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ABSTRACT

The theory of magnons in ferromagnetic films has important applications to real magnets and

a rather long history. In this dissertation, we first present a new version of the asymptotically exact

theory of the spectrum and transverse distribution of magnetization in long-wave magnons. It is

based on the exact analytical solution of the linearized Landau-Lifshitz equation in a film. We

also studied and used symmetry of the Hamiltonian. Our new method simplifies all calculations

and provides analytical results for the range of parameters most important for experiment. The

quantization of the transverse wave vector and the role of evanescent waves at different values

of parameters are studied. Another important motivation of this work was its application to the

problem of Bose-Einstein condensation (BEC) and superfluidity of magnons. We use a classical

modification of the Holstein-Primakoff transformation to solve the Landau-Lifshitz equation, the

exact phase diagram for magnon condensate in Yttrium Iron Garnet Film is studied. We also

collaborated with an experimental group that provides direct experimental evidence that magnons

in a condensate exhibit a repulsive interaction resulting in condensate stabilization. We propose

a mechanism, which is responsible for the interaction inversion. This mechanism supports their

conclusions by the theoretical model based on the Gross-Pitaevskii equation.
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NOMENCLATURE

BEC Bose-Einstein condensation

LLE Landau-Lifshitz equation

TDM distribution of magnetization in direction transverse to the
film

BLS Brillioun light scattering

EOM equation of motion

YIG yttrium iron garnet

1D one dimension/one-dimensional

2D two dimension/two-dimensional

3D three dimension/three-dimensional
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1. INTRODUCTION*

The theory of magnons in ferromagnetic films has important applications to real magnets and

a rather long history. The first exact result was obtained by Damon and Eshbach [6] for purely

dipolar interaction. Gann [7] was the first who indicated the possibility of the exact solution of

this problem including exchange and dipolar interactions. De Wames and Wolfram obtained such

an exact solution [8, 9], reducing a system of Landau-Lifshitz and magnetostatic equations for

magnetization and fields generated by spin wave to an ordinary linear differential equation of

6-th order for the distribution of magnetization in the direction transverse to the film (TDM).

Arias [10] extended the de Wames-Wolfram solution to the case of the magnetic field tilted to

the film. Kalinikos [11] found an integral-differential equation for the TDM. Kalinikos and Slavin

[12] applied a truncated expansion of the solution into a Fourier-series over a complete set of

eigenfunctions of the Hamiltonian with exchange interaction and diagonalized the real Hamiltonian

projected onto a finite-dimensional space. In principle, such a procedure gives the solution with

any desirable precision at increasing dimensionality of the space. Their numerical results agreed

well with another numerical calculation using the same model by Kreisel et al. [1] for a thick

film. In the latter work, the authors have found numerically the spectrum of the linearized and

discretized Landau-Lifshitz equation as eigenvalues of a large matrix representing this equation.

Rezende [13] assumed that magnetization does not depend on the transverse coordinate x and

exactly diagonalized the resulting Hamiltonian. Though such assumption is qualitatively justified

for the spin wave mode with the lowest energy, it is obviously invalid for higher modes. In a

recent work Sonin [14] has found the magnon spectrum and shape of the TDM for spin waves

propagating along the direction of magnetic field and magnetization. His solution is a particular

case of the Wolfram and de Wames work [9] but he obtained an explicit analytical expression for

the transverse wave vector quantization in the limit of thick films d� ` and 1/d� |kz| � 1/`, `

*Part of this chapter uses material with permission from “Long-wave magnons in a ferromagnetic film” by Gang
Li, Chen Sun, Thomas Nattermann and Valery L. Pokrovsky, 2018, PHYSICAL REVIEW B, 98, 014436, Copyright
2018 by APS
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is the dipolar length of the film and d is the thickness of the film. More complete bibliography of

the subject that includes different approximate methods can be found in reference [12] and newer

references in [1].

In this dissertation we propose a combined approach: we solve the differential equation and

then select those solutions that satisfy the integral equation. This approach strongly simplifies

calculations since magnetostatic boundary conditions (MBC) are satisfied automatically and there

is no need to find the magnetic field outside the film. Further simplification is obtained by em-

ploying symmetry of the spin-wave solution. These simplifications allow us to find analytically

the magnons spectra and the TDM in a broad range of parameters for thick films and analyze in

some details the case of thin films d . ` which is very important for applications to nanodevices.

Thin films are of special interest since bilayers of a magnetic insulator and a heavy metal can be

used for transfer of information by magnons[15, 16]. This is a prospective way to avoid ohmic

losses that appear in electronic systems on the nano-scale. We show that formally the spectrum

of magnons in a film has the same analytical form as in the bulk, but quantization of the trans-

verse wave vector and TDM depend on the thickness of the film d and other variables in a highly

non-trivial way. In contrast to standard semiclassical approximation that becomes valid when the

number of transverse modes n is a large number, in thick ferromagnetic films there exist several

different asymptotics that depend on values of dimensionless parameters k‖`, k‖d and angle of

propagation. Here k‖ =
√
k2y + k2z . At all values of parameters and fixed frequency, the TDM

consists of one oscillating mode and two evanescent modes. Due to the fact that the Hamiltonian

of this problem is invariant with respect to two discrete transformations: reflection in the central

plane of the film combined with time reversal and reflection in the (x, z)-plane combined with time

reversal, magnon spectrum is divided into two infinite series. In the simplest situation they corre-

spond to even and odd transverse distribution of magnetization, “even” n-th mode has 2n nodes

between boundaries, while “odd” one has 2n + 1 nodes (n = 0, ...∞). Evanescent waves can be

neglected in the exchange-dominated range of wave vectors k‖ � 1/`, they can be neglected in

the bulk, but they allow to satisfy boundary conditions. Otherwise evanescent waves must be taken

2



into account. Specifically, they play an important role in the case of thin films d . `. Our method

can be extended to include anisotropy (spin-orbit interaction), tilted external magnetic field and

other shapes of the sample.

Another important motivation of this disseration was its application to the problem of Bose-

Einstein condensation(BEC) and superfluidity of magnons [17]. The condensation is non-linear

phenomenon depending on interaction. Usual microscopic approach based on Holstein-Primakoff

representation requires knowledge of spectra at large wave vectors and their interaction amplitudes

for thermal renormalization. The Landau-Lifshitz equation reduces the complex renormalization

procedure to one experimentally measurable value: spontaneous magnetization as function of tem-

perature. Several authors [18, 1, 5] additionally employed the Rezende approximation [13] which

assumes the transverse distribution of magnetization for magnons to be constant. This assumption

is wrong just at wave vectors ±Q corresponding to absolute minimum of magnon energy [14] .

The study presented in this dissertation have been published in [19] and [20].

The outline of this dissertation is as follows:

In Chapter 2, we give a brief review of Bose-Einstein condensation and magnons.

In Chapter 3, we present a new, simplified asymptotically exact theory of the spectrum and

transverse distribution of magnetization in long-wave-length magnons propagating in a ferromag-

netic film. The theory is based on the exact solution of the linearized Landau-Lifshitz equation

(LLE). In Sections 3.6 of this chapter, we present the results of our common work with the group

of experimenters from University of Muenster (Germany) that provides experimental evidence of

repulsion of magnons at permanent pumping instead of attraction found theoretically in the absence

of pumping (see the references in the text of section 3.6). We proposed a theoretical model that

explains experimentally observed repulsion, this model is based on the Gross-Pitaevskii equation.

In Chapter 4, we develop the amplitude representation of the Landau-Lifshitz-Gilbert theory

of ferromagnets to study magnon BEC. It is a classical modification of the Holstein-Primakoff

transformation. Using this representation, we calculated the relaxation of condensed magnons due

to three-magnon processes. We also studied the exact phase diagram for magnon condensate in

3



Yttrium Iron Garnet Film.

Chapter 5 contains a cumulative list of our results and prospects of further research.

4



2. BOSE-EINSTEIN CONDENSATION AND MAGNONS

The phenomena of Bose-Einstein condensation was first predicted in 1925 by Einstein [21]

following a paper by Satyendra Nath Bose in which he derived the Planck law for black-body

radiation by using new statistics. According to this prediction, a large fraction of identical particles

would occupy the same quantum state (the lowest energy state) under some conditions.

The well-known formula for condensation temperature for ideal Bose-gas:

Tc =
3.31~2n2/3

m
(2.1)

There are two kinds of BEC, the first one is the BEC for real particles. the second is the BEC

for quasiparticles. The first example of BEC of real particles is the transition of liquid 4He to the

superfluid state discovered in 1938 by Kapitza [22] and Allen and Misener [23]. The viscosity of

4He vanishes at temperature 2.17 K and normal pressure. Fritz London was the first to propose

the BEC as a mechanism for superfluidity in 4He [24]. Since the mass here is the mass of an

atom or molecule, not an electron, the value Tc for He atoms at rather high density n = 1024 is

calculated according to ideal gas formula 2.1 , the transition occurs about 3 K. It is the correct

order of magnitude. However numerous attempts to find the condensate by the method of inelastic

scattering of neutrons were not conclusive. They have shown only that the condensate density at

T = 0K does not exceed 5-7 % of total density. This is the result of strong interaction. Since

a superfluid 4He is a strongly interacting system that is far from an ideal gas, so that it was not

straightforward at all to connect the two concepts of BEC and superfluidity. Only the experiments

with cooled dilute gases of alkali atoms convincingly proved the existence of condensate.

It took nearly 70 years before the pure BEC system was realized. In 1995 Wieman, Cornell and

Ketterle discovered two other systems displaying BEC, both of them being laser-cooled gases of

alkali atoms (potassium and sodium) [25, 26]. They condensed at temperatures of a few hundred

nanokelvins. This discovery was considered definitive proof of superfluidity.
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On the other side, the BEC of quasiparticles were observed from the beginning of this century,

specifically: i) magnons in a ferrite film [27]; ii) excitons-polaritons in quantum dots [28]; iii)

photons in a microcavity filled by a gas of dye molecules [29]. In the cases i) and iii) BEC are

observed at room temperature. Since the mass of a quasiparticle is usually much smaller than that

of real particles and the density of the quasiparticle system can be easily increased by external

pumping without worrying about the formation of molecules, the transition temperature of BEC is

relatively higher than that of real particles. However, the lifetime of a quasiparticle is much smaller

than that of real particles. This means that the BEC of quasiparticles is not a real equilibrium state,

just a quasi-equilibrium state. What we are interested in is the magnon BEC, that was studied in a

macroscopic film. It provides a good platform for studying transport properties related to BEC.

Spin waves, first predicted by F. Bloch [30] in 1929, are propagating disturbances in the order-

ing of magnetic materials. The quanta of spin waves are called magnons, magnons can be treated

as bosonic quasiparticles and carry a fixed amount of energy and lattice momentum. The simplest

way of understanding magnon is to consider its Hamiltonian. There are several kinds of interac-

tions in magnetic materials, e.g. the exchange interaction, the Zeeman interaction, and the dipolar

interaction.

The Hamiltonian of magnons in magnetic materials includes the nearest-neighbor exchange,

Zeeman and dipolar interactions:

H = Hex +HZ +Hd, (2.2)

Hex = −J
∑
〈i,j〉

Si · Sj, , (2.3)

HZ = −gµB
∑
i

Si ·H, (2.4)

Hd = −1

2
(gµB)2

∑
i 6=j

3(Si · r̂ij)(Sj · r̂ij)− Si · Sj
r3ij

, (2.5)

where 〈i, j〉 denotes summation over nearest-neighbor sites only. There are two cases: J > 0 and

J < 0. For J > 0, the exchange interaction is called ferromagetic, in which case the ground
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state spin configurations have all spins pointing in the same direction. For J < 0, the exchange

interaction is called antiferromagetic. Neighboring spins would favor antiparallel configuration. g

is the Landé g-factor, µB is the Bohr magneton, and H is a uniform external magnetic field.

In continuos approximation the Hamiltonian eq.(2.2-2.5):

H =

∫
V

d3r

[
D

2
(∇αM)2 −H ·M +

1

2
(M ·∇)

∫
V

d3r′ (M′ ·∇′) 1

|r− r′|

]
(2.6)

The local magnetization vector M (r) = gµBŜ(r)/v0 where Ŝ(r) is the local spin averaged over

the sphere with the center in the point r and the radius R much larger than the lattice constant, but

much smaller than the wavelength of the magnon and thickness of the film; v0 is the volume of

primitive cell., D is the exchange energy divided by M2a, where a is the lattice constant. V stands

for volume and prime denotes dependence on the coordinate r′. Note that the coefficient D has a

dimensionality of the square of the length. The value ` =
√
D is called dipolar length.

7



3. LONG-WAVE MAGNONS IN A FERROMAGNETIC FILM*

In this chapter we present a new, simplified asymptotically exact theory of the spectrum and

transverse distribution of magnetization in long-wave-length magnons propagating in a ferromag-

netic film. Theory is based on exact solution of linearized Landau-Lifshitz equation (LLE). To

avoid complications we assume the film to be isotropic in the film plane, and external magnetic

field H and the spontaneous magnetization M to be oriented in plane, see Fig.3.1. Their direction

is accepted for z−axis, whereas the x−axis is directed perpendicular to the film that occupies the

volume between parallel planes x = ±d
2
. The Hamiltonian H coincides with eq. (2.6). Since

this Hamiltonian is a key element for calculation of spectrum we repeat it here and remind the

notations:

H =

∫
V

d3r

[
D

2
(∇αM)2 −H ·M +

1

2
(M ·∇)

∫
V

d3r′ (M′ ·∇′) 1

|r− r′|

]
(3.1)

Here M (r) is the local magnetization vector, D is the exchange energy divided by M2a, where a

is the lattice constant. V stands for volume and prime denotes dependence on the coordinate r′.

Note that the coefficient D has dimensionality of square of length. The value ` =
√
D is called

dipolar length. This is the scale of distance at which dipolar and exchange interactions become of

the same order of magnitude. Typically it is about 10-30 nm.

3.1 Equations of motion and magnon solutions

A weak excitation of the equilibrium state is described by the transverse components of mag-

netization M ≡ (Mx,My). They obey the linearized LLE:

Ṁ = γ [(H −MD∆)M +Mh]× ẑ, (3.2)

*Part of this chapter uses material with permission from “Long-wave magnons in a ferromagnetic film” by Gang
Li, Chen Sun, Thomas Nattermann and Valery L. Pokrovsky, 2018, PHYSICAL REVIEW B, 98, 014436, Copyright
2018 by APS; and from “Direct evidence of spatial stability of Bose-Einstein condensate of magnons” by Borisenko, I
V and Divinskiy, B and Demidov, V E and Li, G and Nattermann, T and Pokrovsky, V L and Demokritov, S O, 2020,
Nature Communications, 11, 1691, Copyright 2020 by Nature Publishing Group
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Figure 3.1: The coordinate system for a ferromagnetic film of thickness d: z−axis is chosen along
the common direction of the magnetic field and static magnetization, x−axis is perpendicular to
the film, θk is the angle between the magnon wave vector and magnetic field.

ẑ is the unit vector in z-direction and ∆ ≡∇2;

h = ∇⊥φ (3.3)

denotes the dipolar field induced by magnetization inside and outside the film, with ∇⊥ ≡
(
∂x, ∂y

)>
and

φ (r) = −∇⊥ ·
∫
d3r′M′ |r− r′|−1 . (3.4)

The number of parameters of the present problem can be reduced by the scale transformations

t→ ω−1H t, r→
√

χ

4π
` r, M→MM. (3.5)

Here ωH ≡ γH denotes the Larmor frequency and χ ≡ 4πM/H is the static magnetic susceptibil-

ity (we absorb a factor 4π in its definition to simplify final expressions). In rescaled units equation

of motion simplifies to

Ṁ =
[
(1−∆)M +

χ

4π
h
]
× ẑ. (3.6)
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Table 3.1: Values of parameters for YIG and Permalloy at room temperature, and dimensionless
values χ = 4πM/H and dr =

√
H/Md/` at external magnetic field H = 1 kOe, for films with

different thickness d.

quantity symbol (unit) YIG Permalloy
magnetization M (kOe) 0.139 0.860

Curie temperature TC (K) 560 872
dipolar length ` (nm) 37.8 28.7

χ χ 1.75 10.8
dr at d = 5 µm dr 355 188
dr at d = 0.1 µm dr 7.09 3.76

The equations (3.3) and (3.4) remain unchanged. The remaining parameters of the problem are

susceptibility χ and the sample width d in new units. Table 1 shows the values of characteristic

parameters and reduced values for YIG films and Permalloy.

