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ABSTRACT 

Facility Condition Assessments are a tool for Facility Managers to assess the 

maintenance needs of facilities and installed equipment and plan sustainment, restoration, and 

modernization activities.  As the use of these tools and the data contained within them grows, 

data analysis can be used to reveal new information for practical purposes and a better 

understanding of a real property inventory.  Understanding how the environment affects 

buildings is also critical to making informed maintenance and repair decisions, especially in the 

context of climate change impacts.  This research examines the suitability and implication of 

using existing corrosion risk assessment techniques for understanding the relationship between 

corrosion and heating, ventilation, and air conditioning equipment at the strategic infrastructure 

portfolio level. 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the U.S. Government. 

 

  



 

iii 
 

 

I dedicate this to my wife, Jenna, and my daughter, Julia.  Thank you so much for your love, 

support and understanding throughout this journey. 

  



 

iv 
 

 

ACKNOWLEDGEMENTS 
 

 I would like to begin by thanking Dr. Patrick Suermann, my adviser and the Head of the 

Department of Construction Science, for all his support, advice, mentorship, advocacy, and 

leadership from the moment I arrived at Texas A&M.  There is a delicate balance in enabling a 

student to figure things out on their own and in providing a vector on where to go next when help 

is needed.  Time is precious and I appreciate his availability for me on both my research and 

other topics while running the nation’s largest construction science department. 

 I am thankful to Dr. Sarel Lavy and Dr. John Walewski for agreeing to be part of my 

graduate committee and provide their perspectives.  Diversity of thought is important in life and 

critical in academic research to avoid stove piping and blind spots. 

 Mr. John Garcia, Colonel, USAF (Ret.) and Mr. Steve Desrosiers of Alpha Facilities 

Solutions, LLC provided me with invaluable advice and support.  They were a force multiplier 

on the completion of this research and helped accelerate my work. 

 Mr. Mark Vandeveer, Colonel, USAF (Ret.) and his staff at AFIMSC gave me the 

foundation and support to build my research and take their work with Alpha Facilities in a new 

direction. 

 Dr. Willa Chen, Professor of Statistics, gave me valuable insights on how to implement 

the tools from her Statistics in Research course for my data. 

 Finally, I want to thank Ms. Liz Smith, Dr. Phil Lew, and Dr. Changbum Ahn from the 

Graduate Office of the Department of Construction Science.  Making the transition into graduate 

school after a long break from academia is never easy and you helped me greatly in smoothing 

the transition, learning the requirements, and meeting the deadlines necessary to graduate on 

time.  



 

v 
 

 

CONTRIBUTIONS AND FUNDING SOURCES 
 

 This work is supervised by a thesis committee chaired by Dr. Patrick Suermann and 

joined by Dr. Sarel Lavy of the Department of Construction Science (COSC) and Dr. John 

Walewski of the Zachry Department of Civil and Environmental Engineering. 

 The data was provided by the Air Force Installation Mission Support Center in 

partnership with Texas A&M University under their Cooperative Research and Development 

Agreement.  Additionally, the COSC Department worked in partnership with the COSC 

Construction Industry Advisory Council (CIAC) member ALPHA Facilities Solutions, LLC who 

conducted analysis of the data for a separate project and provided the results to the author as 

noted in the paper. 

 All additional work conducted on this thesis was completed by the student independently.  

No outside funding was received for the research and writing of this document.  



 

vi 
 

 

NOMENCLATURE 
 
AFIMSC Air Force Installation Mission Support Center 

BCI Building Condition Index 

BIM Building Information Modeling 

CERL Construction Engineering Research Laboratory 

CI Condition Index 

CRV Component Replacement Value 

DoD Department of Defense 

FCA Facility Condition Assessment 

FCI Facility Condition Index 

FM Facility Management 

FSRM Facility Sustainment, Restoration, and Modernization 

HVAC Heating, Ventilation, and Air Conditioning 

ICCET ISO Corrosivity Category Estimation Tool 

IHA Installation Health Assessment 

IPCC Intergovernmental Panel on Climate Change 

ISO International Organization for Standardization 

KPI Key Performance Indicator 

PRV Plant Replacement Value 

O&M Operations and Maintenance 

SMS  Sustainment Management System 

USACE United States Army Corps of Engineers 

USAF United States Air Force  



 

vii 
 

 

TABLE OF CONTENTS 

                       Page 

ABSTRACT .............................................................................................................................. ii 

DEDICATION .......................................................................................................................... iii 

ACKNOWLEDGEMENTS ...................................................................................................... iv 

CONTRIBUTORS AND FUNDING SOURCES .................................................................... v 

NOMENCLATURE ................................................................................................................. vi 

TABLE OF CONTENTS .......................................................................................................... vii 

LIST OF FIGURES .................................................................................................................. ix 

LIST OF TABLES .................................................................................................................... xi 

LIST OF EQUATIONS ............................................................................................................ xii 

CHAPTER I  INTRODUCTION ......................................................................................... 1 

 Background ........................................................................................................................ 1 
 Problem Statement .............................................................................................................. 2 
 Research Questions ............................................................................................................. 3 

CHAPTER II  LITERATURE REVIEW .............................................................................. 4 

 Overview ........................................................................................................................ 4 
 Facilities Management ........................................................................................................ 4 
 Facility Condition Assessments .......................................................................................... 5 
 Climate Change ................................................................................................................... 13 
 Environmental Factors Affecting Buildings ....................................................................... 14 
 Corrosion ........................................................................................................................ 17 
  
CHAPTER III  METHODOLOGY ........................................................................................ 22 

 Overview ........................................................................................................................ 22 
 Assumptions and Limitations ............................................................................................. 23 
 Data Collection ................................................................................................................... 24 
 Data Cleaning...................................................................................................................... 29 
 Methods of Analysis ........................................................................................................... 47 
 
 



 

viii 
 

 

 
                        Page 

CHAPTER IV RESULTS ...................................................................................................... 49 
 
 Condition Index .................................................................................................................. 49 
 Remaining Service Life ...................................................................................................... 54 
 Age  .................................................................................................................................... 56 
 
CHAPTER V DISCUSSION ................................................................................................ 61 
 
CHAPTER VI CONCLUSION .............................................................................................. 65 
 
 Summary ........................................................................................................................ 65 
 Contribution ........................................................................................................................ 66 
 Recommendations ............................................................................................................... 66 
 
REFERENCES ......................................................................................................................... 69 

APPENDIX ........................................................................................................................... 76 

 

 



 

ix 
 

 

