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ABSTRACT 

 

The purpose of this research is to understand the statistical characters of natural wind and further 

apply this statistical model to improve the power forecast and blade fatigue estimation for Floating 

Offshore Wind Turbines (FOWTs).  

 

A new methodology is developed for recalibration of cup anemometers and demonstrated by 

computation of higher order statistics of coastal sea breezes.  The development is based on 

representing the dynamic response of a cup rotor by an equation of motion (EOM) relating 

rotational motion of the cup rotor to aerodynamic forcing.  The overall methodology is then applied 

to recover the time history and mean of the true wind speed from field-measured cup data.  A 

practical application of the method is demonstrated by recalibrating a larger set of cup data 

measured during a 2-month field campaign on the Texas coast to assess the higher statistical 

moments of the wind process.  Measured coastal sea breezes in this area are found to be non-

Gaussian. 

 

With the deeper understanding of wind process, a new methodology is derived to transform 

between an ideal zero-turbulence power curve and practical power curves representing wind 

turbine performance in irregular winds.  The derivation is based on substituting a theoretical 

distribution of the wind process in place of a single mean wind speed in the power computation, 

and then applying random process theory to derive analytical expressions for the expected power 

and standard deviation of power.  The resulting expressions explicitly include the effects of varying 

turbulence intensity and higher statistical moments, and enable the performance of an operating 
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wind turbine to be parameterized using a limited number of coefficients. The accuracy of the new 

method is demonstrated by benchmarking expected power and standard deviation of power against 

direct simulation in irregular winds, including winds with various turbulence intensities and non-

Gaussian statistics. 

 

The non-Gaussian wind model is used to estimate the fatigue damage of composite wind turbine 

blades and the impact of non-Gaussian winds on fatigue life is also discussed. The Weibull 

distribution, widely acknowledged to fit the long-term wind speeds, is applied on local buoy data 

to calculate the probability density function (PDF) of local winds. Numerical simulations based on 

OC3-Hywind model with local winds PDF are used to identify the fatigue hot-spot on the blades. 

Blade fatigue life based on hot-spot are calculated using Gaussian random wind conditions which 

are simulated through the entire operation wind speed range. Corresponding non-Gaussian random 

wind conditions using field measured data are simulated as well. The impact of non-Gaussian wind 

on blade fatigue is analyzed based on the comparison of these results. 
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1. INTRODUCTION 

 

 

1.1    Background 

 

Wind-energy is increasingly accepted as an economically viable and environmentally friendly 

method of energy harvest. Local permitting and environmental issues associated with 

considerations such as noise emissions and interruption of the view-scape are becoming critical 

problems as desirable space for on-shore wind turbines becomes increasingly scarce.  

 

European countries, which are relatively densely populated compared with the United States, 

began siting offshore wind turbines in shallow waters near shore, most notably in Denmark and 

Germany in the 1990’s. The growth of offshore wind energy in European countries is significant, 

with projected growth rates of 1700 to 3000 MW per year (Snyder and Kaiser, 2009). China, in 

the far east is beginning installation of offshore wind farms, including the first offshore wind farm 

in East China Sea, which will produce 267 GWh per year for the energy market in Shanghai (Chen, 

2011).  

 

The bottom-founded support towers may prove cost-prohibitive in very deep waters, but the cost 

of floating offshore systems is relatively insensitive to water depth and may prove to offer a viable 

way to develop wind energy beyond the sight of land. The floating offshore wind turbines are 

becoming a popular option for offshore wind industry. Hywind Scotland, the world’s first 

commercial floating wind farm in Unite Kingdom, including six spar type floating wind turbines 
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had been successfully installed in 2017. The turbines integrated a 6 MW Nacelle on a 83 meter 

height tower, supported by a spar cylinder with around 78 meter draft. 

 

This project is focused on energy forecasting and fatigue assessment of wind farms using spar-

type floaters, including floaters that offer less vertical stiffness than typical for the industry.  These 

highly compliant structures are less expensive and may offer other operational benefits, but also 

have complicated nonlinear system dynamics that are difficult to simulate numerically.  An in-

house software package is available to simulate highly compliant floating support structures with 

large angular displacements in deep water (“Loose”, Wang and Sweetman, 2011). 

 

1.2    Research Hypothesis  

 

This research is driven by two major hypotheses. The first hypothesis is that random process theory 

could be used to replace the time domain analysis of structure dynamics. The new method with 

random theory could be applied to predict the performance of FOWTs and estimate the AEP. The 

second hypothesis is that the non-linear dynamic system of structure could be correctly represented 

by external force caused by non-Gaussian wind process.  

 

The time domain analysis of structure dynamics is replaced by new method of random process 

theory with same accuracy and significant less computer time. Non-Gaussian wind process 

transferred by Hermit moment transformation are used for the numerical simulation of non-linear 

dynamic system of structure, and proved to be significant different with Gaussian wind process. 
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Additionally, non-Gaussian natural wind process is verified through field measurements via 

calibrated cup anemometer. 

 

1.3    Research Objective 

 

The research objective of this dissertation is to assess the impact of higher statistical moments of 

natural wind processes on offshore wind turbines, including the energy production and blade 

fatigue.   

 

Important steps to reach this research objective include:  

 

1. Conducting two field wind speed measurement campaigns using cup anemometers at two 

coastal locations in Texas. 

2. Development of a new recalibration method to recover the time history of the true wind speed 

from data captured by a cup anemometer; this development is based on the dynamic equation 

of motion (EOM) of the rotor. 

3. Development of a new recalibration method to recover the mean of the true wind speed from 

the mean wind speed reported by a cup anemometer; this development is based on random 

process theory. 

4. Determining the higher statistical moments of stationary segments of the measured wind speed 

for use in design of coastal structures. 

5. Derivation of a power curve transformation methodology to predict the mean and standard 

deviation of power harvested by a floating offshore wind turbine (FOWT) from the first four 
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statistical moments of the wind process; this development is based on applying a Taylor series 

expansion to derive statistical expressions for the mean and variance of the power.  

6. Development of a methodology to generate non-Gaussian wind field time-histories from 

Gaussian wind-fields predicted by existing simulation tools.   

7. Evaluation of the impact of Non-Gaussian winds on blade fatigue using direct simulation 

including non-Gaussian wind effects. 

8. Quantify the statistical differences between land and sea breezes.   

 

1.4    Literature Review 

 

1.4.1    Power Curve and AEP Estimation 

 

The International Electrotechnical Commission (IEC) (IEC, 2005) recommends computing annual 

energy production using a practical power curve measured from an operating wind turbine.  A 

practical power curve is generally constructed from measured 10-minute means of power and wind 

speed, such that the resulting curve implicitly includes all effects of irregularities in the wind as 

well as the turbine control-system dynamic response.   

 

Practical power curves can be significantly different from ideal turbulence-free power curves and 

can be useful in project planning and design, but these curves cannot be accurately constructed 

from field measurements prior to siting a wind turbine in the actual wind conditions for the 

proposed location.  The importance of practical power curves is heightened because the practical 

curve always predicts less power than the ideal curve, and the largest differences are near the rated 
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speed of the turbine.  These differences result mainly from the system being unable to shift 

instantaneously between control strategies when subject to short-term variations in the wind speed.   

 

researchers have applied statistical methods to develop estimate power generation. Carrillo, et al. 

(2013) shows that the cubic and exponential functions are each an excellent fit for the torque-

controlled region of practical power curves for commercial FOWTs. Shokrzadeh et al (2014) 

introduce a locally weighted polynomial regression method to define a power curve using both 

simulated datasets and measured data from a wind farm.  Advanced statistical methods have also 

been investigated as an alternative to power curves.   

 

Multiple researchers, (e.g., Li et al., 2001, Mabel and Fernandez, 2008 and Kusiak, et al., 2009) 

each develop and verify the effectiveness of artificial neural network models using field-data 

measured on various wind farms.  Kusiak goes on to suggest his model could also be applied to 

wind farm management, individual turbine control and energy generation optimization. 

 

Long-term wind speed data represents the local wind energy protentional. Shu and Chan (2014) 

analyze 6-year wind data recorded at five meteorological stations, each with a different ground 

terrain in Hong Kong. They present a statistical analysis of the wind characteristics and wind 

energy potential using Weibull distribution. Feng and Shen (2015) propose a method to construct 

joint distributions of wind speed and wind direction via parameters of direction wise Weibull 

distributions using interpolations between sectors. The best fit of joint distributions is used to 

optimize the layout of a wind farm. Another interesting approach of long-term prediction is finding 

a power curve fitting the actually performance of offshore wind turbine. Zhang, et al. (2014) 
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develop a local outlier factor (LOF) algorithm applying on active power and wind speed time 

history to achieve actuate power curve.  

 

1.4.2     Natural Wind Process and Field Measurement 

 

High turbulence flow causes difficulty in short-term wind speed measurement in the field. Cup 

anemometers are used almost universally in long-term deployments because they have been 

proven to be robust against the natural environment.  They are also low maintenance, require low 

power to operate, and are relatively inexpensive.  The Unites States National Oceanic and 

Atmospheric Administration (NOAA) manages 1,300 meteorological-oceanographic buoys 

worldwide, each of which measures winds using a cup anemometer.   

 

Accurate quantification of wind speeds is important for planning and design of many civil 

structures.  Maximum loading on structures requires quantification of the extreme fractiles of the 

wind process in storm conditions, which can be meaningfully different depending on the higher 

order statistics of the wind. Planning new wind farms requires quantification of typical wind 

conditions at the proposed site for safety and economy reasons. The International Electrotechnical 

Commission (IEC, 2006) gives guidance for wind velocity and standard deviation of velocity for 

both onshore and offshore locations, but does not explicitly address coastal conditions. 

 

Various researchers have compared wind measurement from cup anemometers versus hotwire 

anemometers and found that wind speeds observed by hot wire anemometers show greater 

variability than winds observed by cup anemometers (e.g., Kaganov and Yaglom, 1975).  
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Measurement differences may be caused by differing operational mechanics of the two devices. 

Pedersen (2004) does extensive field testing of numerous cup anemometers; he observes some 

anemometers generally overpredict, while others underpredict.   

 

Several other observers have found specific cup anemometers to consistently underpredict the true 

speed (e.g., Kristensen, 2002, Ziter, 2010), while others have found specific cup anemometers to 

overpredict (e.g., Busch & Kristensen, 1976, Wieringa, 1980, Hölling, et al., 2007).  MacCready 

(1966) describes the main sources of cup measurement errors as being due to vertical components 

in the wind, data post-processing (mismatching mean wind speed and mean wind direction), and 

dynamic response of the cup.    Another source of error is wind turbulence.  Kondo, et al. (1971) 

observes measurement errors are caused by the inertial mass of the rotor, with overestimation by 

0.4-1% for sea breeze and 4-7% for daytime land breezes.  His field data suggests there are larger 

errors in higher turbulence conditions. 

 

Cup anemometers are calibrated in ideal steady wind conditions. Natural variations in wind speed 

impose nonlinear aerodynamics forces on the anemometer cups, and also require the rotor to 

accelerate. Numerous investigators attempt to find theoretical representations of the complicated 

EOM of the cup rotor. Brevoort and Joyner (1934) do extensive wind tunnel testing to find 

coefficients of lift and drag for anemometer cups. Ramachandran (1969) develops an equation of 

motion (EOM) for the rotor, and presents a numerical simulation of the anemometer in different 

wind conditions. Zhou (2007) performs wind tunnel tests to successfully verify the model 

developed by Ramachandran.  Fortin, et al. (2005) quantifies the importance of rotor dynamics, 

observing that cup speed is decreased 10 -- 30% due increased mass caused by icing. 
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1.4.3    Blade Fatigue Analysis and Non-Gaussian Impact 

 

Floating offshore wind turbines (FOWT), which are deployed in the nature ocean environment, 

are working under huge number of cyclic external loads. A typical wind turbine, during its 20 

years life time, may experience more than 108 cycles loads with an approximately 30 rpm rotation 

speed and 4000 hours operation time per year (Manwell, et al., 2010). It is great challenge to 

predict the fatigue life of a wind turbine blade because other manufactured equipment is unlikely 

to experience more than 106 cycles over their lifetime. 

 

Rapid prediction of expected energy harvest would be useful in comparing alternatives in the 

process of planning offshore wind farms.   Design alternatives could include competing locations, 

turbine size, and vendor products. Wind energy forecasting is an important part of computing 

overall project economics; project economics are even more important for offshore developments.  

Capital expenditures for offshore wind developments are typically one and a half to two times 

more than for onshore developments (Watson, et al., 2005), and maintenance costs are likely to be 

5–10 times higher than onshore (Van Bussel, & Zaaijer, 2001, March). 

 

Fatigue damage of FOWTs is the process in which an accumulation of damages is caused by a 

repeating environmental load of variable magnitude applied on their structures. Once sufficient 

damage is accumulated, fatigue fracture will initiate and propagate through the plasticized regions. 

Fatigue damage calculations and fatigue life predictions of offshore wind turbines are quite 

complicated. 
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Fatigue life of a medium scale horizontal axis wind turbine system was estimated by using the 

well-known S–N damage equation with load spectrum confirmed with at least 20-30 years’ 

operating life (Kong, et al, 2006). Reliability-based calibration of a design code for wind-turbine 

rotor blades is developed considering the fatigue failure in flapwise bending (Ronold, et al, 2001). 

Hu use 10-min mean wind speed and 10-min turbulence intensity based on long-term wind speed 

distribution to simulate the random wind field and analyze the fatigue reliability of a composite 

wind turbine blades considering wind load uncertainty (Hu, et al., 2012). A stochastic approach is 

employed to develop a computer code in order to simulate wind flow with randomness in its nature 

on the blade and subsequently each load case is weighted by its rate of occurrence using a Weibull 

wind speed distribution (Shokrieh and Rafiee, 2006). 

 

Several researches apply widely used statistical distribution models, such as Weibull and Rayleigh 

distribution, to describe the annual wind speed data. A research based on 6-year wind data recorded 

at five meteorological stations use Weibull distribution model to analyze the statistical 

characteristics of wind in Hong Kong (Shu, et al., 2014). Shuang and Song choose Rayleigh 

distribution to identify the probability density function of long-term wind speed data, and then 

determine the long‐term extreme response distribution by integrating the short‐term extreme 

response distribution of each mean wind speed bar (Shuang and Song, 2017). 

 

Wind time-histories are commonly simulated from wind power spectra using techniques that 

conform to the central limit theorem such that the simulated wind speeds conform to a Gaussian 

distribution. Unfortunately, the analyze of field measurement data of wind speed find different 
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conclusion that natural short-term wind is not Gaussian distribution (Dai and Sweetman, 2019). 

Non-Gaussian wind inflow velocities to offshore wind turbines could potentially affect the 

predicted power, load, torque, and blade fatigue life. Some experimental and numerical work has 

been done to assess the effects of extreme events in atmospheric wind fields (Mücke, et al., 2011). 

This increased quantity of extreme events will cause alternating loads on the airfoil and on the 

main shaft in the form of torque fluctuations, which may cause additional fatigue damage.  

 

Schottler and Reinke (2017) make an experimental approach by simulating non-Gaussian and 

Gaussian wind inflow conditions on a wind turbine model in a wind tunnel. They then analyze the 

power and torque data recorded by the wind turbine model. Berg and Natarajan (2016) simulate 

two types of wind speed time series in 3D space on offshore wind turbine via the HAWC2 software 

package.  

 

Schottler and Reinke (2017) develop an experimental approach which simulate non-Gaussian and 

Gaussian wind inflow conditions to a wind turbine model in a wind tunnel. Power and torque 

results indicate that extreme loads in non-Gaussian wind inflow conditions occur much more 

frequently than predicted by a typical Gaussian wind model. Gong and Chen (2017) investigate 

the extreme response of operational and parked wind turbines in non-Gaussian wind conditions. 

Obviously larger extremes response of blade root edgewise and tower base fore-aft bending 

moments are found for operational wind turbine in the non-Gaussian wind inflows. Similar results 

of blade root flap wise bending moment are found for parked wind turbine. 
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2. A METHODOLOGY TO RECALIBRATE CUP ANEMOMETERS WITH 

 

APPLICATION TO STATISTICAL ANALYSIS OF SEA BREEZES 

 

 

2.1       Introduction 

 

Cup anemometers are used almost universally in long-term deployments because they have been 

proven to be robust against the natural environment.  They are also low maintenance, require low 

power to operate, and are relatively inexpensive.  The Unites States National Oceanic and 

Atmospheric Administration (NOAA) manages 1,300 meteorological-oceanographic buoys 

worldwide, each of which measures winds using a cup anemometer.   

 

Accurate quantification of wind speeds is important for planning and design of many civil 

structures.  Maximum loading on structures requires quantification of the extreme fractiles of the 

wind process in storm conditions, which can be meaningfully different depending on the higher 

order statistics of the wind. Planning new wind farms requires quantification of typical wind 

conditions at the proposed site for safety and economy reasons. The International Electrotechnical 

Commission (IEC, 2006) gives guidance for wind velocity and standard deviation of velocity for 

both onshore and offshore locations, but does not explicitly address coastal conditions. 

 

Various researchers have compared wind measurement from cup anemometers versus hotwire 

anemometers and found that wind speeds observed by hot wire anemometers show greater 

variability than winds observed by cup anemometers (e.g., Kaganov and Yaglom, 1975).  Figure 

2.1 shows typical results of a side-by-side deployment of hot-wire and cup anemometers at a 
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coastal Texas location in March of 2018.  Comparison of the two time-histories shows that the cup 

anemometer used for this field campaign underpredicts both the peak wind speed and mean wind 

speed compared with the hot wire.  The hot wire data also appears unsymmetrical about its mean, 

suggesting the true wind speed may be a non-Gaussian process.  The difference between the mean 

and variance of cup versus hot wire data typically increases with increasing wind speed and 

turbulence, as shown in Figures 2.1 (a) and (b).   

 

 

(a) Low wind speed range (Sample 5) 

Figure 2.1: Wind speed measured by hot-wire and cup anemometers 
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(b) High wind speed range (Sample 10) 

Figure 2.1 continued. 

 

Measurement differences may be caused by differing operational mechanics of the two devices. 