Applying Laplacian ∆ to eq. (3.6) and using magnetostatic equation

∆φ = 4π∇⊥ ·M, (3.7)

one gets the equation for M:

∆Ṁ = [(1−∆)∆M + χ∇⊥(∇⊥ ·M)]×ẑ. (3.8)

It must be solved with standard magnetostatic boundary conditions (MBC) that requires continuity

of tangential components of magnetic field h and normal component of magnetic induction b =

h+ 4πM at two surfaces of the film. Another set of boundary conditions originates from variation

of magnetization (spins) on surfaces if they are free. It leads to equations:

∂xM
∣∣
x=±d/2 = 0. (3.9)

We call them exchange boundary conditions (EBC). More general EBC ∂xM + λ̂M
∣∣
x=±d/2 = 0
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corresponding to spin-orbital anisotropy can also be considered by our method.

In a propagating wave with in-plane wave vector k‖ = kyŷ + kz ẑ, the oscillating components

of magnetization can be written as

M =

mx(x) cos
(
k‖ · r− ωt

)
my(x) sin

(
k‖ · r− ωt

)
 . (3.10)

The Ansatz (3.10) implies a similar presentation for components of magnetic field:

hx(r) = hx(x) cos
(
k‖ · r− ωt

)
, hy(r) = hy(x) sin

(
k‖ · r− ωt

)
. Thus, this Ansatz turns ini-

tial equations (3.2) into a system of ordinary differential equations for vectors fields m(x) =mx(x)

my(x)

 and h(x) =

hx(x)

hy(x)

 into a following system:

ωm− (1 + k2‖ − d2x)σ1m−
χ

4π
σ1h = 0 (3.11)

where dx denotes differentiation over x and σ1 is the first Pauli matrix. The equations (3.3), (3.4)

and (3.11) can be considered as a closed system of integral-differential equations for vector field

m(x) which describes the transverse distribution of magnetization. The same ansatz turns eq. (3.8)

into a system of ordinary linear homogeneous differential equations with constant coefficients for

the vector field m ≡ (mx,my)
>. General solution of such a system is a superposition of basic

exponential solutions m(x) = m0e
ikxx. After division by k2 = k2‖ + k2x equation for m0 reads

(Ω− iBσ3)m0 = 0, Ω =

 ω −Ay

−Ax ω

 . (3.12)

Here Aα = 1 + k2 + χk̂2α, and B = χk̂xk̂y. k̂α = kα/k denotes the cosine of direction and σ3 is

the third Pauli matrix. The solvability condition of eq. (3.12), ω2 + B2 − AxAy = 0, delivers the

11



magnon dispersion relation:

ω2 =
(
1 + k2

) (
1 + χ+ k2 − χk̂2z

)
. (3.13)

It does not depend on the sample thickness and has therefore the same form as in the bulk. Bound-

ary conditions, will, however restrict possible k-vectors, as it will be shown below. The dispersion

relation (3.13) can be treated as a cubic equation for k2, assuming that ω and kz are given. Its three

solutions can be written as k2i = k2x,i + k2‖ . Thus kx,i is a function of ω and k‖. Close investigation

shows that all 3 roots of cubic equation for k2 are real, one of them k21 is positive, two others k22

and k23 are negative in the entire physically available range of parameters (see Appendix 1 for de-

tails). Positive root k21 corresponds to oscillating transverse mode, two negative roots correspond

to evanescent waves.

Equation (3.12) and boundary conditions are invariant under operation x→ −x, ky → −ky. It

means that all eigenvalues ω are at least double degenerate and the eigenfunctions with the same ω

and opposite signs of ky are connected with a simple relation:

mx,y(x; ky) = mx,y(−x;−ky). (3.14)

The value kz enters in equations only as k2z . Therefore, the solution does not change at transforma-

tion kz → −kz. These properties can be obtained from invariance of the Hamiltonian with respect

to two discrete transformations: reflection in the central plane of the film combined with time re-

versal and reflection in the (x, z)-plane combined with time reversal. Time reversal in addition to

reflection is necessary to keep pseudo-vector of spontaneous magnetization invariant.

The transverse distribution of magnetization m(x) must be a real vector field. Therefore for

any mode it can be written as follows:

m(x) = ai cos kx,ix+ bi sin kx,ix, (3.15)
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where ai are real constant 2-component vectors as well as b1. The vectors b2 and b3 are purely

imaginary. According to (3.12), vectors ai,bi obey equation Ω · ai − Bσ3bi = 0 which implies

the amplitude relation

bi = Λ(k, ω) · ai, Λ = σ3Ω/B. (3.16)

Symmetry discussed above retains invariant coefficients ai and changes sign of coefficients bi

(i = 1, 2, 3).

3.2 Boundary conditions and consistency requirement

The EBC (3.18) include 4 equations, two on each surface. They can not be satisfied with a

single-mode solution (3.15) associated with one of three possible values of k2x. Indeed, according

to eq. (3.16) such a solution depends only on two independent parameters, for example ax, ay.

Only a proper superposition of three solutions can satisfy the EBC and CE simultaneously. Such a

general solution of the equation (3.12) represents the vector m(x) as a superposition:

m(x) =
3∑
i=1

(ai cos kixx+ bi sin kixx) , (3.17)

where kix denotes the x-component of the wave vector corresponding to i−th solution of cubic

equation (it is purely imaginary for evanescent waves) and ai,bi are the vector amplitudes of i−th

mode. Using eq. (3.17), the EBC equations can be rewritten in terms of 12 independent coordinates

of vectors ai,bi; i = 1, 2, 3:

3∑
i=1

aikix sinαi = 0;
3∑
i=1

bikix cosαi = 0; αi =
kixd

2
. (3.18)

The MBC are satisfied automatically for any distribution of magnetization if magnetic potential

obeys the integral relation (3.4). In particular, it will be satisfied for magnetization represented

by superposition (3.17). We have proved that any solution of equation of motions must be such a

superposition. However, the inverse statement that any such a superposition is solution of equations

of motions (3.6) is wrong. It happens because equations of motion contain not only differential,
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Figure 3.2: Results of numerical calculations for the case d = 18.2 and χ = 2.5. (a) The spectra
of first four quantized modes for direction of propagation perpendicular to magnetization. (b)
Spectra of the first four modes for direction of propagation parallel to magnetization. (c) Spectra
of the first transverse modes for θ = 0, π

6
, π
4
, π
3
, π
2
. Black solid curves correspond to our numerical

calculations, red solid line is the Damon-Eshbach surface mode, points are adapted from numerical
calculations by Kreisel et al.. [1]
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but also integral terms. The choice of valid solutions is realized by condition of consistency. It

requires magnetic potential φ to be a superposition of exponents e±ikixx where k2i = k2ix + k2‖

are solutions of the cubic equation discussed earlier. We will see that integrals in φ(x) eq. (3.4)

generate extra exponents of the type e±k‖x that are not allowed by cubic equation. Consistency

requires coefficients at them to be zero. Below we display an explicit form of these consistency

equations (CE).

Integration over longitudinal coordinates y, z in eq. (3.4) can be performed explicitly with the

result:

φ = −4π (dxηx + kyηy) ; ηj =
1

2k‖

∫ d
2

− d
2

e−k‖|x−x
′|mj(x

′)dx′. (3.19)

The basic integrals that enter ηj(x), j = x, y are:

∫ d
2

− d
2

dx′
e−k‖|x−x

′|

2k‖

cos kixx
′

sin kixx
′


=

1

k2i

cos kixx

sin kixx

− e−
k‖d
2

k‖k2i

fic cosh k‖x

fis sinh k‖x

 .

(3.20)

Here k2i = k2‖ + k2ix and we denote fic = k‖ cosαi − kix sinαi, fis = k‖ sinαi + kix cosαi

with αi = kixd/2. Eq. (3.20) visibly demonstrates the appearance in the magnetic potential of

exponents exp
(
±k‖x

)
forbidden by secular cubic equations for k2 since it corresponds to k2 = 0. It

vanishes in φ only due to superposition. The consistency equations require coefficients at cosh k‖x

and sinh k‖x to be zero. The corresponding equations can be written as follows:

3∑
i=1

1

k2i

(
k‖aixfic + kybiyfis

)
= 0

3∑
i=1

1

k2i

(
k‖bixfis + kyaiyfic

)
= 0. (3.21)

In order to turn CE together with the EBC (3.18) into a closed system of 6 equations for 6

independent amplitudes aix, bix it is possible to use relations between aiy, biy and aix, bix following
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Figure 3.3: Comparison of theoretical spectrum with experiments. In experiments Brillouin light
scattering spectroscopy was used.(a) Comparison with A. A. Serga et al.[2] d = 5 µm, H=1750
Oe . (b) Comparison with V. E. Demidov et al.[3] d = 5.1 µm, H=1000 Oe for direction of
propagation parallel to magnetization. (c) Comparison with V. E. Demidov et al.[3] d = 5.1 µm,
H=1000 Oe. for fixed kz = 3.4× 104cm−1.
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from the equations of motion in the form (3.12):

aiy =
ω

Aiy
aix −

Bi

Aiy
bix; biy =

Bi

Aiy
aix +

ω

Aiy
bix, (3.22)

where Aiy = 1 + k2i +
χk2y
k2i

and Bi = χkixky
k2i

. Besides that it is necessary to eliminate values k2i

and kix with i = 2, 3. As it follows from the ubic equation for z = k2, if the first (positive) root

z1 = k21 is fixed, two others can be found from the equation:

k22,3 = −1− χ

2
− k21

2
±

√(
1 +

χ

2
+
k21
2

)2

− χk2z
k21

. (3.23)

In this way all k2i and kix with i = 2, 3 are determined through the single positive wave vector k1x.

The system of 4 EBC (3.18) and 2 CE equations considered as 6 linear homogeneous equa-

tions for aix, bix has non-zero solutions only if its determinant is equal to zero. This requirement

determines discrete set of k1x, i.e. transverse quantization of wave vector. This equation is exact in

the framework of the model considered. In Fig. 3.2 we show results of numerical calculations of

quantized spectra from requirements of zero determinant for d = 18.2, and χ = 2.5 for direction of

propagation perpendicular and parallel to magnetization and spectra of the first transverse modes

for a few different directions of propagation specified by the angle θ = arctan ky
kz

.

The spectra for parallel and perpendicular direction of propagation (Fig. 3.2 (a) and 3.2 (b))

display excellent agreement with the numerical calculations of the work [1] based on diagonaliza-

tion of a big matrix. We have found also the excellent agreement with similar calculations of the

same work made from a film of YIG with thickness 5 µm.

Comparison of the theoretical spectrum with experiment [2, 3] is given in Fig.3.3. The ex-

periment used Brillouin scattering spectroscopy. Its precision is not sufficient for resolution of

excited states. Dramatic increase of precision was achieved recently by the experimental group

led by J. Ketterson [4]. His method employs direct excitation of magnons by microwave from a

specially invented antenna. It consists of periodically repeated emitters fed by an adjustable fre-

quency generator. The distance between emitters determines the excited magnon wave-length. The
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magnon frequency at this wave vector is determined as a position of the resonant singularity on

the intensity vs. frequency characteristic or the maximum absorption of microwave radiation. The

enhanced resolution allowed observation of several (up to 9) modes of magnons. This is the first

time that different transverse modes of magnons were observed experimentally. Comparison of the

theoretical spectrum with their experimental results [4] is given in Fig.3.4. The agreement between

theory and experiment is excellent.
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Figure 3.4: Comparison of theoretical spectrum with experiment. Solid curves are our calculations
of the first 15 transverse modes for the YIG film of thickness 5µm, 4πM= 1940 Oe and H= 1960
Oe . Points on them are frequencies measured by J. Lim et al. [4] at three fixed wavelengths for
different transverse mode.

To give a more visible idea on the origin of these results, we consider 6 EBC-CE equa-

tions in some detail. Only cos k1xd/2 and sin k1xd/2 are oscillating functions of their arguments.

The functions f1c, f1s are linear functions of cosα1, sinα1 and therefore also oscillate. Other

functions containing cosα2,3, sinα2,3 are hyperbolic functions and change monotonically with

k1x. In the 6×6 matrix C of the EBC-CE equations the first two columns are linear combina-

tions of sinα1, cosα1, the rest are monotonic functions. Therefore, the determinant has a form

detC = K sin2 α1 + 2L sinα1 cosα1 +M cos2 α1, where K,L,M are monotonic functions of
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k1x or α1. Equation detC = 0 can be rewritten as K tan2 α1 + 2L tanα1 +M = 0 with formal

solution:

tanα1 =
−L±

√
L2 −KM
K

. (3.24)

This is an implicit equation for k1x. It shows that the consequent quantized values k1x are

located between points nπ/d and that these quantized values form two series corresponding to two

signs in front of the square root in previous equation.

Thus, the quantized values of k1x can be enumerated by an index ν taking two values + and

− and by an integer number n taking values from 0 to∞. We will denote these quantized values

as kx,ν,n. For large n the main part of kx,ν,n is 2πn/d. An approximate formula for the quantized

values reads:

kx,ν,n =
2πn

d
+

2

d
arctan

−L±
√
L2 −KM
K

. (3.25)

In the argument of arctan k1x must be replaced by 2πn/d. The expressions for the coefficients

K,L,M are too long to be placed here. In real numerical calculations we found numerically the

zeros of the 6-th order determinant.

3.3 General properties of magnon spectra in thick films

In thick films d � 1 comparatively simple analytical formulae for the magnon spectrum and

ratio of amplitudes can be found. In what follows we assume that k1x � k‖. Since the minimal k1x

is of the order of 1/d, this inequality implies that k‖ � 1/d. Most of the experiments with magnon

Bose-condensation [27, 31, 32], hybridization of magnons and phonons [33, 34], and many others

satisfied these conditions. However, experiments with magnetic resonance require very small |kz|.

The region of rather small k‖ . 1/d will be considered in section 3.4. At a fixed k21 two negative

roots of cubic equation are:

k22,3 ≈ −
(

1 +
χ

2
+
k21
2

)
±

√(
1 +

χ

2
+
k21
2

)2

− χ
k2‖ cos2 θ

k21
(3.26)
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For 2 positive numbers a and b such that a2 > b the following inequality is correct −a +
√
a2 − b < − b

2a
< 0. Therefore k22 < 0 and k22x = k22 − k2‖ < −k2‖ . Thus, |k2x| > k‖ �

k1x. This inequality is valid even more for |k3x| since k23 ≈ −(2 + χ). Then the EBC together

with the linear relations between pairs aiy, biy and aix, bix (3.22) show that the moduli of values

ciα ≡ e(|kix|d/2)aiα and diα ≡ exp{|kix|d/2}biα with i = 2, 3 and α = x, y are much less than

moduli of a1α, b1α by a small factor not larger by an order of magnitude than k1x/k‖. Therefore,

the contribution of evanescent waves to the CE is relatively small and only the contribution of

oscillating transverse waves must be taken into account. The equation of quantization (3.24) can

be written more explicitly:

tan
kxd

2
=
k‖ − kxR
k‖R + kx

; R = Γ∓
√

Γ2 + 1;

Γ =
1

2B

(
k‖Ay
ky
− kyAx

k‖

)
;

(3.27)

In this equation we omitted subscript 1 everywhere since evanescent waves do not enter the quan-

tization condition. At ky = 0, Γ =∞ and R = 0 for the sign − and R =∞ for the sign +. In the

first case, the quantization condition turns into tan kxd
2

= |kz |
kx

. This quantization condition was first

found by Damon and Eshbach [6] and reproduced by Sonin [14]. It corresponds to even modes.

The second case corresponds to odd modes, the quantization condition is tan kxd
2

= − kx
|kz | . The

quantized values of kx at n� |kz|d are kx,−,n ≈ (2n+ 1)π
d

and kx,+,n ≈ 2(n+ 1)π
d

(n = 0, 1...).

