES 5200 > Blade ES 5140 > Pioneer 877F), except for those sown on September 

01, 2013, and August 25, 2016. The LAI of the hybrid Blade ES 5200 showed averaged 

values higher than 5 m2 m-2 when sown in April (in the 2-year study) (Table 4.2), while 

the Pioneer 877F hybrid showed the lowest LAI values during most of the experimental 

period, except for those sown on September 01, 2013, and August 25, 2016, where there 

were observed no statistical differences among the three hybrids, and the averaged LAI 

values were the lowest for the experiment. 
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Figure 4.1 Accumulation of leaf area index over time of the three sorghum hybrids 

from experimental data of the growing season of 2016. 
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4.4.4. Canopy extinction coefficients 

A canopy extinction coefficient (K) was obtained for each sorghum hybrid from 

measurements of PAR (transmitted and incident) and crop LAI from emergence to 

maturity. The K value is an important crop parameter that describes crop’s leaf 

architecture, which is essential for determining the IPAR for each day. The K value is a 

constant that is used during the entire crop life cycle (Soltani and Sinclair, 2012). Figure 

4.2 shows the K results for each sorghum hybrid in both growing seasons. Combining 

readings from all sowing seasons, a one-way analysis of variance (ANOVA) determined 

that there were differences among sorghum hybrids. It was observed that the F-statistic 

value was 21.148, and it was highly significant (p < 0.001). Thus, it is prudent to reject 

the null hypothesis of the equal mean value of K across the sorghum hybrids. The average 

(±sd) K values were greater for Pioneer 877F (K = 0.75±0.05), followed by Blade ES 5140 

(K = 0.67±0.08) and Blade ES 5200 (K = 0.66±0.08). A Tukey’s HSD (honest significance 

difference) test showed the pair-wise difference of average K of the three sorghum hybrids 

at 0.05 level of significance. Three possible pair-wise comparisons were obtained. The 

results showed that only for the pair between the hybrids Blade ES 5140 and Blade ES 

5200 showed no statistical difference between them (p = 0.666). This result implies that 

the average K value from Pioneer 877F is statistically different from the other hybrids (p 

< 0.05). 
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Figure 4.2 Canopy extinction coefficients obtained during the 2-year experiment for 

the three sorghum hybrids. 

 

 

 

4.4.5. Radiation use efficiency 

Table 4.3 shows statistics for the linear regression (intercept forced to 0) between 

DB and cumulative IPAR for each sorghum hybrid for each sowing season. In general, the 

highest values of RUE were observed in the energy hybrids (Blade ES 5200 > Blade ES 

5140 > Pioneer 877F). The response in RUE varied significantly among the sowing 

seasons (Figure 4.3). RUE varied from 2.68 to 4.43 g MJ-1 among all experimental plots. 

For the Pioneer 877F, the highest RUE value was observed on those sorghums sown on 

April 04 and May 11, 2016, with 3.124 and 3.205 g MJ-1, respectively; and the lowest 

when sown on September 01, 2013, and August 25, 2016, with 2.714 and 2.745 g MJ-1, 

respectively. For the hybrid Blade ES 5140, the highest RUE values were observed on 

those sorghums sown on April 23, 2013, and April 04, 2016, with 3.708 and 3.62 g MJ-1, 
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respectively, and the lowest on August 25, 2016, with 2.683 g MJ-1. For the hybrid Blade 

ES 5200, the highest RUE values were observed on the sowing dates of April 23, 2013, 

and April 04, 2016, with 4.426 and 4.079 g MJ-1, respectively; and the lowest values were 

observed on September 01, 2013, and August 25, 2016, with 3.010 and 2.955 g MJ-1, 

respectively. 
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Table 4.3 Cumulative IPAR (MJ m-2), slope (RUE, g MJ-1), coefficient of 

determination (R2), standard error of the slope (SE), and model significance (p-value) 

for every linear regression between dry biomass productivity and cumulative IPAR. 

