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ABSTRACT

We study two problems related to sparse signal recovery. The first problem considered is

querying a sub-image of size M × M in a large image database of size N × N to determine

all the locations where sub-image appears. We use sparse graph based codes Fourier transform

computation to compute the peaks in the 2-D correlation to determine the matching positions in

a computationally efficient manner. We then design a 2-D pattern that can facilitate vision based

positioning by enabling the use of our algorithm for fast pattern matching. The second problem

studied is the computation of sparse Walsh-Hadamard transform for binary data. We consider

signals that are sparse in Walsh-Hadamard tranform domain where the non-zero coefficients are

all ones. A possible application of this algorithm is learning an undirected unweighted graph by

using a sub-sample version of its evaluation. We design an adaptive algorithm for sparse WHT

computation. Adaptivity provides an opportunity to recover more than one non-zero coefficient

aliased together in each iteration so that a faster recovery can be expected given the same amount

of sub-samples. It is shown that with the same amount sample, the probability of error of our

proposed algorithm is lower compared to the earlier work.
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1. INTRODUCTION

1.1 Motivation

The discrete Fourier Transform (DFT) and the Walsh-Hadamard transform (WHT) are power-

ful tools for analyzing signals that arise in a variety of applications in engineering and sciences.

Algorithms for efficiently computing the DFT or WHT have been studied for several years. The

Fast Fourier Transform (FFT) is the most well-known algorithm to compute the DFT with the com-

putation complexity of O(N logN) given data of length N . Similarly, algorithms that compute the

WHT with a complexity of O(N logN log logN) exist.

Even when the amount of data is huge, many signals that are commonly encountered in en-

gineering and science are often sparse in the discrete transform domain, which means many of

the coefficients in that domain are zeros or they are so small that can be treated like zeros. For

example, discrete cosine transform (DCT) of images usually contains many zeros or very small

coefficients, audio signals are usually sparse in frequency domain. When the sparsity assumption

is valid, algorithms can be designed to compute the discrete transform of the signal of large size

with lower sample and computational complexity (particularly, in sub-linear time). Recently, there

has been significant progress in the design and analysis of sub-linear time algorithms for efficient

computation of sparse discrete Fourier transform (DFT) and sparse Walsh-Hadamard transform

(WHT) based on graph-based codes [3, 4, 5].

1.2 Applications of Sparse Signal Recovery

Sparse transform computation has found applications in several areas of engineering, mathe-

matics and computer science [6]. In this thesis, we are interested in the following two problems.

The first one is pattern matching. Pattern matching is an important problem that has potential

applications in bioinformatics, global positioning system (GPS), data querying and so on. Very

recently sparse DFT computation algorithms have been used for 1-D pattern matching in [2, 7]. In

this thesis, we first expand the scope of the results in [2] to 2-D pattern matching algorithm based

1



on 2-D sparse DFT and discuss its advantages for finding image patterns in image data sets.

The other application considered is sparse Walsh-Hadamard transform computation for signals

whose WHTs are sparse and the non-zero coefficients are ones. This is motivated by applications

in learning sparse set functions of graphs such as what is considered in in [8]. Here we extend the

results of [5] to design an adaptive algorithm to compute the Walsh-Hadamard transform of signals

whose WHT is sparse and the non-zero coefficients are ones.

1.3 Thesis Organization

The rest of the thesis is organized as follow. In the chapter two, we first introduce two works

that are related to our proposed 2-D pattern matching algorithm. Our work is introduced in the

following section. Simulation results are also included in that section with a demonstration of the

performance both for binary data and real image implementation. In chapter three, we discuss

the sparse Walsh-Hadamard transform computation with the application in graph learning. The

introduction of Walsh-Hadamard transform and the graph learning problem is given in the first

section. The following section describes the scheme of our proposed adaptive algorithm. The

simulation is given in the same section to show the performance or improvement of the proposed

work on binary data. Finally, we give a conclusion and proposed some potential future works and

thoughts on related topics.

2



2. 2-D PATTERN MATCHING USING SPARSE FOURIER TRANSFORM APPROACH*

In this chapter, we present our work on 2-D pattern matching by using a sparse signal recovery

strategy. Pattern matching is a fundamental data science problem aiming to find the location of

a small scale data with some special pattern in a large data set. Pattern matching is often stud-

ied under the names of querying, sub-string matching, shift finding. The application of pattern

matching can be found everywhere. Some such applications include audio/image signal matching,

bioinformatics data matching, text matching in large database, etc. Several algorithms have been

designed in the literature for various versions of the pattern matching problem. In this thesis, we

focus on pattern matching based on sparse transform computation. In the next section, we briefly

introduce two important prior works and discuss the relation of these works and ours.

2.1 Retated Work

In this section, we present two related works: the Fast Sparse 2-D DFT Computation us-

ing Aliasing-based Sparse Transform(2D-FFAST) algorithm by Ong[1] and the Sub-string/Pattern

Matching in Sub-linear Time Using a Sparse Fourier Transform Approach from Janakiraman [2].

Then, we introduce the main idea behind our work on the 2D-Pattern Matching problem.

2.1.1 2-D FFAST

1The problem considered is computing the 2D-DFT of a 2D signal of size Nx × Ny when the

transform is sparse. If Nx and Ny are co-prime, the problem can be reduced to computing the DFT

of a corresponding 1-D signal. And this can be done by using 1-D FFAST algorithm[3] which also

uses a very similar computation scheme. When Nx and Ny are not co-prime, algorithm require a

factorization of N = Nx ×Ny =
∏i=d−1

i=0 Qi where d is a well chosen constant.