For general direction of propagation and at 1 � n � k‖d, in the r.-h. side of the quantization

equation (3.27), kx must be replaced by 2πn/d. Thus, the equation for kx becomes explicit. Its

solution reads kx,ν,n = 2πn
d

+ µν,n, where µν,n = 2
d

arctan
k‖−2πnRν/d
k‖Rν+2πn/d

, where Rν = Γ + ν
√

Γ2 + 1

and Γ is given by the last eq. (3.27) in which kx in B and Ax is replaced by 2πn/d. Thus, µ−,n

decreases slowly from π/d at n = 0 to π
2d

at n ∼
√
k‖d. In entire the above defined range of

parameters the phases µ for two series of modes are connected by relation:

µ+,n = µ−,n + π/d
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The ratio of of amplitudes bx/ax is a slow function of n, but this function is different for

different ν:
bx,ν,n
ax,ν,n

= −
k‖Ay
kyω

Rν −
B

ω
(3.28)

At fixed direction of propagation given by θ = const, the frequency ων,n of a mode ν, n with

n� k‖d as function of k‖ has a minimum at the non-zero value

k‖0 ≈
(

χ cos2 θ

2 + χ sin2 θ

)1/4

k1/2x,ν,n. (3.29)

According to this equation, k‖0 � kx,ν,n. The limitation to n ensures that kx,ν,n � 1 and as a

consequence k‖0 � 1. The frequency at the minimum is ωmin = 1 + O(k2‖0). A more general

equation for the position of the minimum that is valid also at 1/d� k reads:

k2‖0 =
2 + χ sin2 θ

2
u

(
4χ cos2 θk2x

(2 + χ sin2 θ)3

)
, (3.30)

where the function u(x) is defined as the positive solution of cubic equation u3 + u2 − x = 0.

A rather good approximation for it is given by expression u(x) ≈
√
x

(1+
√
x)1/3

. Plot of the function

u(x) and an approximation to it is given by Fig. 3.5. At not very large n and fixed θ, the wave

u(x)

approximation

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

x

u
(x
)

Figure 3.5: Plot of function u(x) and approximation to it.
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vector at minimum k‖0 grows with n or equivalently with kx ≈ 2πn/d. However, it can not grow

at very big n� d or equivalently at kx � 1 since at such big values of kx the exchange interaction

dominates. Therefore, the frequency with high precision obeys equation ω = 1 + k2 and has the

only minimum at k‖ = 0 independently on the direction of propagation. Thus, we conclude that

the wave vector k‖0 at minimum of frequency reaches its maximum at some value of the transverse

wave vector kx ∼ 1 and then decreases to zero value at another value of transverse wave vector of

the order of unity. Our equation (3.27) strictly speaking is not valid at kx & k‖, but we will show

that it can serve as interpolation between exact results in the regions of small kx � k‖ and large

kx in the exchange dominance range. Indeed, if exchange dominates and the dipolar interaction

can be neglected, the Landau-Lifshitz equation (3.11) implies mx(x) = my(x) i.e. a1y = a1x and

b1y = b1x. On the other hand, the linear relations (3.22) between x− and y−components of vectors

a1 and b1 in the range k21 � 1 give a1y = a1x + o(k−21 )b1x and b1y = b1x + o(k−21 )a1x. These

relations show that indeed the contribution of the dipolar interaction and associated evanescent

waves in the exchange dominant region of variables is negligibly small. Therefore, eq.(3.27) is

asymptotically exact in the exchange range and thus is a reasonable interpolation matching two

limiting ranges of the ratio kx/k‖. Employing this equation, we find that k‖0 reaches its maximum

value
(
k‖0
)
max

=
√
k21 − k2x;

k21 =

√
(2 + χ sin2 θ)2 + 6χ cos2 θ − (2 + χ sin2 θ)

6

at k2x = 2+χ
3χ

tan2 θk41 + 1
3
k21 . At larger kx, the value k‖0 decreases and at

kx = 1
2

(√
(2 + χ sin2 θ)2 + 8χ cos2 θ − 2− χ sin2 θ

)1/2
becomes equal to zero. Let denote the

corresponding number of that mode n0(θ).

At fixed n and θ increasing, k‖0 decreases. At θ = π/2 minimum and maximum coalesce. The

point ky = 0 is the only minimum of frequency in the spectrum of any magnon mode propagating

perpendicularly to the permanent magnetization (cos θ = 0). The reader is referred to Appendix 2

for derivation of all relations concerning the motion of the frequency minimum at changing k‖ and
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Figure 3.6: Results of numerical calculations for a thin film d = 1 and χ = 2. (a) The spectra of
first four quantized modes for direction of propagation perpendicular to magnetization. (b) Spectra
of the first four modes for direction of propagation parallel to magnetization. (c) Spectra of the
first transverse modes for θ = 0, π
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. Note the difference of scales in fig.b and c.
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the number n of mode, and to Appendix 3 for peculiarities of quantization and TDM for magnons

propagating perpendicularly to the spontaneous magnetization (kz = 0). A local maximum of

frequency for a fixed number of mode n < n0(θ) at any fixed θ except of θ = π/2 is located at

k‖ = 0. The value of frequency at the maximum is equal to ωmax =
√

(1 + k2x)(1 + χ+ k2x). For

the mode with minimal frequency and excited modes with n � d it simplifies to ω =
√

1 + χ,

frequency of the ferromagnetic resonance. Such a value of frequency right of the right minimum is

reached at k‖ =
(√

1 + χ+ χ2 sin2 θ/2− 1− χ2 sin2 θ/2
)1/2

, much larger than the parallel wave

vector at the absolute minimum k‖ ∼ 1/
√
d [14]. This result shows a rather strong asymmetry of

the spectral curve with respect to its minimum generated by dipolar forces. This asymmetry is

very important for different applications. The presence of two minima is definitive in structure of

magnon Bose-condensation and possible superfluidity[17]. The strong asymmetry of the minimum

means that the quadratic approximation for the energy near minimum becomes invalid at relatively

small deviation of the wave vector from minimum. As a result two condensates subject to the

action of a pulsed magnetic field acquire different velocities.

The TDM in each mode is described by a superposition of one oscillating and two evanescent

modes. The oscillating mode is a sum of the type a cos kxx + b sin kxx. At any direction of

propagation except θ = 0, both a and b are not zero. The mode becomes even or odd only at

θ = 0 and asymptotically at large k‖ � 1 when the exchange interaction dominates. The EBC in

this case are satisfied by either even or odd TDM.The admixture of alternative parity has order of

magnitude k−2.

In conclusion we establish the correspondence between the commonly used names of different

spin waves and our classification of magnons. The backward volume spin waves (BVSW) are

magnons with the wave vectors in the range between two frequency minima, whereas forward

volume waves have wave vectors outside of this interval. The volume magnetic standing wave

(VMSW) is the same as our lowest transverse mode. Sometimes in the literature it is treated

as this mode at small k‖ and kx, i.e. in the range of dominant dipolar interaction. Finally, the

term perpendicular standing spin waves (PSSW) is the same as our higher magnon modes, i.e.
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ν = −, n ≥ 1 and ν = +, any n.

3.4 Spectral properties of thin films

The film is considered as thin if its thickness is of the order or less than 1, i.e. ` in dimen-

sional units. Since characteristic value of ` is between a few nanometers (in YIG) to a few tens

of nanometers, experimental realization of ultrathin films of YIG with d � 1 seems rather un-

realistic. It may be realized in ferromagnetic films of few monolayers thick. In a thin film with

d ∼ 1, transverse modes with large n have k1x ≈ 2πn/d � 1 in the exchange dominance region.

Therefore, only a few modes with lowest possible frequencies are of experimental and theoretical

interest. In these modes evanescent waves penetrate the film on a depth comparable with its film

thickness. Therefore their contribution to spectral properties and TDM is not less important than

the contribution of the oscillating wave. A compact analytic expression has been found only for

frequency as function of wave vector see eq. 3.13. The quantization of the transverse wave vector

and frequency is determined by the general equation (3.24). Examples of spectra in thin films plot-

ted in Fig. 3.6 show that qualitatively they are similar to the spectra in thick films. Each mode fixed

by numbers ν, n at not very large n also has a minimum of frequency at some k‖ 6= 0, but it does

not obey equation ∂ω2

∂k2‖
= 0 since k1x also depends on k‖. The graphs of position of minima and the

value of frequency in minimum for the lowest mode vs d for thin films are shown in Fig.3.7 (a) and

Fig.3.7 (b). In the same figures 3.7 (a) and 3.7 (b), we compared our results with calculations of

the same values by Kreisel et al. [1]. Finally, the graphs of k1x for the lowest mode vs d at fixed k‖

and θ = 0 are shown in Fig. 3.7 (c). An example of TDM for the lowest mode and the first excited

mode in thin films is shown in Fig. 3.8. Fig. 3.6 (a) and Fig. 3.6 (b) show that at d = 1, the energy

of the transverse excitation weakly depends on kz, a feature that could be expected for ultrathin

films d� 1. Fig.3.6 (c) shows that the energy of transverse ground state at fixed k‖ monotonically

grows with the angle of propagation θ.

All ground state spectra cross at the point k‖ = 0, ω ≈
√

1 + χ (
√

3 ≈ 1.73 for χ = 2),

exactly the same result as for the thick film. This is manifestation of a general property of films

with arbitrary thickness: at k‖ = 0, the transverse wave vector of the lowest transverse mode is
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Figure 3.7: Results of numerical calculations for the case χ = 2.5 and θ = 0. (a) Position of
minima for the lowest mode vs d for thin films. (b) The value of frequency at the minimum for the
lowest mode vs d for thin films. (c) k1x for the lowest mode vs d at fixed kz = 0.1, 0.2, 0.3, 0.4.
Black solid curves correspond to our numerical calculations, points are adapted from numerical
calculations by Kreisel et al.. [1]

26



-0.4 -0.2 0.0 0.2 0.4

1.5

2.0

2.5

3.0

x (
MD

H
)

T
D
M

my

mx

(a)

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x (
MD

H
)

T
D
M

my

mx

(b)

Figure 3.8: For the case χ = 2 and θ = 0 (a) TDM for the lowest mode at k‖ = 0.1 and a1x = 1.
(b) TDM for the first excited mode at k‖ = 0.1 and b1x = 1.

also equal to zero. The frequency of the lowest mode is equal to ω0 =
√

1 + χ (ferromagnetic

resonance frequency).

We postpone the proof of this general statement and consider first the limiting case of ultrathin

films d → 0 when θ = 0. It will be shown that only wave vectors of the lowest transverse mode

with ν = −, n = 0 remains finite in this limit. All excited transverse state with other ν or n have

wave vectors that go to infinity as 1/d. To simplify calculations we consider only the simplest case

of the waves propagating along the magnetization and magnetic field. Then the transverse modes

have a definite parity. Non-zero amplitudes in such situation are ai for even modes and bi for odd

ones. For finite wave vectors ki in the considered limit sin kixd/2 ≈ kixd/2 and cos kixd/2 ≈ 1.

This fact allows simplification of the EBC (3.18) and CE (3.21). The next simplification follows

from the fact that relation between x and y components of vectors ai and bi (3.16) reduces to

aiy = ω
1+k2i

aix and biy = ω
1+k2i

bix. After all these simplifications a following system of 3 equations

with 3 independent amplitudes aix describes the quantization of an even mode:


∑3

i=1 k
2
ixaix = 0∑3

i=1
k2ix
1+k2i

aix = 0∑3
i=1

aix
k2i

= 0

(3.31)
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Zeros of the determinant of this system are quantized values of k21x. To make this equation closed

with respect to the variable k1x or equivalently to variable k1 =
√
k21x + k2z it is necessary to

use the dependence of k22 and k23 from k21 given by eq. (3.23) and relations between k2ix and k2i :

k2ix = k2i − k2z . At small kz � 1, the only positive root of this equation is

k1x ≈
(

χ

2 + χ

)1/4√
kz (3.32)

At large kz, k1x asymptotically approaches a constant value k1x ≈
√
χ/2. Both these asymptotic
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Figure 3.9: Plot of k1x at d→ 0 and approximation to it when χ = 2 and θ = 0.

values are in excellent agreement with numerical calculations of the dependence of k1x on kz at

d → 0 (see Fig.3.9). Asymptotic of k1x at small kz confirms that indeed k1x = 0 at kz = 0. Thus,

in the limit d→ 0 the value of frequency at k‖ = 0 is
√

1 + χ as well as in the limit of large d. The

comparison of the plots of k1x vs. kz at d = 1 and d = 0 is shown on Fig. 3.10.

Now we are in position to prove general statement that the frequency of the lowest mode

at k‖ = 0, is equal to
√

1 + χ independently of thickness. Let us put ky = 0 and consider

kz � 1/d2. We will show that the first quantized value k1x is determined by the same equation
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(3.32), but the arguments must be modified. Anticipating the result (3.32), we assume that the first

quantized value of k1x is much smaller than 1, but much larger than k2z . Then eq. (3.23) implies

that k22x ≈ −χk2z/ [(2 + χ) k21x] is also small by absolute value, whereas k23x ≈ −2 − χ remains

of the order of unity by modulus. Let us first consider the EBC (3.18) that in considered situation

take form

k21xa1x + k22xa2x −
√

2 + χ
2 sinh

√
2 + χd/2

d
a3x = 0 (3.33)

k21xa1x + k22xa2x +
2
√

2 + χ sinh
√

2 + χd/2

(1 + χ)d
a3x = 0 (3.34)

These equations imply a3x = 0. Then they become identical and define the ratio a2x/a1x =

−k21x/k22x. Next consider the CE for aix that in the same limit has a form:

a1x
k21

+
a2x
k22

= 0

Employing the ratio a1x/a2x found above, we again obtain eq. (3.32) for this more general situa-

tion. It shows that in the limit kz → 0, the limit of ratio k2z/k
2
1x is also zero and the limiting value

of ω is
√

1 + χ independently on thickness. Note that in the limit k‖ = 0 the magnetization in the

lowest spin-wave mode does not depend on transverse coordinate.

In principle it could happen that the positive root k21 would be less than k2‖ . Then the value k21x

is negative and all three waves participating in mx, my are evanescent. Our numerical calculations

did not discover such a solution in a wide range of parameters that presumably shows that the

absence of purely evanescent waves in the films with free spins on boundaries. However, we do

not have rigorous proof of this statement. Though thin films are more sensitive to the specific form

of the EBC than thick ones, different versions of these conditions do not change the symmetry and

general properties of solutions. An important problem is how the wave vector kz corresponding

to minimum of energy changes with thickness. For thick films it behaves as 1/
√
d [14] and grows

when the film becomes thinner. However, in the range of ultrathin films it decreases with the

thickness linearly. Therefore there exists a maximum of this wave vector. Numerical calculations
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Figure 3.10: k1x for the lowest mode at d→ 0 and d = 1 when χ = 2 and θ = 0.

illustrated by Fig. 3.7 (a) show that for χ = 2.5, the maximum is reached at d ≈ 6 and the

maximal wave vector corresponding to the minimal frequency is about 0.3. The dimensionless kz

corresponding to the minimum of energy in the film of thickness 5µm is about 0.02. Thus the wave

vector can be changed by a factor of about 15 by reducing thickness from 5µm to 15− 30nm. The

minimal wavelength of a magnon gives an upper limit for the size of any soliton-like formation

made from magnons that can be used for the transfer of information without dissipation or with

very small dissipation[17].

3.5 Surface waves

Surface waves in ferromagnetic films were predicted by Damon and Eshbach [6] in the purely

dipolar limit. For magnets with exchange and dipolar interaction this limit is valid for sufficiently

small wave vectors k1 � 1. At large k1� 1, the exchange forces become dominant and energy

(frequency) of any mode of oscillation must be close to k2. The meaning of the term “surface

wave” for thick films d � 1 is that they are localized in a thin layer of the width ∼ 1 � d.

However, in thin films d . 1 these waves penetrate to the entire film. We will show that surface

wave can be distinguished in thick films, but it is distributed between many modes of the complete

Hamiltonian. In thin films the notion of surface wave is meaningless.

30



3.5.1 Spectrum in a magnet with purely dipolar interaction

Here we reproduce results by Damon and Eshbach employing our approach. The spectrum can

be obtained from our equation (3.11) written for the case of zero exchange constant D. In this case

there is no scale of length in the problem apart from the film thickness d, but it does not enter into

equations of motion that for purely dipolar interaction are:

(ω − σ1)m−
χ

4π
h = 0 (3.35)

In components they are:  ωmx −my + χ
4π
kyφ = 0

−mx + ωmy − χ
4π

dφ
dx

= 0
(3.36)

The magnetic potential φ satisfies magnetostatic equation:

d2φ

dx2
− k2‖φ+ 4π

(
dmx

dx
+ kymy

)
= 0 (3.37)

Equations of motion can be solved with respect to components of m and substituted to eq. (3.37).

