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ABSTRACT

In recent years, deep neural networks have outperformed traditional methods in many tasks of

computer vision, such as image classification, object detection, semantic segmentation and so on.

However, as the performance of deep models goes higher, the model becomes more complicated,

which makes it hard to be deployed on devices with poor performance such as UAVs or Raspberry

Pi. In this work, we focus on the computer vision deep learning tasks applied to UAVs in terms

of improving model performance and effective deployment. In this paper, we assign two tasks for

these two directions separately: 1. Object detection for small objects on rooftop images taken by

UAVs. 2. Optical Character Recognition (OCR) system for videos taken by UAVs.

First, we assign the object detection for small objects on rooftop images taken by UAVs task for

the model performance improvement direction. We propose several data augmentation strategies

to improve the small objects detection performance. We also use model ensemble methods to

improve the performance. Finally, we improve the model performance by approximately 15%.

For the effective deployment direction, we assign a OCR system for videos taken by UAVs

task to it. We use Raspberry Pi as our target deployment device. We propose a two-stage OCR text

detection system using EAST as detection part and CRNN as recognition part for low-resolution

images and design an early-exit module to speed up the detection process. Then we use model

compression methods such as pruning and quantification to process the OCR system and success-

fully deployed it on Raspberry Pi. For the pruning part, we also do experiments on CRNN model

to find out the effectiveness of original weight initialization of the model to our pruning results

and get to a conclusion that the original weight of a model is not that important for pruned model.

Then we manually export the pruned model after the pruning. For the quantization part, we use

pytorch’s built-in static/dynamic/QAT quantization methods to quantize the two parts from float32

to int8. Finally, we deploy the OCR system on the Raspberry Pi under pytorch framework and

decrease the OCR system time latency on the Raspberry Pi from about 120s to about 4-6s with

little accuracy loss.
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1. INTRODUCTION

Recently, deep learning methods achieve remarkable performance in many computer vision

challenging tasks, such as image classification[1][2][3][4], object detection[5][6][7][8][9][10], se-

mantic segmentation[11][12][13], super-resolution[14][15][16] and so on. With the development

of high-performance GPUs, researchers have a tendency to propose increasingly complicated deep

learning models to improve the performance without regard to model complexity and computa-

tional efficiency. However, with the development of deep learning, more and more applications

need to be applied on the mobile phone CPUs, and even on some devices with lower performance,

such as UAVs and Raspberry Pi. On these low-performance devices, we not only need to con-

sider the performance of the model, but also the size, time latency, and energy consumption of the

model. Recently, many works emerged focusing on how to make effective model deployment. In

general the low-power inference methods can be categorized as several directions, such as light-

weight model structure design[17][18], model pruning[19][20][21][22] and quantization[23][24],

knowledge distillation[25][26][27] and network architecture search[28][29][30]. In this work, we

apply two different computer vision tasks to UAVs in terms of improving model performance and

effective deployment. One task is to detect small objects from rooftop images taken by UAVs, and

the other is develop a Optical Character Recognition (OCR) system for videos taken by UAVs and

use model pruning and quantization method for model compression.

Many work has been done on how to design, optimize deep neural networks to get a better

result. For example, ResNet[2] raised the image classification top-1 accuracy on ImageNet from

62.5%, which is achieved by AlexNet[31], to about 78.6%. But the number of parameters of

ResNet[2] is about 2 times more than that of AlexNet. StyleGAN2[32] is recently proposed and

can generate almost the best realistic images comparing to all other GANs[33], but it has about

10 times more parameters comparing to original GAN and it takes days to converge. These large

networks make them hard to be applied to low-performance device in reality. In our work, we tried

to improve the performance for small objects in object detection task, but only in data level. Our

1



goal is to improve the performance for specific task without increasing computation complexity.

To solve the small object detection problem, in this paper we propose several data augmentation

methods for object detection task on images taken by UAVs. We also use ensemble several models

to get a better performance.

To make the model run on a device with low performance, we should use light-weight models

with less computation complexity. Also, we should compress the model as much as we can to

reduce its computation complexity and decrease its time latency on low performance device with

little accuracy loss. In our work, we propose a light-weight OCR system for videos we got from

UAVs. OCR is short for Optical Character Recognition, and this system includes both text area

detection and text recognition. We use EAST[34] model as character detect model, which is light-

weight and also has good performance, and use CRNN[35] as character recognition model. We

also design an early-exit module upon early stage in EAST model to speed up the detection process.

Then we use model pruning and model quantization methods to reduce the computation complexity

of this system. We also use CRNN[35] model to compare the effect of different initial weights to

the pruning results as suggested in[21][36][37]. We found that in CRNN case, the initial weight is

not as important as proposed in[21]. After compression, we decrease size of both models by 3/4.

We deploy the model on Raspberry Pi and decrease the OCR system time latency on the Raspberry

Pi from about 120s to about 4-6s without loss of accuracy.
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2. RELATED WORK

We divide our work into two tasks: (1) UAVs object detection for small objects task, and (2)

Optical Character Recognition (OCR) system deployed on low-performance device

2.1 Object Detection for Small Objects Task

In this task, we focus on how to improve the performance of Mask R-CNN[7] object detection

task for small objects without introducing additional computation complexity and do not pay much

attention to the efficiency. Previous related work about this task is divided into two aspects: (1)

Object Detection Models (2) Data Augmentation and Model Ensemble Methods.