Pedersen (Pedersen, 2004) does extensive field testing of numerous cup anemometers; he observes 

some anemometers generally overpredict, while others underpredict.  Several other observers have 

found specific cup anemometers to consistently underpredict the true speed (e.g., Kristensen, 2002, 

Ziter, 2010), while others have found specific cup anemometers to overpredict (e.g., Busch & 

Kristensen, 1976, Wieringa, 1980, Hölling, et al., 2007).  MacCready (MacCready, 1966) 

describes the main sources of cup measurement errors as being due to vertical components in the 

wind, data post-processing (mismatching mean wind speed and mean wind direction), and 

dynamic response of the cup.    Another source of error is wind turbulence.  Kondo (Kondo, et al., 

1971) observes measurement errors are caused by the inertial mass of the rotor, with 

overestimation by 0.4-1% for sea breeze and 4-7% for daytime land breezes.  His field data 

suggests there are larger errors in higher turbulence conditions. 
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Cup anemometers are calibrated in ideal steady wind conditions. Natural variations in wind speed 

impose nonlinear aerodynamics forces on the anemometer cups, and also require the rotor to 

accelerate. Numerous investigators attempt to find theoretical representations of the complicated 

EOM of the cup rotor. Brevoort (Brevoort and Joyner, 1934) do extensive wind tunnel testing to 

find coefficients of lift and drag for anemometer cups. Ramachandran (Ramachandran, 1969) 

develops an equation of motion (EOM) for the rotor, and presents a numerical simulation of the 

anemometer in different wind conditions. Zhou (Zhou, 2007) performs wind tunnel tests to 

successfully verify the model developed by Ramachandran.  Fortin (Fortin, et al., 2005) quantifies 

the importance of rotor dynamics, observing that cup speed is decreased 10 -- 30% due increased 

mass caused by icing. 

 

Prior work on recalibration of cup anemometers has focused on theoretical developments related 

to the aerodynamic forcing on the rotor.   The work presented here builds on that prior theoretical 

work in that it begins with a dynamic equation of motion, but differs in that a computer-based 

central difference method is employed to directly extract the aerodynamic and mechanical 

characteristics of the cup anemometer from side by side measurements from a cup and hotwire.  

Second-order regression is shown to be an effective way to estimate the unknown coefficients in 

the EOM from these side-by-side measurements.  The resulting calibrated EOM represents a single 

cup-anemometer type, which can subsequently be used to reconstruct a complete time history of 

the true wind from the wind as estimated by a cup anemometer.  A methodology is also developed 

from random process theory by which the calibrated EOM can be used to directly estimate the true 

mean wind speed from the mean observed using the cup.  
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Section 2 gives the theoretical derivation of the dynamic EOM of a cup anemometer and associated 

coefficients. Section 3 gives a detailed example: laboratory measurements and measurements form 

a field data campaign are used to determine the unknown coefficients in the EOM; the resulting 

EOM is then applied to recalibrate data from a second field campaign, and the resulting time-

history is used to compute the statistical moments of the wind.   

 

2.2       Theory 

 

2.2.1       Dynamic Response of Cup Anemometer 

 

The dynamic response of a cup anemometer can be treated as a spring-mass-damper system with 

zero stiffness.   

 

𝐼
𝑑𝜔

𝑑𝑡
+ 𝐶𝜔 = 𝑀(𝑡)                                                         (2.1) 

 

where 𝐼 is the moment of inertia of the cup anemometer, 𝜔 and 𝑑𝜔/𝑑𝑡  are the rotational speed 

and acceleration, 𝐶 is the damping coefficient, and 𝑀(𝑡) is the total moment applied about the spin 

axis. 

 

Various researchers have investigated computation of the applied rotation moment. Ramachandran 

(Ramachandran, 1966) summarizes work by Brevoort (Brevoort and Joyner, 1934) and Corcoran 

(Corcoran and Esau, 1964).  He gives expressions for applied rotational moment 𝑀(𝑡) which 

include two terms: 𝑐𝑑𝑣
2 and  𝑐1𝑣𝜔, explicitly showing the importance of both wind speed 𝑣 and 
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rotational speed 𝜔.  Ramachandran (Ramachandran, 1969), suggests an EOM of a cup anemometer 

and supplies constant values 𝑜𝑓 𝑐0, 𝜏, 𝑐𝑑  representing a specific anemometer type; 

 

𝐼
𝑑𝜔

𝑑𝑡
+ (𝑐0 + 𝑐1𝑣)𝜔 = 𝑐𝑑𝑣

2 − 𝜏                                              (2.2) 

 

in which 𝐼  is the mass moment of inertia of the rotor plus entrained wind, (𝑐0 + 𝑐1𝑣) is the 

rotational resistance, and (𝑐𝑑𝑣
2 − 𝜏) is the applied torque. Parameters 𝑐0 and 𝑐1  represent 

rotational resistance and cup aerodynamic friction, respectively; parameter 𝑐𝑑  calibrates 

aerodynamic moments and 𝜏 represents device rotational friction.  The EOM of the rotor can be 

simplified for steady winds setting rotational acceleration 𝑑𝜔/𝑑𝑡 = 0 and reorganizing:   

 

𝜔 =
𝑐𝑑𝑣

2 − 𝜏

𝑐0 + 𝑐1𝑣
= 

𝑐𝑑
𝑐0/𝑣 + 𝑐1

𝑣 −
𝜏

𝑐0 + 𝑐1𝑣
                                   (2.3) 

 

This expression for rotational speed can be further simplified by neglecting rotational resistance 

terms 𝜏 and 𝑐0. Substituting 𝑘 = 𝑐𝑑/𝑐1  , 𝑏 = 𝜏/𝑐0  into Equation 2.3: 

 

𝜔 = 𝑘𝑣𝑐 − 𝑏                                                             (2.4) 

 

In which 𝑘 and 𝑏 are recalibration constants relating a steady wind speed to a constant cup rotation 

speed. 
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The inertial term in Equation 2.2 remains important in unsteady winds.  Collecting all unknown 

quantities in Equation 2.2 into two terms: inertial parameter  𝐼 ̃ =
𝐼

𝑐𝑑
 and resistance parameter 𝐶 ̃ =

𝑐0+𝑐1𝑣+𝜏/𝜔

𝑐𝑑
 : 

 

 𝐼 ̃
𝑑𝜔

𝑑𝑡
+ 𝐶 ̃𝜔 = 𝑣2                                                           (2.5) 

 

in which  𝐼 ̃  and 𝐶 ̃are parameters relating the speed of the true wind speed to the rotational speed 

and acceleration of the cup rotor.    

 

2.2.2       Numerical Approach of the Dynamic Solution 

 

Parameters  𝐼 ̃ and 𝐶 ̃ can be estimated for any cup anemometer design by combining a time history 

of the true wind speed with that of the wind speed predicted by the cup anemometer.  A discrete 

numerical representation of Equation 2.5 can be developed using the central difference method 

(CDM).  

 

 𝐼 ̃𝑖
𝜔𝑖+1 −𝜔𝑖−1

2𝛥𝑡
+  𝐶 ̃𝑖𝜔𝑖 =  𝑣𝑖

2                                                 (2.6) 

 

in which the differential slope 𝑑𝜔𝑖/𝑑𝑡 can be reasonably replaced by the finite slope (𝜔𝑖+1 −

𝜔𝑖−1)/2𝛥𝑡 for small 𝛥𝑡 (Figure 2.2). 
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Figure 2.2: CDM applied to EOM of cup anemometer 

 

Applying Equation 2.6 simultaneously at 𝑣𝑖 and 𝑣𝑖+1, and assuming 𝐶 ̃𝑖 = 𝐶 ̃𝑖+1 and  𝐼 ̃𝑖 =  𝐼 ̃𝑖+1 

yields a system of two equations in 𝐶 ̃𝑖and  𝐼 ̃𝑖  the solution of which is: 

 

{
 
 

 
  𝐼 ̃𝑖 = ( 

𝑣𝑖+1
2

𝜔𝑖+1
−
𝑣𝑖
2

𝜔𝑖
 )/( 

𝜔𝑖+2 −𝜔𝑖
2𝛥𝑡𝜔𝑖+1

−
𝜔𝑖+1 − 𝜔𝑖−1
2𝛥𝑡𝜔𝑖

 )

𝐶 ̃𝑖 = ( 
2𝛥𝑡 𝑣𝑖+1

2

𝜔𝑖+2 − 𝜔𝑖
−

2𝛥𝑡 𝑣𝑖
2

𝜔𝑖+1 −𝜔𝑖−1
 )/( 

2𝛥𝑡 𝜔𝑖+1
𝜔𝑖+2 − 𝜔𝑖

−
2𝛥𝑡 𝜔𝑖

𝜔𝑖+1 −𝜔𝑖−1
 )

              (2.7) 

 

Equations 2.7 can be applied sequentially at every time step to develop a time-history of inertia 

and resistance parameters  𝐼 ̃𝑖 and 𝐶 ̃𝑖.  

 

Aerodynamic damping is commonly assumed to be quadratic (e.g., Kareem, et al., 1998).  Here 

the resistance parameter  𝐶 ̃ =
𝑐0+𝑐1𝑣+𝜏/𝜔

𝑐𝑑
 is assumed to be a quadratic function of wind speed: 
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𝐶 ̃ = 𝑟1𝑣
2 + 𝑟2𝑣 + 𝑟3                                                          (2.8) 

 

in which coefficients 𝑟1, 𝑟2 and 𝑟3 can be estimated by fitting a polynomial through the cloud of 

𝐶𝑖  ̃’s resulting from repeated applications of Equation 2.7 to a pair of contemporaneous time 

histories.  The validity of using a least-squares polynomial fit is examined as part of Example 

3.2.1. Substituting Equation 2.8 into Equation 2.6 yields an expression relating the true wind speed 

to the rotational speed of the cup anemometer:  

 

(1 − 𝑟1𝜔𝑖)𝑣𝑖
2 − 𝑟2𝜔𝑖𝑣𝑖 − 𝑟3𝜔𝑖 −  𝐼 ̃𝑖 (𝜔𝑖 −𝜔𝑖−1)/𝑑𝑡 = 0                              (2.9) 

 

The root of this quadratic equation can be directly applied to recover a time history of the true 

wind speed: 

 

𝑣𝑖 =
𝑟2𝜔𝑖 + √𝑟22𝜔𝑖

2 + 4(1 − 𝑟1𝜔𝑖)[𝑟3𝜔𝑖 +  𝐼 ̃𝑖 (𝜔𝑖 − 𝜔𝑖−1)/𝑑𝑡]

2 − 2𝑟1𝜔𝑖
                (2.10) 

 

in which 𝜔𝑖  can be estimated from high-frequency wind time-history measured using a cup 

anemometer using Equation 2.4,  𝜔𝑖 = 𝑘𝑣𝑐𝑖 − 𝑏. 

 

2.2.3       Recalibration of Mean Wind Speed  

 

Meteorological data is commonly provided as a mean wind speed, without providing a high-

frequency time history.  Random process theory can be applied to develop a direct relationship 
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between the true mean wind speed and the wind speed estimated by a cup anemometer. The wind 

speed, rotational speed, and rotational acceleration can be represented by random variables, 𝑉,  𝛺, 

and �̇�, respectively, as can be parameters  𝐼 ̃ and 𝐶 ̃. The complete wind and rotation temporal 

processes related by Equation 2.5 can be represented as a function of random variables: 

 

 𝐼 ̃�̇� + 𝐶 ̃𝛺 = 𝑉2                                                         (2.11) 

 

The mean of the rotational acceleration can be found by taking the expectation of every term and 

further assuming that random variable  𝐼 ̃ is independent of  𝑉2  and that 𝐶 ̃ , 𝐼  and 𝛺  are 

independent within any statistically stationary time segment, such that expected values of products 

and quotients equal equivalent functions of expected values:   

 

𝐸(𝛺)̇ =
1

𝐸( 𝐼 ̃)
𝐸(𝑉2) −

𝐸(𝐶 ̃)

𝐸( 𝐼 ̃)
𝐸(𝛺)                                          (2.12) 

 

in which the mean of the rotational acceleration 𝐸(𝛺)̇  is zero for a stationary process.  The 

definition of the variance can be used to substitute for the unknown 𝐸(𝑉2):   

 

[𝐸(𝑉)]2 + 𝑉𝑎𝑟(𝑉) − 𝐸(𝐶 ̃)𝐸(𝛺) = 0                                     (2.13) 

 

where 𝐶 ̃∗ = 𝐸(𝐶 ̃) is the expected value of 𝐶 ̃  for a stationary segment of the process, to which 

the definition of the variance can also be applied: 
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𝐶 ̃∗ = 𝑟1(𝜇
2 + 𝜎2) + 𝑟2𝜇 + 𝑟3                                            (2.14) 

 

Reformatting Equation 2.13 into common statistical parameters by performing a series of 

substitutions: 𝜇 = 𝐸𝑉,  𝜎2 = 𝑉𝑎𝑟(𝑉), and 𝜇𝜔 =  𝐸[𝜔]  𝐸[𝛺], then substituting  𝜇𝜔  = 𝑘𝜇𝑐 − 𝑏 

(from Equation 2.4):  

    

(𝜇2 + 𝜎2) − 𝐶 ̃∗(𝑘𝜇𝑐 − 𝑏) = 0                                      (2.15) 

 

which can be solved for an analytical expression for the true mean wind speed: 

 

𝜇 = √𝐶 ̃∗(𝑘𝜇𝑐 − 𝑏) − 𝜎2                                               (2.16) 

 

Where 𝜎 is the standard deviation of the true wind speed.  Application of Equation 2.16 requires 

coefficients 𝑘 and 𝑏, which can be identified using a constant speed wind tunnel test, and average 

resistance coefficient 𝐶 ̃∗, which can be determined using Equation 2.14 if point-by-point time-

histories are available, or by Equation 2.16 if only mean and variance data are available. 

 

2.3       Example 

 

An example is presented in which the numerical model of a cup anemometer is recalibrated and 

applied to a field data campaign.  The device first is subject to steady wind flow in the lab to 

determine coefficients k and b.  The device is then subject to natural winds on a rooftop, side-by-
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side with a hotwire anemometer to determine inertia parameter  𝐼 ̃ and resistance parameter 𝐶 ̃ or 

𝐶 ̃∗. The final part of the example to application of the calibrated model to wind speed data captured 

by the cup anemometer during a long-term field campaign.  The flow of the entire example is 

shown in Figure 2.3. 

 

 

Figure 2.3: Flowchart of numerical recalibration method 
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2.3.1       Calibration of HOBO U30 Cup Anemometer 

 

2.3.1.1       Lab Calibration in Steady Winds   

 

A commercially packaged wind anemometer kit is used throughout this example, the Onset HOBO 

U30. This weather station kit includes a cup wind speed anemometer, a wind direction 

anemometer, and a compact data logger.  Technical specifications are shown in Table 2.1. 

 

General features Specifications 

Measurement range 0–76 m/s 

Accuracy ± 1.1 m/s 

Resolution 0.5 m/s 

Dimensions 41 × 16 cm 

Weight 300 g 

 

Table 2.1: Technical specifications of wind speed sensor  

 

Coefficients k and b of the cup anemometer were determined experimentally in the laboratory.  

Wind was mechanically driven at each of five different constant wind speeds.  The rotor was 

optically recorded at 60 frames per second, from which rotational velocity was digitized by 

measured change in angle per time step (Figure 2.4).   
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Figure 2.4: Experiment of cup anemometer’s motion 

 

The experimental results for the HOBO U30 cup anemometer indicate a linear relationship 

between constant wind speed and cup rotational speed, with coefficients 𝑘 = 0.6639 and b =

0.07797. 

 

2.3.1.2       Field Calibration in Natural Winds 

 

The Hobo cup anemometer was placed side-by-side with a Ruby Electronics DT-8880 hot-wire 

anemometer.  The anemometers were installed on a T-bar approximately 2 m above a rooftop, 

which is approximately 25 m above the ground. The measurement site is shown in Figure 2.5.  The 

hotwire anemometer is used as the best approximation of the true wind speed: small inaccuracies 
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are introduced by the thermal mass of the wire, but this effect is assumed to be significantly smaller 

than that caused by the inertial moment and frictional resistance of the cup anemometer.    

 

 

Figure 2.5: Comparison field measurement campaign 

 

Fifteen side-by-side samples were recorded by cup and hot-wire anemometers, of which 10 

successfully captured a full 20 minutes with a steady wind direction. The time-histories and 

statistical moments of these samples form the bases of the dynamic calibration example.   

 

2.3.2       Mean Speeds of Natural Winds 

 

Two mean wind speed prediction methods are critically compared in this section. Coefficients k 

and b identified in the lab are used for both methods. The first method is to apply the CDM on 

side-by-side time histories to compute the resistance parameter 𝐶 ̃ and then computes 𝐶 ̃∗ from the 

resulting values of  𝐶 ̃.  The second method is to directly apply Equation 2.16 to the mean wind 
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speeds measured by each of the two anemometers plus the standard deviation measured by the 

hotwire to find the mean resistance parameter 𝐶 ̃∗.  

 

2.3.2.1      Identification of Resistance Parameter 𝑪 ̃∗  

 

2.3.2.1.1      Identification from Side-by-side Time Histories 

 

The ten 20-minute side-by-side datasets resulting from Section 3.1.2 are used to determine the 

inertia and resistance parameters.  A large number of inertia coefficients  𝐼 ̃𝑖 and inertia parameters  

𝐶𝑖  ̃ are computed using repeated applications of Equation 2.7 to all ten available side-by-side time 

histories.  The average of the  𝐼 ̃𝑖 is 4.5598. Individual values of the resistance parameter 𝐶𝑖  ̃ are 

shown in Figure 2.6 as black circles, after removal of obvious outliers, such as negative or large 

𝐶𝑖  ̃ value at low wind speed range.  A least-squares quadratic regression for 𝐶 ̃∗ yields coefficients 

𝑟1, 𝑟2 and 𝑟3 as 0.1165, 1.02, and 1.55, respectively.  The plot of 𝐶 ̃∗ is shown as the blue line on 

Fig 2.6. A time history of the true wind speed can then be reconstructed from the cup data using 

Equation 2.10. 

 

The validity of using a least-squares quadratic fit to find values of 𝑟1, 𝑟2 and 𝑟3 is tested by using 

an exhaustive search to find the set of 𝑟1, 𝑟2 and 𝑟3 that minimize the Euclidean distance between 

the recalibrated cup data and the contemporaneous hotwire data. 

 

Euclidean distance is commonly used to quantify the similarities between two time series 

(Agrawal, et al, 1994). In this case, competing sets of 𝑟1, 𝑟2 and 𝑟3 are exhaustively searched to 
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minimize the square root of the sum of squares differences, calculated as 𝐸𝐷( 𝑥 , �⃗�) =

√∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1  . The resulting optimal set of coefficients 𝑟1, 𝑟2 and 𝑟3 are 0.1065, 1.06, and 1.52, 

respectively, with the resulting “Best Estimate” of  𝐶 ̃∗  shown as the red dashed line in Figure 2.6.  

