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ABSTRACT

A communication network can be modeled as a directed connected graph with edge weights that

characterize performance metrics such as loss and delay.Network tomography aims to infer these

edge weights from their pathwise versions measured on a set of intersecting paths between a subset

of boundary vertices, and even the underlying graph when this is not known. In particular, temporal

correlations between path metrics have been used to infer composite weights on the subpath formed

by the path intersection. We call these subpath weights the Path Correlation Data (PCD). In this

manuscript we ask the following question: when can the underlying weighted graph be recovered

knowing only the boundary vertices and the PCD? We establish necessary and sufficient conditions

for a graph to be reconstructible from this information, and describe an algorithm to perform

the reconstruction. Subject to fairly general conditions which will be elaborated in next Section,

the results applies to directed graphs with asymmetric edge weights, and accommodates paths

arising from asymmetric routing in the underlying communication network. We also describe the

relationship between the graph produced by our algorithm and the true graph in the case that our

conditions are not satisfied.

Establishing the conditions under which the underlying directed graph can be recovered exactly

from the pairwise PCD, algorithmically, this enables us to consistently fuse tree-based view of the

set of network paths to and from each endpoint to reconstruct the underlying network. However, in

practice the PCD is not consistently determined by path measurements. Statistical fluctuations give

rise to inconsistent inferred weight of edges from measurement based on different endpoints, as do

operational constraints on synchronization, and deviations from the underlying packet transmission

model. Furthermore, ad hoc solutions to eliminate noise, such as pruning small weight inferred

links, are hard to apply in a consistent manner that preserves known end-to-end metric values. We

further take a unified approach to the problem of inconsistent weight estimation. We formulate

two types of inconsistency: intrinsic, when the weight set is internally inconsistent, and extrinsic,
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when they are inconsistent with a set of known end-to-end path metrics. In both cases we map

inconsistent weights to consistent PCD within a least-squares framework.

Finally, we evaluate the performance of this mapping in composition with tree-based inference

algorithms.
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1. INTRODUCTION AND PRELIMINARY

1.1 Network Tomography as an Inversion Problem

Network performance tomography seeks to infer edge metrics and even the underlying network

topology by fusing measurements of streams of packets traversing a set of network paths. Ab-

stractly, for additive metrics, e.g. mean packet delay and log transmission probabilities, a putative

solution to the network tomography problem attempts to invert a linear relation between the set of

path metrics D and the link metricsW in the form

D = AW (1.1)

Here A is the incidence matrix of links over paths, AP,l is 1 if path P traverses link l, and zero

otherwise. The linear system (1.1) is generally underconstrained in real-life networks, and hence

does not admit a unique solution [9]. To overcome this deficiency, one approach has been to impose

conditions on the possible solutions, typically through sparseness, effectively to find the “simplest”

explanation of the observed path metrics; see [12, 2]. A different approach in the similar problem

of traffic matrix tomography has been to reinterpret (1.1) as applying to bi-modal measurements

of packet and bytes counts [17], or of empirical means and variances then imposing constraints

between these based on empirical models [19, 20]. However, the high computational complexity

of this approach makes it infeasible for real-world communications networks [21], although quasi-

likelihood methods offer some reduction in complexity [16]. A related approach known as Network

Kriging seeks to reduce dimensionality in the path set by assumption on prior covariances [9].

In practice, both the measurement and inference functions are distributed across a set of network

hosts. Each host performs inference from packet measurement on the subset of network paths of

which it is an endpoint (i.e. the source or the destination of measurement packets). The inference

produced by each host takes the form of a logical weighted subgraph that estimates the span-
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ning graph of the paths terminating at that host, which each logical edge representing a subpath

comprising of one or more edges in the underlying network, with a weight corresponding to the

aggregate performance metric on that subpath. Hosts exchange these inferred subgraphs or raw

packet measurement data with other hosts, or transmit these to a central location where they are

fused to perform network-wide inference.

1.2 Network Model and the Notion of Partial Network Graphs

We represent the communication network by a directed edge-weighted graph G = (V,E,W)

with vertices V , edge set E, a single edge-based non-negative metric W : E → R≥0. Edges

in E represent links between router identified with vertices, while the weights represent packet

performance metrics associated with each edge. A partial network graph G = (G, VB,P) consists

of the graph G together with a set VB of boundary vertices and the set P of directed paths Pu,v

between some ordered pairs (u, v) of boundary vertices. We shall call u the source and v the

receiver associated with the path Pu,v. In the context of network tomography, the boundary nodes

VB act as the sources and sinks of measurement packets that traverse the network on the paths in

P . The remaining vertices VI = V \ VB will be called the interior vertices. The notion of partial

network graph will be used to describe both the underlying network (in which case it is often not

“partial”: there is a path in P between each ordered pair of boundary vertices) and various inferred

networks (in which case it is “partial” due to the limited data available to the agent preforming

inference). In the latter case, the topology of G = (V,E,W) may be known in advance, or it may

itself be inferred from the measurements.

Fusion of partial subgraphs is a key task both at individual hosts and for network wide inference.

For example, a common inference primitive involves a host correlating two end-to-end perfor-

mance measurements collected from routes to a pair of remote hosts. The result is a logical span-

ning binary tree with a single interior vertex and three leaves. The root host then fuses the set of

binary trees obtained by iteration over all remote host pairs, in order to infer logical tree spanning

paths between itself and the other endpoints [25]. For network-wide inference, the set of such

2



trees generated by all measurement hosts would be fused to infer the spanning logical performance

network that connects them.

1.3 Inference and Fusion of Logical Network Subgraph

In this Section we describe scenarios for inference and fusion of logical network subgraphs in

which our methods apply, and review prior work on the problem of subgraph fusion.

1.3.1 Logical Network Subgraphs in Tomography

The logical network subgraph associated with a partial network graph (G, VB,P) comprises the

partial network graph (G′, VB,P ′) with G′ = (V ′, E ′,W ′) defined as follows: V ′ is the union of

VB and the branch points of the path set P with VI . (u, v) ∈ E ′ if u, v lie on a directed path in

P without another node in V ′ between them. W ′
u,v is the aggregate weight of directed edges in E

that connect u to v along the unique path in P that joins them. P ′u,v ∈ P ′ comprises the edges

in E ′ that are subpaths in Pu,v. In the following scenarios, we assume the full physical network

G = (V,E(0),W) together with a maximal set of possible boundary vertices V (0)
B and routes

P(0) between them. For one or more boundary subsets VB ⊂ V
(0)
B and their connecting routes

P ⊂ P(0), tomography is used to estimate the logical network subgraph (G′, VB,P ′) associated

with the partial network graph (G, VB,P). Our methods then concern how to consistently fuse the

resulting set of logical subgraphs.

1.3.2 Multicast Tomography

In multicast tomography, a sequence of multicast probe packets is dispatched from a boundary

source along a multicast tree. Successful receipt and transmission latency are recorded for each

packet at each receiver. Maximum likelihood estimators for loss [26] and discretized delay distri-

bution [33] are computed for logical edges under independence assumptions for loss and delay on

edges. If the topology is not known, each logical source tree is recovered by recursive clustering

in which vertices with the largest common path loss or delay weight are identified as siblings [29];

see Section 1.3.4 for further details. Recovery on the edge weights in a known multicast topology

by fusing packet level measurement from trees is proposed in [24]. Multicast inference exploits the
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inherent correlation of multicast packets, each of which occurs once per edge, with copies propa-

gated from each branch point. In order to avoid the requirement for multicast probing, in the work

[31] probing based on sets of back-to-back unicast packets sent to pairs of receivers have been

proposed. It has been shown that this unicast way of probing approximates multicast one since

each unicast packet in a set, experiences similar performance on their common path portion.

1.3.3 Binary Covariance-Based Tomography

Let independent random variables X = {xe : e ∈ E} be associated with each edge and set

XP =
∑

e∈P xe for any subpath P . Then using the independence assumption, the following

equality holds for the covariance of two paths metric and the variance of their intersection

Cov(XP , XP ′) = Var(XP∩P ′) (1.2)

Hence any unbiased estimator of the path covariance Cov(XP , XP ′) is an unbiased estimator of the

additive path metric Var(XP ′′) where P ′′ = P ∩ P ′. This approach was first proposed for multi-

cast probing in [30] where each packet corresponds to an instance of X . A different interpretation

considers each instance of X to represent the edge metric values in force during a time slot. Any

flow of packets traversing edge e in a given time slot is assumed to experience performance gov-

erned by the same metric value. Hence the window-average performance experienced by distinct

flows of packets (even unicast) will be correlated, and more so for larger packet set. Assuming the

instances of X are drawn i.i.d. over different time slots, then (1.2) allows estimation of Var(XP )

from measurement of unicast packet on distinct end-to-end paths with intersection P ; [34].

1.3.4 Tree Reconstruction from Binary Primitives

As briefly referred to in Section 1.3.2, an unknown logical tree can be estimated by recursive clus-

tering on leaf vertices based on largest estimated metric on their common path from the root; the

same method can be applied to covariance-based estimates of Section 1.3.3. Denote by Xk,i the

data associated with packet measurements along the path Pk,i and estimate m̂(Xk,i, Xk,j) of the

aggregate metric the intersection Pk,i ∩ Pk,j . The pair i, j of maximal m̂ are identified as sib-
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lings with common parent denoted {i, j} while i and j are removed from further consideration.

A merged measurement Xk,{i,j} is then associated–in a metric dependent manner–with the parent,

and the process performed recursively until the root is reached. In multicast loss inference Xk,i

comprises a bitmap indicating which packets reached i from k, while for covariance based estima-

tors and general vertex clusters A and B, Xk,A∪B is a convex combination of Xk,A and Xk,B, with

coefficients chosen e.g. to minimize estimation variance [30]. Due to statistical node, a non-binary

node in the underlying network is typically resolved as a set if binary nodes which may then be

amalgamated by pruning edges of small inferred weight; see Section 1.3.6 below.

1.3.5 Subgraph Fusion

Prior works have investigated the problem of how to fuse topographically inferred subgraphs. [38]

fuses quartets (2-source 2-receiver inferred subgraphs) which have been shown to be sufficient

to characterize an M -source, N -receiver network from which they are derived [36]. However,

information concerning metric edge weights is not exploited in this approach, and so the issue

of consistency between different measurements of the same path does not arise. These papers

were principally concerned with fusing measurements obtained with striped unicast probes, while

our present work is largely agnostic on the measurement mechanism. The Occam system [37]

exploits the idea of binary tree primitives to form source based trees which then fused through an

optimization problem where a network compatible with the source trees and minimizer over the

number of edges and host to host distances is selected. Most recently [23] proposed fusing source

and destination based trees derived from binary tree primitives using passive traffic measurements.

The key idea is that each pathPu,v from boundary vertex u to v occurs in both the source tree rooted

at u and the receiver tree rooted at v. This allows placement of interior vertex on the path according

to metric values. However, consistent placement requires equality of the total weight Wu,v in each

tree, a property that does not hold for estimated weights. Earlier work [28] used detailed timing

and packet order information from multiple probe sources to infer overlaps between sourced based

trees. Networking tools such as ping and traceroute tools can in principle be used to detect the

presence of a given responsive router on distinct paths, although non-responsiveness in encrypted
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networked and ambiguity due to distinct interface address often limit the utility of this approach.

1.3.6 Tree Pruning

As discussed above, pruning of low weight edges has been proposed to reduce topological noise

arising from statistical measurement variability [25]. If path weight to be preserved, the weight

of pruned edges should be ascribed amongst the remaining edges. One approach is to recompute

tomographic weights on the pruned topology. This is well suited to multicast based inference since

edge weight estimators exist in non-binary trees [26] and networks [24]. However, this approach

does not generalize to unicast-based network inference. Consider an internal vertex v through

which the paths from sources s1 and s2 reach subset R of boundary receivers. The weights of the

paths (s1, v) and (s2, v) can be individually estimated based on convex combinations of primitive

binary estimates from the logical binary tree with vertices {{s1, v, r1, r2} : r1 6= r2 ∈ R} and

{{s2, v, r1, r2} : r1 6= r2 ∈ R} respectively. However, these estimates will not in general yield

equal weights for the edges {(v, r) : r ∈ R}. This motivates our approach to find weights that are

extrinsically consistent (with the path weights) but close to the weights of surviving edges before

pruning.

1.4 Problem Statements

The focus of this dissertation is to answer three main questions in the network tomography area

summarized as follows:

(i) Under what conditions is the network identifiable in the sense that distinct values of network

parameters (topology and edge metrics) can be distinguished in the limit of a large number

of packet measurements?

(ii) What algorithms can identify the network parameters in this limit?

(iii) How are these algorithms best adapted to work with finite measurement data in the sense of

being applicable and performing accurately?

6



The focus of Section 2 is to answer the first and second questions above for a wide class of infer-

ence problems on networks with asymmetric paths between host pairs. Network level inference is

performed by fusing source and destination based trees at each measurement host, characterized

by their Path Correlation Data (PCD), namely the weight of the intersection of any two paths that

share an origin or destination. Necessary and sufficient conditions for a network graph to be re-

constructible from the PCD will be established together with an explicit reconstruction algorithm.

Thus when the PCD are identifiable from path pair measurements, the full network is identifiable

under the reconstruction conditions.

The practical network measurement may provision data with imperfect consistency. For example,

input data may be provided in the form of weighted trees computed from packet measurement over

time intervals that are not perfectly aligned, so that the metric of a path P(b, b′) may be reported

differently in the source and receiver trees which contains this path. Even with aligned intervals,

deviations from the model and statistical fluctuations due to finitely many probe packets may result

in inconsistency. In order to enable our proposed algorithm (presented in Section 2) to operate with

such data, we propose to compute a PCD that is a least-squares fit to inconsistent tree data. This

extension and associated error sensitivity analysis is the subject of Section 3.