The idea of the 2D-FFAST algorithm is illustrated by the following example. A 2-D sig-

nal x of size 6 × 6 is considered. The 2-D DFT of this signal is X of sparsity k = 4 with

1Reprinted with permission from “Fast sparse 2-D DFT computation using sparse-graph alias codes” by Frank
Ong; Sameer Pawar; Kannan Ramchandran, 2016. IEEE International Conference on Acoustics, Speech and Signal
Process-ing (ICASSP), pp. 4059–4063, Copyright [2016] by IEEE.

3



X[1][3], X[2][0], X[2][3], X[4][0] 6= 0.

Figure 2.1: 2D-FFAST Architecture with d = 2. This figure is from [1] with permission.

As shown above, the 2-D FFAST algorithm architecture consists of two main parts, the front

end that performs down sampling and a peeling decoder at the back end. There are two down-

sample stages with different down-sample rates. The two dimensions of the input signal do

not necessarily have to be the same but to keep demonstration simple, we assume they are the

same. In each stage the signal has three shifts: one zero shift and two non-zero shifts along

each dimension. Then the smaller size 2-D DFT is computed. The output of the front-end

are bins for observation, which are vectors of DFT coefficients. For example, the bin y0,3 =

(X[1][3], e2πi1/6X[1][3], e2πi3/6X[1][3]). The value of the coefficient is the first entry of this vector

and the position information is contained in the phase of the other entries.

The relationship between the non-zero DFT coefficient and the bin observation vectors is given

in 2.2. The bin is classified as a zeroton if there is no contribution from any of the nodes on the

left. It is called a singleton if it is connected to one non-zero coefficient. And it is called a multiton

4



if it is connected to more than one non-zero coefficient. A bin can be classified into these three

classes by doing the ratio-test[3]. Coefficients can be detected and located if it falls in a singleton.

Figure 2.2: Bi-partite Graph of the non-zero coefficient and the bin observation. This figure is
from [1] with permission.

The back-end peeling process is an iterative algorithm. In each iteration, a singleton is detected

by doing the ratio-test, the value and the index of the coefficient corresponding to it can be found.

Then the contribution from this coefficient is removed. Accordingly, the edges connected to this

coefficient are deleted in the bi-partite graph. By doing so, the degree of some bins connected

to it will drop and some multiton will turn into singleton which can be decoded. The peeling

decoder algorithm will stop when all the coefficients are found. The high probability of success

is achieved by downsampling the signal with well chosen factors according to Chinese Reminder

Theory (CRT).

5



2.1.2 Sub-string/Pattern Matching in Sub-linear Time Using a Sparse Fourier Transform

Approach

In this section, we briefly introduce how to convert a pattern matching problem into a sparse

signal recovery problems. Here we only give a brief introduction of exact pattern matching.

~x = (x[0], x[1], ..., x[N − 1]) is a N -point length signal which represents the data base. ~y =

(y[0], y[1], ..., y[M − 1]) is a shorter signal of length M . The question is whether ~y is a sub-string

of ~x and where are the locations of these sub-strings ~τ = (τ(1), τ(2), ..., τ(t)). If there can be

more than one sub-strings to match and all of them have to be found. Binary cases is considered in

this work.

The idea is that the correlation signal ~r = ~x ⊗ ~y can be used to find the matching position.

Generally, the correlation signal ~r will have a large value at the matched position and small value

at non-matched positions.

r[m] =

 M, ifm ∈ τ

nm, m ∈ [N ]− τ
(2.1)

This is a true in many applications and a well known one is Global Positioning System (GPS).

In GPS synchronization problem, the satellite transmit CDMA code to the receiver. Cross-correlation

signal is computed locally at the receiver, a peak will appear at the matched position so that the

receiver can infer the delay of the propagation[7]. The cross-correlation can be computed by using

the DFT of x and y as follows:

~r = F−1
N {FN{~x} � FN{~y}} (2.2)

6



Figure 2.3: Flow chart of the algorithm from [2]

.

where FN represents the N -point Discrete Fourier Transform and F−1
N is the N-point inverse

Discrete Fourier Transform (IDFT). Since the data base ~x is known in advance, one time DFT of

it can be computed and stored locally. There is also an efficient method to compute the N -point

DFT of the ~y by leveraging the fact that it contains many zeros.

Figure 2.4: Sparse signal recovery algorithm from [2].
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Once the production of these two N -point DFT coefficients are obtained, the Robust Sparse

Inverse Discrete Fourier Transform (RSIDFT) will be performed to locate the peak of the cross-

correlation signal. The input signal is ~R = FN{~r}. N can be factorized as N =
∏i=d−1

i=0 fi

where fis are relatively prime. There are d stages to down-sample the ~R and compute the IDFT

of the shorter signals. In the ith stage, the down-sample rate is N/fi and there are B shifts

~s = (s1, s2, ..., sB). The IDFT of these shifted and down-sampled signals is viewed as some

bin observations. ~ri,j is the fi-point IDFT of ~Ri,j which is the shifted and down-sampled signal in

the jth branch of ith stage and ~z are given as follow:

~zi,k = [ri,1[k], ri,2[k], ..., ri,B[k]]T (2.3)

and due to the shift and down-sample property of fourier transform, ~z can also be given as:

~zi,k = Wi,k × [r[k], r[k + fi], ..., r[k + (gi − 1)fi]]
T (2.4)

where gi = N/fi and Wi,k is defined as

Wi,k = [~wk, ~wk+fi , ..., ~wk+(gi−1)fi ] (2.5)

where ~wk = [ej2πks1/N , ej2πks2/N , ..., ej2πksB/N ].

Unlike to the 2D-FFAST work, the ratio-test can’t be used here because the value of non-

matched position is not strictly zero. So thresholds can be set for bin classification. Only when

the value of first entry fall into (0.5M, 1.5M), a bin can be classified as a singleton. A similar

bi-partite graph is given below and the peeling decoder algorithm can be used for the recover of

the signal.
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Figure 2.5: Bi-partite graph for RSIDFT.