It is important to note that these coefficients are published to demonstrate the method, and should 

not be used in an actual recalibration application. These coefficients were generated exclusively 

from low wind speeds: the measured side-by-side data used to generate these coefficients had a 

maximum mean wind speed of 5.3m/s. The resistance parameter is a quadratic function of wind 

speed, so extrapolating the resistance parameter to higher wind speeds introduces a potential for 

very large recalibration errors.  A recalibrated time history resulting from use of these resistance 

coefficients combined with a much higher wind speed was found to be unrealistic; a different set 

of resistance coefficients has been identified that gives realistic recalibration of higher speed 

winds, but at present there is insufficient experimental data to support the new set of coefficients.   

 

 

Figure 2.6: Resistance parameters 𝐶 ̃ and 𝐶 ̃∗   
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2.3.2.1.2      Identification from Side-by-side Means and Standard Deviation 

 

Equivalent resistance coefficients 𝑟1, 𝑟2  and 𝑟3  can be computed directly from side-by-side 

means as measured by the two anemometers combined with the standard deviation of the true 

wind.  Individual values of 𝐶 ̃∗  computed directly from Equation 2.16 are plotted as a function of 

mean wind speed in Figure 2.7, with the numerical value of the standard deviation shown near 

each point.  Sample 9 was deleted from this dataset as an obvious outlier.  A three-dimensional 

least-squares fit though the remaining data yields coefficients 𝑟1, 𝑟2 and 𝑟3 to be 0.1047, 1.059, 

and 2.158.  The colored lines on Figure 2.7 show the result of Equation 2.16 using these 

coefficients and selected constant values of standard deviation.   These coefficients are based on 

low speed measurements only and use of them for high wind speed conditions would not be 

appropriate, as mentioned in Example 3.2.1.1.  

 

 

Figure 2.7: Resistance parameter 𝐶 ̃∗ from mean and standard deviation 

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

R
e

s
is

ta
n
c
e

 P
a
ra

m
e

te
r

0.83

1.01

1.14

1.15

1.29
0.81

1.58
1.52

1.55

3.19



 

29 

 

 

 

 

2.3.2.2       Recalibration of Measured Cup Data  

 

Three recalibration methods are available.  The optimal method would be application-specific, 

depending on the data needs and availability.  Recalibration of a complete wind time-history is 

based on Equation 2.10.  Recalibration of the mean wind speed only is based on Equation 2.16 if 

the standard deviation of the wind is known; recalibration of the mean only is also possible using 

an IEC recommended turbulence if the true turbulence is not known.    

 

Figure 2.8 shows time histories of hot-wire, adjusted cup, and original cup.  The recalibration 

brings both the mean wind speed reported by the cup much closer to the hotwire, and also provides 

a much better fit near the peaks than the raw cup data.   

 

 

Figure 2.8: Wind speed time histories 
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2.3.2.2.1     Recalibration of Wind Speed Time Histories and Mean Wind Speeds If 

Turbulence Is Known 

 

Each of the ten statistically stationary time histories is recalibrated point-by-point using Equation 

2.10 with 𝑟1, 𝑟2 and 𝑟3 as 0.1165, 1.02, and 1.55. The mean of each of these 10 time-histories is 

shown in Table 2.2 as 𝜇𝑡.  The recalibrated mean shows generally good agreement with the hotwire 

data, and much better agreement than the unadjusted cup data.  The next two columns of Table 

2.2, †𝜇 and ‡𝜇, show results computed using Equation 2.16, but using different values of the 

calibration coefficients.   Results in column †𝜇 use the value of 𝐶 ̃∗ computed in 3.2.1.1; results in 

column ‡𝜇 use the value of 𝐶 ̃∗ computed in 3.2.1.2.  The overall results suggest that the mean of 

a recalibrated time history approximately equals the mean resulting from direct recalibration, and 

the recalibration is not highly sensitive to which method is used to determine 𝐶 ̃∗ 

 

Sample 𝜇𝑐  𝜇ℎ 𝜎ℎ 𝜇𝑡 †𝜇 ‡𝜇 

1 1.37 1.64 0.83 1.74 1.52 1.69 

2 1.44 1.71 1.01 1.80 1.51 1.68 

3 1.96 2.13 1.14 2.40 2.02 2.20 

4 1.95 2.40 1.15 2.37 2.13 2.30 

5 3.71 4.35 1.29 4.56 4.28 4.43 

6 3.78 4.68 1.52 4.70 4.45 4.59 

7 3.84 4.67 0.81 4.74 4.63 4.77 

8 3.81 4.73 1.58 4.77 4.50 4.63 

9 4.57 6.62 3.19 6.12 5.73 5.79 

10 5.28 6.92 1.55 7.23 6.87 6.94 

                                                  𝜇𝑡: computed from adjusted cup speed time-history, m/s 

                                                                                    †𝜇, †𝜎: 𝐶 ̃∗ computed from 𝐶 ̃, m/s 

                                                                 ‡𝜇, ‡𝜎: 𝐶 ̃∗ computed from 𝜇𝑐, 𝜇ℎ, and 𝜎ℎ, m/s 

Table 2.2: Comparison of recalibration methods  
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2.3.2.2.2     Recalibration of Mean Wind If Measured Turbulence Is Not Available   

 

If the standard deviation of wind speed 𝜎 is unknow, it can be estimated by IEC normal turbulence 

model. The definitions of various turbulence models can be found at IEC regulations (IEC, 2006), 

including the Normal Turbulence Model (NTM). The NTM model gives an expression for the 

mean value of the turbulence:  

 

𝜎 = 𝐼𝑟𝑒𝑓(0.75𝜇 + 3.8)                                               (2.18) 

 

Where 𝜇 is the mean of the true wind speed, 𝐼𝑟𝑒𝑓  is the expected value of hub-height turbulence 

intensity at a 10 min average wind speed of 15 m/s. IEC gives values of 𝐼𝑟𝑒𝑓 of 0.16, 0.14, and 

0.12 for NTM Class A, B, and C respectively.  The true wind speed is not generally known directly 

from cup data, such that the recalibration to find the true mean wind speed requires simultaneous 

solution of Equations 2.14, 2.16.    

 

Table 2.3 shows two pairs of 𝜇 and 𝜎 computed using each of the two sets of coefficients 𝑟1, 𝑟2 

and 𝑟3 developed in Example 3.2.1 and the value of 𝐼𝑟𝑒𝑓 = 0.16 representing IEC NTM Model A.  

The result based on fitting the cloud consistently under predicts the results based on fitting means.  

Each set of results relies a different equation for 𝐶 ̃∗, each of which is based on a single data-fit 

(Figures 2.6 and 2.7).  Results in columns †𝜇 and †𝜎 use the value of 𝐶 ̃∗ computed in 3.2.1.1; 

results in columns ‡𝜇 and ‡𝜎 use the value of 𝐶 ̃∗ computed in 3.2.1.2. The systematic differences 
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between these two sets of predictions of the mean are believed to be caused by the imprecise 

algebraic representation of 𝐶 ̃∗computed from each of the two the data fits.   

 

Sample 𝝁𝒄 𝝁𝒉 𝝈𝒉 †𝝁 †𝝈 ‡𝝁 ‡𝝈 

1 1.37 1.64 0.83 1.48 0.79 1.72 0.82 

2 1.44 1.71 1.01 1.56 0.80 1.80 0.82 

3 1.96 2.13 1.14 2.14 0.87 2.41 0.90 

4 1.95 2.40 1.15 2.13 0.86 2.40 0.90 

5 3.71 4.35 1.29 4.27 1.12 4.57 1.16 

6 3.78 4.68 1.52 4.37 1.13 4.67 1.17 

7 3.84 4.67 0.81 4.45 1.14 4.75 1.18 

8 3.81 4.73 1.58 4.41 1.14 4.71 1.17 

9 4.57 6.62 3.19 5.56 1.28 5.83 1.31 

10 5.28 6.92 1.55 6.82 1.43 7.01 1.45 

                                                                                           †𝜇, †𝜎: 𝐶 ̃∗ computed from 𝐶 ̃, m/s 

              ‡𝜇, ‡𝜎: 𝐶 ̃∗ computed from 𝜇𝑐, 𝜇ℎ, and 𝜎ℎ, m/s 

 

Table 2.3: Predicted mean wind speed based on IEC turbulence model 

 

2.3.3       Higher Statistical Moments of a Sea Breeze  

 

The skewness and kurtosis are estimated from field data measured using a cup anemometer 

considering only those winds from the Gulf of Mexico near-perpendicular to the coast, which was 

taken here to be all winds from a heading of 145°± 30°. 
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2.3.3.1       Seasonal Field Measurement Campaign 

 

A longer-term field measurement campaign was completed as part of this work to quantify the 

higher statistical moments of the natural winds blowing directly ashore from the Gulf of Mexico. 

The measurement campaigns represent a two-month deployment of a HOBO U30 weather station 

kit which includes a cup anemometer.  Measurements began March 2017 with a continuous 

sampling rate of 1 Hz.  The anemometer was positioned 10 m above the ground at 29°16'38.0"N, 

94°48'40.4"W, which is on Galveston Island approximately 250 m from the Gulf of Mexico, as 

shown in Figure 2.9.  

 

 

Figure 2.9: Field campaign locations 
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Figure 2.10 presents the raw field data as two monthly wind roses. The dominant wind direction 

is from the Gulf of Mexico towards land with a secondary peak from land towards the Gulf.  

Monthly wind roses of March 2017 and April 2017.  

 

 

                        (a)  March 2017                                            (b) April 2017 

               Figure 2.10: Monthly wind roses of raw data as measured at a coastal location  

 

Winds from a heading of 145° plus or minus 30° are considered sea breezes for the purposes of 

computing statistical moments in this example. An analysis of winds from (direction) 160° +/-30° 

are considered land breezes in this analysis; an analysis of land breezes collected in the present 

data campaign plus an additional measurement set is offered as Appendix 1.  Comparing statistics 

of the land vs sea breezes shows land breeze to have meaningfully higher turbulence, and that the 

turbulence is most affected by very local conditions because the winds off of Galveston Bay were 

statistically comparable to winds off the ocean.  
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2.3.3.2       Recalibration and Analysis of Measured Wind Data 

 

The complete two-month time-history is recalibrated and then divided into 10-minute segments. 

Each segment is tested for statistical stationarity.  Stationary segments with wind blowing from 

the Gulf are then binned by mean recalibrated wind speed.  The statistical moments are then 

computed for all segments within each bin.  The computed moments are averaged to represent the 

standard deviation, skewness and kurtosis as a function of wind speed. 

 

The coefficients used in the recalibration are based on all available data from the fifteen sets of 

data originally collected as part of Example 3.2. Those parts of the five time-histories excluded 

from Example 3.2 that are believed to represent steady-state conditions have been included in this 

analysis such that the parameter 𝐶 ̃ is estimated based on all available data. A best estimate of the 

resistance parameter 𝐶 ̃ is made by an exhaustive search of 𝑟1, 𝑟2 and 𝑟3 to minimize the Euclidean 

distance between hot-wire and adjusted cup data.  The resulting values of coefficients 𝑟1, 𝑟2 and 𝑟3 

are 0.1265, 0.8107, and 1.684.  The values of coefficients k and b are taken from section 3.1.1 to 

be 0.6639 and 0.07797, respectively.    

 

Each 10-minute segment resulting from the recalibration is tested for statistical stationarity using 

the reverse arrangement test (Kendall, 1938 as improved by Mann, 1945).  The test applied a 

threshold z-value of 2.576, corresponding to a 99% confidence interval in which 𝑧 = (𝑅 −

𝜇𝑅  )/𝜎𝑅  where 𝜇𝑅 =
𝑁(𝑁−1)

4
 and 𝜎𝑅

2 =
2𝑁3+3𝑁2−5𝑁

72
.  The first four statistical moments are 

calculated for each ten-minute stationary segment of the sea breeze process.  The segments are 
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then binned by the recalibrated mean wind speed and the average of each statistical moment is 

computed for each bin and presented as Table 2.4. 

 

Wind speed 𝜎 𝛼3̅̅ ̅ 𝛼4̅̅ ̅ 𝜎𝜎 𝜎𝛼3 𝜎𝛼4 

4 0.77 0.20 2.71 0.14 0.30 0.48 

5 1.00 0.35 3.04 0.20 0.35 0.64 

6 1.37 0.62 3.48 0.27 0.41 1.25 

7 1.71 0.70 3.70 0.34 0.46 1.48 

8 2.08 0.87 4.24 0.47 0.46 1.75 

9 2.48 0.88 4.18 0.50 0.48 1.83 

10 2.99 1.00 4.50 0.58 0.50 2.09 

11 3.52 1.10 4.71 0.68 0.49 1.93 

12 3.82 1.08 4.81 0.76 0.44 1.65 

13 4.49 1.16 4.77 0.93 0.47 1.68 

 

Table 2.4: Statistical parameters of sea breeze (145°± 30°) 

 

A small number of outliers are found at high wind speed bars according to their Normal plot 

figures. These outliers are neglected during the computation to avoid its influence to the accuracy 

of statistical parameters of sea breeze. 

 

Figure 2.11 shows the higher statistical moments of the observed coastal sea breezes.  The process 

is observed to have higher statistical moments that also vary with mean wind speed and differ 

significantly from the Gaussian values of zero and three.  
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(a) Standard deviation 

 

(b) Skewness 

Figure 2.11: Higher statistical moments 
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(c) Kurtosis 

 

Figure 2.11continued. 

 

Figure 2.12 shows a normal plot for the measured data for mean wind speeds of 8 and 10 m/s.  The 

large deviations from the straight line representing a Gaussian process show that the observed 

process deviates significantly from the Gaussian, and that extremes of the 8 m/s winds would be 

significantly underpredicted using a Gaussian process assumption. Comparing the recalibrated cup 

data with the raw cup data shows that use of the raw cup data could lead to a sever underprediction 

of the expected maximum 10-min gust wind.   The mean max of 55 segments in the 8m/s bin is 

10.95 m/s before recalibration and 16.21 m/s after recalibration; the mean max in the 10m/s bin is 

22.22 after recalibration.  These extreme results are for the binned data only, and would be 

considered in addition to the recalibration of the mean. A cut-off line at 32 m/s are applied to 10 

m/s winds according to the obviously gap in Normal plot. Data points above the cut-off line are 

not including in the computation of higher statistical moments. Similar cut-off lines are selected 
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for other higher wind speed bars as well. The skewness of 11 m/s, 12m/s, and 13 m/s would be 

1.17, 1.10, and 1.17 without cut-off lines. The kurtosis of 11 m/s, 12m/s, and 13 m/s would be 

5.30, 5.02, and 4.99 without cut-off lines. 

 

 

(a) 8m/s, 𝛼3 > 0, 𝛼4 > 3 

 

(b) 10m/s, 𝛼3 > 0, 𝛼4 > 3 

Figure 2.12: Normal Plot for wind speed data in different bars  
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Figure 2.13 shows a plot of number of segments within each wind speed bin.  The plot shows the 

general recalibration shift toward higher wind speeds. Very little raw data was collected having 

mean wind speeds of 8m/s and above and virtually none for 10m/s and above.  Further, the 

resistance coefficients used in the recalibration are based on side-by-side data having a maximum 

mean wind speed of 5.28 m/s (cup) and 6.92 m/s (hot-wire). Use of the higher statistical moments 

computed using the recalibration method on wind speeds higher than the basis of the calibration 

coefficients may not be appropriate. 

 

 

Figure 2.13: Number of segments in each wind speed bar 

 

2.4       Conclusion 

 

Instantaneous and mean wind speeds measured by a cup anemometer are observed to differ 

meaningfully from measurements measured using a hotwire anemometer in natural turbulent wind 

conditions.  A new recalibration method is developed to increase the accuracy of instantaneous 

wind speeds as measured by cup anemometers.  Derivation of the new method is based on the 
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dynamic equation of motion of the rotor, including the rotational mass moment of inertia and 

varying aerodynamic force coefficients on the cups.   Results of the derivation show that the 

instantaneous and mean wind speeds depend on the mass-moment of the rotor and on changing 

aerodynamic force coefficients.  These dynamic effects are explicitly included in a new 

recalibration method that increases the prediction accuracy of cup anemometers in turbulent winds.  

The new method is demonstrated by application to side-by-side wind speed data to develop 

instantaneous and mean wind speed corrections, and used to compute the short-term higher-order 

statistics of coastal winds.    

 

The new method requires experimental recalibration of the cup anemometer.  Measurements in 

steady wind conditions are used to establish coefficients relating steady wind speeds to cup rotation 

speeds.   Differences between time-histories of the true wind speed in natural turbulent conditions 

and corresponding time histories recorded by a cup anemometer are used to establish parameters 

relating acceleration of the cup rotor to rotational moments applied by the wind.  The resulting 

parameters can be used to recalibrate instantaneous wind speed time-histories, or used in 

conjunction with turbulence intensity to recalibrate mean wind speeds. 

 

The new methodology is expected to be useful in practical applications and can be applied to any 

type of cup anemometer.  Each cup anemometer can be recalibrated in a limited number of wind 

conditions spanning the target wind speed range, and the resulting recalibration equations can be 

applied in a much broader range of wind velocities and turbulence levels.  Mean velocities of 

existing or historical data measured using cup anemometers can also be recalibrated as long as a 

calibration coefficient can be developed for the anemometer used.  Complete wind time histories 
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can be recalibrated point-by-point, and subsequently used to compute statistical moments of the 

wind, including standard deviation, skewness and kurtosis.   

 

Two months of high-fidelity cup data was recalibrated and used to estimate the higher statistical 

moments of coastal sea breezes.   The resulting higher-order statistical moments of short-term 

winds do not conform to the commonly used Gaussian assumption.  The computed values of 

standard deviation, skewness and kurtosis of the measured sea breeze are listed in Table 2.4.   
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3. TRANSFORMATION OF WIND TURBINES POWER CURVE

USING THE STATISTICS OF THE WIND PROCESS 

3.1     Introduction and Background 

3.1.1     Introduction 

The International Electrotechnical Commission (IEC) (IEC, 2005) recommends computing annual 

energy production using a practical power curve measured from an operating wind turbine.  A 

practical power curve is generally constructed from measured 10-minute means of power and wind 

speed, such that the resulting curve implicitly includes all effects of irregularities in the wind as 

well as the turbine control-system dynamic response.  Practical power curves can be significantly 

different from ideal turbulence-free power curves and can be useful in project planning and design, 

but these curves cannot be accurately constructed from field measurements prior to siting a wind 

turbine in the actual wind conditions for the proposed location.  The importance of practical power 

curves is heightened because the practical curve always predicts less power than the ideal curve, 

and the largest differences are near the rated speed of the turbine.  These differences result mainly 

from the system being unable to shift instantaneously between control strategies when subject to 

short-term variations in the wind speed.  Torque-control is applied to the wind speeds that are only 

briefly above the rated, and pitch control is applied to winds that are only briefly below the rated.  