The resulting differential equation for φ reads:

(
1− χ

ω2 − 1

)
d2φ

dx2
−
(
k2‖ −

χ

ω2 − 1
k2y

)
φ = 0 (3.38)

In contrast to the exchange case it is only of the second order. As any linear homogenous differ-

ential equation with constant coefficients, it has 2 independent exponential solutions of the form

eikxx. The values kx are determined by equation:

k2x =
ω2 − 1

1 + χ− ω2
k2z − k2y (3.39)
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It also can be treated as equation for spectrum:

ω =

√
1 + χ

k2x + k2y
k2

(3.40)

3.5.2 Surface wave propagating perpendicularly to magnetization

If a wave propagates perpendicularly to the magnetization and magnetic field, that implies

kz = 0. From equation (3.39) it follows that in this case kx = ±iky. It means that k2 = 0 and

the value of frequency determined by eq. (3.40) becomes uncertain. To find the spectrum, it is

necessary to represent the solution m (x) in the form:

m (x) = p (x) cosh kyx+ q (x) sinh kyx (3.41)

In contrast to the case of exchange and dipole interaction in pure dipole case there are no additional

waves. According to eq. (52) of our Appendix 3, q = −σ1p, i.e. qx = −py and qy = −px. There

is no EBC, but the CE must be used. According to our eq. (58) in the same Appendix, they are

reduced to the following system:

 ωpx − py + χe−
|ky |d

2 sinh |ky |d
2
qx = 0

−px + ωpy + χe−
|ky |d

2 cosh |ky |d
2
qy = 0

(3.42)

By employing the p− q relation we find the closed system for components of vector p:

 ωpx − py
(

1 + χe−
|ky |d

2 sinh |ky |d
2

)
= 0

−px
(

1 + χe−
|ky |d

2 cosh |ky |d
2

)
+ ωpy = 0

(3.43)

By nullifying the determinant of this system, we get dispersion:

ω =

√
1 + χ+

χ2

2
e−|ky |d sinh |ky| d (3.44)
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This result coincides with eq. (23) of the cited Damon-Eshbach article. The frequency of the

surface wave starts with ω =
√

1 + χ at ky = 0 (the ferromagnetic resonance frequency) and

reaches the saturation frequency ω = 1 + χ
2

at |ky| → ∞. As it is seen from the dependence of

the frequency on ky the transition between these two values proceeds in the interval ∆ky ∼ 1/d,

very short in thick films. If the exchange force is included, its influence becomes significant only

at k2y & χ. In all experiments χ was larger than 1.

3.5.3 Surface waves propagating at an arbitrary angle to the magnetization

We will use the representation (3.15) of the vector m (x) = a cos kxx + b sin kxx and 2 rela-

tions (3.22) between different components of the amplitude vectors. In the case of purely dipolar

interaction, there are only 2 independent amplitudes, by our choice ax and bx. They must obey

the CE (3.21). The condition of their solubility requires their determinant to be zero. It gives the

following equation:

[k2‖A
2
y − k2y(ω2 +B2)]fcfs − k‖kyAyB(f 2

c − f 2
s ) = 0 (3.45)

Here we used reduced coefficients Ax,y = 1 +
χk2x,y
k2

; B = χkxky
k2

and the functions fc = k‖ cosα−

ky sinα; , fs = k‖ sinα+ky cosα; α = kxd
2

defined in the section III below eq. (3.20). Employing

the secular equation ω2 = AxAy − B2, it is possible to transform eq. (3.45) to the following

simplified form:
tanκx
κx

= −
2κ‖κ

2
z

κ2z(κ
2
‖ − κ2x) + χκ2κ2y

(3.46)

where κα = kαd, (α = x, y, z) and κ‖ =
√
κ2y + κ2z. The surface wave should have imaginary kx

and consequently imaginary κx. Then the function in the l.-h. side of eq. (3.46) is positive and

varies from 0 to 1. Thus, this equation has solution only if its r.-h. side is positive. The denominator

in the r.-h. side of the this equation can be rewritten as
(
κ2z − χκ2y

)
|κ2x| + κ2‖

(
κ2z + χκ2y

)
. For
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existence of solution this expression must be negative. This condition is satisfied only if

tan θ ≡ ky
kz
≥ 1
√
χ

(3.47)

Thus, at θ < θc = arctan 1√
χ

the surface wave does not exist. In the interval θc ≤ θ ≤ π
2

the

surface wave exists since the fraction in the r.-h. side of eq. (3.46) in this interval varies between 0

at κx →∞ and −∞ at |κx| = κ‖

√
χ tan2 θ+1
χ tan2 θ−1 .

At a fixed θ and κ‖ → 0, the solution of eq. (3.46) approaches zero as |κx| '
√

2κ‖
χ tan2 θ−1 .

At κ‖ → ∞, the solution asymptotically grows as |κx| ' κ‖
χ tan2 θ+1
χ tan2 θ−1 . The corresponding values

of frequency are ω =
√

1 + χ at κ‖ = 0, and ω =

√
1 + χ+ cos2 θ(χ tan2 θ−1)2

4 tan2 θ
at κ‖ = ∞. At

θ = π
2
, the frequency at large κ‖ takes value ω = 1 + χ

2
. This result was already obtained in

the previous subsection. In terms of the wave vector the transition from the long-wave to the

short-wave asymptotics of the spectrum proceeds in the interval κ‖ ∼ 1/d.

3.5.4 Surface waves with exchange interaction

In thick films d� 1, the exchange interaction is very small in comparison to dipolar interaction

in the interval κ‖ ∼ 1/d. Though in thick films the surface wave exists in a longer interval κ‖ � 1,

it is difficult to distinguish its dispersion from that of a standard mode considered in section IV.

Thus, the surface wave can be observed, but with some complications. As we know, the TDM

for each mode is a superposition of three waves (see eq. (3.15)). Two of them are evanescent

waves, but only one of the evanescent waves has a small imaginary kx. The second one has all

components of the wave vector of the order of unity. It is substantial for the EBC, but can be

neglected in the CE. Apart of the evanescent waves, the wave with positive square of wave vector

k21 takes part in superposition. An analysis shows that x−component of this vector k1x is also

positive. This component is quantized by the set of EBC and CE. In the range of weak exchange

interaction κ‖ � 1 and θ > θc, the dipolar interaction is dominant and the exchange interaction

can be considered as a perturbation. Its influence is small everywhere except of vicinity of levels

crossing, where the exchange interaction is responsible for the repulsion of purely dipolar levels.
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Thus, at κ‖ � 1, each level of the complete Hamiltonian (with dipolar and exchange interaction

included) consists of two or more pieces of different dipolar levels connected by pieces of the

dipolar surface wave. Fig. 3.2 (a) demonstrates these combined levels. This peculiarity is clearly

seen only at κ‖ ∼ 1/d . The exchange interaction starting with k & 1 becomes comparable or

exceeding the dipolar one and makes the surface mode not distinguishable. In thin films d . 1 the

exchange interaction is comparable with the dipolar or bigger than it already at k ∼ 1/d. Therefore

in a thin film no surface wave can be found.

3.6 Direct evidence of spatial stability of Bose-Einstein condensate of magnons

The discovery of the room-temperature magnon Bose-Einstein condensation (BEC) in yttrium-

iron garnet (YIG) films driven by parametric pumping[27] has spurred intense experimental and

theoretical studies of this phenomenon [35, 3, 36, 13, 37, 5, 38, 39, 31, 40, 41] and opened a new

field in modern magnetism: room temperature quantum magnonics. The formation of magnon

BEC is driven by the parametric pumping that has been experimentally confirmed by the observa-

tion of the spontaneous narrowing of the population function in the energy[27, 3, 39] and the phase

space[36]. Moreover, the spontaneous coherence of this state has been proven by the observation

of interference between two condensates in the real space, as well as by the observation of the

formation of quantized vortices[31].

Despite of all these experimental observations, from the theoretical point of view, the possibil-

ity of magnon BEC is still questioned because of the issues associated with the condensate stability

[18]. It is generally believed that the formation of a stable Bose-Einstein condensate is possible

only if the particle scattering length a proportional to the inter-particle interaction coefficient g

is positive (the so-called repulsive particle interaction) [42, 43]. Otherwise, the condensate is ex-

pected to collapse[44, 45]. However, the established theories of magnon-magnon interactions in

unconfined ferromagnets [46, 47, 48, 49] with uniaxial anisotropy predict an attractive interaction

between magnons, which was confirmed experimentally by numerous studies of magnetic solitons

in films with weak in-plane [50, 51, 52] and strong out-of-plane [53, 54] anisotropy. The problem

of interactions becomes particularly complex for magnons existing in in-plane magnetized films in
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the vicinity of the lowest-energy state, where the BEC is formed, since the conventional interaction

mechanisms originating from the dipolar shape anisotropy weaken strongly in this spectral part

and other mechanisms, such as the interaction between condensed and non-condensed magnons

[40, 55] can become dominant. Up to now, the clear understanding of these issues was missing

resulting in a deep contradiction between the experiments demonstrating the possibility of stable

magnon BEC and the theory predicting its collapse.

Here, the Demokritov’ group provide a direct experimental evidence of stability of magnon

BEC and the repulsive character of magnon-magnon interaction in the vicinity of the lowest-energy

spectral state and its theoretical explanation are presented. By using a confining potential, they cre-

ate a strong local disturbance of the condensate density and study the spatio-temporal dynamics

of BEC. Their experimental data clearly show that, despite the artificially created strong local in-

crease of the condensate density expected to stimulate the collapse process, no collapse occurs.

On the contrary, the observed behaviors indicate that magnons forming the condensate experi-

ence repulsive interaction, which counteracts an accumulation of magnons in a particular spatial

location. These conclusions are well supported by our calculations using a model based on the

Gross-Pitaevskii equation. We also propose a mechanism, which is likely responsible for the ob-

served repulsive interaction. We show that the effective magnon repulsion can be associated with

the influence of additional dipolar magnetic fields appearing in response to any local increase of

the condensate density. This interpretation is well supported by the quantitative analysis of the

experimental data. Our findings resolve the long-standing question of stability of magnon conden-

sates.

3.6.1 Studied system and experimental approach

The Demokritov’ group studied the spatio-temporal dynamics of room-temperature magnon

BEC in a YIG film using the experimental setup similar to that used in[40, 56]. The schematic of

the experiment is illustrated in Fig. 3.11a, b. The condensate in YIG film with the thickness of

5.1 µm and the lateral dimensions of 2 × 2 mm is created by a microwave parametric pumping

using a dielectric resonator with the resonant frequency of fp = 9.055 GHz. The pumping injects
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primary magnons at the frequency of fp/2, which thermalize and create the BEC in the lowest-

energy spectral state [27, 35]. The frequency of BEC is determined by the magnitude of the static

magnetic field H0, which was varied in the range 0.5-1.5 kOe. The representative data obtained at

H0 = 0.64 kOe corresponding to the BEC frequency of 1.9 GHz and the wavelength of about 1 µm.

To study the spatial stability of the condensate, they use a confining potential, which is created by

using an additional spatially inhomogeneous magnetic field ∆H induced by a dc electric flowing in

a control strip line with the width of 10 µm (Fig. 3.11c). They study the condensate density n and,

in particular, its spatial(Fig.3.12) and temporal (Fig.3.13) variation using microfocus Brillouin

light scattering (BLS) technique. In stationary-regime experiments, both the pumping and the

inhomogeneous field are applied continuously. Additionally, to investigate the temporal dynamics

of the condensate, they perform experiments, where the pumping is applied in the form of pulses

with the duration of 1 µs and the repetition period of 10 µs and the BLS signal was recorded as a

function of the time delay with respect to the falling edge of the pumping pulse.

3.6.2 Theoretical description

If the interaction between magnons were attractive, the overall reduction of the condensate

density would result in a spatial broadening of the density peak. In contrast, the data of Fig.3.13

show opposite behaviors: after the pumping is turned off, the density distribution n(z) starts to

narrow, thus the interaction is repulsive.

The BEC can be descried by the so called Gross-Pitaevskii equation.

i~
∂ψ

∂t
= (− ~2

2m
∇2 + u(x) + g|ψ|2)ψ (3.48)

Using the Madelung transform: ψ =
√
neiφ , separating the real and the imaginary parts, we have

∂n

∂t
= −∂(nv)

∂z
(3.49)
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Figure 3.11: Schematic of the experiment.a General view of the experimental system. a) Dielec-
tric resonator creates a microwave-frequency magnetic field, which parametrically excites primary
magnons in the YIG film. After thermalization, the magnons form a BEC in the lowest-energy
spectral state. DC electric current in the control line placed between the resonator and the YIG
film, produces a non-uniform magnetic field, which adds to the uniform static field H0. The local
density of condensed magnons is recorded by BLS with the probing laser light focused onto the
surface of the YIG film. b) Cross-section of the experimental system illustrating the field created
by the control line. c) Spatial distribution of the horizontal component of the total magnetic field
H0 + ∆H and the corresponding spatial profile of the condensate density caused by the inhomo-
geneity of the field.
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Figure 3.12: Representative profiles of the condensate density recorded by BLS for the case of a
potential well (blue symbols) and a potential hill (red symbols) with the depth/height of 10 Oe.
The shown profiles are normalized by the value of the density measured in the absence of the
potential. The gray rectangle in the upper part marks the position of the control line creating the
inhomogeneous field potential. Solid curves show the results obtained from the numerical solution
of Eq. 3.49. Inset: Spatial profiles of the condensate density calculated for different magnitudes
of the coefficient g describing the nonlinear magnon-magnon interaction with all other parameters
fixed. The curve labeled gg = gFIT is the same, as that in the main figure.

m
dv

dt
= − ∂

∂z
(u(x) + gn) (3.50)

Taking into account pumping and decay of condensate magnons , eq. (3.49) becomes:

∂n

∂t
= −∂(nv)

∂z
− n− n0

τ
(3.51)

Taking into account dissipation. As usual for dissipative processes, one can write the connection

between the effective potential u+ gn and drift velocity in the form:

v = −η ∂
∂z

(u(x) + gn) (3.52)
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Figure 3.13: Time evolution of the condensate density in a potential well after turning the mi-
crowave pumping off. Normalized spatial profiles of the condensate density in a potential well
with ∆HMAX=-10 Oe recorded at different delays after the microwave pumping is turned off at t
= 0. Solid lines are guides for the eye.

where η is the mobility of the condensate, defined by the momentum relaxation processes.

After substitution of Eq. (3.52) into Eq. (3.51), one obtains for the stationary case ∂n
∂t

= 0 the

final non-linear second-order differential equation for the condensate density n:

η∇ [n∇ (u+ gn)] = −n0 − n
τ

(3.53)

where u = geµBh, using boundary conditions of n and shooting method, g = 3 × 10−39erg cm3.

Since g is positive, it means the interaction between magnons is repulsive.

If we use uextra = geµBhextra instead of gn.

hextra = ∇φ; φ (x, z) = ∇⊥ ·
∫
V

dV ′
m′

|r− r′|
(3.54)

Magnetization of extra magnons is associated with their density by relation:m = −gµBnextraẑ
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with nextra = n(z)− n0.

hextra = 4πgeµBnextra (z)− 2gµB

∫ ∞
−∞

d

(z − z′)2 +
(
d
2

)2nextra (z′) dz′ ≈ 4πgeµBnextra (z)

(3.55)

Using µB = 9.3× 10−21 erg*G−1, we get uextra = 4.3 ∗ 10−39 ∗ nextra ≈ gn.

We conclude that the origin of this stability is the effective repulsive magnon-magnon interaction

having a magneto-dipolar nature.