Sowing date 
Sorghum 

hybrid 
CIPAR RUE R2 SE[a] p-value[b] 

23 April, 2013 Pioneer 877F 669.91 3.036 0.97 0.331 0.003 

 Blade ES 5140 687.84 3.708 0.97 0.407 0.003 

 Blade ES 5200 724.14 4.426 0.99 0.229 < 0.001 

01 Sep., 2013 Pioneer 877F 481.88 2.714 0.99 0.141 < 0.001 

 Blade ES 5140 474.65 2.960 0.99 0.154 < 0.001 

 Blade ES 5200 460.87 3.010 0.98 0.220 0.001 

01 Mar., 2016 Pioneer 877F 770.41 2.928 0.96 0.194 < 0.001 

 Blade ES 5140 777.76 3.443 0.96 0.226 < 0.001 

 Blade ES 5200 823.28 3.903 0.93 0.317 0.001 

04 April, 2016 Pioneer 877F 733.09 3.124 0.99 0.032 < 0.001 

 Blade ES 5140 790.16 3.620 0.99 0.055 < 0.001 

 Blade ES 5200 807.07 4.079 0.99 0.082 0.007 

11 May, 2016 Pioneer 877F 804.62 3.205 0.99 0.123 < 0.001 

 Blade ES 5140 828.81 3.400 0.98 0.139 < 0.001 

 Blade ES 5200 869.91 3.798 0.99 0.086 < 0.001 

15 June, 2016 Pioneer 877F 795.99 2.871 0.99 0.083 < 0.001 

 Blade ES 5140 813.46 2.981 0.98 0.104 < 0.001 

 Blade ES 5200 826.31 3.365 0.99 0.109 < 0.001 

14 July, 2016 Pioneer 877F 684.05 2.813 0.84 0.274 0.002 

 Blade ES 5140 690.97 2.824 0.86 0.263 0.002 

 Blade ES 5200 783.53 3.210 0.96 0.174 < 0.001 

25 Aug., 2016 Pioneer 877F 552.46 2.745 0.86 0.219 0.001 

 Blade ES 5140 548.81 2.683 0.87 0.217 0.001 

 Blade ES 5200 569.59 2.955 0.70 0.356 0.004 

[a] SE measure the precision of the regression analysis. The smaller the number, the more certain one 

can be about the regression equation. 
[b] For regression analysis, p-value less than 0.05 means the model is acceptable; if p-value greater than 

0.05 means the independent (explanatory) variable has no influence on depended variable. 
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Figure 4.3 a) Linear regressions (intercept coefficient forced to 0) between dry 

biomass productivity and cumulative IPAR for the three sorghum hybrids at each 

sowing season, and b) averaged RUE on each sowing season of the growing season of 

2016. 
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4.4.6. Model evaluation 

For satisfactory parameterization criteria, Wang et al. (2012) suggested that R2 ≥ 

0.60, NSE ≥ 0.55, and PBIAS within 20% for water yield; and R2 ≥ 0.60 and PBIAS within 

25% for crop yield. Sorghum ETc data under unstressed conditions from the STWP was 

compared with the EPIC-simulated data using the Hargreaves-Samani equation as part of 

this study. This calculation was performed as a preliminary evaluation of the EPIC model. 

t-Tests showed that simulated EPIC ETc was not significantly different from the STWP 

FAO-56 with a p = 0.44 for the 2-year experiment (p = 0.66 for the 2013 experimental 

data and p = 0.52 for the 2016 experimental data). The simulated EPIC ETc agreed with 

the estimated ETc from FAO-56 Penman-Monteith, with R2 of 0.70, RMSE of 1.22 mm, 

PBIAS of 2.02%, and NSE of 0.61 (Figure 4.4). However, some variations were observed, 

possibly due to the Hargreaves-Samani equation that does not account for wind speed, 

causing an underestimation of ETc during the simulation. 
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Figure 4.4 a) Comparison between estimated daily ETc calculated using FAO-56 

Penman-Monteith with the South Texas Weather program and crop coefficients 

versus simulated ETc from EPIC using Hargreaves-Samani, and b) cumulative ETc 

using FAO-56 Penman-Monteith (solid lines) estimated with the South Texas 

Weather program (Kc varies from 0.5 to 1.1 for Sudan grass) versus EPIC-simulated 

ETc using Hargreaves-Samani (dashed lines) for biomass sorghum for the different 

sowing seasons in the growing seasons of 2013 and 2016 in the Texas A&M AgriLife 

Research Center, Weslaco, Texas. 
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The WA crop parameter was adjusted according to the RUE results obtained from 

experimental data (Table 4.3). After parameterizing the three sorghum hybrids for each 

sowing season, the statistical indices proved the EPIC model’s potential to predict DB and 