In this work, the wind speed is treated as a random variable and expressions are derived to quantify 

the instantaneous power produced by wind speeds above and below the rated speed. The 
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development begins with an assumption of a Gaussian wind process, and is subsequently extended 

to include non-Gaussian effects. 

 

The methodology developed here enables transformation between the manufacturer's power curve 

and a practical power curve using the statistical moments of the wind process. This new 

methodology can be used to predict actual turbine output based on the idealized power curves, or 

the inverse of the new transformation can be used to develop zero-turbulence performance curves 

using field data measured in actual turbulent conditions. 

 

Other researchers have applied statistical methods to develop estimate power generation. Carrillo 

(Carrillo, et al, 2013) shows that the cubic and exponential functions are each an excellent fit for 

the torque-controlled region of practical power curves for commercial FOWTs. Shokrzadeh et al 

(Shokrzadeh, et al, 2014) introduce a locally weighted polynomial regression method to define a 

power curve using both simulated datasets and measured data from a wind farm.  Advanced 

statistical methods have also been investigated as an alternative to power curves.  Multiple 

researchers, (e.g., Li et al., 2001, Mabel and Fernandez, 2008 and Kusiak, et al., 2009) each 

develop and verify the effectiveness of artificial neural network models using field-data measured 

on various wind farms.  Kusiak goes on to suggest his model could also be applied to wind farm 

management, individual turbine control and energy generation optimization. 

   

The work presented here differs from that prior statistical work in that this work is based on treating 

the wind process and output power as random processes, and recognizing two distinct operational 

control modes.  The resulting transformation between ideal and practical power curves can be 
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directly applied to applied to any wind turbine design by determining a limited number of 

parameters from either field measurements or numerical simulations.   

 

The remainder of Section 1 gives necessary technical background and common nomenclature for 

the theoretical developments; Section 2 gives the theoretical developments for winds that are 

initially assumed to be a Gaussian process, then these developments are extended to non-Gaussian 

winds; Section 3 includes a series of examples demonstrating the importance of turbulence 

intensity, the relative importance of non-Gaussian effects, and application of the method to 

compute annual energy production.   

 

3.1.2     Background 

 

3.1.2.1     Manufacturer’s Power Curve 

 

The manufacturer's power curve (Figure 3.1) represents the performance of a wind turbine in 

steady wind, which systematically overestimates the power production (e.g., Böttcher, F., et al, 

2007).  The control system operates the turbine in one of two fixed modes depending on the mean 

wind speed: a torque-controlled mode and a pitch-controlled mode.  No power is generated when 

the mean wind speed is below or above the cut-in or cut-out speeds (𝑢𝑐𝑢𝑡−𝑖𝑛, and 𝑢𝑐𝑢𝑡−𝑜𝑢𝑡) because 

the turbine is not operated in very high or low wind speeds (Jonkman, et al., 2009).   
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Figure 3.1: Truncated distribution model of wind speed 

 

The rising section of the power curve between the cut-in and cut-out speeds is the torque-controlled 

region, in which the rotor torque is adjusted by the control system to optimize the spin rate and 

energy output. The instantaneous Power, 𝑃𝑖 , is commonly estimated as 𝑃𝑖 = 𝑃(𝑢𝑖) = 𝑘𝑢𝑖
3  (e.g., 

Pardalos, et al., 2013), in which 𝑘 is a power coefficient and  𝑃𝑖 and 𝑢𝑖 are the instantaneous values 

of the power and wind speed.  

 

The flat section of the power curve, between the rated and cut-out speeds, is the pitch-controlled 

region, in which the control system feathers the blades to limit the torque and spin rate to prevent 

damage to the turbine operating in high winds. The power output for instantaneous wind speeds in 

the pitch-controlled region can realistically be estimated as the rated power of turbine: 𝑃𝑖 = 𝑃𝑟.   
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3.1.2.2    Truncated Gaussian Wind Process 

 

Wind speeds around a fixed mean are observed to be a weakly non-Gaussian process (e.g., Dai 

and Sweetman, 2020).  Approximating winds as a Gaussian process enables computation of the 

mean and standard deviation of the wind speeds bounded between 𝑢𝑎 and 𝑢𝑏 using a truncated 

normal distribution (e.g., Kotz, et. al, 2004): 

 

𝜇𝑟 = 𝜇 + 𝜎
𝜙(𝛼) −  𝜙(𝛽)

𝛷(𝛽) − 𝛷(𝛼)
                                             (3.1) 

 

𝜎𝑟 = 𝜎√1 + 
 𝛼𝜙(𝛼) − 𝛽𝜙(𝛽)

𝛷(𝛽) − 𝛷(𝛼)
− [
 𝜙(𝛼) − 𝜙(𝛽)

𝛷(𝛽) − 𝛷(𝛼)
]

2

                          (3.2) 

 

Where, 𝜇 and 𝜎 are the mean and standard deviation of the wind process, and 𝜙 and 𝛷 are the PDF 

and CDF of the normal distribution, such that  𝛷(𝛽) − 𝛷(𝛼) is the fraction of total probability 

within the truncated region. Coefficients 𝛼  and 𝛽  are standard normal representations of the 

boundaries of domain:𝛼 = (𝑢𝑎 − 𝜇)/𝜎  and 𝛽 = (𝑢𝑏 − 𝜇)/𝜎. 

 

3.1.2.3 The Hermite Transformation 

 

The Hermite moment model (e.g., Winterstein, 1988; Sweetman and Choi, 2010) is a 

transformation that enables a one-to-one mapping between any Gaussian process and an equivalent 

mildly non-Gaussian process.  The transformation maintains the fractile of every point in the 

process, while tuning the entire process to specified skewness and kurtosis.    
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3.2     Theoretical Development 

 

There are four distinct operational modes shown by the blue line in Figure 3.1.  Winds can be 

represented more realistically as a mean and a distribution about that mean, as shown on the black 

line.  The distribution about the mean wind speed causes a wind turbine to have some probability 

of operating in each of the two operational modes for any specified mean wind speed.  The power 

available at a constant mean wind speed can be computed by combining the distribution of wind 

speeds with the power curve and summing the contributions from each of the two regions. 

 

The distribution of wind speeds is truncated by the three wind speeds separating the power curve 

into two operating regions. The area under each operating region of the truncated distribution is 

used to quantify the fraction of time in which the wind turbine is operating in that region; 

multiplying the power by the total duration over which the wind can be represented as having 

constant mean and standard deviation yields the energy produced.  

 

3.2.1     Power Curve Transformation Using a Truncated Gaussian Model 

 

The expected power for any operating condition can be computed as the sum of the power 

generated by the instantaneous winds in each of the two regions.   The generator control strategy 

applied in the torque-controlled region is intended to extract the maximum instantaneous power 

from the available wind, such that instantaneous power in the torque-controlled region can be 

expressed as a function of the cube of the instantaneous wind speed, 𝑃1 = 𝑘1𝑢𝑖
3.  The control 

strategy in the pitch control region should ideally extract the rated power continuously, regardless 
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of increasing wind speed, 𝑃3 = 𝑃𝑟𝑢𝑖
0 = 𝑃𝑟 . However, practical limitations preclude output power 

remaining constant in the presence of turbulent winds, such that the output power can be 

approximated as a function of some unknown power of the wind speed, 𝑃2 = 𝑘2𝑢𝑖
𝑥 , with 𝑥 

generally expected to be between 0 and 3.   

 

3.2.1.1     Estimation of Power Generated in the Torque-Controlled Region  

 

The total expected power in the torque-controlled region for that region  𝑅1 can be computed as a 

function of wind speed times the probability of that speed.  Representing the instantaneous power 

in the torque-controlled region as 𝑃1 = 𝑘𝑢𝑖
3  and integrating over arbitrary probability density 

function 𝑔1, which represents wind speeds in region  𝑅1: 

 

𝐸(𝑃1) = ∫ 𝑃1(𝑢)𝑔1(𝑢)𝑑𝑢
𝑢𝑟

𝑢𝑐𝑢𝑡−𝑖𝑛

= ∫ 𝑘1𝑢
3𝑔1(𝑢)𝑑𝑢

𝑢𝑟

𝑢𝑐𝑢𝑡−𝑖𝑛

                   (3.3) 

 

Where distribution 𝑔1  generally varies with geographic location and constant 𝑘2  varies with 

individual wind turbine design. The power function 𝑘1𝑢𝑖
3 can be expanded about the mean  𝜇1 as 

a Taylor series.   of the wind speeds in region 𝑅1, the mean of the region between the cut-in and 

rated wind speeds: 

 

𝐸(𝑃1) = ∫ [𝑃1(𝜇1) + (𝑢 − 𝜇1)𝑃1′(𝜇1) +
1

2
(𝑢 − 𝜇1)

2𝑃1′′(𝜇1)] 𝑔1(𝑢)𝑑𝑢
𝑢𝑟

𝑢𝑐𝑢𝑡−𝑖𝑛

  (3.4) 
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In which  𝜇1 is the centroid of the region of the PDF between the cut-in and rated wind speeds 

calculated using Equation 3.1.  The first and second derivatives of the power 𝑃1(𝑢) are  𝑃1
′(𝑢) =

3𝑘1𝑢
2  and 𝑃1

′′(𝑢) = 6𝑘1𝑢 . Substituting  𝑃1(𝑢) = 𝑘1𝑢
3 , ∫ 𝑢𝑔1(𝑢)𝑑𝑢

𝑢𝑟
𝑢𝑐𝑢𝑡−𝑖𝑛

= 𝜇1 and 

∫ 𝑔1(𝑢)𝑑𝑢
𝑢𝑟
𝑢𝑐𝑢𝑡−𝑖𝑛

= 1 into Equation 3.4 yields a second-order approximation of the expected 

power. 

 

𝐸(𝑃1) = 𝑃1(𝜇1) +
1

2
𝑉𝑎𝑟1(𝑢)𝑃1

′′(𝜇1)                                      (3.5) 

= 𝑘1𝜇1
3 + 3𝑘1𝜇1𝜎1

2 

 

In which 𝑉𝑎𝑟1(𝑢)  is the variance of the wind speeds between the cut-in and rated speeds, 

𝑉𝑎𝑟1(𝑢)  = 𝜎1
2, calculated from the standard deviation of the wind process using Equation 3.2. 

 

The variance of the power can also be computed directly from the statistics of the wind.  The 

variance of the power can be represented using the definition of variance: 

 

𝑉𝑎𝑟(𝑃1) =  ∫ [𝑃1(𝑢) − 𝐸(𝑃1)]
2𝑔1(𝑢)𝑑𝑢

𝑢𝑟

𝑢𝑐𝑢𝑡−𝑖𝑛

                         (3.6) 

   

Substituting Equation 3.5 into Equation 3.6 and using the first three terms of the Taylor series 

expansion of  𝑃1(𝑢) yields the variance of power 𝑉𝑎𝑟(𝑃1): 

 

𝑉𝑎𝑟(𝑃1) = 𝑉𝑎𝑟1(𝑢)𝑃1
′(𝜇1)

2 + 𝐸(𝑢 − 𝜇1)
3𝑃1

′(𝜇1)𝑃1
′′(𝜇1)               (3.7) 
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+
1

4
𝐸(𝑢 − 𝜇1)

4𝑃1
′′(𝜇1)

2 −
1

4
𝑉𝑎𝑟1

2(𝑢)𝑃1
′′(𝜇1)

2                    

 

In which the expectation in the second and third terms can be recognized as the third and fourth 

raw moments of wind speed within 𝑅1, which are small for a Gaussian process.  Neglecting these 

higher moments yields an expression for the variance of the power resulting from winds within 𝑅1 

only: 

 

𝑉𝑎𝑟(𝑃1) = 𝑉𝑎𝑟1(𝑢)𝑃1
′(𝜇1)

2 −
1

4
𝑉𝑎𝑟1

2(𝑢)𝑃1
′′(𝜇1)

2                         (3.8)  

 

Substituting  𝑉𝑎𝑟1(𝑢) = 𝜎1
2 , 𝑃1

′(𝑢) = 3𝑘1𝑢
2  and 𝑃1

′′(𝑢) = 6𝑘1𝑢  into Equation 3.8 yields the 

standard deviation of the power in the torque-controlled region 𝑅2: 

 

𝑆𝑡𝑑(𝑃1) = 3𝑘1𝜇1𝜎1√𝜇12 − 𝜎12                                            (3.9) 

                                       

The likelihood, 𝐿𝑅1 , of instantaneous winds being in torque-controlled region 𝑅1  during any 

statistically stationary period is: 

 

𝐿𝑅1  =  𝛷(𝛽) − 𝛷(𝛼)                                                    (3.10) 

 

Where,  𝛼  and 𝛽  is the standard normal representation of the cut-in and rated speed:  𝛼 =

(𝑢𝑐𝑢𝑡−𝑖𝑛 − 𝜇)/𝜎   and  𝛽 = (𝑢𝑟𝑎𝑡𝑒𝑑 − 𝜇)/𝜎 .  Likelihood 𝐿𝑅1  is assumed to also represent the 



 

52 

 

 

 

number of discrete time points 𝑢𝑖 during which the turbine is operating in the torque-controlled 

region within any statistically stationary period.  

 

3.2.1.2     Estimation of Power Generated in the Pitch-Controlled Region  

 

A typical manufacturer’s power curve shows constant power output for all wind speeds beyond 

the rated, which represents the pitch-controlled region, 𝑅2 . The mean power output for 

instantaneous winds speeds above the rated is set by the control system to the rated power: 

 

𝐸(𝑃2) = 𝑃𝑟                                                             (3.11) 

 

Imperfections in the instantaneous control in turbulent winds lead to variations in 

instantaneous power, in which the exponent of the wind speed is an unknown constant 

depending on overall wind turbine and controller characteristics including the angle 

between the incoming wind and the rotor:     

 

𝑃2(𝑢) = 𝑘2𝑢𝑖
𝑥                                                            (3.12) 

                                                               

Where the power coefficient 𝑘2 remains constant for any fixed set of values representing the mean 

wind speed, turbulence and exponent 𝑥. 
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Repeating the derivation of Equations 3.4 and 3.6 for application to 𝑃2 and substituting the 

derivatives 𝑃2
′(𝑢) = 𝑥𝑘3𝑢

𝑥−1  and 𝑃2
′′(𝑢) = 𝑥(𝑥 − 1)𝑘3𝑢

𝑥−2   yields a second-order 

approximation of the expected power and variance of power. 

 

𝐸(𝑃2) =  𝑃2(𝜇2) +
1

2
𝑉𝑎𝑟2(𝑢)𝑃2

′′(𝜇2)                                            (3.13) 

= 𝑘2𝜇2
𝑥 +

1

2
𝑥(𝑥 − 1)𝑘2𝜎2

2𝜇2
𝑥−2                                                

                               

𝑉𝑎𝑟(𝑃2) = 𝑆𝑡𝑑
2(𝑃2) = 𝑉𝑎𝑟2(𝑢)𝑃2

′(𝜇2)
2 −

1

4
𝑉𝑎𝑟2

2(𝑢)𝑃2
′′(𝜇2)

2          (3.14) 

= 𝑥2𝑘2
2𝜇2

2𝑥−2𝜎2
2 −

1

4
𝑥2(𝑥 − 1)2𝑘2

2𝜇2
2𝑥−4𝜎2

4
                               

 

In which  𝜇2 is the centroid of the region of the PDF between the rated and cut-out wind speeds 

calculated using Equation 3.1, 𝑉𝑎𝑟2(𝑢) is the variance of the wind speeds between the rated and 

cut-out speeds, 𝑉𝑎𝑟2(𝑢)  = 𝜎2
2, calculated from the standard deviation of the wind process using 

Equation 3.2. 

 

Setting 𝐸(𝑃2) equal to the rated power yields an expression for the power coefficient:   

 

𝑘2 =
𝑃𝑟

[1 +
1
2𝑥
(𝑥 − 1)(

𝜎2
𝜇2
)2]𝜇2

𝑥
                                               (3.15) 

 

Substituting Equation 3.15 into Equation 3.14 yields the variance of the power. 
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𝑉𝑎𝑟(𝑃2) =
𝑃𝑟
2𝑥2(

𝜎2
𝜇2
)2 −

1
4
𝑃𝑟
2𝑥2(𝑥 − 1)2(

𝜎2
𝜇2
)4

[1 +
1
2𝑥
(𝑥 − 1)(

𝜎2
𝜇2
)2]2

                               (3.16) 

 

Equation 3.16 can be reformatted into a quartic equation of x: 

 

𝑃𝑟
2𝑥2(

𝜎2
𝜇2
)2 −

1

4
𝑃𝑟
2𝑥2(𝑥 − 1)2 (

𝜎2
𝜇2
)
4

 − 𝑉𝑎𝑟(𝑃2) [1 +
1

2
𝑥(𝑥 − 1)(

𝜎2
𝜇2
)
2

]

2

= 0    (3.17) 

 

There can be only one solution of Equation 3.17 that satisfies Equation 3.13 because Equation 3.12 

is monotonic for power vs wind speed.   

 

The portion, 𝐿𝑅2,  of the statistically stationary period in which the turbine is operating in the pitch-

controlled Region, 𝑅2, is computed from the normal distribution: 

 

𝐿𝑅2 =  𝛷(𝛾) − 𝛷(𝛽)                                                  (3.18) 
 

Where  𝛾  and 𝛽  are the standard normal representation of the cut-out and cut-in speeds: 𝛾 =

(𝑢𝑐𝑢𝑡−𝑜𝑢𝑡 − 𝜇) 𝜎⁄  ; 𝛽 = (𝑢𝑟𝑎𝑡𝑒𝑑 − 𝜇)/𝜎 . 
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3.2.1.3     Estimation of Power Generated in All Regions  

 

The energy output for any steady wind condition is the sum of the expected power multiplied by 

time for each of the two regions, and the expected power for any one segment is the total energy 

output divided by the total duration of the segment:  

 

   𝐸(𝑃) = ∑𝐸(𝑃𝑗) 𝐿𝑅𝑗

4

𝑗=1

= 𝐸(𝑃1)𝐿𝑅1 + 𝐸(𝑃2)𝐿𝑅2                          (3.19) 

= (𝑘1𝜇1
3 + 3𝑘1𝜇1𝜎1

2)𝐿𝑅1 + 𝑃𝑟𝐿𝑅2         

 

The standard deviation of power output can be computed as a weighted average (e.g., Headrick, 

T. C., 2009): 

 

   𝑆𝑡𝑑(𝑃) = √∑{ 𝑆𝑡𝑑(𝑃𝑗)
2  𝐿𝑅𝑗 + [𝐸(𝑃𝑗) − 𝐸(𝑃)]2 𝐿𝑅𝑗}

2

𝑗=1

                (3.20) 

  
 

= √𝑆𝑡𝑑(𝑃1)2 𝐿𝑅1 + 𝑆𝑡𝑑(𝑃2)2 𝐿𝑅2+[𝐸(𝑃1) − 𝐸(𝑃)]2 𝐿𝑅1 + [𝑃𝑟 − 𝐸(𝑃)]2 𝐿𝑅2 

 

Equation 3.21 can be directly inverted to predict a zero-turbulence power curve equivalent to a 

manufacturer’s ideal power curve: 

 

𝑃𝑖(𝑢) = 𝑘1𝑢
3 =

𝐸(𝑃) − 𝑃𝑟𝐿𝑅2
(𝜇13 + 3𝜇1𝜎12)𝐿𝑅1

𝑢3                               (3.21) 
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Where, mean 𝜇1 and standard deviation 𝜎1  , Likelihood 𝐿𝑅1  and  𝐿𝑅2  can be obtained from 

measured field data. 