2.1.3 Proposed Work

We design a 2-D pattern matching algorithm which is build on these two recent works. The

work in [2] shows that the location of matched pattern can be given by the cross-correlation signal

of the pattern and the database. The major difference of our work and [2] is the shape of the data.

Work in [1] gives a hint how to handle the data of more than one dimension.

In the next section, we presents the main result of our 2D-pattern matching algorithm.

2.2 2D-Pattern Matching

In this section, we describe our work of 2D-pattern Matching algorithm.

2.2.1 System Model and Notations

We consider the problem of locating the position of a small 2D signal in a large 2D data base.

One or more patterns can be found in this data base. Unlike the 1D problem, the shape of the data

is different. A novel algorithm is designed to find the pattern with low sample and computational

complexity.

In this thesis we represent the input signal as x of size N by N , a large image in general. The

pattern is a sub-image y of size M by M . It is not required the input has the same size for both
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dimension but it is easy to describe the algorithm when the size is the same in both dimensions.

There is one or more patterns in the input signal and the proposed algorithm is designed to find

out the position of these patterns by using only a sub-sampled version of x. To searching for sub-

image y, the cross-correlation of x and y has to be computed and it’s denoted as r = x ∗ y′, and

the coordinate of the maximum of r gives the position of the pattern. We use binary data (For each

pixel, the value is given by a uniformly distribution over {−1,+1}.) to do the simulation and the

result will be given in the following sections.

Symbol Meaning

x database

y sub-image

N Size of the database

M = O(Nµ) Size of the sub-image

L = O(Nλ) Number of matches

d Number of stages

fi ≈ Nα Size of small point 2D-IDFT at each stage-i

B Number of shifts in each stage

Table 2.1: Parameters involved in describing the algorithm

To describe the algorithm, we use lowercase letters to refer time domain signals and use upper-

case letters to refer frequency domain signals. Some important parameters are shown in the table

2.1.

2.2.2 2-D Pattern Matching Algorithm

In this section we describe the query algorithm for locating a small 2-D block in a relatively

large image. The main idea is that the cross correlation signal r is very sparse since it only have
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large coefficients of value M2 (for the exact pattern matching) at the matching positions P =

{P1, P2, P3, ..., PL} and behaves like noise close to zero where it is not matched. The index of the

location can be known as long as the peak in the cross-correlation signal is found. So this can be

treated as a sparse signal recovery problem.

To computed the cross-correlation efficiently, the algorithm is built on the fact that the DFT

of r can be given as the product of Fourier transform of x and y′, i.e., y′[i, j] = y∗[−i,−j]. The

cross-correlation signal r is given by computing the IDFT of that product:

r = F−1
N×N {FN×N(x)� FN×N(y′)} (2.6)

where FN×N {·} denotes the 2-D discrete fast fourier transform of size N × N . The 2D-DFT of

the data base x can be one-time computed and stored locally and there would be an efficient way

to computed the 2D-DFT of y′ of size N ×N and it will be introduced after the description of the

recovery algorithm. The flow chart is given below.

Figure 2.6: Flowchart of the proposed algorithm.

The 2D-DFT of the cross-correlation signal r is obtained by the production of the 2D-DFT of x

and y′. It is denoted as R. The shape of R is N ×N . A description of the algorithm follows. There

are d shift and down-sample stages. Firstly, in each stage, the signal will be shifted in two groups

for each dimension according to a series shifts {s1, s2, ..., sB}. s1 = 0 and the rest of the shift

can be any integers in [1 : N − 1]. In each group of shifts, the cross-correlation signal is shifted

along one dimension and remind unmoved for the other. In the ith stage, each branch of the shifted
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signal is down-sampled by a factor of fi. We choose d factors {f1, f2, ..., fd} that N =
∏

i fi. The

shifted cross-correlation signal is downsampled into the shape of fi × fi, and the corresponding

down-sample rate is gi = N
fi

. When the small size shifted and downsampled signal is obtained,

a 2D-IDFT of size fi × fi is computed in jth branch of ith stage to get Ri,j which is an aliased

observation of the original cross-correlation signal r. The aliased signal in stage i with shift sj is

give as follow:

ri,j[m,n] =
∑

p mod fi=m,q mod fi=n

r[p, q]× ωpsj (2.7)

if the shift is along the first dimension, where ω = ej
2π
N . If the shift is along the second dimension,

the power over ω should change to qsj respectively.

This is from the property of discrete Fourier transform that sub-sampling in the frequency

domain will lead to an aliasing in time domain. By having B aliased signals, bin observation zi is

given as follow:

zi[m,n] = [ri,1[m,n], ri,2[m,n], ...ri,B[m,n]]T (2.8)

and this gives a total number of fi × fi bin observation in each group of stage i. The architecture

of the algorithm is shown below.
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Figure 2.7: Architecture of the pattern matching algorithm.

2.2.2.1 Bin Classification and Decoding

A classification of bin observation is needed after it’s obtained. The bin observation can be

defined into these classes:

• Zeroton: if there is no peak in the original cross-correlation signal aliased in this bin.

• Singleton: if there is one peak in the original cross-correlation signal aliased in this bin.

• Multiton:if there is more than one peak in the original cross-correlation signal aliased in
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this bin.

We use C(zi[m,n]) to denote the class of bin observation zi[m,n]. And the class of a bin observa-

tion zi[m,n] can be given by a thresholding technique:

C(zi[m,n]) =


Zeroton, z < 1

2
M2

Singleton, 1
2
M2 < z < 3

2
M2

Multiton, z > 3
2
M2

(2.9)

where z is the first entry of zi[m,n], and the threshold of M2 comes from the fact that for

binary2 data, the value of the peak in the cross-correlation signal is the size of the pattern.

Since the Zeroton contains no peak, there is no matching information can be known from it.