2.1.1 Object Detection Models

Many object detection models have been proposed in recent years. In general, they can be

classified as three categories: (1) Two-stage models (2) One-stage models (3) Anchor-free models

2.1.1.1 Two-stage models

Two-stage models do the object detection task in two stages. In general, after we extract fea-

tures from backbone network, the Region Proposal Network (RPN)[6] is used to propose candidate

bounding boxes indicative of where the objects could be located in the image. After we got fea-

tures maps and candidate bounding boxes, we extract corresponding features of these boxes from

features maps, resize them into fixed size. In the second stage, the extracted aligned features are

fed into the second stage branches and we got the final classification and bounding box regression

results. Many models are proposed as two-stage models such as Fast R-CNN[5], Faster R-CNN[6]

and Mask R-CNN[7]. They have a better performance but their speed maybe slower.

2.1.1.2 One-stage models

Instead of getting candidate bounding boxes from stage 1, one-stage models do object detection

task only in one stage. Yolo[8] is a very-known one-stage object detection model. It divides the

input into a N*N grid and treat each one as an anchor. Yolo passes the input through a neural
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network that looks similar to a normal CNN, and we get a vector of bounding boxes and class

predictions in the output. SSD[10] is another one-stage detection model. The difference between

SSD and Yolo is that SSD uses multi-scale feature maps as input and prior boxes with different

ratios, which makes it perform better than Yolo. Since one-stage model does not need RPN part,

so in general they are faster than two-stage ones.

2.1.1.3 Anchor-free models

Recently, many anchor-free object detection methods came up, such as CornerNet[38], FSAF[39],

FCOS[40] and so on. Anchor-free methods outputs a map-like result, each point in the map indi-

cates its confidence score for being in a bounding box. These methods treat each point whether

in a bounding box as a classification problem, and the distances from the point to each side of the

bounding box as regression problem. In general, anchor-free methods are more concise and can

achieve a good result comparing to other one-stage or two-stage algorithms.

Though many one-stage detectors are more computationally efficient, in most cases, they per-

form worse than two-stage detectors. Mask R-CNN is also well-developed in many platforms and

many anchor-free methods is not open-sourced and need to be verified. In this task we mainly fo-

cus on how to improve the model’s performance and do not care much about the efficiency. After

exploring many models and codes, the Mask R-CNN model was chosen as the best model for this

work since it performs well among these models and is stable to use.

2.1.2 Data Augmentation and Model Ensemble Methods

2.1.2.1 Data Augmentation

Data plays an important role in deep learning tasks. In general, the more data one has, the

better the deep learning model will perform. Data augmentation is a very useful method to enlarge

a dataset without adding new data (thus, where more data is difficult to obtain), and it has been

widely used in many deep learning areas, especially for image tasks. By translating, rotating,

flipping and cropping the image data, a more diverse dataset can be obtained, and the resulting

model will be more robust.
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2.1.2.2 Model Ensemble Methods

Model ensemble methods[41] combine the predictions from multiple models to improve the

overall performance. They operate on the similar idea. The main causes of error in learning

models are due to noise, bias and variance and ensemble methods help to minimize these factors.

Bagging and boosting are two common model ensemble methods. In our work, we use bagging

method[41] to ensemble three models to get a better performance.

2.2 Optical Character Recognition (OCR) System Task

In this task, we not only focus on the performance of OCR system, but also its computation

complexity and time latency. We use Raspberry Pi to simulate embedded computers of UAVs,

and deploy the developed OCR system on it. Previous work about this task is divided into three

aspects: (1) Raspberry Pi (2) OCR Models (3) Model Compression

2.2.1 Raspberry Pi

Raspberry Pi is a series of small single-board computers with limited performance. We use

Raspberry Pi as our target device since the embedded computers of most commercial UAVs are not

user-programmable and its limited performance is suitable to simulate the embedded computers.

We use Raspberry Pi 3b+ in our work. The CPU of Raspberry pi 3b+ is quad-core A53 (ARMv8)

64-bit @ 1.4GHz with hardware Float point support. By default, the Raspbian native OS only has

32-bit. Since 64-bit ARM are also common is modern mobile devices, we install 64-bit Fedora 32

OS on our Raspberry Pi.

2.2.2 OCR Models

Optical Character Recognition (OCR) System contains two parts in it: optical character de-

tection and optical character recognition. OCR methods can be divided into two categories: (1)

Two-stage system, and (2) One-stage system.
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2.2.2.1 One-stage OCR System

One-stage model treat OCR process as one whole part. In general, it means that the charac-

ter detection part and recognition part are connected and can be trained end-to-end as a whole

pipeline. Many works are focus on this direction. MaskTextSpotter[42] is a one-stage algorithm

for OCR system. It can recognize text from region with any shape. But it is implemented based on

Detectron2[43] and use segmentation branch to help predict bounding box, which makes it very

time-consuming. FOTS[44] is a light-weight one-stage model but without good implementation.

ABCNet[45] uses beizer points to fit arbitrarily shaped regions and use bezier-align method to

align the feature maps of these regions between detection part and recognition part. After trying

out all these one-stage algorithms, we chose ABCNet as our one-stage model choice since it is

simpler and has a better performance.

2.2.2.2 Two-stage OCR System

Two-stage model treats OCR process as two parts separately. It means that there are two models

for character detection and character recognition correspondingly. There are not share feature

maps or inner connect between these two models. For example, we can use a Faster-RCNN[6]

detection architecture with a rotation RPN as detection part, and use character sequence encoding

(CHAR)[46] for recognition part. The input of recognition part is the output of the detection part

and these two parts are trained separately.