 

3.2.2     Inclusion of Non-Gaussian Effects 

 

The theoretical developments presented so far rely heavily on Equations 3.2 and 3.3, which are 

strictly valid only for a Gaussian process. There is little evidence that natural winds are Gaussian, 

and short-term measurements by the authors have shown the wind process to have skewness and 

kurtosis values that differ from the Gaussian values of zero and three (Dai and Sweetman, 2020). 

The methodology developed here can be used on mildly non-Gaussian winds by applying the 

Hermite transformation to the cut-in, rated, and cut-out speeds.   The fractiles associated with these 

values remain constant through the transformation, such that the areas of regions 1 and 2 are 

preserved.   

 

The specific steps are to first transform the cut-in, rated, and cut-out speeds of the real non-

Gaussian wind process to equivalent values having the same fractile in a Gaussian process, 

compute the means and standard deviations of regions 1 and 2 using Equations 3.1 and 3.2, and 

then transform the resulting Gaussian means back to the real non-Gaussian process. Details of the 

calculation are included in Example 3.   
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3.3      Examples 

 

Four examples are presented to demonstrate the effectiveness of the new method.  Most of the 

verification cases are based on direct simulation of the OC3-Hywind numerical model, which is 

commonly used in academic research. The first example demonstrates the efficiency of the forward 

and inverse transformations in the OC3-Hywind and on field-measured performance of a Vestas 

V90 3MW turbine; the second example demonstrates the effect of turbulence intensity on the 

transformation of the power curve; the third example demonstrates the relative importance of 

including the higher statistical moments of the wind process in the transformation, as well as the 

forth example shows the cumulative effect of including the statistical moments throughout the 

estimation of total AEP using historical observations of wind speeds.   

 

3.3.1     Numerical Simulation Methodology 

 

Time domain simulations are used to benchmark transformation results in each of the examples. 

These simulations are performed by generating numerical representations of the environmental 

conditions and then computing the dynamic response and instantaneous power output of the 

OC3Hywind turbine using an in-house time-domain numerical simulation tool Loose (Sweetman 

and Wang, 2011).  The details of the simulation methodology and the OC3 Hywind numerical 

model are summarized below. 
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3.3.1.1     Simulations of Environmental Conditions 

 

Wind time-histories are simulated using the NREL software package TurbSim, which uses a 

Fourier transform and coherence functions to simulate speed time histories.  The output of 

TurbSim is a matrix of 3-dimensional wind speeds representing discrete points on a two-

dimensional vertical rectangular grid (Jonkman, 2009).  Wind speeds generated by TurbSim as a 

sum of sinusoids, which conforms to the central limit theorem and results in the simulated winds 

being a Gaussian process.  Example 2 includes a transformation of the Gaussian wind field time-

history into a non-Gaussian process using the Hermite transformation. 

 

Wind forces are computed using the NREL subroutine AeroDyn, which uses blade-element theory 

to compute forces on the moving blades directly from a time-history of the wind. AeroDyn includes 

a built-in blade pitch controller that automatically transitions between the torque-controlled and 

pitch-controlled operational modes (Moriarty and Hansen, 2005). Total forces and moments are 

summed over the length of the blades and applied to the rotor hub. 

 

Wind power is calculated directly as rotor torque times generator rotation speed: 𝑃 = 𝜂𝑇𝐺𝑒𝑛𝜔𝐺𝑒𝑛 .   

Electrical generator efficiency, 𝜂, is assumed to be 94.4% OC3-Hywind (Jonkman, et al, 2009). 

 

All simulations used in the examples include motion of the hull through the water; the simulations 

used in the AEP prediction section of example 3 also include the effects of ocean waves.  Ocean 

waves are represented as a time-history of an irregular sea state, which is simulated by summation 

of sinusoidal wave components (e.g., Jefferys, E. R., 1987). The water surface elevation is:  
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𝜁 =  ∑√2𝑆(𝜔𝑗)𝛥𝜔 𝑠𝑖𝑛(𝜔𝑗𝑡 + 𝜑) 

𝑁

𝑗=1

                                         (3.22) 

 

where 𝑆(𝜔𝑗) is the ordinate of the wave spectrum computed at 𝜔𝑗;  𝛥𝜔 is width of the wave 

frequency band; 𝜑 is a random phase angle drawn from a uniform distribution between zero and 

2𝜋, and the total number of frequencies, 𝑁, varies with sea state and has a minimum number of 

1800 for the 13m/s wind condition. 

 

The JONSWAP wave spectrum (Hasselmann, et al., 1973) is used to compute the spectral offset: 

 

𝑆(𝜔) =  𝛼
𝑔2

𝜔5
𝑒
−
5
4( 

𝜔
𝜔𝑃

 )
−4

𝛾𝑒
−0.5 ( 

𝜔−𝜔𝑃
𝜎𝜔𝑃

 )
2

                             (3.23) 

                               

Where,  𝛼 = 5.061(
𝜔𝑃

2𝜋
 )
4
𝐻𝑠
2(1 − 0.287 𝑙𝑜𝑔 𝑙𝑜𝑔 𝛾 ) ; peak enhancement coefficient 𝛾  is set to 

3.3; 𝐻𝑠 is the significant wave height, and  𝜔𝑃 =
1

𝑇𝑝
  is the peak frequency. 

 

The significant wave height 𝐻𝑠 and peak period 𝑇𝑝 are computed for a fully arisen sea assuming 

the Pierson-Moskowitz spectrum (e.g., Holthuijsen, 2010). 

 

𝐻𝑠 =
0.21𝑢19.5

2

𝑔
                                                         (3.24) 

 

𝑇𝑝 =
7.14𝑢19.5

𝑔
                                                         (3.25) 
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Where, 𝑢19.5 is the wind speed at the reference height, estimated by applying the power law to a 

reference height of 19.5 m. 

 

Hydrodynamic forces are computed by using strip theory to apply Morison’s equation over the 

submerged length of the hull.  The water particle velocity relative to hull motion is  (𝑢 − 𝑥)̇ and 

acceleration is (�̇� − 𝑥) ̈  , where x is the horizontal offset of an individual strip and 𝑢 and �̇� are 

computed using first order wave theory.  The force on each strip is computed as:   

 

𝐹𝑤 = 𝜌𝐶𝑎𝑉(�̇� − �̈�) +
1

2
𝜌𝐶𝑑𝐴(𝑢 − �̇�)|𝑢 − �̇�|                            (3.26) 

 

where, 𝜌 is the mass-density of water; 𝐶𝑎 = 1.0 is the inertia coefficient, and 𝐶𝑑 =  0.6 is the drag 

coefficient. 

 

3.3.1.2     OC3 Hywind 5WM Wind Turbine Model 

 

The OC3-Hywind numerical model developed by the National Renewable Energy Laboratory 

(Jonkman, et al., 2009) is commonly used in academic research and is used throughout the 

examples.   
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Rotor, Hub diameter 126 m, 3 m 

Hub height 90 m 

Wind speed cut-in, rated, cut-out  3 m/s, 11.4 m/s, 25 m/s 

Rotor speed cut-in, rated  6.9 rpm, 12.1 rpm 

Generator electrical Efficiency 94.4% 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

Tower mass 347,460 kg 

Initial CM 85.6 m 

Elevation to tower top 87.6 m 

Platform diameter above taper 6.5 m 

Platform diameter below taper 9.4 m 

Platform draft 120 m 

       

Table 3.1: OC3-Hywind 5MW Wind Turbine Parameters for power estimation 

 

The power coefficient 𝑘1  in the torque-controlled region is approximately 0.0034, which is 

computed as a least-squares fit of the power curve specified with the OC3 model (Jonkman, et al., 

2009), using data points at wind speeds of 5 m/s though 11m/s in 1 m/s intervals.  The curve fit is 

excellent over this range, with coefficient of determination  𝑅2 = 0.9997.  

 

3.3.1.3     Determination of Coefficients and Parameters 

 

The transformation method relies on three parameters to estimate the expected power and the 

standard deviation of the power: 𝑘1, 𝑘2 and 𝑥.  Coefficient 𝑘1can be extracted from the rising part 

of the turbulence-free power curve. A single value of 𝑘1 = 0.0034 𝑁𝑠2/𝑚2 
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 has been extracted from the power curve specified with the OC3 model. This value is estimated 

from the rising part of the curve using a least-squares fit at wind speeds between 5 m/s and 11m/s 

in 1 m/s intervals.  The curve fit is excellent over this range, with coefficient of determination  

𝑅2 = 0.9997. This value of 𝑘1 for the OC3 − Hywind is used throughout the examples. A series 

of  𝑘1 can be extracted from thrust coefficient curve (Figure 3.3 (b)) specified with the Vestas V90 

model using 𝑘1 = 0.25(𝐶𝑇 + 𝐶𝑇√1− 𝐶𝑇)𝜌𝜋𝑅
2. The 𝑘1 values of Vestas V90 models are 0.0019, 

0.0023, 0.0023, 0.0023, 0.0023, 0.0022, 0.0020, 0.0019, 0.0017, 0.0014, 0.0014 𝑁𝑠2/𝑚2 

 according to wind speed bars from 5 𝑚/𝑠 to 15 𝑚/𝑠 with 1 m/s increasement. 

 

Determination of parameters 𝑘2  and x requires results from numerical simulation or field 

measurements. 𝑘2 and x are not available for Vestas V90 model because the wind power standard 

deviation data is not available.  Figure 3.2 shows results from direct simulations of two different 

wind turbine configurations.  Both configurations are for the OC3-Hywind rotor and generator 

assembly: results shown as “Fixed” neglect all motion of the tower; results shown as “Floating” 

are for the complete floating OC3-Hywind numerical model.   The sloping lines on the figure result 

from linear regression of numerical simulations of various wind speed (21m/s to 25 m/s) and 

standard deviation (IEC NTM A, B, and C). The slopes of these lines are the coefficient 𝑥 . The 

slope are 0.833 for the fixed configuration and 0.863 for the floating configuration. The average 

and regression values of parameter x are found to be 0.795 for the fixed configuration and 0.864 

for the floating configuration. 
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Figure:3.2    Std(P)/E(P) of wind power with Ti of wind speed 

 

3.3.2     Example 1: Forward and Inverse Transformation of Power Curves 

 

The new statistical transformation is shown to be effective at forward transformation from an ideal 

power curve to a practical power curve, for both the Hywind numerical model and the measured 

field data for the Vestas field data. The inverse transformation is then used to generate an ideal 

turbulence-free power curve from realistic simulated wind data.  Tower motions are neglected 

throughout the example.  

 

Realistic wind time-histories are generated using the IEC Class B Turbulence Model, with mean 

wind speeds varying from 5 to 25 m/s in 1 m/s intervals. Each case shown represents ten 10-minute 

wind speed samples with turbulence intensities as shown in Table 3.2. 
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Wind speed (m/s) 5 6 7 8 9 10 11 12 13 14 

Turbulence Intensity 0.26 0.24 0.22 0.20 0.19 0.18 0.18 0.17 0.17 0.16 

Wind speed (m/s) 15 16 17 18 19 20 21 22 23 24 

Turbulence Intensity 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 

 

 3.2: Comparison of power means for Gaussian model 

 

Figure 3.3 is used to demonstrate the effectiveness of new transformation method.  Fig.2a 

demonstrates application to the OC3-Hywind model subject to IEC NTM turbulence Model B; 

Fig.2b demonstrates application to the Vestas V90 3MW turbine subject to IEC NTM turbulence 

Model A.  The ideal zero-turbulence power curve on each subfigure is shown as a black dashed 

line; the practical power curve estimated from the ideal power curve using the new transformation 

is shown as a red line, and the thrust coefficient is shown as a blue dashed line.  The black line on 

Figure 3.3(a) represents the best estimate of the practical power curve for the OC3-Hywind as 

computed using direct simulation.  The practical power curve computed using the new 

transformation agrees well with the best estimate of the practical power curve. The black line on 

Figure 3.3(b) represents the practical power curve computed by direct field measurement. The 

practical power curve computed using the new transformation agrees well with the practical power 

curve resulting from direct simulation.   
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(a) OC3-Hywind 5MW 

 

(b) Vestas V90 3MW 

 

Figure 3.3: Effectiveness of the new transformation method 

 

The second part of the example uses the expected power as computed by direct simulation (Figure 

3.3(a)) as being equivalent to a measured power output to demonstrate the inverse transformation. 

Table 3.3 compares values of the 𝑃(𝑢)resulting from the inverse transformation (Equation 3.22) 
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using turbulence intensities from Table 3.2 for each bar. The ideal power curve resulting from the 

inverse transformation is substantially identical to the original power used in the simulations.  

Small differences are likely to result from the finite duration of simulations, the OC3-Hywind 

power curve possibly not reflecting the true simulated performance of the OC3 numerical model, 

and the potential for small errors in scaling the data from the published OC3 figure. 

 

Wind speed [m/s] 5 6 7 8 9 10 11 

𝐸(𝑃)  [MW] 0.48 0.85 1.33 2.00 2.63 3.43 4.07 

Turbulence Intensity 0.26 0.24 0.22 0.20 0.19 0.18 0.18 

𝑃(𝑢) [MW] from 

original power curve 

0.39 0.72 1.18 1.77 2.53 3.43 4.55 

P(u) [MW] from  

Transformation 

0.34 0.64 1.14 1.80 2.45 3.47 4.77 

𝑘1
′
  [10−3 𝑁𝑠2/𝑚2] 2.7 3 3.3 3.5 3.4 3.5 3.6 

 

Table 3.3: Inverse transformation of power curve 

 

Inverting the transformation result has been confirmed to return the average 𝑘1
′ = 0.0033 are 

close to original value of 𝑘1 = 0.0034 used in the forward transformation. 
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3.3.3     Example 2: The Influence of Turbulence Intensity on Power Curves  

 

The new statistical transformation is shown to be effective at predicting the practical power curve 

and standard deviation of power for three constant values of turbulence intensity by comparing the 

expected power and the standard deviation of power computed by the new transformation with 

equivalent values computed by direct simulation.  Comparisons are presented for turbulence 

intensities of 0.1, 0.2, and 0.3, with mean wind speeds varying from 5 to 13 m/s in 1 m/s intervals.  

Each simulation case represents ten 10-min wind speed realizations.   

 

The transformation method relies on three parameters to estimate the expected power and the 

standard deviation of the power: 𝑘1, 𝑘2 and 𝑥.  A single value of 𝑘1  computed directly from the 

zero-turbulence power curve is used to compute the expected power for all wind speeds and to 

compute the standard deviation of power for wind speeds below the rated speed.  Parameters 𝑥 

and 𝑘2 are needed to compute the standard deviation of power for cases with wind speeds above 

the rated speed.  Determination of 𝑥  requires results from numerical simulation or field 

measurements.  The single value of 𝑥 = 1.353 was computed using a single simulation with   𝜇 =

13 and 𝑇𝐼 = 0.1,   which is then used to represent turbine performance in all conditions.  A 

unique value of 𝑘2 is computed for each wind speed using the specified turbulence intensity and 

this single value of 𝑥. 

 

Figure 3.4 shows that the transformation method effectively predicts the effect of turbulence on 

the manufacturer's power curve.  Expected output power, 𝐸(𝑃) , is computed by the new 

transformation (red line) and by direct numerical simulation (black line). The error bars show the 
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95% confidence interval computed from the standard deviation of the 𝐸(𝑃)  for each wind 

condition.  The blue dashed line shows the ideal manufacturer’s power curve, which represents a 

zero-turbulence condition.  

 

A formal hypothesis test equivalent to that used in Example 1 is performed to assess the 

effectiveness of the method.  The null hypothesis cannot be rejected for any of the mean wind 

speeds shown on Figure 3.4, with each passing the Student’s t test at a significant level of 0.05. 

The average computed P-value for the Student’s t test for TI of 0.1, 0.2, and 0.3 are 0.52, 0.77, and 

0.79 respectively. 

 

 

(a) TI=0.1 

Figure 3.4: Comparison of expected power for TI of 0.1, 0.2, and 0.3 
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(b) TI=0.2 

 

 

(c) TI=0.3 

Figure 3.4 continued. 

 

Figure 3.5 shows that the transformation effectively predicts the effect of turbulence on the 

standard deviation of power.  The red line shows the standard deviation of output power is 

computed by the new transformation and the black line shows equivalent results computed by 
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direct numerical simulation. The error bars show the 95% confidence interval computed from the 

standard deviation of the 10 computed standard deviations of power for each wind condition. 

 

A similar hypothesis test is applied to the standard deviation of the power, 𝑆𝑡𝑑(𝑃).  The mean and 

standard deviation of 𝑆𝑡𝑑(𝑃) are represented by the mean and standard deviation of 10 values of 

𝑆𝑡𝑑(𝑃) resulting from direct simulation.  The null hypothesis is rejected at the 5% level for only 

one of the 27 cases shown on Figure 3.4 (𝑇𝐼 = 0.1, 𝜇 = 12, P-value = 0.04).  The average of the 9 

P-values computed for each TI are 0.39, 0.79, and 0.54.  

 

 

(a) TI=0.1 

Figure 3.5: Comparison of standard deviation of power for TI of 0.1, 0.2, and 0.3 
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(b) TI=0.2 

 

 

(c) TI=0.3 

Figure 3.5 continued. 
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3.3.4     Example 3: The Influence of Non-Gaussian Winds 

 

Wind processes are commonly assumed to be Gaussian, but field measurements indicate natural 

winds are a weakly non-Gaussian process.  This example first shows the relative importance of 

non-Gaussian winds on expected power and then goes on to quantify the cumulative annualized 

effect.   The skewness and kurtosis of wind time-histories are not broadly available, so wind data 

measured at a single near-shore location and shown in Table 3.4 are assumed to be representative 

(Dai and Sweetman, 2020). 