The focus of Section 4 is to provide a composite application of our methods to the problem of

network inference through model-based simulations. We compare its performance in correctly

identifying subset of network paths that experience performance degradation of a common internal

edge.
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2. GRAPH RECONSTRUCTION FROM PATH CORRELATION DATA *

2.1 Introduction

2.1.1 Network Model and Partial Network Graphs

We start with formal definition of communication network and the notion of partial network graphs.

A communications network can be abstracted as a directed edge-weighted graph G = (V,E,W)

be with vertices V , edge set E, a single edge-based non-negative metric W : E → R≥0. Edges

in E represent links between router identified with vertices, while the weights represent packet

performance metrics associated with each edge. We do not assume edge symmetry: (u, v) ∈ E

does not imply (v, u) ∈ E, or weight symmetry: wu,v and wv,u need not be equal. A partial

network graph G = (G, VB,P) consists of the graph G together with a set VB of boundary vertices

and the set P of directed paths Pu,v between some ordered pairs (u, v) of boundary vertices. We

shall call u the source and v the receiver associated with the path Pu,v. An important example of

a partial network graph is the source tree T Sb of a boundary vertex b ∈ VB. This is the minimal

subgraph supporting the path set P(T Sb ) = {Pb,v : v ∈ VB}. Correspondingly, the receiver tree T Rb

is induced by the path set {Pv,b : v ∈ VB}. In the context of network tomography, the boundary

nodes VB act as the sources and sinks of measurement packets that traverse the network on the paths

in P . The remaining vertices VI = V \VB will be called the interior vertices. While the paths may

be the smallest-weight paths through the network, in general we do not make this assumption.

The performance metrics are considered additive in the sense that the performance metric of the

path Pu,v is the sum Wu,v =
∑

e∈Pu,v
we. The same notation extends to sums over subpaths that

terminate at interior vertices. Examples of additive performance metrics include packet delay, and

negative log transmission probability. We will assume one can measure the length of the following:

the path between any two boundary nodes, the common part of the two paths from a boundary

*Reproduced with permission from "Graph Reconstruction From Path Correlation Data" by G. Berkolaiko, N.G. 
Duffield, M. Ettehad, and K. Manousakis, 2018. Inverse Problems, 35, 1-25, Copyright 2018 by IOP Publishing. All 
rights reserved.
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node to any two other boundary nodes, as well as the common part of the paths to a boundary

node from any two other boundary nodes. We abstract both these cases into a unified data model

in which for every triple b, b1 and b2 of boundary vertices, we can measure, via covariances of the

packet statistics, the metric of the intersection P = P(b, b1) ∩ P(b, b2) as well as to the metric

of the intersection P = P(b1, b) ∩ P(b2, b). The results of such measurements we will denote by

PCD(b ≺ b1, b2) and PCD(b1, b2 � b) correspondingly. We remark that we use the symbols ≺

and � here not as binary comparison operators but as pictograms meant to evoke the topological

structure of the corresponding pair of paths. The totality of such measurements we call the PCD.

Note that we will not, in general, assume that the paths are symmetric; the path P(b, b1) may be

different topologically from the path P(b1, b). As a consequence, the values PCD(b ≺ b1, b2) and

PCD(b1, b2 � b) are in general different. We will assume that the function PCD is measured

exactly; see next Section for a detailed discussion of possible sources of error and the developed

technique for error-correction.

Under the fairly general conditions that will be in force in this work, the problem has a nat-

ural formulation in terms of trees. First, assume that for each b, b1, b2 ∈ VB, the intersection

P(b, b1)∩P(b, b2) is connected. Second, assume that the metricD is path increasing, i.e.,D(P) <

D(P ′) for P ( P ′. As shown in [29], the quantities {PCD(b ≺ b1, b2) : b1, b2 ∈ VB} give rise

to an embedded logical weighted tree rooted at b (called “source tree”). The tree is computed iter-

atively by finding node pairs (b1, b2) of maximal PCD(b ≺ b1, b2) and identifying each such pair

with a branch point in the logical tree. Each logical link is assigned a weight equal to the differ-

ence between the values of PCD(b ≺ ·, ·) associated with its end points. Similarly, the quantities

PCD(b1, b2 � b) give rise to an embedded logical tree with a single receiver b and the sources

VB \ {b}. Such trees are called “receiver trees”. Under the assumed conditions, our problem can

be restated as how to recover the underlying weighted graph from the set of logical sources and

receiver trees rooted at every b ∈ VB.

The main contribution of this Section, Theorem 2.2.1, is to show that under natural conditions,
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a weighted directed graph G can be recovered knowing only the graph’s Path Correlation Data

(PCD). In summary, the conditions under which Theorem 2.2.1 holds are (i) each edge is traversed

by at least one path in P; (ii) each non-boundary vertex is nontrivial in the sense that in-degree and

out-degree are not both equal 1; and (iii) each non-boundary vertex x is nonseparable in the sense

that the set of paths P(x) ⊂ P that pass through x cannot be partitioned into two or more subsets

with non intersecting end point sets. Our result holds without the assumption of weight symmetry

(defined as requiring the existence of the reverse of any edge in G, having the same weight) or

path symmetry (defined as the paths in either direction between two boundary nodes traversing the

same set of edges). We prove the correctness of our reconstruction algorithm (Algorithm 1) under

the stated assumptions.

As stated our solution does not assume that link weights are symmetric. Neither do we assume that

paths in either direction between two endpoints are symmetric: they are not required to traverse

the same set of internal (i.e. non-boundary) vertices. This level of generality reflects networking

practice, in which non-symmetric routing is employed for policy reasons including performance

and revenue optimization [18]. However, in the cases where symmetric paths can be assumed

a priori, this knowledge enlarges the set of reconstructible networks. We therefore pay special

attention to this case, providing alternative definitions of the nontrivial and nonseparable vertices

and a separate proof of the correctness of Algorithm 1 (which requires a one-line change). We also

establish the correctness of a second, more customized Algorithm 2 which applies only in the case

of symmetric weights and paths, and which is computationally less expensive than Algorithm 1

applied to this case.

2.1.2 An Example of a Communication Network

To illustrate the information available to an observer in our model, consider the network graph

schematically shown in Fig. 2.1. It is assumed that the end-to-end measurements are possible

among the boundary vertices VB = {b1, ..., b6}. The three versions of the same graph shown

contain information about the paths between the given source (b1, b2 and b3, correspondingly) and
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the corresponding set of receivers VB \ {bi} for i = 1, 2, 3; the links belonging to these paths are

highlighted in thicker lines.

b1 b3

b6b5
b4

b2 b1 b3

b6b5
b4

b2 b1 b3

b6b5
b4

b2

(Sb1) (Sb2) (Sb3)

Figure 2.1: Alternative selections of the source and the corresponding routing paths (bold edges).

From the point of view of an external observer, the routing paths on the graph are hidden but

can be reconstructed, to a certain extent, by the measurements with a fixed source and alternating

receivers, represented in our setting by queries to the PCD function. As Fig. 2.2 shows, the trees

reconstructed from PCD are logical trees where the edges represent the amalgamated versions of

the actual physical edges. For example, the logical tree labeled (Sb3) has a direct edge from b3

to b6, whereas the actual route, shown in (Sb3) passes through an internal node. Since this node

does not feature as a junction in the tree (Sb3), it will not be detected from the PCD. Moreover

each internal vertex in the original graph has multiple appearances in the logical trees with no

identifying information attached to them. Correctly identifying multiple representations of the

same internal node will be the central challenge of this work.
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b1

b2

b3 b6

b4 b5

b2

b1 b5

b3 b6 b4

b3

b6

b4

b2

b5b1

(SLb1) (SLb2) (SLb3)

b4

b6

b1

b2

b3

b5

b5 b2

b1 b3

b4 b6

b6

b5

b4 b3 b2

b1

(SLb4) (SLb5) (SLb6)

Figure 2.2: Representation of PCD on the network graph through the set of observed logical source
trees for sources b1 to b6.

b1

b2

b3 b5 b6

b4

b2

b1 b3 b4 b5 b6

b3

b6

b1 b4 b5

b2

b4 b5 b6

b2

b5

b3

b6

b1

b1 b4 b6b2

b3

b4

b5 b2

b1 b3

(RLb1) (RLb2) (RLb3)

(RLb4) (RLb5) (RLb6)

Figure 2.3: Representation of PCD on the network graph through the set of observed logical re-
ceiver trees for receivers b1 to b6.
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The information form logical source trees (Fig. 2.2) is only enough for reconstruction of special

class of network graph, namely the symmetric one where both the routing and edge weights are

symmetric. When this is not the case, the measurements of the form PCD(b1, b2 � b) will be

essential to reconstruct logical receiver trees shown in Fig. 2.3. Those contain information about

the paths with the selected receiver b and with the source set VB \ {b}. To summarize, the main

goal is to develop a practical algorithm to reconstruct the original graph from set of measurements

information of the form PCD(b1 ≺ b2, b3) and PCD(b2, b3 � b1) for b1, b2, b3 ∈ VB and to establish

necessary and sufficient conditions for the successful reconstruction.

2.2 Problem Statement and the Main Result

In this Section we set up our model and formulate our results. Informally, we have a graph with

some metric assigned to directed edges and a subset of vertices that is declared to be the “boundary”

(denoted by b1, b2 etc) where the observations are made. We assume there is a fixed path (“route”)

between each ordered pair of boundary vertices (“source” to “receiver”). We further assume that

the metric is such that we can measure the length of any route and also the length of the common

part of any two routes starting at the same source or any two routes coming into the same receiver.

These assumptions and the reconstruction problem are made precise below.

Our standing assumptions concerning P are

(i) Uniqueness: for any given pair (u, v) in VB, there is at most one path Pu,v ∈ P connecting

them in that direction.

(ii) No interior boundaries: no v ∈ VB is an interior node of any path in P . A partial network

without this property can be modified by replacing such v by an interior node to which it is

connected with a zero weight edge; see e.g. Figure 5 in [23]).

(iii) Path consistency: if two vertices u and v appear in two paths Pb1,b2 and Pb′1,b′2 in the same

order, then the subpaths connecting u and v in Pb1,b2 and Pb′1,b′2 are identical (Note that path

consistency implies tree consistency of [23]).
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2.2.1 Problem Setup

Definition 1. A network graph G = (G, VB,P) is an edge-weighted graphG = (V,E,W) together

with a set VB ⊂ V of boundary vertices and the paths P between them. In detail,

(i) V is a finite set of vertices,

(ii) E ⊂ V × V is the set of directed edges (no loops or multiple edges are allowed),

(iii) W : E → R+ are the edge weights,

(iv) VB is an arbitrary subset of V

(v) there is a path P(b, b′) between any pair of boundary vertices b 6= b′; each path P(b, b′) is

simple and assumed to be fixed for the duration of observation of the network. The paths are

assumed to have the tree consistency property: for any b1, b′1, b2 and b′2 in VB the intersection

P(b1, b
′
1) ∩ P(b2, b

′
2) is connected. As a special example see Fig. 2.4 where b1, b2 are the

same source.

b1

b2

b

Figure 2.4: An example of the violation of the tree consistency property. The paths P(b, b1) and
P(b, b2) first diverge and then meet again.

We will assume that a path P(b, b′) does not pass through any other boundary vertices. This is

done for convenience only; a graph can be easily made to satisfy this condition by “drawing out”

the boundary vertices from the bulk of the graph as shown in Fig. 2.5. The vertices that do not
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belong to the boundary we will call internal vertices and use the notation V I = V \ VB.

b1 b2

b4 b3

(a) (b)

b1 b2

b4 b3

Figure 2.5: A graph (square with no diagonals) with the path P(b1, b3) going through b2. The same
graph with the boundary vertices drawn out.

We remark that we do not assume that the weights are symmetric: Wx,y is generally different

from Wy,x. We also do not need to assume that the paths are symmetric. However, since the

latter case is important in applications and allows for a simplified reconstruction algorithm, we

will devote some time to its separate treatment, in particular in Definition 7. Let us consider some

implications of the tree consistency property. Consider two paths, P(b, b1) and P(b, b2) with some

distinct b, b1, b2 ∈ VB. The tree consistency property implies that the paths can be written as

P(b, b1) = [b, x1, x2, ..., xj, y1, y2, ..., b1] (2.1)

P(b, b2) = [b, x1, x2, ..., xj, z1, z2, ..., b2], (2.2)

where the vertex sets {y1, y2, ...} and {z1, z2, ...} are disjoint, see Fig. 2.6(a).

Similarly tree consistency property applied to paths P(b1, b) and P(b2, b) implies that

P(b1, b) = [b1, y1, y2, ..., yi, x1, x2, ..., b] (2.3)

P(b2, b) = [b2, z1, z2, ..., zj, x1, x2, ..., b], (2.4)
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with {y1, y2, ..., ym} and {z1, z2, ..., zn} are disjoint, see Fig. 2.6(b).

Definition 2. The vertex xj in equations (2.1)–(2.2) is called the (b ≺ b1, b2)-junction. Note that

the set {x1, ..., xj} is allowed to be empty in which case b acts as the junction. The vertex x1 in

equations (2.3)–(2.4) is called the (b1, b2 � b)-junction.

b x1 xj

y1 y2 b1

z1 z2 b2

x1 x2 b

b1 y1 yi

z1 zjb2

(a) (b)

Figure 2.6: (a) xj = (b ≺ b1, b2)-junction, (b) x1 = (b1, b2 � b)-junction.