There are many character detection algorithms exist. CTPN[47] is a classical OCR detect

model, but it can only detect horizontal texts. RRPN[48] model has the ability of detecting rotated

text regions, but it is developed based on Faster R-CNN and is a little complicated. EAST[34]

model is a anchor-free character detection model. It is very light weight and also has a good

performance. So, we choose EAST as the detection model in our two-stage model. As for the

recognition model, we choose CRNN[35] as our model since it is light-weight, stable on many

tasks, and performs well.

In our work we choose ABCNet as our one-stage model and EAST + CRNN as our two-
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stage model. We do experiments of these two models and compare their performance. Though

theoretically one-stage model has less computation complexity since the recognition part just uses

feature maps from detection part and does not need to do feature extract any more, in practice the

time latency of ABCNet is much more than that of two-stage EAST + CRNN model. So, in the end

we propose the two-stage EAST + CRNN model as the proper OCR system for low-performance

device.

2.2.3 Model Compression

Model compression is a very useful method to reduce model’s computation complexity. In this

work, we do model compression to deploy the OCR system on Raspberry Pi and speed up the

inference process. We mainly focus on model pruning and model quantization in our work.

2.2.3.1 Model Pruning

Model pruning is an efficient method to make the model smaller and decrease the computation

complexity. As we know that to get a better performance, deep learning model goes deeper and

deeper, and there are many redundant parameters in a model. Model pruning aims at pruning out

non-important part of the model to reduce its size while maintaining its performance. Model prun-

ing can be classified as two categories. One is fine-grained pruning and another is filter pruning.

Fine-grained pruning generally results in unstructured models, which need specialized hardware or

software to speed up the sparse network. Filter Pruning, also known as structured pruning, achieves

acceleration by removing the entire filter. Since our goal is to deploy the pruned model on Rasp-

berry Pi, we choose filter pruning to do model pruning since there is no specialized accelerating

hardware for sparse operations on Raspberry Pi.

Many strategies about how to select pruned filters have be proposed. L1/L2 filter pruner[19]

is a very useful and easy one. L1 filter pruner[19] prunes filters in the convolution layers. It will

calculate the sum of the filter’s absolute kernel weights from a trained model, sort the filters and

prune filters with smallest values. L1 filter pruner[19] is an one-shot pruner, which means it selects

channels to be pruned in one shot. AGP[20] is a gradual pruning method, it selects only a small
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part to be pruned each time and reaches the pruning rate in the end. Lottery Ticket hypothesis[21]

indicates that there exists a small sub-network inside the original network. It says that the initial

weight is important when we do pruning. ADMM[49] is another filter pruning method. It is a

mathematical optimization technique, by decomposing the original non-convex problem into two

sub-problems that can be solved iteratively. In this work, we choose L1 filter pruner model pruning

methods. We also do experiments to verify the Lottery Ticket hypothesis[21] in our CRNN case.

2.2.3.2 Model quantization

Model quantization is another method to speed up inference process. The general idea of model

quantization is to reduce the number of bits required to represent weights or activations, which

can reduce the computations and the inference time. Many quantization techniques have been

proposed, such as int8 naive quantization method[23] , quantization aware training[23], DoReFa-

Net[24], and some extreme low-bit networks, such as BNN[50], XNOR-Net[51]. To deploy the

model on Raspberry Pi, we use int8 naive quantization method implemented in Pytorch to do

model quantization for those two OCR models. PyTorch supports INT8 quantization compared to

typical FP32 models allowing for a 4x reduction in the model size and a 4x reduction in memory

bandwidth requirements. The quantization method uses two values, scale and zero-point, to convert

float operations into integer operations while maintaining the original output. These two values are

observerd per channel, which means that float points in each channel has their own scale and zero

point. Per-channel quantization method allows for lesser error in converting tensors to quantized

values. Also we do quantization awaring training (QAT) for both models. Computations in QAT

will take place in FP32 but with values clamped and rounded to simulate the effects of INT8

quantization in the training process, which provides much more accurate results. In our work, we

use Pytorch in-built static quantization method and QAT[23] to quantize our models.
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3. METHODOLOGY

We divide the methodology part into two parts, the first part is the object detection for small

objects task, focusing on improving the performance in data level. The second part is developing

a Optical Character Recognition (OCR) system task, focusing on effective model deployment on

Raspberry Pi.

3.1 Object Detection for Small Objects Task

This task aims at developing an object-detection model for use in the automation of unmanned

aerial roofing inspections. The proposed framework utilizes UAVs to gather high resolution im-

ages of the exterior of the potentially impacted structures. Ten object classes were selected as

items of interest to insurance evaluations: Dish Antenna, Vehicle, Box Vent, Chimney, AC Unit,

Solar Panel, Skylight, Ridge Vent, Plumbing Vent, and Vent Other. In this work, we improve the

performance of the model with several data augmentation and model ensembling methods.

Our work consists of three parts:

1) Dataset: High resolution imagery of residential single-family structures is gathered via

UAVs. This data is then labeled using the object classes selected.

2) Proposed data augmentation methods and model ensembling: The Mask R-CNN object de-

tection algorithm is selected, data augmentations are developed for the dataset, and ensem-

bling techniques implemented.