LAI for staggered production in the 2-year experiment. Student t tests assuming equal 

variances were used to conduct hypothesis tests on the regression coefficients obtained 

from linear regressions. For the entire set of DB data from the 2-year experiment, the linear 

equation obtained for DB between the measured and the simulated values was 𝑦 =

0.8017 + 0.8904𝑥 with R2 = 0.94. The agreement between measured and simulated 

accumulated DB productivity is considered satisfactory since the t-tests of the linear 

regression demonstrated that both α and β (p = 0.013 and p < 0.001, respectively, with 94 

degrees of freedom) were not significantly different from 0 and 1, respectively. A 

statistical analysis of model performance was conducted between measured and simulated 

DB data per sorghum hybrid for the 2-year experiment. Results from this statistical 

analysis of model performance can be observed in Table 4.4. The values of R2 ranged 

between 0.87 and 0.95, NSE between 0.88 and 0.92, PBIAS between -11.32% and 8.57%, 

and RMSE between 1.92 and 3.05 Mg ha-1. All the performance indices obtained are 

within the range recommended by Wang et al. (2012) for crop yield assessment of model 

performance. Additionally, Figure 4.5 shows the results of analysis of model performance 

conducted between measured and simulated DB data every growing season for the 2-year 

experiment. So, EPIC showed a good performance in simulating DB under different 

sowing seasons. Table 4.2 summarizes measured and simulated total DB at harvest for the 

sorghum hybrids per sowing season during the 2-year experiment. The measured total DB 
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of Pioneer 877F ranged from 12.057 to 24.667 Mg ha-1, while the simulated productivity 

ranged from 9.371 to 22.343 Mg ha-1 in the 2-year study. The measured total DB of Blade 

ES 5140 ranged from 13.003 to 28.285 Mg ha-1, while the simulated productivity ranged 

from 10.720 to 26.231 Mg ha-1 in the 2-year study. The measured total DB of Blade ES 

5200 ranged from 12.886 to 32.774 Mg ha-1, while the simulated productivity ranged from 

10.093 to 29.933 Mg ha-1 in the 2-year study. The three sorghum hybrids had high 

productivities (measured and simulated) when sown between March and May, while the 

lowest productivities were on the sowings of August and September. 

 

 

 

Table 4.4 Statistical indices for assessing simulation efficiency (hybrid × year) 

conducted for each sorghum hybrid during evaluation of the EPIC model for dry 

biomass productivity and leaf area index of biomass sorghum. 

Variable Year 

Sorghum 

hybrid R2 NSE PBIAS RMSE 

Dry 

biomass 

2013 

Pioneer 877F 0.89 0.90 -7.51% 2.04 Mg ha-1 

Blade ES 5140 0.92 0.92 -8.17% 1.92 Mg ha-1 

Blade ES 5200 0.87 0.88 -11.32% 3.05 Mg ha-1 

2016 

Pioneer 877F 0.93 0.92 4.86% 2.14 Mg ha-1 

Blade ES 5140 0.94 0.92 3.57% 2.26 Mg ha-1 

Blade ES 5200 0.95 0.92 8.57% 2.74 Mg ha-1 

LAI 

2013 

Pioneer 877F 0.98 0.88 -9.41% 0.34 m2 m-2 

Blade ES 5140 0.98 0.95 -1.64% 0.25 m2 m-2 

Blade ES 5200 0.99 0.99 -2.89% 0.17 m2 m-2 

2016 

Pioneer 877F 0.89 0.80 -13.53% 0.49 m2 m-2 

Blade ES 5140 0.91 0.86 -9.11% 0.48 m2 m-2 

Blade ES 5200 0.95 0.93 -6.20% 0.38 m2 m-2 
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Figure 4.5 Measured dry biomass versus simulated dry biomass from EPIC model 

for the growing seasons of 2013 (a) and 2016 (b). Measured data was obtained at the 

experimental fields at Texas A&M AgriLife Research Center, Weslaco, Texas. 
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For the entire set of LAI data from the 2-year experiment, the linear equation 

obtained for LAI between the measured and the simulated values was 𝑦 = 0.2040 +

0.9840𝑥 with R2 = 0.90. The agreement between measured and simulated LAI is 

considered satisfactory, since the t-tests demonstrated that both α and β (p = 0.039 and p 

< 0.001, respectively, with 94 degrees of freedom) were not significantly different from 0 

and 1, respectively. The statistical analysis of model performance conducted between 

measured and simulated LAI data per sorghum hybrid for the 2-year experiment showed 

that R2 ranged between 0.89 and 0.99, NSE between 0.80 and 0.99, PBIAS between -

13.53% and -1.64%, and RMSE between 0.25 and 0.49 m2 m-2
 (Table 4.4). All the 

performance indices obtained were within the range recommended by Wang et al. (2012). 