We remark that we use symbols≺ and� not as relational operators but as separators in the list of 3

vertices which are pictorially similar to the path configurations in Figure 2.6. To specify the graph

reconstruction problem we will be solving we need to define the set of measurements available to

us. The length of a path is defined as the sum of the weights W of its edges; we will denote the

length by | · |. We consider a single vertex as a zero-length path; the length of an empty set is also

set to be zero. This allows us to assign length to an intersection of two paths between boundary

vertices which is either empty or a single vertex or a connected subpath.

The totality of the measurements we can make will be called the Path Correlation Data (PCD). In

includes, for all b, b1, b2 ∈ VB,

(i) the length |P(b, b1)|,

(ii) the length |P(b, b1) ∩ P(b, b2)|, which we will denote by PCD(b ≺ b1, b2),

(iii) the length |P(b1, b) ∩ P(b2, b)|, which we will denote by PCD(b1, b2 � b).
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Thus we can directly measure the distance from b ∈ VB to any (b ≺ b1, b2)-junction, or from the

(b1, b2 � b)-junction to b. We can also infer the distance from the (b ≺ b1, b2)-junction to b1, or

from b1 to the (b1, b2 � b)-junction, see Fig. 2.7.

b x1 xj

y1 y2 b1

z1 z2 b2

x1 x2 b

b1 y1 yi

z1 zjb2

δ

|P(b, b1)| − δ

δ

|P(b, b2)| − δ

|P(b1, b)| − γ

γ

|P(b2, b)| − γ

γ

(a) (b)

Figure 2.7: Various distances we can measure from Path Correlation Data (PCD). Here δ =
PCD(b,≺ b1, b2) and γ = PCD(b1, b2 � b).

Our principal question is thus: Which network graphs (G, VB,P) can be reconstructed from their

path correlation data and how does one accomplish this?

2.2.2 Some Obvious Necessary Conditions

Before we state our result and the associated reconstruction algorithm, let us consider examples that

show some obvious necessary conditions we need to impose on the network graph G = (G, VB,P)

in order to be able to reconstruct it.

Example 1. Consider the network graphs in Fig. 2.8, with VB = {u, v, w} and with the routing

paths indicated by dashed lines. None of the routing paths pass through the edge e = (u,w)

therefore the length of this edge cannot influence the PCD in any way. Conversely, the length of

the edge e (and even its existence) cannot be inferred from the PCD.

Example 2. Consider the network graphs in Fig. 2.9 with boundary vertex set VB = {u,w}. In
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v w

u

x v w

u

x

(a) (b)

Figure 2.8: Failure to recover the edge e = (u,w): the graphs (a) and (b) will produce the same
PCD since none of the paths pass through the extra edge.

.

the left graph the length of the edge (x, u) will never appear in the PCD on its own, without being

added to the length of the edge (x,w). Therefore, it will be impossible to reconstruct the location

of the vertex x, and even detect it at all. This will be the case for any internal vertex of degree 2.

w

u

x

(a)

w

u

(b)

Figure 2.9: Failure to recover the internal vertex x: the graphs (a) and (b) will produce the same
PCD as long as the sum of the lengths of (u, x) and (x,w) in the graph (a) is equal to the length of
the edge (u,w) in the graph (b).

Example 3. Consider the network graphs in Fig. 2.10 with the boundary vertex set

VB = {u1, v1, u2, v2}. (2.5)

In Fig. 2.10(a) the paths P(u1, v1) and P(u2, v2) intersect at internal vertex x, while in Fig. 2.10(b)

they do not have any vertices in common. However, the two graphs will produce the same PCD
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and will be indistinguishable.

u1

v1

u2

v2x

u1

v1

u2

v2x1 x2

(a) (b)

u1

v1

u2

v2

(c)

Figure 2.10: Failure to recover the integrity of the vertex x: the graphs (a), (b) and (c) will produce
the same PCD since the path between u1 and v1 is in no way correlated to the path between u2 and
v2.

The reader will undoubtedly observe that the vertices x1 and x2 in Fig. 2.10(b) will not be detected,

and the graph in Fig. 2.10(c) is the “minimal” graph which will have the same PCD. By making the

graph structure more complicated one can easily construct an example where x, x1 and x2 will act

as junctions for some pairs of paths and thus will be detectable, see Fig. 2.11, but the two graphs

are still not distinguishable from their PCD.

u1

v1

w1 u2

v2

w2 u1

v1

w1 u2

v2

w2

x x1 x2

(a) (b)

Figure 2.11: A more complicated example of failure to recover the integrity of the vertex x.
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Thus the real problem is that in the left graph in Fig. 2.11 there are two families of paths going

through the internal vertex x that do not interact in any way.

2.2.3 Statement of the Main Result

The main result of this Section is that the necessary conditions illustrated by examples in Sec-

tion 2.2.2 are in fact sufficient for the reconstruction! We start by formalizing (and naming) the

conditions we observed.

Definition 3. An edge is called unused if there is no path in P containing it.

We remark that if there are no unused edges in a network graph, each internal vertex has at least

one incoming and at least one outgoing edge.

Definition 4. An internal vertex x is called trivial if it has only one incoming and only one outgoing

edge (i.e. edges of the form (y1, x) and (x, y2) correspondingly).

We remark that if there are no unused edges, then there are at least two paths through every non-

trivial internal vertex.

Definition 5. For an internal vertex x ∈ V I , let Sx ⊂ VB to be the set of the sources and Rx ⊂ VB

be the set of the receivers whose paths pass through x. More precisely,

Sx =
{
b ∈ VB : ∃b̂ ∈ VB, x ∈ P(b, b̂)

}
Rx =

{
b̂ ∈ VB : ∃b ∈ VB, x ∈ P(b, b̂)

}
.

Definition 6. A vertex x ∈ V I is called separable if there are disjoint non-empty partitions Sx =

S1
x ∪ S2

x and Rx = R1
x ∪R2

x with the property that

b ∈ Sjx, b̂ ∈ Rj′

x with j 6= j′ ⇒ x /∈ P(b, b̂). (2.6)
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An example of a separable vertex is shown in Fig. 2.12. The partition sets here are S1 = {b1},

S2 = {b2}, R1 = {b3, b4} and R2 = {b5, b6}.

b1 y1

x

b2 y2

z2

z4 b4

z5 b5

z1 b3

z3 b6

b1 y1

x′

b2 y2

z2

z4 b4

z5 b5

z1 b3

z3 b6

x

(a) (b)

Figure 2.12: Paths through a separable vertex x and its separation into x1 and x2.

Finally, if the graph has symmetric routing we need to modify the conditions slightly but the

resulting reconstructibility theorem will stay the same. Naturally, symmetric routing is an extra

piece of information and more graphs are reconstructable in this case. The natural setting for the

problem with symmetric routing is a non-directed graph, but since we still allow non-symmetric

edge weights, we will keep the edges directed. As a result, edges come in pairs which correspond to

undirected edges splitting into two directed ones. This is formalized in the definition of a “network

graph with symmetric routing” below.

Definition 7. We will say that the network graph N = (G, VB,P) has symmetric routing if

• for all x, y ∈ V , (x, y) ∈ E implies (y, x) ∈ E and

• for all b, b′ ∈ VB, the path P(b, b′) is the reversal of the path P(b′, b), namely

P(b, b′) = [b, x1, x2, . . . , xj, b
′] ⇒ P(b′, b) = [b′, xj, xj−1, . . . , x1, b]. (2.7)

Definition 8. A vertex x ∈ V I in a network graph with symmetric routing is trivial if it has two (or
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less) adjacent vertices. A vertex x ∈ V I in a network graph with symmetric routing is separable if

there is a disjoint partition Sx = S1
x ∪ S2

x so that

b1 ∈ S1
x, b2 ∈ S2

x ⇒ x /∈ P(b1, b2). (2.8)

We can now state our Main Theorem. We stress that the statement of the theorem applies uni-

formly to network graphs with or without symmetric routing, the differences being absorbed by

the definitions above. We will still need to provide two separate (but similar!) proofs.

Theorem 2.2.1 (Main Theorem). Let (G, VB,P) be a network graph. If

1. no edge e ∈ E is unused,

2. no x ∈ V I is trivial,

3. no x ∈ V I is separable,

then (G, VB,P) is uniquely reconstructable from its PCD. To put it more generally, in every class

of network graphs with the same PCD, there is a unique network graph which satisfies the above

conditions.

The theorem will be proved constructively, by presenting a reconstruction algorithm and verifying

its result. The second part, which posits not only uniqueness but also the existence of the recon-

structed graph, means, in practical terms, that even when given PCD from a graph that does not

satisfy the conditions, the algorithm will terminate and produce a “nearby” result which does.

2.2.4 Comments on the Algorithm for Non-Symmetric Routing

The algorithm for the case of non-symmetric routing (Algorithm 1) works by discovering the

internal vertices and reconstructing the routing paths in the format

R(b, b̂) = [(b, 0), (x1, δ1), (x2, δ2), . . . , (̂b, δ)], (2.9)
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Algorithm 1 Reconstruction of the network graph (G, VB,P)

1: for b1, b2 ∈ VB do . Initialization
2: R(b1, b2) = [(b1, 0), (b2, |P(b1, b2)|)]
3: end for
4: for b1, b2, b3 ∈ VB do . Main Loop
5: create label a
6: δ = PCD(b1 ≺ b2, b3)
7: UPDATEPATH(R(b1, b2), a, δ)
8: if “symmetric routing” then a′ = a else create label a′

9: δ′ = |P(b2, b1)| − PCD(b2, b3 � b1)
10: UPDATEPATH(R(b2, b1), a

′, δ′)
11: end for
12: Read off the graph from reconstructed pathsR. . Return the result

13: function UPDATEPATH(R(u, v), a, δ) . Recursive Function
14: if ∃ (·, δ) ∈ R(u, v) then return
15: insert (a, δ) intoR(u, v)
16: δ′ = |P(u, v)| − δ
17: for z ∈ VB do
18: if PCD(u ≺ v, z) ≥ δ then UPDATEPATH(R(u, z), a, δ)
19: if PCD(u, z � v) ≥ δ′ then UPDATEPATH(R(z, v), a, |P(z, v)| − δ′)
20: end for
21: end function

where δi is the cumulative distance from b to xj along the path (naturally, δ = |P(b, b̂)|). Once

every path is complete, the edges can be read off as pairs of consecutive vertices appearing in

a path. The internal vertices are discovered as junctions. The main difficulty lies in identifying

different junctions that correspond to the same vertex. This is done by a depth-first search in the

function UPDATEPATH.

The following comments might be in order. In lines 5–6 a is the label for the vertex that is the

(b1 ≺ b2, b3)-junction and δ is the distance from b1 to a along the path P(b1, b2). In lines 8–9

a′ is the label for the (b2, b3 � b1)-junction and δ′ is the distance from b2 to a′ along the path

P(b2, b1). If we know a priori that the routing is symmetric, the (b1 ≺ b2, b3)-junction and the

(b2, b3 � b1)-junction are the same vertex and can receive the same label.
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Line 14 checks if there is already a vertex distance δ from b1 (if there is, label a is unused). Finally,

the loop starting on line 17 looks for any other paths that the vertex with label a must belong to

(see Fig. 2.13). Here we rely heavily on the tree consistency property.

ab1

b3

b2

z

δ

γ = PCD(b1 ≺ b2, z)

γ ≥ δ

δ = PCD(b1 ≺ b2, b3)
γ = PCD(b1, z � b2)
δ′ = |P(b1, b2)| − δ

γ ≥ δ′
δ′

a

(a) (b)

b1

z b2

b3

Figure 2.13: Insertion of a label a into the reconstructed paths R(b1, z) and R(z, b2) by lines 18
and 19 of Algorithm 1 correspondingly. The label a had been defined as the (b1 ≺ b2, b3)-junction
prior to calling function UPDATEPATH with u = b1 and v = b2.

Some further code improvements are possible. Creating and then discarding unused labels can be

avoided either by performing a check similar to line 14 in the main loop or, more elegantly, by

making a an optional argument to the function UPDATEPATH and creating a label after line 14 if

no a was supplied. Additionally, if the edge weights are symmetric, the call to PCD in line 9 can

be avoided by using PCD(b2, b3 � b1) = PCD(b1 ≺ b2, b3) = δ.

Finally, a crude upper bound on complexity of the algorithm (in terms of label insertions into

various R) is |V I | × |VB|2 ≤ 4
27
|V |3 i.e. the product of number of internal vertices and the square

number of boundary vertices of the graph.

2.3 Proof of the Reconstruction: Non-Symmetric Paths

The proof of Theorem 2.2.1 has three parts, with very similar arguments in each part. To facilitate

the proof, we first state and prove an auxiliary lemma.

Lemma 2.3.1. Let x be an arbitrary non-separable internal vertex and let A : VB × VB → {T,F}
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be a Boolean property (predicate) that is defined on the pairs (b, b′) such that x ∈ P(b, b′). Assume

A is non-constant (i.e. true on some paths and false on some others). Define S1
x to be the set of the

sources of the paths through x for which A is true and S2
x to be the set of the sources of the paths

for which A is false. Define R1
x and R2

x analogously. More formally,

S1
x =

{
b ∈ Sx : ∃b′ ∈ Rx

[
x ∈ P(b, b′) ∧ A (b, b′)

]}
,

S2
x =

{
b ∈ Sx : ∃b′ ∈ Rx

[
x ∈ P(b, b′) ∧ ¬A (b, b′)

]}
,

R1
x =

{
b′ ∈ Rx : ∃b ∈ Sx

[
x ∈ P(b, b′) ∧ A (b, b′)

]}
,

R2
x =

{
b′ ∈ Rx : ∃b ∈ Sx

[
x ∈ P(b, b′) ∧ ¬A (b, b′)

]}
.