LIST OF FIGURES 

FIGURE   Page 

 1 Literature Review Organization ................................................................................. 4
  
 2 BUILDER Implementation of UNIFORMAT II Hierarchy ...................................... 7
  
 3 Example Condition Model for a Component-section ................................................ 12 
 
 4 Runway Damage, Reprinted (Raughton, 2018) ......................................................... 16 
 
 5 Corrosion Category and Minimum Shore Distance by Number of Locations........... 29 
 
 6 Equipment Details Quantity Type “Each” Histogram and Boxplot .......................... 32 
 
 7 Sum of Age and InstallDate Histogram and Boxplot ................................................ 34 
 
 8 Age Histogram and Boxplot ...................................................................................... 36 
 
 9 Install Date Histogram and Boxplot .......................................................................... 37 
 
 10 CRV Histogram and Boxplot ..................................................................................... 38 
 
 11 CRV Probability Plot ................................................................................................. 38 
 
 12 RSL Histogram and Boxplot ...................................................................................... 39 
 
 13 CI Histogram, Boxplot, and Probability Plot ............................................................. 41 
 
 14 Transformed CI Histogram, Boxplot, and Probability Plot ....................................... 43 
 
 15 RSL Histogram and Boxplot ...................................................................................... 44 
 
 16 Age Histogram, Boxplot, and Probability Plot .......................................................... 45 
 
 17 Transformed Age Histogram, Boxplot, and Probability Plot .................................... 46 
 
 18 Correlation of Sample Size and Variance for CI Corrosivity Categories .................. 50 
 
 19 CI Boxplots ................................................................................................................ 50 
 
 20 CI ANOVA Results ................................................................................................... 51 
 
 
 



 

x 
 

 

FIGURE   Page 

 21 CI Tukey HSD Results............................................................................................... 51 
 
 22 CI log base 10 Boxplots ............................................................................................. 53 
 
 23 CI log base 10 ANOVA Results ................................................................................ 53 
 
 24 Log base 10 CI Tukey HSD Results .......................................................................... 54 
 
 25 Correlation of RSL and CI Raw Data ........................................................................ 55 
 
 26 Correlation of RSL and CI Transformed Data ........................................................... 55 
 
 27 Correlation of Sample Size and Variance for CI Corrosivity Categories .................. 56 
 
 28 Age Boxplots ............................................................................................................. 57 
 
 29 Age ANOVA Results ................................................................................................. 57 
 
 30 Age Tukey HSD Results ............................................................................................ 58 
 
 31 Log base 10 Age Boxplots ......................................................................................... 59 
 
 32 Log base 10 Age ANOVA Results ............................................................................ 60 
 
 33 Log base 10 Age Tukey HSD Results ....................................................................... 60 
 
 
  



 

xi 
 

 

LIST OF TABLES 

TABLE   Page 

 1 USAF Minimum Assessment Systems ...................................................................... 9 
 
 2 Definitions for Direct Rating, Adapted (Uzarski et al., 2018, p. 49) ......................... 10 
 
 3 Comparison of ESI, ICCET, and ISO 9223 ............................................................... 23 
 
 4 Data Summary ........................................................................................................... 25 
 
 5 Data Summary by Service/MAJCOM ....................................................................... 26 
 
 6 Frequency of Occurrence for Top 5 D305006 Component Types ............................ 27 
 

 7 Data Cleaning Summary, Adapted (Dept. of Construction Science, Texas A&M 
University, & ALPHA Facilities Solutions, LLC, 2017)........................................... 30 

 
 8 Chosen Fields for Data Cleaning ............................................................................... 31 
 
 9 Phase 1 Data Removal for ‘Component-Section Details’ .......................................... 34 
 
 10 Expected Service Life Quantities............................................................................... 40 
 
 11 CI Transformation Comparison ................................................................................. 42 
 
 12 Age Transformation Comparison .............................................................................. 47 
 
 13 Comparison of CI and Age Ranking .......................................................................... 62 
 
 14 Component-Section Details, Adapted (Desrosiers, 2020) ......................................... 76 
 
 15 Equipment Details ...................................................................................................... 77 
  



 

xii 
 

 

LIST OF EQUATIONS 

EQUATION   Page 

 1 Condition Index with Beta Shift ................................................................................ 10
  
 2 Condition Index with Beta Factor and Expected Service Life .................................. 11 
  
 3 Condition Index where Time = Expected Service Life ............................................. 11 
  
 4 Null Hypothesis ......................................................................................................... 22 
  
 5 Alternate Hypothesis .................................................................................................. 22 
  
 6 Square Root Transform of CI .................................................................................... 42 
  
 7 Natural Log Transform of CI ..................................................................................... 42 
  
 8 Log Base 10 Transform of CI .................................................................................... 42 
 
 9 Square Root Transform of Age .................................................................................. 47 
  
 10 Natural Log Transform of Age .................................................................................. 47 
  
 11 Log Base 10 Transform of Age ................................................................................. 47 
 
 
 



1 
 

CHAPTER I 

INTRODUCTION 

Background 

 The USAF has developed a new real property investment decision making model known 

as the Infrastructure Health Assessment (IHA) tool to guide strategic budgeting decisions for its 

$263 billion real property portfolio (Toliver, 2019).  The IHA tool makes use of the Sustainment 

Management System (SMS) BUILDER tool, a Computerized Maintenance Management System 

(CMMS) used by the Department of Defense (DoD).  These tools involve gathering facility 

condition information through local facility condition assessments.  The information is loaded into 

the BUILDER database which is used to populate the data used by the IHA tool.  This information 

is then used to forecast infrastructure condition on long time scales (e.g. 10, 30, 50 years) to show 

the impact of spending on facility sustainment, restoration, and modernization (FSRM) (Toliver, 

2019).  A known shortfall of this tool is its lack of accountability for degradation due to climate 

factors.  Colonel Shamekia Toliver’s Air War College thesis states: “address this by adjusting the 

degradation curve calculations used in the IHA tool to account for environmental variations 

associated with climate changes; thus, affecting the lifecycle of infrastructure.” (Toliver, 2019, p. 

19) 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report on 

Climate Change 2013: The Physical Science Basis (IPCC, 2013) concluded from the body of 

knowledge that “human activity is the dominant cause” of climate change with 95% certainty (p. 

v) and identified changes that have already occurred.  On average, the global temperature across 

land and sea has increased 0.85 °C in the period from 1880 to 2012.  Alexander et al. (2006) found 

that more than 70% of 2,291 global grids points sampled experienced “statistically significant” 
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warmer nights in the period of 1951 to 2003 with some parts of the earth experiencing twice the 

number of warm nights than established in the study’s index.  Precipitation has generally increased, 

but further extremes can be identified by accounting for regional variation.  Parts of the U.S. and 

South America experienced an additional “up to 2 days per decade” each year of “heavy 

precipitation” (Alexander et al., 2006, p. 12). 

The National Centers for Environmental Information (2020) calculates the cost of 265 

meteorological disasters (each exceeding $1 billion) at a total of $1.78 trillion dollars in the U.S. 

since 1980.  They cite both climate change and increases in material wealth of society as reasons 

for the rising cost.  In addition to natural disasters, weather plays a role in corrosive effects.  