For the Multiton with more than one peaks added up together with the multiplication of the phase

introduced by the shift, things can be complex. So the Singleton is what we are interested in and

we present a method to infer the position of the peak at the original cross-correlation r by analysing

the bin observation. We consider the Singleton obtained in the stage i of the group shifting along

the first dimension. The first index of the peak in r is given by:

p̂ = arg max
p:p mod fi=m,0≤p≤N

zi[m,n]†wk (2.10)

where † means the conjugate transpose and wk is defined as:

wk = [ωks1 , ωks2 , ...ωksB ]T (2.11)

The second recovered index q̂ is given in the similar way with the bin observation from the

group along the other dimension. The value of the recover peak is decoded as:

r[p̂, q̂] = M2 (2.12)
2The binary is referred to {−1,+1}. For the simulation over real image, the threshold M2 is subsided to the

possible maximum value of correlation signal of the pattern
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2.2.2.2 Peeling Process

The peeling decoder algorithm is designed to solve the entire sparse recovery problem in an

iteration way. In each iteration, once a singleton is detected, the index of the peak in the cross-

correlation signal r can be found. Then the peeling process is done by subtracting the contribution

of this recovered coefficient in the signal. By doing so, the degree of some Multiton will decrease

and turn into Singleton that can be decoded. The algorithm runs iterative until all the peak in r

are found.

2.2.2.3 Sketch of y′

It should be noticed that the FN×N(r) can be computed as a point-wise product of FN×N(x)

and FN×N(y′).

FN×N(r) = FN×N(x)� FN×N(y′) (2.13)

So only the sub-sampled version of FN×N(y′) is needed to obtain FN×N(r). Based on the

sample property of the Fourier transform, this signal can be obtained by multiplying the time

domain signal with a corresponding phase term followed by a folding operation. If the shift sj

happens along the first dimension, the corresponding time domain 2D-signal is given by:

y′′[m,n] =
∑

p mod fi=m

∑
q mod fi=n

y′[p, q]ωpsj . (2.14)

The sub-sampled signal of FN×N(y′) is FN×N(y′′). To obtain all the sub-sampled signals in all

the 2B branches in d stages, 2dB times N2α points 2D-DFT is required.

2.2.3 Sample and Computation Complexity

2.2.3.1 Sample Complexity

The samples used in the sparse recovery algorithm comes from the shift and down-sample

process in each branch of fi × fi ≈ N2α points. By adding all samples from 2B = O(log(N))

branches, each stage hasN2αO(logN) samples. There are d stages in each iteration, so the sample
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complexity is given by

O(N2α logN). (2.15)

2.2.3.2 Computation Complexity

There are several operations involved in the proposed pattern matching algorithm.

Operation 1: The 2D-DFT of the database must be pre-computed once. So the computation com-

plexity of that will not be included in the discussion.

Operation 2: the computation of 2D-DFT of y′ needed two operations: folding and adding of com-

plexity O(M2), and small size 2D-DFT of complexity O(N2α logN2α). So the total computation

for compute 2D-DFT of y′ is given as:

O(max(N2µ logN,N2(1−µ) log2N)). (2.16)

Operation 3:The computation in each branch needed for the small-size 2D-DFT is O(N2α logN).

For the Singleton decoding process, there are N
fi
≈ N1−α correlations of length B and the com-

plexity for doing this is O(N1−α logN). There are at most L matching positions so the total

complexity for this operation is O(N1−α+λ logN).

The total computation complexity for the operation 3 is given by:

O(max(N2(1−µ) log2N,Nµ+λ logN)) (2.17)

Overall Computation Complexity: The overall computation complexity is given by:

O(max(N2(1−µ) log2N,Nµ+λ logN)) (2.18)
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2.2.4 Design of 2D Patterns for Matching

One possible application of 2D pattern matching is in vision-based positioning systems for

robots or drones. The problem can be described as locating the position of a drone by analyzing

the image captured by the camera built on it. One or more patterns are placed on the ground as

markers and by detecting the position and rotation of these markers, the drone can determined its

position.

The marker pattern should have the following characteristics - (i) the pattern should appear

pseudo-random such that correlation of the pattern with parts of an image are likely to be small

except at the matching locations, i.e., y exhibits high local variation,(ii) pattern matching should

be robust to rotation of the images and (iii) pattern matching should be robust to scaling. It is easy

to see that traditional patterns like stop signs do not satisfy these characteristics and hence, the

pattern has to be carefully designed.

We propose the use of the following two patterns shown in Fig. 2.8. The first pattern is a

set of concentric rings with the widths increasing geometrically by a factor θ. This pattern will

be immune to rotation and has a periodic invariance - when the pattern is zoomed in and out by

a factor of θ, it looks exactly the same as the original one). The second pattern has the similar

invariance property with respect to rotation. By doing this, only a few patterns are needed to detect

the potential pattern in x.

Figure 2.8: 2 patterns with immunity to scaling and rotation.
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2.2.5 Simulation Results

We tested the algorithm in two cases: with binary randomly generated data, and when the

pattern in 2.8 is embedded within a real image.

2.2.5.1 Performance for Binary Randomly Generated Data

Here, we generated a binary image y where each pixel uniformly chosen to be 0 or 1 and the

values are chosen independently. The image y is ‘planted’ within a larger binary image x at several

locations and the rest of the pixels in x are assumed to be generated uniformly at random from 0

or 1 and are chosen independent of each other.

Figure 2.9: Flowchart of the 2-D pattern matching algorithm.

First we want to test the performance of the sparse recovery ability of the proposed algorithm.