(2.10)

Then S1
x ∩ S2

x and R1
x ∩ R2

x cannot both be empty. Above the notations ∧ and ¬ stand for “and”

and “not” logical conjunctions respectively.

Proof of Lemma 2.3.1. Since A is not always false, the sets S1
x and R1

x are non-empty; since A is

not always true, S2
x and R2

x are non-empty. Furthermore, it is easy to see that

S1
x ∪ S2

x = Sx and R1
x ∪R2

x = Rx. (2.11)

Assume that S1
x ∩ S2

x = R1
x ∩ R2

x = ∅. Then we are in a position to use non-separability of the

vertex x and to conclude that there is a path (without loss of generality) from b1 ∈ S1
x to b2 ∈ R2

x.

But this path either has property A or it does not. In the former case, b2 ∈ R1
x and in the latter

b1 ∈ S2
x, contradicting the assumption of disjointedness.

Proof of Theorem 2.2.1: unique reconstructability. We will now verify that, given the PCD

from a graph that satisfies the conditions of the Theorem, the algorithm will produce the correct

reconstruction. It is straightforward to check that the algorithm places a label for a vertex x only

in the reconstructions of paths that actually contain x and with the right value of the cumulative

distance δ. Thus it remains to show that
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(i) every vertex x has at least one label created for it,

(ii) the reconstructed paths are not missing any vertices,

(iii) no more than one label is created for each vertex.

Then we will read off sequential pairs of vertices from the reconstructed paths to identify edges.

Since there are no missing vertices in R, the edges thus reconstructed will correspond to actual

edges in E. By condition 1 of the theorem, every edge will appear in at least oneR(u, v) and will

therefore be reconstructed.

Let x be an arbitrary internal vertex. We would like to show the algorithm will create a label for x

and place it in some reconstructed path containing x. Fix an arbitrary path through x and denote

the edges that the path visits while going through x by e1 = (x1, x) and e2 = (x, x2). We will now

use Lemma 2.3.1 with the property A = A (b, b′) defined as the statement “the path P(b, b′) passes

through both e1 and e2”, or, in other words

A (b, b′) = “P(b, b′) can be written as [b, . . . , x1, x, x2, . . . , b
′]”. (2.12)

There is at least one path on which A is true. Since x is non-trivial and each of its incident edges

belongs to at least one simple path, there is at least one other path passing through x and not

containing both e1 and e2. Therefore we can apply Lemma 2.3.1 and conclude that one of the pairs

S1
x and S2

x or R1
x and R2

x are not disjoint.

Without loss of generality, consider a boundary vertex b ∈ S1
x ∩ S2

x. Let P1(b, b1) be a path

containing both e1 and e2 and P2(b, b2) be a path that passes through x but does not contain both

e1 and e2. Since both P1 and P2 contain b and x, they must coincide from b to x by the tree

consistency property. Therefore, P2 contains e1 and can not contain e2. We conclude that P1 and

P2 diverge exactly at x, see Fig. 2.14. In other words, x is the (b ≺ b1, b2)-junction and a label will

be created for it in the main loop. This label will be placed into R(b′, b1) unless there is already
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another label corresponding to x there.

b

xx1 x2 b1

b2

b ∈ V B ∩ S1
x ∩ S2

x

e1 e2

Figure 2.14: Two paths through a vertex x. The path P(b, b1) contains both e1 and e2 and the
P(b, b2) does not.

We will now prove that each reconstructed path contains labels for all vertices composing the actual

path. Assume the contrary: there is a path whose reconstruction does not contain a label for an

internal vertex x. Define the property A by

A (b, b′) = “∃a(x) ∈ R(b, b′)”. (2.13)

We have already proved that a label for xwill be placed in some path; together with our assumption

it means that A is non-constant and we can apply Lemma 2.3.1.

If there is a vertex b ∈ S1
x ∩ S2

x then we can find b′1, b
′
2 ∈ VB such that P(b, b′1) and P(b, b′2) both

pass through x but R(b, b′1) has a label corresponding to x and R(b, b′2) does not. By the tree

consistency property, the two paths coincide from b to at least x, therefore PCD(b ≺ b′1, b
′
2) ≥ δ,

where δ is the distance from b to x along the path P(b, b′1). However, the label a(x) was placed into

R(b, b′1) by a call to UPDATEPATH with this δ. This would trigger the condition on line 18 with

w = b′2 and the same label would be placed intoR(b, b′2), a contradiction. The case when R1
x ∩R2

x

is non-empty is treated similarly but this time condition on line 19 ensures the transfer of the label.
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The last step of the proof of reconstruction is to check that only one label is created for any vertex.

Assume the contrary, there is a vertex x which has at least two different labels corresponding to it

appearing in different reconstructed paths. Fix one of the labels a(x) and define property A by

A (b, b′) = “a(x) ∈ R(b, b′)”. (2.14)

This definition of A is very similar to eq. (2.13), but here a(x) is some fixed label, whereas in

(2.13) it was any label of x. By Lemma 2.3.1 and without loss of generality, there is a vertex

b ∈ S1
x ∩ S2

x. This means that there is a path P(b, b1) with the label a(x) and a path P(b, b2) with

a label a′(x) different from a(x) (we remark that we have already shown that each reconstructed

path contains labels for all its vertices). As before, the two paths coincide from b to at least x,

therefore PCD(b ≺ b′1, b
′
2) ≥ δ, where δ is the distance from b to x along the path P(b, b′1). During

the execution of the algorithm, one of the labels was placed in its respective path first. But then

the condition on line 18 would be triggered and the same label would be copied to the other path,

before the other label is created. We have thus arrived to a contradiction.

Proof of Theorem 2.2.1: reconstruction of a non-compliant graph. We will now consider the

output of the algorithm in case the PCD was created by the network graph (G, VB,P) that violates

some of the conditions of the theorem. We will show that there is a “compliant” network graph

that has the same PCD and which will therefore serve as the output of the algorithm. We start

from the network graph G = (G, VB,P) and apply the following “cleaning” operations to them

(the order is important): (1) remove all unused edges, (2) split each separable vertex into 2 or more

non-separable vertices†, (3) remove each trivial vertex by merging its incident edges into one edge.

The only adjustments needed to the paths P is to choose the correct copies of the split vertices.

The set of boundary vertices remains the same.

An example of performing these operations is shown in Fig. 2.15. In particular, the internal vertex

†See Remark 2.3.2 below for a detailed discussion of why such a splitting exists.
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x fails the non-separability condition, which is seen by defining the disjoint partitions

S = S1 ∪ S2 = {b1, b3} ∪ {b2}

R = R1 ∪R2 = {b2} ∪ {b1, b3}

b3b2

b1

x

y

b3b2

b1

x

y

b3b2

b1

x

(a) (b)

(c) (d)
b3b2

b1

x1

y

x2

Figure 2.15: Cleaning of a graph: (a) the original graph (b) removing unused edge e = (b2, b3) (c)
splitting the vertex x into x1 and x2, (d) removing trivial vertices y and x2. The edges that have no
direction marked on them run in both directions.

We remark that splitting a separable vertex may require duplicating some incoming or outgoing

edges, see Fig. 2.12, in which case the weights get duplicated too. The edges will be duplicated

only if both resulting edges are present in some paths; thus no unused edges will be created.

Suppose an internal vertex got split into x1 and x2. It follows from the definition of the separable
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vertex that if x ∈ P(b, b1) and x ∈ P(b, b2) before the split, then after the split either both paths

contain x1 or both of them contain x2. Therefore the length of each intersection of the form

P(b, b1) ∩ P(b, b2) remains unchanged after a split. The same applies to any pair of paths x ∈

P(b1, b) and x ∈ P(b2, b). We conclude that the PCD remains unchanged by the operations above.

We denote the network graph so obtained by GC (for “compliant” or “cleaned”). It is easy to see

that GC satisfies the conditions of the theorem and will therefore be reconstructed from its PCD by

the algorithm. However, the PCD of GC is the same as the PCD of G. Therefore, given the PCD of

G, the algorithm will return the network graph GC . This logic is illustrated by Fig. 2.16.

G

GC

PCD

PCD

measurement on network

measurement on network

C

Figure 2.16: Flow of the proof of the reconstruction of a non-compliant graph: C is the operations
that produce the corresponding compliant network graph GC , the Path Correlation Data of both
graphs is the same.

.

Remark 2.3.2. In the proof above we implicitly assumed that there exists a unique maximal split-

ting of a vertex into non-separable parts. We outline the proof of this fact. Fix x and define
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equivalence relations S∼ and R∼ on Sx and Rx correspondingly by letting

b1
S∼ b2 if ∃ b̂ : x ∈ P(b1, b̂) and x ∈ P(b2, b̂), (2.15)

b̂1
R∼ b̂2 if ∃ b : x ∈ P(b, b̂1) and x ∈ P(b, b̂2), (2.16)

and closing each one by transitivity. It is easy to see that they are “dual” in the following sense: if

x ∈ P(b1, b̂1) and x ∈ P(b2, b̂2) then

b1
S∼ b2 ⇔ b̂1

R∼ b̂2. (2.17)

As a consequence, there is a natural one-to-one correspondence between the equivalence classes

of S∼ and the equivalence classes of R∼. These equivalence classes provide the finest separation of

the vertex x. To be more precise, the disjoint partitions

Sx = [b1]S ∪ [b2]S ∪ . . . ∪ [bm]S, (2.18)

Rx = [̂b1]R ∪ [̂b2]R ∪ . . . ∪ [̂bm]R, (2.19)

satisfy condition (2.8). Here [·]S and [·]R denote equivalence classes with respect to S∼ and R∼ and

x ∈ P(bj, b̂j) for every j. Furthermore, if the nonempty partitions Sx = S1
x∪S2

x andRx = R1
x∪R2

x

satisfy Definition 6, then for any b ∈ Sx, either [b]S ⊂ S1
x or [b]S ⊂ S2

x, and similarly for R.

2.4 Symmetric Paths

Reconstruction of network graph with the prior knowledge that the routing is symmetric (the edge

weights may not be symmetric) has the advantage of being able to reconstruct a wider class of

network graphs. In the following we present the proof of unique reconstruction of network graph

with symmetric routing if the conditions of the main theorem are satisfied. The only differences on

the required conditions for exact recovery are contained in Definition 8 for the non-triviality and

non-separability of internal vertex. We start with an appropriate modification of Lemma 2.3.1.
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Lemma 2.4.1. Let x be an arbitrary non-separable internal vertex and let B be a non-constant

symmetric Boolean property (predicate) that is defined on the pairs (b, b′) such that x ∈ P(b, b′)

and x ∈ P(b′, b). Define S1
x to be the set of the sources of the paths through x for which B is true

and S2
x to be the set of the sources of the paths for which B is false. More formally,

S1
x =

{
b ∈ Sx : ∃b1 ∈ VB

[
x ∈ P(b, b1) ∧ B (b, b1)

]}
,

S2
x =

{
b ∈ Sx : ∃b2 ∈ VB

[
x ∈ P(b, b2) ∧ ¬B (b, b2)

]} (2.20)

Then S1
x ∩ S2

x cannot be empty.

Proof of Lemma 2.4.1. For symmetric routing the receiver Rx and the source set Sx = S1
x ∪ S2

x

coincide. Assume that S1
x ∩ S2

x = ∅. Then using the non-separability of vertex x, there is a path

from b1 ∈ S1
x to b2 ∈ S2

x. But this path either has property B or it does not.

(i) In the former case, we use symmetry of B(b1, b2) to conclude b2 ∈ S1
x.

(ii) In the latter case B(b1, b2) is false, thereby b1 ∈ S2
x,

either way, contradicting the assumption of disjointedness.

Now we are in the position to apply Lemma 2.4.1 to prove the unique reconstruction of network

graph with symmetric routing. While the proof steps are very similar to the ones discussed in prov-

ing Theorem 2.2.1, the main difference here is to ensure that the Boolean function B is symmetric.

2.4.1 Proof of the Reconstruction: Symmetric Paths

We first show that every vertex x has at least one label created for it. For an internal vertex x, fix

an arbitrary path P0 through x and denote the vertices that the path visits before and after getting

to x by x1 and x2. Denote by

Λx :=
{

(x1, x), (x, x1), (x, x2), (x2, x)
}
⊆ E
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the subset of edges contains x and either x1 or x2 as the other end vertex. Define the property

B = B(b, b′) as the statement

B (b, b′) = “P(b, b′) satisfies |P(b, b′) ∩ Λx| = 2”, (2.21)

in other words, B is true if the path can be written as a sequence

P(b, b′) = [b, . . . , x1, x, x2, . . . , b
′] or P(b, b′) = [b, . . . , x2, x, x1, . . . , b

′].

Due to the symmetric routing assumption on the network graph, function B will be true for the

reverse path P(b′, b) as well. Because of our choice of x1 and x2, there are at least two paths on

which B is true, namely P0 and its reversal. Since vertex x is non-trivial, there exists vertex x3

adjacent to x and a path P ′ passing through (x, x3) or (x3, x) on which B is false. Therefore we

can apply Lemma 2.4.1 and conclude that S1
x and S2

x are not disjoint.