Callister & Rethwisch (2010) note that estimates of the cost of corrosion are approximately 5% of 

national income to maintain or repair materials damaged by corrosion.  The literature shows that 

buildings and their environment are inextricably linked.  Buildings contribute to 39% of global 

CO2 emissions and consume 36% of global energy (Abergel et al. 2017). 

While there are multiple tools in literature for understanding the severity of corrosion in an 

environment, Silver & Gaebel (2017) found that none exist that adequately link infrastructure, to 

environment, to cost.  A first step in better understanding this problem is to understand how the 

condition of infrastructure correlates with the corrosivity of its environment. 

Problem Statement 

Building CMMSs such as BUILDER are tools for understanding and predicting 

maintenance costs.  However, after reviewing the literature, a method for linking environmental 

data to maintenance costs in a way that decision makers can use for planning FSRM does not 

exist.  In order to make the dataset more manageable, and at the recommendation of AFIMSC, 

this research looked specifically at the case of atmospheric corrosion in air conditioning (A/C) 



 

3 
 
 

 

equipment.  Dillon & Herro (1997, p. 2) write that “corrosion, deposition and material defects 

account for the vast majority of failures in HVAC” (heating, ventilation, and air conditioning).  

Bhatia (2020, p. 2) states that “corrosion alone accounts for approximately 40% of all equipment 

failures in industrial facilities.”  HVAC is used for the primary purposes of occupant comfort or 

cooling for equipment within a conditioned interior space (Howell et al., 2013).  This makes 

HVAC important for the USAF which operates in a variety of environments across the globe and 

needs to provide cooling for human comfort or for equipment to correctly function such as in 

laboratories or data centers.  As an example, HVAC is one of the building systems that requires 

“a major repair project” to be planned, programmed, and designed for the year after its Condition 

Index (CI) follows below 70 out of 100 (Allen, 2019).  HVAC equipment can be used as starting 

point for understanding the impacts of corrosion on infrastructure condition and FSRM costs. 

Research Question 

The research question for this project is: 

RQ.  How does HVAC equipment condition correlate by level of environmental 

corrosivity, as evidenced by BUILDER data on air conditioning equipment? 
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CHAPTER II 

LITERATURE REVIEW 

Overview 

There are two primary tranches of literature review conducted in this paper.  The topics 

of facilities management and facility condition assessment constitute the first part of the 

literature review, and the topics of environmental factors affecting buildings, climate change, and 

corrosion are part two.  Figure 1 summarizes the literature review approach. 

 
 

 

Figure 1. Literature Review Organization 
 
 
 

Facilities Management 

Roper & Payant (2014, p. 13) use the International Facility Management Association 

definition to define FM as “a profession that encompasses multiple disciplines to ensure 

functionality of the built environment by integrating people, place, process, and technology.”  
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Lavy et al. (2014) note that performance measurement is integral to holistically assessing how 

well a facility meets its functional purpose.  They list tools for performance measurement such as 

“…benchmarking, balanced scorecard approach, post occupancy evaluation, key performance 

indicators (KPIs), and critical success factors” (p. 257).  Lavy et al. (2010) identified 35 KPIs 

from literature and surveyed (n = 11) FM practitioners on a suggested categorization of these 

KPIs.  Subsequent research by Lavy et al. (2014a) resulted in the identification of several “core 

KPIs” including facility condition index (FCI), functional index, maintenance efficiency, etc.  

They addressed two primary definitions of FCI as either (1) the ratio of the facility’s or system’s 

maintenance backlogs to their respective replacement values or (2) the weighted average of 

facility conditions.  The latter of these definitions is also referred to as the building condition 

index (BCI).  Lai & Man (2018) did not include FCI or BCI in their literature-review derived list 

of 71 performance indicators for facility operations and maintenance (O&M); they focused 

instead on other indicators such as thermal comfort, visual comfort, etc. to track the physical 

performance of a facility and relate it to occupant satisfaction. 

Bröchner et al. (2018) researched future trends in FM and identified digitalization and 

sustainability as the most important factors for the future of the profession.  Several papers 

address Big Data and building information modeling (BIM) as part of the digitalization trend.  

Ahmed et al. (2017) note that BIM has grown into a tool for use throughout the life of a facility 

and can be linked with “Big data analytics” (pp. 742-743).  They clarify the distinction between 

Big Data and a “Small Data Set” (p. 728) by referencing a table from Japkowicz & Stefanowski 

(2016).  This table distinguishes that Small Data is more homogeneous and can be analyzed 

through traditional means such as by use of a “relational database” whereas Big Data is very 

heterogenous, difficult to link, and grows too rapidly for analysis by traditional means.  Munir et 
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al. (2019) concluded from their literature review that information does not have an inherent value 

and that purpose and analysis are needed to make information useful. 

Facility Condition Assessments 

Overview 

Among the tools of FM practitioners is the facility condition assessment (FCA).  FCA 

can be defined as a method for comprehensively surveying all chosen elements of a building to 

provide data for FSRM funding decision-making (Karanja & Mayo, 2016).  Karanja & Mayo 

(2016) found that several commercial platforms exist for managing assets such as “Archibus, 

IBM Maximo, IBM and Tririga” (p. 2).  Another such system developed by USACE CERL 

belongs to the SMS family of tools, BUILDER, a “life-cycle asset management software 

application” (Uzarski et al., 2018, p. ii) and is used by the DoD to assess and report facility 

condition and update condition information through field inspections.  PAVER, ROOFER, and 

RAILER are also systems under the SMS umbrella and are used for paved airfield and non-

airfield surfaces, building roof inventory, and railway systems, respectively (Herrera et al., 

2017).  The use of BUILDER is mandated in the USAF by DoD policy for USAF Civil 

Engineers to record facility condition data (Henderson, 2019) and was part of a DoD-wide effort 

to meet the Department’s Financial Improvement and Audit Readiness (FIAR) completion 

deadline for real property condition assessment by September 2017 (AFCEC, 2018). 

Information in BUILDER is organized under the American Society for Testing and 

Materials (ASTM) Uniformat II standard to categorize building elements (Uzarski et al., 2018).  

Uniformat II breaks down the elements of a building into four levels (Charette & Marshall, 1999) 

and matches with the BUILDER level hierarchy used by Uzarski et al. (2018) as shown in the 
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example in Figure 2. Uzarski et al. (2018) refer to the lowest level as the component-section 

level.  

