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ABSTRACT

Thermoelectric (TE) materials offer interconversion of thermal and electrical energy through

the presence of a heat gradient and thus constitute an attractive option for the recovery of waste

heat. Low conversion efficiency and high cost have been major limiting factors in the industrial

success of TE materials, and, therefore, a race toward practical materials with enhanced physical

properties has emerged to meet the increasing demands. The tetrahedrite-tennantite series is an

important family of copper natural ore mineral and also one of most widespread sulfosalts on the

earth. Very low lattice thermal conductivities, less than 0.5 W/m K, were observed in this system,

attributed to the unique crystal structure of the tetrahedrite Cu12Sb4S13. In these materials, half

of the Cu atoms occupy four-coordinate sites Cu-I and half occupy three-coordinate sites Cu-II.

Due to the an-harmonic force introduced by the Sb lone pairs, the equivalent isotropic atomic

displacement parameter for the Cu-II atoms is found to be very large, an indication that the Cu-II

atoms vibrate with low energy in the stiff framework. Thus, they may strongly interact with heat-

carrying phonons similar to other caged TE compounds, e.g. skutterudites and clathrates.

In this work, the origin of the intrinsic low thermal conductivity and electronic behavior is

investigated by both theoretical and experimental NMR studies. The effects of additional atom

substitution on phase transition and magnetic properties of tetrahedrite are studied with the conclu-

sion that electronic and magnetic characteristics of this compound are not as sensitive to impurities

as is typically the case for TE materials. We use NMR technique as a flexible tool to investigate

chemical structures and determine symmetries, atomic motion, along with hyperfine interactions.

We also applied NMR technique to better understand the anharmonic phonon behavior of undoped

Cu12Sb4S13.
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We found spin-lattice relaxation rates (1/T1) are dominated by a quadrupolar process indicating

anharmonic vibrational dynamics both above and below Tc. We used a quasiharmonic approxima-

tion for localized anharmonic oscillators to analyze the impact of Cu rattling. The results demon-

strate that Cu-atom rattling dynamics extend unimpeded in the distorted structural configuration

below Tc and provide a direct measure of the anharmonic potential well.

We further report 63Cu NMR measurements for the Cu-rich phase of Cu12+xSb4S13(x≤2) and

compared to Cu12Sb4S13. We identify the NMR signatures of phase segregation into Cu-poor (x

≈ 0) and Cu-rich (x ≈ 2) phases, with the metal-insulator transition observed in Cu12Sb4S13 sup-

pressed in the Cu-rich phase. Based on NMR T1 and T2 measurements, the results demonstrate

Cu-ion hopping below room temperature with an activation energy of ∼150 meV for the Cu-rich

phase, consistent with superionic behavior. The NMR results also demonstrate the effects of Cu-ion

mobility in the Cu12S4S13 phase, but with a larger activation barrier. We identify a small difference

in NMR Knight shift for the metallic phase of Cu12Sb4S13 compared to the Cu-rich phase, and

when compared to density functional theory calculations, the results indicate a mix of hyperfine

contributions to the metallic shift.

We carried out material characterization as well as 63Cu NMR measurement of vari-

ous substituted tetrahedrites including Cu10.6Zn0.5Ni0.9Sb4S13, Cu10ZnNiSb4S13, Cu10Ni2Sb4S13,

Cu10Zn2Sb4S13, Cu11MnSb4S13, Cu10Mn2Sb4S13, and Cu12Sb4–xTexS13 compositions. DFT calcu-

lations were also used to model chemical shifts and explore changes in partial DOS for analyzing

the results. By modeling the spectra of Zn and Ni substituted materials we found information

about the changes in symmetry and electronic behavior in these materials. We observed that all

substituted materials have similar chemical shift for the Cu-I site which indicates distinct behavior

from undoped Cu12Sb4S13. We discussed the results in terms of random local distortions. Lack of

Knight shift for most of the substituted tetrahedrites observed which indicates the importance of

native defects or generation of a pseudo gap structure.

We observed that most of the lineshapes exhibit magnetic broadening at low temperatures.

Magnetic moment analysis based on the NMR lineshapes agrees with the previously proposed
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local moment for Ni substitution in low concentrations. On the other hand, Ni2 spectra analysis

indicates more strongly interacting moments with a distinct electronic behavior. We also found that

rattling is the main effect controlling the scattering of phonons in Zn-Ni substituted materials and

this was confirmed by largest rattling behavior observed in Zn, Ni co-doped sample. Our results

indicate that this is not simply tied to expansion of lattice. A lack of Cu-ionic motion was observed

in all substituted materials except in Cu12Sb3TeS13, and the MST is suppressed in almost all of the

doped materials.
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1. INTRODUCTION

1.1 Thermoelectric Generators

Based on the Energy Information Administration of the Department of Energy (DOE), the

total yearly energy world electric power production in 2008 was around 2 × 10000TWh. This

number is predicated to be raised to around 3 × 10000 TWh by 2030. From this global energy

consumption, the U.S. forecasted to use about 5300 TWh. We are depending on fossil fuel for

a majority of the energy consumption and the demand is still rising rapidly. On the other hand,

the unbalanced distribution of resources geographically centralizes energy supplies in a very low

number of regions, some of them politically unstable. Moreover, ejection of greenhouse gases

from burning fossil fuels has been a severe problem for decades. In exchange, the climate change

has been exacerbated due to our growing fuel utilization. Therefore, the demand for an alternative

source of energy is a necessity. Demand for clean and renewable energy sources is increasing

everyday. We need a new source of energy that can be obtained cheaply. To solve this problem,

there have been several proposals. In some specific areas, wind as well as hydropower as a source

of power has been put into great use. Even though nuclear energy has always been suggested as

a future source of energy and achieved so much, the few catastrophes resulted in public concern

with this form of energy resource. On the other hand, significant efforts need to be made to develop

renewable energy technologies. Solar energy has the ultimate potential of providing 120 000 TW

globally. The solar radiation intercepted in an hour by the earth, therefore, equals to the world

power needs for a year. In practice, however, perhaps as much as 600 TW of solar energy can be

converted to electricity. This leads us to look for new methods to convert heat to electric form of

energy.
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Figure 1.1: Sketch demonstrating the underlying principle of the Seebeck effect. The temperature
gradient across the TE material causes charge carriers on the warm side to move with higher
velocities in average.

The thermoelectric effect is based on the Seebeck effect discovered by Thomas Seebeck[11]

in 1823 and its reverse effect ( by Jean C. A Peltier) in 1834 [12]. As schematically shown in

figure 1.1, the Seebeck effect can generate electricity through a temperature gradient and thus has

the potential use for waste heat recovery and power generation. This potential difference can be

written in the following form:

∆V = S∆T (1.1)

where S is the Seebeck coefficient. Normally, this Seebeck coefficient is a positive (negative)

number in materials with hole (electron) charge carriers. For instance, in the p-type semiconduc-

tors, the Seebeck coefficient is a positive number since holes are the primary carriers.

When discussing TE behavior of materials, it is often convenient to refer to the product of Z

(figure of merit) and T since the material properties that comprise Z are temperature dependent.

The efficiency of thermoelectric materials is normally parametrized by the figure of merit, ZT ,

defined as:

ZT =
S2σT

κ
(1.2)
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where σ is the electrical conductivity, and κ the thermal conductivity. The thermal conductivity

is κ = κph + κel, where κph and κel are the phonon and electron contributions, respectively. In

addition, ZT is explicitly used in the calculation of a material’s thermoelectric conversion efficiency

(η) as shown as follows.

The efficiency of a TE material is defined by the ratio η = W
QH

, where W is the work delivered

to the external load and QH is the heat (Both measured in J) leaving the hot junction (source)

toward the cold junction (sink) [13]. And this can be defined [14] with W = RLI
2 = S2∆T 2RL

(R+RL)2 and

QH = κ∆T + STHI + I2R
2

as,

η =
W

QH

=
∆T

TH

√
1 + ZT − 1√

1 + ZT + TC/TH
. (1.3)

In the above equations, TH is the hot-side temperature, TC is the cold-side temperature and

RL is the external load resistance. It is immediately apparent that η will rise as the temperature

difference ∆T rises. Additionally, note that the first term is the Carnot [15] efficiency (ηc = ∆T
T

=

(TH−TC)
TH

) which describes the maximum theoretical efficiency of a heat engine. In application,

thermoelectric materials can be used as thermoelectric generators and refrigerators. They require

both n- and p-type semiconductors.

1.1.1 Transport Theory of Thermoelectrics

When the system is at equilibrium, there is no transport of charge or energy in the distribution

function f . The distribution function f(~r,~k, t) describes the probability of a particle with wave

vector ~k to be at position ~r at a given time t. Therefore, if f(k) is symmetric in k space given that

there are equivalent amounts of carriers with momentum that are equal but opposite, the current

becomes zero. If there is an external force ~F = ~d~k/dt acting on the particle (assumed be an

electron) the total change in the distribution function will be given by

df

dt
=
∂f

∂t
+

1

~
~F · ~∇~kf + ~v · ~∇f. (1.4)

3



In the case that f is at a local equilibrium due to the collision, normally the relaxation by collisions

occurs at a rate proportional to the derivative of the distribution function. The time constant to

reach equilibrium is termed the relaxation time τ , and is defined by the following equation:

df

dt
|collision = −f − f0

τ
(1.5)

where f0 is the equilibrium distribution function. If we assume that the difference between f and

f0 is small, then f can be replaced by f0. In the time-independent case we have

f = f0 −
τ

~
~F · ~∇~kf0 − τ~v · ~∇f0. (1.6)

If there are thermal gradients, we can always break down the space derivatives as:

∂f0

∂x
=
∂f0

∂T

∂T

∂x
(1.7)

Given equation (1.7), reconfiguring equation (1.6) by considering electrical field ~E will give

f = f0 + τe| ~E|vx
∂f0

∂ε
− τvx

∂f0

∂x
(1.8)

Now, we will compute various electric transport quantities using the above equations.

1.1.1.1 Seebeck effect

In a system with the distribution function f(ε) the current density associated with charge car-

riers is given by

~J = −e
∫
N(ε)~vf(ε)dε. (1.9)

By inserting the distribution function (1.9) component along the x-axis in the expression for the

current density and setting N(ε) equal to V/8π3, where V is the volume of the crystal, we find

Jx =
ne

me

([
eEx + T

d

dT

(εF
T

)dT
dx

]
〈τ〉+

1

T

dT

dx
〈ετ〉

)
. (1.10)
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If we consider the case that no electric current flows, that is where Eq. (1.10) is set to zero, then

we will have an electric field established in the material as a result of the thermal gradient,[16]

Ex = T
d

dT

[ 〈τε〉
eT 〈τ〉 −

( εF
eT

)]dT
dx

= −SdT
dx
. (1.11)

The Seebeck coefficient, S, is defined in Eq. (1.11) as

S = −dVx
dT

, (1.12)

where Vx is the potential developed by the electric field Ex along the sample distance dx as a result

of the thermal gradient dT . Formally, the Seebeck coefficient may be expressed as

S = −T
e

d

dT

[ 〈τε〉
T 〈τ〉 −

εF
T

]
. (1.13)

The first term is the kinetic energy term and normally for doped semiconductors, the Fermi

energy is much larger than the kinetic energy for the electrons, so the second term of Eq. (1.13)

will dominate the Seebeck coefficient. The Seebeck quantity can also be connected to a coefficient

often explained as the thermoelectric power with notation P ,

S = T
dP

dT
. (1.14)

Therefore, for P we find

P =
εF 〈τ〉 − 〈τε〉

eT 〈τ〉 =
1

kBT

[
εF +

〈τε〉
〈τ〉

]
. (1.15)

The momentum relaxation time τe is frequently of the form τe = Aε−s, therefore

εF 〈τe〉/〈τ〉 = (5/2− s)kBT, (1.16)
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giving,

P = −kB
e

[
(5/2− s)− εF

kBT

]
. (1.17)

1.1.1.2 Electric Conductivity

Considering the Fermi-Dirac distribution for electrons in the conduction band, the electric con-

ductivity for parabolic band can be given by [17]

σ = 2
8
√

2m?πe2

3h3

∫ ∞

0

df(E)

dE

√
E3τ(E)dE (1.18)

where f(E) is Fermi-Dirac function and m? is the effective mass. Charge carriers that are

thermally activated will be excited across the energy gap in semiconductors. In the case that this

dimmates the conductivity could simplify to

σ ' σ0e
−Eg
2kBT , (1.19)

where kB is the Boltzmann constant and Eg is the energy of the gap in semiconductors. On

the other hand, the σ0 = ne2τ
m?

describes that electric transport depends on charge carriers density n

and eτ
m?

which is considered to be charge mobility. In a number of semiconductors for which their

structures are disordered, the conductivity mechanism is variable range hopping at low tempera-

tures. This type of semiconductor contains charge carrier states for which the conduction takes

place when the charge carriers hop within these states. For this hopping the conductivity [18] is

described by σ ≈ σ0e
−(T0/T )

1
4 . The characteristic temperature T0 is proportional to DOS (g(E))

and localization radius rL as

T0 =
17.6

kBg(Ef )r3
L

. (1.20)
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1.1.1.3 Thermal Conductivity

The overall thermal conductivity has two contributions, that of phonons and that of electron

transport. Therefore it can be divided into two parts: the phonon thermal conductivity and the

electronic thermal conductivity:

κtotal = κph + κel. (1.21)

For most metallic materials, the electronic thermal conductivity contribution is much higher than

the lattice contribution. The electronic part of equation (1.21) often embodies the Wiedemann-

Franz law which states that the ratio of the thermal conductivity to the electrical conductivity is the

same for all metals, at any given temperature:

κe
σT

=
π2

3

(kB
e

)2 (1.22)

where the ratio π2

3

(
kB
e

)2 stands for the Lorenz number, L.

The phonon contribution to the thermal conductivity κph, involves the lattice vibrational modes

in crystals. It relies on the crystal structure, pattern of elements and bond strength among atoms. In

contemporary quantum theory, the vibrational modes could be regarded as quasi-particles-phonons

that contain quantized pockets of energy [19]. The most general form of the Debye lattice conduc-

tivity is presented by

κph =
1

2π2ν

∫ ωmax

0

~ω3τ(ω)
( ~ω
kBT 2 )e

~ω
kBT

(1− e
~ω
kBT )2

dω (1.23)

where τ is the phonon’s average scattering time, ωmax is the phonons maximum angular fre-

quency and ν is the phonon’s velocity where Debye’s model proposes ν = ω
k

(k is the wave vector).

1.1.1.4 The phonon scattering time

The phonon scattering time is a sum over contributions from all of the phonon scattering mech-

anisms. For most materials in insulating or semiconductors states, the phonon-phonon scattering
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dominates. Also, acoustic phonons contribute significantly in heat transfer due to their larger ve-

locities. For phonon-phonon scattering, one must consider two scattering processes. At very low

temperatures, where the Debye model fits well, only phonons with short wave vector are avail-

able. In this temperature range, the collisions of two phonons will produce a third phonon with

its momentum still in the first Brillouin zone. This process in which the momentum of phonons

after scattering is conserved, is called the N-process. This mechanism just alters the phonon’s mo-

mentum distribution and does not affect the heat transfer. Hence, this process has no effect on the

thermal current.

At temperatures close to or above the Debye temperature, the number of phonons with large

wave vector near the border of the first Brillouin zone grows. Therefore, it is more likely that the

collisions between them give rise to a third phonon with wave vector out of first Brillouin zone.

This mechanism in which the phonon’s momentum after scattering is not conserved, resulting in

a divergence in the direction of phonon momentum is called an Umklapp process. The scattering

rate for this process is given by [20]

τ(x) =
Mν2~θD

(γkBx)2T 3
e
θD
3T (1.24)

where M is the average mass of atoms, γ is the Gruneisen parameter (measure of anharmonicity

of lattice vibrations), x = ~ω/kBT and ω is phonon frequency, and θD Debye temperature.

The scattering relaxation rate for phonon-impurity scattering is given by

τ(x) =
4π~4v3

(kBxT )4ΓV
(1.25)

where V is the average volume per atom and Γ is the defect scattering parameter.

1.2 Approaches to enhance ZT in bulk materials

Beginning in the 1990s a renewed approach to TE materials began after the several decades of

slowdown in the research. The new studies opened various strategies to enhance ZT.

One of the commonly accepted methods to enhance figure of merit is to reduce the lattice ther-
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mal conductivity. In order to do this, three general methods are mainly implemented to decrease κ.

The first adopted method is scattering phonons. Reduction in thermal conductivity is obtained by

scattering phonons in diverse frequency ranges using a variety of means namely mass fluctuation

scattering (a combined crystal in ternary and quaternary doped materials), grain boundary scatter-

ing due to the volume of the grains and interface scattering in thin films or multilayer systems.

As a general rule of thumb, a good TE material [21] is a semiconductor with 6kBT ≤

Eg ≤ 9kBT where the lattice thermal conductivity is reduced, while the mobility of carriers are

large.There are two primary methods to enhance the ZT in thermoelectric materials based on

aforementioned transport theory which are described in the next sections.

1.2.1 Band structure engineering to improve power factor

For the Seebeck coefficient , the first typical example is the density-of-states (DOS) distortion

through Tl doping in PbTe [22]. This enhancement occurs when the valence or conduction band

of the host semiconductor resonates with the localized impurity energy level. Tl doped PbTe, in

contrast with Na doped PbTe with the same carrier concentration, shows larger effective mass and

is considered to have the greater Seebeck coefficient. Deforming the DOS leads to ZT as large as

1.5 at around 750 K, which is a notable improvement by merely adding Tl to PbTe. Combination

of this principle with the methods used to reduce the thermal conductivity could further improve

ZT in the PbTe system, and have been established to be equally applicable in other TE systems, in

particular Al-doped PbSe [23].

Another well understood example is the improvement of the Seebeck coefficient by adjusting

the energy offsets between heavy and light valence bands in PbTe. PbTe has a interesting valence

band; in this band structure, there is a valence band (with a heavy effective the mass, thus called

heavy hole band) at Σ which lies energetically below the upper light hole band at the L point, as

illustrated in figure 1.2. The energy distance between L and Σ band edges is around 0.15 eV. If

the Σ and L bands shift closer in energy, then it is predictable that the carriers redistribute between

these two valence bands with different effect masses.

The net effective mass can be raised by injecting carriers from the Σ band to L band edges
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Figure 1.2: a) Diagram demonstrating the relative energy of the valence bands in PbTe system,
with rising solid solution fraction M. Solid solution alloying within the solubility limit modifies the
valence band structure pushing both L and Σ bands down but make the two valence bands closer
in energy. b) The improvement on Seebeck coefficient at a similar Hall carrier concentration in
PbTe is because of resonant doping (Tl) or band convergence at room temperature. Reprinted with
permission from [1].

with a factor of N2/3
ν , where Nν is the total number of degenerate valleys, which is 4 for L band

and 12 for the Σ bands. Namely, m? = N
2/3
ν m?

b , where m?
b is the effective mass [24] just for one

valley. Alloying could also lead to diminishing the energy gap between Σ and L bands. Several

studies, for instance show that Mg[25] added to PbTe decreases the gap between L and Σ as the

alloying fraction increases. Enhancing the doping fraction lowers both L and Σ bands, however,

the L band reduces faster than Σ, so that eventually they get closer figure (1.2 .a). This form of Mg

solution doping boosts the Seebeck coefficients in the entire carrier concentrations, figure (1.2(b)).

The Seebeck coefficient improvement is comparable in nature to that produced by resonant states

in PbTe by Tl doping. In fact, Mg and Mn doping into PbTe have generated a high ZT of around

2.0 at 873 K and 1.6 at around 700 K, respectively. Nevertheless, this method is challenged by the

reduction of carrier mobility, clearly this needs to be settled with future experimentation. The band

engineering outlined above has also been successfully employed to other compositions such as the

PbSe-SrSe [26], Mg2Si-Mg2Sn [27].

1.2.2 Thermal conductivity reduction to improve the PF

In practice, a more simple and straightforward way to enhance the figure of merit is reducing

the lattice thermal conductivity, which is primarily independent of the electrical features. A stan-
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dard method to reduce the lattice thermal conductivity is developing a bulk solid solution, which

is generated by combining two compounds with identical crystal structure. This method can gen-

erate point defects in a binary mixture without altering the crystal structure. This process will

explicitly increase the phonon-defect scattering as described in equation (1.25). The solid solu-

tion technique normally reduces the lattice contribution of thermal conductivity κph more than the

κel, as mentioned in [28]. As examples, Bi2–xSbxTe3 is a decent solid solution convenient at low

range temperature [29] application and Si1–xGex is another solid solution suitable at high range

temperature applications.

Slack suggested a new approach for finding better TE in which cage compounds with an en-

larged unit cells containing encapsulated atoms that could "rattle" inside the voids and will have a

small thermal conductivity [30]. In comparison to the solid solution approach, these foreign atoms

occupy vacant interstitial sites of compound, instead of replacing atoms in host compound struc-

ture. The benefit of this method stems from the reality that these rattling elements will successfully

scatter phonons without impacting the transport characteristics controlled by the host compound

structure. The skutterudites [31, 32] are excellent illustrations of the rattling behavior in TE ma-

terials. Adding extra rare earth elements into the vacant sites of CoSb3 or CoAs3 will reduce their

lattice thermal conductivity by more than one order of magnitude. The reduced lattice thermal

conductivity makes partial/fully filled skutterudites amongst the finest of both n and p-type TE

power generator materials [33].

A familiar circumstance for applying TE power generator technology is when power is gener-

ated in automobiles by extracting heat from the exhaust. [34] High efficiency demands a high-

power factor (P = σS2) and low thermal conductivity. Hence, several ideas for scattering

the phonons and decreasing total thermal conductivity κtot which have been proposed. Nano-

inclusions and nano-structuring can produce ZT of 1.4-1.8 at 750-900K [35, 36, 37, 38, 39] in

BiSbTe and Nb-doped SrTiO3 and with adding mesoscale grain boundaries ZT =2.2 K at 915 K

has been achieved [40]. Other methods are engineering band convergence [41] and strong electron

phonon coupling by charge density waves [42].
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Thermoelectric compounds containing copper normally act as a p-type semiconductor and

some of them can be considered as good candidates for thermoelectric applications due to their

high ZT . For instance, some ionic conductors such as Cu2Se and Cu2S illustrate high figures of

merit [43, 44]. Lately, some other trigonal copper compounds like Cu3SbSe4–xSx solid solutions

[45] and Cu2SnSe3 [46, 47] have been shown to have ZT values around unity.

Tetrahedrites are copper thermoelectric compounds with chemical structure of Cu12Sb4S13, and

will be thoroughly discussed in the next chapter.
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2. TETRAHEDRITE THERMOELECTRIC MATERIALS

State-of-the-art TE materials usually contain environmentally harmful atoms, such as Pb, or

elements that exist in low abundance on earth, such as Te [48]. Therefore, compounds contain-

ing nontoxic and earth-abundant components are worthy of exploration. These compounds are

compliant to large-scale utilization due to their environment-friendly and inexpensive features.

Tetrahedrite materials, of nominal structure Cu12Sb4S13, are a group of compounds that satisfy

these requirements. Tetrahedrite appears naturally as a considerably abundant mineral through-

out the world and is a normal byproduct of the Cu and Ag mining industry [49]. Moreover, the

tetrahedrite group of TE materials show a remarkably low thermal conductivity, while exhibiting

a decent electrical conductivity and thermopower [50]. In conclusion, these TE materials consis-

tently show a ZT close to unity [51] at temperatures around 700 K. Tetrahedrites are excellent

compounds for TE applications at high temperatures due to their low toxicity and high earth abun-

dance, yet illustrating good TE characteristics for intermediate-temperature utilizations.

Tetrahedrites (tennantites) are copper compounds in which chemical structure is

Cu12–xβxSb(As)4S13, where β could be a transition metal element such as Zn, Mn, and Ni [52]

or other metals such as Mg[53]. The tetrahedrite-tennantite (As bearing) series is an important

family of copper natural ore minerals and also one of most widespread sulfosalts on the earth.

They are able to incorporate various elements on different sites. For instance, Zn, Ni, Mn, Fe,

or Co will reside on the copper sites and other atoms such as, Te, As, and Bi on the antimony

(Sb) site [54, 55], and finally Se on the sulfur site [56, 57, 58], which allows one by control of

chemical compositions to tune its electronic structure. In general, these materials show on the one

hand intrinsic low lattice thermal conductivity and on the other hand adjustable electronic transport

properties which make them good candidates for thermoelectric power generation.
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2.1 Basic Properties

The following subsections will highlight the crystal structure and physical characteristics that

control the main properties of tetrahedrite. Hereafter, "pure tetrahedrite" will be used in reference

to Cu12Sb4S13.

Early studies focused on the crystal structure of Cu12Sb4S13 based materials. The primitive unit

cell’s volume is 1.1 nm3 and it contains 29 atoms. This structure is similar to Zintl antimonides

with comparable κ. As mentioned in last subsection, the structure is cubic with space group 217.