Consider a boundary vertex b ∈ S1
x ∩ S2

x, and let P1(b, b1) and P2(b, b2) be the two paths where

B is true and false respectively. By the tree consistency property, the two paths follow the same

set of edges before diverging exactly at x because B is false on P2. As a result x is the (b ≺

b1, b2)-junction and a label will be created for it in the main loop of Algorithm 1. This label will

be placed in both reconstructed paths R(b, b1) and R(b1, b) unless there is already another label

corresponding to x there.

Next we show that the reconstruction paths are not missing any vertices. Fix an internal vertex x

and define the property

B (b, b′) = “∃ a(x) such that a(x) ∈ R(b, b′) and a(x) ∈ R(b′, b)”, (2.22)

which is clearly symmetric by its definition. We emphasis that R(b, b′) and R(b′, b) are required

to contain the same label for x. We already proved that a label will be created for x, and when

33



the first label is created, it will be placed into a path and its reversal. Therefore B is true on some

paths. We will prove that this B holds for all paths (b, b′) containing x. This will establish not only

that the reconstructed paths are not missing any vertices, but also that the labels inR(b′, b) are the

same as inR(b, b′).

Assume the contrary: B fails for some path. We apply Lemma 2.4.1 and let b ∈ S1
x ∩ S2

x. Then

there exist b1, b2 ∈ Rx so that a representation â(x) exists in bothR(b, b1) andR(b1, b) while B is

false on (b, b2). The latter implies that â(x) cannot be present in both reconstructed pathsR(b, b2)

orR(b2, b). This can be summarized as follows: ∃ â(x) such that

â(x) ∈ R(b, b1) and â(x) ∈ R(b1, b) and
(
â(x) 6∈ R(b, b2) or â(x) 6∈ R(b2, b)

)
. (2.23)

Now without loss of generality, assume that â(x) 6∈ R(b2, b). The same arguments as in the proof

of Theorem 2.2.1 guarantee that PCD(b1, b2 � b) ≥ δ′, where δ′ is the distance from x to b.

Therefore the insertion of the representation â(x) intoR(b2, b) will be attempted by triggering the

condition in line 19 for z = b2 within the call of the function UPDATEPATH(R(b1, b), â, ·). Since

â(x) 6∈ R(b2, b), we conclude that there is another label a′(x) ∈ R(b2, b), placed there earlier by a

call to UPDATEPATH(R(b2, b), a
′, ·). But then the condition in line 19 will be triggered with z = b1

and the label a′ will be placed intoR(b2, b), in contradiction to our assumptions.

The last step of the proof is to show that no more than one label is created for each vertex. For a

fixed label a(x) of vertex x, define the property

B (b, b′) = “a(x) ∈ R(b, b′)”. (2.24)

which is symmetric since we already proved that property (2.22) holds for all paths containing

x. By Lemma 2.4.1 there exists b ∈ S1
x ∩ S2

x where the representation a(x) ∈ R(b, b1) and

a′(x) ∈ R(b, b2) are distinct. But the two paths pass same set of edges at least up to vertex x, i.e.

PCD(b ≺ b1, b2) ≥ δ, where δ is the distance from b to x along the path P(b, b1). The execution of
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algorithm places one of the labels in its respective path first. As a result, before any new label for x

is created, condition on line 18 will have been triggered and copied the label to other paths. This is

contradiction to the assumption of existence of two different labels of x in the set of reconstructed

paths. This finish the proof.

Finally, for graphs with symmetric routing where the exact reconstruction conditions are not met,

similar discussion as in Theorem 2.2.1 proves the uniqueness of the reconstruction result. The

main point here is that cleaning operations preserve the symmetric routing on the graph. Moreover

the compliant graph GC satisfies the exact reconstruction conditions with same PCD as the one for

original graph G.

2.4.2 Specialized Algorithm for Symmetric Routing

We have shown that the reconstruction Algorithm 1 is universal: it covers both the general non-

symmetric network and also graphs with symmetric routing. However, having the prior information

that the routing on the network is symmetric makes it possible to call the recursive function UP-

DATEPATH less. This is due to the symmetric routing property that if an internal vertex x is inserted

in reconstruction path P(u, v) for u, v ∈ VB then this vertex should also be inserted in the reverse

path P(v, u) with appropriate distance from root v (this is not generally true for non-symmetric

routing case). To take advantage of this feature we propose Algorithm 2 as a specialized version

of the reconstruction algorithm for the graphs with symmetric routing.

Compared to the Algorithm 1, the new algorithm calls the recursive function twice less (as can be

seen by comparing the main loops of the two algorithms). The change in the number of calls of

reconstruction function is compensated by adding line 14 in the new algorithm where the label of

internal vertex which is inserted in the given path will be inserted in the reverse one as well. It

should be pointed out that although less calls of main reconstruction function makes the algorithm

computationally more effective, from the point of view of mathematical complexity (in terms of

insertions of a vertex into a reconstructed path), the two algorithms can be considered the same.
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Algorithm 2 Reconstruction of a network graph with symmetric routing
1: for b1, b2 ∈ VB do . Initialization
2: R(b1, b2) = [(b1, 0), (b2, |P(b1, b2)|)]
3: end for
4: for b1, b2, b3 ∈ VB do . Main Loop
5: create label a
6: δ = PCD(b1 ≺ b2, b3)
7: δ′ = PCD(b2, b3 � b1)
8: UPDATEPATH(R(b1, b2), a, δ, δ

′)
9: end for

10: Read off the graph from reconstructed pathsR. . Return the result

11: function UPDATEPATH(R(u, v), a, δ, δ′) . Recursive Function
12: if ∃ (·, δ) ∈ R(u, v) then return
13: insert (a, δ) intoR(u, v)
14: insert (a, |P(v, u)| − δ′) intoR(v, u)
15: for z ∈ VB do
16: if PCD(u ≺ v, z) ≥ δ then UPDATEPATH(R(u, z), a, δ, δ′)
17: if PCD(v ≺ u, z) ≥ γ′ then UPDATEPATH(R(v, z), a, |P(v, u)| − δ′, |P(u, v)| − δ)
18: end for
19: end function

2.4.3 Reconstruction Example

In the following example, we will show how having the prior information of symmetric routing

will help to uniquely reconstruct the network graph shown in Fig. 2.17(a). The selected routing

among the boundary vertices VB = {b1, b2, b3} follows the sequence P(bi, bj) = [bi, xi, xj, bj] for

i, j = 1, 2, 3. From the measurement point of view, the PCD on the graph is represented as the set

of observed logical trees in Fig. 2.18.

If there is no information on the symmetry of routing, then we can not conclude that a1 = a4,

a2 = a5 and a3 = a6. The resulting reconstruction will be the graph appearing in Fig. 2.17(b).

We remark that such geometry is fairly realistic if we, for example, consider the vertices bj to be

internet service providers (ISPs) who are eager to push the traffic addressed outside their network to

other ISPs as soon as possible. Still, the reconstruction does not match the graph we had originally.
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Figure 2.17: (a) An example of a network graph. To avoid clutter, the edges with no specified
direction are assumed to go in both directions with the same weight, (b) reconstructed network

However, the reconstruction is possible if we know a priori that the routes are symmetric, as they

are in this example. Then the paths going out of a given source b and the paths going to b acting

as the receiver have exactly the same topology. This additional information allows us to identify

a1 = a4, a2 = a5 and a3 = a6 in Fig. 2.17(b) and thus recover the original graph. Since symmetric

routing networks appear in applications, we expect the optimized Algorithm 2 to be a practical

value.

2.4.4 The Effect of Symmetric Edge Weights

Symmetric network graph for which both the routing on the graph and edge weights are symmetric

can be considered as a special class of general networks. For this class of networks, similar to the

graphs with symmetric routing (see eq. 2.7), same set of edges are passed in the two reverse paths

P1(u, v) and P2(v, u). Additionally, the symmetric edge weights property implies that for any

vertex x ∈ P1, then |P(v, x)| = |P(u, v)| − |P(u, x)|. In other words, path P2 is fully identified

by the available information form the path P1. This property of symmetric networks implies that

PCD(v, w � u) = PCD(u ≺ v, w), and as a result the information from PCD encoded in the form

of (u ≺ v, w)-junctions can be applied to identify the information for the (v, w � u)-junctions.

From the reconstruction point of view, same conditions are required for exact reconstruction of

graphs with symmetric edge weights as discussed in previous Sections and thereby Algorithm 2
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Figure 2.18: Representation of PCD on the network example through set of logical source and
receiver trees.

can be applied for reconstruction purposes.
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3. CONSISTENT MERGING AND PRUNING OF SUBGRAPHS

Practical network measurement may provision data with imperfect consistency. For example, in-

put data may be provided in the form of weighted trees computed from packet measurement over

time intervals that are not perfectly aligned, so that the metric of a path P(b, b′) may be reported

differently in the source tree from b and the receiver tree to b′. Even with aligned intervals, devi-

ations from the model and statistical fluctuations due to finitely many probe packets may result in

inconsistency. To enable our proposed algorithm to operate with such data, we propose to compute

a PCD that is a least-squares fit to inconsistent tree data.

3.1 The Challenge of Subgraph Weight Inconsistency

A key challenge for fusion derives from the weight inconsistencies between different inferred

subgraphs of the network. We say that two partial network graph G(1) and G(2) have inconsistent

weights if there is a pair of vertices u, v ∈ V (1)
B ∩ V (2)

B such that Pu,v ∈ P(1) and Pu,v ∈ P(2), yet

the corresponding path weights are unequal: W (1)
u,v 6= W

(2)
u,v . Causes of inconsistencies include:

(C1) Statistical variation: when inference of two partial network graphs yields different weight

estimates for edges in their intersection.

(C2) Imperfect temporal alignment: some inference methods use time series of path perfor-

mance metrics over a sequence of time slots. However, the slots for different time series

may not be synchronized among different hosts due to variable transit time or clock skew.

Although packet sequence numbers can be used to coordinate slot alignment at different

hosts, these may not be available for measurements of background traffic.

(C3) Deviations from a model: violation of assumptions, such as edge independence, cause

inconsistent apportioning of path performance amongst the path’s constituent edges.

Two main consequences of weight inconsistency are as follows:
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3.1.1 Difficulties in Merging Weighted Graphs

Lack of consistent path weights prevents application of fusing algorithm stated in Section 2. To

illustrate this, consider in Figure 3.1 two weighted simple binary trees T Sb1 and T Rb2 that have been

inferred by primitive inference using distinct packet time series involving the same three boundary

vertices b1, b2 and b3 with central vertices c and c′ respectively. T Sb1 is a source tree rooted at vertex

b1 while T Rb2 is a receiver tree rooted at vertex b2. The trees have the common directed path P1,2

which we wish to merge. However, unless the respective paths weights w1 + w2 and v1 + v2 in

T Sb1 and T Rb2 are equal, it is not immediately clear how to assign interior vertices and edge weights

in a merged graph. A naive approach is to assign to the path some combination of the available

weights, such as the arithmetic mean. However, changing the paths weights necessitates changing

the weights in the constituents edges, which may impact the consistency of other paths that contain

those edges, and so on. Instead, what is needed is a principled approach to removing all path

inconsistencies by coordinated adjustment of their constituent edge weights.

w1

w2 w3

b1

b2 b3

T S
b1

c

v1

v2 v3

b1

b2 b3

c

T R
b2

Figure 3.1: Source tree T Sb1 rooted at vertex b1, receiver tree T Rb2 rooted at vertex b2 both having
version of direct path Pb1,b2 .

3.1.2 Topological Noise and Edge Pruning

Now suppose the weights on path P1,2 are consistent, i.e., w1 + w2 = v1 + v2. Then the trees T Sb1
and T Rb2 may be merged, forming the graph G in Figure 3.2. Without loss of generality we have
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assumed v1 < w1 and hence v2 > w2. To merge, the central vertices c from T Sb1 and c′ from T Rb2 are

inserted in the path joining b1 and b2 according to the edge weights in their respective topologies;

see e.g. [23]. This results in a directed edge (c, c′) of weight δ = w1 − v1 = v2 − w2. The

distinction between vertices c and c′ may represent asymmetric routing in the underlying network.

However, estimation errors of the type (C1) will be manifest in the form of extraneous small weight

edges. In order to simplify the inferred topology, such edges are pruned i.e. removed from the

topology and their endpoints identified. Criteria for pruning include (a) an edge weight being less

that a threshold performance metric values of interest, and (b) an edge weight being statistically

indistinguishable from zero, e.g., on account of being less than some multiple of its estimated

standard deviation. Pruning the edge (c, c′) from topology G gives rise to the pruned topology G̃ in

Figure 3.2. However, pruning introduces new inconsistencies since the weight v1 +w2 on path P1,2

is less than the measured weight w1 + w2 = v1 + v2. Naive approaches to restoring consistency,

such as allocating a total weight w1 + w2 in proportion to the weights v1 on edge (b1, c) and w2

in edge (c, b2) in G̃ will cause weight inconsistencies with other paths containing those edges.

Again, we seek a principled way of redistributing the weights of pruned edges while maintaining

measured path weights.

v1

w2

v3

b1

b2 b3

G

c′

v1

w2

v3

b1

b2 b3

G̃

c

w3w3

δ
c

Figure 3.2: Left: merged graph G under equal path weights w1 + w2 = v1 + v2 for directed path
P1,2. With no loss of generality assume v1 < w1 and hence v2 > w2. Right: Pruned graph G̃ after
removal of edge (c, c′) from G.
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3.2 Problem Statement

Motivated by the problems inherent in graph merging and graph pruning described above, we

abstract two variant problems in treating inconsistency, as follows:

3.2.1 Extrinsic Consistency

Let G = (G, VB,P) be a partial network graph. A target path weight set Z is positive function on

a path subset P̃ ⊆ P . We call edge weights W̃ on E extrinsically consistent with Z if Zu,v = W̃u,v

whenever (u, v) ∈ P̃ . Given original edge weightsW and target path weights Z , our problem is to

find edge weights W̃ that are (a) extrinsically consistent with the target path weights Z; (b) close

toW in a sense to be defined, and (c) readily computable.