 

Wind speed (m/s) 4 5 6 7 8 9 10 11 12 13 

Skewness 𝛼3 0.33 0.45 0.65 0.81 0.80 0.61 0.33 0.07 -0.24 -0.42 

Kurtosis 𝛼4 2.87 3.19 3.59 3.75 3.39 2.77 2.29 2.08 2.11 2.19 

 

Table 3.4: Skewness and kurtosis of measured nearshore winds 

 

The Hermite moment model is used in this example to transform the cut-in, rated, and cut-out 

speeds of the real non-Gaussian wind process to equivalent values having the same fractile in a 

Gaussian process.  A non-Gaussian softening process having 𝛼4 ≥ 𝛼3
2 + 1 𝑢′ can be computed 

from a Gaussian process 𝑢 using the Hermite polynomial (Winterstein,1988): 

 

𝑢′ = 𝐻(𝑢) = 𝜅[𝑢 + ℎ3(𝑢
2 − 1) + ℎ4(𝑢

3 − 3𝑢)]                            (3.27) 
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The means and standard deviations of regions 1 and 2 of the Gaussian distribution resulting from 

the transformation are then computed using Equations 3.1 and 3.2.   These Gaussian values of 

mean and standard deviation are then transformed back to the real non-Gaussian process using the 

inverse Hermite transformation of a hardening response process: 

 

𝑢 = 𝐻−1(𝑢′) = 𝑢′ − ℎ3(𝑢
′2 − 1) − ℎ4(𝑢

′3 − 3𝑢′)                        (3.28) 
 

where  ℎ3 = 𝛼3/6 , ℎ4 =
𝛼4−3

24
 are computed from the values in Table 3.4, and 𝜅 =

(1 + 2ℎ3
2 + 6ℎ4

2)−1/2 is a scale factor that ensures 𝑢′ has unit variance. 

 

Figure 3.6 shows the effect of including non-Gaussian effects on each of the wind speeds in 

Example 2.  The Gaussian transformation results shown as the blue bars are the same as in Figure 

3.4 with TI = 0.2.  The results show that the non-Gaussian model predicts greater power than the 

Gaussian for positive skewness and kurtosis greater than three, and the Gaussian predicts greater 

power for negative skewness and kurtosis less than three.  Cases with relatively greater gusts have 

disproportionately higher power because of the nonlinear relationship between wind speed and 

power, and relatively greater gusts are associated with higher values of skewness and kurtoses.  
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 Figure 3.6: Comparison of expected power for Gaussian and non-Gaussian models 

 

Figure 3.6 appears to indicate that the difference between the Gaussian and non-Gaussian models 

are relatively small and non-systematic, but these results can be important when summed over an 

entire year.  

 

3.3.5    Example 4: The Estimation of AEP 

 

The annualized effect is demonstrated by computing the expected AEP for a single location 300 

miles northeast of Honolulu, Hawaii, which is National Oceanic and Atmospheric Administration 

(NOAA) buoy Station 51000. Figure 3.7 shows power curve of OC3-Hywind turbine and a 

histogram of measured 10-minute mean wind speeds for one year beginning January 1, 2018; the 

annual mean wind speed for 2018 is 9.71 m/s, slightly below the rated speed for OC3 Hywind. 
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Figure 3.7: Histogram of annual 10-min average wind speeds (NOAA station 51000) and power 

curve of OC3-Hywind model 

 

Additional wind properties were applied to the measured NOAA buoy data.  The incoming wind 

speed at hub height is computed using the power law with exponent  𝑃 = 0.11  (Hsu, et al, 1994). 

The turbulence intensity is assigned decimal values of 0.0, 0.1 and 0.2 to compute the standard 

deviation for three distinct cases, and the higher moments are taken from Table 3.5.   

  

The total AEP is computed as the annual sum of the expected energy for each of the measured 10-

minute mean wind speeds, equivalent to the International Electrotechnical Commission (IEC) 

standard (IEC, 2005),  

 

Table 3.5 shows the annual energy production estimated for assumed turbulence intensities and 

assuming the wind to be a Gaussian vs a non-Gaussian process.  The results show that application 

of higher moments to compute the AEP shows the Gaussian model consistently over-predicts the 

non-Gaussian model. The percentage difference between non-Gaussian model and Gaussian model 

increases with increasing turbulence intensity, with percentage difference around 2% at TI = 0.2.  
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Turbulence intensity 0 0.1 0.2 

Gaussian AEP (GW) 27.40 26.91 25.89 

Change AEP due to TI (GW) N/A -0.49 -1.51 

Percentage Difference (%) N/A -1.79 -5.51 

Non-Gaussian AEP (GW) 27.40 26.64 25.56 

Change in AEP due to 𝛼3 and 𝛼4 N/A -0.27 -0.33 

Percentage Difference (%) N/A -1.00 -1.27 

 

Table 3.5: Effect of statistical moments on AEP   

 

The AEP is calculated based on energy output of single OC3-Hwyind wind turbine with different 

turbulence intensity using 𝐴𝐸𝑃 = ∑ 𝑃(𝑢𝑖)
𝑛
𝑖=1 𝐿(𝑢𝑖) 𝑇 where 𝑃(𝑢𝑖) is the power for wind speed 

bar 𝑢𝑖, 𝐿(𝑢𝑖) is the probability for wind speed bar 𝑢𝑖 , and one-year time 𝑇. 

 

Figure 3.8 shows histogram of annual measured 10-minute mean wind speeds and the estimated 

AEP per each wind speed bar. The APE is calculated based on simulation results and percentage 

of wind speed bar of raw data. 

 



 

77 

 

 

 

 

Figure: 3.8    AEP per wind speed bar and cumulative of AEP 

 

Probability 𝐿(𝑢𝑖) can also be calculated using Eqaution3.29 according to the three parameters 

Weibull distribution. 

 

𝐿(𝑢𝑖) = 𝐿(𝑢𝑖 , 𝜆, 𝑘, 𝑐) = 𝐹𝑤(𝑢𝑖 , 𝜆, 𝑘, 𝑐) − 𝐹𝑤(𝑢𝑖−1, 𝜆, 𝑘, 𝑐)                           (3.29) 

 

where 𝜆 is the scale parameter, 𝑘 is the shape parameter, and 𝑐 is location parameter. 

 

Table 3.6 shows the AEP estimated by four different methods: Transformation Direct, 

Transformation Weibull, Simulation Direct, and Simulation Weibull. The Transformation Direct 

method and Transformation Weibull method use proposed method to estimate 𝑃(𝑢𝑖), and use raw 

data or Weibull distribution to estimate 𝐿(𝑢𝑖) . Similarly, the Simulation Direct method and 

Simulation Weibull method use numerical simulation via Loose to estimate 𝑃(𝑢𝑖), and use raw 

data or Weibull distribution to estimate 𝐿(𝑢𝑖). Annual 10-min average wind speeds (NOAA station 
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51000) is fitted by Weibull distribution with scale parameter 𝜆 = 6.9022, shape parameter 𝑘 =

2.577, and location parameter 𝑐=4.126.  

 

Turbulence intensity 0 0.1 0.2 

Transformation Direct 27.40 26.91 25.89 

Transformation Weibull 26.65 25.88 25.04 

Simulation Direct 27.46 25.98 25.20 

Simulation Weibull 27.13 25.76 25.06 

 

Table 3.6:  AEP (GWh) estimation by different method  

 

The results in Table 3.6 shows that the proposed method is same accuracy with numerical 

simulation for AEP estimation, but more convenience to use. AEP estimated by Weibull 

distribution is smaller than raw data, but it would be also useful when the long-term wind speed 

data is not available. 

 

3.4     Conclusion 

 

A new method is developed to transform between a manufacturer’s power curve and a practical 

power curve using both turbulence intensity and higher moments. The transformation is based on 

replacing a single mean wind speed with a mean and a distribution about that mean.  Random 

process theory is used to derive equations that combine the wind distribution with the 

manufacturer’s power curve. Any mean wind speed generally has some contribution from each 
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region of the power curve; the total power for each mean wind speed is computed as the sum of 

the contributions of expected power from each region. 

 

The new method is shown to be effective at predicting the reduction in the power curve associated 

with high turbulence intensities.  Verification is by comparison of energy predicted using direct 

simulation with equivalent predictions based on the new transformation.  Results of an example 

show that application of a Gaussian-only wind model can overestimate AEP, but the non-Gaussian 

effects are significantly less than the influence of turbulence intensity.  These results show that the 

statistical moments of the wind process are necessary to accurately predict energy production; 

these moments generally require high-fidelity wind measurements at the proposed wind farm 

project location.  

 

The new method can be used to substantially reduce the lengthy direct simulation process that is 

commonly used to predict AEP as part of early project feasibility studies, and can be used to extract 

ideal turbulence-free power curves from measured field data from operating wind turbines.   
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4. IMPACT OF NON-GAUSSIAN WINDS ON BLADE FATIGUE LIFE OF  

 

FLOATING OFFSHORE WIND TURBINES 

 

 

4.1     Introduction and Background 

 

Floating offshore wind turbines (FOWTs), which are deployed in the natural ocean environment, 

work under a significant number of cyclic external loads. A typical wind turbine, during its 20-yr 

lifetime, may experience more than 108 cyclic loads, with an approximately 30-rpm rotation speed 

and 4,000-hr operation time per year (Manwell, et al, 2010). Capital expenditures for offshore 

wind developments are typically 1.5 to 2 times more than those for onshore developments 

(Watson, et al., 2005), and maintenance costs are likely to be 5 to 10 times higher than those for 

onshore (Van Bussel, & Zaaijer, 2001, March). Therefore, accurate estimation of fatigue damage 

is critically important in the offshore wind industry. 

 

Fatigue damage of FOWTs is the process in which an accumulation of damages is caused by a 

repeating environmental load of variable magnitude applied on FOWT structures. Once sufficient 

damage is accumulated, fatigue fracture will initiate and propagate through the plasticized regions. 

Fatigue damage calculations and fatigue life predictions of offshore wind turbines are quite 

complicated. 

 

Fatigue life of a medium-scale, horizontal-axis wind turbine system has been estimated using the 

well-known S-N damage equation, with load spectrum confirmed with at least 20 to 30 yr of 

operating life (Kong, et al, 2006). Reliability-based calibration of a design code for wind-turbine 
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rotor blades has been developed considering flapwise-bending fatigue failure (Ronold, et al, 2001). 

Hu used a 10-min mean wind speed and 10-min turbulence intensity based on long-term wind-

speed distribution to simulate a random wind field and analyze the fatigue reliability of composite 

wind-turbine blades considering wind-load uncertainty (Hu, et al, 2012). A stochastic approach 

has been employed to develop a computer code in order to simulate wind flow with randomness 

in its nature on the blade, with, subsequently, each load case being weighted by its rate of 

occurrence using Weibull wind-speed distribution (Shokrieh and Rafiee, 2006). 

 

Analysis of field measurement data of wind speed has found a different conclusion that natural 

short-term wind is not Gaussian distribution (Dai and Sweetman, 2020). Non-Gaussian wind-

inflow velocities to offshore wind turbines could potentially affect predicted power, load, torque, 

and blade fatigue life. This increased quantity of extreme events will cause alternating loads on 

the airfoil and on the main shaft in the form of torque fluctuations, which may cause additional 

fatigue damage (Mücke, et al., 2011). Schottler et al. (2017) simulated non-Gaussian and Gaussian 

wind inflow conditions in a wind tunnel and indicated that extreme loads in non-Gaussian wind 

inflow conditions occur much more frequently than those predicted by a typical Gaussian wind 

model. Gong and Chen (2017) investigated the extreme response of operational and parked wind 

turbines in non-Gaussian wind conditions. Obviously more extreme blade-root-edgewise 

responses and tower-fore-aft bending moments have been found for operational wind turbines in 

non-Gaussian wind inflows. Similar results of blade-root-flapwise-bending moments have been 

found for parked wind turbines. 
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This dissertation proposes a detailed methodology to evaluate the fatigue damage of FOWT blades 

including short-term numerical simulation and long-term wind-speed distribution. This 

dissertation also compares blade fatigue damage with the wind conditions of both Gaussian and 

non-Gaussian wind turbulence models. Short-term numerical simulations with different wind 

conditions were conducted by the in-house numerical simulation code Loose with a nonlinear 

beam blade solver (Tang and Sweetman, 2019). Non-Gaussian random wind fields were 

transformed from the corresponding Gaussian random wind fields by an in-house numerical code 

based on the Hermite moment model (Winterstein, 1988; Sweetman and Choi, 2010). 

 

Long-term wind speed distribution was investigated in order to identify the “hot spot” for fatigue 

analysis. Several distribution models were examined to fit two groups of long-term wind speed 

data from the buoy records of the National Oceanic and Atmospheric Administration (NOAA). 

The best-fitting distribution was then used to determine the probability of duration for FOWT 

operation at each mean wind-speed bar from cut-in speed to cut-out speed. Numerical simulations 

within each wind-speed bar calculated the wind load applied on the blades. Corresponding fatigue 

damage on the nodes distributed on the shell of blades was also identified. Fatigue damage 

matrices, including the damage values of every single node within each wind-speed bar, were then 

combined with long-term wind-speed distribution to figure out the annual total fatigue damage 

expectation on each node. The node of maximum fatigue damage value was identified as the hot 

spot on the blades where fatigue crack is highly possible to occur. Annual fatigue damage 

expectation on the hot spot was then used to predict the fatigue life of blades based on the 

Palmgren-Miner linear damage hypothesis. A flowchart of blade fatigue life estimation is shown 

in Figure 4.1. 
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Figure 4.1: Flowchart of blade fatigue life estimation 

 

The remaining portion of this chapter includes three sections. Section 2 explains the theory of 

random short-term wind simulation and the transformation method between Gaussian and non-

Gaussian wind processes. Additionally, long-term wind-speed distribution is discussed using 

NOAA buoy data. Aerodynamic wind load of blades during the short-term period and fatigue 

damage hot-spot identification based on the long-term period are also discussed. A case study 

including various design load cases (DLCs) is presented to demonstrate this new fatigue analysis 

method using a 5-MW National Renewable Energy Laboratory (NREL) wind turbine blade. The 

results of root-bending moment and blade fatigue damage are listed in Section 4. Finally, the 

discussion and conclusion are given in Section 5. 
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4.2     Theory 

 

4.2.1     Simulation of Random Wind Conditions 

 

Random wind conditions are simulated with a 10-min mean wind speed and turbulence intensity 

at the hub height of the wind turbine. Wind-speed data are generated by TurbSim, an NREL 

research software. Opposite from a physics-based model, TurbSim uses a statistical model to create 

three-dimensional wind-speed time series numerically. Different wind-speed time series are 

simulated at grid points of a two-dimensional vertical rectangular grid perpendicular to the 

incoming wind. (Jonkman and Buhl, 2012). 

 

The 10-min mean wind-speed data from the NOAA buoy database were measured by the wind-

speed anemometer on the buoy. The anemometer is installed on the top of the buoy, which is 

approximately 4 m above sea level. The incoming wind speed 𝑢2 at the hub height of the wind 

turbine is estimated based on wind speed 𝑢1 at anemometer height using the power law: 𝑢2 =

𝑢1 ( 
𝑧2

𝑧1
 )
𝑃
(Hsu, Meindl, and Gilhousen, 1994), where 𝑢2 is the wind speed at the hub height of the 

wind turbine, and 𝑧2 and 𝑢1 are the wind speed measured at height  𝑧1, which is the height at which 

the anemometer is installed on the buoy.  

 

Turbulence intensity is defined as the ratio of standard deviation of wind speed to corresponding 

mean of wind speed, as shown in Equation 4.1: 
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𝑇𝐼 =
𝜎𝑢
𝜇𝑢
                                                                   (4.1) 

 

Dynamic turbulence intensities of different turbulence models are available in TurbSim. 

Recommendation of turbulence intensity values are subject to the different DLCs defined in 

International Electrotechnical Commission (IEC) regulations. The IEC normal turbulence model 

(NTM) is the most common turbulence model, as shown in Equation 4.2: 

 

𝜎 = 𝐼𝑟𝑒𝑓(0.75𝜇 + 3.8) + 𝐼𝑟𝑒𝑓(0𝜇 + 1.4)   ,                              (4.2) 

 

where 𝜇 is the mean of the true wind speed, and 𝐼𝑟𝑒𝑓  is the expected value of hub-height 

turbulence intensity at a 10-min average wind speed of 15 m/s. IEC gives values for 𝐼𝑟𝑒𝑓 of 0.16, 

0.14, and 0.12 for NTM classes A, B, and C, respectively.   

 

Wind time histories are commonly simulated from wind-power spectra using techniques that 

conform to the central limit theorem such that the simulated wind speeds conform to a Gaussian 

distribution. The corresponding non-Gaussian wind-speed data were transferred using the Hermite 

moment model, which transfers data between Gaussian and non-Gaussian wind processes 

(Winterstein, 1988; Sweetman and Choi, 2010).   

 

An original wind-speed field file created by TurbSim recorded the time history of wind-speed data 

including horizontal wind velocity,  𝑢ℎ , horizontal angle, 𝜑, and vertical wind velocity,   𝑢𝑧. The 

two velocity components are combined into the total velocity vector, 𝑢,⃗⃗⃗⃗  with vertical angle 𝜃 using 

Equations 4.3 and 4.4: 
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| �⃗⃗� | = √𝑢ℎ
2 + 𝑢𝑧

2                                                                  (4.3) 

 

𝜃 = arctan ( 
𝑢𝑧
𝑢ℎ
 )                                                                  (4.4) 

 

The total velocity, �⃗⃗� , from TurbSim wind-field file satisfied Gaussian distribution. Hermite 

moment model transformation ℋ was then used to convert the modulus of total velocity,  𝑢, to its 

non-Gaussian corresponding vector, 𝑢′⃗⃗⃗⃗ : 

 

| 𝑢′⃗⃗⃗⃗  |  = ℋ( | �⃗⃗� | ) = 𝜅 [ | �⃗⃗� | + ℎ3(| �⃗⃗� |
2 − 1) + ℎ4(| �⃗⃗� |

3 − 3| �⃗⃗� |)]    ,              (4.5) 

                           

where 𝜅  is a scale factor, and coefficients ℎ3 = 𝛼3/6  and ℎ4 = (𝛼4 − 3)/24  are directly 

calculated from the given skewness and kurtosis of the non-Gaussian model.  