What in the red block is the testing part of this section. R is the 2-D DFT of the sparse cross-

correlation signal r. {P1, P2, P3, ..., PL} are the positions of all large values in r.
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Figure 2.10: Sub-image and database

To generate R, we assume the database and the pattern are both binary of {−1,+1} at each

pixel so that the value of the cross-correlation signal r is N2 at matching positions and small value

converging to zero at non-matching positions. An example is given as above. As shown in Figure

2.10, The database is a large binary 2-D signal and the pattern is a sub-image located somewhere

in the database. An example of cross-correlation signal of the database and the sub-image is given

in Figure 2.11.
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Figure 2.11: Cross-correlation signal.

The figure on the left is an example of a cross-correlation signal. The size of the database is
1287× 1287 (M = 9× 11× 13). The size of the sub-image is 100× 100 (N = 100× 100). The
pattern appears once in the database at the position [1117, 1006]. The figure on the right plots the
1117th row of the 2-D cross-correlation signal, and the value at 1006th position if of value 10000
which is the size of the sub-image.

We simulate the sparse recovery computation to obtain the performance of the algorithm with

different sparsity. Sparsity ratio is defined as L/N2 which represents the sparsity level of the cross-

correlation signal. The size of the database is 1287× 1287 (M = 9× 11× 13) and the peak value

is 10000. The algorithm is carried out with 3 stages, and in each stage, there are 5 shift and down-

sample branches. Figure 2.12 gives the result of the simulation. At sparsity ratio of 0.003, around

5000 matching positions can be found successfully with the probability error under 1%.
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Figure 2.12: Performance with different sparsity.

2.2.5.2 Performance with designed patterns

In this section, we show the performance when our designed patterns are embedded in real

images. An example is given below in figure 2.13.
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Figure 2.13: Pattern with real image.

The large image of a typical street view is given as the database. The pattern is a series circle

with the radius is a geometric sequence. First we test the peak value of a pattern of fixed size

correlated with itself of varying sizes. The value periodically reaches the local maximum when the

pattern is the same as part of it. The plot is given below. It turns out that as long as the size of the

desired pattern in the large image is larger than 40 × 40 pixel-wise, the algorithm can detect and

find the position of it correctly.
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Figure 2.14: Correlation of the patterns.

Since the pattern is built for a vision-based locating system, there will not be too many patterns

in the image. It has been shown that the 2-D pattern algorithm has very good performance dealing

with lots of patterns in the database. What is tested in this section is the performance of the

algorithm against the noise. The data is generated as follow:

1 Three patterns are generated as template. The first pattern is of size M ×M with M = 100,

the common ratio of the associated geometric sequence is θ = 1.1. The other two patterns

are enlarged versions of the first one with sizes of 102× 102, 104× 104 respectively.

2 A resized version of the pattern is placed in a random location within the large real image.

The size of the pattern is uniformly distributed over [90, 110].

3 Gaussian random noise is generated and added to the image. The performance is tested with

the standard deviation σ varying in range of [0, 260].

The detection of any one of the three templates and find the right position is considered as a success.
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Figure 2.15: Performance when image is corrupted with Gaussian noise.

σ is the the standard deviation of the Gaussian noise. The different color represent the simulation
carried out with different sample ratio. When the noise is getting large, some pixels may have a
value out of the range of [0, 255]. We keep that value to implement this simulation. Thresholds can
be given to make sure all the value is stay in the range of [0, 255] so that it make sense for images.

A plot of the probability of error as a function of σ is shown in Fig. 2.15. Suppose the number

of sample pixels used in the each implementation is Sa. Then the sample ratio is define as ω = Sa
N2 .

Different colors represent the simulation is done with the different sample ratio.

It can be seen that when the noise standard deviation is small, our algorithm is able to identify

the patterns with high probability even when the sampling ratio is as low as 9.5%. This is the

primary advantage of our algorithm. For a fixed sampling ratio, as the noise variance increases,

the error probability increases and for a fixed noise variance, as the sample ratio increases, the

probability of error decreases.
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3. IMPROVED SPARSE WALSH-HADAMARD TRANSFORM FOR BINARY DATA

In this chapter, we present an adaptive algorithm for sparse signal recovery with the sparsity in

the domain of the Walsh-Hadamard Transform (WHT) when the non-zero coefficients are ones.

3.1 Introduction

Walsh-Hadamard fransform (WHT) is another useful discrete transform similar to the famous

discrete Fourier transform. It is widely used in the signal processing, video or image compres-

sion, and quantum computing. Here we give the definition of the Walsh-Hadamard transform and

introduce some of its properties which play an essential role in our algorithm.

3.1.1 Walsh-Hadamard Transform

The Walsh-Hadamard Transform X of a signal x of length N = 2n can be defined in the

following way:

X[k] =
1√
N

N−1∑
i=0

(−1)〈i,k〉x[i], (3.1)

where 〈., .〉 is defined as the inner product of two binary vector over Fn2 . Compared to the

Fourier Transform, the most noticeable difference is that the base of the exponent is −1 instead of

e while the idea is very much alike DFT. More importantly, the i, k in the equation above denote

binary index vectors. Some basic properties of WHT is given as follow. These properties are of

vital importance in our proposed algorithm.

1 Shift/Modulation

Suppose X is the WHT of x, then a shift of p in x will give a corresponding sign pattern to

the coefficient of X .

xi+p
WHT←→ Xk(−1)<p,k> (3.2)

This property will help to give the index information of the non-zero coefficient later.
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2 Down-sampling/Aliasing

Given B = 2b and N = 2n where b < n, a downsample matrix can be formed in the

following way:

Ψb = [0n×(n−b)Ib]
T , (3.3)

by multiplying an index m ∈ Fn2 with this matrix, the first n − b bits are set as 0 and the

last b bits remain unchanged. Then the down-sampling and aliasing property of WHT can

be given as:

xΨbi
WHT←→

√
B

N

∑
j∈N(ΨTb )

XΨbk+j (3.4)

According to this transform relation, a down-sample in time domain will lead to an aliased

spectrum in the frequency domain. Once the down-sample matrix ψb is chosen, the index of

these aliased frequency coefficient can be known.