The concept of a resistive flow in a coherent condensate albeit being counter-intuitive inevitably

follows from the experimental data supported by numerical calculations in the framework of sim-

plified model. However, from this model it is not obvious what is the reason for gigantic enhance-

ment or response. Here we issue estimates based on equations of motion and simple physical

arguments that explains these reasons. Due to symmetry of problem it is obvious that density

n(z) = n0ν(z)is the even function of z. Then eq. (3.49) in stationary regime shows that the cur-

rent j = nν is the odd function. Thus, j = 0 atz = 0 , whereas dj
dz

= −n0

τ
(νmax − 1). Since

dj
dz
|z=0 < 0 the current at z > 0 becomes negative and grows by absolute value. It reaches its

minimal value jmin at a point with coordinate z1 ∼ l ( 1.16l in experimental curve) in which

ν = 1. It is possible to estimate the minimal current as jmin = −n0z1
τ

(0.66νmax − 1) . Right

of this point the derivative dj
dz

becomes positive and current eventually decreases by modulus and

asymptotically vanishes. Parallel to this process ν(z) first decreases, reaches a positive minimum

at some point z2 > z1 and asymptotically reaches value 1. Let assume that as even function,

1− ν(z) asymptotically behaves as ( l
z
)2 . At sufficiently large z = Z, interaction amplitude that is

of the order −µ2
B(1− ν) becomes comparable to intrinsic interaction amplitude g0 − µ2

B
`
d
, where

d denotes the thickness of sample and ` is the correlation length in the homogeneous magnet equi-

librium magnet (about 40 nm in YIG). This definition implies Z ∼ l3/2/`1/2 . However, this length

is not sufficient for complete compensation of minimal current. The recovery length necessary

to compensate it is Lrec ∼ |jmin|
Z−z1

∫ Z
z1

(dj/dz)−1dz . This equation and previous estimates imply

Lrec ∼ (0.66νmax − 1) l
2

3`
� l . With the experimental data it gives Lrec ∼ 15l = 150µm . If
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Lrec < L , where L is the length of condensate, this consideration does not give any lower limit

for νmax. In opposite situation such a lower boundary reads: νmax ≥ 1.5(3L`
l2

+ 1) Note that this

constraint contains only geometrical scales and therefore does not depend neither of the amplitude

∆Hmax of nonuniform magnetic field nor of pumping intensity. It explains why it is much larger

than |∆Hmax|/H0 . It also explains why in the experiment saturates at further increase of ∆Hmax.

An alternative clue to the explanation of gigantic response is the fact that effective potential well

in reality is very deep |∆Hmax| � µ2
Bn0. The extra magnons fills this potential well until their

repulsion energy 4µ2
Bnextra compensates their energy in potential well 2µB∆Hmax . From this

requirement we find nextra ∼ n0|∆Hmax|/(2µB) � n0 . This extremely intensive accumulation

of magnons in the potential well explains gigantic response. No such accumulation proceedss in

the case of potential barrier. In this case the density in minimum is exponentially small being con-

trolled by quantum tunneling process. But outside of potential barrier the density relaxes to ν = 1

on the scale ∼ l.

In the geometry of this experiment, the reason for repulsion is the strong enhancement of

magnon density inside the artificially prepared potential well for magnons. However, experiments

show that even without this trap for magnons the homogeneous condensate in YIG subject to per-

manent pumping is stable. It means that in the stationary state under pumping the magnons repulse

each other, whereas according to quasiequilibrium theory [5] they attract each other. Though this

controversy is not yet completely resolved, the very fact of it shows that the quasiequilibrium state

presumably is not realized. Just now we work on kinetic theory of stationary state to elucidate the

reason of this phenomenon and to find what state is realized.

Another unexpected fact is extremely high mobility that was found as a fitting parameter from

comparison of theoretical curve with experiment. this value of mobility corresponds to relaxation

(decoherence) time τ ∼ 1µs, about 1000 times more than relaxation time for magnons inside the

trap. We consider this very high value of relaxation time as a precursor of superfuidity. Indeed,

the value of mobility is an average over a long interval of distance from the center of trap that

is required to compensate initial very large dissipative current. On the overwhelming part of this
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interval L� w, where w is the width of the trap,the density is close to the stationary homogeneous

density n0 . At homogenous n = n0 the system is expected to be supefluid with infinite length and

time of decoherence. Therefore, τ indeed should be rather high.

3.7 Conclusions

Our combined approach has simplified the exact solution of Landau-Lifshitz equations for

geometry of an infinite film. As a result we have found many features of the solution that were not

found earlier. We considered the group of symmetries for solutions that allows their classification.

We studied not only the properties of thick, but also thin films which are most important for their

possible technological applications. We also studied quantization of transverse motion for the

ultrathin limit and have discovered that there is a big gap in the spectrum in this limit, and only the

lowest mode has the transverse wave vector and frequency that do not depend on thickness. The

motion of the minimum of frequency (energy) which is very important for the problem of Bose-

Einstein-condensation and superfluidity of magnons was analyzed. In particular we have found the

upper limit for the wave vector at the energy minimum reachable by reducing of the film thickness

to 15-30 nm. The wavelength corresponding to this maximal wave vector limits the miniaturization

of devices in which the information is transferred by non-linear localized magnetization waves.

Our theoretical model together with the experimental resultes the provide a direct evidence that

the magnon BEC in YIG films is intrinsically stable with respect to the collapse in the real space.

We show that the effective magnon repulsion can be associated with the influence of additional

dipolar magnetic fields appearing in response to any local increase of the condensate density.
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4. AMPLITUDE REPRESENTATION OF THE LANDAU-LIFSHITZ EQUATION

In the previous chapter, our main interest was focus on the energy spectrum and TDM of

magnons. Now our interest transfers to other aspects of BEC, e.g. the coherence of two conden-

sates and the relaxation time of condensed magnons.

In this chapter we use a classical representation for the Landau-Lifshitz equation, the energy

spectrum of magnons is studied. Also, we apply this theory to get the exact phase diagram for

different values of thickness d and magnetic field H and relaxation time of condensed magnons.

We assume the film to be isotropic in the film plane, and the external magnetic H and the

spontaneous magnetization M to be oriented in-plane.

4.1 Hamiltonian formulation of the Landau-Lifshitz equation and amplitude representa-

tion

Landau-Lifshitz (LL) equation can be formulated as Hamilton equations for the magnetization

M(r):
∂M

∂t
= {H,M} , (4.1)

where {A,B} denotes Poisson brackets and H is the Hamiltonian containing exchange, dipolar

and Zeeman energy:

H = Hex +HZ +Hd (4.2)

Hex =
D

2

∫
(∇M)2 dV (4.3)

HZ = −H
∫

MzdV (4.4)

Hd =
1

2

∫∫
(M∇) (M′∇′) 1

|r− r′|
dV dV ′ (4.5)

In the last equation prime denotes dependence on r′. The magnetization vector has the following

Poisson brackets:

{Mα (r) ,Mβ (r′)} = γδ (r− r′) εαβγMγ (r) (4.6)
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In eq. (4.6) γ ≡ ge
2mc

is classical gyromagnetic ratio.

LL equation is valid in the long-wave low-energy limit when spin-orbit, dipolar and Zeeman

interactions are weak on the short length-scale compared to exchange interaction and when re-

laxation of the modulus of magnetization is much faster than the relaxation of transverse motion

of magnetization. LL equation works under assumption that the modulus of magnetization M is

conserved. It works well in the long-wave limit with precision controlled by small values a/λ and

ωτM , where a is the lattice constant (1nm in YIG), λ is the magnon wavelength, ω is the magnon

frequency and τM is the relaxation time of magnetization modulus. All phenomena in this limit are

dominantly classical since the number of magnons in a volume with linear size of the order of λ is

large and the quantization of their numbers can be neglected.

The amplitude function ψ (r) is determined by the following relations:

Mz (r) = M − γψ (r)ψ∗ (r) (4.7)

M+ (r) ≡Mx (r) + iMy (r) =
√
γψ (r)

√
2M − γψ (r)ψ∗ (r) (4.8)

This is a classical modification of the Holstein-Primakoff transformation. The Poisson brackets for

amplitudes are:

{ψ (r) , ψ∗ (r′)} = −iδ (r− r′) (4.9)

Other Poisson brackets of the type {ψ (r) , ψ (r′)} and {ψ∗ (r) , ψ∗ (r′)} are equal to zero. As it

follows from eq. (4.7), the square of the amplitude modulus |ψ (r)|2 is the density of angular (spin)

momentum carried by magnons. In the simplest situation it coincides with the density of magnons

multiplied by Planck constant ~. Unlike in quantum mechanics the order of factors in terms is not

substatantial. However, the Poisson brackets {A,B} changes sign on permutation of values A and

B.
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In terms of amplitude the Hamiltonians (4.3,4.4,4.5) read:

Hex =
γ2D

2

∫ (
∇
(
|ψ|2

))2
dV +

γD

2

∫ ∣∣∣∣∇(ψ√2M − γ |ψ (r)|2
)∣∣∣∣2 dV (4.10)

Hz = γH
∫
|ψ (r)|2 dV (4.11)

Hd =
1

2

∫∫
Ω̂ (r) Ω̂ (r′)

dV dV ′

|r− r′|
(4.12)

where

Ω̂ (r) =
(
M − γ |ψ|2

)
∂z +

√
γ
(
2M − γ |ψ|2

)
2

(ψ∂− + ψ∗∂+)

In eq. (4.12) we omitted for brevity arguments in functions denoting ψ ≡ ψ (r), ψ′ ≡ ψ (r′) and

∂± ≡ ∂x ± i∂y; ∂′± ≡ ∂x′ ± i∂y′ .

4.2 Quadratic Hamiltonian and its diagonalization

Quadratic in ψ and ψ∗part of the Hamiltonian is:

H2 = Hex2 +HZ2 +Hd2 (4.13)

Hex2 = γMD

∫
|∇ψ|2 dV (4.14)

HZ2 = γH
∫
|ψ|2 dV (4.15)

Hdip2 =
γM

4

∫∫
(ψ∂− + ψ∗∂+)

(
ψ′∂′− + ψ′∗∂′+

)
|r− r′|

dV dV ′ (4.16)

The first step of diagonalization is the Fourier transformation with respect to in-plane variables

y and z:

ψ (r) =
∑
q

χq (x)
eiqr√
A
, (4.17)
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where q =qyŷ + qz ẑ is in-plane wave vector; x is a coordinate perpendicular to the plane of the

film and A is the area of the plane surface. Inverse Fourier transformation reads:

χq (x) =
1√
A

∫∫ ∞
−∞

ψ (r) e−iqrdydz (4.18)

Employing Poisson brackets for ψ (r) eq. (4.9), it is straightforward to find Poisson brackets for

amplitudes χq (x): {
χq (x) , χ∗q′ (x

′)
}

= −iδqq′δ (x− x′) (4.19)

In terms of variables χq (x) the three parts of the Hamiltonian read:

Hex2 = γMD
∑
q

d/2∫
−d/2

(∣∣∣∣dχq

dx

∣∣∣∣2 + q2 |χq|
2

)
dx (4.20)

HZ2 = γH
∑
q

d/2∫
−d/2

|χq|2dx (4.21)

Hd2 = πMγ
∑
q

∫∫ d
2

− d
2

dxdx′
[
χq (dx − qy) + χ∗−q (dx + qy)

]
[
χ′−q (dx′ + qy) + χ′∗q (dx′ − qy)

]
Gq (x− x′) (4.22)

In the last equation G (x) is the Green function of 1d Helmholtz equation:

Gq (x) =
e−q|x|

2q
(4.23)

It obeys equation: (
d2x − q2

)
Gq (x) = −δ (x) (4.24)

The diagonalization of the Hamiltonian can be performed by Bogoliubov u − v transformation.
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Let define an eigen-vectors amplitudes:ηqn by the following canonical transformation:

ηqn =

d/2∫
−d/2

[
uqn (x)χq (x) + vqn (x)χ∗−q (x)

]
dx (4.25)

To be canonical this transformation must imply correct Poisson bracket for variables η:

{
ηqn , η

∗
q′n ′

}
= −iδqq′δnn′ (4.26)

Generalized canonicity (unitarity) condition for Bogoliubov transformation states:

d/2∫
−d/2

[
uqn (x)u∗qn ′ (x)− vqn (x) v∗qn ′ (x)

]
dx = δnn′ (4.27)

Inverse transformation must have a form:

χq (x) =
∑
n

(
Uqn (x) ηqn + Vqn (x) η∗−qn

)
(4.28)

Replacing the amplitudes ηqn , η−qn in eq. (4.28) by their Bogoliubov representation (4.25), we

arrive at equations relating direct and inverse Bogolyubov transformations:

∑
n

(
Uqn (x)uqn (x′) + Vqn (x) v∗−qn (x′)

)
= δ (x− x′)∑

n

(
Uqn (x) vqn (x′) + Vqn (x)u∗−qn (x′)

)
= 0 (4.29)

On the other hand the requirement of unitarity inverse Bogoliubov transformation reads:

∑
n

(
Uqn (x)U∗qn (x′)− Vqn (x)V ∗qn (x′)

)
= δ (x− x′) (4.30)

Comparing this equation with the first eq. (4.29), we arrive at conclusion that Uqn (x) =u∗qn (x)
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and Vqn (x) = −v−qn (x). Thus, the inverse Bogolyubov transformation reads:

χq (x) =
∑
n

(
u∗qn (x) ηqn − v−qn (x) η∗−qn

)
(4.31)

In addition we find dual unitarity condition:

∑
n

(
u∗qn (x)uqn (x′)− v−qn (x) v∗−qn (x′)

)
= δ (x− x′) (4.32)

Amplitudes ηqn must be eigenvectors of the Hamiltonian, i.e.:

{H, ηqn} = iωqnηqn (4.33)

where frequencies ωqnof corresponding modes are eigenvalues of this operator. Employing equa-

tions (4.13,4.20,4.21,4.22) for the Hamiltonian and Poisson brackets (4.19) for variables χq (x),

we arrive at following equations for the Bogoliubov transformation functions (we omit subscript

n):

[
ω − γ

(
H+MD

(
q2 − d2

x

))]
uq (x) = 2πγM

[(
q2y − d2x

)
ζu + (qy − dx)2 ζv

]
,[

ω + γ
(
H+MD

(
q2 − d2

x

))]
vq (x) = −2πγM

[(
q2y − d2x

)
ζv + (qy + dx)

2 ζu
]
.

(4.34)

Here the variables ζu,v are defined as integrals:

ζu (x) =

d/2∫
−d/2

G (x− x′)uq (x′) dx′;

ζv (x) =

d/2∫
−d/2

G (x− x′) vq (x′) dx

(4.35)

Thus, Bogoliubov transformation functions obey a system (4.34) of integral-differential equations.

However, due to relation (4.24) they can be reduced to a system of ordinary differential equations.
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Indeed, application of the operator q2 − d2x to both parts of eqs. (4.34) turns them into linear

homogeneous differential equations with constant coefficients. Therefore their solutions must be a

superposition of exponents of the type eiκx with κ being roots of the secular polynomial. To find

this polynomial, it is convenient to introduce notation k2 ≡ q2 + κ2 and vector k with components

kx = |κ| , ky,z = qy,z. In terms of these notations the ansatz uq (x) = ueiκx; vq (x) = veiκx

together with application of the operator q2 − d2x to both parts of eqs. (4.34) turns them into the

following system of linear equations for coefficients u and v:

[(
ω − γ

(
H +MDk2

))
k2 − 2πγM

(
k2x + k2y

)]
u+ 2πγM (kx + iky)

2 v = 0,

− 2πγM (kx − iky)2 u+
[(
ω + γ

(
H +MDk2

))
k2 + 2πγM

(
k2x + k2y

)]
v = 0.

(4.36)

Condition of solvability for these equations reads:

ω2k2 = γ2
(
H +MDk2

) [(
H +MDk2

)
k2 + 4πM

(
k2 − k2z

)]
(4.37)

This equation can be interpreted as the dispersion relation for magnons:

ω = γ

√√√√(H +MDk2)

(
H +MDk2 +

4πM
(
k2x + k2y

)
k2

)
(4.38)

It does not depend of thickness of the film, i.e. it is the same as in the bulk. Thickness enters only

in quantization of the wave vector of transverse mode kx that will be discussed in the next section.

At fixed parametersD,M ,H and frequency ω, eq. (4.37) is a qubic equation for the variable k2.

Note that it does not depend explicitly not only of thickness of the film d, but also of the value ky.