3) The final phase consists of training and testing the model: Appropriate evaluation methods,

such as average precision, are examined. After model ensembling and data augmentation,

the final mAP score was improved by approximately 10% compared to the original result.

3.1.1 Dataset

The database developed for the purpose of this paper consists of high-resolution images of

single-family residential structures gathered during insurance inspections. These images were
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gathered via UAVs. 109 different structures were photographed from a minimum of five unique

angles for a total of 4,562 images. When possible, four oblique images, one from each side of the

structure, and one nadir image were taken. The size of each image is 4000 x 3000 pixels. Spatial

resolution varies from image to image because the structures photographed are of varying sizes.

Ten object classes were defined as objects of interest during an insurance adjustment. The classes

are shown in Table 3.1.

Class Training Set Testing Set Total
Box Vent 7700 1844 9544
AC Unit 1021 200 1221

Solar Panel 257 371 628
Chimney 939 152 1091

Vent Other 3740 1063 4803
Vehicle 1762 477 2239
Skylight 936 172 1108

Plumbing Vent 5948 1433 7381
Dish Antenna 245 82 327

Ridge Vent 298 36 334

Table 3.1: Classes and statistic of the dataset.

These objects appear with varying frequency in the database. Not all objects are found in

each image. The images were labeled by several Texas A&M Civil Engineering students utilizing

MATLAB’s image labeler. A bounding box was placed around each class object in the dataset.

These labels were used as the ground truth for training the Mask R-CNN model. Figure 3.1 are

some examples:
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(a) (b)

(c) (d)

Figure 3.1: Dataset examples

3.1.2 Data Augmentation

In this work, three cropping methods are applied to improve the model performance. This

combination of data augmentation methods is novel in their application to object detection. They

are as follows:

1) Augmentation 1: Cropping out the background portion of an image.

2) Augmentation 2: Cropping one high-resolution image into several low-resolution parts.

3) Augmentation 3: Cropping areas containing vent-related class objects.
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3.1.2.1 Cropping out background portions

Given that the pictures are taken around one single building in most cases, there are few objects

of interest at the edges and corners of the image. The surrounding background information may

bring in noise and irrelevant information. If these irrelevant pixels can be cropped out, it will help

the model to focus more on the objects of interest. Besides, this judgement is consistent with the

reality. In most cases, we care more about what the camera focus on and do not care much about

the surrounding background. In this work, the background portion is defined as the perimeter area

containing no ground truth bounding boxes. Every image is cropped and added to the training

dataset. Figure 3.2 contains an example of this augmentation. The following contains an example

of this augmentation.

(a) (b)

Figure 3.2: Cropping Out Background Results

3.1.2.2 Cropping one high-resolution image into several low-resolution sections

The original dataset for this research consists of images of size 4000*3000. The pre-processing

step of the Mask R-CNN involves reducing the shortest size of the image to 1000. Therefore, the

image of size 4000*3000 would be reduced to 1333*1000. This reduces the scale of the objects

present in the image. We believe that maintaining the size of the objects in the image is important
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and reducing the size of the objects in the image would make it harder for the model to detect

objects especially for small objects. Therefore, each 4000*3000 image is split into twelve images,

each of size 1000*1000, thereby preserving the size of the objects in the image. Figure 3.3 are

some cropped results.

(a) (b) (c)

Figure 3.3: Cropping Low-resolution Results

3.1.2.3 Cropping areas containing vents

It was observed that the Mask R-CNN model exhibited a lower performance when classifying

vent-related class objects than for objects of other classes despite being the most prevalent of

classes. In order to mitigate the performance discrepancy, images containing only a singular vent

object were added to the dataset. These images were generated by cropping the original dataset

images until they contained one object of a vent class. This served to provide the most detailed

information about the vent class to the object detector. Figure 3.4 shows some cropped results.
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(a) (b) (c) (d)

Figure 3.4: Cropping Vents Area Results

3.1.3 Ensembling Using Bagging

The bagging method is a re-sampling technique used to estimate statistics on a population by

sampling a dataset with replacement. The bagging method can be used to estimate a quantity of a

population. This is done by repeatedly taking small samples, calculating the statistic, and taking

the average of the calculated statistics. This procedure can be summarized as follows:

1) Choose a number of samples to perform

2) Choose a sample size

3) For each sample

- Draw a sample with replacement with the chosen size

- Calculate the statistic on the sample

Here the number of samples was chosen to be three – three different models are trained based on

different sub-datasets. Each sub-dataset was sampled from the original dataset and the size of it

was 0.9 times the size of the original dataset. These sub-datasets were sampled with replacement.

To find the ensembled results from three models, the average of the bounding box predictions from

the three models is calculated.
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3.2 Optical Character Recognition (OCR) System Task

This task is the UAV video track of CVPR 2020 Low-Power Computer Vision Challenge[52].

The input of our OCR system is a video taken by UAVs. The video is taken indoor, and posters

or papers with characters are posted on the wall. All words are horizontal or inclined ones. Only

English letters and numbers considered. The final score is calculated by correctness / energy. We

deploy the model and code on Raspberry Pi and calculate the energy consumption on it. So, we

should consider both model performance and energy consumption in this task.

In this section, the methodlogy is devided into four parts:

1) Model Selection: One-Stage System or Two-Stage System: In this section we tried both one-

stage model and two-stage model, and finally choose two-stage model as our final choice.

2) Early-Exit Module Design: In this section we discuss the insight of the early-exit module

and how to design it.