3 Permutaion

If Σ ∈ GL(n, F2), where GL(n, F2) = {A ∈ F n×n
2 |A−1exists},then

xΣi
WHT←→ XΣ−T k (3.5)

xΣi is the permutation of xi by multiplying Σ with the original index. The equation means

given Xk is the WHT of xi, the WHT of the permutation signal xΣi is a permutation signal

of Xk.

3.1.2 Graph learning problems and cut function

In computer science, graph is a data structure which plays an important role both in academic

research and industry applications. So how to learn a graph from its evaluation with a few samples

is an interesting problem. Cut function is such an evaluation which maps the sub-graph of a ground

graph to real numbers.
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Consider a graph G = (V,E,w), the cut function of it is defined as

x(A) =
∑

s∈A,t∈V \A

w(s, t), (3.6)

for every A ⊆ V . The subset A can be represented by a indicator vector t ∈ F n
2 where n = |V |.

So the length of this cut function is N = 2n. The WHT of x is:

X[f ] =


1
2

∑
s,t∈V w(s, t), iff = (0, 0, ..., 0)

−w(s, t)/2, if fs = ft = 1 and fi = 0∀i 6= s, t

0, otherwise

(3.7)

It’s obvious that the WHT of the cut function is sparse in that domain with only |E| + 1

coefficients not zero (One edge in the graph corresponds to one non-zero coefficient as the second

circumstance in 3.7). So learning a graph from the cut function can be solved as a sparse signal

recovery problem.

3.2 Retated Work

We brief introduce the work of [5] in this section.

3.2.1 Fast Hadamard Transform with Sublinear Sparsity in the Transform Domain

Considering a time domain signal x of length n whose WHT X is sparse with k non-zero

elements randomly chosen from a continuous distribution. A hash function is designed for the

spectral domain of the signal. A B = 2b dimensional signal is defined by:

uΣ,p(i) =

√
N

B
xΣΨbi+p. (3.8)

where i denotes the index of time domain signal, k denotes the index of frequency domain signal,

and p ∈ Fn2 is the shift.

Its WHT is:

UΣ,p(k) =
∑

j∈Fn2 |ΨTb ΣT j=k

Xj(−1)<p,j>. (3.9)
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This gives B bins to hash the spectrum, then a ratio test is given to find the bin contains only

one non-zero coefficient. Ratio is given by:

rΣ,p(k) =
UΣ,p(k)

UΣ,0(k)
. (3.10)

For n − b well chosen shift p, if |rΣ,p(k)| = 1, then there is only one non-zero coefficient in

that bin. Further more, the index of that coefficient is given by:j = ΣT (Ψbk + ~v), where

~vd =

 1{rΣ,σd<0}(k), d ∈ [n− b]

0, otherwise
(3.11)

σi is the ith columns of Σ.

An iteration algorithm of peeling decoder can be designed based on this ratio test.

3.2.2 Improved Sparse Walsh-Hadamard Transform

There is a work [9] showing that the algorithm introduced in the previous section can be speed

up by recovering two non-zero coefficients in one iteration[9]. This can be done in the following

way.

The downsampling matrix is formed in the same way as in 3.3. The shifts are chosen so that

the sign of the aliased coefficients appearing like {+1,−1} with different frequencies. If there are

two non-zero coefficients chosen from a continuous distribution among these aliased coefficients,

their sum is given by the observation from the non-shift branch. The flow chart of this algorithm

is given as follow:

28



Figure 3.1: Schematic of improved sparse Walsh-Hadamard algorithm

U is the bin observation from each stage, and it is given as :

U = ΦX (3.12)

where U is the sensing matrix of size log2
N
B

+ 1 by N
B

. A example is given for N
B

= 8:



+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 +1 −1 +1 −1 +1 −1


(3.13)

For ith element in U , it has the value of aiX[j1] + biX[j2], a and b is chosen from{+1,−1}. A

example of the decoder process is given to illustrate the algorithm.

We consider 4 coefficients are aliased together and two of them are non-zero:X[2] = 5, X[3] =
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10 with j1 = 2, j2 = 3. Bin observation U is given as:

U =


U [1]

U [2]

U [3]

 =


+1 +1 +1 +1

+1 +1 −1 −1

+1 −1 +1 −1

×


0

X[2]

X[3]

0


=


15

−5

5

 . (3.14)

U [1] gives the sum of the two non-zero coefficients X[j1] and X[j2] equals 15. U2 is -5 whose

absolute value is not the same as U [1], so the sign of these two coefficients split. So j1 ∈ {1, 2}

and j2 ∈ {3, 4}. U [3] = 5 whose absolute value is the same as U [2] with the different sign. So

Φ[3, j1] = −Φ[2, j1] and Φ[3, j2] = −Φ[2, j2]. Then it can be inferred that j1 = 2, j2 = 3. After

the position of these two non-zero coefficients are known, the equation 3.14 can be rewritten as

following: 
X[2] +X[3] = 15

X[2]−X[3] = −5

−X[2] +X[3] = 5

(3.15)

There are two unknowns with more than two equations, so the value of X[2], X[3] can be worked

out by solving the system of linear equations.

However, the algorithm described above can not solve the problem if the value of the non-

zero coefficients are draw from some other distribution rather than continuous or if the non-zero

coefficients are more than two. So a novel algorithm is given in the following section which

improve the performance of the algorithm in [5] when the data is binary and, for the first time, gives

a method with the possibility to recovery more than two non-zero coefficients in one iteration.

3.3 Improved Sparse Walsh-Hadamard Transform for binary data

We consider the problem of computing the Walsh-Hadamard transform for a signal whose

coefficients in the transform domain is sparse and binary of {0,+1}. We want to recover all the

Walsh-Hadamard transform domain coefficients by evaluating a sub-sample version of the time
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domain signal. The notation for describing the algorithm is listed in 3.1.