 

  
Figure 2.  BUILDER Implementation of UNIFORMAT II Hierarchy 
 
 
 

USAF Implementation 

According to Herrera et al. (2017), the USAF began its pilot program for implementing 

BUILDER in 2010.  The USAF utilized both in-house (DOD military and civilian personnel) and 

contractors to conduct the inventory, with the long-term plan of maintaining the BUILDER 

database condition assessments through in-house personnel.  The findings of A Review of the 

BUILDER Application for Assessing Federal Laboratory Facilities report (Herrera et al., 2017) 

on implementing BUILDER in the federal government are summarized as: 

 BUILDER is projected to provide cost savings but as of the report no study at been 

conducted to verify this 
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 In-house personnel are more knowledgeable about their facilities but may become 

overburdened by conducting FCAs or view them as having minor importance in 

comparison to their other duties 

 Contracted personnel can provide a consistent assessment without overburdening in-

house staff but they are not knowledgeable about an organization’s facilities and may 

require additional escort or security clearance to assess restricted facilities.  Contractors 

can also perform poorly “due to improper inventorying or inadequate system sectioning” 

(p. 30) 

 BUILDER is meant to provide automated scheduling of when to conduct inspections to 

reduce the workload of unnecessary inspections on facilities of lesser importance, vice 

conducting inspections on a calendar-basis 

The AFCEC Operations Directorate (AFCEC/CO) manages the USAF application of 

SMS with the FUELER and UTILITIES systems to be added in the future for managing fuel 

distribution systems and utility systems, respectively.  FCAs are conducted on a recurring basis 

with the goal to assess 20% of an organization’s square footage every year in accordance with 

DoD policy (AFCEC, 2018).  The USAF only requires the assessment of 7 out of 13 total 

systems to count a building as completely assessed (Herrera et al., 2017).  These are shown in 

Table 1; the assessment of C30 Interior Finishes is required for Military Family Housing (MFH) 

and Dormitories (AFCEC, 2018). 
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Table 1.  USAF Minimum Assessment Systems 
B20 Exterior Enclosure 
B30 Roofing 
C10 Interior Construction 
D20 Plumbing 
D30 HVAC 
D40 Fire Protection 
D50 Electrical 

 

 
Rating Methods 

 There are two methods for conducting condition assessments of the building, direct rating 

and distress rating (Uzarski et al., 2018).  The USAF utilizes the direct rating approach for 

assessing a facility (AFCEC, 2018).  Direct rating requires “a seasoned inspector” (Bauer, 2020, 

p. 18) to quickly assess the condition of a component-section and assign it one of nine ratings, 

shown in Table 2.  This allows for assessment to be conducted more quickly, such as when the 

“inventory that is being brought into BUILDER in bulk for the first time” (p. 18).  Direct ratings 

are conducted visually, so AFCEC (2018) recommends only recommends tools that enhance 

visual inspections, such as digital cameras, flashlights, infrared thermometers, or thermal 

cameras as opposed to equipment-specific test tools. 

 A more thorough survey can be conducted using the distress rating method (Bauer, 

2020).  This method involves the visual evaluation of the severity and density of deterioration in 

at the sub-component-section level.  Uzarski et al. (2018) account for 23 different types of 

distresses that can occur; examples include blistering, corrosion, cracks, leaks, excess noise, etc.  

An inspector must measure the quantity of distresses and estimate the severity based on pre-

defined categories for each distress type.  These values are then entered into BUILDER where 

the distress density is computed and a component-section condition index calculated based on 

the conditions of all the sub-component-sections. 
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Table 2.  Definitions for Direct Rating, Adapted (Uzarski et al., 2018) 
Rating Description 

Green (+) No visible or identifiable deterioration 
Green No decrease in reliability or serviceability. 

Some noncritical parts are negligibly deteriorated, or few 
critical parts are negligibly deteriorated. 

Green (-) Small or no decrease to reliability or serviceability.  Some 
noncritical parts have minor deterioration or more than one 
critical part negligibly deteriorated. 
 

Amber (+) Reduced reliability or serviceability.  Few critical parts may 
have modest deterioration and few noncritical parts have 
serious degradation. 

Amber Reduced reliability or serviceability.  Minor amount of critical 
parts exhibit partial deterioration with some noncritical parts 
exhibiting serious deterioration. 

Amber (-) Serious reduction in serviceability or reliability.  Majority of 
parts partially degraded or few critical parts seriously 
degraded. 

Red (+) Serious reduction in serviceability or reliability.  Most parts 
are significantly degraded or degraded to varying amounts. 

Red Critical reduction in serviceability or reliability.  Majority of 
parts critically deteriorated. 

Red (-) Failed and mostly beyond salvage. 
 

 
Condition Index 

BUILDER makes use of the BCI metric and therefore the Condition Index (CI) of an 

individual section is the fundamental metric (Uzarski et al., 2018).  The CI is a value from 0 to 

100 where 0 is completely failure of the section and 100 is brand new.  According to Grussing 

(2012, p. 5), it is difficult to implement a model describing lifespan for every building 

component.  It is easier to amalgamate component-section condition data into higher levels 

across different building parts and materials if an “objective CI” model is used for consistency.  

Grussing prescribes the following model calculating CI as a function of time: 

 CI = A × e-(t/β)α
 (1) 
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Where the parameters can be defined thusly: 

 A is the parameter for initial steady state component-section index 

 α is the parameter for accelerated deterioration factor 

 β is the parameter for service life adjustment 

 t is time in years 

Desrosiers (2020) clarified in an e-mail to the author that CERL calculates CI in BUILDER with 

the following adjustments: 

 CI = A × e
-ቀ

t
β×E

ቁ
α

 (2) 

Where: 

 β is the service life adjustment factor 

 E is the expected remaining service life 

Equation (2) was used in this paper to describe the condition model.  Colonel Toliver (2019) 

notes that typical starting values are α = 2.64 and β = 1.  Grussing & Marrano (2007) define A = 

100 for new component-sections or fully replaced component-sections and A = 95 for fully 

repaired component-sections.  At a CI of 40, a component is considered to have met its service 

life (approximately when t = E).  It should be noted, that in situations where A = 100 and β = 1, a 

CI of 40 will occur slightly after (t > E) because when t = E precisely the CI is approximately 

36.788 because the equation reduces to: 

 CI = 100 × e-ቀ
t

1×t
ቁ

α

 = 100 × e-1 (3) 

When a component-section is repaired or replaced, a stepwise jump in condition occurs and a 

new degradation curve is calculated.  When a repair occurs, the parameters are adjusted to speed 

up the degradation rate.  This limits the number of repairs that can be done.  Figure 3 provides an 

example of a condition curve where the input values are A = 100, E = 15, α = 2.64, and β = 1.  In 
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BUILDER, (Grussing, 2012) subsequent FCAs result in new degradation curves being fitted to 

the historical and the most recent CI point taken from a distress survey or direct rating.  A 

regression is used and the α and β parameters are fitted via regression.  This methodology allows 

for the condition model to account for feedback from real world conditions. 

 
 

 
Figure 3.  Example Condition Model for a Component-section 

 

New Methods 

Alley et al. (2017) proposed a probabilistic method to account for the probable failure 

rates of building component-sections as opposed to the deterministic method in Equations 1-2.  

This probabilistic method is not currently implemented in BUILDER but was found by Alley to 
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produce statistically significant results for predicting component-section failures in a case study 

using actual work order data. 