3) Model Pruning: In this section we discuss some model pruning methods. We also do the

experiments to discuss two ’conflicting’ theories in our case.

4) Model Quantization: In this section we discuss the theorem of quantization and how to do

quantization under Pytorch platform.

3.2.1 Model Selection: One-Stage System or Two-Stage System

In this section, we first introduce both one-stage and two-stage OCR systems. Then we discuss

the problems we met of the one-stage system, and how we overcome these problems with proposed

two-stage OCR system.

3.2.1.1 One-stage OCR System and Two-stage OCR System

As discussed in Section 2.2.2, in general OCR system can be divided into two categories: one-

stage OCR system and two-stage system. Two-stage system means that the system treats text area

detection and text recognition as two separate tasks. After the detection part gets the bounding
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box from the original image, we use affine transformation to transform the box into fixed size and

pass it to the recognition part. One-stage model is trained end-to-end, which means that the feature

map of recognition part is connected with the detection, so that we do not need to do the affine

transformation operation.

After doing research, we decide to try one-stage OCR system first. Mask TextSpotter[42],

FOTS[44] and ABCNet[45] are selected as candidates. We discard Mask TextSpotter first since

it uses instance segmentation branch to do the detection and it has high computation complexity.

We discard FOTS model then because we find it performs bad comparing to ABCNet. We finally

choose ABCNet as our one-stage model. The architecture of ABCNet is shown as below:

(a)

Figure 3.5: Architecture of ABCNet.

The backbone of ABCNet is classical ResNet + FPN. The detection part uses output from

three FPN layers to get results. There are two components in detection head module, and both are

composed of 4 convolution layers. ABCNet is a one-stage OCR system. The input of recognition

part is the aligned feature maps generated from detection part, so that the recognition part does not

need to generate feature maps again.

3.2.1.2 Problems of One-Stage OCR System

In theory the computation complexity of one-stage model should be less and its performance

should be better comparing to two-stage OCR system. However, we met two serious problems
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when we deploy the one-stage ABCNet model on Raspberry Pi:

1) Long Inference Time. Though the one-stage ABCNet model saves computation in recogni-

tion part, it requires more computation in detection part. ABCNet uses three layers of FPN

output and its detection head is heavy. Detail inference time comparison can be found in

Section 4.2.

2) Bad Recognition Performance with Small Size Inputs. Our goal is to reduce the energy

consumption while maintaining performance. So, we hope to resize 2K/4K frame of the

video into about 270*360 size. As mentioned above, the recognition part of one-stage model

gets input from feature maps we got from detection part. In most case, text area is only a

small part of the original image, so if we get the features from resized small images, there

will be almost no feature selected when it comes to recognition part. This will be a serious

problem when the size of input image is small.

3.2.1.3 Proposed Two-Stage OCR System

To overcome problems mentioned above, we propose a two-stage OCR system. We use East[34]

as text detection model, CRNN[35] as text recognition model. We use affine transformation to con-

nect detection part and recognition part. The pipeline of our proposed two-stage OCR system is

shown as below:
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(a)

Figure 3.6: Pipeline of Proposed Two-Stage OCR System.

The proposed two-stage OCR system solves the problems mentioned in Section3.2.1.2. De-

tailed experiments can be found in Section 4.2:

1) Long Inference Time. We choose East[34] model as the text detection model in our two-

stage OCR system. East[34] uses only one additional convolution layer as detection head,

while ABCNet uses two branches composed of 4-layer convolution block as head. Also, East

only uses one layer output of FPN while ABCNet uses three. This makes the inference time

of East faster than ABCNet detection part. The architecture of East is shown in Figure3.8
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(a)

Figure 3.7: Architecture of East Model.

2) Bad Recognition Performance with Small Size Inputs. In two-stage OCR system, the input

of recognition part is generated from original images. After we get bounding boxes from

East model, we use affine transformations to transform the inclined box to horizontal ones,

resize it to a fixed size and feed it to CRNN model. This solves the bad recognition problem

with small input in one-stage model.

3.2.2 Early-Exit Module Design

The input of our OCR system is a video, and we need to recognize all English words and

numbers from it. However, most of the video is composed of background and blurred frames, only

a small part of it has clear text. Our insight is that, we can judge whether a frame contains text

region in early stage, so that we can stop the pipeline early to save energy if there is no text in this

frame. We call this module early-exit module.

We treat this problem as a classification problem. We add the early-exit module upon different

blocks of ResNet, and use the feature maps as input to the module. We try several different settings

to find a best one. Experiment result can be found in Section4.2. In the end we choose to add the
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module upon the second block of ResNet, and the module includes two convolution layers. After

adding the early-exit module, the pipeline looks like:

(a)

Figure 3.8: Pipeline of Proposed Two-Stage OCR System.

3.2.3 Model Pruning

To speed up the inference process further, we do model pruning after we get the trained model.

In general, mdoel pruning have two categories: structured pruning and unstructured pruning. Struc-

tured pruning mainly prunes out structures like channels or layers. Structured pruned models have

new structures and are easy to be deployed. Unstructured pruning makes the model sparse and

need hardware support to deploy and speed up. So, in this work, we focus on structured pruning

since there is no such hardware on Raspberry Pi.

In this section we also use CRNN model to do some pruning experiment with different settings.

First we compare the performance of one-shot and adaptive gradual pruning methods. Then we use

20



one-shot method to do some experiments to verify the effect of initial weights on pruned models.