The time domain signal is of length N = 2n (Notation is given by 3.1). There will be d shift

and down-sample stages. In each stage, a down-sample matrix is built as 3.3 with different value of

b. The algorithm is designed in an adaptive way in contrast to the earlier work in [5]. To be clear,

the algorithm is adaptive because of that the number of shift is not fixed. The WHT of the shifted

and down-sampled signal is computed to get an observation vector. These shorter WHT signal can

be viewed as bin observation, and each observation is a vector whose length is of the same value

as the number of shifts in this stage. The kth vector with p shifts should look like this:

vΨbk = [
∑

j∈N(ΨTb )

φj,0XΨbk+j,
∑

j∈N(ΨTb )

φj,1XΨbk+j, ...,
∑

j∈N(ΨTb )

φj,p−1XΨbk+j]
T (3.16)

where φj,p is the sign pattern {−1,+1} corresponding to the pth shift.

Symbol Meaning

x Time domain signal

X Walsh-Hadamard domain signal

N = 2n length of the time domain signal

B = 2b length of the down-sampled signal

K Number of non-zero coefficients in Walsh-Hadamard domain

d Number of stages

α B = Nα

Ψ Down-sample matrix

Table 3.1: Parameters involved in describing the algorithm.

One more shift in this stage, one more element will be added at the end of this vector. Clearly,

if the first element is zero, there is no need to have another shift in this stage for having more
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elements for this bin since all the coefficients fall into this bin are zeros. The value of the first

element give the number of non-zero coefficients in this bin. We would like to find more than one

non-zero coefficients at once if there is any by choosing appropriate shifts. The number of shifts

should be at most 2n−b otherwise the entire time domain signal is used for the recovery.

3.3.1 Choice of shift

When the number of shift is 2n−b, the kth bin vector is nothing but a permutation of the WHT

of [Xψbk+j] where j ∈ N(ψTb ). We want to find a proper permutation so that as less as possible

shifts are needed to distinguish different coefficients. Here we propose a way to choose the shift.

Two phases are included in this method.

An example is given to demonstrate the choice of shift. A Hadamard matrix of order 4 is

given as follow: 

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1


(3.17)

Phase 1 In this phase, different shifts are chosen so that the sign of the aliased coefficients is of

different frequencies of {+1,−1}. In general, if there are N
B

coefficients are aliased together,

log N
B

+ 1 shifts are chosen in this phase. The index of these shifts is given by 2i + 1 for any

possible i (indices start from 1).

If N
B

= 4, the sign pattern is given by the 1st, 3rd, 2nd row of the Hadamard matrix of order

4.

Phase 2 In this phase, shifts are chosen so that the sign pattern of aliased coefficients is given by

the unchosen row of the Hadamard matrix. The number of the unchosen row is given by

N
B
− (log N

B
+ 1).

In the example of N
B

= 4, the 4th row belongs to the second phase.
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3.3.2 Bin Classification

The bin observation can be classified into several classes based on the number of non-zero

coefficients aliased in that bin. Not like the earlier work, Singleton is more attractive than the

other kind of bin observations. Order of a bin observation is defined as the number of non-zero

coefficients connected to it. The Order of a bin can be simply tell by evaluating its first element

since it is the summation of all the coefficients connected to that bin and the value of each non-

zero coefficient is one. A method to determine the distribution of the non-zero coefficients is given

when the order of a bin is found. The algorithm will be described in the following section.

3.3.3 Position Identification by Look up table

Since the value of the unknown coefficients are all ones, what has to be find out is the posi-

tion of them. If there are k of m = 2n−b are non-zero coefficients, the total number of possible

distributions is
(
m
k

)
. An example of m = 4, k = 2 is given as follow:

C =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


(3.18)

where each column gives a possible distribution.

We use the permutation of the Hadamard matrix Hp to generate a look up table. The permuta-

tion is given following the order of the choice of the shift:

Hp =



+1 +1 +1 +1

+1 +1 −1 −1

+1 −1 +1 −1

+1 −1 −1 +1


(3.19)
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The look up table can be computed as:

L = HpC =



2 2 2 2 2 2

2 0 0 0 0 −2

0 2 0 0 −2 0

0 0 2 −2 0 0


(3.20)

Each column in L represent a possible bin observation vector. It should be read from the top to the

bottom. With one more shift in each this stage, one more entry of the vector can be obtained. After

a new entry is given, look up table is checked to see whether it is enough to distinguish the case

of distribution of these non-zero coefficients. In this case of m = 4, n = 2, if the first two shifts

give the observation vector as (2, 2), the distribution can be identified that there are 2 non-zero

coefficients and they are the first two of them. However, we do not want to find every possible

cases by using this strategy and, indeed, it is impossible to do so if only a sub-sampled version

of time domain signal can be used. With a sub-sampled signal, only a subset of the cases can be

identified and the proportion of the subset is depending on how much the sample can be used.

It should be noticed that this method works not limited to the Order− 2 cases but any order of

bin. However, under the same down-sample rate, the benefit from a higher order recovery can be

negligible because of the following reason. Under the same down-sample rate, with the uniformly

distributed coefficients in the frequency domain, the possibility is much lower for more non-zero

coefficients to fall into the same bin observation.

3.3.4 Peeling Decoder

A peeling decoder algorithm is given after the position identification process. In each iteration,

if the position of non-zero coefficients are identified, the contribution of these coefficients are

subtracted from the signal. The idea behind the peeling process is that by subtract the decoded

coefficients, at least one more bin observation became decodable. So the iteration can keep on

working until the entire signal is recovered.
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3.3.5 Sample and Computation Complexity

3.3.5.1 Sample Complexity

The down-sample matrix build for each stage looks like this:

Ψb = [0n×(n−b)Ib]
T . (3.21)

The length of each shifted down-sampled signal is 2b = B = Nα. In the simulation shown in the

following section, the number of shifts in each down-sample stage is fixed to be

O(log N
B

) = O(logN). There will be d such down-sample stages, so the total sample is given

as O(Nα logN).