As shown in figure (2.1) , there are two different copper sites in the lattice. half of the twelve Cu

atoms are placed on tetrahedral 12d Cu-I sites and the other six Cu atoms are distributed in trigonal

planar 12e Cu-II sites. Four of the six Cu-II sites are believed to be occupied by monovalent Cu

and the remaining two are nominally filled by Cu2+ ions, while the Cu-I sites are filled only by

monovalent Cu atoms. Furthermore, two distinct sites are identified for sulfur atoms; the S-I site,

tetrahedrally coordinated by two other Cu-I and one antimony, and the S-II site which is connected

to six other Cu-II atoms. Eventually, Sb is joined to three other S-I sites.

2.2 Crystal Structure

The complex crystal structure of tetrahedrite contributes to its favorable thermoelectric char-

acteristic. Cu12Sb4S13 crystalizes in a cubic structure with space group 217 (I43m) as shown in

figure 2.1.
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Figure 2.1: (a) Room-temperature crystal structure of Cu12Sb4S13. (b) Cu-I at the 12d crystallo-
graphic site shown tetrahedrally coordinated by S-I and Cu-II at 12e is trigonally coordinated by
two S-I and one S-II. Reprinted with permission from [2].

As illustrated, there are two unique Cu sites (12d and 12e), one Sb site (8c), and two S sites

(24g and 2a) [4] Every Cu12d (also named Cu-I) atom is coordinated tetrahedrally to four S-24g

atoms; whereas, each Cu12e (Cu-II) atom is trigonally connected to two S-24g atoms and one S2a

atom with total 58 atoms per unit cell. In the trigonal coordination, the Cu12e atom is sandwiched

between two Sb atoms such that the Sb lone pairs are oriented towards the Cu12e atom; this

bonding effectively yields a trigonal bipyramidal arrangement for the Cu12e atom with two Sb

atoms on the axial sites. Every S-24g is tetrahedrally coordinated to two Cu12d atoms, one Cu12e

atom, and one Sb atom. However, each S2a atom is in an octahedral coordination with six Cu12e

atoms. Finally, each Sb atom is tetrahedrally coordinated with three S-24g atoms and a protruding

lone pair, such that the Sb lone pair creates a void-like pocket in the structure leading the crystal

structure of tetrahedrite becomes fully complex and shows an array of distinct atomic bonds.

A Cu12Sb4S13 crystal in formula unit (f.u.) has a molar mass of 1666.45 gram mole−1, and its
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unit cell (u.c.) has a lattice constant of a = 10.3908 Å, accordingly, the volume could be derived

V = 1.12× 10−27m3 [59]

By increasing N , the part of the specific heat due to the acoustic phonon modes will decrease

(since Cv = Cv/N ), while the optical phonon modes will not impact the heat transfer (to first

order, because these mode’s group velocities are very small). Hence, we can estimate the total

specific heat at by using the Dulong-Petit equation Cv = 3nkB, where n is the density of atoms

in unit cell and kB is the Boltzmann constant. On the other hand, according to Eq. (1.2), high

ZT requires high electrical conductivity as well as low lattice thermal conductivity. Therefore, the

materials need to behave with respect to electrons as a good crystal and respect to phonons as a

glassy or disordered material. This is what led Slack [60] to come up with "phonon-glass, electron-

crystal" or PGEC idea in 1995. In most phonon-glass compounds, the phonon mean free path λ

can be replaced by the interatomic distance d and the minimum of the lattice thermal conductivity

κL, could be formulated [61] by using:

κL =
1

3
νλCv (2.1)

where, ν is the phonon group velocity. Therefore, the minimum lattice thermal conductivity

κL will be

κL,min = νλnkB. (2.2)

As mentioned, n is the density of conventional unit cells (n = N
V

), this implies that as the

primitive unit cell volume becomes larger, the lattice thermal conductivity becomes smaller which

explains why thermal conductivity is small in these materials.

Having a large primitive unit cell is thus one of the reasons for such an intrinsic low thermal

conductivity. In PGEC materials, lattice vibrations of a specific crystal structure also give rise to

phonon-phonon interactions which scatter the energy carrying acoustic phonons. Some of these

materials, including tetrahedrites, have extremely low lattice thermal conductivity regardless of
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alloying them with other elements and/or nano structuring them. Other reasons are the rattling

effect and anharmonicity.

2.3 Lattice Dynamics

Cu-based tetrahedrites are preferable as a power generation material, specifically because of

their exceptionally low lattice thermal conductivity, which reaches the lowest possible value pre-

dicted by theory [62]. This is in part due to the large size of the primitive unit cell volume in

the Cu12Sb4S13, which reduces κL, and the vast arrays of atoms inside the primitive unit cell pro-

duces further optical phonon modes [63]. Figure (2.2) presents the calculated phonon dispersion

of Cu12Sb4S13 [3]. The three harmonically unstable vibrational optical phonon branches at the

boundaries are connected to the out-of-plane motions of Cu atoms at 12e sites. Large lattice anhar-

monicity and rattler-like motion of the Cu12e atoms give rise to strong phonon-phonon scattering.

This will be explained in the next sections.

Negative (imaginary, in-fact) frequencies in a phonon dispersion calculation indicate dynamical

instability. Such an instability can be brought about either from improper positioning of the atoms

for the calculation or a pathway for a symmetry lowering phase transition. Those corresponding

to soft modes, could be indicative of ferroelectric order. In this case, negative frequencies are

believed to be due to sensitivity to displacement of Cu-II ions.
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standards as tetrahedrite. A photograph of 
the specimen is shown in the Supporting 
Information. X-ray analysis indicated that the 
specimen indeed possessed the tetrahedrite 
crystal structure, but with a slight shift of 
peaks to higher angles. Under SEM observa-
tion with an energy-dispersive x-ray analysis 
microprobe, we found that this specimen 
was in fact a solid solution of tetrahedrite 
and tennantite. This is not surprising, since, 
as previously mentioned, almost all naturally 
occurring “tetrahedrite” minerals are of com-
positions along the tetrahedrite/tennantite 
solid solution. Further, we found that this 
specimen contained predominantly Fe sub-
stitution on the Cu site; the overall average 
composition was Cu 10.5Fe 1.5As 3.6Sb 0.4S 13. 
Thus, according to Figure 5 b, we would not 
expect it to have optimized thermoelectric 
properties. The crystal was then powder 
processed in a manner identical to that used 
for our synthetic specimens and the ther-
moelectric properties measured. Indeed, we 
find high resistivity (Figure 2 a), high See-
beck coefficient (Figure 2 c), and low power 
factor. For this natural sample, the hole 

state filling fraction is near unity. Next, the natural mineral 
powder was mixed in a 1:1 weight ratio with our previously 
prepared synthetic powder of composition Cu 12Sb 4S 13, and 
this powder mixture was re-hot-pressed at 450 °C for 30 min-
utes. The resulting pellet was single phase tetrahedrite, with 
x-ray peaks approximately midway between those of the orig-
inal natural mineral and the synthetic tetrahedrite specimen. 
This simple and very quick process allows for the “dilution 
and adjustment” of the Fe content in the natural specimen, 
and we estimate that the resulting pellet had a nominal com-
position of Cu 11.25Fe 0.75As 1.8Sb 2.2S 13. Indeed, we found that the 
resistivity of this “diluted” natural specimen (Figure 2 a) was 
decreased by a factor of twenty and the power factor and figure 
of merit (Figure 5 a) became comparable to that of the synthetic 
Cu 10.5Zn 1.5Sb 4S 13 and Cu 11.3Fe 0.7Sb 4S 13 samples. 

While the natural mineral chosen and studied here did 
not have optimal composition for high figure of merit, there 
are very widespread deposits of natural tetrahedrites and ten-
nantites with compositions in the range of high thermoelectric 
performance. Examples are the Zn-containing tetrahedrite/ten-
nantite deposits in the Bruncu Sa Casa sector of the Furtei mine 
in Sardinia, Italy, [26] the Zn-rich ores in the Kuroko deposits in 
Japan, [27] and the Sb-rich tetrahedrite/tennantites in the Schwaz 
mines of North Tyrol, Austria. [28] It is highly likely that pellets 
of compacted powders of these natural minerals will display 
thermoelectric behavior equivalent to that demonstrated here 
in our synthetic specimens. 

3. Conclusion 
In conclusion, we have successfully synthesized single 
phase and high density Zn and Fe substituted Cu 12Sb 4S 13 of 

here, each Fe atom can provide an extra electron to fill holes 
in the valence band compared to each Zn atom, and explains 
why Fe substitution causes a larger increase in resistivity for 
the same x value. Our DFT calculations confirm this interpreta-
tion, showing that iron in Cu 11FeSb 4S 13 is indeed in the Fe 3 +

s 0d 5 configuration due to the formation of an exchange gap of 
approximately 3 eV between the Fe majority and minority spin 
states, which pushes the latter above the valence band 
maximum (see Supporting Information). 

In order to understand the relationship between composi-
tion and the resulting zT values, we introduce the notion of 
the fraction ( f) of hole states filled in the valence band upon 
substitution: f = xNe/2, where Ne is the number of excess con-
tributed electrons from each M ion. For example, for x = 0.5 
Fe substitution ( Ne = 2), the fraction is 0.5, while for x = 0.5 
Zn substitution ( Ne = 1), the fraction is 0.25. Figure 5 b displays 
the relationship between filling fraction of holes and the meas-
ured zT values. For both substitutions, the maximum zT values 
are reached at 0.5 and zT begins to diminish for higher filling 
fraction. From this plot we see that zT values above 0.8 can be 
attained over a surprisingly large range of composition; high zT
is extremely robust against impurity substitution on the copper 
site in Cu 12Sb 4S 13, with high values maintained up to a hole 
filling fraction of 0.8, even if the substitution is a mixture of 
more than one kind of atom. Since this range of substitution 
over which high zT is maintained exceeds significantly the 
range of composition of natural tetrahedrites, it is quite likely 
that natural mineral tetrahedrites can be used directly as ther-
moelectric materials. 

To illustrate what one may achieve using natural mineral 
source material, we have obtained a natural tetrahedrite spec-
imen from a mineral supplier. [25] The specimen was chosen 
at random from a selection of crystals denoted by gemological 

Figure 4 . Calculated phonon dispersion of Cu 12Sb 4S 13 showing harmonically unstable vibra-
tional modes involving out-of-plane vibrations of three-fold coordinated Cu atoms. 

Adv. Energy Mater. 2013, 3, 342–348

Figure 2.2: Calculated phonon dispersion for Cu12Sb4S13 using DFT. Reprinted with permission
from [3]

It is known that the dynamics of the trigonal coordinated Cu atom is a vital point of the vibra-

tional density of states in tetrahedrites. Although the community has raised some issues concerning

tetragonally connected Cu contributions and its displacement comparing the trigonally connected

Cu, it has been known that trigonally connected Cu (Cu in 12e site) moves with larger displace-

ment [64, 4, 65, 3]. Asymmetric hybridizations results in a double well potential which the Cu

atom energetically favors one over the other one giving rise to slightly out of plane position. The

energies of the Cu-II displacement above the trigonal plane have been inspected with experimental

and computational tools [66, 5, 67, 68].
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A vibrational first principle molecular dynamics calculation of constitutive elements of

Cu12Sb4S13 is exhibited in figure 2.3. The marked dashed line at around 4 meV indicate the signifi-

cant vibrational mode of Cu-II (Cu12e) in the low energy limit. The Cu atoms are anharmonically

stabilized above approximately 100 K. The renormalized DOS at room temperature creates a vibra-

tional Cu-II-dominated peak near 4meV that has been observed in both inelastic neutron scattering

[5] and first principles molecular dynamics (FPMD) simulations.

In this limit, the high amplitude vibrating atom Cu12e interacts with primarily energy carriers

(phonons) in this compound [4]. Therefore, large intrinsic phonon scattering observed in this TE

material is associated with out of plane vibration of Cu-II. The renormalized DOS at T = 300

K semi-quantitatively reproduces a vibrational Cu(2)-dominated peak near 4 meV that has been

observed in both INS experiments [35] and FPMD simulations. The activity of the lone pair in Sb is

believed to be the source for the asymmetric bonding and consequently resulting the anharmonicity

in tetrahedrite.
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FIG. 1. (a) Calculated phonon dispersions of Cu12Sb4S13 including anharmonic renormalization at finite temperatures
(T = 100, 300, and 500 K) in comparison with those obtained from harmonic approximation. All bands are colored according
to the amplitudes of the displacements of Cu(2) atoms. (b) Crystal structure of Cu12Sb4S13, the tetrahedron formed by
Cu/Sb/S atoms and the trigonal coordination of Cu(2), wherein symmetrically inequivalent atoms are labeled as Cu(1), Cu(2),
Sb, S(1) and S(2), respectively. A schematic double well potential energy surface is depicted for the out-of-plane displacements
of Cu(2) atoms. (c) Calculated atom-decomposed phonon density of states (DOS) of Cu12Sb4S13 at T = 100 K (lower panel)
and T = 300 K (upper panel), wherein the Cu(2) components are highlighted by filled colors, compared with the DOS of
Cu(2) from first-principles molecular dynamics (FPMD) simulations (gray disks) [42] and the total DOS from inelastic neutron
scattering measurements (black empty circles) [35]. (d) Calculated temperature-dependent anisotropic atomic displacement
parameters (Uii) of Cu(2) atoms compared with those obtained from FPMD simulations (empty shapes) [42] and experiments
using Rietveld refinement (filled shapes) [44]. The inset depicts the anisotropic thermal displacement ellipsoids of Cu(2) atoms.

In this Letter, we investigate the lattice dynamics and
thermal transport in cubic Cu12Sb4S13 by means of first-
principles calculations based on the density functional
theory (DFT). We construct a complete microscopic lat-
tice dynamics model that is capable of rigorously ac-
counting for both 3rd- and 4th-order anharmonicity and
its e↵ects on the phonon energies and phonon scatter-
ing rates. Using this model, we show that the unsta-
ble Cu(2) otpical modes are anharmonically stabilized
at T = 110 K and then continue hardening with in-
creasing temperature. We develop an advanced theory
of thermal transport in Cu12Sb4S13 that goes beyond
the conventional PGM by taking into account both di-
agonal and o↵-diagonal terms of the heat-flux operator.
We show that the almost temperature-independent L in
Cu12Sb4S13 is a direct consequence of the strong anhar-
monic renormalization of the Cu(2) optical modes, which
serves to decrease the available phase space for acoustic
phonon scattering with increasing temperature. More-
over, we find that very strong phonon broadening lead
to a surprising breakdown of PGM, which manifests in
glass-like L dominated by the o↵-diagonal terms.

We use the self-consistent phonon (SCPH) theory
to accurately treat the phonon instabilities and anhar-

monicity arising from the Cu(2) double-well PES. In
SCPH, the anharmonic phonon energies are obtained
from the poles of the Green’s function [45–51]. Con-
sidering only the first-order contribution to the phonon
self-energy from the quartic anharmonicity, the SCPH
equation reads

⌦2
q = !2

q +
~
4

X

q0

V (4)(q,�q, q0,�q0)
⌦q0

[1 + 2n (⌦q0)] , (1)

where ! is the harmonic phonon energy, ⌦ is the renor-
malized energy including anharmonic e↵ects, and q is a
composite index of the phonon branch s and wave vec-
tor q. The quartic anharmonicity is represented using
the Fourier-transformed 4th-order interatomic force con-
stants (IFCs) V (4), while the temperature e↵ects are re-
flected in the phonon population n, following the Bose-
Einstein statistics. On top of the SCPH results, we
further include phonon energy shifts from cubic anhar-
monicity in a perturbative manner [46, 52–54], which is
found to substantially soften phonons in Cu12Sb4S13. We
refer the readers to the Supplemental Material (SM) [55]
for more technical details and DFT calculations [56].

Upon including temperature e↵ects, we find that the
renormalized phonon energies are all stabilized above

Figure 2.3: Vibration calculation of DOS in Cu12Sb4S13 tetrahedrites at 100 and 300 K. Cu-II
components are highlighted by filled colors, compared with the DOS of Cu-II from first-principles
molecular dynamics (FPMD) simulations (grey dots) [4] and the total DOS from inelastic neutron
scattering measurements (grey circles)[5]. Plot reprinted with permission from [6].
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2.4 Rattling Behavior

The idea of rattling behavior in some compounds such as clathrates and multiple-filled skutteru-

dites was first introduced by Slack [60], for cases where some atoms reside in oversized atomic

sites, and may provide a mechanism for strong scattering of acoustic phonons. The multi-filled

skutterudites are stable in an ambient temperature up to close to 950 K and can be created by

adding guest metal atoms interstitially inside the large voids present in the crystal structure. In

skutterudites, these cages consist of up to eight octahedra with radii from 2.04 to 1.76 Å for IrSb3

and CoP3, respectively. This enclosed space is big enough to accommodate an occupying atom

each which allow them to rattle.

In the context of phonon scattering, the rattling elements (Cu-II in tetrahedrite) contribute

phonon-phonon interaction due to the presence of the additional phonon modes in the occupied

materials. Accordingly, comparing to skutterudites, the lattice thermal conductivity of partially-

filled-skutterudites, over a large range of temperatures is significantly reduced [33]. Neutron scat-

tering as well as XRD analysis are among the methods to measure anharmonic behavior in these

compounds [69].

2.5 Anharmonicity

When we are expanding the potential energy of the ionic interactions several terms show up

which could be considered as anharmonicity. An ideal harmonic crystal, at low phonon energies,

without any impurities or defects will have a boundlessly high thermal conductivity, while lattice

thermal resistivity emerges from the anharmonic terms in the ionic potential. In some materials

the anharmonicity could come from specific chemical bonding or/and atomic arrangements. For

example, in AgSbTe2 the low lattice thermal conductivity is assigned to Sb lone pairs which leads

to anharmonicity [70, 71, 72]. It was shown by Skoug and Morelli that the lone pair electrons

play the key part in driving the anharmonicity in chalcogenide compounds such as CuSbSe2 and

Cu3SbSe3 to produce the low thermal conductivity [72]. In this group of materials, a repulsive

force between lone pair electrons from group-V atoms (here antimony) and neighboring chalcogen
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ions of selenium leads to anharmonicity and consequently enhances the thermal resistivity. It ap-

pears that the bond length, the coordination number of the group five atoms and the angle between

chalcogen atom and group five atoms defines the strength of this anharmonicity. A similar behav-

ior is observed in compounds with the I V VI2 formula where their structure is similar to rock

salt [73]. A few I V VI2 stable compounds with lone pair electrons from group V atoms have

anharmonic bonds that give rise to strong phonon-phonon interactions, which let their κL reach to

the amorphous limit.

The Grüneisen parameter is one measure of anharmonicity, as defined by

γi = −∂ ln (ωi)

ln (V )
(2.3)

where ωi is each phonon frequency and V is the crystal’s volume. This parameter characterizes

the bond "strength" in solid compounds and how it changes by varying the distance among atoms.

If we only consider the acoustic phonon modes at high temperatures, for the heat conduction

process, they will affect the thermal lattice conductivity by [74]:

κL ∝
〈M〉T 3

θ δ

N2/3Tγ2
(2.4)

where, Tθ is the Debye temperature, 〈M〉 is the average mass of the atoms, δ is the volume per

atom, N is the number of atoms in the primitive unit cell and γ as defined above is the Grüneisen

parameter.

A large Grüneisen parameter means intense anharmonicity which enhances thermal resistivity.

The aforementioned reasoning can be applied particularly to the intrinsic low κL associated with

tetrahedrites, and its crystal structure. κL is found to have a value around 0.5 (W/m K) in range of

room temperature. From an experimental prospective, the Grüneisen parameter, averaged over all

modes, can be written by [75]:

γ =
9BαVm
CV

(2.5)
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where, CV is the specific heat, α the linear thermal expansion coefficient, Vm is the molar

volume and B is the bulk modulus. In the Zinc doped tetrahedrite case (Cu10Zn2Sb4S13), CV is

around 4 J/K at 300 K, [76], B = 44 GPa [77] and α is 10.3× 10−6 1/K. Using the above equation

gives a Grüneisen parameter around 2.1 at room temperature, which is comparable to values found

for other compounds with large anharmonicity. For example, the Grüneisen parameter is 2.05 for

AgSbTe2 and 2.9 for AgBiSe2 [71].

As is mentioned in section 2.1, in the context of anharmonicity for tetrahedrites, there are two

important Cu atoms. Since Antimony is chemically bonded by three other S atoms, it is in the

Sb3+ state which presents the classic chemical lone pairs. Since this Sb atom with its lone pair

electrons dwells above/below the Cu-II plane, as illustrated in figure 2.4, both Sb above and below

plane containing Cu-II and three S atoms establish a bipyramid assembly which could be assumed

as a cage structure, somewhat similar to structure that observed in partially filled skutterudites and

clathrates.
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Figure 2.4: A portion of the Cu12Sb4S13 crystal structure showing a trigonal bipyramid formed by
the three Cu-S bonds and lone pair-containing Sb (brown) atoms above and below it. The grey
shapes indicate the lone pairs, and the copper atom is indicated by the blue sphere. The arrow
shows the movement of the Cu-II atom.

Suekuni was the first to investigate the Cu-II oscillation through the S trigonal plane [7] which

was suspected to be the source of low κ (total thermal conductivity). Similar to other cage com-

pounds, energy carrying phonons will be expected to be scattered by this low energy oscillation.

Later study on the low temperature heat capacity disclosed that the data derived experimentally

could be fit only if a Debye lattice is considered with three additional Einstein oscillators, as-

sociated with three localized modes from Cu-II atoms [76]. The oscillation of the Cu-II atoms

perpendicular to the S triangular plane is associated with an Einstein oscillator with energy of

8.4 meV. The loose overlap of Sulfur’s p-orbitals with Copper’s d-orbitals leads to strong anhar-

monicity which is the reason for high amplitude type of oscillation. The movement of Cu-II atoms

normal to S plane creates these two low energy Einstein oscillators. The other high energy Einstein
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peak was measured in inelastic neutron scattering where density of states has a peak at temperature

corresponding to 8.5 meV [5]. This supports the idea that Cu-II movements normal to S plane is

the reason for strong anharmonicity in phonon-phonon interactions. Additionally, calculations on

lattice dynamics led to unstable oscillating modes with imaginary frequencies which are believed

to be associated to instability of Cu-II as shown above. Also, first principle calculations give rise

to a double- well potential associated with Cu-II displacement [78].

2.6 Metal-semiconductor transition

While tetrahedrite has as a body centered cubic structure at ambient temperature, it also dis-

plays a structural phase transition at low temperature. This transition could be observed in the tem-

perature dependent resistivity behavior of tetrahedrite sample in figure (2.5). Over several years,

different groups identified through measuring magnetic susceptibility measurements, also observed

in heat capacity as well as electric resistivity that a metal-semiconductor transition (MST) occurs

in Cu12Sb4S13 at temperatures near 83 K [7, 79, 80].
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used for S and ! measurements. Here, both samples were
obtained from one pellet. The magnetization M was meas-
ured using a superconducting quantum interference device
(SQUID) magnetometer on a magnetic properties measure-
ment system (MPMS; Quantum Design) under the constant
magnetic field H ¼ 10 kOe.

The TE properties of ", S, and ! for the mother
phase Cu10Tr2Sb4S13 (Tr = Cu) are presented in Fig. 2.
The Tr = Cu exhibits a metal–semiconductor transition
(MST) at 85K. The transition was also observed in magnetic
susceptibility # ¼ M=H (Fig. 3) and heat capacity attribu-
table to antiferromagnetic (AF) interactions.11) The " and S
jumps with small hysteresis on cooling and heating at the
MST temperature, suggesting that the MST is a first-order
phase transition. The value of " below the MST temperature
is ten times larger than that above MST. The value of S
becomes four times larger. In the low-temperature semi-
conducting region, " shows Mott’s T"1=4-behavior12) and S

shows a large peak with a value of 100 !V/K. In Fig. 3,
the value of # above 85K exhibits a positive sign and
weak temperature dependence that is attributed to Pauli
paramagnetism of conducting free carriers. # then sharply
decreases at MST, indicating the disappearance of the
magnetic moment or development of AF ordering in the
low-temperature phase. These results indicate that an energy
gap was created near EF in the electron density of states and
that the carrier density decreased below the MST tempera-
ture. The possible mechanisms of MST with AF ordering for
Tr = Cu are (i) Jahn-Teller distortion, (ii) charge order of
Cu, and (iii) charge density wave (CDW). The possibility of
(iii) CDW can be omitted because the crystal structure of the
tetrahedrite is cubic, not a low-dimensional structure. To
clarify the MST trigger and information of the valency of
Cu, low-temperature crystal structural analysis and first-
principles band calculation are required.

In the high-temperature metallic region, " shows hystere-
sis around 300K. The value of " after cooling is twice that
before cooling, as presented in Fig. 2. The no hysteresis in #
(Fig. 3) suggests that the hysteresis in " was caused by an
extrinsic trigger. S increases monotonically with increasing
temperature and shows small hysteresis. PF at 340K before
cooling is rather large at 374 !W/(K2#m) and ZT achieves
the large value of 0.13 (Table I) because of low " of
1:5$ 10"5 !#m and large S of 75 !V/K.

The value of ! also decreases with hysteresis at the
MST temperature. It shows large hysteresis around 300K.
From the measured values of " and the Wiedemann–
Franz law with Lorenz number L0 ¼ 2:44$ 10"8 V2/K2,
we can calculate !el ¼ L0T=". By subtracting !el from !,
we can estimate !L, which is depicted in Fig. 2. !L has no
‘‘crystalline’’ peak at low temperature. The behavior is the
same as that for disordered solid and vitreous SiO2.