In [21], the author claims that we should keep initialize the network with original weight and

prune out weights gradually. The author indicates that the original weights are important and the

performance of pruned model will drop if we re-initialize the weights. However, in [36] the author

proposed an opposite opinion. They claimed that the weight is trivial and the architecture is what

really matters. In our case, we use CRNN to do some experiments to verify that the weight is not

that important in CRNN case. More detailed results can be found in Section 4.2

After that, we choose a proper sparsity rate and use L1 Filter Pruner method to prune both East

and CRNN model with little performance drop. After we got masked pruned model, we export the

actual pruned model by pruning out channels with zero weight and only non-zero weights left.

3.2.4 Model Quantization

Quantization is a method to do computation and store weights in lower bitwidths instead of

float 32 bitwidths. This allows us to get a more concise model. In this work, we focus on how to

do quantization in Pytorch platform.

Pytorch supports converting the model trained in Float32 in Int8 by post-quantization. It also

supports quantization aware training by adding fake-quantization modules in both forward and

backward passes. For Raspberry Pi case, Pytorch has qnnpack backend to accelerate the quantized

model on ARM CPUs.

We do static post quantization for all convolutional and fully-connected layers and dynamic

post quantization for LSTM module in CRNN model. After doing quantization, the inference time

decreases about 10 times on Raspberry Pi. Inference time comparison for some settings is shown

in Table 3.2.

Setting Input Size Quantized Inference Time Per Frame
ABCNet 560*960 No 120s-130s
ABCNet 560*960 Yes 12s-15s

East+CRNN 560*960 Yes 12s-15s
East+CRNN 270*480 Yes 4s-8s

Table 3.2: Inference Time Per Frame for Different Settings.
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As shown in Table 3.2, we can see that model quantization with backend support decreases the

inference time of the model in a large extent. Even though the inference time of our two-stage

OCR system is almost the same with the one-stage ABCNet model, we can reduce its inference

time further by resizing input images into smaller size. ABCNet model performs much worse than

the two-stage OCR system when the size of input is smaller than 560*960. So, two-stage OCR

system is better than one-stage ABCNet model in this sense. More detail experiment results can

be found in Section 4.2.
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4. EXPERIMENTS

In this section, we do experiments for two tasks separately. The first part is the result for the

object detection for small objects task. The second part is for the Optical Character Recognition

(OCR) system task.

4.1 Object Detection for Small Objects Task

In this part, we first do experiments to verify the effect of data augmentation methods, and then

shows the result of model ensembling.

4.1.1 Data Augmentation Results

In this section, we do experiments with several different data augmentation settings. Data

augmentation methods are defined in Section 3.1.2. We define methods as following:

1) Method 1: Train the model only with original images.

2) Method 2: Train the model with original images and Augmentation 1.

3) Method 3: Train the model with original images, Augmentation 1 and Augmentation 2.

4) Method 4: Train the model with original images, Augmentation 1, Augmentation 2 and

Augmentation 3.

We do fine-tune with our training dataset and test the performance with test dataset. All data

augmentation methods are only applied on training dataset. First, we do experiments with Method

1, 2 and 3. The results are shown in Table 4.1:

Method mAP Chimney Vent Other Vehicle Antenna Box Vent Skylight AC Plumb Vent Panel
Method 1 49.97 60.34 17.79 91.33 45.09 30.02 88.36 59.64 20.25 56.56
Method 2 52.55 45.46 23.80 88.16 71.96 32.11 76.93 43.17 29.27 62.07
Method 3 55.65 56.04 30.40 91.05 71.74 35.84 83.89 38.02 30.83 63.04

Table 4.1: mAP Results with Data Augmentation Method 1, 2 and 3.
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As shown in 4.1, we got a mAP score of 49.97 on test dataset if we do not do any data augmen-

tation. After we doing Augmentation 1 as suggested in Section 3.1.2, the average mAP increases

from 49.97 to 52.55, and it increases further to 55.65 after we doing Augmentation 2. We can

see that the mAP scores of small objects such as Vent Other, Box Vent keep increasing after data

augmentation.

After the first experiment, we got more labeled data from Civil Engineering students. Then we

got new training and test dataset from new data, re-do the experiment with Method 1, 3, 4 to verify

the effect of Augmentation 3. Experiment results are shown in Table 4.2.

Method mAP Chimney Vent Other Vehicle Antenna Box Vent Skylight AC Unit Plumb Vent Panel
Method 1 54.07 39.38 31.90 88.53 68.21 33.19 78.76 44.86 35.89 65.99
Method 3 59.10 66.08 33.09 99.14 80.52 35.79 80.78 43.32 33.76 67.09
Method 4 60.00 66.76 36.39 92.77 78.34 36.95 83.65 48.79 35.55 60.83

Table 4.2: mAP Results on New Dataset with Data Augmentation Method 1, 3 and 4.

Results in 4.2 shows that the after doing Augmentation 3, the mAP scores of small objects

such as Vent Other, Box Vent, Skylight and so on are improved. The average mAP score also

increases a little comparing to Method 3. The performance of the Mask R-CNN model is improved

approximately 10% after implementing data augmentation techniques as shown in Table 4.1 and

Table 4.2.