3.2.2 Intrinsic Consistency

Let {G(1), . . .G(k)} be a set of inferred partial network subgraphs with boundary sets V (i)
B ⊂ VB =⋃

i V
(i)
B , and path sets P(i) joining ordered pairs of vertices in V

(i)
B . Apart from the boundary

points, the graph elements are distinct with no identification between internal vertices V (i) \ V (i)
B

and edges E(i) from different subgraphs G(i). We call a set of weights {W̃(1), . . . , W̃(k)} on the

graphs {G(1), . . . ,G(k)} intrinsically consistent if for any ordered pair (u, v) ∈ VB and all i for

which there is a path P(i)
u,v ∈ P(i) connecting u and v, the path weight W̃(i)

u,v =
∑

e∈P(i)
u,v
w̃

(i)
e is

independent of i. Given the original set of weights {W(i)} on {G(1), . . . ,G(k)}, our problem is to

find a set of weights {W̃(i)} that are (a) intrinsically consistent; (b) close to {W(i)} in a sense to

be defined, and (c) readily computable.

3.2.3 Contribution and Outline of this Section

The contributions of this Section are summarized as follows:

1. We formulate and solve the problems of producing extrinsically or intrinsically consistent

weights in a least-squares framework. We seek to minimize the square differences ‖W̃−W‖2

of the solution and given edge weights, under consistency and positivity conditions for W̃ .

In each case, the solutions are expressed in term of the Moore-Penrose pseudo-inverse of
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a generalized routing matrix that expresses the linear constraints between path and edge

weights. While on the one hand this is a standard approach to constrained optimization, we

must make a careful examination of invertibility properties in order to provide a computable

solution and avoid singularities. While several approaches exist in the literature to ensure

positivity conditions, we are able to take a simpler approach informed by the network context

that small or negative weights are uninteresting and may be set to zero and thereafter ignored.

2. We show how our solution for extrinsic consistency applies to the problem of pruning topo-

logical noise.

3. We show how our solution for intrinsic consistency applies to the problem of preparing

inconsistent inferred trees for fusion in networks with asymmetric routing.

3.3 Extrinsic Consistency

Let G = (G, VB,P) be a partial network graph and Z : P → R≥0 be a target path weight set. If

Z is specified on only a subset of P , we can extend it to all of P by assigning Zu,v = Wu,v for all

other pairs (u, v) ∈ P . We seek a set of weights W̃ on E which is extrinsically consistent with Z

as a solution to the constrained optimization problem

min
W̃
‖W − W̃‖2 such that (3.1)∑

e∈Pu,v

w̃e = Zu,v, ∀(u, v) ∈ P (3.2)

w̃e ≥ 0, ∀e ∈ E (3.3)

The positivity constraint (3.3) originates in the interpretation that positive edge weights we are as-

sociated with performance impairment, while we = 0 indicates no impairment on edge e. We focus

first on the optimization problem (3.1)-(3.2) returning to the positivity constraint in Section 3.5.
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Theorem 3.3.1. Rewrite equation (3.2) as

AW̃ = Z, (3.4)

where A =
(
A(u,v),e

)
u,v∈P,e∈E denotes the incidence matrix of edges in paths,

A(u,v),e =


1, if e ∈ Pu,v,

0, otherwise.
(3.5)

Then the least squares solution of (3.2) which minimizes (3.1) is given by

W̃ =W + A′(Z − AW), (3.6)

where A′ is the Moore-Penrose pseudo-inverse of A.

Proof of Theorem 3.3.1. Introducing new notation

δ = W̃ −W and η = Z − AW ,

in (3.4) and (3.1), we seek solutions to the linear equation Aδ = η of minimal `2 norm ‖δ‖2. It is

well known [35], that the least squares solution of minimal norm is given by δ = A′η where A′ is

the Moore-Penrose pseudo-inverse of A.

Remark 3.3.2. We stress that there is no guarantee that (3.4) is consistent (possess at least one

solution). If it is not, the least squares solution is the best fit with respect to `2 norm. More

precisely, the solution W̃ in (3.6) is the vector which minimizes ‖Z −AW̃‖2 and, if there is more

than one minimizer, W̃ also minimizes ‖W − W̃‖2.

On the practical level, the external constraint is often known only approximately. In this situation,
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it is natural to accept an approximate solution to the constraint.

Remark 3.3.3. For numerical computation of the Moore-Penrose pseudo-inverse, there exist sim-

ple and stable prescriptions. For example, if AAT is invertible which is equivalent to Aw = z

being solvable for any z, then A′ is given by the formula

A′ = AT (AAT )−1. (3.7)

If AAT is not invertible, formula (3.7) can still be used via regularization or by representing the

real symmetric matrix AAT as 0K ⊕B, where K is the null-space of AAT and B is the restriction

of AAT to the orthogonal complement of K⊥, and interpreting (AAT )−1 as 0K ⊕B−1.

An important special case of Theorem 3.3.1 is when the underlying graph is a tree. In this case

(3.4) will have one or more solutions for every Z . More precisely, let G be a directed tree with

root vertex b and leaf set Lb = VB \ {b}. The following result applies equally to a source tree,

where there is a unique simple path Pb,u for each u ∈ Lb and to a receiver tree consisting of unique

simple paths Pu,b, with u ∈ Lb.

Corollary 3.3.4. Let G be a directed tree and let A be the incidence matrix of edges over the set

of simple paths to (or from) the root vertex ρ from (or to) the leaf vertices. Then A has the full row

rank and the solution that minimizes (3.1) is given by (3.6) with A′ computable using (3.7).

Proof of Corollary 3.3.4. It suffices to show that A has linearly independent rows. Indeed, this

implies that the null-space of AT is zero and, by the rank-nullity theorem, the range of A is the

entire space (AW̃ = Z has a solution for any Z). Also, for any W 6= 0, 0 < ‖ATW‖2 =

〈W , AATW〉 and thus AATW 6= 0 and the matrix AAT is invertible. Since by our construction a

path P (b, b′) does not pass through any other boundary vertices, every path is uniquely identified

by the leaf it goes to (or from). Thereby every row of matrixA has entry 1 corresponding to the leaf

edge. This entry must be 0 in any other row in A. Therefore the rows are linearly independent.
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3.3.1 Edge Weight Adjustment After Pruning

To show how the general framework of Section 3.3 applies to pruning we address the question:

how should the weight of pruned edges be assigned to remaining edges in order to preserve end-

to-end path weights. Consider a partial network graph G and denote by A the incidence matrix of

edges over paths, equation (3.5). Pruning an edge amounts to deleting the corresponding column

from A and contracting the edge in the underlying graph. All paths in P remain connected upon

identification of the endpoints of the deleted edge and no further adjustment of A is needed.

Denote by Ẽ ⊂ E the reduced set of edges and by Ã the corresponding incidence matrix of

the pruned network. Given original edge weights W = {xi : i ∈ E} we seek edge weights

W̃ = {w̃i : i ∈ Ẽ} of the pruned network that reproduce the same total weight on all paths in P ,

ÃW̃ = AW , (3.8)

and minimize the square distance on the remaining edges,

‖W̃ −WẼ‖
2
2 =

∑
i∈Ẽ

|w̃i − wi|2, (3.9)

whereWẼ denotes the restriction ofW to Ẽ.

Corollary 3.3.5. The least squares solution W̃ of (3.8) which minimizes (3.9) is given by

W̃ =WẼ + Ã′
(
AW − ÃWẼ

)
(3.10)

where Ã′ is the Moore-Penrose pseudo-inverse of Ã. If the graph G̃ obtained after pruning is a

tree, the matrix Ã has full row rank.

Proof of Corollary 3.3.5. Use Theorem 3.3.1 with Z = AW . Full row rank of Ã follows from

Corollary 3.3.4.
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Remark 3.3.6. The result in Corollary 3.3.5 does not guarantee that all elements of W̃ are positive.

In subsection 3.5, we discuss different approaches that can be applied to impose this sign constraint.

Note that if there is only limited amount of pruning involved, we can guarantee that system (3.8)

does have at least one feasible solution even if the graph is not a tree. The following lemma sketch

the sufficient conditions on the existence of solution to system (3.8).

Lemma 3.3.7. Suppose the graph G has no looping edges and a directed edge (u, v) has one of

the following properties:

1. u is not a boundary vertex and the weight of (u, v) is strictly smaller than the weight of any

other edges originating from u, or

2. v is not a boundary vertex and the weight of (u, v) is strictly smaller than the weight of any

other edge terminating at v,

then pruning (u, v) results in a consistent system (3.8).

Proof of Lemma 3.3.7. Denote the weight of (u, v) by δ. Assume the first condition is satisfied

(the proof of the second case is similar). We contract (u, v), and adjust weights by subtracting

δ from the weight of every edge originating from u and adding δ to the weight of every edge

terminating at u. It is easy to see that the weight of every path remains the same. Indeed, if the

path P visits the vertex u, P must contain exactly one edge of the form (u′, u) and exactly one

edge of the form (u, v′) (here we make use of the fact that there are no loops at vertex u). Then

W̃u′,u = Wu′,u + δ, W̃u,v′ = Wu,v′ − δ, W̃u′,u + W̃u,v′ = Wu′,u +Wu,v′ .

The above reasoning also applies to the case v′ = v since we can view the contracted edge (u, v)

as an edge with W̃u.v = 0. We have thus constructed one solution to (3.8) and therefore it is

consistent.
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Since a reasonable pruning scenario is pruning edges of the smallest weight, one can attempt an

iterative application of the above Lemma. However, there can be problems of topological nature.

The following example clarifies the discussion above.

x1 x2

x4x3

w̃1 w̃3

w̃2 w̃4

x

b1 b3

b2 b4

b1 b3

b2 b4

2

2

1010

10 10

1 1

Figure 3.3: Inconsistency occurs by pruning the edges. Left: the original partial graph, right: the
pruned representation.

Example 4. Consider the partial network graph with source b1, b2 and receivers vertices b3, b4 in

Figure 3.3(left), and the result of pruning four shortest edges as shown in Figure 3.3(right).

The linear system in equation (3.8) consists of four equations,

w̃1 + w̃3 = 22, w̃2 + w̃3 = 21,

w̃1 + w̃4 = 21, w̃2 + w̃4 = 22.

Eliminating w̃1 from the first column and w̃2 from the second column shows the system is incon-

sistent (w̃3−w̃4 = ±1). Applying the result of Corollary 3.3.5 will assign new weights w̃i = 10.75

for i = 1, . . . , 4. While the consistency from end-to-end point of view fails (e.g. Wb1,b4 6= W̃b1,b4),

the weights W̃ are optimal in `2 sense.

3.4 Intrinsic Consistency in Tree-Based Network Inference

In this Section we address the question of intrinsic consistency (see Section 3.2) in the setting of

our intended application, when the graphs G(i) are trees. More precisely, we assume to be given
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the set VB and, for any b ∈ VB, two directed trees, a source tree T Sb = (V S
b , E

S
b ,WS

b ) and a

receiver tree T Rb = (V R
b , E

R
b ,WR

b ). In each tree, the root is b and the leaf set is identified with

VB \ {b} =: Lb. All edges are directed away from b in the source tree T Sb and towards b in the

receiver tree. In applications these trees have been inferred (with some subsequent pruning) from

packet measurements on an underlying network, with the only known parameter of the network

being the set VB.

Note that u ∈ Lv iff v ∈ Lu. Each edge i in ES
v possesses an inferred weight wSv,i ≥ 0 and likewise

each edge i in ER
v possesses a inferred weight wRv,i ≥ 0. We emphasize that all trees are distinct

with no edge or internal vertices in common. For each u 6= v ∈ VB let P S
v,u denote the unique

path that connects v to u in T Sv . Similarly, let PR
v,u denote the unique path connecting v to u in

the receiver tree T Ru rooted at u. If the given trees are source and receiver trees generated from

the same underlying network, the paths must be identical. In particular, their weights must be the

same.

LetE∗ =
⋃
v∈VB E

R
v ∪ES

v denote the set of all edges over all source and receiver trees and we write

W ∈ RE∗ for the vector of their weights,W = {wSv,i, v ∈ VB, i ∈ ES
v } ∪ {wRv,i, v ∈ VB, i ∈ ER

v }.

We seek to determine the vector of weights W̃ = {w̃Sv,i : v ∈ VB, i ∈ ES
v } ∪ {w̃Rv,i : v ∈ VB, i ∈

ER
v } ∈ RE∗ that minimize the square difference:

‖W − W̃‖22 =
∑
v∈VB

(∑
i∈ES

v

(
wSv,i − w̃Sv,i

)2
+
∑
i∈ER

v

(
wRv,i − w̃Rv,i

)2)
(3.11)

subject to the common path consistency constraint,

∀v∈VB , ∀u∈Lv :
∑
i∈PS

v,u

w̃Sv,i =
∑
i′∈PR

v,u

w̃Ru,i′ . (3.12)

Let Q denote the set of ordered pairs of distinct boundary vertices and let A denote the |Q| × |E∗|
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signed incidence matrix of edges over Q, defined by

A(v,u),i =

 +1 if i ∈ PR
v,u,

−1 if i ∈ P S
v,u.