Inspection of coefficients of the qubic equation shows that the product of three roots is positive,

whereas their sum is negative. Therefore, there are two opportunities: i) one root k2 is positive

and two others are negative or ii) one root is positive and two others are complex conjugated with

negative real part. As Sonin has found [14] at d � l ≡
√
D and kl � 1, the variant i is realized.
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An approximate equation for poistive root is

k2 = k2z
4πγ2MH

γ2H (H + 4πM)− ω2
(4.39)

Two others negative solutions k2 = −λ21,2 are determined by equation:

λ21,2 ≈

2π +
H
M
±

√
4π2 +

(
ω

γM

)2
 l−2 (4.40)

Both values λ21,2 are positive if ω2 ≤ γ2H (H + 4πM). Note that when frequency approaches

the value ω = γ
√
H (H + 4πM) at kz 6= 0, approximation kl � 1 becomes invalid and qubic

equation must be solved. At large ω � γ
√
H (H + 4πM) the exchange term dominates and ω ≈

γMDk2. It corresponds to the region of wave vectors kl � 1. The 4 waves of type e−λ1,2(
d
2
±x)

corrsepond to four evanescent waves that are localized in a layer of the depth ∼ l near surfaces

x = ±d
2

limiting the film.

4.3 Self-consistency and boundary conditions: Quantization of transverse modes

We have proved that any propagating in-plane excitation is a superposition of several trans-

verse modes. The transverse modes may be either superposition of cos kxx and sin kxx or evanes-

cent waves. However, the inverse statement that any such superposition is a solution of equations

of motion is wrong. This happens because the equations of motion are integral-differential. The

system of ordinary differential equationswas obtained from them by application of additional dif-

ferential operators. This operation introduces additional solutions of resulting system of equations

that are not solutions of initial problem. Below we derive selection rules that leave only the solu-

tions of initial integral-differential equations (4.34).

Equations for Bogoliubov transformation functions (4.34) allow real solution. Therefore the

Bogoliubov functions can be searched in the form:

uq (x) = a cos kxx+ b sin kxx+
∑
m=1,2

(Am coshλmx+Bm sinhλmx) (4.41)
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vq (x) = c cos kxx+ d sin kxx+
∑
m=1,2

(Cm coshλmx+Dm sinhλmx) (4.42)

with all coefficients in eqs. (4.41,4.42) to be real numbers. They depend on q and some discrete

variavles that will be determined later, but we do not show this dependence for brevity. Substitution

of these expressions to integral-differential equations (4.34) result in appearance of an exponential

function that do not belong to 6 exponents permitted by the secular equation (4.37). They are

produced by integrals (4.35). Their explicit calculation can be obtained from four basic integrals:

Ic ≡
d/2∫

−d/2

e−q|x−x
′|

2q
cos kxx

′dx′ (4.43)

=
cos kxx

k2
− e−qd/2

qk2
cosh qx fc

Is ≡
d/2∫

−d/2

e−q|x−x
′|

2q
sin kxx

′dx′ (4.44)

=
sin kxx

k2
− e−qd/2

qk2
sinh qx fs

Imc ≡
d/2∫

−d/2

e−q|x−x
′|

2q
coshλmx

′dx′ (4.45)

=
coshλmx

q2 − λ2m
− e−qd/2

q (q2 − λ2m)
cosh qx fmc, (m = 1, 2)

Isc ≡
d/2∫

−d/2

e−q|x−x
′|

2q
sinhλmx

′dx′ (4.46)

=
sinhλmx

q2 − λ2m
− e−qd/2

q (q2 − λ2m)
sinh qx fms, (m = 1, 2)
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where we defined

fc = q cos
kxd

2
− kx sin

kxd

2

fs = q sin
kxd

2
+ kx cos

kxd

2
(4.47)

fmc = q cosh
λmd

2
+ λm sinh

λmd

2

fms = q sinh
λmd

2
+ λm cosh

λmd

2
, (m = 1, 2) (4.48)

Employing these results, it is possible to calculate ζu (x) and ζv (x).

ζu (x) = aIc + bIs +
∑
m=1,2

(AmImc +BmIms) (4.49)

ζv (x) = cIc + dIs +
∑
m=1,2

(CmImc +DmIms) (4.50)

Thus, terms with ζu (x) and ζv (x) in eqs. (4.34) generate extra exponents cosh qx and sinh qx

that is not conteined on the list of exponents allowed by eq. (4.37). They must vanish in two

equations (4.34) at a proper choice of coefficients a, b, c, d, A1, B1, C1, D1, A2, B2, C2, D2.

The determinant of this system and all its main minors are identically equal to zero. Thus, this

system does not determine quantization. Below we will show that, if the dispersion relation (4.38)

is satisfied (on the mass shell in the terminology of field theory), only six variables, for example

a, b, A1, B1, A2, B2 are independent, whereas six others are their linear combinations. Determinant

of system of resulting two equations is not identically equal to zero. The condition of turning it to

zero determines the quantized values of kx. With this purpose we return to the derivation of the

secular equation (4.37) from equations for Bogoliubov transformation functions (4.34) plugging

in the latter equations uq (x) = a cos kxx + b sin kxx and vq (x) = c cos kxx + d sin kxx (we use

truncated equations (4.41,4.42) using the same argument about small amplitudes of evenescent

waves). Assuming that the excessive evanescent waves are removed, equations (4.34) result in
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a system of 4 linear homogeneous equations for coefficients a, b, c, d. The matrix of this system

reads: 

ω −A 0 −B C

0 ω −A −C −B

B C ω +A 0

−C B 0 ω +A


, (4.51)

We used abbreviated notations:

A = γ

(
H +MDk2 +

2πM(k2x+k2y)
k2

)
B = −2πγM

k2x−k2y
k2

C = 4πγM kxky
k2

(4.52)

The determinant of this matrix is:

D =
(
ω2 −A2 + B2 + C2

)2 (4.53)

It turns into zero at ω =
√
A2 − B2 − C2 that coincides with dispersion relation (4.38). Since the

determinant has doubled zero, not only itself, but also its main minors turn into zero at the mass

shell. It is why only two variables are independent. Matrix (4.51) implies the following relations

between c, d and a, b:

c = − B
ω +A

a− C
ω +A

b; d =
C

ω +A
a− B

ω +A
b (4.54)

Again if we consider uq (x) = Am coshλmx + Bm sinhλmx and vq (x) = Cm coshλmx +

Dm sinhλmx, using the same discussion above, we can get a system of 4 linear homogeneous

54



equations for coefficients A1, B1, C1, D1. The matrix of this system reads:



ω −Am 0 −Bm Cm

0 ω −Am Cm −Bm

Bm Cm ω +Am 0

Cm Bm 0 ω +Am


, (4.55)

We used abbreviated notations:

Am = γ

(
H +MD (q2 − λ2m) +

2πM(k2y−λ2m)
q2−λ2m

)
Bm = 2πγM

λ2m+k2y
q2−λ2m

Cm = 4πγM λmky
q2−λ2m

(4.56)

The determinant of this matrix is:

Dm =
(
ω2 −A2

m + B2
m − C2m

)2 (4.57)

It turns into zero at ω =
√
A2
m − B2

m + C2m that coincides with dispersion relation (4.38). Since

the determinant has doubled zero, not only itself, but also its main minors turn into zero at the mass

shell. It is why only two variables are independent. Matrix (4.3) implies the following relations

between Cm, Dm and Am, Bm:

Cm = − Bm
ω +Am

Am −
Cm

ω +Am
Bm

Dm = − Cm
ω +Am

Am −
Bm

ω +Am
Bm (4.58)

The condition of self-consistency is determined by any equation of the system (4.34). Tak-

ing the first equation and employing expressions of u(x) and v(x), nullifing the extra exponents

cosh qx and sinh qx, we arrive at the consistency conditions.
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(
q2y − q2

) (
fc
k2
a+

∑
m=1,2

fmc
q2−λ2m

Am

)
+
(
q2y + q2

) (
fc
k2
c+

∑
m=1,2

fmc
q2−λ2m

Cm

)
−2qyq

(
fs
k2
d+

∑
m=1,2

fms
q2−λ2m

Dm

)
= 0(

q2y − q2
) (

fs
k2
b+

∑
m=1,2

fms
q2−λ2m

Bm

)
+
(
q2y + q2

) (
fs
k2
d+

∑
m=1,2

fms
q2−λ2m

Dm

)
−2qyq

(
fc
k2
c+

∑
m=1,2

fmc
q2−λ2m

Cm

)
= 0

For the boundary condition d
dx
u(x)|x=± d

2
= 0, d

dx
v(x)|x=± d

2
= 0 Thus we get a system of 6

linear homogeneous equations for coefficients a, b, A1, B1, A2, B2. A = (a, b, A1, B1, A2, B2)
T ,

C ·A = 0 .The matrix C of this system reads:



M
k2

P
k2(ω+A)

M1
q2−λ21

P1
(q2−λ21)(ω+A1)

M2
q2−λ22

P2
(q2−λ22)(ω+A2)

Q
k2(ω+A)

N
k2

Q1

(q2−λ21)(ω+A1)

N1
q2−λ21

Q2

(q2−λ22)(ω+A2)

N2
q2−λ22

0 kx cosα 0 λ1 coshβ1 0 λ2 coshβ2
−kx sinα 0 λ1 sinhβ1 0 λ2 sinhβ2 0
C

ω+Akx cosα −
B

ω+Akx cosα −
C1

ω+A1
λ1 coshβ1 − B1

ω+A1
λ1 coshβ1 − C2

ω+A2
λ2 coshβ2 − B2

ω+A2
λ2 coshβ2

B
ω+Akx sinα

C
ω+Akx sinα − B1

ω+A1
λ1 sinhβ1 − C1

ω+A1
λ1 sinhβ1 − B2

ω+A2
λ2 sinhβ2 − C2

ω+A2
λ2 sinhβ2


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where

P = −fc
(
q2y + q2

)
C + 2qyqfsB

Pm = −fmc
(
q2y + q2

)
Cm + 2qyqfmsBm

Q = fs
(
q2y + q2

)
C + 2qyqfcB

Qm = −fms
(
q2y + q2

)
Cm + 2qyqfmcBm

M =

[(
q2y − q2

)
−
(
q2y + q2

) B
ω +A

]
fc − 2qyqfs

C
ω +A

Mm =

[(
q2y − q2

)
−
(
q2y + q2

) Bm
ω +Am

]
fmc + 2qyqfms

Cm
ω +Am

N =

[(
q2y − q2

)
−
(
q2y + q2

) B
ω +A

]
fs + 2qyqfc

C
ω +A

Nm =

[(
q2y − q2

)
−
(
q2y + q2

) Bm
ω +Am

]
fms + 2qyqfmc

Cm
ω +Am

α =
kxd

2

βm =
λmd

2
(m = 1, 2)

Equations C ·A = 0 have non-zero solutions if and only if detC = 0. Then we can get the

quantized kx and energy spectrum, this is the same result with chapter 3.

4.4 With interactions

Previously we considered only quadratic (in amplitudes) part of the Hamiltonian. Here we take

into account higher order contributions, i.e. we consider interaction between magnons. In particu-

lar we will take into account terms up to 4th order. Let’s recall the Hamiltonian in amplitudes:

Hex =
γD

2

∫ [
γ
(
∇
(
|ψ|2

))2
+

∣∣∣∣∇(ψ√2M − γ |ψ|2
)∣∣∣∣2
]
dV, (4.59)

Hz = γH
∫
|ψ|2 dV, (4.60)
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Hd =
1

2

∫∫ [(
M − γ |ψ|2

)
∂z +

1

2

√
γ
(
2M − γ |ψ|2

)
(ψ∂− + ψ∗∂+)

]
[(
M − γ |ψ′|2

)
∂′z +

1

2

√
γ
(
2M − γ |ψ′|2

) (
ψ′∂′− + ψ′∗∂′+

)] dV dV ′
|r− r′|

. (4.61)

where ψ ≡ ψ (r), ψ′ ≡ ψ (r′), and ∂± ≡ ∂x ± i∂y; ∂′± ≡ ∂x′ ± i∂y′ .

For the exchange energy:

Hex =
γD

2

∫ [
γ
(
∇
(
|ψ|2

))2
+

∣∣∣∣∇(ψ√2M − γ |ψ|2
)∣∣∣∣2
]
dV

=
γD

2

∫ γ (∇ (|ψ|2))2 +

∣∣∣∣∣∣
√

2M − γ |ψ|2∇ψ −
γψ∇

(
|ψ|2

)
2
√

2M − γ |ψ|2

∣∣∣∣∣∣
2 dV

=
γD

2

∫ [
γ
(
∇
(
|ψ|2

))2
+ (2M − γ |ψ|2)|∇ψ|2 − γ (∇ (|ψ|2))2

2
+
γ2|ψ|2 (∇ (|ψ|2))2

4(2M − γ |ψ|2)

]
dV

=
γD

2

∫ [
2M |∇ψ|2 − γ |ψ|2 |∇ψ|2 +

γ

2

(
∇
(
|ψ|2

))2
+
γ2|ψ|2 (∇ (|ψ|2))2

4(2M − γ |ψ|2)

]
dV. (4.62)

The first term is the quadratic contribution we considered earlier, the second and third terms are of

4th order, and the last term is of at least 6th order.

The Zeeman energy contains only up to quadratic terms.
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For the dipolar energy:

Hd =
1

2

∫∫ [(
M − γ |ψ|2

)
∂z +

1

2

√
γ
(
2M − γ |ψ|2

)
(ψ∂− + ψ∗∂+)

]
[(
M − γ |ψ′|2

)
∂′z +

1

2

√
γ
(
2M − γ |ψ′|2

) (
ψ′∂′− + ψ′∗∂′+

)] dV dV ′
|r− r′|

=
1

2

∫∫ [(
M − γ |ψ|2

) (
M − γ |ψ′|2

)
∂z∂

′
z

+
γ

4

√(
2M − γ |ψ|2

) (
2M − γ |ψ′|2

)
(ψ∂− + ψ∗∂+)

(
ψ′∂′− + ψ′∗∂′+

)
+
(
M − γ |ψ|2

)√
γ
(
2M − γ |ψ′|2

)
∂z
(
ψ′∂′− + ψ′∗∂′+

)] dV dV ′
|r− r′|

=
1

2

∫∫ [(
M − γ |ψ|2

) (
M − γ |ψ′|2

)
∂z∂

′
z

+
γM

2

(
1− γ

2M
|ψ|2

)
(ψ∂− + ψ∗∂+)

(
ψ′∂′− + ψ′∗∂′+

)
+M

√
2γM

(
1− γ

M
|ψ|2 − γ

4M
|ψ′|2

)
∂z
(
ψ′∂′− + ψ′∗∂′+

)
+O(ψ5)

] dV dV ′
|r− r′|

. (4.63)

Note that the third term is of odd order of the amplitudes, and so does not conserve the number

of magnons. These terms are responsible for attenuation of spin waves. If we consider only

interactions between condensed magnons, then due to conservation of momentum only the even

order terms will contribute.

4.4.1 3rd order terms

Let’s first write out the 3rd order terms of the Hamiltonian, which comes solely from the dipolar

part.