13) !L
exhibits only a small hysteresis around 300K and presents a
low value of 0.4W/(K#m) around 300K, in spite of the light
mass components of copper and sulfur.

The TE properties of substituted systems Cu10Tr2Sb4S13
(Tr = Mn, Fe, Co, Ni, and Zn) are presented in Fig. 4
together with Tr = Cu. Not all substituted systems exhibit
both MST and anomalous hysteresis. The latter suggests that
the Tr substitution improved the crystallinity of tetrahedrites.

Here, " behaves as a semiconductor and S presents
various temperature dependences at low temperatures. For

Table I. Lattice parameter a, power factor PF at 340K, and dimensionless
figure of merit ZT at 340K for Cu10Tr2Sb4S13.

Tr
a
( "A)

PF

[!W/(K2#m)]
ZT

Mn 10.42(1) 88 0.07

Fe 10.38(1) 7 0.01

Co 10.35(1) 37 0.03

Ni 10.31(1) 177 0.15

Cu 10.31(1) 374aÞ 0.13aÞ

Zn 10.38(1) 46 0.03

a) before cooling

Fig. 3. Temperature dependence of field-cooled magnetic susceptibility #
for Cu10Tr2Sb4S13 (Tr = Cu).

Fig. 2. Temperature dependence of electrical resistivity ", thermopower
S, and thermal conductivity ! for mother phase Cu10Tr2Sb4S13 (Tr = Cu).
The dashed line in the bottom figure represents electronic thermal
conductivity !el, and the solid line shows lattice thermal conductivity !L.

K. Suekuni et al.Appl. Phys. Express 5 (2012) 051201

051201-2 # 2012 The Japan Society of Applied Physics

Figure 2.5: Temperature dependence of electrical resistivity, thermopower S, and thermal conduc-
tivity for unsubstituted phase Cu12Sb4S13. The dashed line in the bottom figure represents electronic
thermal conductivity κel, and the solid line shows lattice thermal conductivity κL. Reprinted with
permission from [7]

Several mechanisms were suggested to describe the physical source of this MST [81, 5, 82].

Two main reasons are considered more likely: an antiferromagnetic-paramagnetic transformation

and a Jahn-Teller distortion. A antiferromagnetic-paramagnetic transition is less likely to be the

the reason for MST, since the tetrahedrite does not show magnetic order. Nevertheless, two rela-

tively new studies proposed that a cubic-tetragonal phase transition also happens close to 85 K. A

temperature-dependent powder X-ray diffraction (XRD) study indicates a first-order crystal struc-

ture transformation phase transition [5]. Also, a very recent paper showed that the trigonal-planar
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copper cations remain in planar coordination below the MST [82]. On the other hand, Tanaka et

al. [81] carefully studied the connection between physical properties and crystal structure below

and above the phase transition temperature.

2.7 Electronic Properties

The electrical conductivity of tetrahedrite materials changes over almost six orders of magni-

tude for different compounds. In the Cu12Sb4S13, the valence states of the elements are not well

understood, and various models have been proposed in last decades.

In the context of crystal chemistry, ten Cu+ plus two Cu2+ are expected to establish a stable

charge balanced tetrahedrite Cu 2+
2 Cu +

10Sb 3+
4 S 2–

13 . In this context, it is assumed that Cu2+ atoms

strictly fill the 12d positions and ionic bonding dominates [59]. In contrast, tetrahedrites are stable

in a wide range of composition from Cu12Sb4.67S13 to Cu14Sb4S13. Thereafter, a Brillouin zone

model was introduced by Johnson and Jeanloz [83] in order to analyze the electrical conductivities.

This model explained that the electronic configurations of tetrahedrite is characterized by the total

number of electrons in the valence band per unit cell assuming Cu to have valence equal to one.

According to their model, for Cu12Sb4S13 based compounds, the stability is enabled only with 204

to 208 valence electrons. An X-ray absorption spectroscopy confirmed this model and indicates

that the proportion of Cu+ to Cu2+ relies on chemical structure [84]. Density Functional Theory

calculations also suggest that all twelve Cu atoms should stay in a monovalent state [3]. This

model also explained the large ionic conductivity and presence of covalent bonding observed in

tetrahedrites [4].

By these analyses, Cu12Sb4S13 is electron-poor and should be metallic, while Cu10Zn2Sb4S13

has completely filled valence bands and should be a semiconductor. In fact, EPR (electron para-

magnetic resonance) measurements illustrated that Cu atoms could be also in a magnetic divalent

state in contrast to the assumption that all Cu atoms are in a monovalent state [85]. If, two of the

twelve Cu atoms are assumed to be in a combination of Cu+ and Cu2+ state this leads to the result

that Cu12Sb4S13 acts as a metal or a degenerate semiconductor which agrees with experimental re-

sults. Furthermore, this model implies that the valence electrons per unit cell shouldn’t exceed 208,
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and that for compositions closer to this number (equal to that of Cu10Zn2Sb4S13) the stability is en-

hanced. Optical spectra of an ore sample of tetrahedrite which was also believed to be an electron

balanced semiconductor, demonstrated a 720 nm absorption edge implying a 1.7 eV bandgap. It

has also been discovered [86] that some of the Cu ions are mobile. There are indications that this is

due to the mixed state ions, however, this is not confirmed. Nevertheless, partially substituting [87]

these two mobile coppers with other metals can apparently prevent this Cu ionic motion. Indeed,

no ionic conductivity is witnessed for natural mineral sample, which are highly substituted. NMR

relaxation studies can be particularly sensitive to the appearance of atomic hopping and this is one

the issues explored in later chapters.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

20

40

EQHUJ\ (HV)

 TRWaO
 CX
 SE
 S

Cu12Sb4S13

Figure 2.6: Electronic density of states (DOS) for Cu12Sb4S13. Calculation method is discussed in
chapter 6.

At room temperature, undoped tetrahedrites act as a p-type metal. In Cu12Sb4S13 (figure 2.6),

the hybridization of S 3p and Cu 3s orbitals creates the valence band, while the conduction band
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is dominated almost equally by all atoms participating. The Fermi level remains on the top of the

valence band, and the band gap is around 1.2 eV. The Hall measurements deliver a weak signal,

identifying small mobility and positive charge carrier concentration [88, 3]. However, substituting

various elements into the tetrahedrite crystal structure sites is currently an active field of investiga-

tion to boost these qualities in a favorable way.

2.8 Doping

Mixing two atoms or more to the parent compound is implemented in the TE composites in

order to modify the phonon transport as well as electronic structure. The vast compositional range

enabled by the crystal structure of Cu-based tetrahedrite has resulted a large number of studies

of several doped and substituted samples. Doping is usually reserved for very small substitu-

tion amounts to change the number of carriers. Basically, a broad range of transition metals can

substitute Cu atoms in Cu12Sb4S13 crystal structure, and such substitution have been reported in

naturally available mineral tetrahedrites [56]. Originally, thermoelectric behavior of doped tetra-

hedrite (Cu10βxSb4S13) substituted with transition metal (β = Zn, Cu, Ni, Co, Fe, and Mn) up to

a restricting threshold of (x = 2), was studied by Suekuni et al. [7]. Among all such samples,

Cu10Ni2Sb4S13 shows the highest ZT approching to 0.13 at 340 K.

Later, Heo et al. also presented thermoelectric behavior of fully substituted tetrahedrite at high

temperature limit [89, 90]. Thereafter, several groups explored the electronic features of substituted

tetrahedrites employing computational methods [68, 91]. As discussed earlier, for Cu12Sb4S13 the

Fermi level stands near the top of the valence band, and incorporating Zn, which mainly takes a

divalent state, pushes the Fermi level up to the gap. In fact, Zn operates as a dopant by presenting

its extra electrons to the pristine tetrahedrite lattice and filling its holes. By using this knowledge,

Lu et al. observed a ZT close to unity at 720 K for Zn substituted tetrahedrite (Cu11.5Zn0.5Sb4S13)

[3]. Hence, substituting the Cu by transition metals sets the stage for prospect investigation of

tetrahedrites.

Since substitution of atoms in tetrahedrite began to be studied, several investigations have been

reported into substituting 3d transition metals [88] and even 4p elements [58]. Crystal structure,
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stability and magnetic behavior of synthetic tetrahedrite has been studied for dopants such as Cd

[92], Zn [93, 66, 94], Co [65, 95], Mn [65], Ni [96, 94, 97, 93], Bi [97], and Fe [3, 98, 99, 100,

101]. So far, the highest ZT amongst various dopants is for Zn and Ni co-doped tetrahedrite with

(Cu10.5NiZn0.5Sb4S13) chemical formula which yielded ZT around unity at 724 K [102]. In addition

to improving the ZT, these investigations appear to imply that doping diminishes formation of

secondary phases or impurities. Indeed, two groups reported explicitly that the favored tetrahedrite

phase is formed in preference to other phases when small levels of substituted elements exist in

the crystal structure [103, 104]. Later, many other research groups supported this observation

with similar results [105, 106, 107]. Therefore, numerous analyses have indicated that doping

and substituting with 3d transition metals not only improves ZT, but also stabilizes the principal

tetrahedrite phase and reduces the Cu ion motion throughout the crystal structure. Although several

studies investigated 3d transition metals substitution into the tetrahedrite, the large crystal structure

along with the complexity of them enables more exotic doping possibilities. This includes Sn

and Ge substitution Cu12–x(Ge,Sn)xSb4S13 for which x is restricted to 0.6 or less[108]. In other

studies, Au and Ag doping has been reported to be feasible [109, 99] and Pb doping in tetrahedrite

compound displayed improving figure of merit up to 40% at 720 K with a Cu11PbSb4S13chemical

formula [110]. In spite of toxicity and low efficiency of these samples, these analysis demonstrates

that ample elemental doping could be studied. Therefore, a wide array of elements, aside from 3d

transition metals, can be tested as a substitute on the Cu site in crystal structure.

Substituting dopants on Sb sites have also been inspected by several groups and in some cases,

substantial enhancement in the materials performances were reported. Initially Lu and Morelli

[111] prepared the compound Cu12Sb4–xTexS13, where x is limited up to 1.5, and obtained a ZT peak

of 0.92 for x=1 at 720 K. Following this study, Bouyrie et al. analyzed Te doping on the Sb site

as well as continued multi element substituting (co-doping) with transition metals on the Cu site

and Te on Sb sites [112, 113, 114, 93, 95]. Also, substituting Bi into the Sb site (Cu12Sb3.8Bi0.2S13)

appears to improve the ZT up to 0.85 around 670 K [54]. While it has been confirmed that replacing

Sb with As is possible in synthetic tetrahedrite [99], in natural minerals, it has been observed quite
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often . In fact, the mineral is called "tennantite" when most or all of the Sb is substituted with As

atoms [115, 116].

Replacing S sites in Cu12Sb4S13 have been studied over last couple of years. Doped tetra-

hedrites with Te and Se elements as anions were investigated initially with mineralogical groups.

However, lately some simulational calculations proposed the synthetic tetrahedrite with Se as

the chalcongenide have stable phases [117, 118]. Later, a research analyzed a solid solution of

Cu12Sb4S13–xSex, where x was restricted up to 2, and yielded highest ZT of 0.85 at 720 K (for x=1)

[119]. It has been agreed that ZT enhancement in Se doped samples associated with reduction in

κL, as a result of strengthened alloy scattering of phonons. Afterwards, thermoelectric performance

was lifted even higher by enriching the tetrahedrite with extra Cu (Cu12+xSb4S12Se), achieving an

outstanding ZT of 1.1 at 720 K [120]. To this moment, this is the maximum reported ZT among

all synthetic doped tetrahedrites. A very new report analyzed thermoelectric behavior of Zn with

Sn co-doped tetrahedrite (Cu11ZnSb4S12.75Se0.25) and obtained the maximum ZT of 0.85 at 670 K

[88]. In conclusion, doping Se to the tetrahedrites improves thermoelectric features, in particular,

when incorporated with other effective substitutes.

2.9 Synthetic Methods

In this section we will review two synthetic methods and their advantages. First, we introduce

the melting and recrystallized process, which is utilized more often than the other one. Normally

tetrahedrites are consolidated from natural mineral ore and are referred as melting recrystallization

process in articles. Second, solution phase methods such as solvo-thermal and hot injection will

be discussed.

Most tetrahedrite studies implement a conventional recrystallization after melting process. In

this method, quartz ampoules are filled with component precursors, then will be heated up to 923

K and kept at that temperature for at least 12 hours [121]. In this step, it is essential to keep

the sample under constant 0.3 K min– 1 heat rate to avoid the extra pressure accumulated from

vaporized sulfur. The final ingot is not pure Cu12Sb4S13, then, the final result is ground to fine

powder, pressed, and annealed for up at 723 K for three weeks to improve homogeneity. The
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final products were consolidated either with spark plasma sintering (SPS) or hot pressing. In

conclusion, in order to achieve a single phase sample, this process requires long annealing time

(one day up to 3 weeks), followed by a lengthy reaction periods (from 12 to 40 hours). There is

a relatively similar method implemented to synthesize Cu12Sb3.6Bi0.4S10Se3, however, the purity of

the final product becomes challenging [122]. The melt recrystallization method is not a feasible

processes at large scale because of its slow synthetic reaction times and the amount of utilized heat

in the process. Hence, a rapid and economically cheap approach could be promising to promote

tetrahedrite thermoelectric materials in large scale utilization.

Recently, it has been discovered that combining the natural mineral teterahedrites with chemi-

cally synthesized samples is a possibility. Initially, geologists and mineralogist were the ones who

examined the basic features of natural ore of tetrahedrites. Later, when the thermoelectric poten-

tial of these materials was recognized, researchers started to analyze the physical properties of

more mineralogical specimens [123, 87]. Indeed, most of the thermoelectric analysis by Seebeck

measurements performed on mineral ores were mostly developed by Telks in the fifties [11, 124].

More recently, mineral specimens combined with chemically prepared tetrahedrites and the ther-

moelectric properties of the mixed samples were analyzed [125, 77]. In this method, the chemically

synthetic tetrahedrite (processed with traditional approach) works as a seed matrix to promote the

formation of a specific phase from the mineral ore specimens. Tetrahedrites processed with this

mechanism demonstrate decreased κL and reduced σ (electric conductivity). The maximum ZT

obtained with this method was 0.91 at temperatures close to 723 K [125]. In spite of the fact

that this method is more effective in large scale commercial implementation and also economical,

the natural mineral specimen usually accommodates a certain trace of impurities, which enhances

the complexity of compositional control. In addition, chemically synthesized tetrahedrites show

improved characteristics over their naturally based counterparts. However, natural mineral-based

specimens are dependent on the synthetic tetrahedrite for the single phase Cu12Sb4S13 seed. There-

fore, mineral based thermoelectric tetrahedrite could be generated with small modifications beyond

the traditional melting approach.
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2.10 Cu3SbS4 phase

Refinement of the XRD for tetrahedrite samples normally shows a secondary Cu3SbS4 phase

known as famatinite. This phase can be separately grown as a thin films for the purpose of the solar

cell applications [126] due to its suitable optical and electrical properties and was even considered

as a candidate for a topological insulator or semimetal[127].

The Cu3SbS4 crystal structure is tetragonal in an ordered sphalerite superstructure type which

is in the space group of number 121 (I4m). The lattice parameters for this phase are a = 5.391 Å,

c = 10.764 Å, with volume of c = 312.83 Å
3

[128]. The crystal structure of Cu3SbS4 is shown in

figure 2.7.

Figure 2.7: The crystal structure of Cu3SbS4.
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In this crystal structure, there are two Cu sites with multiplicity of two to the one. Cu atoms fill

sites 2b and 4d, the Sb atoms fill the site 2a, and S atoms fill sites 8i.
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3. DENSITY FUNCTIONAL THEORY CALCULATIONS

Numerical simulations have become one of the most crucial tools in studying new materials.

In recent years, advances in calculating facilities such as CPU, GPU, and memories made numer-

ical simulations faster, easier and more accurate. First principle calculations used as a numerical

method to solve a large number of problems. Implementing density functional theory (DFT) will

transform the many body problem of interacting particles into a one particle reference that results in

principle in the same electron density as the real system [129]. Solving the Schröodinger equation

"exactly" for more than three interacting particles is impossible. Solving this equation for 10 23

particles is a pharaonic task. However, we can approximate the exchange and correlation terms

between electrons in DFT. Two of the approximations used are the generalized gradient approxi-

mation (GGA) [130] and local density approximation (LDA). However, LDA is viewed as having

considerable limitations. It has been demonstrated that these two approximations are functional

and reliable. These two methods predicted relatively accurate results for periodic arrangements

and materials with defects, such as dislocations vacancies.

Lately two more approximations have been developed that can proceed with more accurate

results. One approach employs pseudo-potentials that incorporates relatively simple basis set;

whereas the other approach utilizes complex basis sets like the Linear Augmented Plane Wave

Method (LAPW).

In most of calculations that I carried out, I used the WIEN2K package which runs calculations

through the LAPW approach. In the LAPW case the plane waves are adopted close to atoms to

replicate the rapid change in the wave functions of the valence electrons.

3.1 Starting from Scratch

We consider a solid a periodic set of positively charged particles (nuclei) that are heavy and are

surrounded by lighter, negatively charged particles (electrons). If this solid has N nuclei the total

number of particles with only electromagnetic potential will be Z+NZ. There are many particles
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and since some of these particles are very light, we are dealing with quantum many body problem

which the "exact" Hamiltonian for this set can be expressed as

Ĥ = −~2

2

∑

i

∇2
~Ri

Mi

− ~2

2

∑

i

∇2
~ri

me

− 1

4πε0

∑

i,j

e2Zi

|~Ri − ~rj|
+

1

8πε0

∑

i 6=j

e2

|~ri − ~rj|
+

1

8πε0

∑

i 6=j

e2ZiZj

|~Ri − ~Rj|
(3.1)

Where Mi is the mass of the nucleus located at ~Ri, me is the mass of electrons at ~ri. As men-

tioned earlier, solving this problem exactly is out of question. To reach an acceptable approximate

eigenstate, I explain the three approximations steps that have been taken.

3.2 The Born-Oppenheimer Approximation

Electrons are much lighter and move very rapidly while the nuclei are heaver and slower. Thus,

it can be assumed that the nuclei are frozen at fixed locations with electrons being in instantaneous

equilibrium with them. This means that electrons remain as the only players in the many body

problem. The role of the nuclei reduces to a source of positive charge and they are being consid-

ered as external particles to the cloud of electrons. This leaves the solid system as a set of NZ

interacting negatively charged electrons that are moving in the area filled with the potential due to

nuclei. This approximation is the Born-Oppenheimer approximation.

After considering the Born-Oppenheimer approximation, some terms in equation (3.1) disap-

pear. This leaves the Hamiltonian with only following terms

Ĥ = K̂ + V̂ + V̂ext (3.2)

where T̂ is the kinetic energy of the electron gas, V̂ is the potential energy due to electron-

electron interactions, and V̂ext is the potential energy of the electrons due to the nuclei.
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3.3 Density Functional Theory

After the first step of approximation, the quantum many body problem is substantially easier

than the original equation, however, it is still very difficult to solve. Historically, the DFT theory

was expanded substantially by Hohenberg and Kohn [131].

Their approach states that there is a one to one mapping between the ground-state density ρ(~r)

of a many electron assembly (could be an atom, a molecule, or a solid) and the external potential

Vext. A direct conclusion is that the ground state expectation value of any observable quantity is a

distinctive functional of the exact ground state electron density, 〈Ψ|Q̂|Ψ〉. Afterwards, if we allow

the observable quantity Q̂ to be a many-body Hamiltonian, then the the ground state total energy

functional can be given as:

EVext [ρ] ≡ H[ρ] = 〈Ψ|(T̂ + V̂ )|Ψ〉︸ ︷︷ ︸
FHK [ρ]

+〈Ψ|V̂ext|Ψ〉 (3.3)

where the FHK [ρ] ( known as the Hohenberg-Kohn density functional) is universal for all many

electron assembles. In other words, the total ground state energy EVext [ρ] is mapped uniquely to

the ground state energy of Vext[ρ].

Slightly later, Kohn and Sham published a paper that changed DFT into a practical tool [129].

They developed an algorithm to derive the ground state density. They consider the energy func-

tional as :

EVext [ρ] = T0[ρ] + VH [ρ] + Vxc[ρ] + Vext[ρ], (3.4)

which is equation (3.3), where FHK [ρ] is replaced by T0[ρ] + VH [ρ] + Vxc[ρ]. T0[ρ] is the

single particle kinetic energy, Vxc[ρ] is the exchange correlation energy functional, and VH [ρ] is the

Hartree component of the electron-electron energy.

The analogous Hamiltonian (known as the Kohn-Sham Hamiltonian) is:
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ĤKS = T̂0 + V̂H + V̂xc + V̂ext

= − ~2

2me

~∇2
i +

e2

4πε0

∫
ρ(~r′)

|~r − ~r′|d~r
′ + V̂xc + V̂ext. (3.5)

The Hartree component, a functional of the electron-electron energy is

VH [ρ] =
e2

4πε0

∫
ρ(~r′)ρ(~r)

|~r − ~r′| d~r
′d~r. (3.6)

In the Local Density Approximation (LDA) method, the exchange-correlation functional has

the following form:

ELDA
xc =

∫
ρ(~r)εxc(ρ(~r))d~r. (3.7)

In the above equation, εxc(ρ(~r)) is approximated by a local density functional, while, in the

GGA method, the gradient of the density will play a role. In fact, the local gradient density func-

tional together with local density functionals are used together with the local density to include

more details about the electron gas numerically, so the εxc will be εxc(ρ(~r), ~∇ρ(~r)).

The LDA method is anticipated to perform well for structures with a slightly varying density.

However, rather surprisingly, it appears to be notably precise in several other (realistic) cases too.

In order to find a solution for equation(3.4), various approaches have been employed. However,

in this dissertation, I discuss LAPW (Linearized Augmented Plane Wave) approach which is a

developed version of the APW method. Therefore, I explain the APW method first.

In order to solve the Schrödinger equation in solids, we can separate the space into two parts.

One region represents the spherical space with radius Rα near each individual nuclei where the

wave functions and potentials are the same as the interior atom. This volume is known as the

muffin tin region indicated by Sα. The remaining space outside the spheres is called the interstitial

region I . In the APW approach the core potential is substituted with a pseudo-potential. Then, the
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solutions function for inside and outside of the muffin tin is given by:

φ ~K(~r, E) =





1√
V
ei(

~k+ ~K)·~r ~r ∈ I
∑

l,mAl,mu
α
l (~r′, E)Y l

m(r̂′) ~r ∈ Sα
(3.8)

where V is the unit cell’s volume, the uαl (~r′, E) is the solution to the radial component of the

Schrödinger equation for an atom α with energy E. Y l
m(r̂′) are spherical harmonics.

To address the locations inside the muffin tin, a position ~r′ is introduced with respect to the

origin of other sphere as shown in figure (3.1).

I
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!⃗
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%"

Figure 3.1: The muffin tin region and the interstitial region, for a case with two atoms.

There were a number of problems with the APW approach. The major problem is that the

uαl (~r′, E) is dependent on the unknown energy parameter of a searched eigenstate. Another draw-
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back is the functions uαl (~r′, E) vanish on the edges of the muffin tin boundary for general values

of the energy parameter E, which subsequently leads to decoupling between the plane waves and

the radial wave functions. In order to solve the energy dependence of the basis set several meth-

ods were suggested. A simple and precise method is the LAPW approach. This method utilizes

linear combination of uαl (~r′, E)Y l
m(r̂′) and the derivation of their energy over to the linearization

parameters, E as

φ ~K(~r, E) =





1√
V
ei(

~k+ ~K)·~r ~r ∈ I
∑

l,m

(
Al,mu

α
l (~r′, E) +Bl,m

∂uαl (~r′, E)

∂E

∣∣∣
E0︸ ︷︷ ︸

u̇αl (~r′, E)

)
Y l
m(r̂′) ~r ∈ Sα, (3.9)

where ru̇αl (~r′, E) is the solution to the radial part of the Schrödinger equation.

The precision of a plane wave basis set relies on Kmax. It was useful to set a criterion for

LAPW. A better quantity to look into for accuracy can be Rα
minKmax, which is the product of the

smallest muffin tin radius and Kmax.

3.4 WIEN2K and NMR Quantities

I used the WIEN2k package to run ab-initio calculations [132]. This package implements the

full potential linearized augmented plane wave approach. WIEN2k is among the most accurate

schemes for band structure calculations. Various properties such as bandstructure, electron density

of states, phonon behavior exhibiting vibrational modes, hyperfine fields [133], electron densities,

Fermi levels, spin densities, forces, total energy, optical properties, equilibrium geometry, and of

particular significance here, NMR chemical and Knight shifts [134], and electric field gradient

(EFG) [135] could be calculated through this package. The EFG is a parameter (chapter 4) that is

reflective of the electric charge density near the nucleus and associated with ground state density

which is reperesntive of quadrupole interaction of the nucleus.

For calculations described here, I implemented the Generalized Gradient Approximation

(GGA) where the exchange correlation was chosen to be Perdew-Burke-Ernzerhof (PBE).
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I calculated EFG parameters for various sites in various samples from all-electron distribution.