With this notation (AW)(v,u) is the asymmetry between the total weight on the paths from v to u

on the receiver tree with root u and the source tree with root v. The constraint (3.12) is written

succinctly as AW̃ = 0.

Theorem 3.4.1. The matrix A has full row rank (therefore AAT is invertible) and the solution to

the constrained optimization (3.11), (3.12) is given by

W̃ =W − AT (AAT )−1AW , (3.13)

with the following error bound

‖W̃ −W‖22 ≤ ‖AW‖22/2. (3.14)

This error bound is tight for tree network graphs.

Remark 3.4.2. This suggests a possible heuristic for pruning the tree with weights computed using

Theorem 3.4.1: prune the maximal set of edges of smallest weight, whose sum of square weights

does not exceed ‖AW‖22/2.

Proof of Theorem 3.4.1. Writing W̃ = W + δ, then we seek solutions δ to the linear equation

Aδ = −AW of minimal `2 norm. The form (3.13) then follows if AAT is invertible, as we now

establish. Observe we can write A = (AR,−AS) (joining the corresponding rows) where AR

and AS are the incidence matrices of the edges over paths in receiver trees and (reversed) paths

in source trees. Under an appropriate ordering of the pairs in Q the matrix AR decomposes into

sum AR = ⊕v∈VbAR,v (similarly, AS = ⊕v∈VbAS,v which we will need later). Since each AR,v has
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independent rows, therefore AR and, by extension, A have independent rows. Now referring to

Corollary 3.3.4, invertibility of AAT follows.

To prove the error estimate, equation (3.14), we write δ = W̃ − W = −AT (AAT )−1AW and

hence

‖δ‖22 = 〈AT (AAT )−1AW , AT (AAT )−1AW〉

= 〈(AAT )(AAT )−1AW , (AAT )−1AW〉 = 〈AW , (AAT )−1AW〉

≤ ‖AW‖22 ‖(AAT )−1‖

using the spectral norm for matrices. The result follows if we can show ‖(AAT )−1‖ ≤ 1/2 or,

equivalently, ‖AAT‖ ≥ 2. The latter follows from AAT = ARA
T
R +ASA

T
S if 〈y, ARATRy〉 ≥ ‖y‖2

and 〈y, ASATSy〉 ≥ ‖y‖2 for all vectors y ∈ RQ. It suffices to show this for receiver trees. Observe

〈y, ARATRy〉 =
∑

v∈B〈yv, AR,vATR,vyv〉 where yv is projection of y ∈ RQ onto RLv . We now

represent

AR,vA
T
R,v =

∑
i∈ER

v

AR,v,iA
T
R,v,i,

where AR,v,i is the i-th column of the matrix AR,v. If i corresponds to an edge ending in a leaf u,

the matrix AR,v,iATR,v,i has a single 1 on the diagonal, in the position ((v, u), (v, u)). Therefore, the

sum of AR,v,iATR,v,i over leaf edges i produces an identity matrix, while the rest of the summands

are clearly positive semidefinite. We conclude that AR,v,iATR,v,i ≥ I, therefore 〈yv, AR,vATR,vyv〉 ≥

‖yv‖2 and so 〈y, ARATRy〉 ≥
∑

v∈VB ‖yv‖
2 = ‖y‖2.

We now show that the bound is tight for tree network graphs. Observe that this class of networks

has the property that the routing paths are symmetric and the receiver tree T Rv and source tree T Sv

are isomorphic at each v ∈ VB. Denote by S := ASA
T
S and R := ARA

T
R, these two matrices act on

vectors indexed by pair of distinct boundary vertices. Due to structure of matrix A, S(u1,v1)(u2,v2) =

0 if u1 6= u2 and S(u,v1)(u,v2) = |Pu,v1 ∩ Pu,v2| i.e. number of directed edges in common between

the two paths Pu,v1 and Pu,v2 . If the routing is symmetric (this is the case on a tree network),
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then R(v1,u1)(v2,u2) = S(u1,v1)(u2,v2) which implies R = J−1SJ with J-permutation matrix sending

(u, v) 7→ (v, u). Matrix J satisfies J(u1,v1)(u2,v2) = δ(u1,v2)δ(v1,u2) with the property that J−1 =

JT = J . Since AAT = S +R, therefore, it is sufficient to find z such that

Sz = z, and SJz = Jz

If v1 and v2 are siblings in T Su , then

S(u,v1)(u,v1) = S(u,v2)(u,v2) = 1 + S(u,v1)(u,v2) = 1 + S(u,v2)(u,v1)

Moreover, ∀w 6= v1, v2

S(u,w)(u,v1) = S(u,w)(u,v2)

We conclude that S − I has identical columns (u, v1) and (u, v2) for any v1 and v2 siblings in T Su .

Let now u1, u2 and v1, v2 be two distinct pairs of siblings (always possible to find these two set of

distinct siblings in a tree with |VB| ≥ 4). Define vector z with

z(u1,v1) = +1, z(u2,v1) = −1

z(u1,v2) = −1, z(u2,v2) = +1.

and all other z(w1,w2) = 0. Since columns (u1, v1) and (u1, v2) of matrix S − I are identical and

columns (u2, v1) and (u2, v2) are also identical, we get (S − I)z = 0, i.e. Sz = z.

But z̃ = Jz has the same structure

z̃(v1,u1) = +1, z̃(v1,u2) = −1

z̃(v2,u1) = −1, z̃(v2,u2) = +1.

Using properties of the columns (v1, u1), (v1, u2) and (v2, u1), (v2, u2) of matrix S − I, we get
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(S − I)z̃ = 0, i.e. SJz = Jz as desired.

The above proof on tightness of bound holds for tree network graphs with |VB| ≥ 4. So, the only

nontrivial tree which is not covered is 3-star one. Constructing incident matrix A for the 3-star tree

as discussed in Example 5, then z = (+1,−1,−1,+1,+1,−1)T is the eigenvector of matrix AAT

with corresponding eigenvalue 2.

Example 5. Consider a 3-star network graph with boundary vertices VB = {a, b, c}. For each

of the boundary vertices we construct its source and receiver trees and label by 1 the edge which

appear in two paths, and 2, 3 the edges incidents to boundary vertices in alphabetical order in each

of the 6 trees. We order the set Q of pairs of distinct boundary vertices as {ab, ac, ba, bc, ca, cb}.

We order the elements of the six sets of edges ER
a , E

R
b , E

R
c , E

S
a , E

S
b , E

S
c according to their label.

The signed incidence matrix is then given by

A =



0 0 0 1 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 −1 0 −1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 −1 0 −1 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1


,

which results in

(
AAT

)−1
=

1

90



26 −7 −1 2 2 −7

−7 26 2 −7 −1 2

−1 2 26 −7 −7 2

2 −7 −7 26 2 −1

2 −1 −7 2 26 −7

−7 2 2 −1 −7 26


.
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We consider an example in which all edge weights are 1 except wRa,1 which is 1 + ε. ThusW is the

vector whose first entry is 1 + ε and all other entries 1. The path weights are 2 except for those in

the receiver tree rooted at a, for which the path weights are 2 + ε. Then using (3.13) we compute

the consistent edge weights

W̃ = 1 +
ε

90

[
52,−19,−19, 4,−1, 5, 4,−1, 5, 2, 1, 1, 14, 19,−5, 14, 19,−5

]T
.

We confirm that, in keeping with Theorem 3.4.1 above, 2 is the smallest eigenvalue of AAT .

3.5 Positivity Constraint Optimization

The results in Corollary 3.3.5 and Theorem 3.4.1 do not guarantee that all elements of consistent

weights are positive. An ad-hoc approach to ensuring positivity would be to prune the edges

corresponding to negative w̃ from the graph(s) and recompute new W̃ , iterating until no further

negative entries occur in x. In numerical experiments a solution satisfying the positivity constraint

was achieved in several iterations. There is no guarantee that such naive approach would result in

an optimal or nearly optimal solution.

Apart from this naive approach, a more systematic way is to use, for example, path-following

method (also known as barrier or interior-point method) for convex quadratic problems which

modifies the objective function by adding a nonlinear penalty term with a small coupling coeffi-

cient. Let us re-formulate our constrained optimization problem as

x∗ = argmin x∈Rn

1

2
xTHx+ xT c subject to: Bx = b and x ≥ 0 (3.15)

where H ∈ Rn×n is positive semidefinite and B ∈ Rm×n has full row rank. Introducing the

log-barrier term modulated by a barrier parameter µ ≥ 0 we get

x∗ = argmin x∈Rn

1

2
xTHx+ xT c− µ

n∑
i=1

ln(xi) subject to: Bx = b (3.16)
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The idea of the algorithm is that solutions of (3.16) converge to solutions of (3.15) as µ→ 0. It has

been shown that for an appropriately chosen starting point, O(
√
n log n

ε
) iterations are required to

be ε-close to the optimal solution [27].

Returning to the our problem of imposing the positivity constrains in (3.8)–(3.9) and (3.11)–(3.12),

we need to consider two cases: the matrix A has full row rank or not.

In the context of pruning a tree (Corollary 3.3.4 and Corollary 3.3.5) or ensuring intrinsic consis-

tency in a set of trees (Theorem 3.4.1), we are guaranteed that A has full row rank. In the former

case, the standard quadratic optimization problem can be used by setting H := 2I, c := −2WẼ ,

B := Ã and b := AW . In the latter case, the standard quadratic optimization problem can be used

by setting H := 2I, c := −2W , B := A and b := 0.

With the view of pruning a full reconstructed graph which may not be a tree (Theorem 3.3.1), we

explain modifications necessary for a matrix A ∈ Rm×n which is not of full row rank. In order

to circumvent this rank-deficiency, in general, the matrix A can be reduced to full rank matrix via

QR factorization or Gaussian elimination with column pivoting [40]. Applying QR factorization

applied to the consistent system AW = Z obtains an m×m orthogonal matrix Q such that

QA =

Ā
0

 , QZ =

Z̄
0

 (3.17)

where Ā and Z̄ have the same number of rows and Ā has full row rank. Through this construction

of matrix Ā, the systemsAW = Z and ĀW = Z̄ are equivalent; that is, any vectorW that satisfies

one of these equations also satisfies the other. For detailed example on dealing with rank deficient

matrix A and application of QR factorization, see [40].
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3.5.1 Imposing Sign Constraint from Implementation Point of View

Below we briefly discuss how interior-point methods will be applied to find the minimizer of

modified version of constrained quadratic optimization problem

x∗ = argmin x∈Rn

1

2
xTHx+ xT c− µ

n∑
i=1

ln(xi) subject to: Bx = b,

appears in subsection 3.5 where H ∈ Rn×n is positive semidefinite, B ∈ Rm×n has full row

rank, and parameter µ ≥ 0 is log-barrier parameter (see [22] for detailed discussion). Notice

that in order to ensure that the objective function above is well defined, it is required that x > 0.

The standard steps for solving this quadratic optimization problem as it will be discussed below,

consists of (i) forming the Lagrangian, (ii) form the optimality condition, and finally (iii) apply

iterative algorithm, for example, primal-dual path-following method. For the Lagrange multiplier

λ ∈ Rm, the Lagrangian is defined as

L(α, λ, µ) :=
1

2
xTHx+ cTx− µ

n∑
i=1

ln(xi)− λT (Bx− b) (3.18)

The conditions for a stationary point of Lagrangian with respect to x and λ satisfy

Bx− b = 0

BTλ− µX−1e−Hx− c = 0

(3.19)

for x > 0, where X := diag{x1, . . . , xn}, and e is vector of size n with unit entries. If we let

s = µX−1e to be a vector of size n, then x > 0 implies that s > 0 and equation (3.19) can be

written as

Bx− b = 0

BTλ+ s−Hx− c = 0

Xs = µe

(3.20)
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for x > 0 and s > 0 which form the optimality condition. Now in order to apply primal-dual

path-following method, let wk := {xk, λk, sk} be such that xk strictly feasible for the quadratic

optimization problem (xk ∈ Rn satisfies the constraints). The increment δw := {δx, δλ, δs} should

be constructed such that the next iterate wk+1 = wk + δw remains strictly feasible and approaches

the central path. If wk were satisfy equation (3.20) with µ = µk+1, neglecting second-order term

in equation (3.20), we would have

−Hδx +BT δλ + δs = 0

Bδx = 0

Sδx +Xδs = µk+1e−Xsk

(3.21)

where ∆X := diag{(δx)1, . . . , (δx)n} and S := diag{(sk)1, . . . , (sk)n}. The solution to equation

(3.21) then can be obtained as

δλ = Λy

δx = ΓXBT δλ − y

δs = Hδx −BT δλ

(3.22)

where Γ := (S + XH)−1, Λ := (BΓXBT )−1B, and y := Γ(Xsk − µk+1e). In order to show

that matrices Γ and Λ in equation (3.22) are well defined, observe that since xk > 0 and sk > 0,

matrices X and S are positive definite. Therefore, the positive definite property of X−1S + H

implies that the pseudo-inverse of matrix S+XH = X(X−1S+H) exists. Applying the fact that

B is full row rank, then

BΓXBT = B
(
X−1S +H

)−1
BT

is also positive definite and hence nonsingular. As a result, this implies that δw has a unique

solution. Once δw is calculated from equation (3.22), for sufficiently small step size αk, the updated

solutionwk+1 = wk+αkδw remains strictly feasible. In practice an appropriate choice of parameter
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µk+1 is

µk+1 =
xTk sk
n+ ρ

(3.23)

with ρ ≥
√
n. This would lead to an iteration complexity mentioned in subsection 3.5 for an

ε-close solution to the optimal one.
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4. NETWORK TOMOGRAPHY ALGORITHM AND SIMULATIONS

This Section provides a composite application of our methods stated in previous Sections to the

problem of network inference in five stages: (a) merging primitive binary trees at a single root (b)

removing noise from the resulting binary trees by pruning (extrinsic consistency); (c) rendering

trees with different roots intrinsically consistent; (d) merging trees using the methods of Section

2; (e) removing noise from the merged network by pruning (extrinsic consistency). Furthermore,

the composite application in a model-based simulation will be evaluated. We compare its perfor-

mance in correctly identifying subset of network paths that experience performance degradation

of a common internal edge. The baseline methods are naive pruning and a non-optimal averaging

method.