Additionally, Figure 4.6 shows the results of analysis of the model performance conducted 

between measured and simulated LAI data for every crop cycle for the 2-year experiment. 

As well, EPIC demonstrated its good performance at simulating LAI for different sowing 

seasons. Table 4.2 summarizes measured and simulated LAI at harvest for the sorghum 

hybrids for every crop cycle during the 2-year study period. The measured LAI of Pioneer 

877F ranged from 2.68 to 3.39 m2 m-2, while the simulated LAI ranged from 3.00 to 4.03 

m2 m-2. The measured LAI of Blade ES 5140 ranged from 2.57 to 4.75 m2 m-2, while the 

simulated LAI ranged from 2.99 to 4.80 m2 m-2. The measured LAI of Blade ES 5200 

ranged from 2.74 to 5.55 m2 m-2, while the simulated LAI ranged from 3.27 to 5.58 m2 m-

2. The three sorghum hybrids had high LAI values (measured and simulated) when sown 

between March and May, while the lowest LAI were on the sowings of August and 

September. 
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Figure 4.6 Measured leaf area index versus simulated leaf area index from EPIC 

model for the growing seasons of 2013 (a) and 2016 (b). Measured data was obtained 

at the experimental fields at Texas A&M AgriLife Research Center, Weslaco, Texas. 
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4.5. Discussion 

The present chapter evaluated both the potential capacity of three biomass 

sorghums to convert solar irradiance into dry biomass under variable timed sowing dates 

and the capability of the EPIC model to simulate the potential sorghum dry biomass 

accurately and leaf area index at several sowing seasons by comparing the simulated data 

to those observed in the field experiments. The experiments conducted in this study were 

designed to provide optimal growth conditions for the three sorghums hybrids. 

Sorghum hybrids were entirely regulated by the accumulation of growing degree 

days or daylength photoperiod triggers. According to Ritchie et al. (1998), the biomass 

accumulation rate was principally influenced by the amount of light intercepted by the 

crop canopy over an optimum temperature range. Results obtained for accumulated dry 

biomass and LAI in this study were used to estimate RUE and were widely discussed in 

Chapter 2.  

The canopy extinction coefficient (K) is a dimensionless parameter that combines 

all factors affecting PAR in the canopy and is assumed constant through the crop cycle 

life. It is a crop species-specific parameter that involves plant canopy characteristics such 

as leaf angle, size, shape and thickness, and leaf area properties. However, the K values 

are affected by management factors, such as plant density, row spacing, and sun angle. 

The results of this chapter are comparable to those reported by Narayanan et al. (2013). 

They found K = 0.668 in a field experiment performed to evaluate eight sorghum 

genotypes for biomass production at Kansas State University. However, the K values 

obtained for the energy hybrids (0.66 and 0.67, for Blade ES 5140 and Blade ES 5200, 
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respectively) obtained in this chapter were lower than that reported by Rinaldi and 

Garofalo (2011) (K = 0.75) in a three-year field experiment conducted to determine the 

RUE of biomass sorghum production over different irrigation regimes in Southern Italy. 

Smaller estimates of K were observed in the experimental units that showed higher LAI 

values, and larger estimates were obtained during maturity due to many dead leaves on 

the plants. This result agreed with Sinclair (2006), who concluded that K decreased with 

an increase of LAI. The sorghum hybrids differed in the cumulative IPAR, which was 

calculated from LAI and a given constant value of K. Therefore, the differences in IPAR 

were due to differences in LAI among the sorghum hybrids. 

Radiation use efficiency (RUE) was determined as the slope of the first-order 

linear regression (the intercept coefficient forced to 0) of DB at different sampling dates 

and the corresponding cumulative IPAR (Figure 4.3). During the study period, the 

estimated RUE values ranged from 2.714 to 3.205 g MJ-1 for Pioneer 877F, from 2.683 to 

3.708 g MJ-1 for Blade ES 5140; and from 2.955 to 4.426 g MJ-1 for Blade ES 5200 (Table 

4.3). Most of the RUE values obtained in the present study were within the range of 

published seasonal RUE values for sorghum, which varied from 1.2 to 4.3 g MJ-1 IPAR 

(Hammer et al., 1989; Kiniry et al., 1989; Muchow, 1989). Similar RUE values for 

sorghum were reported: 3.4 g MJ-1 (Mastrorilli et al., 1995), 3.48 g MJ-1 (Ceotto et al., 

2013), 3.55 g MJ-1 (Dercas and Liakatas, 2007). This chapter’s results agreed with those 

reported by Houx III and Fritschi (2015), who found a decrease in RUE in late sowing of 

sweet sorghum in a study conducted to evaluate the influence of sowing dates on sweet 

sorghum in Columbia, MO, USA. Most of the higher RUE values were found in early 
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sowing seasons for the three sorghum hybrids, mostly when sown from March to May. 