Equations for NMR frequencies in a crystal when excited from mz to (mz +1) states are discussed

in [136]. As will be discussed in section (4.1.7) with details, the quadrupole shift can be expressed

in forms of the EFG principal values (∂
2V
∂x2 ,

∂2V
∂y2 ,

∂2V
∂z2 ), and the quadrupole is obtained from νQ =

3e2qQ
2hI(2I−1)

, where Q is the quadrupole moment, and eq = ∂2V
∂z2 is the largest principal value. The

quadrupole effect on the NMR shift can be considered with perturbation theory, for all calculations,

I treated first and second-order quadrupole shift for each transition.

The NMR shielding tensor σ̂ is determined as induced magnetic field Bind on the nucleus at

position R due to an external uniform field Bext, typically given in part per million (ppm). The

tensor σ̂ is measured and must be compared to a reference compound.

δ(R) = σref − σ(R). (3.10)

Most times only the isotropic part σ(R) = trace[ ˆσ(R)] is determined. The impact of the B0

on the nucleus is a minor perturbation regarding to the typical scale of energy in the electronic

structure. Thus, its effect on the spin and orbit of the electron will be separated in the WIEN2K

calculations. A more detailed discussion can be found in section (4.1.3).

The orbital contribution to the shielding tensor or the orbital portion of the induced magnetic

field is derived from the Biot-Savart equation as :

Bind(R) =
1

c

∫
jind(r)× r−R

|r−R|3 . (3.11)

j(r) is the induced current due to orbital electrons and derived from

jind(R) = −p|r〉〈r|+ |r〉〈r|p
2

− Bext × r

2c
|r〉〈r|, (3.12)

In WIEN2K the contribution of core states and valence states are derived separately. For the
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calculation of the core part, only a spherically symmetric core density is employed as

jcore(r) = − 1

2c
ρcore(r)Bext × r. (3.13)

The valence electron contribution to the induced j(r) is given by

jvalence(r) =
∑

o

[
〈 (1)

o |J(0)(r)|ψ(0)
o 〉+ 〈ψ(0)

o |J(0)(r)|ψ(1)
o 〉+ 〈ψ(0)

o |J(1)(r)|ψ(0)
o 〉
]
, (3.14)

where J (0) and J (1) are paramagnetic and diamagnetic contribution of the current operator, (0)
o

is an unperturbed Kohn and Sham occupied orbital and (1)
o is the first order perturbation of (0)

o

given by :

| (1)
o 〉 =

∑

e

| (1)
e 〉
〈 (1)

e |H(1)|ψ(0)
o 〉

εo − εe
+
∑

core

| (1)
core〉
〈 (1)

core|H(1)|ψ(0)
o 〉

εo − εcore
(3.15)

and H(1) is the perturbation because of the external magnetic field given by:

H(1) =
1

2c
(r× p) ·Bext. (3.16)

In order to carry out the the induced spin density and spin part of the NMR shielding tensor,

WIEN2k uses the following equation to find the magnetic hyperfine field at the nucleus

Bhf =
8π

3
µBmav

︸ ︷︷ ︸
Bc

+

〈
Φ1

∣∣∣∣
S(r)

r3

[
3(µ.r̂)r̂ − µ

]∣∣∣∣Φ1

〉

︸ ︷︷ ︸
Bsd

(3.17)

Where Bc is the Fermi contact term, mav is the average spin density over the spherical volume

that contains the nucleus when its diameter is equivalent to the Thomson radius. The Bsd is the

spin-dipolar component of the hyperfine field. Φ1 is the large component of the wave function, S

is the reciprocal relativistic mass enhancement, and µ is the magnetic moment operator of the elec-

tron. Since Bsd calculations are carried out on the atomic core, its computing is simple. Therefore,
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the Knight shift can be calculated by

Bhf = −σ̂sBext = −(σ̂c + σ̂sd) ·Bext. (3.18)

To perform NMR shielding and give reliable results which may be dependant on measure-

ment sensitive to 1 ppm or better, WIEN2k implements a 100 Tesla external magnetic field. This

enormous magnetic field induces spin splitting in the size of 1 mRy. This requires a particularly

large number of k-points. For example, for Al with a face centered cubic (fcc) structure 1000000

k-points is needed.
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4. SOLID STATE NMR AND TECHNIQUES

The nuclear magnetic resonance (NMR) spectroscopy is a very powerful non-selective, nonde-

structive analytical tool for material characterization, both in solution and in solid state. Solid-state

nuclear magnetic resonance (NMR) consists of several techniques, which are distinguished by dif-

ferent pulse sequences and generate different responses in the sample, allowing obtaining data on

different time scales. This provides the basis for understanding measurable and informative NMR

parameters: hyperfine coupling including quadrupole shift and chemical shift, motional narrow-

ing linewidths, and relaxations. In this dissertation, we will use these techniques to study various

materials.

4.1 Nuclear Magnetic Resonance

The Hamiltonian that governs the nuclear spin involves a sum of different Hamiltonians, ac-

cording to

Htot = HZ +HRf︸ ︷︷ ︸
HExternal

+HCS +HK +HDD +HJ +HQ︸ ︷︷ ︸
HInternal

(4.1)

where HZ is the Zeeman Hamiltonian, HRf is the a radio frequency Hamiltonian, HCS is the

chemical shift Hamiltonian, HK is the Knight shift, HJ is the J-coupling Hamiltonian, HDD is the

dipole-dipole Hamiltonian, HQ is the quadrupolar Hamiltonian. The first two terms are external

Hamiltonians which are under human control (e.g., the magnet, magnetic field gradients, and radio-

frequency pulses), while the others are internal Hamiltonians determined by their local atomic level

environment. We will introduce these terms in the next sections.

4.1.1 Zeeman Hamiltonian

In equation (4.1), the Zeeman interaction (Hz) is the main term which contains the interaction

between the externally applied magnetic field, B0 and the magnetic moment of the nucleus. A

nucleus with spin ~I has a magnetic moment, ~µ = γ~~I , where γ is the gyromagnetic ratio. The
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Zeeman interaction occurs only with nuclei that possesses non zero spin and yields 2I + 1 energy

levels of separation with ω0 = γB0 energy separation. ω0 is also called the Larmor frequency. The

Zeeman Hamiltonian is given by [137]

HZ = −~µ · ~B0 = −γ~IzB0 = −~ω0Iz. (4.2)

The interaction is linear with applied magnetic field and thus leads to the stimulus to pro-

duce higher magnetic field spectrometers. In fact, larger separation of the energy levels results

to higher population difference and consequent enhancement in signal to noise proportion within

the measured spectrum. Since the Zeeman Hamiltonian depends on the gyromagnetic ratio, which

is constant for each individual nucleus, the Larmor frequency ω0 for each nucleus is unique at a

particular applied external magnetic field. Slight perturbations to the Zeeman term are generated

by other interactions such as RF field terms, shielding, dipole-dipole effect, spin-spin coupling,

and quadrupolar terms.

4.1.2 RF field Hamiltonian

The RF-field Hamiltonian HRf has the same form as the Zeeman Hamiltonian,

HRf = −~µ · ~B1(t) = −γ~IzB1(t). (4.3)

The applied radiofrequency field ~B1(t), oscillates with the frequency ω1 which is linearly polarized

with the phase φ(t),

~B1(t) = 2B1cos(ω1t) [~excos(φ) + ~eysin(φ)] . (4.4)

In this condition equation (4.3) can be written in the form:

ĤRf (t) = −2~γB1cos(ω1t)
[
Îxcos(φ) + Îysin(φ)

]
. (4.5)

To solve equation (4.3), it is desirable to change the Rf-field Hamiltonian to a time independent
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form by the transforming it to the rotating frame. In fact, a Hamiltonian Htot = HZ +HRf can be

transformed to the HZ-Hamiltonian representation by the transformation

Ĥr
tot = e

i
~ ĤZtĤtote

− i
~ ĤZt = ĤZ + e

i
~ ĤZtĤRfe

− i
~ ĤZt. (4.6)

The transformation of the RF field interaction to the rotating coordinate frame as follows from

the equation (4.6) can be expressed as

Ĥr
Rf = e

i
~ ĤZtĤRfe

− i
~ ĤZt (4.7)

based on equation (4.2), ĤZ = ~ω0Îz, the basic trigonometric equation, equation (4.7), may be

written as

Ĥr
Rf = −2~γB1 cos(ω1t)

[
Îx cos(ω0t− φ)− Îy sin(ω0t− φ)

]
. (4.8)

Continued consolidation of the trigonometric functions will result in the equation which com-

prises two pairs of coefficients as ω1±ω0 as arguments in the cos, sin functions. Selecting ω1 = ω0

the oscillations at frequencies ω1 + ω0 = 2ω0 can be ignored because the nuclear magnetization is

affected substantially only by fields rotating with the angular frequency near to the nuclear Larmor

frequency ω0. This leads to

Ĥr
Rf = −~γB1

[
Îx cos(Ωt+ φ) + Îy sin(Ωt+ φ)

]
. (4.9)

where Ω = ω1 − ω0 is the offset with respect to the RF-field frequency ω1.In the case of

resonance for spins the r.f. field term turns explicitly time independent and the final form can be

written as :

Ĥr
Rf = −~γB1

[
Îx cos(φ) + Îy sin(φ)

]
. (4.10)
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4.1.3 Chemical Shift Hamiltonian

The three-dimensional magnetic shielding by surrounding electrons is the third interaction in

equation (4.1) that the nucleus senses either in solid state or liquid. In some NMR cases, the

chemical shift Hamiltonian (HCS) is the most responsive interaction to variations in the instant

environment of the nucleus. However, in solid state NMR, the Knight shift can play a much

important role than chemical shift.

!"

!#

!"
!# = (1 − (#)!"

Figure 4.1: Schematic figure of chemical shielding and the magnetic field experienced by nucleus.

The chemical shift term emerges from the slight local magnetic fields that are formed around

the nucleus by electric currents induced in electron orbitals by an applied external field B0. This

slight perturbation on the nucleus appears in a small change in the total magnetic field experienced

by the nucleus. Hence, the magnetic field at the nucleus is not the same as the externally applied

field and accordingly this difference is the nuclear magnetic shielding and paramagnetic effects,

or chemical shift interaction Bz = (1 − σz)B0, as displayed in figure (4.1). The chemical shift
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Hamiltonian is expressed as

HCS = −γ~~I · σ̂ · ~B0 = ~ω0(σxzIx + σyzIy + σzzIz) (4.11)

Note that in the equation (4.11), σ̂ is the shielding tensor and depends on the orientation and is

proportional to the strength of the applied magnetic field. Therefore, it is essential to compare our

results with reference materials. We can always transform to a basis that the chemical shift tensor

σ̂ is diagonal. This frame is called principal axes system (PAS) and the chemical shift tensor has

diagonal form which can be given by

σCSiso =
1

3
(σPxx + σPyy + σPzz). (4.12)

Note that what we measure in the experiment is independent of the frame since we are tracing the

σ̂. Note that in this dissertation the chemical shift δ = −σ̂ is used.

In solid state NMR, the chemical shift amount is representative of the effective magnetic envi-

ronment of a nucleus, but in comparison to solution state spectrum, the molecules are not allowed

to move. It is important to note that the shielding depends on the particular orientation of the solid

in regard to B0. Hence, a certain arrangements of the spins perpendicular to the applied magnetic

field delivers a sharp spectrum representative of this specific orientation. For most polycrystalline

samples, a random distribution generates all feasible orientations. This leads to a very broad peak

in NMR lineshape. The size of the chemical shift anisotropy, depending on materials is between 0

and 105 Hz. There are more contributions that will be discussed with detail in next section.

4.1.4 Knight Shift Hamiltonian

The Knight shift denoted by K indicates the relative shift due to the spins, in NMR frequency

for nuclei in a metal (e.g. copper) compared with the same nuclei in a nonmetallic condition (e.g.

copper chloride). The measured shift shows the local magnetic field generated at the Cu nucleus by

the magnetization of the conduction electrons. The local magnetic field in Cu metal enhances the

applied resonance magnetic field by around 2000 ppm. In nonmetallic copper chloride the average
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local field on Cu is negligible in comparison.

The Hamiltoniam for interaction of a conduction electron and the nucleus can be expressed as

[138] sum of the following terms

Ĥ = −2γn~µBĨ ·
[8π

3
S̃δ(r) + [

3r̃(r̃ · S̃)

r5
− S̃

r3
]− l̃

r3

]
(4.13)

where ~I and ~S are the nucleus and electron spin, respectively, ~l is the electron’s orbital an-

gular momentum, and ~r is the electron’s position vector. The first term in the equation is the

Fermi contact interaction, which s-characterterize the significant part of the conduction electrons.

The second term denotes the spin dipolar correlation between the spin of electron and nucleus, an

anisotropic Knight shift in the non-cubic symmetry environment is due to this term. In powder

forms, in the cases without quadrupole shift, this component can be a primary reason for broad-

ening of the NMR line shape. The last term introduces the interaction between electron’s orbital

momentum with nucleus spin. In our samples this term is very crucial because the orbital shift is

roughly proportional inversely to the bandgap which is typically small in the d-bands in Cu based

tetrahedrites, however, this term is normally included with chemical shielding.

Since the electrons and nuclei are weakly interacting the wave function can be written ψeψn. If

we consider delocalization of conduction electrons and periodicity of the lattice, the ψe could be

decomposed as ψ~kψs, where ψ~k = u~kexp(i
~k · ~r). Hence, the shift in energy due to the first term of

the equation (4.13) can be written as

∆E = −γhIz
[

8π

3
〈|u~k(0)|2〉2EFχPB0

]
(4.14)

where, χP is the Pauli spin susceptibility of the conduction electrons. Note that 〈2µBSz〉 =

χpB0. Therefore, the Knight shift due to s-electron can be written as

Ks =
∆ω

ω0

=
∆B

B0

=
8π

3
〈|u~k(0)|2〉EFχP . (4.15)
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The Knight shift is associated with susceptibility through the spatial variation of the electron

wave function. This can be considered as the intensity of the magnetic field on the the nucleus.

Hence, we could use this function to determine the hyperfine field Bhf as

Bhf

µB
=

8π

3
〈|u~k(0)|2〉EF . (4.16)

The Knight shift due to the Pauli susceptibility Ks can be given by

Ks =
Bs
hf

µB
χP . (4.17)

The Knight shift can also give some information on density of states, since the Pauli suscepti-

bility is linked to DOS through χP = 2µ2
Bg(EF ).

The last term in equation (4.13), contains the interaction of orbital angular momentum induced

in occupied conduction electron states with nucleus in an applied magnetic field. From the tight

binding Green’s function approximation there is a general form [136]

Korbital =
2e2

(mc)2

∑

Ψ′

〈Ψ|Lz|Ψ′〉〈Ψ′|Lz

r3
|Ψ〉

∆E
. (4.18)

Where Ψ and Ψ′ are the occupied states and excited states, respectively. The sum goes over

all excited states. In equation 4.18, a slight change in ∆E can result in a significant orbital shift in

the transition metals since for d bands ∆E is very small. This Knight shift term also known as the

Van Vleck Knight shift. Similar to equation (4.17), the orbital Knight shift can be expressed as

Korbital =
Borbital

hf

µB

χVV (4.19)

where χV V , is the Van Velck susceptibility, and Borbital
hf ∝ 〈2µ0µB

r3 〉Ψ can be used to approximate

the Borbital
hf .

Other effects on the Knight shift can be due to the conduction electrons that contain the core

polarization or involving the conduction electron diamagnetism. The shift due to core polarization
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is indirect. In the absence of external field, the equal numbers of electrons spin in up states cancel

the same amount of electrons with spin down. However, when there is an applied magnetic field

the story is different. The conducting electrons introduce an "extra" effective field at the nuclear

site, due to the spin orientations of the conduction electrons in the presence of an external field.

Only s-character electrons will interact with the nucleus. The exchange interaction must be the

reason for this core polarization field. The Knight shift due to core polarization hyperfine fields

can also be negative because of the particular arrangement of the valence electrons.

Therefore the Knight shift can be utilized as an essential tool to investigate hyperfine field in-

teraction of different kinds, and distinct the spin susceptibilities of various processes. I summurize

the significant contributions to Knight shift by following equation

Ktot = Korbital + Kcore + Ks. (4.20)

4.1.5 Dipole-Dipole Hamiltonian

The affect of magnetic dipole moment of one nucleus on another nucleus through space is

called the dipolar coupling interaction and the Hamiltonian is written as

HDD = −µ0

4π

γ1γ2

|~r|3
( 3

|~r|2
(
~I1 · ~r

)(
~I2 · ~r

)
−
(
~I1 · ~I2

))
(4.21)

where ~r is the distance between the two nuclei. This equation can be rewritten in a general form of

HDD = Î1 ·D · Î2. (4.22)

In the PAS frame, D could be represented as a traceless and symmetric tensor as

DPAS = −µ0

2π

γ1γ2

|~r|3




−1
2

0 0

0 −1
2

0

0 0 1




(4.23)
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In the rotating frame explained in section (4.1.2), the dipolar Hamiltonian is expressed by

HDD = −µ0

4π

γ1γ2

|~r|3
(
Î1z Î2z −

1

2
(Î1xÎ2x + Î1y Î2y)

)(
3 cos2 θ − 1

)
(4.24)

Where θ is the angle between two dipoles.

4.1.6 J-coupling Hamiltonian

The interaction of magnetic dipole moment of one nucleus on other one, mediated by electrons

surrounding these nuclei is called the J-coupling or the scalar coupling. The Hamiltonian for this

interaction is given by,

HJ = 2π~̂I1 · Ĵ · ~̂I2. (4.25)

Where the tensor Ĵ , in principle, has a set of isotropic and anisotropic elements.

4.1.7 Quadrupole Hamiltonian

Generally an atomic nucleus with spin I has its spin energy levels determined by the Zeeman

term with the applied magnetic field B0. However, atomic nuclei with I > 1
2
, in which the charges

around the nucleus have a non spherical shape are also identified by the quadrupole moment Q

of electric charges. This charge distribution interacts with the gradient of the electrostatic electric

fields induced on the nucleus by the position of charges in the solid. Thus, the nuclear spin is

affected by the quadrupolar Hamiltonian [139], which can be given by

HQ =
eQ

2I(I − 1)

∑

j

VjjI
2
j . (4.26)

In the above equation, Vjj are the second derivatives of the electric potential. Vjj could also be

interpreted as electric field gradient (EFG) tensor which has j = X, Y, Z as principle coordinates.

In this coordinate system, the three quadrupolar frequencies are

νj =
3eQVjj

2I(I − 1)h
. (4.27)
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These frequencies are linked by the Laplace equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= νx + νy + νz = 0. (4.28)

Thus, generally two parameters are used. The quadrupolar frequency νQ = νz associated

with the largest principal axial element Vzz of the EFG matrix and the asymmetry parameter η =

Vxx−Vyy
Vzz

. Here we pick the principal axial values of EFG in the following order

||Vzz|| > ||Vyy|| > ||Vxx||. (4.29)

In conclusion, figure (4.2) displays a comparative view of magnitude of effect of these Hamil-

tonians.

Figure 4.2: A semiquantitative comparison of the area between the magnitude effects of solid-state
Hamiltonian magnitudes on NMR spectra. The plot is reprinted with permission from [8].
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4.2 Relaxation Times

Despite the fact that the NMR spectroscopy is a completely quantum mechanical effect, using

a classical picture is very convenient to display NMR relaxations processes. We begin the motion

of a spin in an external magnetic field ~B0, assuming that ~B0 may possibly vary with time. ~B0 will

produce a torque on the magnetic moment ~µ of amount ~µ × ~B0. This leads to the equation of

motion

d~µ

dt
= ~µ× (γ ~B0) (4.30)

On the other hand, if we assume that the nucleus with magnetic moment ~µ precessing around

~B0 with frequency ~Ω, the change in ~µ will be

d~µ

dt
=
∂~µ

∂t
+ ~Ω× ~µ (4.31)

Combining equations (4.30) and (4.31), we get

∂~µ

∂t
= ~µ× (γ ~B0 + ~Ω). (4.32)

If we deliberately transfer to a reference frame that ~Ω = −γ ~B0, ~µ remains fixed. The angular

frequency γ ~B0 is the same "Larmor frequency" introduced in previous sections.

There are statistical ensembles of the nuclear magnetic dipole moments ~µi. The net magnetic

dipole moment ~M of the ensemble of nuclear magnetic moments is the vector sum of the individual

magnetic moments, i.e. ~M =
∑

i ~µi . Due to cancellation of the randomly distributed x and y

elements of the individual magnetic moments of nuclei, the net magnetization vector in equilbrium

is aligned with the laboratory z axis as shown in Figure (4.3).

The dynamics of the net magnetization ~M in the presence of the applied magnetic field is

expressed by the equation
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B B

!
Vector Sum

Figure 4.3: The classical net magnetization vector of randomly distributed magnetic moments
exhibited in an external magnetic filed B.

d ~M

dt
= γ ~M × ~Btot − R̂

(
~M − ~M0

)
(4.33)

where ~M is the instantaneous net magnetization for the ensemble spins, ~M0 is the equilibrium

net magnetic moment aligned with the laboratory frame, ~Btot = ~B0 + ~Brf and R̂ is given by

R̂ =




1
T2

0 0

0 1
T2

0

0 0 1
T1



. (4.34)

In the above equation, T1 called the spin-lattice relaxation time (or longitudinal relaxation

time), and T2 is the spin-spin relaxation time (or transverse relaxation time) associated with the

portion of ~M in the xy-plane. T1 relaxation reduces out of equilibrium component by transferring

spin energy to the phonons or conduction electrons (the lattice). In comparison, T2 indicates rota-

tion of spins in an applied magnetic field B and conserves the energy. Furthermore, T2 associates

with the dephasing of the spin. Later, we will explore the other processes including the Gaussian

decay.
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5. EXPERIMENTAL APPARATUS

5.1 NMR Setup and Data Analysis

The NMR results provided in this dissertation were generated from a home-built NMR machine

made by Dr. Ross and previous students providing fixed magnetic field near 9 T. This machine is

a pulsed NMR spectrometer with a superconducting magnet that includes a sample cryostat. The

superconducting material of current magnets is composed of niobium-titanium with TC= 10 K.

The cryostat setup embodies a wide bore liquid helium vessel that is thermally shielded by a liquid

nitrogen reservoir which is sandwiched among two vacuum layers. This setup ensures that the

targeted samples can kept a range of temperatures from 4.2 up to 500 K.

A tube containing the sample was wrapped in a conducting coil, made out of silver for the Cu

NMR experiment discussed here, and other elements were used to deploy the spin-echo sequence

and to collect the result signal at designated frequency. The coil is enclosed in a probe and then

lowered into the bottom of vessel where it is placed in the bore of the shielded superconducting

magnet. NMR experiments were done from 450 K down to 4.2 K.

To employ the spin-echo sequence and obtain the echo signal collected by the coil, the probe

containing the sample is connected to an electronic setup. In order to enhance signal transfer to

the probe, the coil is designed to be in a resonating RLC circuit which enables tuning through

two variable, along with fixed capacitors. With this method, the resonance could be maintained

while the frequency is changed. The variable capacitors incorporated into the cryostat and can be

effectively adjusted down to 4.2 K.

5.1.1 Electronic Hardware

An overall schematic figure of the electronic hardware utilized to observe the signals is illus-

trated in figure (5.1). The NMR electronics have been well documented with details in [9]. The

NMR electronic setup consists of two primary parts: a transmitter and a receiver, as denoted by

two separate colors in figure (5.1). The transmitter sends the RF-pulses to the collecting coil sig-
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nals. It contains a frequency synthesizer, a power amplifier, and a pulse sequence generator (PSG).

The transmitter can set B1, discussed in section (4.1.2), in the along the rotating axis ±x′ and ±y′

directions within pulse phase circuitry. The setup works in 100 to 1000 watt range of power.

Pulse Sequence Generator

Pulse Gate

Power
Amplifier

!
4 Cable

Pre
Amplifier

Splitter

90° delay

x y

Data
Digitizer

Frequency 
Synthesizer

Pulse Phase
Circuitry

Transmitter

Reciever

Figure 5.1: A block diagram schematic of the NMR signal electronics. Modified version of figure
displayed in [9]

The receiver, shown in the green box in figure 5.1, receives the amplified (through series of pre-
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amplifiers) microvolt signals collected from the coil. Then, in order to eliminate the RF-signals,

a quadrature detection is implemented. In this detection setup, the collected signal is separated

into X and Y channels. The Y channel is delayed by 90◦. Next, the two channel signals and the

reference frequency are mixed and transferred to a low pass filter. At the end, more amplifiers are

utilized to enhance the signal to the digitizer level.

To perform NMR spectroscopy at various frequencies, one must adjusted the calibrated RLC

circuit in order to attain the desired resonant frequency. A discussion of the impedance matching

principle utilized is given in Appendix A.

5.2 Materials Characterization

5.2.1 XRD

Powder X-ray diffraction (XRD) is a fast analytical method mainly employed for phase deter-

mination of a crystalline material which provides detailed information about unit cell magnitudes.

The studied material is finely ground to determine the crystal parameters.