In the first step, we generate a set of network graphs (see Section 4.1), and in each graph simulate

the end-to-end packet measurements (details in Section 4.2). The next step is to use the simulated

data to infer the logical source and receiver trees rooted at every boundary vertex b ∈ VB, by

applying the recursive clustering approach reviewed in Section 1.3.4. Low weight edges in the

resulting binary local logical trees are pruned producing non-binary internal vertices. In order to

keep the set of weights extrinsically consistent with the end-to-end measurements, the result of

Corollary 3.3.5 is applied on each pruned tree separately. The entire set of trees is then made

intrinsically consistent using the results of Section 3.4. This internal consistency is required for

fusion of inferred local trees following the graph reconstruction algorithm in Section 2. The last

step before evaluating the inferred graph, is to prune edges with small weight due to topological

noises raises from the nature of non-exact measurements. This will be achieved by applying the

result of Corollary 3.3.5 along with positivity constraint.
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4.1 Generating Network Graph

We first describe a framework on constructing set of random network graphs G = {G(1), . . . ,G(N)}

with each G(k) = (G(k), V
(k)
B ,P(k)) has desirable characteristics.

4.1.1 Random Graphs

In the first part, we construct random graphs along with their corresponding set of paths among the

boundary vertex set through the following steps. For each k ∈ [N ],

1. In the first step, a random graph which will be called underlying graph Ĝ = (V̂ , Ê, Ŵ) is

constructed with |V̂ | = m arbitrary and each vertex u ∈ V̂ has degree deg(u) = d connecting

to its randomly selected neighbors. The set Ŵ is generally asymmetric with respect to edge

direction in set Ê.

2. Among set V̂ , n vertices will be selected randomly which represent the boundary set VB =

{b1, . . . , bn}.

3. The routing between selected boundary vertices bi and bj , i.e. Pbi,bj with i 6= j, follows the

shortest path with respect to the weights Ŵ . This then form set P .

Note that the assigned weight set Ŵ above is only applied to generate the set of paths P , and

the link’s performance characteristic for end-to-end measurements will be assigned in the data

generation step below (see Section 4.2).

An example of application of the three steps discussed above is shown in Figure 4.1 for graph

with six boundary vertices (only the source and receiver trees at vertex b1 are plotted). It should

be noted that in the construction above, if the assigned weight set Ŵ is chosen to be symmetric

on edge set Ê, then the communication paths in constructed network graph G will be symmetric,

otherwise asymmetric routing will be obtained.
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Figure 4.1: Example on randomly generated source T Sb1 and receiver T Rb1 trees at vertex b1.

4.2 Generating Measurements

In this part we will discuss the process of generating end-to-end measurements corresponding to

set P constructed above for network graph G. Although there are various ways to generate this

set of measurements, we will follow model-based unicast data acquisition framework described

as follows. For graph G = (G, VB,P), each directed edge i ∈ E will experience alternative

lossless and lossy states so that a packet transversing the edge will be dropped with probability

zero and p
(i)
l ∈ L respectively, where L is a set determines the possible edge loss probability.

For the experiment with total time T , fraction of packets received successfully for selected source

and receiver vertex will be recorded over successive averaging windows of length ta, i.e. intervals

((k − 1)ta, kta)
N
k=1 with Nta = T . The time that each directed edge i being in successive lossless

or lossy states will be equal to k
(i)
s ta and k

(i)
` ta with integers k(i)s and k

(i)
l drawn from Poisson

distributions with per-determined parameters γs and γl respectively. The end-to-end measurements

for Pbi,bj with bi, bj ∈ VB and bi 6= bj then will be time series corresponding to variation of the

fraction of successfully received packets over time. The schematic of the above process is shown

in Figure 4.2 for the network graph with three boundary vertices.

Finally, the edge weight set W for the network graph G is constructed by averaging over the

edges performance (e.g. empirical variance or mean of packets loss rate) through the generating

measurements process overt time T . In other words, for an edge i ∈ E, the averaging is over all
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Figure 4.2: Alternation of edges state and measured end-to-end averaged packet fraction over time.

paths P ∈ P so that i ∈ P .

4.3 Performance Metric

We now detail metric we use to evaluate the closeness of the inferred network Ĝ to the true network

G. Many metrics have been developed for error tolerant graph matching, including graph edit

distance [39] and maximal subgraph matching [32]. Closer to the present work, [29] used a notion

of receiver matching in tree, namely, that an internal vertex in the true spanning tree associated

with a boundary point is well estimate if there is a vertex in the corresponding inferred tree with

the same receiver set.

The motivation for our work is to attribute common origins of performance degradation on paths,

not limited to paths sharing an endpoint. To this end, we specify a network distance metric that cap-

tures the difference in the extent to which individual edges influence the performance of boundary-

to-boundary transmission.

4.3.1 Weighted Path Intersection Metric

Given a network graph G = (G, VB,P), for each directed edge e ∈ E, let V(e) denote the set of

ordered pairs of boundary vertices (u, v) ∈ VB × VB such that e is an edge in the path Pu,v from

u to v. We refer to edges e and e′ as equivalent in V(e) = V(e′). Given another network graph
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G ′ = (G′, VB,P ′) with the identical boundary set VB, define

E(V(e),G ′) :=
⋂

(u,v)∈V(e)

P ′u,v \
⋃

(u,v)6∈V(e)

P ′u,v. (4.1)

We stress that the set V(e) is determined with respect to the graph G whereas the paths P ′u,v on the

right-hand side are taken from the graph G ′. Thus the meaning of E(V(e),G ′) is the set of edges in

G ′ that are equivalent (from the point of view of boundary-to-boundary transmission) to the edge e

of G. Specifically, they lie in the intersection of paths from P ′ between endpoint pairs V(e), but in

no other paths in P ′. In general, the set E(V(e),G ′) may be empty, but if G ′ = G, the set E(V(e),G)

is simply the set of edges equivalent to e as per definition above.

Let W be a weight function from the set of subsets of E(G) to non-negative integers; let W ′ be a

similar function on the graph G ′. We define

Q(G,G ′) =

∑
e∈E

∣∣∣WE(V(e),G) −W ′
E(V(e),G′)

∣∣∣∑
e∈EWE(V(e),G)

, (4.2)

where in both summation only one e from each equivalence class is used.

The relative error in estimating WE(V(e),G) is
∣∣∣WE(V(e),G) −W ′

E(V(e),G′)

∣∣∣ /WE(V(e),G). Thus Q is the

average over equivalence classes of edges e ∈ E of the relative error in estimating WE(V(e),G),

weighted by WE(V(e),G) i.e., Q is more sensitive to errors in estimating large weights WE(V(e),G)

than for small ones.

The metric assumes that the weights in G and G ′ to be comparable, e.g., because W ′ estimates W .

This is not the case for covariance based estimation as described in Section 1. One approach to

this is to replace W with weights comparable to W ′, e.g. by computing edge estimator covariances

from a model of packet performance. We here propose two approaches that can be used directly

with any weights W and W ′.
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(TM1) Set W ′
∅ = 0 but take W ′

E = WE =
∑

e∈E we otherwise. In other words, we penalize e by its

weight if there no edge e′ in G ′ functionality equivalent to it.

(TM2) As in TM1 but with WE = 1 for all nonempty subpaths P .

4.4 Numerical Results

In this subsection performance of the reconstruction framework will be evaluated on set of ran-

domly generated network graphs discussed above. The evaluation metric will be based on (TM1)

and (TM2). In all numerical simulations, we chose the parameters of Poisson distribution which

determine the number of averaging windows an edge experiences in lossy or lossless states to be

γl = γs = 10 (the initial state of each edge is chosen randomly). Moreover the loss probability of

edge i in lossy state is chosen randomly from p
(i)
l ∈ L = {0.05, 0.10} if edge i experiences loss

state. The number of packets sent form source bi ∈ VB to the set of receiver boundary vertices

VB \ {bi} in each averaging window ta will be fixed and equal to 103 in all simulations. Thereby,

number of averaging windows will control the total number of packets sent in unicast mode.

Figure 4.3 shows the error plot of topological inference over the number of averaging windows

for two selected samples of network graph with |VB| = 6 and |VB| = 12 (for each number of

averaging windows 50 experiments are conducted). The convergence to full inference accuracy

over the number of averaging windows is clear. For the larger network graph (right), higher num-

ber of averaging windows is required to achieve same level of inference accuracy happens for six

boundary vertex graph (left). The reason is that as the size of network graph increases, the vari-

ance of estimators in tree level identification increases. Hence mistaken pairing of non-sibling

vertices, or erroneous inclusion or exclusion of vertices in a group is more likely to occur. For

same experiment over the network, topological metric TM1 reports slightly better algorithmic per-

formance compared to TM2 metric and the difference of these two metrics reduce (converges to

zero) over the inference accuracy. Figure 4.4(left) shows the error plot of topological inference

over the fraction of edges experiencing lossy state for 20 randomly selected networks graphs with

six boundary vertices. For each network graph and selected fraction of lossy edges, 50 experiments
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Figure 4.3: Dependence of topological inference error on the number of averaging windows eval-
uated based on metric TM1 and TM2. Left: network graphs graph with |VB| = 6 and right:
|VB| = 12.

are conducted where edges which experience both lossless and lossy states are selected uniformly

in random. Obviously, those edges which are not selected as lossy ones stay in lossless state over

the whole experiment. The plot shows that once the fraction of lossy edges increases, the average

of inference accuracy approaches to the selected lossy fraction while uncertainty in inference of

identifiable subgraph (part of graph constructed by lossy edges) increases for low fraction of lossy

edges. The difference of topological inference metrics TM1 and TM2 decreases for larger fraction

of lossy edges while the two metrics start deviating from each other when the fraction of lossy

edges is less than 0.7. In the numerical simulations, an edge i ∈ E ′ belonging to the reconstructed

network graph G ′ will be pruned if w′i/w
′
max ≤ δ with δ ∈ [0, δmax] is called pruning factor with

δmax ≤ 1.

In Figure 4.4(right), the dependence of density of pruned edges on pruning factor (δmax = 0.2)

for different values of number of averaging windows (one sample is selected) is plotted. The

result shows that once the number of averaging windows increases, then small value of pruning

factor is sufficient to prune relatively large number of edges with small weights due to topological

noise while achieving the same number of pruned edges requires large value of pruning factor
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Figure 4.4: Left: Dependence of topological inference error on fraction of lossy edges. Right:
Sample on dependence of density of pruned edges on pruning factor for different number of av-
eraging windows. The vertical dashed lines are the selected pruning factor for the corresponding
experiment.

for inference based on low number of averaging windows. This is in line with the fact that in

the limiting case when the edge weights approaches to the exact value, then the pruning factor

required to pruned edges exist due to topological noise approaches to zero. Letting (δk)
m
k=1 with

δm ≤ δmax to be increasingly ordered point of discontinuities for the plot of dependence of density

of pruned edges over pruning factor (e.g. see Figure 4.4(right) for selected number of averaging

window), then an ad-hoc approach to choose the pruning factor δ∗ = δk∗ in each experiment is to

find k∗ = argmax k∈[m−1](δk+1 − δk). Another possible heuristic approach to prune the inferred

trees is to follow Remark 3.4.2.
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5. SUMMARY

In this thesis we considered the problem of reconstructing a network graph from the measurements

of PCD: the common length of any two paths sharing an origin or a destination.

We first established necessary and sufficient conditions for a network graph to be reconstructible

and describe the reconstruction algorithm. It is shown that when the reconstruction is attempted on

a graph violating those conditions, the result of our algorithm is a minimal graph fitting the avail-

able data. More precisely, among the network graphs that have the same PCD, the reconstructed

graph has the minimal number of links, no vertices of degree 2 and the minimal average degree

among vertices of degree 3 or more. Our framework is general and no assumption is made on the

symmetricity of routing or edge weights of original graph is required. However, for graphs with

symmetric routing less restrictive conditions are shown to apply and a more specialized algorithm

is presented.

We next extended the method of graph reconstruction to PCD in which sampling and measure-

ment noise leads to inconsistencies in path weights reported for different paths. The two main

types of inconsistencies due to the nature of non-exact measurements are formulated in the form

of extrinsic and intrinsic types, and solved in a least-squares framework. In each case, the solu-

tions are expressed in term of the Moore-Penrose pseudo-inverse of a generalized routing matrix

which express the linear constraints between path and edge weights. This extension provided a

unified framework on consistency merging and pruning subgraphs which reduce the problem in

network inference through the following five steps: (a) merging primitive binary trees at a single

root (b) removing topological noise from the resulting binary trees by pruning (extrinsic consis-

tency); (c) rendering trees with different roots intrinsically consistent; (d) merging trees using the

methods of [3]; and (e) removing topological noise from the merged network by pruning (extrinsic

consistency).
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Finally, we discussed the application of prescribed five composite steps on inference of randomly

generated network graphs using model based data. Although the proposed metric on inference

accuracy is general in the sense that it can capture both fully topological base and weighted based

accuracy, but in this work we focused on its topological version.
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