Then, the RUE values decreased for those sown in June, July, August, and September 

(Figure 4.3a). Our results confirmed that RUE was significantly dependent on 

temperature, IPAR, and the number of days with daylight > 12:20 h (for the photo-

sensitive hybrid). Therefore, RUE is a crop parameter that cannot be used as a constant 

when estimated biomass sorghum production is obtained at different sowing seasons 

(Figure 4.3b). Rinaldi and Garofalo (2011) reported that RUE was significantly dependent 

on crop water consumption and that it cannot be considered a constant crop parameter for 

biomass sorghum. 

Parameterization is crucial for accurate simulation of crop growth and 

development under various field conditions; then, a local reparameterization was 

conducted for every sowing season following the procedures described by Wang et al. 

(2012). The first calibration process of biomass sorghum for the south Texas conditions 

was conducted by Chavez et al. (2018). They reported several crop parameters for biomass 

sorghum simulation obtained from field experiments established for a single sowing 

season. With those crop parameters, our model showed an error greater than 25% on DB 

for across the sowing seasons. In this study, the WA parameter was identified as the source 

of inaccuracy. It was readjusted to achieve appropriate crop biomass productivity for 

biomass sorghum under a staggered production system. The EPIC model was then 

parameterized for different sowing seasons using the RUE estimates obtained from 

experimental field data and then evaluated for the simulation of staggering sowing 

seasons. 
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 The EPIC model for biomass sorghum was evaluated using data from the 2-year 

study of biomass sorghum development under optimal growth conditions. Daily and 

cumulative EPIC-simulated ETc values diverged from the values estimated by the STWP 

due to the PET equation used in EPIC for the estimation of ETc (Figure 4.4). That variation 

happened because EPIC estimates ETc by adjusting PET based on non-linear leaf area 

development during the growth stages, while the FAO-56 uses a linear Kc during leaf 

development stages. That difference between EPIC and the FAO-56 might cause a gap in 

cumulative PET values. High correlation was observed between measured and simulated 

DB (r = 0.97) and measured and simulated LAI (r = 0.95) of sorghum hybrids during the 

2-year study period. The statistical tests demonstrated that the EPIC model was able to 

simulate DB and LAI of the three different sorghum hybrids under different sowing dates 

with acceptable accuracy. The slope and intercept of the linear regressions shown for 

measured versus simulated DB and LAI in Figures 4.5 and 4.6 were not significantly 

different from 1 and 0, respectively. The regression lines were close to the 1:1 line with a 

slope close to 1, and coefficient intercept close to 0. The simulated DB obtained in this 

study coincided with the results reported in other studies such as Rocateli et al. (2012) 

who reported productivities of 26.0 to 31.6 Mg ha-1, and Palumbo et al. (2014) who 

reported those of 20.9 to 26.4 Mg ha-1 of biomass sorghum for the Mediterranean 

conditions. 

4.6. Conclusion 

The experiments conducted in this study were designed to provide non-stress water 

or nutrient conditions for sorghum biomass production. Sorghum development among 
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hybrids and sowing seasons were sensitive to environmental conditions, such as 

temperature influence, solar irradiance, and photoperiod. 

The results of this study show that the effect of sowing date has a crucial impact 

on the accumulation of dry biomass and how hybrids convert solar irradiance on dry 

biomass. Energy sorghum has the highest potential productivity (approximately 33 Mg 

dry biomass ha-1). It is most cost-effective when sown during March, April, and May in 

South Texas if supplied with adequate water and nutrients. 

RUE values varied among hybrids across sowing seasons. Energy sorghums 

(Blade ES 5200 and Blade ES 5140) resulted in higher RUE values if sown between March 

and July compared to forage sorghum (Pioneer 877F). These results suggest that energy 

sorghums are more efficient at converting solar radiation to biomass at non-stress water 

or nutrient conditions and also if weather conditions are favorable. 