I performed powder X-ray diffraction at room temperature with a Bruker D8 X-ray Powder

Diffractometer available in Department of Chemistry, a shared facility, and performed Rietveld

refinement by GSAS-2 [140] software.

Figure 5.2 shows a schematic view of how XRD works.
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5.2.2 WDS

The unique potential of an electron probe is the capacity to identify the composition of ma-

terials by implementing wavelength dispersive spectroscopy (WDS). With this technique, various

materials including minerals, powders, thin films, and metals/alloys can be evaluated.

WDS experiments were carried out on various samples in a Cameca SX5 Electron Microprobe

at Texas A&M University is located in the Materials Characterization Facility (MCF).
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6. EXPERIMENTAL RESULTS AND DISCUSSION FOR Cu12Sb4S13
*

In this chapter, I report NMR spectra and relaxation times relating to Cu atom viberation in

Cu12Sb4S13 tetrahedrite. We show that a two-phonon Raman process involving strongly anhar-

monic local vibrational modes dominates the NMR quadrupolar relaxation. A one dimensional

anharmonic potential is presented to model the anharmonic local oscillators providing a measure

of the dynamical atom displacements. Most of this chapter was published in an article in the jour-

nal ACS Applied Materials & Interfaces under the title of Structure Change and Rattling Dynamics

in Cu12Sb4S13 Tetrahedrite: an NMR Study" [2] and reproduced with permission.

6.1 Experiment

6.1.1 Sample preparation and characterization

Sample synthesis was carried out by our collaborator Dr. Xu Lu from Chongqing University.

A polycrystalline sample of tetrahedrite was synthesized by conventional solid state reaction. High

purity elements (> 99.99%) weighed according to the stoichiometric ratio were sealed in quartz

ampoules under a vacuum of ∼ 6.5 × 10−4 mbar. The sealed quartz tubes were firstly heated

to 923 K at a rate of 0.3 K min−1 and kept at that temperature for 12 h before cooling to room

temperature at 0.4 K min−1. The ingots obtained were ground into fine powders and then cold

pressed into pellets. The resulting pellets were further annealed at 723 K for a week in order to

improve homogeneity. The annealed products were re-ground into fine powders for sintering. The

final products were consolidated by the spark plasma sintering (SPS-625) system at 673 K for 5

minutes under a uniaxial pressure of 45 MPa.

An electron microprobe experiment was performed implementing wavelength dispersive spec-

trometry (WDS) on a Cameca SXFive armed with wavelength dispersive X-ray spectrometers to

test composition. Measuring at 10 locations, we obtained a mean composition of Cu11.91Sb3.95S13,

*Part of this section is reprinted with permission from N. Ghassemi, X. Lu, Y. Tian, E. Conant, Y. Yan, X. Zhou,
and J. H. Ross Jr, "Structure Change and Rattling Dynamics in Cu12Sb4S13 Tetrahedrite: an NMR Study," ACS applied
materials & interfaces, vol. 10, no. 42, pp. 36010-36017, 2018. Copyright (2018) American Chemical Society.
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with statistical fluctuation corresponding to less than 1% relative uncertainty in these values. Sys-

tematic uncertainties for this instrument are also on order of 1%.

Cu12Sb4S13
Cu14Sb4S13
Cu3SbS4

Figure 6.1: X-ray powder diffraction data for tetrahedrite sample (blue crosses), with refined curve
(green) and difference plot. In the inset, the most intense peak is Cu12Sb4S13 phase; small satellite
at 29.8◦ and 29.8◦ due to Cu14Sb4S13 and Cu3SbS4 phases, respectively. Reprinted with permission
from [2]

Crystal structural characterization was performed with powder X-ray diffraction (XRD) using

a Bruker D8 diffractometer with CuKα radiation. GSAS II software was implemented for Rietveld

refinement [140]. Tetrahedrite samples are known[105, 141] to segregate into regions of Cu-rich

Cu14Sb4S13 tetrahedrite (Cu14) in addition to Cu12Sb4S13 and the XRD results showed a small sec-

ond Cu14 phase in addition to the main phase, with refinement indicating a Cu14 phase fraction of

8.7%, with the the small amount of Cu3SbS4 phase [121] seen in XRD. Cu3SbS4 was also seen

in WDS. In agreement with reported results [105, 141] the fitted Cu12 and Cu14 lattice constants

are 10.3246 Å and 10.4458 Å respectively and the Cu3SbS4 phase has a lattice consisting of a

tetragonal unit cell containing 8 atoms in 121(I42m) space group with a=5.391 Å and c= 10.764
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Cu12 phase Cu14 phase
Site WP a x y z SOF b x y z SOF
Cu I 12d 0.5 0 0.25 1 0.5 0 0.25 1
Cu II 12e 0 0 0.2173 1 0 0 0.215 1
Cu III 24g – – – – 0.2885 0.2885 0.0054 0.082

Sb 8c 0.2687 0.2687 0.268 1 0.2664 0.2664 0.2664 1
S I 24g 0.884 0.884 0.3623 1 0.1149 0.1149 0.3603 1
S II 2a 0 0 0 1 0 0 0 1

Table 6.1: Atomic parameters in the refinement of Cu12Sb4S13 and Cu14Sb4S13 at room temperature.
Both structures cubic space group I-43 (# 217), with lattice constant a =10.3246 Å for Cu12Sb4S13

and 10.4458 Å for Cu14Sb4S13. a Wyckoff Position. bSOF: site occupancy factor. RW = 7.88%.

Å. Based on the WDS measurement, we estimated that there is 5% of this phase. Cu14Sb4S13 has

the same space group and a set of atomic positions nearly equivalent to those of Cu12Sb4S13, with

the addition of a small-occupation Cu interstitial (Cu-III) which provides charge balance and thus

expected insulating behavior along with eliminating the metal-insulator transition in this phase.

More discussion of the Cu14Sb4S13 phase is found in the next chapter. The Cu3SbS4 phase has an

XRD peak at an angle very close to Si crystal and initially assumed to be impurity due to the Si

structure. However further DFT calculations directed us to the existence of this phase. Figure 6.1

shows the result, with fitting details given in Table 6.1. For the minority Cu14 phase, the atomic

positions are close to those reported in ref. 141, with small differences especially for Cu-III. For

the fit, we assumed full site occupation of the tetrahedrite sites (except for Cu-III) due to relatively

low sensitivity to these parameters.

6.1.2 Measurement methods

A custom-made pulse spectrometer as explained in section (5.1), was used to conduct NMR

experiments in a constant magnetic field of 8.9 T in a temperature range from 4.2 to 295 K using

a multitemperature detecting probe. CuCl was utilized as the NMR shift standard for 63Cu and

65Cu spectra. NMR measurements employed spin echo integration vs frequency and fast Fourier

transformation (FFT), with the NMR spectra obtained by assembling and superposing FFT spectra

at a sequence of frequencies.
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NMR spin-lattice relaxation time (T1) measurements were obtained based on an inver-

sion recovery sequence implementing a multi-exponential function for recovery of the central

transition[142]. For magnetic shift contributions, we follow the convention K = (f − f0)/f0

for Knight shifts, with f0 the standard reference frequency and positive shifts having paramagnetic

sign. In the analysis, we used nuclear moment values (Q and γ) reported in ref. 143. The 63Cu and

65Cu gyromagnetic ratios γ and quadrupole moments Q used are as follows: 63γ = 7.1118 rad/s

G– 1, 65γ = 7.6044 rad/s G– 1 , 63Q = -22.0 fm2, 65Q = -20.4 fm2. Electric field gradients (EFGs)

are given in terms of the standard parameters νQ = 3eQVzz
2I(2I−1)h

and η = (Vxx − Vyy)/Vzz.

6.2 NMR Lineshape

The NMR resonance signal for lineshape is affected by various parameters. Given an ensemble

of spins placed in a non-homogenous magnetic field, the Larmor frequency signals in the lineshape

will be broaden due to inhomogeneity of magnetic field in the ensemble. Figure 6.2 shows the

63Cu room temperature line shape. Since Cu12Sb4S13 was shown not to have a NMR signal at

room temperature, the spectrum displayed in figure (6.2) is attributed to the Cu3SbS4 phase. The

disappearance of the Cu12Sb4S13 phase signal is due to Cu-ion motion as described later.

For 63Cu which has I > 1
2
, interaction between the EFG and the nuclear quadrupole moment

will split the energy levels. This kind of quadrupole interaction will impact the central transition

in the NMR spectrum. On the other hand, in general, the interaction between electron and nuclear

dipoles will lead to an anisotropic Knight shift which occurs typically once the symmetry at the

nucleus is less than cubic symmetry. This results in a number of frequency shifts based on orien-

tation of the sample and gives rise to spread of the NMR signal into a powder line shape. In the

case that none of mentioned interactions occur, the line shape is expected to have a characteristic

broadening which gives a direct information about the local field seen by nucleus.

The room temperature line shape for the powder sample has seven peaks. These are edge sin-

gularities of quadrupole-broadened powder patterns, and the results were fitted as a superposition

of two sites.

Fitting of the spectra was performed using the Quadfit package [144], and with a custom NMR-
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Figure 6.2: 63Cu NMR line shape for the sample including Cu12Sb4S13 and Cu3SbS4 phases, mea-
sured at room temperature. The inset shows the Iz = +1/2 to −1/2 central transitions while the
satellite transitions can be observed in the wider spectrum. The solid curve corresponds to the two
site fitting described in text.

line-shape code from our lab. Data were also taken using FFT methods for greater detail (shown

in figure 6.3 along with lower-temperature data), and by spin-echo integration with smaller H1

alternating field (Figure 6.2) for better resolution of the relative intensities.

The Cu3SbS4 phase has two Cu sites with two to one occupation ratio, these are denoted as site

A and B, respectively. Fitting the latter measurements gave spectral areas differing by about 24%

for the two fitted sites in Cu3SbS4 phase, due apparently to an enhanced broadening of the edge

singularities of site B giving some deviation from the fit. These are reasonably consistent with two

to one site occupation with the difference assumed to be due to T2 difference.

Site A (site assignment described below) exhibits the two outer satellite transitions (mz =

±3/2 ↔ ±1/2), in the upper plot of figure 6.2, as well as the central transition (mz = 1/2 ↔
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−1/2) edge peaks near 700 and 1100 ppm. This site was fitted with quadrupole parameters νQ =

3.6 MHz and η = 0, magnetic shift Kiso = 970 ppm, and a small axial magnetic shift anisotropy

δ = K‖ − K⊥ = +141 ppm, where the principal values are parallel and perpendicular to the

symmetry axis, respectively.

Note that the satellite peaks at−18000 and 19000 ppm provide a very good match to the central

transition in this fit and that there is no sign in this range of a second-order spectrum for νQ ≈ 18

MHz as observed at lower temperatures[10] and associated with Cu12Sb4S13. Thus, we see that the

Cu12Sb4S13 line shape is not present due to the motion of the Cu ions. The site B exhibits the outer

singularities seen in both plots of figure 6.2. These were fitted with νQ = 7.3 MHz, Kiso = 970

ppm, and a small axial shift anisotropy of δ = −145 ppm, with η = 0.

Given that two sites with νQ ≈ 3.85 MHz and νQ ≈ 7.59 MHz were identified at room

temperature, we completed a DFT calculation for the Cu3SbS4 compound. The result shows that the

Cu sites have computed values of νQ ≈ 3.64 MHz and νQ ≈ 6.59 MHz with η = 0 for both cases.

These are scaled down with respect to observed values but within the range of what is expected for

such calculations [132]. This confirms the existence of this phase in our sample. Further evidence

of Cu3SbS4 phase is found in the reflection due to small amount of this phase in the XRD results

figure (6.1). Therefore, we conclude the presence of Cu3SbS4 in this sample explains the presence

of the small peaks at room temperature. In fact, it has been reported that the pure Cu12Sb4S13 phase

does not have a room temperature signal [145, 146] which now we understand to be due to motion

of the ions. At low temperatures, the spectral weights are significantly enhanced below 150 K,

which addresses the dominance of the Cu12Sb4S13 phase signal.

Figure 6.3 displays the central part of the 63Cu NMR lineshapes at three temperatures. As

seen in the figure the Cu12Sb4S13 shift starts at about 650 ppm and becomes more positive as

temperature decreases below the MIT, matching the previously reported [10] Knight shift changes

for Cu12Sb4S13. Figure 6.4 shows the more detailed changes versus temperature approaching the

phase transition. There is a gradual lineshape change below about 200 K, as Cu12Sb4S13 becomes

visible then near T = 88 K the lineshape suffers an abrupt change at the position of the MIT [85] in
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synthetic Cu12Sb4S13. Over the same range a peak centered at about −700 ppm appears. However,

this resonance disappears at 4 K and we could not further analyze these changes.

Figure 6.3: Central region of 63Cu NMR line shapes at temperatures of 4.2 K, 77 K, and 140 K.
Line shapes have been scaled for convenience to give comparable intensities.

6.3 Cu12Sb4S13 Spectrum

Below Tc the parameters νQ= 75 kHz, η = 1, along with δ = 225 ppm and η = 1, provide

a good model for the 77 K data (inset, figure 6.3). With these parameters, the 77 K signal above

1300 ppm is a satellite resonance, and the measured 77 K T1 (0.20 s at 1700 ppm vs. 0.27 s at

the peak position) is also consistent with this assignment, given that for a quadrupole mechanism,

which dominates, as discussed below, the central transition T1 exceeds that of the satellites [147]

as observed here.
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Figure 6.4: 63Cu NMR line shapes plotted at different temperatures. Signals are scaled by factor T
to preserve the spectral intensity.

Figure 6.5 shows the most intense peak position versus temperature, along with its center of

gravity (c.g.) position. At room temperature, the Cu3SbS4 phase c.g. is 120 ppm below the fitted

isotropic K = 970 ppm due to the second-order quadrupole contribution, which adds a negative shift

[142]. Below about 150 K, the resonance is due to Cu12Sb4S13 phase. At intermediate temperatures

the c.g. and peak position are very similar due to a small EFG, while at 4 K the spectrum develops

considerable asymmetry, so the peak position and c.g. are again shown separately. The spectra

observed here is understood to be the Cu-I structure site, with Cu-II believed to have a very large

EFG [148, 10]. The Cu-I peak positions are the same as those of Kitagawa et al. [10], over the

temperature range previously reported, and this can be seen in figure 6.5. The large jump at Tc is

a Knight shift change, connected [10] to a large spin susceptibility change in the MST. At higher

temperatures the Cu-I peak merges with what becomes the lower edge of the Cu3SbS4 phase.

In measurements between Tc and 120 K a second site was also observed [10] with νQ = 18.6
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Figure 6.5: Position of most intense spectral peak, and center of gravity position (C.G), for 63Cu
resonance of Cu-I, and comparison to data taken from Ref. 10

MHz. As previously reported, the νQ = 18.6 MHz resonance also becomes very broad and difficult

to observe at low temperatures [10]. Note also that Bastow et al. [148] observed site II with

νQ ≈ 20 MHz at room temperature, but in a naturally-occurring tetrahedrite sample, in which, due

to heavy substitution the structural transformation and MST, would not be expected to occur.

In unsubstituted Cu12Sb4S13, previously reported resistivity measurements have exhibited an

unidentified feature at about 200 K [149, 114], and now we assume that the line-shape changes we

observe in this temperature range due to Cu-ion motion are also related to these observed features.

A gradual softening of the elastic constants is also observed between room temperature and the

MST [150], presumably related to ion dynamics.
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6.4 DFT Results

Ab initio density functional theory (DFT) simulations were conducted using WIEN2K[132],

applying the projector augmented wave (L)APW method and the Perdew-Becke-Ernzerhof (PBE)

exchange-correlation functional. A cubic 58 atom unit cell of Cu12Sb4S13 in the ordered configu-

ration of figure 2.1 with Cu at Wyckoff sites (12d) and (12e), S at (2a) and (24g), and Sb at (8c)

was investigated, using a 1000 k-point mesh and a plane wave cutoff of 100 eV. For a fixed lattice

constant of 10.306 Å, corresponding to the 100 K experimental value[151], the atomic positions

were relaxed.

For Cu3SbS4, we used the structure reported by Pfitzer [128] which includes a tetragonal unit

cell of 8 atoms in 121(I42) space group with a = 5.391 Å and c = 10.764 Å. The calculation

initialized with RKmax = 6, the plane-wave expansion cutoff of Gmax = 12 Bohr– 1 and 10 ×

10 × 10 k-points considered with the PBE (Perdew, Burke, and Ernzerhof) exchange correlation

function, without spin polarization or spin orbit coupling. Our calculated band gap is 0.054 eV

which is in good agreement with recently reported calculations 0.045 eV [152]. However, note that

it was recently shown [153] that using more advanced functionals yields a larger semiconducting

gap for this material. However, this is unlikely to have a large effect on calculated electric field

gradients (EFGs), which depend only on the filled states within the valence band. The EFG results

for the two Cu sites in this material, site A and site B, are 2.85318× 1021 (V/m2) and −1.46966×

1021 (V/m2) respectively, quoted as the largest-magnitude principal values of the EFG tensors,

which are symmetry-constrained to be axial in both cases. Converting to the standard quadrupole

parameter νQ = 3eQVzz
2I(2I−1)h

, based on the standard 63Cu quadrupole moment [143], we obtain νQ =

6.59 MHz and νQ = 3.64 MHz respectively with η = 0 for both nuclei. There are in a good

agreement with the νQ = 7.59 MHz and νQ = 3.85 MHz obtained from fitted curve to the room

temperature line shape. The band structure and DOS of Cu3SbS4 phase is provided in figure 6.6.
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Figure 6.6: Density of states and energy-band diagram for Cu3SbS4 along high symmetry lines in
the BZ.

The results of the Cu12Sb4S13 electronic structure derived by DFT calculation is shown in figure

(6.7). Cu12Sb4S13 appears to be in a metallic state where the Fermi energy sits close to a sharp peak

in DOS above the valence band, and a semiconducting gap (1.1eV) splits the conduction bands

from the valence bands. The valence bands are mainly due to hybridization of sulfur 3p and

copper 3d orbitals.
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Figure 6.7: Calculated electronic band structure and density of states for Cu12Sb4S13.

The results show that the Fermi level is in the valence band as expected for Cu12Sb4S13, indi-

cating p-type conduction for this composition, with band-structure agreeing with previous results

[3]. The calculated EFG provides help in further understanding the experimental results, as well as

measuring the charge anisotropy close to the nucleus. EFG results using the WIEN2K code[154],

for the two Cu sites are νQ = 0.3 and 17 MHz, with η = 0 and η = 0.15 respectively. These are

consistent with the values observed just above Tc in the pure tetrahedrite[10] and at ambient tem-

perature in natural tetrahedrite[148]. We also see reduced EFG close to Tc and the computational

results thus serve to reinforce the analysis showing that the spectrum near Tc corresponds to the

undistorted structure.
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6.5 Spin Lattice Relaxation

The most intense central transition peak was chosen to carry out NMR relaxation measure-

ments. This was done for 65Cu as well, with spectra for both nuclei showing similar features. The

T1 was fitted by a standard multiexponential function for magnetic recovery of the central transi-

tion [155]. For spin 3/2, this function is M(t)
M(0)

= A+ 1
5
e(t/T1) + 9

5
e(6t/T1). Using a different function

for quadrupole relaxation would lead to an overall scaling of the T1 which does not affect the fitting

parameters described below. We also fitted the same function including stretched exponentials, but

found that the ordinary exponential provided the better fit. The resulting rates can be seen in figure

6.8, where the data above the 150 K corresponds to the Cu3SbS4 phase. There is a relatively broad

jump in 1/T1 at around 88 K due to the MST [151]. In addition, a peak can also be observed at a

temperature around 12 K for both nuclei.

The isotopic ratio 63T1/
65T1, shown in figure 6.9, is uniform and stable over a large tempera-

ture range and approaching to the quadrupole moment ratio (Q65/Q63)2 = (20.4/22.0)2 = 0.86.

Within the framework of relaxation[156, 139] theory, this indicates a quadrupole mechanism. Spin

or other magnetic fluctuations will lead instead to a ratio determined by gyromagnetic ratios, also

shown in the figure. The quadrupole process is an indication of a lattice vibrations or atomic

fluctuations as the dominant mechanism.

As the temperature increases, T1T becomes constant, a situation usually indicative of Korringa-

like conduction electron relaxation[156, 157], while phonon processes normally lead to a T 2 or

higher temperature dependence of 1/T1. By contrast, the quadrupole-dominated T1T ∼ constant

behavior is a result that has been shown[158] to result from strongly anharmonic local-oscillator

behavior. It is interesting that this extends to the Cu3SbS4 phase and the values are almost identical.

The peak at the low temperatures is also characteristic of such behavior. This is interrupted by an

additional maximum in the relaxation rate appearing near the MST Tc, due to the slowing down

of fluctuations often accompanying a phase transformation, for example as typically observed in

incommensurate charge density wave systems[159].

Assuming additive quadrupole and magnetic contributions to the relaxation process, in order
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to further analyze we separated them by assuming [155, 160] 1
T1

= 1
T1Q

+ 1
T1M

with (T1M)−1 ∝ γ2

and[156] (T1Q)−1 ∝ Q2, where T1Q and T1M indicate the quadrupole and magnetic contributions.

This separation is an approximation, since the two relaxation functions differ somewhat, however

since the quadrupole process dominates for the entire temperature range, the correction is small,

and using the fitted T1 without separation gives results which are nearly identical to those obtained

by this procedure.
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Figure 6.8: 63Cu and 65Cu NMR spin-lattice relaxation rates at the most intense position of the
central transition from 4.2 to 295 K
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Figure 6.9: Isotopic ratio of overall relaxation rates, with limits for pure quadrupolar/magnetic
relaxation indicated. Squares are for Cu12Sb4S13 phase and circles are for Cu3SbS4 phase.

6.6 Anharmonicity

By employing real-space descriptors such as vibrational density of states for Cu12Sb4S13, it has

been shown[151] that the Cu12e atom has a location probability concentrated close to the plane

of its 3 S neighbors (Fig. 2.1) with off plane dynamic displacement. To model the effect of such

behavior on NMR relaxation Dahm and Ueda introduced a one dimensional double-well potential

to study this type of problem and obtained qualitative agreement with results for β-pyrochlore

oxide.[158] Following this result,[158] we define a Hamiltonian:

H =
P 2

2M
+

1

2
ax2 +

1

4
bx4, (6.1)
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where x, M and p are the coordinate, mass, and momentum of the Cu ion, respectively, and a and

b > 0 are constants. This is treated in a self-consistent quasiharmonic approximation resulting in

an effective harmonic Hamiltonian

H =
P 2

2M
+

1

2
Mω2

0x
2, (6.2)

where ω0 is phonon effective mode frequency determined implicitly from Mω2
0 = a + b〈x2〉T,ω0 .

The dependency of the thermal average x2 on ω0 and T is given by

〈x2〉T,ω0 =
~

Mω0

(
1

e~ω0/kBT − 1

)
. (6.3)

Eliminating b and a in favor of ω00 = ω0(T = 0) in equation 6.1 gives:

( ω0

ω00

)2

= 1 + β
ω00

ω0

[
1

e~ω0/kBT − 1
+

1

2
− ω0

2ω00

]
, (6.4)

where β = b ~
M2ω3

00
is a dimensionless factor characterizing the anharmonicity. NMR spin-

relaxation could be explained by two-phonon Raman process since the quadrupole term is the

dominant term,

1

TR1
=
(kBTV2

2M

)2 2

Γ0

4Γ2
0 + ω2

r

ω6
r

, (6.5)

where V2 is proportional to the second spatial derivative of the EFG, Γ0 is amount of phonon

damping and ωr is phonon frequency renormalization which can be obtained by taking the real

part of the phonon self-energy by ω2
r = ω2

0 + ω0ReΠ(ω).

In this model we obtain a good fit to our data, as displayed in figure 6.10 by the dashed curve.

This fit excluded the data shown in the figure at high temperatures, ignoring the points near the
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MST for which 1/T1 is clearly dominated by fluctuations related to the transition. The resulting

best-fit values are β = 58 , ω00 = 23 K, Γ0 = 4.0 K and ω0Re(Π) = −(4.7 K)2, corresponding

to an anharmonic potential well given by,

V (x) = (−13.4 J/m2) x2 + (4.2× 1022 J/m4) x4. (6.6)

This potential is shown in figure 6.11, also showing the energy levels obtained using a numeri-

cal package [161]. The separation between minima for this potential is 0.25 Å, and for comparison

to crystallographic data, the rms displacement calculated for 291 K ( Eq. 6.3) is
√
〈x2〉ω,T = 0.16

Å.

Since the MST is believed to involve a lattice distortion, it is not clear whether the low temper-

ature parameters should also apply above Tc. Thus, we used the method described above to fit the

1/T1Q data points only below the transition points (T< 70 K), with results shown in figure 6.10

as the dashed curve. This fitting gives β = 99 , ω00 = 29 K, Γ0 = 4.0 K and ω0Re(Π) = −(8.0

K)2, an anharmonic well with a distance 0.23 Å between minima, and room temperature rms dis-

placement of 0.13 Å. The fitted potential is thus similar but slightly narrower than what is obtained

by including the high-temperature data. For the data above the MIT, it is not possible to make a

separate fitting of the rattling behavior based only on the (T1T )≈ constant plateau at these temper-

atures, however since the low-temperature-only fit passes rather close to these data we infer that

there is not a large change in the dynamics across the MST boundary. Since the T1 is sensitive only

to dynamical behavior, rather than static disorder, it is clear that the low-temperature structure re-

tains the rattling processes, with the dynamics not frozen out by a distortion of the structure below

the MST or a large asymmetry in the potential well.