Hd3 = −γ
√

2γM

2

∫∫ (
|ψ|2 +

1

4
|ψ′|2

)
∂z
(
ψ′∂′− + ψ′∗∂′+

) dV dV ′
|r− r′|

. (4.64)

Like before, we define the Fourier transformation with respect to in-plane variables y and z:

ψ (r) =
∑
q

χq (x)
eiqr√
A
. (4.65)
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where q =qyŷ + qz ẑ. We also make use of the expression

1

|r− r′|
=

4π

A

∑
q

eiq(r−r
′)Gq (x− x′) ,

Gq (x) =
e−q|x|

2q
. (4.66)

Plugging the 2D-Fourier transformation into the 3rd order Hamiltonian, and using the above ex-

pression of 1/ |r− r′|, we get:

Hd3 = −2πγ
√

2γM

A
5
2

∫∫ ∑
q1,q2,q3,q

(
χq1χ

∗
q2
ei(q1−q2)r +

1

4
χ′q1

χ′∗q2
ei(q1−q2)r′

)
× iqz

[
χ′q3

(dx′ − qy) + χ′∗−q3
(dx′ + qy)

]
eiq3r′eiq(r−r

′)Gq(x− x′)dV dV ′

= −2πγ
√

2γM√
A

∫∫ ∑
q1,q2,q3,q

(
χq1χ

∗
q2
δq1−q2+qδq3−q +

1

4
χ′q1

χ′∗q2
δqδq1−q2+q3−q

)
× iqz

[
χ′q3

(dx′ − qy) + χ′∗−q3
(dx′ + qy)

]
Gq(x− x′)dxdx′. (4.67)

In the second term, the delta function gives q = 0. The factor qz
[
χ′q3

(dx′ − qy) + χ′∗−q3
(dx′ + qy)

]
is ∼ q2 at small q, while Gq(x− x′) is ∼ 1/q, so this term should be zero. We then have

Hd3 = −2πγ
√

2γM√
A

∫∫ ∑
q1,q2,q3,q

χq1χ
∗
q2
δq1−q2+qδq3−q

× iqz
[
χ′q3

(dx′ − qy) + χ′∗−q3
(dx′ + qy)

]
Gq(x− x′)dxdx′

= −2πγ
√

2γM√
A

∫∫ ∑
q1,q2,q3

χq1χ
∗
q2
δq1−q2+q3

× iq3z
[
χ′q3

(dx′ − q3y) + χ′∗−q3
(dx′ + q3y)

]
Gq3(x− x′)dxdx′. (4.68)
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Next we should put in Bogoliubov transformed functions, which is obtained when diagonalizing

the quadratic Hamiltonian. It reads:

χq (x) =
∑
n

(
u∗qn (x) ηqn − v−qn (x) η∗−qn

)
≡ fq(x) + g∗−q(x), (4.69)

where we defined

fq(x) =
∑
n

u∗qn (x) ηqn, gq(x) = −
∑
n

v∗qn (x) ηqn (4.70)

Also let’s recall the condition:

∑
n

(
u∗qn (x)uqn (x′)− v−qn (x) v∗−qn (x′)

)
= δ (x− x′) . (4.71)

Then

Hd3 = −2πγ
√

2γM√
A

∫∫ ∑
q1,q2,q3

(fq1 + g∗−q1
)(f ∗q2

+ g−q2)δq1−q2+q3

× iq3z
[
(f ′q3

+ g′∗−q3
) (dx′ − q3y) + (f ′∗−q3

+ g′q3
) (dx′ + q3y)

]
Gq3(x− x′)dxdx′

= −2πγ
√

2γM√
A

∫∫ ∑
n1,n2,n3

∑
q1,q2,q3

δq1−q2+q3

× (u∗q1n1
ηq1n1 − v−q1n1η

∗
−q1n1

)(uq2n2η
∗
q2n2
− v∗−q2n2

η−q2n2)

× iq3z
[
(u′∗q3n3

ηq3n3 − v′−q3n3
η∗−q3n3

) (dx′ − q3y) + (u′−q3n3
η∗−q3n3

− v′∗q3n3
ηq3n3) (dx′ + q3y)

]
×Gq3(x− x′)dxdx′

= −2πγ
√

2γM√
A

∫∫ ∑
n1,n2,n3

∑
q1,q2,q3

δq1−q2+q3

× (u∗q1n1
ηq1n1 − v−q1n1η

∗
−q1n1

)(uq2n2η
∗
q2n2
− v∗−q2n2

η−q2n2)

× iq3z
{[
u′∗q3n3

(dx′ − q3y)− v′∗q3n3
(dx′ + q3y)

]
ηq3n3 +

[
u′−q3n3

(dx′ + q3y)− v′−q3n3
(dx′ − q3y)

]
η∗−q3n3

}
×Gq3(x− x′)dxdx′. (4.72)
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Writing contributions to each term with different factors of η separately, we get:

Hd3 = −2πγ
√

2γM√
A

∑
n1,n2,n3

∑
q1,q2,q3

δq1−q2+q3

×
[(
Id3,−−−ηq1n1η−q2n2ηq3n3 + Id3,−−+ηq1n1η−q2n2η

∗
−q3n3

+Id3,+−−η
∗
−q1n1

η−q2n2ηq3n3 + Id3,−+−ηq1n1η
∗
q2n2

ηq3n3

)
+ c.c.

]
, (4.73)

where the Id3,±±± are integrals over x and x′ (a subscript + or − in ith place corresponds to the

function with subscript i being η∗ or η, respectively):

Id3,−−− = −iq3z
∫∫

u∗q1n1
v∗−q2n2

[
u′∗q3n3

(dx′ − q3y)− v′∗q3n3
(dx′ + q3y)

]
Gq3(x− x′)dxdx′,

Id3,−−+ = −iq3z
∫∫

u∗q1n1
v∗−q2n2

[
u′−q3n3

(dx′ + q3y)− v′−q3n3
(dx′ − q3y)

]
Gq3(x− x′)dxdx′,

Id3,+−− = iq3z

∫∫
v−q1n1v

∗
−q2n2

[
u′∗q3n3

(dx′ − q3y)− v′∗q3n3
(dx′ + q3y)

]
Gq3(x− x′)dxdx′,

Id3,−+− = iq3z

∫∫
u∗q1n1

uq2n2

[
u′∗q3n3

(dx′ − q3y)− v′∗q3n3
(dx′ + q3y)

]
Gq3(x− x′)dxdx′. (4.74)

In obtaining (4.73) we have used the fact that some terms (e.g. the term with η∗−q1n1
η∗q2n2

η∗−q3n3
)

can be expressed as complex conjugates of others (e.g. the term with ηq1n1η−q2n2ηq3n3) by sending

the summation indices q1 ↔ q2 and q3 → −q3 simultaneously. (Later we will use this kind of

connections between terms when calculating 4th order terms.) Note also that the three terms in-

volving one complex conjugated function in (4.73) can also be combined if we rename the indices.

With (4.73) we could in principle calculate the rate of a corresponding process by using Fermi’s

golden rule, and further write out the kinetic equation of magnon numbers and calculate the atten-

uation time due to 3rd order processes.

let us calculate the decay time for this process. for the decay time:

Wk,k′ =
2π

~
niδ (ε(k)− ε(k′)) | 〈k|U |k′〉 |2 (4.75)
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where ni is the number of impurities per unit volume.

| 〈k|U |k′〉 | =
∫
drψ∗nk′(r)U(r)ψnk(r) (4.76)

and the Bloch functions are taken to be normalized so that

∫
cell

dr|ψnk(r)|2 = vcell (4.77)

The kinetic equation under the 3-magnon process can be written as follows:

dnk,n1

dt
=
∑
n2,n3

∑
q

W (k, q, n1, n2, n3)[n(k + q, n3) (4.78)

(n(k, n1) + 1)(n(q, n2) + 1)− (n(k + q, n3) + 1)n(k, n1)n(q, n2)]

where

W (k, q, n1, n2, n3) =
2π

~
|I|2δ(ωk+q(n3)− ωk(n1)− ωq(n2)) (4.79)

Then
1

τk
=
∑
q

W (k, q, n1, n2, n3)(n
0
q − n0

k+q) (4.80)

Assuming that

u = a cos
πx

d

v = c cos
πx

d
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we have

I1 = −
ia1c2dq3ze

−dq3
(
−2a3q3ye

dq3 (2d4q43 + 8π2d2q23 + 3π4) + 6π4a3q3y − 3π4c3
(
e2dq3 − 1

)
(q3 + q3y)

)
3q23 (πd4q43 + 5π3d2q23 + 4π5)

I2 = −2ia1c2dq3z (3π4 sinh(dq3)(q3y(a3 + c3)− c3q3) + a3q3y (2d4q43 + 8π2d2q23 − 3π4 cosh(dq3) + 3π4))

3q23 (πd4q43 + 5π3d2q23 + 4π5)

I3 =
ic1c2dq3ze

−dq3
(
−2a3q3ye

dq3 (2d4q43 + 8π2d2q23 + 3π4) + 6π4a3q3y − 3π4c3
(
e2dq3 − 1

)
(q3 + q3y)

)
3q23 (πd4q43 + 5π3d2q23 + 4π5)

I4 =
ia1a2dq3ze

−dq3
(
−2a3q3ye

dq3 (2d4q43 + 8π2d2q23 + 3π4) + 6π4a3q3y − 3π4c3
(
e2dq3 − 1

)
(q3 + q3y)

)
3q23 (πd4q43 + 5π3d2q23 + 4π5)

Meanwhile we have

a = ±
√

2

d[1− B2
(ω+A)2 ]

, (4.81)

c = ∓ B
ω +A

√
2

d[1− B2
(ω+A)2 ]

, (4.82)

for the case d = 5µm, H=600 Oe, we get the decay time for the condensates of magnons τ =

10−4515s due to three magnon process.. Our result shows that the three magnon processes are not

important in determining the relaxation rate. It is much smaller than that provided by magnon-

phonon interaction.

4.4.2 4th order terms

Now let’s consider the 4th order terms of the Hamiltonian, which read:

H4 = Hex4 +Hd4, (4.83)

Hex4 =
γ2D

2

∫ [
− |ψ|2 |∇ψ|2 +

1

2

(
∇
(
|ψ|2

))2]
dV, (4.84)

Hd4 =
γ2

2

∫∫ [
|ψ|2 |ψ′|2 ∂z∂′z −

1

4
|ψ|2 (ψ∂− + ψ∗∂+)

(
ψ′∂′− + ψ′∗∂′+

)] dV dV ′
|r− r′|

. (4.85)
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Plugging the 2D-Fourier transformation

ψ (r) =
∑
q

χq (x)
eiqr√
A
, (4.86)

into the 4th order exchange Hamiltonian, we get:

Hex4 =
γ2D

2A2

∫ ∑
q1,q2,q3,q4

[
−χq1χ

∗
q2

(
dxχq3dxχ

∗
q4

+ q3q4χq3χ
∗
q4

)
+

1

2
dx(χq1χ

∗
q2

)dx(χq3χ
∗
q4

)− 1

2
(q1 − q2)(q3 − q4)χq1χ

∗
q2
χq3χ

∗
q4

]
ei(q1−q2+q3−q4)rdV

=
γ2D

2A

∫ ∑
q1,q2,q3,q4

[
−χq1χ

∗
q2

(
dxχq3dxχ

∗
q4

+ q3q4χq3χ
∗
q4

)
+

1

2
dx(χq1χ

∗
q2

)dx(χq3χ
∗
q4

)− 1

2
(q1 − q2)(q3 − q4)χq1χ

∗
q2
χq3χ

∗
q4

]
δq1−q2+q3−q4dx

=
γ2D

4A

∫ ∑
q1,q2,q3,q4

[
χ∗q2

χ∗q4
dxχq1dxχq3 + χq1χq3dxχ

∗
q2
dxχ

∗
q4

+(q2
1 + q2

2)χq1χ
∗
q2
χq3χ

∗
q4
− 4q1q2χq1χ

∗
q2
χq3χ

∗
q4

]
δq1−q2+q3−q4dx (4.87)

Note that in obtaining this expression we used the symmetries between indices.

For the 4th order dipolar Hamiltonian, we have

Hd4 =
2πγ2

A3

∫∫ ∑
q1,q2,q3,q4,q

{
q2zχq1χ

∗
q2
χ′q3

χ′∗q4
ei[(q1−q2)r+(q3−q4)r′+q(r−r′)]

− 1

4
χq1χ

∗
q2

[
χq3 (dx + qy) + χ∗−q3

(dx − qy)
] [
χ′q4

(dx′ − qy) + χ′∗−q4
(dx′ + qy)

]
×ei[(q1−q2)r+q3r+q4r′+q(r−r′)]

}
Gq(x− x′)dV dV ′

=
2πγ2

A

∫∫ ∑
q1,q2,q3,q4,q

{
q2zχq1χ

∗
q2
χ′q3

χ′∗q4
δq1−q2+qδq3−q4−q

− 1

4
χq1χ

∗
q2

[
χq3 (dx + qy) + χ∗−q3

(dx − qy)
] [
χ′q4

(dx′ − qy) + χ′∗−q4
(dx′ + qy)

]
×δq1−q2+q3+qδq4−q}Gq(x− x′)dxdx′. (4.88)

In all 4th order terms, the second term in the dipolar Hamiltonian is the only one that do not
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conserve magnon numbers.

4.4.2.1 For condensates

We are most interested to magnons in the two condensates, which momenta are ±Q = ±Qẑ.

To consider interaction among the condensed magnons, we will single out in the Hamiltonian

the terms in which every χ has argument ±Q. Note that conservation of momentum need to be

satisfied (namely, the Kronecker delta functions should have zero arguments). We have for the

exchange part:

Hcond
ex4 =

γ2D

2A

∫
dxχQχ

∗
QχQχ

∗
Q

(
−Q2

)
+
γ2D

2A

∫
dxχQχ

∗
Qχ−Qχ

∗
−Q
(
4Q2

)
(4.89)

+
γ2D

2A

∫
dxχ−Qχ

∗
−Qχ−Qχ

∗
−Q
(
−Q2

)
+

γ2D

4A

∫
dxχ∗Qχ

∗
QdxχQdxχQ +

γ2D

4A

∫
dxχQχQdxχ

∗
Qdxχ

∗
Q

+
γ2D

A

∫
dxχ∗Qχ

∗
−QdxχQdxχ−Q +

γ2D

A

∫
dxχQχ−Qdxχ

∗
Qdxχ

∗
−Q

+
γ2D

4A

∫
dxχ∗−Qχ

∗
−Qdxχ−Qdxχ−Q +

γ2D

4A

∫
dxχ−Qχ−Qdxχ

∗
−Qdxχ

∗
−Q

and for the dipolar part: Note that

dxdx′GQ(x− x′) = −d2xGQ(x− x′) = δ(x− x′)−Q2GQ(x− x′). (4.90)
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Hcond
d4 =

8πγ2

A

∫∫
dxdx′Q2χQχ

∗
−Qχ

′
−Qχ

′∗
QG2Q(x− x′)

+
8πγ2

A

∫∫
dxdx′Q2χ−Qχ

∗
Qχ
′
Qχ
′∗
−QG2Q(x− x′)

− πγ2

2A

∫∫
dxdx′χQχ

∗
Q

[
χQ + χ∗−Q

] [
χ′−Q + χ′∗Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− πγ2

2A

∫∫
dxdx′χQχ

∗
Q

[
χ−Q + χ∗Q

] [
χ′Q + χ′∗−Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− πγ2

2A

∫∫
dxdx′χQχ

∗
−Q
[
χ−Q + χ∗Q

] [
χ′−Q + χ′∗Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− πγ2

2A

∫∫
dxdx′χ−Qχ

∗
Q

[
χQ + χ∗−Q

] [
χ′Q + χ′∗−Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− πγ2

2A

∫∫
dxdx′χ−Qχ

∗
−Q
[
χQ + χ∗−Q

] [
χ′−Q + χ′∗Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− πγ2

2A

∫∫
dxdx′χ−Qχ

∗
−Q
[
χ−Q + χ∗Q

] [
χ′Q + χ′∗−Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
Neglecting a common factor γ2

Ad
and do transformation χQ →

√
1
d
χQ and r →

√
MD
H

r. Then we

have

Hcond
ex4 =

2π

dχ

∫
dxχQχ

∗
QχQχ

∗
Q

(
−Q2

)
+

2π

dχ

∫
dxχQχ

∗
Qχ−Qχ

∗
−Q
(
4Q2

)
(4.91)

+
2π

dχ

∫
dxχ−Qχ

∗
−Qχ−Qχ

∗
−Q
(
−Q2

)
+

π

dχ

∫
dxχ∗Qχ

∗
QdxχQdxχQ +

π

dχ

∫
dxχQχQdxχ

∗
Qdxχ

∗
Q

+
4π

dχ

∫
dxχ∗Qχ

∗
−QdxχQdxχ−Q +

4π

dχ

∫
dxχQχ−Qdxχ

∗
Qdxχ

∗
−Q

+
π

dχ

∫
dxχ∗−Qχ

∗
−Qdxχ−Qdxχ−Q +

π

dχ

∫
dxχ−Qχ−Qdxχ

∗
−Qdxχ

∗
−Q
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Hcond
d4 =

8π

d

∫∫
dxdx′Q2χQχ

∗
−Qχ

′
−Qχ

′∗
QG2Q(x− x′)

+
8π

d

∫∫
dxdx′Q2χ−Qχ

∗
Qχ
′
Qχ
′∗
−QG2Q(x− x′)

− π

2d

∫∫
dxdx′χQχ

∗
Q

[
χQ + χ∗−Q

] [
χ′−Q + χ′∗Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− π

2d

∫∫
dxdx′χQχ

∗
Q

[
χ−Q + χ∗Q

] [
χ′Q + χ′∗−Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− π

2d

∫∫
dxdx′χQχ

∗
−Q
[
χ−Q + χ∗Q

] [
χ′−Q + χ′∗Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− π

2d

∫∫
dxdx′χ−Qχ

∗
Q

[
χQ + χ∗−Q

] [
χ′Q + χ′∗−Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− π

2d

∫∫
dxdx′χ−Qχ

∗
−Q
[
χQ + χ∗−Q

] [
χ′−Q + χ′∗Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
− π

2d

∫∫
dxdx′χ−Qχ

∗
−Q
[
χ−Q + χ∗Q

] [
χ′Q + χ′∗−Q

] [
δ(x− x′)−Q2GQ(x− x′)

]
In terms of Bogoliubov transformed functions, the 4th order interactions for condensed magnons

will be in the form of a sum of products of terms in 4th order of η±Qn and η∗±Qn which coefficients

depend on integration of functions of u and v over spacial coordinates. But the condensed magnons

are at the bottom of spectrum which has n = 0. So in later considerations we will keep only the

terms with η±Q0 and η∗±Q0.