The evaluation results demonstrated that, using the RUE values obtained from 

experimental data, the EPIC model can reproduce field conditions of biomass sorghum 

under staggered sowing seasons for South Texas. Therefore, accurate estimation of RUE 

is crucial to replicate field conditions for staggered biomass sorghum production. 

Yearlong production of biomass sorghum is required for the optimum operation of 

a biorefinery. So, staggering the sowing of biomass sorghum hybrids is an excellent 

alternative for providing a continuous supply of feedstock for a biorefinery to ensure its 

optimum operation. For this reason, it is considered that a land area might need to be 

staggered sown with different sorghum hybrids and adapted according to the sowing 

season. 
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5. CONCLUSIONS 

 

Understanding of the influence of environmental conditions, such as temperature, 

solar radiation, photoperiod and crop management, such as crop variety, irrigation, and 

sowing date is crucial for efficient biomass sorghum production. This dissertation studied 

the growth response and the biomass productivity of biomass sorghum under south 

Texas’s environmental conditions. In the first objective, analyses of dry biomass, leaf area 

index, crop growth rate, and water use efficiency of three sorghum hybrids under the effect 

of several sowing dates were conducted. The EPIC model was calibrated and validated for 

biomass sorghum simulation at different irrigation levels in the second objective. 

Furthermore, the third objective focused on the determination of radiation use efficiency 

values to parameterize the EPIC model for the simulation of biomass sorghum sown at 

different dates.  

Experiments conducted in this study were designed to provide non-stress water or 

nutrient conditions for biomass sorghum development, except for the experiments 

conducted under deficit irrigation described in Chapter 3. 

The methodology used in this study addresses an interesting practical and 

theoretical implications about energy crop production and crop modeling. It used sorghum 

field data to evaluate the response on biomass productivity under South Texas’s climate 

conditions. The results obtained from field experiments were used to develop crop 

parameters to build a biomass sorghum crop model capable of precisely simulating and 
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establishing better crop managements for sorghum biomass production for the South 

Texas conditions. 

The crop growth rate analyses conducted for the biomass sorghum hybrids during 

the sowing seasons determined the sorghum’s maximum and average growth rate and the 

phenological stages of sorghum from sowing to harvest. Results from those analyses 

showed the beginning and end of the vegetation phase, which are the most critical period 

when sorghum needs to be supplied the most amount of water and nutrients. 

The water use efficiency analysis explored the crop response of biomass sorghum 

developed for several sowing seasons. The results obtained showed that energy crops had 

better water use efficiency because they produced more biomass per unit of water applied. 

Additionally, results obtained from experiments established for biomass sorghum under 

different water irrigation regimes showed that biomass sorghum could reach high 

production when irrigated under deficit irrigation. Therefore, this analysis provided 

valuable information about improving crop management practices for saving water 

without compromise productivity. 

The radiation use efficiency analysis provided a better picture of how sorghum 

converts solar energy into biomass under several sowing dates for annual production. 

Regression analyses determined that energy sorghums, when sown from March to early 

May, had higher RUE values. Radiation use efficiency analysis for the study period 

demonstrated that RUE values could not be considered a constant crop parameter used for 

crop simulation when staggered sowing was considered for yearlong production.  
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This work’s outcomes will provide a more accurate picture of how biomass 

sorghum production varies among hybrids and how biomass varies temporally under the 

influence of weather conditions. Also, this research determines the most sensible 

parameters that influence the production of biomass sorghum. 

The EPIC crop model was fed with field data to calibrate and validate the crop 

model for conducting simulations on dry biomass over the study period and long-term 

simulations using 30-year weather data to simulate the average productivity using 

different irrigation regimes. The calibration process demonstrated that the most sensitive 

crop parameter in biomass sorghum for dry biomass production was the biomass to energy 

ratio (WA), followed by the coefficient and exponent of the Hargreaves-Samani PET 

equation. 

The EPIC model demonstrated that it could simulate dry biomass and leaf area 

index of biomass sorghum under different sowing seasons and different irrigation regimes 

for south Texas’s conditions. 

The methodology developed and presented in this dissertation is not limited to 

biomass sorghum for the south Texas region. It should be extended and applied to other 

environmental regions or watersheds for assessing the production of other energy crops. 

Afterwards, it can also be used for formulating guidelines or establish crop management 

strategies for the production of energy crops for yearlong production. Future studies 

should include the influence of climate change, particularly the effect of global warming 

on the radiation use efficiency and water use efficiency of energy crops, and how they 

affect the dry biomass productivity at a regional scale. 
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