Other measures of the rattling behavior are provided by crystallographic methods, which have

been analyzed to yield[151, 162] room-temperature thermal parameters for the 12e Cu site in the

range 0.14 Å
2
, corresponding to a rms displacement on order of 0.37 Å. However, as described
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Figure 6.10: Quadrupole NMR relaxation rate for 63Cu compared with the fitted anharmonic model
(dashed curve). Dashed curve obtained from fit of low-T data only.

above [151] a split site analysis for this site, with probability maxima displaced by 0.30 Å bringing

it closer to one of its neighbor S atoms, gives a better fitting. The latter model has as its largest

residual thermal parameter U33 = 0.0294 Å
2

corresponding to a room temperature rms Cu 12d

displacement of of 0.17 Å along one direction. This is quite close to the fitted result obtained here,

making it appear likely that this indeed corresponds to a one-dimensional rattling behavior of the

12e Cu ions.
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Figure 6.11: Fitted 1D double-well potential of equation 6.6 with calculated energy levels.
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7. COPPER-ION HOPPING AND PHASE SEGREGATION IN CU-RICH TETRAHEDRITE*

In this chapter, 63Cu NMR measurements are reported for the Cu-rich phase of Cu12+xSb4S13

(x . 2) and compared to Cu12Sb4S13. We identify the NMR signatures of the phase segregation

into Cu-poor (x ≈ 0) and Cu-rich (x . 2) phases, with the metal-insulator transition observed in

Cu12Sb4S13 suppressed in the Cu-rich phase. Based on NMR T1 and T2 measurements, the results

demonstrate Cu-ion hopping below room temperature with an activation energy of ∼150 meV for

the Cu-rich phase, consistent with superionic behavior. The NMR results also demonstrate the

effects of Cu-ion mobility in the Cu12Sb4S13 phase, but with a larger activation barrier. We identify

a small difference in NMR Knight shift for the metallic phase of Cu12Sb4S13, compared to the

Cu-rich phase, and when compared to DFT calculations the results indicate a mix of hyperfine

contributions to the metallic shift. Much of these results has been reported in reference [163].

7.1 Copper Rich Tetrahedrite

The phase diagram of Cu12+xSb4S13 with 0 ≤ x ≤ 2 has been studied over a wide range of tem-

peratures. Samples segregate into two tetrahedrite structural phases (Cu12Sb4S13 and Cu14Sb4S13 )

which converge to a single phase [164, 165, 83] at higher temperatures, driven by relatively mobile

Cu ions. In Cu12Sb4S13, the Fermi level sits within the valence band making it metallic or heav-

ily p-type, and a metal semiconductor phase transition (MST) occurs [166] at around 85 K, with

structural changes accompanied by an increase in resistivity [166] as well as a drop in magnetic

susceptibility [85]. The extra coppers in Cu14Sb4S13 are expected to fill unoccupied states and

push the Fermi level to the band-gap, hence rendering the compound insulating. There is currently

practical interest in such a phase. Recently, Yan et al. [167] reported that adding 1.5 extra Cu per

formula unit to Cu12Sb4S13 enhances the efficiency up to ∼ 66%. In further band engineering, it

was found that adding Se resulted in ∼ 64 % further enhancement in power factor. A new method

*Part of this section is reprinted with permission from N. Ghassemi, Y. Tian, X. Lu, Y. Yan, X. Zhou, and J.
H. Ross Jr, "Copper-Ion Dynamics and Phase Segregation in Cu-Rich Tetrahedrite: an NMR Study, The Journal of
Physical Chemistry C, vol. 124, no. 7, pp. 3973-3979, 2020. Copyright (2020) American Chemical Society.
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was also proposed in tetrahedrites to lower κL by using spinodal decomposition [114] of the Cu-

poor and Cu-rich phases. This induces additional channels for phonon scattering and reduces the

lattice thermal conductivity substantially. In addition, there are ongoing efforts to utilize Cu ion

mobility in these and related Cu chalcogenides as an avenue for reducing thermal conductivity

for thermoelectric applications [168], as well as in other device applications [169], although the

impact of mobility on the stability of microfabricated devices is also a potential issue. Thus it is

important to understand the kinetics and local structures involved in this segregation process.

NMR can be an effective way to probe ionic hopping in solids [170, 171], allowing sensitiv-

ity to a range of dynamical time-scales from 10−7 to 1 s and longer, not easily probed by other

techniques. The local chemical information provided through NMR studies also provides a useful

complement to other techniques such as diffraction studies, and also can often allow disordered or

mixed systems to be studied effectively [172]. Nuclei with quadrupole moments, such as the 63Cu

nucleus probed here, can be particularly sensitive in this regard, since the electric field gradients

which couple to the quadrupole moment can exhibit large changes in response to atomic displace-

ments. In this work, we have used NMR techniques to study a copper rich Cu12+xSb4S13 tetrahedrite

material. We show that the NMR spectra and relaxation times demonstrate the presence of the Cu

motion extending to low temperature, with particularly high mobility observed in the copper rich

tetrahedrite. Spin-lattice relation measurements provide an estimation of the activation energy of

these mobile ions.

7.2 Experiment

7.2.1 Sample preparation

Synthesis: similar to the materials studied in the previous chapters, these samples are made by

our collaborator, Dr. Lu. Polycrystalline samples of Cu12Sb4S13 (Cu poor) and Cu13.5Sb3.98Sn0.02S13

(Cu rich) tetrahedrite were obtained by melting stoichiometric amount of high purity (> 99.99%)

elements (Cu, Sb, S) at 923 K for 12 h, and then cooling down to room temperature. The obtained

samples were annealed at 723 K for a week. Finally, the obtained ingots were hand ground into
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Cu12 phase Cu14 phase
Site WP a x y z SOF b x y z SOF
Cu-I 12d 0.25 0.5 0 1 0.25 0.5 0 0.9873
Cu-II 12e 0.2142 0 0 0.9460
Cu-II 24g -0.2485 0.0642 -0.0642 0.5
Cu-III 24g 0.2851 0.2851 0.0102 0.15

Sb 8c 0.2652 0.2652 0.2652 1 0.2666 0.2666 0.2666 0.9881
Sn 8c 0.2653 0.2653 0.2653 0.005
S-I 24g 0.1193 0.1193 0.3788 1 0.1144 0.1144 0.3513 1
S-II 2a 0 0 0 1 0 0 0 1

Table 7.1: Crystallographic information at 300 K for Cu rich sample including Cu12 minority
phase. Lattice parameters a = 10.4409 Å for Cu14 (phase fraction 70%) and a = 10.3205 Å for
Cu12 (phase fraction 30 %). Rw = 6.05%. aSOF: site occupancy factor. b Wyckoff Position.

fine powder for spark plasma sintering (SPS-625) at 673 K for 5 min under a uniaxial pressure of

45 MPa.

7.2.2 Measurement methods

Room temperature powder X-ray diffraction (XRD) data were collected using a Bruker D8

spectrometer with CuKα radiation and analyzed using the GSAS-II package[173]. NMR mea-

surements were carried out using spin echo integration versus frequency and by assembling and

superposing Fast Fourier Transformation (FFT) spectra at a sequence of frequencies. These mea-

surements were executed in a magnetic field of 8.9 T at frequencies near 100 MHz, using a custom-

made pulse spectrometer in a temperature range from 4.2 to 300 K. A silver coil was used to

eliminate spurious Cu NMR signals. 63Cu NMR chemical shifts were referenced to CuCl.

NMR spin-lattice relaxation time (T1) measurements were obtained based on an inversion re-

covery sequence implementing a multi-exponential function for recovery of the central transition

[142]. We follow the convention K = (f −f0)/f0 for Knight shifts, with f0 the standard reference

frequency and positive shifts having paramagnetic sign. In the analysis, we used nuclear moment

values (Q and γ) reported in Ref. [143]. Electric field gradients (EFGs) are given in terms of the

standard parameters νQ = 3eQVzz
2I(2I−1)h

and η = (Vxx − Vyy)/Vzz.
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7.3 Results and Analysis

The X-ray result and refinement are plotted in Figure 7.1. XRD analysis shows that the sample

includes distinct Cu13.6Sb4S13 and Cu12Sb4S13 phases without any secondary phases. Detailed re-

sults are in Table 7.1. These phases will be referred to as Cu14 and Cu12 respectively. Both phases

were refined in the cubic structure of space group I4m (217) with lattice constants a = 10.4409 Å

and a = 10.3205 Å respectively, in good agreement with what was previously reported [164, 2].

The Cu14 majority phase has phase fraction 0.70 and the Cu12 minority phase 0.30. The Cu12

unit cell has two distinct Cu sites while Cu14 phase has three Cu sites with the site labeling the

same as used previously (see figure 2.1) with the addition of the interstitial Cu-III site as previously

proposed (see reference [141]). A good fit for the Cu12 minority phase was obtained by setting all

sites to 100% occupancy, except for the Cu-II site which was modeled as having a split-site 24g

configuration.

The half-occupied 24g site-II represents a two-fold off-center position for this ion, consistent

with the fit described by Vaqueiro et al. [164]. Cu14 has a similar configuration with the addition

of an interstitial Cu-III partially occupied site. Note that the XRD refinement in the Cu14 phase

had a low sensitivity to Cu-I occupation in the range of 0.90 to 0.99. However, we obtained a

slightly better fit with 0.99 occupation (Rw= 6.053% vs Rw= 6.138% for 0.92 occupation).

63Cu NMR spectra obtained at several temperatures for a rich sample are shown in Figure

7.2. Also superposed are spectra for a Cu12SbS13 sample, as described in chapter 6 and reported

previously [2]. The Cu-II position in Cu12 has a large quadrupole broadening [2] (νQ ≈ 18 MHz),

and is well out of range in these spectra, whereas Cu-I has a very small quadrupole broadening

(νQ ≤ 1 MHz) [148, 145, 146]. Since Cu14 has essentially the same structure, with the addition of

the interstitial site, we assume here that Cu-II for the Cu14 phase is also out of range here, and we

analyze these spectra as representing Cu-I and Cu-III sites for the Cu14 phase as well as the Cu-I

site for the Cu12 phase. Above the Cu12 MST we find that the spectrum contains two main peaks.

These are the central transitions (−1/2 
 1/2) for copper nuclei with I = 3/2. A broad peak

is also observed to underlie these lines. Therefore, the spectra were fitted assuming three distinct
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Figure 7.1: Powder X-ray diffraction patterns collected at room temperature for the Cu-rich
Cu13.6Sb3.98Sn0.02S13 sample, showing the two fitted phases.

sites.

The Cu3SbS4 phase described previously was not found in the Cu14 sample, and also we tested

a new Cu12 sample, with no room temperature signal which is in agreement with Matsui et al.

[145] and Kitagawa et al. [146]. In the present results, the spectral weights are significantly

reduced above 150 K (Figure 7.2), both in the Cu12 and Cu14 phases, an effect of ionic hopping

at these temperatures, as described below.

In the analysis of the Cu-rich sample, we fitted three Gaussian peaks to the spectra correspond-

ing to the model identified above. Figure 7.3(a) shows the lineshapes with fitted peaks at three

different temperatures. One of these peaks corresponds to the Cu12 minority phase, as can be

seen from the superposed spectra shown in Figure 7.2 and also Figure 7.3(b). The position for this

peak rises with decreasing temperature from about 600 to 1200 ppm, in good agreement with the
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Figure 7.2: 63Cu NMR spectra for Cu14Sb4S13 at temperatures as shown. Solid curves are line-
shapes for Cu12Sb4S13 from reference[2]. The dashed lines are guides to the eye identifying the
Cu-I site in Cu14 and Cu12 phases.

observed shifts for this composition [2, 145, 146]. The remaining signal is assigned to the Cu14

main phase. At 4 K the broadening is such [2] that the three peak model does not converge since

the Cu12 phase also exhibits broadening due to structure change in the insulating phase. However,

the general features, a shoulder at around 1200 ppm due to Cu12 and an additional peak near 900

ppm, can still be identified. These are plotted along with the fitted results in Figure 7.4 which

summarizes the evolution of the peak positions vs temperature.

As the temperature changes, the fitted peak near 900 ppm remains unchanged. We attribute

this peak to the Cu-I site in the Cu14 majority phase; with Cu-I in the metallic phase of the Cu12

composition known to exhibit a negative Knight shift above the MST due to the core polarization

mechanism, it is reasonable that this peak should have a more positive shift in the charge balanced
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Figure 7.3: (a) NMR lineshapes and fitted spectra for Cu-rich sample at three indicated tempera-
tures. Three fitted peaks are also shown, according to the model described in the text, as shown (b)
Lineshape for Cu12Sb4S13 sample at 120 K with the vertical lines showing identical shift positions
as those in part (a). (c) 63Cu spectra (NMR signal ×T ) versus temperature for Cu14Sb4S13 sample
showing the signal loss at high T .

Cu14 phase. Note also that the line-width for this peak, as well as the Cu-I peak for Cu12, are

comparable to what was recently reported [145] for Cu12. As anticipated, the results indicate that

the phase transition is absent in the Cu14 phase. Meanwhile, the intensity of the much broader

third fitted peak is such that it is assigned to Cu-III interstitial ions combined with Cu-I sites, as

described below.

At 100 K, the fitted broad peak represents a fraction 0.40 of the NMR spectral weight, versus

0.36 for the Cu-I peak in the majority phase and 0.24 for Cu-I in Cu12 phase . XRD indicates

6 Cu-I sites fully occupied in the Cu12 phase (30% phase fraction); whereas, for the Cu-rich

phase the results indicate 1.8 Cu-III ions per formula unit, in addition to the 6 Cu ions on Cu-I

sites. This yields an expected relative spectral weight of 0.25 for the Cu12 phase, in reasonable
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agreement with the fitting. By contrast, the Cu14 phase XRD occupancies yield expected relative

spectral weights for Cu-I and Cu-III equal to 0.58 and 0.18 respectively. The corresponding fitted

lines do not have this expected approximately 3:1 intensity ratio. However, the Cu-III interstitial

site is a nearest-neighbor for Cu-I, and occupation of such a neighbor site would be expected

to induce a large change in the EFG’s experienced by the Cu-I site. With the Cu-III 24g site

occupation observed to be 0.15 and since each Cu-I has four Cu-III near-neighbors, assuming

random occupation of the Cu-III sites, the probability for a Cu-I to have no Cu-III neighbors will be

0.854 = 0.52, and therefore half of the Cu-I sites are expected to experience a significantly enhanced

EFG. The observed reduced NMR intensity for the Cu14 phase Cu-I line, and enhancement of the

broad peak intensity, are in reasonable agreement with this scenario. Thus we assume that the

broad peak is due to Cu-III interstitials combined with Cu-I sites directly affected by the Cu-III

occupation, with the breadth due to random occupation of the latter sites.

7.4 Copper Motion

The temperature dependence of the Cu14Sb4S13 spectra is further illustrated in Figure 7.3(c).

Whereas the integrated spectral areas scaled by temperature would normally be temperature inde-

pendent if the spectral weight is conserved, the observed reduction in NMR signal can be attributed

to slow Cu hopping. This is observed in all samples: the NMR echo signal is sharply reduced in

the temperature range 100 to 160 K, with the onset of hopping observed in both Cu-poor Cu12 as

well as Cu-rich Cu14 in this same temperature range, although for Cu14 the faster drop implies

greater Cu-ion mobility in the Cu14 phase. This can be compared to the large difference in Cu

mobility reported for Cu12 vs. Cu14 phases at high temperatures once super-ionic behavior sets in

[164].

For further confirmation of the dynamics of copper hopping, the spin-echo decay was measured

by varying pulse separation, (tdel) in a standard spin-echo sequence, at the 900 ppm peak position

for Cu-I in the Cu-rich Cu14 phase (Figure 7.5). We also made a similar measurements for the

second, Cu12-dominated sample. The data were fitted to
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Echo = C[(1− α)e−(2tdel/T2g)2

+ αe(−2tdel/T2e)], (7.1)

where T2g and T2e are the Gaussian and exponential T2 decays, respectively with T2 here referring

generally to all processes contributing to the echo decay. The ratio α helps to determine the relative

significance of motion, since normally exponential decay is dominant when motion is important,

while more nearly Gaussian decay occurs for a static NMR line, controlled by the nuclear dipole-

dipole or pseudo-dipolar couplings [156].

Figure 7.6 summarizes the fitting results. The low-T decay curve for both samples is dominated

by Gaussian decay. However, as the temperatures rise, α increases, indicating that atomic motion

is more important. Both samples show an increasing α vs. T , signaling the onset of dynamics, see
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Figure 7.5: Spin echo decay rate for Cu14 phase at different temperatures, with fits described in
text.

inset of Figure 7.6. Note that there is a larger underlying dipole width (shorter T2g) for the Cu12

sample contributing to the observed difference in α in addition to the faster increase in 1/T2e for

Cu 14. However, clearly Cu12 has a lower mobility as the majority phase, similar to what was

found as the minority phase in Cu14.

In analyzing the fitted T2e for the Cu14 main phase, we assume an activated process with

hopping time τ = τ0exp(∆E/kBT ), where ν0 = 1/τ0 is the attempt frequency and ∆E is the acti-

vation energy. Assuming each Cu-ion hop destroys the echo refocusing process for a Cu ion and its

neighbors, T2e will equal the mean hopping time. This is a strong-collision, slow motion approxi-

mation, likely valid for the present case since the change of quadruple parameters associated with

a sudden hopping event will make large changes in the precession frequency, removing it from the

echo signal. We fitted only the last few points where α is close to 1, so that T2e can be considered
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as dominated by motional processes. This yielded ∆E ≈ 116 meV. We also obtained a relatively

large attempt time τ0 ≈ 2.25 × 10−8s. The attempt time is significantly larger than expected for

vibrational motions in solids, however this is a typical situation for NMR fitting for superionic con-

ductors in the hopping regime, for reasons which are not entirely clear [174, 170]. This activation

energy is consistent with the result obtained from T1 measurements, described below. This helps

to confirm the connection of kinetic processes to the disappearance of the NMR signal, rather than

for example broadening or splitting of the NMR lines due to a symmetry breaking.

The nuclear dynamics can also be detected through the temperature dependence of the spin

lattice relaxation time (T1). 63Cu 1/T1T for the Cu14, Cu-I site, is shown in Figure 7.7. Faster

relaxation behavior was reported in Matsui et al. [145] for a Cu12 sample although this is due
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plained in the text.

in part to the difference in fitting functions. 1/T1T is fitted to the activation equation [174, 175]

a/Te
(−∆E
KBT

)
+ b, where ∆E is activation energy and a and b are constants. Figure 7.7 shows results

of fitting with ∆E =145± 30 meV due to hopping in the Cu14 sample which is also in agreement

with the activation energy we derived from T2. Thus, even though the temperature range is limited

due to the disappearance of the spin echo due to hopping, for Cu14 we obtain a consistent measure

of the activated process involved here.

7.5 Discussion

The proposed Cu14 structure [86], with two extra Cu on the interstitial sites refined from X-ray

diffraction, provides a good model for the observed NMR amplitudes. In the original X-ray fitting

report, it had also been proposed [86] that some Cu ions were on unknown sites not accounted

for by the Cu-I, Cu-II and Cu-III sites. Here we see that the 3-site model does well in accounting
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for the NMR results. Previous results [164] also point to Cu-I occupation close to 1, and as noted

above, NMR is consistent with this picture.

It has also been proposed [176] that the occupation of Cu-I should be reduced to 0.67 in the

Cu14 phase with a corresponding fraction of Cu ions promoted to interstitial sites. This is due

to the small refined Cu-I-Cu-III distance [86] of 2.37 Å. We tested this occupation in the XRD

refinement, however, the Rw increased to 7.16 % with GOF= 2.38. In the refined results of the

table 7.1, bond length between Cu-I to Cu-III is 2.36 Å, which is a normal Cu-Cu bond length

[177, 178], however, with considerable uncertainty. Thus, it is unclear whether the Cu-I−Cu-III

distance is an anomalously short one.

In the NMR spectra, we observed two peaks at ∼ 600 and ∼ 900 ppm for temperatures above

the MST. Normally the contribution to the conduction electrons and holes to the NMR shift is a

Knight shift (K). In an effective mass approximation, often appropriate for semiconductors [179],

it is found that in the metallic limit K ≈ n1/3, where n is the carrier density. Thus, Cu14 (with

balanced charge composition) is expected to have K much closer to zero, and thus we expect that

K for the metallic phase of Cu12 is approximately equal to −300 ppm.

DFT calculations (provided in section 7.6) for Cu12Sb4S13 show that the Cu-d partial density

of states for Cu-I is gd(EF ) = 2.48 eV/atom. This is comparable to what was found by Lu

et al. [102] Considering the d-electron hyperfine field [180] −17.2 T/µB obtained for cuprate

superconductors, the calculated gd(EF ) yields an estimate K = −2470 ppm. The observed value

is considerably smaller, thus we conclude K can not simply be due to d-core polarization based

on the calculated valence band of the DOS. Matsui et al. [145] have discussed that K can include

considerable correlation effects. However, it is surprising that such effects should give the factor

of ∼1/6 reduction in K that we obtain here. We speculate that there is an additional competing

spin contribution to the Cu12 shift due to other mechanisms. DFT results indicate that gs(EF ) is

200 times smaller than the d term, thus it seems likely that an orbital hyperfine contribution gives

partial cancellation.

The activation energy for ionic motion in the Cu14 phase is comparable to that of similar types
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of superionic materials. Normally, solids that have ionic conductivity of 10 S/m or larger as well

as activation energy on order of 100 meV, are considered as solid state ionics [170].Wang et al.

indicate several examples of Li diffusion with Ea in the range of 170 to 220 meV[181]. Among

Cu compounds, the activation energy in Cu2Se is [182] 230 meV. In Cu2Te the activation energy

is 350 meV and doping small amount of Ag increases activation energy [183] up to 500 meV. In

Cu-I the extracted [184] activation energy is 640 meV but CuI has a first-order phase transition

to its superionic phase. Therefore, even though tetrahedrite has a first order transformation to its

superionic phase, its Cu ions are nevertheless also quite mobile at low temperature. Thus, the

results are in line with those of other materials, and the NMR activation results demonstrate that

the behavior extends to low temperatures, with considerable Cu mobility apparent in both phases

at room temperature and below.

Based on the activation energies we consider a simplified statistical approach to the hopping

process in Cu14. Since the Cu-I site is an immediate neighbor to the partially filled Cu-III sites, we

assume hopping proceeds mainly through these two sites. We further assume that the Cu-I site is

in the lower energy state and that the energy difference is equal to the observed hopping activation

energy. The entropy is S = kB lnΩ, where Ω is the multiplicity of states. If ni is the number of Cu

atoms on Cu-III interstitial sites per cell at T = 0 and x is the number of Cu-I atoms promoted to

Cu-III site, we obtain:

Ω =
(

(12N)!
[(12−x)N ]![xN ]!

)(
(24N)!

[(24−ni−x)N ]![(ni+x)N ]!

)
(7.2)

for a large number N of unit cells. Minimizing the free energy leads to

x(ni + x)

(12− x)(24− x− ni)
≈ e−∆/KT , (7.3)

where ∆ is the energy difference between Cu-I and Cu-III sites. Using ∆ = 145 meV derived from
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T1 fitting results at room temperature, with ni = 4 (corresponding to the Cu14Sb4S13 composition)

this leads to x = 0.14. This corresponds to Cu-I occupation of 1 − (0.14/12) = 0.99. At 493 K,

the Cu-I occupation based on the same model is reduced to 0.90. The XRD results for Cu-I in the

Cu14 phase shows occupation of 0.99 at room temperature which agrees with this estimation. Also

Vaqueiro et al. [164] show that the occupation in their sample drops from 0.92 at room temperature

to 0.86 at 493 K, before at higher T the phases become mixed in a first-order transition. The

agreement seems reasonable.

For Cu12 phase the composition corresponds to ni = 0. Assuming an activation energy of 150

meV gives a room temperature Cu-I occupation of 0.88 which is much smaller than the observed

1.00 occupation. This agrees with our observation that the Cu12 NMR line amplitude drops more

slowly vs. T , indicating a larger activation energy. Assuming instead an activation energy of 280

meV for Cu12 leads to x = 0.06 at room temperature (thus Cu-I occupation equal to 0.99), and

x = 0.54 at 493 K (occupation of 0.95). This agrees with our XRD refinement for Cu-I in the Cu12

phase and also the reported occupation dropping to 0.95 for this phase [164] at 493 K. Thus, the

fitted activation energy results, along with an estimated larger energy for Cu12, are consistent with

the reported site occupations, giving further confirmation to the analysis of the NMR results. For

the Cu12 phase as noted above, the activation energy is larger by a factor on order of two, however

this result is still in the range observed for other superionic conductors, and a significant amount of

Cu-ion mobility is to be expected at high temperatures in both of these phases. This result should

be important for device design and development.