 Bartels (2020) used association rule mining to identify frequently occurring component-

sections in the USAF BUILDER database and identify condition associations between 

component-sections.  This was done by data mining the inspection report details for condition 

assessments and developing associations between the component-sections inspected and the level 

of deterioration at the time of inspection.  The result of this research is a methodology that can be 

used to predict the second-order impacts on the CI of related component-sections when a primary 

component-section CI is degraded and streamline FCA processes. 

Climate Change 

The overarching climate determines the cyclical nature of environmental and atmospheric 

characteristics.  Climate change adds a long-term, changing dynamic to all the meteorological 

conditions we are familiar with for a given location.  The 2014 IPCC Climate Change Synthesis 

Report (IPCC, 2014) states that “warming of the climate system is unequivocal.”  The 2014 

Synthesis Report ties a rise of global temperature and oceanic acidification to emissions of 

greenhouse gases such as carbon dioxide.  The IPCC (2014) projects with “high confidence” that 

warming is “likely” to exceed 1.5 °C by the late 21st century.  IPCC (2012) projects with “high 

confidence” an increase in frequency, duration, or severity of heat waves (indexed against “late 

20th-century extreme values”) for North America, Europe (with the exception of Scandinavia), 

Africa, parts of South America, parts of Asia, and Australia.  Heavy precipitation is defined as 

greater than the 95th percentile of precipitation days.  The IPCC (2012) forecasts with “high 

confidence” that increases to heavy precipitation will occur in Alaska, parts of Canada, Iceland, 

Greenland, parts of Europe in winter, parts of Africa, and northern Asia. 
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Environmental Factors Affecting Buildings 

There are examples in literature of how the environment affects built infrastructure and 

the role weather plays in deterioration and damage to buildings.  They can roughly be divided 

into two classes of events: catastrophic short-term events acting up to several days (e.g. a 

hurricane) and slow-acting long-term events (years to the life-cycle of the building and its 

materials). 

According to Bastidas-Arteaga & Stewart (2019) in Climate adaptation engineering, 

severe wind events (stand alone or in association with other meteorological phenomena) and 

elevated levels of precipitation pose significant risk of damage to structures.  In particular, 

Khajwal & Noshadravan (2020) cite that hurricanes have had a devastating global impact on life 

and property at a cost of $938.2 billion in the period from 1980 to 2019.  They developed an 

improved model for determining potential risk to infrastructure in terms of loss to life and 

property by making some of the parameters random variables.  This model allows for the 

prediction of loss using wind speed and a minimum number of other parameters.  Downton et al. 

(2005) pulled from National Weather Service damage to show that $50 billion in flood damage 

occurred in the U.S. in the 1990s. 

Ginger et al. (2015) analyzed wind loads on industrial building frames and examined 

wind tunnel data to determine the effectiveness of structural design standards.  The authors 

(Ginger et al., 2015) were able to identify weak points in the design of low hanging, large bay 

industrial buildings.  Francis et al. (2010) examined secondary and tertiary effects of electrical 

grid loss or damage in the context of more severe weather events occurring under climate 

change.  Their probabilistic extended life-cycle analysis cost allows them to model the broader 

impact to society of power distribution failure.  Stewart & Deng (2015) produced a method for 
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assessing hurricane wind damage of hurricanes and examined the impact of changing lumber 

fastening design standards as climate adaptation measures for probabilities of higher wind speed 

scenarios in climate change.  Some research also shows that existing design standards can be 

adequate for meeting future needs.  Lee & Ellingwood (2017) performed an extended +100-year 

analysis of a structural model subject to wind damage from hurricanes and found that buildings 

designed to last 50 years are capable of meeting current and future wind load resistivity needs 

beyond their design lifespans. 

While temperature and moisture can contribute to meteorological phenomena that 

generate catastrophic hazards, they can also directly contribute to the long-term deterioration of 

infrastructure.  Richardson (2001, p. 14) defines deterioration as “a natural process which may be 

unavoidable.”  He goes on to describe the effects of moisture and temperature on buildings.  

Temperature contributes to the thermal movement of infrastructure, and material type can play a 

significant role in determining temperature’s overall effect.  Differing thermal expansion 

coefficients of dissimilar materials can result in damage.  For example, aluminum has a linear 

thermal expansion coefficient of 24 x 10-6 per °C while the coarse aggregate in concrete exhibits 

a thermal expansion coefficient of approximately 12-13 x 10-6 per °C.  An example of thermal 

expansion in paved surfaces was reported by Raughton (2018) in Figure 4.  A concrete taxiway 

at Osan Air Base, South Korea ruptured after three consecutive days of peak 100 °F (Iowa 

Environmental Mesonet, 2020)1 weather in Korea and the intrusion of rocks and debris in the 

pavement slab expansion joints.  This resulted in the concrete around the joint buckling due to a 

lack of room for expansion based anecdotally on local assessments. 

 
1 Weather data obtained from Meteorological Aerodrome Reports (METAR) collected by Iowa Environmental 
Mesonet (2020).  The original article from Raughton (2018) did not include temperature values. 
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Figure 4.  Taxiway Damage, Reprinted (Raughton, 2018) 

 

Moisture contributes to the deterioration of porous materials such as masonry, concrete, 

and timber products (Richardson, 2001).  Additionally, moisture is a part of numerous 

mechanical, thermal, biological, and chemical processes that degrade building materials.  One 

such chemical process is corrosion.  Nguyen et al. (2013) found that not only do moisture and 

temperature play a role in the corrosion of steel, but so do airborne pollutants such as sulfur 

dioxide albeit on a more localized basis to pollution sources. They refer to corrosion as a 

“complex discontinuous electrochemical process subjected to highly variable ambient 

conditions”, noting that there are apparent paradoxes such as nighttime moisture layers driving 

corrosion, whereas regular rainfall can help remove corrosive pollutants from building materials. 

In contrast to these negative effects, Nguyen et al. found small but ultimately negligible benefit 

of increased atmospheric carbon dioxide to arresting the corrosion of zinc.  Carbon dioxide 

concentrations of 1000 ppm are possible in the A1F1 climate change scenario, and Chung et al. 
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(2000) found that zinc plates had 20% higher corrosion resistance in an enclosed 1000 ppm CO2 

environment than in 350 ppm CO2 environment. Wang et al. (2011) write that temperature, 

humidity, and carbon dioxide play integral roles in the carbonation process of corroding 

concrete. They note that drier regions receive a significant deceleration of concrete carbonation 

due to lower relative humidity values whereas more humidity regions can experience faster rates 

of carbonation. Raised temperatures and carbon dioxide levels play an accelerating role in 

carbonation processes. In addition to carbonation, concrete can corrode due to chloride ingress 

(Bastidas-Arteaga et al., 2010). Similar to carbonation, moisture and temperature play an 

essential role in the chloride-ingress of concrete. They modeled the effects of chloride ingress, 

moisture, and heat flow from weather effects and used Karhunen-Loève expansions to introduce 

fluctuations for their humidity and temperature models.  This enabled the simulation of weather 

extremes while still adhering to overall mean values.  With this stochastic approach, they 

concluded that elevated temperature and humidity such as can be found in tropical environments 

reduces the initiation time of chloride ingress-based corrosion. 