 

Non-Gaussian wind-velocity components 𝑢ℎ
′  and 𝑢𝑧

′  are calculated using the modulus of non-

Gaussian total wind-velocity vector 𝑢′⃗⃗⃗⃗  and vertical angle 𝜃  as 𝑢ℎ
′ = | 𝑢′⃗⃗⃗⃗  | sin 𝜃  and  𝑢𝑧

′ =

| 𝑢′⃗⃗⃗⃗  | cos 𝜃. The procedure of non-Gaussian random wind simulation is shown in Figure 4.2. 
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Figure 4.2: Transformation of non-Gaussian wind field 

 

The same procedures are applied on all the speed data in the original input files so that the original 

Gaussian wind field is transferred to the non-Gaussian wind field. Typical wind-speed time history 

generated by TurbSim and its corresponding non-Gaussian wind-speed time history are shown in 

Figure 4.3. 

 

 

Figure 4.3: Typical wind-speed time history of Gaussian and non-Gaussian wind 
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4.2.2     Fatigue Damage Estimation of the Blades 

 

Two common assumptions of blade structure are applied in this section. The first one is the 

isotropic beam assumption, in which deformations only happen in the longitudinal direction. The 

second assumption is that torsional deflection is neglected because of very high torsional stiffness. 

Transverse and shear stresses can be ignored under such simplification. The combined stresses can 

be calculated from normal stresses alone. The influence of transverse and shear stresses in off-axis 

loading of glass fiber composites can be found in other studies. 

 

The normal strain at a point (y, x) at a cross-sectional area is given by the simple beam theory: 

 

𝜀𝑥(𝑦, 𝑥) = −
𝑀1
𝐸𝐼1

𝑥 +
𝑀2

𝐸𝐼2
𝑦 +

𝑁

𝐸𝐴
     ,                                     (4.6) 

 

where 𝑀1  and 𝑀2  are the bending moments of local principle axes, 𝑁 is the axial force, 𝐸   is 

Young’s modulus, and 𝐸𝐼1, 𝐸𝐼2, and 𝐸𝐴 are the stiffnesses of the axes. 

 

Blade fatigue analysis based on normal strain and principle strain are investigated, and the results 

indicate that fatigue damage estimated based on principle strain is more accurate (Gao and 

Sweetman, 2019). For the strain tensor, the eigenvalues represent principal strains  𝜀𝑃 , and 

eigenvectors represent principal axes �⃗⃗�: 

 

𝐸 �⃗⃗� = 𝜀𝑃 �⃗⃗�                        ,                                         (4.7) 
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where strain tensor 𝐸 = [

𝜀11 𝜀12 𝜀13
𝜀21 𝜀22 𝜀23
𝜀31 𝜀32 𝜀33

] , and  �⃗⃗� is principal axes. 

 

The blade fatigue damage caused by random wind load can be estimated by the rainflow cycle–

counting method and the cumulative damage model. Rainflow cycle counting is performed on the 

time history of principle strain 𝜀𝑃 using a code implemented in MATLAB. This algorithm is based 

on ASTM International standards (ASTM, 2011). 

 

The number of cycles is solved by rainflow using the strain time histories of a single numerical 

simulation with time 𝑇𝑠 at a given wind speed. These results are arranged with mean strain 𝜀𝑚 and 

strain amplitude 𝜀𝑎  being stored in matrix 𝑀𝑖,𝑗. This matrix is then converted to annul cycle matrix 

𝑁𝑖,𝑗 by multiplying the factor corresponding to 1 yr. 

 

𝑁𝑖,𝑗 =
𝑀𝑖,𝑗

𝑇𝑠
 (60 ∙ 60 ∙ 24 ∙ 365)                                              (4.8) 

 

The hypothesis that fatigue damage accumulates linearly and independently for each cycle is 

widely accepted. The annual total damage of a single node on the shell of a blade can be estimated 

according to Miner’s rule (Nijssen, R. P. L., 2006): 

 

𝑑 =∑
𝑁𝑖,𝑗
𝑁𝑓,𝑖𝑗

𝑖,𝑗

            ,                                                        (4.9) 
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where 𝑁𝑓,𝑖𝑗 is a matrix with a number of cycles when failure occurs of the unique mean strain 

𝜀𝑚  and strain amplitude 𝜀𝑎 are appropriate to 𝑁𝑖,𝑗 . 

 

4.2.3     Long-Term Wind Speed Distribution Using Buoy Data 

 

The process of identifying the location of fatigue hot spot for an entire operation period is based 

on fatigue load estimation. The portion of each fatigue load component is determined by the 

distribution of wind speed. A virtual 5-MW offshore wind turbine is assumed to be deployed at 

two potential offshore wind-farm locations.  

 

The first case is based on meteorological wind-speed data from NOAA Station 44065, which is in 

the New York harbor 30 mi southwest of Manhattan. The second case is based on meteorology 

wind-speed data from NOAA Station 46006, which is 600 mi west of the California coast. These 

two locations are selected from a pool of NOAA stations based on the principle of annual mean 

wind appropriating a 5-MW offshore wind turbine.  

 

Weibull distribution is well-known to be used for the statistical analysis of long-term wind speed 

data (Shu, et al, 2014) and used on two NOAA buoy locations, are shown in Figure 4.4. 
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(a) Case 1 at NOAA Station 44065 

 

 

(b) Case 2 at NOAA Station 46006 

Figure 4.4: Distribution fitting of 10-min mean wind speed 

 

Figure 4.4 includes one-year wind- speed histograms and their corresponding Weibull distribution 

plots of two cases. According to the log likehood values given by distribution fitting toolbox, 

Weibull distribution is the best fit for annual 10-min mean wind-speed data. The probability 

density function of Weibull distribution is given in Equation 4.10 (Burton, etc., 2001): 
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𝑓𝑤(𝑢) =
𝑘

𝜆
 ( 
𝑢

𝜆
 )
𝑘−1

𝑒
−( 

𝑢
𝜆
 )
𝑘

                                                 (4.10) 

 

The cumulative distribution function of Weibull distribution is given in Equation 4.11: 

 

𝐹𝑤(𝑢) = 1 − 𝑒−( 
𝑢
𝜆 )

𝑘

              ,                                        (4.11) 

 

where scale parameter 𝜆 and shape parameter 𝑘 given by the distribution-fitting toolbox of Matlab 

are shown in Table 4.1. 

 

Parameters 𝝀   𝒌 

Case1 10.24 2.00 

Case2 11.40 2.31 

 

Table 4.1: Parameters of Weibull distribution for each case 

 

4.2.4     Fatigue Hot-Spot Identification and Fatigue Life Calculation 

 

Hot spots identified by the material failure theory are different during different wind conditions. 

Turbine faults, startups, shutdowns, and parked conditions are not considered in this work. 

According to fatigue DLC1.2 of IEC 61400-3, wind-speed conditions are divided into 11 bins from 

a 3-m/s cut-in speed to a 25-m/s cut-out speed. The critical wind-speed zone of fatigue damage 
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was within 11 bins. The probabilities of each wind-speed bin based on historical data from two 

buoys are listed in Table 4.2. 

 

Wind speed (m/s) 4-5 6-7 8-9 10-11 12-13 14-15 

Probability 𝑷𝒊 
Case1 0.149 0.167 0.158 0.132 0.099 0.067 

Case2 0.118 0.154 0.166 0.153 0.124 0.089 

Wind speed (m/s) 16-17 18-19 20-21 22-23 24-25  

Probability 𝑷𝒊 
Case1 0.042 0.024 0.012 0.005 0.003  

Case2 0.055 0.031 0.015 0.007 0.003  

 

Table 4.2: Probabilities of wind-speed bars 

 

One-year fatigue damages of nodes on blade shells are calculated based on the strain and stress at 

each node. These results are shown in damage matrix 𝑫𝒊  , an 80 × 23 matrix representing 23 

cross-sections along the blade and 80 nodes on the boundary of each cross-section, as shown in 

Figure 4.5. 
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Figure 4.5: Nodes on blade sections 

 

Combining the probabilities and damage matrix of each bin, the expectation matrix of blade fatigue 

damage during the whole operating period is calculated using Equation 4.12: 

 

[𝑫𝑬]80×23 =∑𝑃𝑖 [𝑫𝒊]80×23

𝑛

𝑖=1

              ,                               (4.12) 

 

where 𝑫𝑬 is the damage expectation matrix, 𝑃𝑖 is the probability of each wind-speed bar, and 𝑫𝒊 

is the damage matrix of each wind-speed bar. 

 

The node of maximum value in the expectation matrix of fatigue damage 𝑫𝑬 was identified as the 

hot spot on the blades where fatigue crack is highly possible to occur. 
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𝑑ℎ𝑜𝑡−𝑠𝑝𝑜𝑡 = max [

𝑑1,1 ⋯ 𝑑1,23
⋮ ⋱ ⋮

𝑑80,1 ⋯ 𝑑80,23

]

𝐸

                                        (4.13) 

 

Fatigue life prediction depends on the fatigue damage of most critical blade locations. The 

Palmgren-Miner linear damage hypothesis indicates that failure occurs at the location of the hot 

spot when cumulative fatigue damage 𝐷 equals 1 (Miner, 1945): 

 

𝐷 =∑𝑑ℎ𝑜𝑡−𝑠𝑝𝑜𝑡

𝑚

𝑖=1

= 1         ,                                          (4.14) 

 

where 𝑑𝑖 is the annual fatigue damage at the hot spot, and 𝑚 is the number of years until blade 

failure occurs. 

 

The annual fatigue damages of blades are assumed to be the same during the entire FOWT 

operational life, such that the fatigue life of wind blades is calculated based on the fatigue damages 

of the hot spots on the blades using Equation 4.15. The fatigue life defined in this chapter is the 

time when the first crack is generated, not the time at which the whole structure fails. 

 

𝑇𝑌 =
1

𝑑ℎ𝑜𝑡−𝑠𝑝𝑜𝑡
                                                        (4.15) 
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4.3      Case Study 

  

4.3.1      Numerical Modeling 

 

A case study is presented to demonstrate the method proposed using a 5-MW NREL wind-turbine 

model and its blade. This case study includes two series of DLCs: DLC 1.x with a Gaussian wind 

process and DLC 2.x with a non-Gaussian wind process. Each DLC series includes 11 wind-speed 

bars, which represent the whole wind-speed range of the wind turbine. The operational wind speed 

lasts from 3 to 25 m/s, which are the mean wind speeds of hub-height incoming wind speeds toward 

the blade swipe area.  

 

NTM is chosen for the wind simulation. This model consists of full-field, three-component 

stochastic winds and a wind profile with a vertical power law shear exponent of 0.14. Wind time 

histories used in these simulations are created using TurbSim. Turbulence intensity is set to be 

constant in each DLC based on field measurement data. 

 

A normal sea-state model is chosen for the wave simulation. Random and irregular sea states are 

modeled as a summation of sinusoidal wave components based on air wave theory. The amplitudes 

of wave components are determined by the Joint North Sea Wave Observation Project 

(JONSWAP) spectrum (Hasselmann, et al., 1973).  

 

𝑆(𝑤) =  𝛼
𝑔2

𝜔5
𝑒
−
5
4( 

𝜔
𝜔𝑃

 )
−4

𝛾𝑒
−0.5 ( 

𝜔−𝜔𝑃
𝜎𝜔𝑃

 )
2

        ,                           (4.16) 
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where 𝛼 = 5.061 (
𝜔𝑃

2𝜋
 )
4
𝐻𝑠
2(1 − 0.287 log 𝛾), peak enhance coefficient 𝛾 is 3.3, 𝐻𝑠 is significant 

wave height, 𝜔𝑃 is peak frequency, and 𝜔𝑃 =
1

𝑇𝑝
. 

 

The significant wave height and peak spectral period for both Gaussian and non-Gaussian model 

DLCs are calculated using Equation 4.17 and 4.18 based on the assumption of a fully developed 

sea state (Holthuijsen, 2010): 

 

𝐻𝑠 =
0.21𝑢19.5

2

𝑔
             ,                                            (4.17) 

 

𝑇𝑝 =
7.14𝑢19.5

𝑔
                    ,                                     (4.18) 

 

where 𝑢19.5 is the wind speed at a reference height of 19.5 m and is estimated by the power law 

based on hub-height wind speed. 

 

Wind forces are computed using the NREL subroutine AeroDyn (Jonkman, 2013), which uses 

blade-element theory to compute forces on the moving blades directly from a time history of the 

wind. A built-in blade pitch controller in the time domain simulator responds to the rotor speed 

and adjusts the pitch angle of each blade in order to maintain steady power output (Blake and 

Sweetman, 2014). 
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Wave forces are computed using the well-known Morison equation, modified to include motion 

of the hull through the water:  

 

𝐹𝑤 = 𝜌𝐶𝑚𝑉�̇� +
1

2
𝜌𝐶𝑑𝐴𝑢|𝑢|  ,                                           (4.19) 

 

where 𝐶𝑚 is the inertia coefficient, 𝐶𝑑 is the drag coefficient, and water particle velocity 𝑢 and 

acceleration �̇� are solved using first-order linear wave theory, which is also called air wave theory. 

 

The specifics of Gaussian wind model DLCs are listed in Table 4.3. The standard deviation values 

of DLC 1.x series are obtained from IEC NTM B. 
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DLC/ 

Gaussian 

Wind Wave 

Mean Std Significant Height Peak Period 

(m/s) (m/s) (m) (s) 

1.1 4 1.20 0.24 2.46 

1.2 6 1.41 0.55 3.69 

1.3 8 1.62 0.98 4.92 

1.4 10 1.83 1.53 6.15 

1.5 12 2.04 2.20 7.38 

1.6 14 2.25 3.00 8.62 

1.7 16 2.46 3.91 9.85 

1.8 18 2.67 4.95 11.08 

1.9 20 2.88 6.12 12.31 

1.10 22 3.09 7.40 13.54 

1.11 24 3.30 8.82 14.78 

 

Table 4.3: DLCs for Gaussian cases 

 

The series of DLCs with a non-Gaussian wind model are simulated in order to compare with 

previous simulation results. DLC 2.x series are designed with a lookup table of field measurements 

and are supposed to achieve more accurate results. The specifics of field observation data are listed 

in Table 4.4 (Dai and Sweetman, 2019). 

 

Wind speed  4 5 6 7 8 9 10 11 12 13 

Skewness 𝛼3 0.20 0.35 0.62 0.70 0.87 0.88 1.00 1.10 1.08 1.16 

Kurtosis 𝛼4 2.71 3.04 3.48 3.70 4.24 4.18 4.50 4.71 4.81 4.77 

 

Table 4.4: Skewness and kurtosis of measured near-shore winds 
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The specifics of non-Gaussian wind model DLCs are listed in Table 4.5. The skewness and kurtosis 

values of DLC 2.x series are obtained from field observation data using linear interpolation. 

 

DLC/ 

Non-Gaussian 

Wind Wave 

Mean Std Skewness Kurtosis 
Significant 

Height 

Peak 

Period 

(m/s) (m/s)   (m) (s) 

2.1 4 1.20 0.2 2.7 0.24 2.46 

2.2 6 1.41 0.6 3.4 0.55 3.69 

2.3 8 1.62 0.8 4.2 0.98 4.92 

2.4 10 1.83 1.0 4.5 1.53 6.15 

2.5 12 2.04 1.0 4.8 2.20 7.38 

2.6 14 2.25 1.1 4.7 3.00 8.62 

2.7 16 2.46 1.1 4.7 3.91 9.85 

2.8 18 2.67 1.1 4.7 4.95 11.08 

2.9 20 2.88 1.1 4.7 6.12 12.31 

2.10 22 3.09 1.1 4.7 7.40 13.54 

2.11 24 3.30 1.1 4.7 8.82 14.78 

 

Table 4.5: DLCs for non-Gaussian cases with dynamic coefficients 

 

A 5-MW wind turbine representing the NREL OC3-Hywind model (Jonkman, et. al, 2009) is 

selected in the example. This model is commonly used in academic research and is used for the 

example section of this chapter. The properties of the 5-MW OC3-Hywind wind turbine are shown 

in Table 4.6. 
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Rotor, hub diameter 126, 3 m 

Hub height 90 m 

Cut-in, rated, Cut-out wind speed 3, 11.4, 25 m/s 

Cut-in, rated rotor speed 6.9, 12.1 rpm 

Generator electrical efficiency 94.4% 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

Tower mass 347,460 kg 

Initial CM 85.6 m 

Elevation to tower top 87.6 m 

Platform diameter above taper 6.5 m 

Platform diameter below taper 9.4 m 

Platform draft 120 m 

Table 4.6: OC3-Hywind 5MW wind turbine parameters for fatigue analysis 

A 5-MW NREL turbine blade is used for the example, with a 61.5-m-long blade with a rated 

rotation speed of 12.1 rpm (Jonkman, et. al, 2009). The blade is discretized into 23 elements using 

the Loose code with a nonlinear beam blade solver. The stiffness-damping coefficient is set to 

0.003, and the time step is set to 0.005 (Tang and Sweetman, 2019). 

4.3.2      Results 

Short-term numerical simulations with different wind conditions are conducted by Loose with a 

nonlinear beam blade solver. The damage matrices, 𝐷𝑖 , of each DLC based on the numerical
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simulation results are normalized by the maximum fatigue damage within each DLC in order to 

identify the shift of the fatigue damage hot-spot. 

 

[𝑫𝒊]𝑁 =
[𝑫𝒊]

𝑚𝑎𝑥([𝑫𝒊])
                                                    (4.20) 

 

The normalized fatigue damage diagram of Gaussian wind model DLCs is shown in Figure 4.6. 

The normalized fatigue damage diagram of non-Gaussian wind model DLCs is similar to that of 

Gaussian DLCs. 

 

 

(a) Damage diagram of Gaussian wind model DLC 1.1 to 1.4 

Figure 4.6:  Damage diagram of Gaussian wind model DLCs 
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(b) Damage diagram of Gaussian wind model DLC 1.5 to 1.8 

 

(c) Damage diagram of Gaussian wind model DLC 1.9 to 1.11 

Figure 4.6 continued. 
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This damage diagram indicates that the initial hot spot occur at the section close to the root of the 

blade in the first several DLCs when then mean wind speeds are lower than rated. The hot spot 

then shift to the tip of the blade, and the fatigue damage increased as well. The movement of the 

hot spot ended when the wind speed went beyond the rated speed. The damage diagrams remain 

the same for the last several DLCs. 

 

The fatigue damage expectations of wind-speed bars in the Gaussian wind model are listed in 

Table 4.7. 