7.6 DFT Results

Density function theory (DFT) calculations were conducted using the WIEN2k package [132].

We took separation energy between core and valence states as RKmax= 6 Ry, the plane-wave

expansion cutoff Gmax = 12 Bohr−1, and 12 × 12 × 12 k-points and adopted the exchange cor-

relation functional introduced by Perdew, Burke, and Ernzerhof (PBE) [130]. The calculation was

run without spin-orbit coupling or spin polarization. Density of states results are shown in Figure

7.8, for the Cu-I site, and in Figure 7.9 for the Cu-II site. Also, Figure 7.10 shows a comparison
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of the full density of states and the Cu partial densities of states (for all orbital symmetries) for the

two sites. The full density of states is comparable to what has been reported previously [3].
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Figure 7.8: Partial density of states of Cu-I for Cu12Sb4S13.
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Figure 7.9: Partial density of states of Cu-II for Cu12Sb4S13.

-4 -2 0 2 4 6 8
0

20

40

60

 Total
 Cu-I
 Cu-II

E (eV)

D
O

S

Figure 7.10: Partial density of states for Cu-I and Cu-II and total density of states for Cu12Sb4S13.
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8. IMPACT OF DOPING TETRAHEDRITE WITH RARE EARTH ELEMENTS

In this chapter, I will discuss the consequences of substitution of transition metals with 3d 

electrons on electronic and magnetic characteristics of the parent Cu12Sb4S13. For this purpose, I 

analyzed the low-temperature experiments as well as first-principles electronic-structure calcula-

tions. Furthermore, I will report the result of substitution of Te on Sb sites.

In total, results for eight samples are described in this chapter. The samples are provided by 

Dr. Lu from Chongqing University and have been prepared in the following method: All doped 

samples were obtained by melting the stoichiometric amount of high purity elements at 923 K for 

12 h, and then cooling down to room temperature. The obtained samples were annealed at 723 K 

for a week. Eventually, the obtained ingots were hand ground into fine powder for spark plasma 

sintering (SPS-625) at 673 K for 5 min under a uniaxial pressure of 45 MPa. WDS measurements 

was carried out for some samples in Materials Characterization Facility (MCF) at Texas A&M 

University. The powder X-ray diffraction (XRD) patterns of the samples were obtained with a 

Bruker D8 diffractometer with using CuKα (λ = 1.5418 Å radiation). GSAS II software was 

implemented for Rietveld refinement [173].

8.1 NMR Results

8.1.1 Cu10.6Zn0.5Ni0.9Sb4S13 Sample

In order to test the stoichiometric composition of this sample, an electron microprobe experi-

ment was performed implementing wavelength dispersive specrometry (WDS) on Cameca SXFive 

armed with wavelength dispersive x-ray spectrometers to test composition. Measuring at 10 loca-

tions, we obtained a mean composition of Cu10.6Zn0.5Ni0.9Sb4S13, with statistical fluctuation corre-

sponding to less than 2% relative uncertainty in these values. A back-scattered image is shown in 

figure 8.1.
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Figure 8.1: Back-scattered electron image of the Cu10.6Zn0.5Ni0.9Sb4S13 sample after heat treatment
(scale bar 200 µm in the bottom of the figure).

Further, to test the crystal structure parameters, we performed powder XRD measurement for

this sample and the refinement parameters based on weighted profile, in the typical Rietveld refine-

ment for Cu10.6Zn0.5Ni0.9Sb4S13, as well as Cu10ZnNiSb4S13, and Cu10Zn2Sb4S13 samples described

later, at 290 K, Rws are 6.23%, 6.445%, and 7.32% respectively. The XRD patterns and crystallo-

graphic information are shown, in figure 8.2.

Note that Ni, Cu, and Zn atoms are next to each other in the periodic table and powder XRD

typically does not have enough sensitivity to distinguish these elements. Therefore we used the

unsubstituted Cu12Sb4S13 composition to fit the lattice parameters. Full site occupations were

also assumed due to small sensitivity to these parameters. The filled lattice parameters for the

three samples at room temperature are a = 10.3224 Å, a = 10.3482 Å, and a = 10.3781 Å for

Cu10.6Zn0.5Ni0.9Sb4S13, Cu10ZnNiSb4S13, and Cu10Zn2Sb4S13 samples respectively. There are shown

in figure 8.3. The a = 10.3781 Å obtained for Cu10Zn2Sb4S13 sample is in good agreement with
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Figure 8.2: Room temperature X-ray powder diffraction data for doped tetrahedrite samples, with
refined curves (green) and difference plots. The results were fitted to Cu12Sb4S13 room tem-
perature structure with occupation unchanged. (a) Cu10.6Zn0.5Ni0.9Sb4S13 sample, Rw=6.23%,
and lattice constant a = 10.3224 Å. (b) Cu10Zn2Sb4S13 sample, Rw=7.32% and lattice constant
a = 10.3781 Å. (c) Cu10ZnNiSb4S13 sample, Rw=6.445% and lattice constant a = 10.3482 Å.
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a = 10.38 Å in reference [7] and the Zn, Ni dual-substituted materials fall between the limiting

cases of Ni2 and Zn2 substitution, as might be expected.
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Figure 8.3: Lattice parameter for doped Cu12–xTrxSb4S13 tetrahedrites. The data for Cu10Ni2Sb4S13

and Cu10Zn2Sb4S13 sample is from reference [7]. Lines show schematically the behavior of the
partially substituted Zn and Ni materials.

Fig.8.4 illustrates a 63Cu NMR spectrum for the Cu10.6Zn0.5Ni0.9Sb4S13 sample at room temper-

ature. There are three clear peaks giving indication of two sites, similar to undoped tetrahedrite,

described in previous chapters, with the narrow peak in the middle with small νQ and two peaks

corresponding to a larger νQ site.

Line-shapes were fitted as powder patterns assuming two sites. A narrow peak at the center

considered to belong to site I was fitted with Kiso = 930 ppm and νQ= 0.9 MHz and large EFG

broadening. The second line is assigned to site II and fitted with νQ= 19 MHz and Kiso = 2000

ppm. The peak with small EFG is assigned to Cu-I and the peak with larger EFG is assigned to Cu-

II based on similarities to the unsubstituted Cu12Sb4S13 phase. Site II has second order quadrupole
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contribution in the range of this spectrum while site I has first and second order quadrupole contri-

butions.

We further analyzed the areas under the fitted line using a custom filling routine written by

members of our research group. The areas represent the signal associated with specific sites in

the structure and can provide a quantitative comparison of the site occupancies. The calculation

includes the appropriate spin-matrix amplitudes for the central transitions and satellites and with

those factors the calculation obtains a site ratio of 1.6 for Cu-I vs Cu-II. This is somewhat larger

than predicted from DFT calculation results that show Ni and Zn atoms prefer to substitute on the

Cu-I sites in the Cu12–xTrxSb4S13,(Tr= Ni, Zn), compositions [91]. For example substituting for 1.4

Cu-I sites-I this case would yield a ratio 6/4.6 = 1.3. The NMR results are, thus, consistent with

substitution on this site, but the ratio is enhanced for reasons not yet known, for example substitu-

tion might also cause additional promotion of Cu-I atoms to interstitial sites as discussed previously

for the Cu14Sb4S13 composition. The general result is in agreement with DFT calculation results

that show Ni and Zn atoms prefer to substitute to the Cu-I sites in the Cu12xTrxSb4S13,(Tr= Ni, Zn),

compositions [91].
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Figure 8.4: 63Cu NMR spectrum for Cu10.6Zn0.5Ni0.9Sb4S13 sample at room temperature with fit
discussed in the text.

The EFG indicates the rate of change in electric field around the nuclei and is connected to νQ

by νQ = 9eQVkk
6I(2I−1)

where I is the nuclear spin and Vkk = ∂V/∂xk∂xk is the major principal EFG

tensor component, while the asymmetry parameter η is defined as η = Vii − Vjj/Vkk.

The large distribution of EFGs on Cu-I (fitted to a νQ = 1.8 MHz full-width νQ distribution)

could be explained as due to the alloy disorder effect on the four-coordinated distorted tetrahedral

sites Cu-I as expected. This can be further enhanced by the random local structural distortions (see

section 8.1.4) which is a likely effect of substitution. The narrow central peak associated with Cu-I

is broadened only to second order by the EFG’s while the signal in the -5000 to 5000 ppm range

associated with its first order satellite has first order quadrupole broadening. In our fitting very large

EFG distribution was applied, however, since the second order quadrupole term is proportional to

ν2
Q/νL, for the central transition the broadening is masked by other inhomogeneous terms.
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Figure 8.5: 63Cu NMR line shapes for Cu10.6Zn0.5Ni0.9Sb4S13 at temperatures of 4K, 77 K, and 291
K. Line shapes have been scaled for convenience to give comparable intensities at the narrow peak
position. Solid curves drawn according to the model described in the text.

Fig. 8.5 shows the changes of the Cu10.6Zn0.5Ni0.9Sb4S13 lineshape at lower temperatures. Due

to the overall broadening due to alloy disorder and Ni magnetic moments, the low-temperature

curves were not fitted to a specific set of NMR parameters. However, the most prominent change

is the development of a broad peak at frequencies below the sharp peak (-4000 to 0 ppm range).

The curves shown for 77 K and 4.2 K in the figure were thus generated according to a model in

which a third broadened peak was added to the spectra of the two sites fitted at 290 K described

above, with the Cu-I and Cu-II site parameters essentially unchanged from 290 K. The agreement

appears reasonable with the third peak having a shift of -680 ppm, for both 77K and 4.2K, al-

though at 4.2 K there are further apparent lineshape changes in the range of +10,000 ppm. The

extra peak is reminiscent of the lineshape changes observed in unsubstituted Cu12Sb4S13 (Fig. 6.3)

although the ranges of shift here is larger. Based on the fact that the modified central portion of the

lineshape remains unchanged going from 77 K to 4.2 K the likely conclusion is that these changes
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are associated with a structural modification connected to the metal-insulator transition, which is

present in the Cu10.6Zn0.5Ni0.9Sb4S13 composition as well as in the unsubstituted tetrahedrite. The

metal-insulator transition is discussed further in section 8.2.2.

8.1.2 Cu10ZnNiSb4S13

This sample has a larger amount of substitution for Cu. The composition is the nominal one,

although the XRD fit discussed above is in good agreement with 1:1 Zn : Ni ratio of starting

composition. The lineshape is plotted in Fig. 8.6. A comparison with Cu10.6Zn0.5Ni0.9Sb4S13

sample is shown in figure 8.7. In this case, the larger Ni substitution enhances the broadening

so only the central- peak region was identified. We see that there is a paramagnetic broadening in

low temperatures in both samples, since the lineshape becomes broader as the temperature reduces.

Because of the observed broadening in the lineshape, we measured relaxation rates (1/T1) for these

samples to study the magnetic behavior on this sample.
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Figure 8.6: 63Cu lineshape for Cu10ZnNiSb4S13 at three temperatures. Spectra displaced upward
for clarity.
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The behavior of 1/T1T is plotted in figure 8.8. We see that the 1/T1T is relatively constant at

higher temperatures in both samples and increases at low temperatures. This high temperature be-

havior is indicative of magnetic fluctuations, due to moments unpaired d-electron on the Ni atoms

on this sample which will be discussed later. At low temperature 1/T1T rises up, which is indica-

tive of quadrupole and rattling behavior in both samples. Additional more detailed analysis of the

Cu10.6Zn0.5Ni0.9Sb4S13, rattling results will be given later. The Cu10.6Zn0.5Ni0.9Sb4S13 sample clearly

has rattling behavior at low temperatures. The enhanced low temperature1/T1T is consistent with

very large thermal conductivity observed in this material.
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Figure 8.7: Comparison between 63 lineshapes for Cu10ZnNiSb4S13 and Cu10.6Zn0.5Ni0.9Sb4S13 at
various temperatures with spectra displaced vertically for clarity.
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8.1.3 Cu10Ni2Sb4S13

The 63Cu lineshapes in the Cu10Ni2Sb4S13 sample at three temperatures are shown in figure 8.9.

In all temperatures, there is one peak with large line-width. These are presumably associated with

the Cu-II site. However, a large shift to low frequencies is observed going to 4 K, a behavior which

is different from that of the samples undergoing the MST. This appears to be due to the enhanced

magnetic interactions in this material (section 8.2.3). Similar to other samples, the line width is

increased with decreasing the temperature. This broadening is also further analyzed in section

8.2.3.
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Figure 8.9: 63Cu lineshapes for Cu10Ni2Sb4S13 at three temperatures.

8.1.4 Cu10Zn2Sb4S13

The 63Cu NMR spectrum for the Cu10Zn2Sb4S13 sample at room temperature is shown in figure

8.10. A fit was done in Quadfit [144], assuming two sites based on similarities to other tetrahedrites

and then further modeled using custom software to properly determine the occupation ratios. The

narrow sharp peak at 980 ppm is attributed to Cu-I and fitted with νQ= 2.5 MHz with η= 0 and

magnetic shift Kiso = 1033 ppm, along with its first order satellites, and the two outer peaks

associated with the Cu-II sites were fitted to νQ= 17.0 MHz with magnetic shift Kiso = 1870

ppm. Thus we see that the results are similar to those of Cu10.6Zn0.5Ni0.9Sb4S13: in both cases

there is significant change with substitution for the Cu-I site, which has a magnetic shift of 650

ppm in unsubstituted Cu12Sb4S13, vs 930 ppm for Zn0.5Ni0.9 substitution and 1033 ppm for Zn2

substitution. In part this is due to the absence of Knight shift in the charge-balanced TM substituted

compositions, although the change upon substitution represents only about half of the 600 ppm

increase in shifts accompanying the metal-insulator transition in Cu12Sb4S13 (chapter 6). Note that
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a recent report [185] described a 950 ppm shift for a Zn1-substituted sample, very similar to the

results shown here, and below we will show that most of the substituted tetrahedrites exhibit very

similar Cu-I parameters independent of composition indicating an underlying electronic behavior

which is distinct from that of unsubstituted Cu12Sb4S13. On the other hand, the Cu-II site exhibits

gradual changes vs composition, with values of magnetic shift changing from a reported 2100 ppm

for unsubstituted Cu12Sb4S13 [145] to 2000 ppm (Zn0.5Ni0.9) and 1870 ppm (Zn2).

For the two fitted lines, the extracted spectral weight ratios of sites one and two, (Cu I) / (Cu

II) is 1.78. This result is somewhat larger than expected from ab initio calculation where suggests

the Zn atoms prefer to substitute on the Cu-I sites in the Cu11ZnSb4S13 sample [91]. In the case

that Zn substitutes for 2 Cu-I sites, this leads to an expected ratio 6/4 = 1.5. Our NMR analysis

is consistent with substitution on this site, however the ratio is increased. The enhanced ratio is

similar to what was found for Cu10.6Zn0.5Ni0.9Sb4S13 sample. This could be due to substitution

causing Cu atoms on the four-fold Cu-I sites to jump into the Cu-III interstitial sites as similar to

Cu14Sb4S13 sample, discussed in the previous chapter.
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Figure 8.10: 63Cu NMR spectrum in Cu10Zn2Sb4S13 sample at room temperature along with fitted
curve.

The linearized augmented plane-wave (LAPW) method as implemented in WIEN2K [132]

was used to calculate electronic band structures and densities of states for Cu10Zn2Sb4S13. Self-

consistent calculations were carried out using the Perdew-Becke-Ernzerhof (PBE) generalized gra-

dient approximation (GGA) for the exchange-correlation (Vxc) functional and plane wave basis.

This calculations ran using the primitive cell of Cu10Zn2Sb4S13, with 10 × 10 × 10 k point mesh.

Periodic superstructures were used to model the structures for Cu10Zn2Sb4S13. In both cases, the

crystal structure has space-group 121 (I42m) with Zn substituting in one case for the Cu-I site and

in another case for the Cu-II site. The results are illustrated in figure 8.11b and 8.11a respectively.
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Figure 8.11: Calculated electronic band structure and density of states for Cu10Zn2Sb4S13. a) When
Zn atoms substitute on Cu-II sites. b) When Zn atoms substitute on Cu-I sites.

Our DFT calculations for Cu10Zn2Sb4S13 show that this sample is electrically insulating. The

valence band is created by hybridizing sulfur 3p and copper 3d electrons, but with the partial

density of states strongly weighted toward Cu states at the valence band edge. The Zn doped

tetrahedrite has a well-developed energy gap splitting the p-d hybridized valence bands from the

conduction bands of mainly sulfur and antimony’s p orbitals. In the pure tetrahedrite, the Fermi

level is located below the top of the valence band which makes this material an almost metallic

highly doped p-type semiconductor with two unfilled holes per formula unit. Replacing two Cu

atoms with Zn, will provide additional 4s electrons which fill the holes on the top of the valence

band and push the Fermi level up into the band gap which results in insulating behavior. This has

been previously confirmed in other reports [3] with assuming the Zn atoms substituting four fold

Cu-I sites. But, to the best of my knowledge, replacing two Zn atoms in threefold Cu-II site has

not been reported which is reported in figure 8.11a.

Note that in WIEN2K package, the DOS is per unit-cell and partial density of states are only

from atomic spheres and it does not add up to the total density of states because there is the

interstitial part which is typically 10 to 20 percents. In WIEN2K, the band gap is smaller than the
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DFT results

Chemical shift Cu-I Cu-II

Zn on Cu-II site 877 1328
Zn on Cu-I site 771 1257

Experimental results

Chemical shift Cu-I Cu-II

Cu10.6Zn0.5Ni0.9Sb4S13 930 1870
Cu10Zn2Sb4S13 1033 2000

Table 8.1: DFT calculated chemical shifts for Cu10Zn2Sb4S13 sample in the case Zn replaces
Cu atoms on Cu-I and Cu-II sites compared to experimental results for Cu10Zn2Sb4S13 and
Cu10.6Zn0.5Ni0.9Sb4S13.

real value which could be originated from native defects in the crystal structures of this materials.

The plotted DOS can be different than band structure because the WIEN2K calculated linearized

augmented plane wave separately for DOS and band structure calculations which in band structure

calculations the tetrahedron-method broadening applied which might make slight differences than

DOS calculations due to degeneracy of two eigenvalues are on two k-points (Γ − X) or due to

back-folding both eigenvalues are at Γ.

The chemical shifts in both scenarios have been calculated. Calibration of calculated 63Cu

chemical shifts were normalized based on the computed CuCl NMR standard and the results are

provided in table 8.1. In addition the calculated EFG’s are 0.64 × 1021 V/m2 and 6.64 × 1021

V/m2 (corresponding to νQ = 1.73 MHz and νQ = 17.7 MHz) . The calculated chemical shifts

are somewhat different from the experimental observations described above for Cu10Zn2Sb4S13,

as well as the similar experimental result obtained for Cu10.6Zn0.5Ni0.9Sb4S13 (section 8.1.1), with

the trend of Cu-I vs Cu-II shifts reversed in the calculated results vs. experiment. As was noted

earlier, the experimental shifts for these two compositions also differ from those of Cu12Sb4S13

by more than would be expected based on simple filling of the valence-band holes in a rigid-

band picture. Thus although the crystal structures can be fitted rather well by assuming these

compositions adopt the unchanged room-temperature Cu12Sb4S13 structure (figure 8.2), we expect

that additional random local distortions may be responsible for these differences. A likely scenario

is provided in the recent observation [82] that the low-temperature insulating phase of Cu12Sb4S13

is characterized by coherent, frozen-in Jahn-Teller distortions involving one of the S sites relative
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to its surrounding Cu-I ions. The occurrence of small distortions in a random way within the

nominally insulating substituted phases may also account for the differences in chemical shift

observed here by modifying the electronic structure relative to the undistorted phase.

The lineshapes at lower temperatures are shown in Figure 8.12. As shown in this plot the line

shapes are becoming broader as the temperature is decreased. In the analysis section, we will

further discuss the full width half maximum (FWHM) of the line shape in terms of a Curie-like

model, showing in the inset of the figure providing a quantitative value for magnetization impurity

of the Cu atoms.

T (K)

F
W

H
M

 (
kH

z)

Cu10Zn2Sb4S13

63Cu NMR

Figure 8.12: Cu10Zn2Sb4S13 lineshapes at different temperatures. The inset shows the FWHM of
the central part of the lineshapes versus temperature and a corresponding Curie model fitting.

8.1.5 Cu12–ySb4–xTexS13

In natural minerals, the Sb sites in tetrahedrite can be replaced by Bi, As or Te elements. In

the Te substitution case, the solid solution series continues according to the chemical structure
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Cu12Sb4–xTexS13 up to x=2. However, raising the extent of Te up to x=4 is possible but this leads

to diminished Cu concentration, and generates another end member of tetrahedrite class titled

as golfieldite[55] with chemical structure Cu10Te4S13. This can be understood in terms of Cu

vacancies forming spontaneously (formal composition Cu10(Vac)2Te4S13) to keep charge balance

as the addition of the electron donor Te atoms expected what is required to balance the hole density.

The electronic band structures of the Cu12Sb4–xTexS13 compounds [113] shows that the two

sites per formula unit should be substituted to achieve semiconducting behavior i.e. for x = 2.0,

and the energy gap decreases comparing to undoped tetrahedrite. Therefore, varying the Te content

gradually evolve the compound from metallic to semiconducting with increasing Te content.

Figure 8.14 gives the temperature dependence of the 63Cu spectra for Cu12Sb4–xTexS13 (x= 1,

2). These are expected to be due to Cu-II. Starting at room temperature, lineshape shows rather

little change as the temperature is decreased. The 1/T1T behavior is also plotted in figure 8.13

with an upturn in 1/T1T for x=1 sample indicating that the Cu ions remain relatively mobile for

this composition.
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Figure 8.13: 63Cu 1/T1T for Cu12Sb4–xTexS13 and Cu10Te4S13 samples.
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Figure 8.14: 63Cu spectra for Cu12Sb4–xTexS13 at various T .

8.1.5.1 Cu10Te4S13

Goldfieldite, with ideal Cu10Te4S13 chemical formula, is the tellurian end-member of the

tetrahedrite-tennantite solid-solution series. As described above, it is believed that adding two

Te to an undoped sample will provide enough electrons to fill the holes, and adding four Te will

make a composition with two Cu vacancies with Cu10Te4S13. XRD results confirm the presence of

two defects in occupancy of three fold Cu-II sites[55] in the unit cell. Our Cu10Te4S13 sample was

synthesized by direct reaction of a stoichiometric mixture of the elements sealed under secondary

vacuum in quartz ampules and we expect to see consistent behavior of lattice constant in Te rich

compounds [113].

The 4K lineshape is shown in Figure 8.15. There are two obvious broad peaks which could be

due to two different phases or different sites. However, at higher temperatures the signal disap-

pears. Rapidly increasing the temperature could initiate the superionic Cu motion in this sample

leading dephasing the NMR signal with no signal observed at high temperatures, however this is
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very low temperature for such behavior, and the T1 relaxation (figure 8.13) is distinct from the

corresponding behavior of Cu14Sb4S13. The singular behavior of this material suggests a need for

further investigation.
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Figure 8.15: Cu10–12Te4S13
63Cu NMR lineshape at 4K.

The 63T1/ 65T1 ratio at 4K is 0.89, thus indicating that the result is dominated by a quadrupole

contribution and thus suggesting that rattling also is significant factor for this compound. 1/T1T is

plotted in figure 8.13

8.1.6 Cu12–xMnxSb4S13

The 63Cu lineshape of the Cu12–xMnxSb4S13 sample for (x=1, 2) at 77 K is plotted in figure 8.16.

The line shape is very broad for this sample which is due to the magnetic characteristics of the Mn

ions in this sample. The manganese in this sample is in the Mn2+ (3d5) high-spin configuration.

However, because of the magnetic broadening as well as the usual thermal effects there is not
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enough signal at high temperatures to obtain the data. The lineshape at 77 K is plotted in 8.16. The

T1 at 77 K is 40 ms.
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Figure 8.16: Cu12–xMnxSb4S13 (1 ≤ x ≤ 2) 63Cu NMR lineshapes at 77 K.

8.2 Discussion and Analysis

8.2.1 Rattling

Figure (8.5) illustrates the 63Cu lineshapes of the Cu10.6Zn0.5Ni0.9Sb4S13sample obtained at 4.2

K, 77 K, and 291 K. Similar spectra (not displayed) were acquired for 65 Cu. The spectra are

superpositions of m = −1/2 � m = 1/2 transitions of the two different sites (12e, 12d sites in

the tetrahedrite structure).

A multi-exponential function S(t) = α0(1 − 2
10
e(−t/T1) − 1.8e(−6t/T1)) was used to fit the

nuclear magnetization recovery curve similar to what was used for unsubstituted tetrahedrite. By

investigating the isotopic ratio fitted of the overall relaxation rate, we found the dominance of the
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quadrupole mechanism in doped samples. Within the framework of the relaxation theory, a ratio

close to
63T1
65T1

= (Q65

Q63
)2 = 0.86 can indicate the quadrupole dominance (section 6.5).