Corrosion 

There are multiple ways to define corrosion.  Callister & Rethwisch (2010, pp. 674-675) 

address the broader definition of corrosion but also provide a more typical definition that is used:  

"…the destructive and unintentional attack of a metal.”  Title 10 U.S. Code §2228 defines 

corrosion as “the deterioration of a material or its properties due to a reaction of the material with 

its chemical environment.”  Wang et al. (2011) modeled carbonation-based corrosion of concrete 

over a 100-year period.  This type of corrosion is heavily influenced by atmospheric CO2 and 

thus analysis over a 100-year period allows for climate change to be considered.  Bastidas-

Arteaga et al. (2013) modeled the corrosion of concrete reinforcement due to chloride ingress 
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and carbonation damage of concrete and found that climate change had some impact on 

corrosion in highly corrosive environments.  The results showed that even with climate change 

CO2 effects considered, the corrosion in an environment will be dominated by other factors.  

Nguyen et al. (2013) modeled future corrosion effects of zinc and steel over a 100-year timespan 

under the A1FI climate change scenario.  A key conclusion of their research is that it is difficult 

to predict secondary and tertiary effects because the data needed to make such predictions is not 

available.  Rakanta et al. (2007) conducted a case study of damage done to a hotel in Greece.  

The closed-loop, chilled-water systems were corroded and factors that contributed to the 

corrosion were identified.  These included build-up of salt in the chiller exchanger tubes, mixing 

of system water with freon and oils, and damage of the chiller motor due to contact with water.  

Water and pipe samples showed build-ups of chlorides, magnesium salts, and calcium salts 

contributing to corrosion.  These latent problems were attributed to a lack of chemical science 

expertise in the maintenance department (either in-house or through consultation services). 

Studies of metal sample plates are commonly used to assess the corrosivity of an 

environment.  Fuente et al. (2007) and Fuente et al. (2011) conducted two studies over 13-year 

time periods to better understand the corrosion of zinc and mild steel in different environments in 

Spain.  The 2007 study of zinc found that marine and industrial environments had the most 

dramatic effect on zinc.  Additionally, facing direction of the zinc plates was related to corrosion 

in that downward facing plates exhibited less corrosion than skyward facing plates.  Finally, 

slightly acidic rainwater had positive effects on limiting zinc corrosion.  The 2011 study of mild 

steel found that marine environments had a most dramatic effect on their samples.  They were 

only able to produce dimension, mass loss, and imaging data for 10 years in the marine 

environment because the samples had disintegrated by that time.  Fuente et al. (2011) highlighted 
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the compacting nature of corrosion layers in some environments due a combination of drier air 

and higher heat. 

Grisham (2001) conducted a small-scale study of energy efficiency ratio (EER) and 

corrosion of metal samples on two HVAC units in Galveston, Texas over the course of one year 

to research the relationship between HVAC performance and saltwater exposure.  Grisham found 

that the EER for the two units decreased by 11.5% and 8.3%.  Aluminum and copper samples in 

the same atmospheric environment as the HVAC units were subjected to a microscopic analysis 

to discover pitting depths.  The aluminum in the fin colors and in the galvanic couples exhibited 

pitting at 22% and 19%, respectively.  

ISO 9223 (International Organization for Standardization) details standards for 

Corrosivity Category Classification using atmospheric and pollution data or through 

measurement of mass loss for standardized metal samples over a one-year period per ISO 9226 

(Silver & Gaebel, 2017).  This ISO standard is primarily meant to aid in the material selection 

process during design.  It consists of six categories of corrosivity in increasing levels of 

corrosion:  C1, C2, C3, C4, C5, and CX.  CX is new in the 2012 variant of the standard.  The 

older 1992 standard featured five categories and was scrutinized by Morales et al. (2005) in a 

study conducted in the Canary Islands. The Canary Islands have varied microclimates that cover 

a wide range of Corrosivity Categories.  Morales et al. (2005) monitored atmospheric data and 

conducted metal plate testing and found that ISO 9223:1992 did not accurately predict the 

Corrosivity Category in numerous locations.  Additionally, the 1992 version of the standard only 

had five corrosivity categories and Morales et al. (2005) found that some locations exceeded the 

parameters and mass loss rates of category C5. Following up in 2019, Santana et al. analyzed the 

updated ISO 9223:2012 standard in the Canary Islands, testing 74 different sites for carbon steel, 
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copper, and zinc corrosion.  They used the atmospheric and plate mass loss data they gathered to 

develop their own constants in the dose-response function of ISO 9223:2012 as well as using 

time of wetness instead of relative humidity to obtain more accurate results.  Time of wetness is 

the time that the environment is greater than 0 °C and 80% relative humidity.  The newly added 

CX Corrosivity Category in the 2012 update of ISO 9223 did not adequately describe corrosion 

in some locations. 

The 2017 Facilities Environmental Severity Classification Study from Silver & Gaebel 

was conducted for the DoD to research the problem of classifying the severity of an environment 

in the context of DoD real property.  Here is a summary of the major relevant findings from 

literature and other studies in this extensive report: 

 A single method of corrosivity classification cannot adequately model corrosion 

in every environment 

 The Battelle Columbus corrosion study of DoD properties showed an unclear 

correlation between steel mass loss and copper mass loss.  Some modelling 

methods convert a certain metal’s mass loss into an equivalent steel mass loss to 

simplify calculations 

 There is a significant gradient of corrosion loss within the first mile of a saltwater 

shoreline (from maximum at the edge to minimum at one mile inland) 

 Corrosion generally exhibits a piecewise behavior with maximum loss rate in the 

first 20 years and a lower, steady rate thereafter 

 Corrosion occurs at the local and micro level.  The local level can be defined as 

something such as a building, whereas the micro level is the actual site of 
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corrosion occurring on a specific material.  The characteristics of these two 

environments are related but may differ 

Additionally, Silver & Gaebel developed the ISO Corrosivity Category Estimation Tool 

(ICCET) for determining DoD installation Corrosivity Category using atmospheric data.  This 

tool has some limitations.  It does not incorporate pollution data due to a lack of availability 

(such as in ISO 9223:2012).  It also uses atmospheric data from fixed weather stations, so if a 

location is selected without a nearby weather station, the nearest available one is used.  ICCET 

also can only generally determine the Corrosivity Category for a location.  Areas with large 

variations in corrosivity such as those near coasts or pollutant-producing industry may require 

multiple Corrosivity Categories to classify the area. 