4.1.2 Model Ensembling Results

In this section, we show the results of model ensembling. Three models were trained using

different sub-datasets with a bootstrap method, and they are all trained with Method 4 as mentiond

in Section 4.1.1. Then, their results were ensembled to achieve enhanced performance. To find the

ensembled results from three models the average of the bounding box predictions from the three

models is calculated. The corresponding bounding boxes in each of the three models that have

high intersection-over-union are only considered while averaging so that similar bounding boxes

are averaged.
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Method mAP Chimney Vent Other Vehicle Antenna Box Vent Skylight AC Unit Plumb Vent Panel
Model 1 61.22 70.87 37.90 91.80 70.83 41.29 83.10 47.82 39.98 67.42
Model 2 61.69 67.72 36.84 93.58 73.92 44.84 81.56 53.75 40.49 62.54
Model 3 63.93 68.61 40.71 92.51 79.69 44.24 88.08 52.93 42.78 65.78

Ensemble 65.31 72.63 40.94 93.64 78.28 47.95 86.49 54.33 43.96 69.53

Table 4.3: mAP Results on New Dataset with Data Augmentation Method 1, 3 and 4.

After ensembling, the average mAP result achieves 65.31, which is better than the best one

from three models. In conclusion, after doing data augmentation and model ensembling, the per-

formance of Maks R-CNN on this task is improved by about 15%.

4.2 Optical Character Recognition (OCR) System Task

In this part, we do experiments include the following:

1) Raspberry Pi setup.

2) Performance comparison between two-stage and one-stage OCR system.

3) Early-exit module design and results.

4) Model pruning methods comparison and initial weights verification.

5) Final submitted results

Notice that all the submitted results shown in this section have been quantized since the infer-

ence time of the original float32 model is much more than the quantized int8 model.

4.2.1 Raspberry Pi Setup

We use Raspberry Pi 3b+ with 1GB RAM as our target device. The CPU of Raspberry Pi 3b+

is ARMv8 64-bit with hardware Float point support. But the Raspbian native OS only has 32-bit.

So, we replace the operating system with a 64-bit OS called Fedora 32. Then we recompile pytorch

and torchvision wheels for the platform.
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4.2.2 Comparison Between Two-Stage and One-Stage OCR System

We use the submitted results to compare the performance of two-stage and one-stage OCR

system. The detailed results can be found in Table 4.4.

System Type Input Size Quantized Energy Accuracy Performance Score
ABCNet(One-stage) 540*960 Yes 0.784 0.08535 0.128
ABCNet(One-stage) 360*640 Yes 0.741 0.20623 0.263
ABCNet(One-stage) 270*480 Yes 0.640 0.12458 0.187

East+CRNN(Two-stage) 270*480 Only East 0.685 0.31857 0.503

Table 4.4: Submitted Results for Two Kinds of OCR systems with Different Settings.

We can see from the first two rows in Table 4.4 that, when the size of input image is smaller,

then performance score of ABCNet increases. This is because the organizer requires the program

to be finished in a limited time. When the input size gets smaller, we can process more frames in

a limited time, which means that we are more likely to recognize clear text results from the video.

So, we get a better result when we make the input smaller.

However, when we make the input size to 270*480, the performance drops. Though the en-

ergy keeps decreasing but the accuracy drops a lot. This is caused by the problem mentioned in

Section 3.2.1.2. The recognition part of ABCNet suffers from small inputs. In comparison, the

performance of two-stage OCR system, which is the last row in Table 4.4, is much better than the

one-stage OCR system. The energy score of the two-stage OCR system is a little higher than that

of ABCNet, but it has much higher accuracy, which makes its performance score much better than

that of ABCNet.

In conclusion, we decide to use East+CRNN two-stage OCR system in the rest of our experi-

ment.

4.2.3 Early-exit module design and results

In this section, we discuss the design of early-exit module and compare their performance to

get the best one. We treat this task as a classification problem. We use feature maps generated
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from ResNet blocks as input, and a sigmoid function output as classification score. If the score is

larger than 0.5, we think the predicted label is 1, otherwise the label is 0.

4.2.3.1 Dataset

We generate a dataset with binary labels. We set label 1 to frames with clear text region, and

label 0 to frames without text region or with blurred text region. Some dataset examples are shown

in Figure 4.1:

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Dataset for Early-Exit Module. Figures in the first row have label 0. Figure in the
second row have label 1.

4.2.3.2 Module Design and Results

We define the following terms in this section:

1) Conv: Module{conv3x3(stride=1, padding=1, dilation=1), BatchNorm2d, Relu}

2) Down: Module{conv3x3(kernel size = 3, stride = 4)}

3) FC: Module{Avagepool, Flatten, Fully Connected}
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We use these modules as blocks to build up our early-exit module upon the output of different

ResNet blocks. We add the early-exit module after different blocks of ResNet of East. We fix the

weight of ResNet and only train the early-exit module part. We use AUC, Recall and Precision to

measure the performance. The results are shown as below:

Module Setting ResNet Block AUC Recall Precision Loss
Down+Conv+FC 3rd 0.9881 0.8996 0.9788 0.1557

Down+FC 3rd 0.9975 0.9270 0.9880 0.1391
Down(Kernel 1)+FC 3rd 0.9478 0.8201 0.9580 0.3397

Down+Conv+FC 2nd 0.9247 0.8276 0.8947 0.3579
Down+FC 2nd 0.9235 0.8681 0.8578 0.3703

Conv+Maxpool+Down+FC 2nd 0.9447 0.8471 0.9464 0.2973
Down+Conv+FC 1st 0.8727 0.7076 0.8872 0.4764

Table 4.5: Results for Adding Modules Upon ResNet Block

We hope the early-exit module to have high AUC value and reduce as much computation as pos-

sible. After comparing all results we got in Table 4.5, we finally decide to add a Conv+Maxpool+Down+FC

module upon the 2nd block of ResNet.