The T1 relaxation rates for various doped samples at room temperature were measured for

each isotope. Table 8.2 shows the results; for heavier Ni content, magnetic fluctuations lead to an

enhanced magnetic contribution. On the other hand, we find a clear dominance of the quadrupole

mechanism in Cu10Zn2Sb4S13, Cu12Sb3TeS13, and Cu12Sb3TeS13 samples. Further investigation on
63T1
65T1

for Cu10Zn2Sb4S13 and Cu10.6Zn0.5Ni0.9 at lower temperatures gives the results shown on the

inset of figure 8.17. The overall behavior of the relaxation times indicates the dominance of the

quadrupole mechanism for these compositions in all temperatures.

290 K 63T1 (ms) 65T1 (ms) 63T1/65T1 M/Q

Cu10.6Zn0.5Ni0.9Sb4S13 18.4 19 0.96 Q

Cu10Zn2Sb4S13 180 207 0.83 Q

Cu10ZnNiSb4S13 63 57 1.11 M

Cu10Ni2Sb4S13 3.86 3.27 1.18 M

Cu12Sb3TeS13 5.85 6.34 0.92 Q

Cu12Sb2Te2S13 231 258 0.9 Q

Table 8.2: Spin lattice relaxation times and dominance of magnetic and quadrupole contributions
in doped tetrahedrites at room temperature based on observed isotropic ratio.
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Figure 8.17: Quadrupole NMR relaxation rate for 63Cu in substituted tetrahedrite samples com-
pared with the fitted anharmonic model (solid curve) for Cu-II site in Cu10.6Zn0.5Ni0.9Sb4S13 and
Cu10Zn2Sb4S13 samples. Inset is 63T1/

65T1.

I used the same method explained in section 6.6 to study the anharmonicity. The fitted curves

are shown in figure 8.17 and the fits parameters are β = 45 , ω00 = 22 K, Γ0 = 3.2 K and

ω0Re(Π) = −(6 K)2, while the fitting results for Cu10.6Zn0.5Ni0.9Sb4S13 are β = 47 , ω00 =

19.35 K, Γ0 = 0.51 K and ω0Re(Π) = −(1.0 K)2, these corresponding to anharmonic potential

wells given by,

VZn0.5Ni0.9(x) = (−7.6 J/m2) x2 + (2.02× 1022 J/m4) x4 (8.1)

VZn2(x) = (−9.4 J/m2) x2 + (2.84× 1022 J/m4) x4. (8.2)

Our measurements of the rattling characteristic were also analyzed to get the fitted potential. These

result in room-temperature thermal parameters for the Cu-II of 0.029 Å
2

and 0.034 Å
2
, corre-
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sponding to room temperature rms displacements of 0.17 Å and 0.18 Å for Cu10Zn2Sb4S13 and

Cu10.6Zn0.5Ni0.9Sb4S13 respectively. This compares to our value 0.14 Å (section 6.6) which was

discussed before for Cu12Sb4S13. The fitted potential and a comparison with Cu12Sb4S13 is shown

in figure 8.18. The larger displacement of the Cu-II leads to more phonon dispersion and larger

thermal conductivity κ which consequently leads to larger figure of merit. The result show a larger

rattling for both of these compounds as compared to what we obtained for undoped Cu12Sb4S13

sample.

Our results show that there is largest amount of rattling for Zn0.5Ni0.9 sample which agrees with

lowest thermal conductivity observed [3] in this material. This points to the conclusion that the

rattling is the main effect controlling the scattering of phonons. The lattice constants for Cu12Sb4S13

and Zn0.5Ni0.9 samples are almost identical (figure 8.3) therefore, this indicates that the larger

rattling in Zn0.5Ni0.9 sample is due to electronic effects of the neighbor bonds in Cu-II sites. This is

somewhat different from the conclusion [69] that it is the space provided locally by the atomic cage

that controls the rattling. Note that displacement of Cu-II is slightly smaller than obtained from

XRD in the reference [67], however, we know that XRD and neutron scattering are susceptible

to static disorder defects. Thus, the NMR technique can be particularly useful in deconvoluting

these effects since it is sensitive specifically to dynamical effects. We found 0.17 Å and 0.18 Å

for Cu10Zn2Sb4S13 and Cu10.6Zn0.5Ni0.9Sb4S13 which is very comparable to the ab initio result for

undoped sample [78] and it does show that there is enhanced rattling for Zn doped materials.
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Figure 8.18: Fitted 1D double-well potential for Cu-I site in Cu10Zn2Sb4S13 and
Cu10.6Zn0.5Ni0.9Sb4S13 samples and compared with result obtained for Cu12Sb4S13 sample.

These results are in good agreements with low thermal conductivity observed in these materials

and indicates that rattling is the main reason for low thermal conductivity in tetrahedrites.

8.2.2 MST and Atomic Motion

The temperature dependence of the total shift obtained by finding the center of gravity for

each spectrum and the result is displayed in figure 8.19, for which a significant contribution is the

Knight shift (K) which is correlated to the local spin susceptibility detected by the nucleus. These

data were measured on the Cu-I peak of the NMR spectra for the various samples as shown. In

Te, Mn, Zn and Ni doped and Zn, Ni co-doped teterahedrite samples, as the temperature increases,

the peak at a common shift position near 950 ppm stays constant with width decreasing. While

Cu-I is in the metallic phase of the undoped Cu12Sb4S13 and known to show a negative Knight shift

above the Metal Semiconductor Transition because of the core polarization mechanism (chapter

6), it is reasonable that this peak should have a more positive shift in the charge-balanced Mn, Zn,
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Te, and Cu rich as well as Zn-Ni co-doped sample vs. unsubstituted Cu12Sb4S13 due to reduced K

assuming substitution reduces the carrier density in each case.

The results demonstrate that the phase transition is absent in most of these doped and co-

doped samples. However, in Cu10.6Zn0.5Ni0.9Sb4S13 there is still a slight change of shift observed

which indicates that the MST is not completely suppressed in this sample. Note that slight change

at the MST still occurs at the same temperature as Cu12Sb4S13. The unchanging Tc for partial

tetrahedrite substitution was previously seen in magnetic susceptibility measurements [108], and

the NMR results confirm that this is a bulk phenomenon, not tied, for example, to a minority phase

of unsubstituted tetrahedrite within the samples. Since substitution induces large changes in carrier

density, this result indicates that the transition is not driven by electronic features such as Fermi

surface nesting. Rather, it appears that the entropy of random local distortions, which can become

frozen into a regular configuration at low temperatures in unsubstituted Cu12Sb4S13, is the dominant

driving force for this transformation.

As shown in figure 8.19, the undoped sample in the metallic state has a total shift ∆f = δch+K

of approximately 600 ppm and considering that the Zn2 sample is charge balanced, the total shift

change between pure tetrahedrite and Zn2 tetrahedrite (which shift is mainly a chemical shift) is

around 300 ppm.
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Figure 8.19: The 63Cu NMR shifts of the Cu-I site for various dopants vs temperature. A schematic
dashed line is drawn to show the common shift position.

Figure 8.13 show the 1/T1T for Te doped samples. From the observed behavior we conclude

that Cu12Sb3TeS13 exhibits slow ionic motion below room temperature since 1/T1T is strongly en-

hanced at high temperatures in much the same way as Cu12Sb4S13 and Cu14Sb4S13 samples (chapter

7).On the other hand, for Cu12Sb2Te2S13 the constant 1/T1T indicates that Cu ions become rela-

tively immobilized. We also find that the signal amplitude has not decreased based on increasing

tdelay. These indicates that ionic motion is reduce as the substitution of Te increases in the sample.

This indicates a larger activation energy required for hopping in heavily doped samples. Indeed,

in all Zn and Ni-doped samples we find that the NMR echo signal is observed essentially un-

changed at temperatures to room temperature, in contrast to the disappearance of the echo signal

in Cu12Sb4S13 and Cu14Sb4S13 (chapter 7). The NMR technique is sensitive to to dynamics on a

time-scale of 100 µs, and thus these results indicate the absence of even very slow hopping at am-
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bient temperatures, an important issue for potential thermoelectric device stability and design. We

conclude that the activation energy is increased to a value significantly larger than the 280 meV

estimated for Cu12Sb4S13.

8.2.3 Magnetism

The 63Cu lineshape for undoped tetrahederite Cu12Sb4S13, at low temperatures, has enhanced

broadening (Figure 6.3) which is consistent with the presence of dilute paramagnetic moments.

To estimate the maximum defect density, we note that increase in line breadth relative to 77 K is

approximately 1000 ppm ( full-width half maximum), and use established relations [186] for dipole

broadening due to dilute paramagnetic moments. Assuming 2 µB local moments, this gives a defect

concentration 0.0014 per Cu ion. This matches previous results [149] indicating a nonmagnetic

configuration for Cu12Sb4S13, with holes in the Cu d-based valence band remaining itinerant rather

than forming localized Cu2+ moments, and does not appear to be compatible with fully-magnetic

Cu-II ions [187], although a singlet configuration for site-II below Tc remains possible, and would

still allow observation of the site-I resonance.

Figure 8.12 shows the 63Cu line shape of Cu10Zn2Sb4S13 at different temperatures. The line

shapes are slightly asymmetric, however, the full width at half maximum (FWHM) obtained from

the line widths is 308 ppm (31 kHz) at room temperature, increasing as T is lowered. We recorded

the FWHM as a measure of the broadening of the line shapes (inset of figure 8.12). These FWHMs

were fitted to a Curie-like model, FWHM ∝ C
T

+ B, where B is a temperature dependent back-

ground. The NMR linewidths due to dilute magnetic impurities can be calculated [188] when the

NMR broadening is significantly impacted by random dipole field due to the impurity spins. In this

theory, the spectra’s width is proportional to the average spin moment which provides a Curie-like

contribution to the linewidth. Based on this model, the FWHM, ∆ν, due to substitutional defects

with spin
−→
S and density f , can be given as

∆ν =
2√
35

µ0µBγngf

V
〈Sz(T )〉 (8.3)
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where, 〈Sz(T )〉 = µBg
2J(J+1)B
3kBT

is the average moment, and V the volume per formula unit.

We fixed g = 2. Our fits show an impurity concentration of f = 0.058 per formula unit in

the Zn2 sample. These must be either due to some small density of impurity atoms or a small

percentage of the Cu being intrinsically magnetic in which case since there are 10 Cu atoms per

unit that corresponds to f = 0.0058 of the relative fraction of the Cu are being magnetic. This is

slightly larger than approximate limiting value obtained for pure tetrahedrite (above) which also

corresponds to a very small fraction of the dilute moments. This places a significant limit on the

possible density of magnetic Cu2+ ions and shows that only a small number of Cu to be magnetic.

The same Curie behavior observed in magnetic susceptibility [102], and confirm that the defects

are randomly distributed in the sample.

FWHM results were also fitted for other samples, as shown in fig. 8.20. In some cases only a

few points were used for the fitting, however the results provide a useful estimate of the content

and behavior of the local moments in these samples.
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Figure 8.20: FWHM vs temperature for tetrahedrite samples as shown, along with Curie-type
curves described in text.

The 63Cu spectra in Mn2 samples shows a similar increase in broadening in low temperatures

and implementing the Curie model for FWHM, yields an impurity concentration of f = 0.29 per

formula unit. This is derived with considering J = 5/2 in equation 8.3, in accordance with

reported bulk susceptibility results [65] pointing a moment per Mn in this range. The fitted Néel

temperature is 8K, also in reasonable agreement with the result from bulk susceptibility obtained

in this work. However, considering J = 1 leads to an impurity concentration of f = 0.55.

The same analyses applied to the 63Cu spectra in Zn0.5Ni0.9, ZnNi, Ni2 samples, implementing

the Curie-Weiss model for FWHM, yields an impurity concentration of f = 0.112, 0.147 and 15.4

per Cu ion, respectively, with Tc = -33, -27, -133 K. Note that we fixed J = 1 in accordance

with previously established results [91, 88] from bulk susceptibility indicating a moment of this

size per Ni. The fitted Néel temperatures for the Zn0.5Ni0.9 and ZnNi substituted samples are
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also in excellent agreement with the value of ∼ 30K obtained for a Ni1-substituted sample [88],

which helps to validate the dilute-moment approach used here for NMR linewidths. For Zn0.5Ni0.9

and ZnNi substitution the moment densities correspond to 1.3 and 1.5 per formula unit, in good

agreement with the known compositions of these samples within the approximations inherent in

this method. This provides confirmation that these moments are distributed uniformly throughout

the materials. Also the results correspond to random dipole magnetic fields due to these ions as

the dominant local-magnetic effect sensed by the Cu nuclei, which tends to rule out any significant

exchange-related polarization of carriers in the valence band, as would be expected for a magnetic

semiconductor.

The situation is different for the Ni2 sample, for which the analysis used here indicates an

unphysically large moment density. In part this may be because the dilute-moment approximation

of equation (8.3) is not completely valid, but the enhanced local fields also point to the influence

of electron-mediated interactions for this composition XRD results.

XRD results (figure 8.3) shows that increasing the Ni content, will decrease the lattice constant

from a = 10.3224 Å to a = 10.31 Å confirming that Ni are being substituted into the Cu sites.

However, Ni moments apparently interact more directly in the concentrated-Ni sample, a result

shown also by the distinct T1 for Ni2.

The 1/T1 results are shown in figure 8.21. As previously demonstrated (Table 8.2) the dom-

inant process for the relaxation in this case is magnetic fluctuations, however the temperature

dependence in this case is distinct, with approximately constant 1/T1 (rather than 1/T1T ). This

is the behavior expected [189] for strongly coupled local moments, for which case the fluctuation

spectrum is proportional to the exchange frequency, and hence independent of the temperature.
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Figure 8.21: 63Cu T1 for Cu10Ni2Sb4S13 sample vs. temperature. Dashed line shows T-independent
behavior corresponding to exchange-coupled fluctuating local moments.

The Curie-Weiss method applied to the lineshapes of Cu10Mn2Sb4S13 at low temperatures gave

f = 0.54 per formula unit. While in principle the method may detect the moments on Cu as well

as Mn, certainly the number is less than the expected 2 per formula unit, this might show that all

the manganese ions are not magnetic. It is also possible that the result corresponds to clustering of

the Mn ions, effectively reducing the apparent moment sensed through NMR linewidths. Further

studies might help to clarify this situation.

8.3 Shifts

The temperature dependent shifts for all samples are shown in Fig. 8.19. In our results, we find

that all the shifts for substituted samples are about the same, excluding the strongly magnetic Ni2.

Among these shifts, it seems most likely that the common shift value corresponds to a chemical
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shift, with the Knight shift due to charge carriers giving a much smaller contribution. A simple

model for such behavior [179] is to assume a parabolic band edge. In this case, it is easy to

show that the Knight shift is expected to vary vs conduction electron density as n1/3. The Te1

and Te2 materials provide a good example: with the approximate 300 ppm difference between

unsubstituted Cu12Sb4S13 and Te2 assumed to result from the reduction of K to zero in the charge-

balanced Te2, Te1 with half the reduction of carriers would be expected to exhibit a Knight shift

differing by 240 ppm from that of Te2. This also sets the scale for the variation in Knight shift

that might be expected for the different compositions observed here. The much more uniform set

of observed shift is unlikely to result from the combination of different values of Knight shifts

and chemical shift for each compound. Rather, we assume that the observed shift of about 950

ppm corresponds to a distinct chemical shift for substituted tetrahedrites, with rather small added

Knight shifts. Generally in semiconducting materials of this type it is often observed that native

defects can be spontaneously formed in order to take advantage of the electronic energy gained by

locating εf at the bandgap; a good example is provided by the spontaneous vacancies appearing

in Cu10Te4S13 as described above. Thus the common set of shifts observed here seems likely to

correspond to a reduction in carrier density in these materials according to such a mechanism.

As it mentioned above, making an approximation that the DOS has a parabolic band-edge

behavior with g(ε) ∝ √ε then the Knight shift is K ∝ n
1
3 . This is the model that was just

introduced for the other materials explaining small amount of Knight shift in charge balanced

tetrahedrites. This can be modeled as Ni impurity band can hold two empty states per Ni and

1.8 in total for Ni0.9 and substituting Zn will provide 0.5 electrons [91], considering unsubstituted

tetrahedrite with two unfilled holes in valence band makes the Zn0.5Ni0.9 sample to have n =

2.4−1.8 = 0.6 charge carriers. A simple comparison with Cu12Sb4S13 tetrahedrite in metallic state

with KCu12 = 300 ppm KZn0.5Ni0.9

KCu12
= 0.3

1
3 leads to K = 200 ppm, which makes the total shift

of 700 ppm which implication is the same as in the other materials in which the Knight shift also

appears to be smaller than predicted.

Our DFT calculations (figure 8.11) show that the band-edge in the case of Zn2 doping, similar
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to undoped tertahedrite, is still dominated strongly by Cu d-orbital electrons. Therefore the Cu

NMR Knight shift still should be a good measure of the hole density. This tend to rule out a

significant rearrangement of states at the band edge as an alternative explanation of the uniformly

small Knight shift. We are in the process of calculating the results for Te doped sample to compare

and make more assertive analysis.

There has been uncertainty about the effect of Ni substitution, with indications that substitution

of Ni atoms also will fills the hole states in the valence band similar to Zn or Te, although with the

expected valence it is also suggested that substitution of nickel will add holes and introduce addi-

tional unoccupied states at the top of the valence band (based on impurity band model explained

above), or perhaps the effect is one of an increase in the effective mass [102, 190, 88]. It is also

suspected from electronic resistivity measurements that the number of charge carriers is reduced

as the number of Ni dopants increases [91], although it has been very difficult to obtain the carrier

density in a more direct way by Hall measurements [102]. For relatively small Ni substitution in

the ZnNi and Zn0.5Ni0.9 samples, the uniform shifts observed here point to small carrier density in

these materials. More precisely, the results are an indication that the electron density of states at

εf is small, which could correspond either to εf moving to the edge of the valence band, or to the

formation of a pseudogap such as might be associated with Ni-related states appearing at the top

of the valence band.

The Ni2 result is quite different, as seen in Fig. 8.19. Here the NMR shifts are large, and out

of the range of the shifts of the other substituted materials. Generally, this seems to indicate a

distinct electronic behavior for the case of Ni2, which as noted above also exhibits more strongly

magnetic behavior than the other materials. This appears to confirm the suggestion [102] that εf in

this case should be located in a band of Ni-based states positioned above the valence band. Similar

concentration-dependent behavior was recently indicated based on transport measurements in Fe-

substituted tetrahedrites [191] which apparently exhibit hopping conductivity within a Fe-based

impurity band for cases of larger Fe substitution. Note also the contrast with Mn-substituted mate-

rials, which have NMR shifts (figure 8.19) in line with those of the other nonmagnetic tetrahedrites,
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despite the expected large moments for Mn.
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9. SUMMARY AND CONCLUSIONS*

In summary, from investigations of 63Cu and 65Cu NMR in unsubstituted Cu12Sb4S13, we found

that above the metal-insulator Tc, which is accompanied by a large Knight shift change, there is

a progressive loss of the Cu12Sb4S13 signal and dominance of the Cu3SbS4 phase at high tempera-

tures. The Cu-II site exhibits a large reduction in electric field gradient (EFG), while Cu-I changes

from a very small EFG/high symmetry configuration to a lower symmetry arrangement at room

temperature. This shows that there is a change in the local atomic environments at these tempera-

tures, probably corresponding to the development of a static split-site condition. DFT calculations

confirmed that the low-EFG configuration corresponds to the undistorted configuration identified

by crystallography. The T1 displays the presence of a strong quadrupole relaxation mechanism

both above and below Tc. Analysis indicates that anharmonic rattling type motion is the main

reason for this behavior. A double well anharmonic potential provides a good fit for the data,

providing a measure of the rattling amplitude, and indicating that the dynamical behavior persists

below Tc.

In a set of Cu NMR measurements on Cu12+xSb4S13 tetrahedrites, we identified the NMR signa-

tures of the phase segregation into Cu-poor (x ≈ 0) and Cu-rich (x . 2) phases. The temperature-

independent line-shape for the Cu-rich phase indicates the suppression of the phase transition for

this phase. Also by observation of the NMR line shapes, combined with analysis of T2 and T1

relaxation behavior, we obtain a measure of Cu-ion dynamics in these phases at low temperatures.

We find that the Cu ions are particularly mobile in the Cu-rich phase, with a fitted activation energy

of 145 meV for ion hopping. The x ≈ 0 phase exhibits a larger barrier for ionic motion, however

in both phases we find that there is a significant rate of ionic motion at temperatures below room

*Part of this section is reprinted with permission from N. Ghassemi, Y. Tian, X. Lu, Y. Yan, X. Zhou, and J.
H. Ross Jr, "Copper-Ion Dynamics and Phase Segregation in Cu-Rich Tetrahedrite: an NMR Study, The Journal of
Physical Chemistry C, vol. 124, no. 7, pp. 3973-3979, 2020. Copyright (2020) American Chemical Society.

*Part of this section is reprinted with permission from N. Ghassemi, X. Lu, Y. Tian, E. Conant, Y. Yan, X. Zhou,
and J. H. Ross Jr, "Structure Change and Rattling Dynamics in Cu12Sb4S13 Tetrahedrite: an NMR Study," ACS applied
materials & interfaces, vol. 10, no. 42, pp. 36010-36017, 2018. Copyright (2018) American Chemical Society.
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temperature.

We performed Cu NMR measurement of various substituted tetrahedrites includ-

ing Cu10.6Zn0.5Ni0.9Sb4S13, Cu10ZnNiSb4S13, Cu10Ni2Sb4S13, Cu10Zn2Sb4S13, Cu11MnSb4S13,

Cu10Mn2Sb4S13, and Cu12Sb4–xTexS13 compositions. DFT calculations were also used to model

chemical shifts and explore changes in partial DOS for analyzing the results. By modeling the

spectra of Zn and Ni substituted materials we found information about the changes in symme-

try and electronic behavior in these materials. We observed that all doped materials have similar

chemical shift for the Cu-I site which indicates distinct behavior from unsubstituted Cu12Sb4S13.

We discussed the results in terms of random local distortions. We also find that a lack of Knight

shift for most of the substituted tetrahedrites indicates the importance of native defects or genera-

tion of a pseudo gap structure.

We observed that most of the lineshapes exhibit magnetic broadening at low temperatures.

Magnetic moment analysis based on the NMR lineshapes agrees with the previously proposed

local moment for Ni substitution in low concentrations. On the other hand, Ni2 spectra analysis

indicates more strongly interacting moments with a distinct electronic behavior. We also found that

rattling is the main effect controlling the scattering of phonons in Zn-Ni substituted materials and

this was confirmed by largest rattling behavior observed in Zn, Ni co-doped sample. Our results

indicate that this is not simply tied to expansion of lattice. A lack of Cu-ionic motion was observed

in all substituted materials except in Cu12Sb3TeS13, and the MST is suppressed in almost all of the

doped materials.
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APPENDIX A

RLC CIRCUIT SET UP

To perform the the NMR spectroscopy for various frequencies, I needed to change the calibrate

the RLC circuit in order to attain the desired resonant frequency. This required the following

equations for NMR coil sample holder based on an impedance matching principle. I figure (A.1)

D

B

C2

C1
A

R

L

a)

D

B
C1

A
!" = !

(1 − '(!)()

+" = +
(1 − '(!)()(

b)

Figure A.1: a) The NMR probe’s circuit. b) The corresponding circuit of impedance matching of
the after ignoring the small contributions.

ZAD = ZBD +
1

iωC1

=
1

iωC2 + 1/(R + iωL)
+

1

iωC1

=
R

(1− ω2LC2)2 + (RC2ω)2
+ iω

L(1− LC2ω
2)−R2C2

(1− ω2LC2)2 + (RC2ω)2
+

1

iωC1

. (A.1)

On the other hand, C2R
2 , (RC2ω)2 � 1 and could be neglected, hence, equation (A.1) could

be simplified to
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ZAD =
R

(1− ω2LC2)2
+ iω

L

(1− ω2LC2)
+

1

iωC1

. (A.2)

The corresponding equivalent circuit regarding to equation (A.2) is displayed in figure A.1, in

which R′ and L′ are R
(1−ω2LC2)2 and L

(1−ω2LC2)
, respectively.

In order to fulfill the impedance matching requirement, R′ should be set to 50 Ω, which is the

characteristic impedance of the connecting coaxial cable. In addition, by tuning C2 at a specified

frequency

R′ =
R

(1− ω2LC2)2
= 50Ω

C2 =
1−

√
R/50

ω2L
. (A.3)

To acquire series resonance in figure (A.1.b)), C1 should be set according to the following

C1 =
1− ω2LC2

Lω2
=

√
R/50

Lω2
(A.4)

From equations (A.3) and (A.4), we can find the following quantities

√
R/50

C1

=
1−

√
R/50

C2

R =
50Ω

(1 + C2/C1)2
(A.5)

L =
1−

√
R/50

C2ω2
(A.6)
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L could also be expressed based on C1 as

L =

√
R/50

C1ω2
(A.7)

and finally the effective Q value of the coil could be expressed as

Q =
ωL

R
. (A.8)

By combining equations (A.5) and (A.8), the Q value can be expressed based on C1, C2, and ω as

Q =
1 + C2/C1

50C1ω
. (A.9)

In our probe in the lab, C1 and C2 varied from 1 to 10 pF. When the impedance matching

condition satisfied, we were able to acquire L and R of the coil by estimating the values of C1 and

C2, and consequently, Q value was obtained.
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