The DoD developed the Environmental Severity Index (ESI) based on a decade-worth of 

field data of steel and aluminum metal plate samples (Kendall, 2013).  This system categorizes 

corrosivity on a scale of 1-20 either through metal plate samples or through environmental 

measurements of local salinity and time of wetness.  ESI is also tied to cost by mapping 

installation ESIs to one of four categories (low, moderate, high, and severe) but does “not 

consistently correlate with the sustainment cost data” (Silver & Gaebel, 2017, p. 30).  Silver & 

Gaebel (2017) recommend in their report that the DoD use ISO 9223 to classify environmental 

corrosivity. 
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CHAPTER III 

METHODOLOGY 

Overview 

The null hypothesis (H0) for the RQ is that no statistical difference can be identified 

among the average CI of D305006 Package Units by corrosivity category.  This can be 

summarized in the following statement: 

 H0:  μC2 = μC3 = μC4 = μC5 (4) 
 
The only corrosivity categories represented in the data are C2, C3, C4, and C5.  These are 

ordinal categories of increasing corrosivity.  The alternate hypothesis (HA) is that there is a 

statistical difference between the weighted averages of D305006 Package Units component-

section condition indexes by corrosivity category.  This can be stated as:  

 HA:  At least one mean be different from the others (5) 
 
Where μC1, μC2, etc. are the average of all D305006 Package Units component-section 

condition indexes for the respective ISO Corrosivity Categories.  If there is a statistically 

significant difference in CI between corrosivity categories, a pairwise analysis of each category 

is conducted to determine if there is a similarity or decrease in increasing corrosivity categories. 

The data was provided to the author in two spreadsheets.  These were converted into 

comma separated value (CSV) files for better interoperability with other analysis tools.  SQLite 

was used to import these files into a SQL-based relational database.   Python was the chosen 

programming language for handling the data.  It has an application programming interface with 

SQLite.  Finally, JMP was used to for some of its statistical analysis features in presenting the 

results. 
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Based on comparisons of using ISO 9223 and ESI for classifying environmental 

corrosivity, the ICCET was chosen for conducting this research.  While ESI and ISO 9223 offer 

categorization systems based on metal plate sampling, the ISO 9223-derived ICCET provides 

more accurate atmospheric model-based categorization because hourly weather factors and linear 

distance to saltwater are used (Silver & Gaebel, 2017).  Finally, the ICCET has readily available 

data for the locations that were analyzed.  The comparison between the methods is summarized 

in Table 3. 

 

Table 3.  Comparison of ESI, ICCET, and ISO 9223 
 ESI ICCET ISO 9223 
Metal plate samples Yes N/A Yes 
1-year mass loss data Yes N/A Yes 
# of categories 20 6 6 
Temperature  No Yes Yes 
Humidity No Yes Yes 
Time of wetness Yes No No 
Proximity to 
saltwater (salinity) 

Binary (within 1 
mile or not) 

3 models 
depending on 
distance 

Chloride deposition 
rate used 

 
 
 

Assumptions & Limitations 

There are several assumptions that were made to conduct this analysis, and some 

limitations to prevent scope creep.  Assumptions included the following: 

 Air conditioner condition degradation is primarily affected by corrosion (as noted in 

the literature review there is some research to support this assumption) 

 It is assumed that different brands and models of air conditioner are similarly 

susceptible to corrosion 
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The justification for these limitations is that they not only involve the need for current 

data for several other parameters, but also historical data.  The primary dataset that was analyzed 

in this paper only provides a current snapshot of building condition data.  Additional historical 

data would be required to understand the cause of current conditions.  This data is not available 

to the author and in some cases may not exist or be useable.  The current BUILDER data can be 

used to understand the condition of items now, and project future conditions, but there is no 

historical data for this available to the author.  

Limitations: 

 Installations have equivalent levels of funding for their infrastructure 

 Installations have similar preventive maintenance completion rates 

 Installations are able to accomplish corrective maintenance in a similar timeframe 

Data Collection 

Condition Data 

The primary dataset was already provided to the author in the form of two spreadsheets, 

(1) containing “Component-Section Details” and (2) the other containing “Equipment Details”.  

This data was collected as part of the USAF implementation of BUILDER by USAF military 

personnel, civilians, and contractors conducting facility inventories and condition assessments 

and entering the inspections into the database.  It is maintained and updated as part of the USAF 

FCA program.  A location anonymized copy of the 2018 data was provided to Texas A&M 

under a Cooperative Research and Development Agreement in 2019.  Please see Table 4 for a 

summary of the data contained in these spreadsheets.  Additionally, two tables are contained in 

the Appendix that list the fields in each spreadsheet, data type, and clarifying notes about what 

each field is.  Some of these notes were provided to the author, and others are the author’s 
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inference of the information contained therein.  The “Component-Section Details” and 

“Equipment Details” spreadsheets contain anonymized location data, but the author was 

provided a reference by AFIMSC identifying each of the locations for the purpose of matching 

the anonymized data with the correct corrosivity category. 

 
 

Table 4. Data Summary 
 Component-Section 

Details 
Equipment Details 

# of Items 1,048,575 716,973 
# of Locations 59 81 
# of Fields 32 35 
# of D305006 Package 
Units 

21,657 39,084 

 
 
 
Both the “Component-Section Details” and “Equipment Details” overlap in information.  

They were not combined or cross-referenced for the analysis or results.  “Equipment details” 

contains further information on certain component-sections in “Component-Section Details” that 

are primarily concerned with mechanical, electrical, and plumbing systems.  It is also the only 

data source that lists the brand of certain types of equipment.  They cannot be combined because 

there is no unique identifier for line items that allows items to be matched.  Finally, the 

spreadsheets were both pulled from BUILDER at different dates and therefore condition values 

differ by a few points. 

“Component-Section Details” contains data from 59 locations and represents all eight 

USAF Major Commands (MAJCOMS) and the U.S. Space Force (USSF).  The reserve 

components, Air National Guard and Air Force Reserve Command, are not represented by 

locations that they primarily operate but they may have facilities in some of locations operated 

by others.  The data does not include a breakdown of owning units or commands by component-
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section.  47 of the 59 locations are in the U.S. or its territories and 12 are located outside the U.S.  

Table 5 shows the number of locations by MAJCOM as well as the USSF (Wright, 2020). 