4.2.4 Model Pruning Results

In this section, we use the CRNN model to do the experiment. We first prune CRNN with

different sparsity rate using L1 Filter Pruner Algorithm[19]. Then we use CRNN model to compare

two pruning strategies: one-shot pruning and adaptive gradual pruning. We also use CRNN model

to verify the effect of original initial weights. All experiments we done in this section use MJSynth

Dataset[53], we select 3 million training data and 50k test data from the overall training and test

dataset separately.

4.2.4.1 Pruning Results

We first use L1 Filter Pruner[19] in NNI[54] to prune the CRNN model with different sparsity

rate. The sparsity rate means the percentage of zero-weight in each filter, which means that the

model is smaller when the sparsity rate is higher. The visualization result can be found in Figure

4.2. The best performance is listed in Table 4.6.
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(a) (b)

Figure 4.2: Visualization Results for Different Sparsity Rate

Sparsity Rate Test Loss Test Accuracy
0 (No Prune) 0.789823 0.910276

0.5 0.772062 0.911013
0.7 0.798839 0.903898
0.8 0.869268 0.895986
0.9 0.985479 0.877312

0.95 1.173275 0.854293
0.98 1.602774 0.800941

Table 4.6: Results for Different Sparsity Rate

We get these results by using one-shot pruning strategy. All pruned models are initialized with

the trained model (model in the first row in Table 4.6). We see from above that the accuracy and

loss begin to drop when sparsity rate is larger than 0.7. So, in the end we choose 0.7 as the sparsity

rate to prune our CRNN model to maintain its performance.

4.2.4.2 Comparison between One-Shot and AGP

In last section, all results are got by applying one-shot pruning strategy. It prunes the weight

with small magnitude in one-shot. For example, it prunes out top 50% channels of each filter if we

set sparsity rate as 0.5. However, as proposed in [20], the author claimed that it should be better

if we prune out the channel step by step. We do experiments to see whether this adaptive gradual
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pruning (AGP) strategy performs better than the one-shot strategy. Experiments results are shown

in Table 4.7

Sparsity Rate Strategy Test Loss Test Accuracy
0 (No Prune) NA 0.789823 0.910276

0.8 One-shot 0.869268 0.895986
0.8 AGP 0.905571 0.887217
0.9 One-shot 0.985479 0.877312
0.9 AGP 1.086188 0.864118

0.95 One-shot 1.173275 0.854293
0.95 AGP 1.381404 0.827926
0.98 One-shot 1.602774 0.800941
0.98 AGP 1.832472 0.762893

Table 4.7: Comparing One-Shot with AGP

We can see from Table 4.7, AGP strategy performs worse than one-shot strategy in most cases,

and it perform even worse when the sparsity rate increases. So, we use one-shot pruning strategy

as our final choice.

4.2.4.3 Is Original Initial Weight Matters?

During research, we have some interesting founding. In [21], the author claimed that when

pruning models, the original initial weights of the model is crutial. However, author of [36] pro-

posed a contrary opinion, indicating that the weight does not matter and only the architecture of

the pruned model is the key point. We do some experiments on CRNN to test these two contrary

theories. We prune out the channels with zero-weight and export the final actual pruned model

with new architecture. We initialize the new model with different initialization methods and test

their performance. Figure 4.3 shows the visualization results we got from different
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(a) (b)

(c) (d)

Figure 4.3: Visualization Results for Different Initialization Methods. Initialize the new pruned
model with (Finetune): trained weights. (Original): original initialization weights. (Re-initialize):
re-initialized weights.

We can see from figure above, the performance of the model with re-initialized weights is as

good as, or even better than the one with original initialization weights. The two models trained

from scratch also reach the same accuracy comparing to the finetuned one. It indicates that the

original initialization weights does not matter in our CRNN case. In the end, we choose the archi-

tecture we got from sparsity 0.7, re-initialize it and train it from scratch.

4.2.5 Final Submitted Results

We prune East model the same step as CRNN model. After doing model pruning to both two

models, we do model quantization to them. We got many submitted results as shown in Table 4.8.

31



Finally we received a second price in this challenge.

No. Score Energy Accuracy Early-Exit Prune Quantization
1 0.503 0.685 0.31857 NA NA Only East
2 0.703 0.740 0.49263 NA NA All
3 1.146 0.603 0.68048 Yes NA All
4 1.592 0.440 0.66716 Yes Only CRNN All
5 1.693 0.447 0.71229 Yes All All

Table 4.8: Submitted Results
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5. CONCLUSION

In this work, we focus on two computer vision tasks applied to UAVs in terms of improving

model performance and effective deployment. In the first task, we propose several different data

augmentation methods, use model ensembling method to improve the performance of mAP score

by about 15%. In the second task, we propose an effective two-stage OCR system and success-

fully deploy it on Raspberry Pi. We design early-exit module to ignore non-text frames with little

computation. We use model pruning and quantization methods to compress the model to speed up

its inference time. We also do experiments to show that in our CRNN case, the original initializa-

tion weights are trivial. Our work explores the effective deployment method on low-performance

device of deep learning models and the improvement of models in data level.
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