 

Wind speed (m/s) 4-5 6-7 8-9 10-11 12-13 14-15 

Damage 𝑫𝒊 

(10-4) 

Case1 0 7 51 250 364 494 

Case2 0 7 54 290 456 656 

Fatigue Life 𝑻𝒀  Case1 N/A N/A 1961 400 275 202 

(year) Case2 N/A N/A 1852 345 219 152 

Wind speed (m/s) 16-17 18-19 20-21 22-23 24-25 Total 

Damage 𝑫𝒊 

(10-4) 

Case1 339 371 335 220 270 2703 

Case2 444 479 419 308 270 3384 

Fatigue Life 𝑻𝒀  Case1 29 27 30 45 37 3.7 

(year) Case2 23 21 24 32 37 3.0 

 

Table 4.7: Adjusted hot-spot fatigue damage of Gaussian wind model 

 

The contribution of fatigue damage changed rapidly among different wind-speed bars. Wind speed 

below the rated wind speed (11.4 m/s) caused almost zero fatigue damage to the turbine blades. 

Fatigue damage increased dramatically once wind speed went beyond the rated speed. Although 
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the fatigue damage continued increasing with wind speed, the long-term wind-speed distribution 

indicates that the probability of duration continued decreasing for high wind speed. Combing these 

two consequences together, the fatigue analysis shows the majority of the total fatigue damage to 

have been contributed by wind-speed bars from 12 to 20 m/s, where both the fatigue damage and 

probability of duration were relatively large. 

 

The total fatigue damage of the Gaussian wind model is the summation of expectations— 0.270 

for Case 1 and 0.338 for Case 2, as shown in Figure 4.7. 

 

 

Figure 4.7: Total fatigue damage diagram of Gaussian wind model 
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The fatigue damage expectations of wind-speed bars in the non-Gaussian wind model are listed in 

Table 4.8. 

 

Wind speed  (m/s) 4-5 6-7 8-9 10-11 12-13 14-15 

Damage 𝑫𝒊 

(10-4) 

Case1 0 15 90 735 709 1466 

Case2 0 14 95 852 889 1947 

Fatigue Life 𝑻𝒀  Case1 N/A 667 111 14 14 7 

(year) Case2 N/A 714 105 12 11 5 

Wind speed (m/s) 16-17 18-19 20-21 22-23 24-25 Total 

Damage 𝑫𝒊 

(10-4) 

Case1 857 1199 802 588 843 7304 

Case2 1122 1549 1002 823 843 9135 

Fatigue Life 𝑻𝒀  Case1 12 8 13 17 12 1.4 

(year) Case2 9 6 10 12 12 1.1 

 

Table 4.8: Adjusted hot-spot fatigue damage of non-Gaussian wind model 

 

 

 

 

 

 

 

 

 

 



 

107 

 

 

 

The total fatigue damage of the non-Gaussian wind model is the summation of expectations—

0.730 for Case 1 and 0.913 for Case 2, as shown in Figure 4.8. 

 

 

Figure 4.8: Total fatigue damage diagram of non-Gaussian wind model 
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The summary of blade fatigue life prediction for the two cases of Gaussian wind model and non-

Gaussian wind model are listed in Table 4.9. 

 

 Case 1 Case 2 Difference Percentage difference 

Gaussian model 3.7 3.0 0.7 18.9% 

Non-Gaussian model 1.4 1.1 0.3 21.4% 

Difference  2.3 1.9   

Percentage difference 62.2% 63.3%   

 

Table 4.9: Summary of estimations of blade fatigue life (yr) 

 

The results indicate that long-term wind distribution at different locations averaged 0.5 yr, which 

is an approximate 20% difference from predicted fatigue life. The Gaussian wind model 

consistently overpredicted for around 1.1 yr, which is a 62% difference from predicted fatigue life. 

This result demonstrates that both factors are important to blade fatigue life and that cracks occur 

much earlier for wind turbines under non-Gaussian wind conditions. 

 

4.4     Conclusion 

 

This chapter proposes a new blade fatigue life estimation method that combines long-term wind-

speed distribution and short-term wind-field simulation. The analysis of long-term wind-speed 

distribution helps to identify the various contributions of fatigue damage from different wind 

speeds. A numerical transformation method is proposed, including both a Gaussian wind model 

and non-Gaussian wind model in short-term wind simulation. 
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A 5-MW NERL wind turbine and its blade were used for the case study, with both wind models 

at two offshore locations. Blade fatigue damage and fatigue life were calculated and analyzed. The 

results demonstrate that most fatigue damage was caused by wind speed above the rated speed (11 

to 20 m/s). Low wind speeds (4 to 11 m/s) caused almost zero fatigue damage, and high wind 

speeds (20+ m/s) caused less fatigue because of the small percentage of duration.  

 

Fatigue damage caused by non-Gaussian wind proved more significant than Gaussian wind, which 

aligns with other research results (e.g., Gong & Chen, 2014). Both kurtosis and skewness values 

are important to fatigue and vary among different wind-speed bars. This phenomenon 

demonstrates that the current mainstream method of fatigue prediction systematically underpredict 

the annual fatigue damage of FOWT blades. 
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5. SUMMARY 

 

 

5.1    Conclusion 

 

In this dissertation, a new approach on the statistical characteristics of natural wind is presented 

the improvements of power forecasting and blade fatigue estimation for FOWTs. The research 

hypothesis is well proven through this dissertation. The new methodology is developed with 

random process theory to predict wind-power output with much less computation time and the 

same accuracy as mainstream numerical simulations. A non-Gaussian process is applied in 

numerical analysis of a nonlinear dynamic system of structures to correctly represent its influence 

on wind power and fatigue damage. The overall methodology demonstrates that the natural wind 

is non-Gaussian and that this factor is not included in current FOWTs design considerations. In 

fact, the traditional Gaussian assumption of wind process underestimates blade damage, which 

cannot be neglected in wind-turbine design. 

 

In Chapter 2, the EOM of a cup rotor is investigated by relating the rotational motion of the cup 

rotor to aerodynamic force. Wind-speed measurements from indoor and outdoor experiments are 

used to determine the dynamic coefficients of the EOM. Further recalibration for the mean wind 

is proposed based on random process theory. Data from two 2-month field measurement programs 

on the Texas coast are used to assess the higher statistical moments of the wind process. The overall 

methodology is then applied to recover the time history and mean of the true wind speed from 

field-measured cup data. Different wind processes, such as sea breeze, land breeze, and bay breeze, 

are identified during statistical analysis of the field data. Measured coastal sea breezes in this area 
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are found to be non-Gaussian, as shown in Chapter 2. Other measured wind processes are shown 

in Appendix A. 

 

In Chapter 3, a new methodology of analytical expressions for expected power and standard 

deviation of power is derived based on random process theory. The resulting expressions explicitly 

include the effects of varying turbulence intensity and higher statistical moments, and they enable 

the performance of an operating wind turbine to be parameterized using a limited number of 

coefficients. Benchmarking direct simulation in irregular winds, including winds with various 

turbulence intensities and non-Gaussian wind, is applied to demonstrate the accuracy of the 

expected power and standard deviation of power predicted by this new method. 

 

In Chapter 4, a new methodology for estimating blade fatigue life is proposed, including long-term 

wind-speed distribution and short-term Gaussian and non-Gaussian wind simulations. Weibull 

distribution is applied for long-term distribution at two selected buoys to calculate the probabilities 

of wind DLCs. Gaussian and non-Gaussian distributions are applied for short-term winds to form 

each wind DLC. Numerical simulations based on the OC3-Hywind model with local winds PDF 

are used to identify fatigue hot spots on the blades. The impact of non-Gaussian wind on blade 

fatigue is analyzed by comparing the fatigue damage of Gaussian and non-Gaussian winds at hot 

spots. 
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5.2    Future Recommendations 

 

This dissertation presents a new non-Gaussian statistical wind model and its application to power 

forecasting and fatigue life estimation of compliant floating wind turbines. There are several 

possible developments for future work, as outlined below. 

 

1.    Field wind–measurement campaigns should be extended for longer periods to collect more 

wind-speed segments for statistical analysis. The current non-Gaussian wind model of high wind 

speed is not very accurate because of a limited amount of data. The statistical parameters of high-

wind-speed cases could be more accurate using additional raw data. 

 

2.    The EOM of rotors could be improved to better describe their aerodynamic response. A well-

designed experiment with high-tech equipment could obtain more accurate coefficients for the 

EOM. 

 

3.    The proposed a method could be used to develop a real-time offshore wind-power forecast 

system. This wind-power forecast system could be used to predict real-time wind-electricity price 

and may further be used as a financial tool for clean energy investment in the stock market. 

 

4.    Instruments installed on NOAA buoys could be improved to enable long-term, high-frequency 

onsite measurements. Future analysis on NOAA buoy data could help to obtain location-based 

non-Gaussian wind models. 
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5.    The power forecast method including the factors of wind and wave direction could better 

evaluate their influence on the power performance of FOWTs. The influence of wind direction has 

not been important to the OC3-Hywind model in previous work, but it may have significant 

influence for other FOWT models. 

 

6.   Another interesting topic around FOWTs is nacelle yaw control. Blade pitch control has proven 

to be significant for both power output and blade fatigue damage. The nacelle yaw control strategy 

which decide the response speed of a nacelle according to wind direction changes. An advanced 

yaw control strategy could improve the power performance of FOWTs. 
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APPENDIX   A 

 

FIELD MEASUREMENT CAMPAIGNS AND  

 

IDENTIFICATION OF SEA BREEZE AND LAND BREEZE 

 

A.1       Introduction 

 

Two field measurement campaigns were completed as part of this work to quantify the higher 

statistical moments of the natural wind because of unavailability of short-term measured wind time 

histories with high sampling rates. These two measurement campaigns represent relatively long 

deployments of a cup anemometer, taking place in March 2017 and February 2018. Two cup 

anemometer–based campaigns recorded wind speeds and directions for 3 months at a sampling 

rate of 1 Hz.  These wind speeds were measured at two coastal locations in Galveston, Texas, 

USA, as shown in Figure A.1.   

 

 

Figure A.1: Field campaign locations 
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The first campaign quantified short-term wind conditions with a primary interest in the statistics 

of winds blowing directly ashore from the Gulf of Mexico. The spring wind data were captured 

near Seawall Boulevard on Galveston Island (29°16'38.0"N, 94°48'40.4"W), approximately 250 

m from the Gulf of Mexico. The wind speed anemometer was deployed 10 m above the ground in 

conformance with the industry standard. 

 

The second campaign quantified wind conditions with a primary interest in winds blowing initially 

over land and then ashore directly from Galveston Bay. The wind data were collected on the 

campus of Texas A&M University at Galveston on Pelican Island (29°19'10.5"N, 94°49'02.2"W), 

approximately 4 km from a southern boundary of Galveston Bay and 5 km from the Gulf of 

Mexico. The fetch over Galveston Bay at this location is as much as 10 NM when wind is blowing 

from the north and 5 NM when wind is blowing from the northeast. The wind speed anemometer 

was installed on a mobile weather station in the middle of a roof 25 m above ground. The weather 

station was deployed more than 10 m away from the edge of the building to avoid turbulence flow 

at the edge area. Photos of the two field measurement campaigns are shown in Figure A.2. 
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Figure A.2: First (left) and second (right) field measurement campaigns 

 

A.2       Preliminary Analysis 

 

The long field-measured wind speed time histories are extensively processed after the field 

collection. The raw data are divided into segments of 10-min and then plotted in a three-

dimensional (3D) space formed by mean wind speed, standard deviation, and mean wind direction. 

The results of two campaigns are presented in Figure A.3. The plot of the first measurement 

campaign showed winds from the north (Land breeze) to have a significantly higher standard 

deviation than those from the south (Sea breeze). The plot of the second measurement campaign 

showed winds from the south (Sea breeze, overland) to have a significantly higher standard 

deviation than those from the north (Bay breeze). 
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(a) Data from campaign 1 

 

(b) Data from campaign 2 

 

Figure A.3: Standard deviation plotted as a function of mean and direction 

 

Wind speed data from the first and second campaigns are presented as monthly wind rose figures 

(Figure A.4). Atmospheric wind circulation was blown from two major directions: from water 
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surface and from land. Monthly wind roses of March 2017 and April 2017 indicated dominate 

wind blowing from the southeast (120° to 150°), with mean wind speeds of 5.14 m/s and 5.67 m/s. 

Monthly wind roses of February 2018, March 2018, and April 2018 indicated dominate wind 

blowing from the south (160° to 190°), with mean wind speeds of 4.13 m/s, 4.63 m/s, and 4.85 

m/s.  

 

 

                        (a)  March 2017                                            (b) April 2017 

 

                        (c)  February 2018                                          (d) March 2018 

Figure A.4: Monthly wind roses of raw data as measured at two locations 
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(e) April 2018 

Figure A.4 continued. 

 

A.3       Statistical Analysis  

 

The raw data from the field measurement campaigns of each year are processed using the 

numerical calibration method introduced previously. The post-processed data are then reorganized 

into sequences with 600 data points (10 min) each. Each sequence is checked by reverse 

arrangement test to identify stationarity. The z-value distribution of wind speed segments of the 

second campaign are shown in Figure A.5.  
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Figure A.5: Histogram of z-values based on data from campaign 2 

 

Considering the experiment location of field measurement campaign 1, the highest peak of the 

wind direction histogram at the southeast (145°) and the opposite lower peak at the northwest 

(340°) were chosen to identify the statistical characteristics of sea breeze and land breeze. Wind 

speed data located within the range of these peaks were counted, as shown in Figure A.6. 

 

 

Figure A.6: Histogram of wind direction data from campaign 1 
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Field measurement campaign 2 was carried on the Galveston campus of Texas A&M University, 

which is on the north side of Galveston Island. The highest peak of wind direction histogram at 

the south (170°) and the opposite two smaller peaks at the north (0°) were identified as Sea breeze 

(overland) and Bay breeze (Figure A.7). The Sea breeze (overland) is the reformed Sea breeze 

which originally blow from the Gulf of Mexico, but interrupted by the ground structures of 

Galveston Island. The Bay breeze is the transformed Land breeze which become smooth passing 

though the Trinity Bay and Galveston Bay.  

 

 

Figure A.7: Histogram of wind direction data from campaign 2 

 

The standard deviation of campaign 1 and 2 are represented in Figure A.8. Figures A.8 (a) show 

the wind speed standard deviation of Land breeze and Sea breeze. Figures A.8 (b) show the wind 

speed standard deviation of Sea breeze (overland) and Bay breeze. 
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(a) Campaign 1 

 

(b) Campaign 2 

Figure A.8: Standard deviation of field measurement campaigns 

 

The skewness of campaign 1 and 2 are represented in Figure A.9. Figures A.9 (a) show the wind 

speed skewness of Land breeze and Sea breeze. Figures A.9 (b) show the wind speed skewness of 

Sea breeze (overland) and Bay breeze. 
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(a) Campaign 1 

 

 

(b) Campaign 2 

Figure A.9: Skewness of field measurement campaigns 

 

The kurtosis of campaign 1 and 2 are represented in Figure A.10. Figures A.10 (a) show the wind 

speed kurtosis of Land breeze and Sea breeze. Figures A.10 (b) show the wind speed kurtosis of 

Sea breeze (overland) and Bay breeze. 
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(a) Campaign 1 

 

(b) Campaign 2 

Figure A.10: Kurtosis of field measurement campaigns 

 

Figures A.8 (a) indicate that the Land breeze is more irregular than Sea breeze because its standard 

deviation results are higher than sea breeze through all the wind speed bars. This phenomenon can 

be found at Figure A.3 according to the different slopes of standard deviation verse mean wind 
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speed. Figures A.9 (a) and A.10(a) shows that the skewness and kurtosis of Land breeze are also 

higher than Sea breeze.  

 

Figures A.8 (b) indicate that the Sea breeze (overland) is more irregular than Bay breeze because 

its standard deviation results are higher than sea breeze through all the wind speed bars. Figures 

A.9 (b) and A.10 (b) shows that the skewness and kurtosis of Sea breeze (overland) are also higher 

than Bay breeze.  

 

Statistical results of sea breeze and land breeze of campaign 1 are represented in Table A.1 and 

A.2. 

 

Wind speed Standard deviation Skewness Kurtosis 

4 0.77 0.20 2.71 

5 1.00 0.35 3.04 

6 1.37 0.62 3.48 

7 1.71 0.70 3.70 

8 2.08 0.87 4.24 

9 2.48 0.88 4.18 

10 2.99 1.00 4.50 

11 3.52 1.10 4.71 

12 3.82 1.08 4.81 

13 4.49 1.16 4.77 

 

Table A.1: Statistical parameters of sea breeze of campaign 1 (145°± 30°) 
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Wind speed Standard deviation Skewness Kurtosis 

4 1.11 0.49 3.28 

5 1.38 0.68 3.90 

6 1.94 0.79 4.14 

7 2.50 1.06 4.79 

8 3.39 1.27 5.23 

9 3.92 1.33 5.28 

10 4.80 1.34 5.06 

11 4.63 1.18 4.74 

12 6.33 1.39 4.76 

13 6.80 1.49 5.23 

 

Table A.2: Statistical parameters of land breeze of campaign 1 (340°± 30°) 

 

Statistical results of Bay breeze and Sea breeze (overland) of campaign 2 are represented in Table 

A.3 and A.4. 

 

Wind speed Standard deviation Skewness Kurtosis 

4 1.05 0.30 3.17 

5 1.22 0.51 3.57 

6 1.46 0.58 3.38 

7 2.03 0.72 3.84 

8 2.59 0.90 4.36 

9 3.12 0.98 4.36 

10 3.44 1.11 4.93 

11 3.99 1.22 5.36 

12 5.17 1.35 5.37 

13 5.69 1.44 5.99 

 

Table A.3: Statistical parameters of bay breeze of campaign 1 (0°± 30°) 
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Wind speed Standard deviation Skewness Kurtosis 

4 1.39 0.51 3.53 

5 1.71 0.75 4.11 

6 2.11 0.95 4.77 

7 2.55 1.08 5.12 

8 3.29 1.32 5.72 

9 3.71 1.36 5.95 

10 4.50 1.52 6.56 

11 5.31 1.54 6.21 

12 6.04 1.64 6.68 

13 7.01 1.57 6.59 

 

Table A.4: Statistical parameters of sea breeze (overland) of campaign 1 (170°± 30°) 

 

A.4     Summary 

 

Two field measurement campaigns include many components of near-shore wind process, in 

which Land breeze and Sea breeze are the two major components. These two components can be 

identified according to the distribution of wind directions. The analysis based on first campaign 

indicates that Land breeze is more irregular comparing with Sea breeze (higher standard deviation, 

skewness, and kurtosis, as shown in Figure A.7), as we expected. The analysis based on second 

campaign indicates that Sea breeze (overland) is more irregular comparing with Bay breeze (Figure 

A.9). This result shows the influence of ground structures to wind process. The winds approaching 

the measurement site pass over the urban area of Galveston Island, which has nearly flat 

topography and is predominantly residential. The typical building heights of this area is around 5 

meters, which is not original thought to be relevant to wind process above 10 m high. 
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