3.3.5.2 Computation Complexity

The computation complexity is given by adding all the shorter WHT in each branch. The com-

plexity of fast Walsh-Hadamard transform for a signal of length B is O(B logB). Then number of

shorter WHT in each stage is log N
B

. There are d stages. So the computation complexity is given

as O(Nα log2N).

3.3.6 Simulation

In this section, simulation results are given to show the performance of our algorithm when

compared with the earlier work.

3.3.6.1 Random generated binary data

In this section, the test data is generated by generating the Walsh-Hadamard Transform domain

coefficients randomly from a Bernoulli distribution. The time domain signal can be obtained by

computing its inverse Walsh-Hadamard Transform. It should be noted that this does not reflect the

WHT of the graph cut function.

There are d = 2 down sample stages and log N
B

+ 1 shifts in each stages. The number of shifts

is fixed for comparison with the work in [5]. The performance is shown in Fig. 3.2. The figure

shows the probability of errors versus the sparsity for a fixed number of samples. The length of the
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test data is N = 28 with b = 4.

Figure 3.2: Performance of the proposed algorithms on random generated binary data.

With the same sparsity of the test data, the probability of error for the algorithm in[5] is higher

for the algorithm we proposed. However, the performance improvement in recovering more than 2

coefficients in each bin is not significant.

3.3.6.2 Random generated graph data

In this section, we consider a randomly generated graph and the associated WHT of the cut

function. For a cut function associated with a graph, The non zero coefficients appears in the

frequency signal only at the position whose binary representation contains two ones. The zero

frequency coefficient is the negative sum of all the other coefficients. When the length of signal is
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N = 2n, there are at most
(
n
2

)
non-zero coefficients in the frequency domain except the position of

zero. To generate a signal of sparsity K, K positions are randomly chosen among all
(
n
2

)
possible

positions.

To ran the algorithm successfully on the graph data. The last B − 1 bin observations are used

to identify all the non-zero coefficients except the zero-frequency value. The first bin observation

vector is evaluated to infer the zero-frequency value when all the other bin observation vectors turn

into zero vectors along the peeling process. The simulation result is shown in 3.3.

Figure 3.3: Performance of the proposed algorithms on graph data.

The performance of our algorithm and Scheibler’s algorithm are tested with all the parameters

same as the tests in previous section. However there is no noticeable improvement can be found in

this result. More analyses are needed to explain the result.
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4. CONCLUSIONS

We have studied two problems related to sparse signal computation: one is 2-D pattern match-

ing and the other is sparse Walsh-Hadamard transform computation for binary frequency data.

For the 2-D pattern matching, we developed a graph code based 2-D sparse recovery algorithm

for computing the peaks in the cross-correlation between the pattern and the database. Also, we

proposed a possible application of this 2-D pattern matching algorithm for vision-based position-

ing system. Special patterns can be designed to deliver a desired sparse cross-correlation signal.

Simulation results were shown for randomly generated binary images and when the designed pat-

terns are embedded in the real image. For binary data, our algorithm was able to determine around

5000 matching positions in a database of size 1287 × 1287 with a probability of error that is less

than 1%. For the real image, our algorithm can find the position of a special designed pattern in a

real image corrupted with Gaussian noise. By using less than 10% of samples, the algorithm can

find the position of the pattern with a probability of error less than 5% when the standard deviation

of the noise is 50.

For the second problem, we designed an adaptive algorithm to recover a signal with a sparse

binary Walsh-Hadamard transform. The signal is shifted by p and down-sampled by a matirx

Ψb. For binary coefficients, our algorithm gives the possibility to recover more than one non-zero

coefficients in one iteration of the peeling decoder algorithm. We tested the performance of the

algorithm on randomly generated signals and compared the performance of our algorithm with that

of earlier work in [5]. Our algorithm has a lower probability of error given the same amount of

samples.

4.1 Further work

4.1.1 2-D Pattern Matching

The pattern designed in 2.8 is very simple and contains no information more than the position.

We believe that some part of the pattern can be used to convey information in the way like bar code
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or QR code.

4.1.2 Improved sparse Walsh-Hadamard transform computation for binary data

Our algorithm showed better performance than earlier work only in the case of randomly gen-

erated signals. Further work is required to design better algorithms for learning graphs. We present

a few possible future works.

4.1.2.1 Graph Learning

We consider a graph learning problem as we introduced at the beginning of this chapter. The

structure of the graph is to be learned. The structure information can be give by convert a weighted

graph to an unweighted one. When the graph is an undirected unweighted graph, the Fourier

coefficient of the cut function is given by considering the weight for all edges are -2:

X[f ] =


−1

2
|E|, iff = (0, 0, ..., 0)

1, if fs = ft = 1 and fi = 0∀i 6= s, t

0, otherwise

(4.1)

This is a sparse signal indeed and all but one of the Fourier coefficients are of the same value.

This data is used for the testing of the algorithm proposed in [8]. We notice that the property of the

coefficient value has not been used in their earlier work, and we hope our proposed algorithm can

improve the speed of the learning process for undirected unweighted graph by taking the advantage

of this property. If the number of the edge can be known at first, then the problem will reduce to

learning a function whose non-zero WHT coefficients are all the same. If not, we can still develop

a method to learn the zero-frequency coefficient by isolating it.

4.1.2.2 Adaptivity of the proposed algorithm

In our algorithm, the number of shifts used in each bin is fixed to be log2
N
B

+ 1. It is possi-

ble to obtain improved performance by using more shifts per bin in the algorithm. Studying the

performance of our algorithm as a function of the number of shifts remains an open problem.
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