We also note that the condensed magnons has ky = 0, in which case the modes are either even

or odd. Since condensate is the lowest branch with n = 0, the corresponding modes are even, so

that

uq (x) = a cos kxx+
∑
m=1,2

Am coshλmx, (4.92)

vq (x) = c cos kxx+
∑
m=1,2

Cm coshλmx. (4.93)

Relation between a and c is determined by the normalization condition , and relation between

a,A1, A2 can be determined by the kernel of the matrix CQ For the condensed magnons, we have:

χ±Q (x) = u∗±Q (x) η±Q0 − v∓Q0 (x) η∗∓Q0. (4.94)
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In the later discussions on condensed magnons, we are going to drop the subscript 0 for the a, c

amplitudes and for the η functions, with the understanding that they are at n = 0. We also note

that the a, c coefficients are all real.

We now note that, due to the symmetry between the two condensates, the a, b, c, d coefficients

for at ±Q are the same, e.g. aQ = a−Q. Thus, later we will drop the subscript of the a, c

coefficients, with the understanding that they are at wavevectors ±Q.

With these simplification of notations, we have:

χ±Q = uη±Q − vη∗∓Q

=

(
a cos kxx+

∑
m=1,2

Am coshλmx

)
η±Q

−

(
c cos kxx+

∑
m=1,2

Cm coshλmx

)
η∗∓Q (4.95)

We now write the 4th order Hamiltonian in the form:

Hcond = A(|ηQ|4 + |η−Q|4) + 2B|ηQ|2|η−Q|2

+ C(|ηQ|2 + |η−Q|2)(ηQη−Q + c.c.) +D(η2Qη
2
−Q + c.c.). (4.96)

The ground state of the condensates depends on the criterion papameter: ∆ = A−B+|C|−D.

When ∆ < 0, corresponds to an asymmetric state. When ∆ > 0, corresponds to an symmetric

state. The state diagram is shown in Fig.4.1. Our phase diagram is different from the previous

result [5], especially that at usual experimental conditions, there is no existence for the symmetric

phase.
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Figure 4.1: The state diagram in the d − H plane. S, N0 and Nπ correspond to the symmet-
ric state, the non-symmetric 0 state and the non-symmetric π state, respectively. (a) Amplitude
representation method. (b) Phase diagram that is modified from [5].
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5. SUMMARY AND CONCLUSIONS

In this work, we first review the Bose-Einstein condensation and the magnons.

In Chapter 3, a new version of the asymptotically exact theory of the spectrum and transverse

distribution of magnetization in long-wave magnons is presented. we have found many features

of the solution that were not found earlier. We considered the group of symmetry for solutions

that allow their classification. We studied not the only property of thick, but also thin films, most

important for their possible technological applications. We also studied quantization of transverse

motion for ultrathin limit and have discovered that there is a big gap in the spectrum in this limit

and only the lowest mode has the transverse wave vector and frequency that do not depend on

thickness. We also use this theory to show that the effective magnon repulsion can be associated

with the influence of additional dipolar magnetic fields appearing in response to any local increase

of the condensate density. We conclude that the origin of this stability is the effective repulsive

magnon-magnon interaction having the magneto-dipolar nature.

In Chapter 4, we develop a classical representation for the Landau-Lifshitz equation. we calcu-

lated the relaxation rate of condensed magnons in the ferromagnetic YIG film with a finite thick-

ness. We also calculated the 4th order magnon-magnon interactions in the condensate of a film of

YIG, including magnon non-conserving term responsible for the coherence of two condensates.

In reality the thermodynamic approach becomes invalid. It states that the phase with smaller

energy wins. Thermodynamic approach is valid if the lifetime is much longer than the relaxation

time. This is definitely correct for relaxation of the magnons in one minimum, but not for inter-

minima relaxation. Each such process leads to change of the total moment by 2Q. it can proceed

only due to Compton process with participation of thermal magnons. They will compensate the

non-conservation of momentum. However, this process probably is not shorter than the lifetime.

So, what we expect is that, because the process of pumping is symmetric, the stationary state will

be much closer to symmetric than it is obtained by simple thermodynamic approach. The previous

calculations give us the starting place for this new development.
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APPENDIX A

ANALYSIS OF SECULAR EQUATION

Secular equation for a magnon solution in a ferromagnetic film is a cubic equation for the

variable z ≡ k2 = k2‖ + k2x that reads as follows:

P (z) ≡ z3 + (2 + χ) z2 +
(
1 + χ− ω2 − χk2z

)
z − χk2z = 0 (A.1)

The product of three roots is equal to χk2z > 0 and their sum is equal to − (2 + χ) < 0. Since

coefficients of the polynomial P (z) are real, its roots are either all three real or one of them is real

and two others are complex conjugated. In the first case one root is positive and two others are

negative. In the second case, since the product of two complex conjugated roots is positive the

remaining root is also positive. In both cases one root z1 ≡ k21 is positive. We will show that due to

physical limitations, two other roots are negative and the opportunity of two complex conjugated

roots is not realized.

Indeed, the two other roots z2 and z3 are expressed in terms of positive root z1 as follows (see

eq. (3.23)):

z2,3 = −1− χ+ z1
2
±

√(
1 +

χ+ z1
2

)2

− χk2z
z1

(A.2)

The roots z2,3 are complex with non-zero imaginary part if the expression under square root is

negative. It happens if the following inequality is satisfied:

χk2z
z1

>

(
1 +

χ+ z1
2

)2

(A.3)

However, at this condition the square of frequency ω2 = (1 + z1)(1 + z1 + χ − χk2z
z1

) becomes

negative. It is physically forbidden. Thus, the positivity of ω2 excludes the opportunity of complex

roots.
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The same requirement of positivity ω2 gives a lower boundary for the value z1:

z1 >

√(
1 + χ

2

)2

+ χk2z −
1 + χ

2
(A.4)
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APPENDIX B

MOTION OF SPECTRAL MINIMA IN A THICK FILM

The dependence of frequency on wave vector is determined by equation (3.13) of the main text.

For the reader’s convenience we reproduce it:

ω2 =
(
1 + k2

)(
1 + k2 + χ− χk

2
z

k2

)
(B.1)

Here k2 = k2‖ + k2x, where kx is a positive quantized transverse component of wave vector. Gen-

erally to find minimum of frequency for a given mode with fixed quantum numbers and direction

of propagation, it is necessary to take in account the dependence of quantized kx on k‖. This de-

pendence can be neglected in thick films with d� 1. Indeed according to the main text, quantized

values of kx are equal to kx,ν,n = 2πn
d

+ µν,n. Here µν,n = 2
d

arctan fν,n
(
k‖
)
, where fν,n

(
k‖
)

is a

smooth function. According to this definition, µν,n varies in the limits
(
−π
d
, π
d

)
when k‖ changes at

least by 1/
√
d. Therefore, the derivative dkx

dk‖
. 1√

d
� 1 and the values k‖ and kx can be considered

as independent. In this approximation the value of parallel wave vector k‖0 at which frequency has

minimum can be found from equation:

∂ω2

∂
(
k2‖

) = 2k2 + 2 + χ sin2 θ − χk2x cos2 θ

k4
= 0 (B.2)

At small kx i.e. at n� d/2π, the value k2 satisfying eq. (B.2) is also small and equal to

k20 ≈ k2‖0 ≈
√

χ

2 + χ sin2 θ
kx cos θ (B.3)

It is however much larger than k2x. The value of frequency in minimum is ωmin ≈
√

1 + χ sin2 θ.

The equation for k20 valid in the range of larger kx comparable with 1 can be found by the following
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scaling transformation:

k20 =
2 + χ sin2 θ

2
w (ξ) ; ξ =

4χk2x cos2 θ(
2 + χ sin2 θ

)3 , (B.4)

where function w (ξ) obeys cubic equation:

w3 + w2 = ξ (B.5)

At small ξ, this equation gives the result (B.3). This equation shows that at small kx, the wave

vector corresponding to minimal frequency k‖0 grows with kx. To study the motion of minimum

in a broader interval of kx it is useful to look at the derivative
dk2‖0
d(k2x)

. According to eq. (B.2), it can

be expressed as follows:

dk2‖0
d(k2x)

= −

∂2ω2

∂
(
k2‖

)
∂(k2x)

∂2ω2(
∂
(
k2‖

))2

(B.6)

From this equation it follows that maximal value of k‖0 can be found from equation:

∂2ω2

∂
(
k2‖

)
∂ (k2x)

= 2− χcos2 θ

k4
+ 2χ

k2x cos2 θ

k6
= 0 (B.7)

It is cubic equation for k2. It must be solved together with equation of frequency minimum (B.2).

Eliminating k2x from these two equations, we arrive at a closed equation for k2:

6k6 + 2
(
2 + χ sin2 θ

)
k4 − χ cos2 θk2 = 0 (B.8)

Dividing this equation by k2 6= 0, we obtain a quadratic equation for k2, whose solution reads:

k2m =

√(
2 + χ sin2 θ

)2
+ 6χ cos2 θ −

(
2 + χ sin2 θ

)
6

(B.9)

81



The value of k2x corresponding to maximal value of k‖0 can be found by eliminating k6 from eqs.

(B.2,B.8). It reads:

(
k2x
)
m

=
1

3χ cos2 θ

[(
2 + χ sin2 θ

)
k4m + χ cos2 θk2m

]
(B.10)

The maximal value of k2‖0 is equal to

(
k2‖0
)
max

= k2m −
(
k2x
)
m

=
2

3
k2m −

(
2 + χ sin2 θ

)
k4m

3χ cos2 θ

At further increase of kx, the position of minimum k‖0 decreases and finally becomes zero. At this

point, k2 = k2x and eq. (B.2) turns into quadratic equation for k2x. Its solution reads:

(
k2x
)
f

=

√(
2 + χ sin2 θ

)2
+ 8χ cos2 θ −

(
2 + χ sin2 θ

)
4

At this value of kx, minimum merges with a local maximum at k‖ = 0. At larger values of kx, the

only minimum of frequency is at k‖ = 0.
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APPENDIX C

SPECTRUM OF MAGNONS PROPAGATING PERPENDICULARLY TO MAGNETIZATION

The consistency method used in this article requires to nullify all contributions of evanescent

waves of the type e±k‖x or cosh k‖x and sinh k‖x arguing that such functions are not solutions of

the 6-th order differential equation for magnetization following from equations of motion. This

method fails in the case of spin wave propagating perpendicularly to the magnetization, i.e. for

kz = 0. Indeed, in this case one of solutions of secular equation (A.1) is k2 = 0. For this root

kx = ±ik‖. It means that e±k‖x are solutions of the 6-th order differential equation. Therefore,

our method of solution must be modified for this special case. In this appendix we present a

modified method solving the problem of perpendicularly propagating magnons. In their article [?]

Wolfram and de Wames considered the spectrum of perpendicularly propagating magnons, but did

not establish its quantization.

When one of solutions of the secular equation (A.1) is z = 0, two others can be easily found.

They are:

z1 ≡ k21 = k21x + k2y; z2 ≡ k22 = −2− χ− z1 (C.1)

General solution for kz = 0 reads:

m (x) =
2∑
j=1

(aj cos kjxx+ bj sin kjxx)

+ p cosh kyx+ q sinh kyx, (C.2)

where aj,bj,p,q are constant 2-component vectors; k2x = i
√

2 + χ+ k21 + k2y . Differential

equations for m (x) following from eqs. (3.8, 3.10) of the main text give the same relation between
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amplitudes aj and bj as for general case (compare with eq. (3.16):

bj = Λjaj; Λj =
1

Bj

 ω −Ajy

Ajx −ω

 ; (C.3)

where Ajy = 1 + k2j +
χk2y
k2j

; Ajx = 1 + k2j +
χk2jx
k2j

and Bj =
χkjxky
k2j

. A new relation follows from

the same differential equations for vectors p and q:

q = −σ1p (C.4)

Here σ1 =

 0 1

1 0

 is the first Pauli matrix. Thus, only six amplitudes, namely components of

2-component vectors aj (j = 1, 2) and p are independent.

The 4 EBC equations are only slightly modified in comparison to the case of θ 6= π/2:


∑2

j=1 kjxaj sin
kjxd

2
− kyp sinh kyd

2
= 0∑2

j=1 kjxbj cos
kjxd

2
+ kyq cosh kyd

2
= 0

(C.5)

But the CE equation are different from those at θ 6= π/2 in two respects. First, not only integral

terms in the linearized LLE equations generate evanescent waves cosh kyx, sinh kyx, but they also

enter in the solution (C.2). Second, the integral terms for these evanescent waves are singular.

Indeed, the basic integrals that enter ηx,y for such waves are:

d
2∫

− d
2

e−|ky(x−x
′)| cosh kyx

′

2|ky|
dx′

=
cosh kyx

(
1− e−|ky |d + |ky| d

)
4k2y

− x sinh kyx

2ky
(C.6)
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d
2∫

− d
2

e−|ky(x−x
′)| sinh kyx

′

2|ky|
dx′

=
sinh kyx

(
1 + e−|ky |d + |ky| d

)
4k2y

− x cosh kyx

2ky
(C.7)

Singular terms x sinh kyx, x cosh kyx in the magnetic potential φ = dxηx + kyηy vanish as a

consequence of q − p relation (C.4). The same relation implies that terms with components of

p and q do not contribute to the volume magnetic charge dxmx + kymy. However, magnetic

field is created not only by volume charge, but also by surface charge equal to ∓mx

(
±d

2

)
. The

contribution of the same terms to the magnetic potential in some inner point reads (we omit its

dependence on longitudinal coordinate and time cos (kyy − ωt)):

φpq (x)

= 4πG

(
x− d

2

)(
px cosh

kyd

2
+ qx sinh

kyd

2

)
− 4πG

(
x+

d

2

)(
px cosh

kyd

2
− qx sinh

kyd

2

) (C.8)

where G (x) = exp(−|kyx|)
2|ky | is the Green function of the Helmholtz equation. After some simplifica-

tion the potential φpq (x) takes a form:

φpq (x) = 4π
e−
|ky |d

2

|ky|
px cosh

kyd

2
cosh kyx

+ 4π
e−
|ky |d

2

|ky|
qx sinh

kyd

2
sinh kyx (C.9)

Returning to the integral form of equations of motion (3.11), extracting from them terms propor-
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tional to cosh kyx and sinh kyx and nullifying them, we arrive at two equations:

χe−
|ky |d

2
ky
|ky|

[
qx sinh

kyd

2
+ ky

2∑
j=1

1

k2j
(ajyfjc + bjxfjs)

]
+ ωpx − py = 0

− χe−
|ky |d

2
ky
|ky|

[
px cosh

kyd

2
+ ky

2∑
j=1

1

k2j
(ajxfjc + bjyfjs)

]
− px + ωpy = 0 (C.10)

4 equations of EBC and 2 CE form a system of 6 equations for 6 independent amplitudes.

The determinant of this system must be zero for their solvability. This condition determines the

quantization of wave vectors k1x and frequency. Numerical calculation with this determinant can

be performed in general case. The results are shown in several figures in the main text. In the case

of thick film d � 1, 1/d � ky � d and n � d, the calculation is simplified since |a2| occurs

much less than |a1| and can be neglected in eqs. (C.10). Another two equations are obtained by

elimination of a2 from 4 equations (C.5).
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