 

Table 5. Data Summary by Service/MAJCOM 
Service / MAJCOM # of Locations 
Air Combat Command 12 
Air Education and Training Command 7 
Air Force Global Strike Command 4 
Air Force Materiel Command 4 
Air Force Special Operations Command 2 
Air Mobility Command 8 
Pacific Air Forces 8 
U.S. Air Forces in Europe – Air Force Africa 7 
U.S. Space Force 7 

 

 
D305006 Package Units 

 The D305006 Package Units component-section consists of decentralized air 

conditioning and heat pump systems and are also described as “unitary systems” (Howell et al., 

2013, p. 411).  There are six examples of such systems listed in the USAF Built Infrastructure 

Inventory and Assessments Manual Appendix for HVAC (D30) (AFCEC, 2017): 

 Computer room A/C unit 

 Split systems with air cooled condenser 

 Split systems with air cooled condenser and options for heat pumps or electric heat 

 Evaporative cooler 

 Through-wall A/C unit 

 Water source heat pump 

These systems are all exposed to the exterior environment because they necessitate a location 

outside of the conditioned space to dump heat (for A/C units) or to pull heat from (for heat 



 

27 
 
 

 

pumps).  An analysis of “Component-Section Details” shows that these units range in size from 

1/2 ton to 120 ton HVAC units.  The database has 196 descriptors under the CompType field and 

the top five most frequently occurring are summarized in Table 6.  There are also 602 labeled as 

“General”, 129 labeled as “Other”, and 58 labeled as “Unknown”.  The D305006 component-

section is generalizable for this research and analyzed as a whole component-section. 

 

Table 6.  Frequency of Occurrence for Top 5 D305006 Component Types 
Component Type Frequency of Occurence 
A/C Unit, Split Systems w/ Air Cooled Condenser 3,109 
A/C Unit, Split Systems w/ Air Cooled Condenser - 2 TN 1,898 
A/C Unit, Split Systems w/ Air Cooled Condenser - 3 TN 895 
A/C Unit, Computer Room 819 
Evaporative Cooler 793 

 
 

 There are also decentralized A/C systems broken up across multiple component-sections 

to differentiate cooling generation, distribution, air handling, and terminal parts but they were not 

analyzed in this paper.  “Component-Section Details” has 159,868 component-sections at the 

D30 HVAC system level and these include air handling units, fan coil units, boilers, gas 

supplies, hot water distribution, etc.  Furthermore, there 5,360 D303001 Chilled Water Systems 

that include chillers and cooling towers ranging in size from 5 to 1,500 tons but some of the 

equipment under this category is located inside mechanical rooms and not exposed to the outside 

environment, such as centrifugal chillers (AFCEC, 2017). 
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Corrosivity Category Data 

The secondary dataset involves the Corrosivity Category data.  This data was obtained 

from two locations.  The most accurate data is contained in Revision 2 of Appendix D of 

Facilities Environmental Classification Study (Silver & Gaebel, 2017), which consists of 

Corrosivity Categories derived from ISO 9223:2012 compliant one-year metal sample 

corrosivity tests.  Appendix D is updated regularly, so the most recent version published to the 

Whole Building Design Guide on 24 August 2018 was used (Geusic, 2018).  This dataset has 

information for 355 locations from the BUILDER dataset.  For locations that do not have this 

data available, the Corrosivity Category was gathered using the ICCET (Gaebel, n.d.) with the 

final data pull on 22 September 2020.  The ICCET utilizes weather data from nearby weather 

stations to approximate the Corrosivity Category based on ISO 9223:2012.  The corrosivity 

category for 56 installations was obtained from the Appendix D values and the data for the 

remaining three installations was obtained from the ICCET. 

Combining the two sources of data shows the following breakdowns for number of 

locations in each Corrosivity Category as well as by the minimum distance from a saltwater 

shoreline (Figure 5). 
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Figure 5.  Corrosion Category and Minimum Shore Distance by Number of Locations 
 

 
Data Cleaning 

Overview 

Although standardized practices were used to gather this information, the likelihood of 

error stemming either from incorrect condition assessments, misattribution, or data entry errors 

must be considered.  Two primary approaches were used to eliminate data that is obviously or 

likely to be erroneous.  The presentation Lifecycle Management of Air Force Facilities and 

Assets (Dept. of Construction Science, Texas A&M University, & ALPHA Facilities Solutions, 
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LLC, 2019) provides a summary of various methods that were used to clean this specific data for 

another research project.  They are summarized in Table 7. 

 

Table 7.  Data Cleaning Summary, Adapted (Dept. of Construction Science, Texas A&M 
University, & ALPHA Facilities Solutions, LLC, 2017) 
Affected Field Description 
PRV Buildings with below zero or empty values excluded 
SEC_Beta Negative values are erroneous 
CRV Component-sections with below zero or empty values excluded.  

Excessively high values (greater than $9.5 million) excluded.  
Component-sections with CRV greater than PRV excluded. 

Age Component-sections with ages 3 times greater than service life and CI 
greater than 39 excluded 

 
 

These methods are the final result of an iterative process where ALPHA Facilities 

worked with AFIMSC and were very fruitful in selectively removing erroneous data  They had 

1,336,297 component-sections pulled from BUILDER and PAVER (the USAF SMS for paved 

surfaces) and 98.8% of the data was retained.  In addition to the ALPHA Facilities method, data 

cleaning principles from Osborne (2012) and Ilyas & Chu (2019) were applied for the fields 

identified in Table 8.  The chosen methods included outlier detection, identification of 

duplicates, data transformation, and rule-based data cleaning.  The data cleaning was conducted 

in three separate phases.  Phase 1 involved examining the totality of the data and removing data 

based on broadly applicable rules.  In Phases 2 and 3, the scope of cleaning was narrowed to the 

D305006 PACKAGE UNITS component-sections.  The data cleaning process was iterative, and 

so this paper presents the resulting end-process used.  All phases were fully accomplished for 

“Component-Section Details”, but only part of Phase 1 was completed for “Equipment Details.”  

It was discovered that “Equipment Details” lacks a field for component-section age since 

installation date.  “Equipment Details” was excluded from further analysis. 
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Table 8.  Chosen Fields for Data Cleaning 
Field Description 
CI Component-section condition index 
CRV Component (component-section) replacement value 
PRV Building plant replacement value 
Age Age in years since installed or constructed 
SEC_Beta β for calculating CI 
RSL Remaining service life 
InstallDate Install or construct date 
Expected_Service_Life Overall expected service life (E in CI calculation) 
SumOfRPATotalUnitOfMeasureQuantity Component-section quantity numerical amount for 

RPATotalUnitOfMeasureCode. 
RPATotalUnitOfMeasureCode Component-section quantity category:  each (EA), square 

foot (SF), square yard (SY), foot-pound (FP), or null. 
 
 

Phase 1 Cleaning 

One of the problem areas that arose out of initial viewing of the data concerned the 

RPATotalUnitOfMeasureCode and SumOfRPATotalUnitOfMeasureQuantity fields found in 

“Component-Section Details” and the similar fields UoM and Qty in “Equipment Details” 

(herein referred to as quantity type and quantity amount, respectively, for both spreadsheets).  

When summing or averaging CI, any component-section with a quantity type of “each” must be 

counted multiple times for any quantity amount greater than one.  For example, a component-

section for D305006 Package Units with 3 each at a CI of 75 means there are three package 

HVAC units with a CI of 75 in that building.  They also share the same install date and age, and 

their combined replacement value is the CRV for that component-section.  This was particularly 

problematic for D305006 Package Units in “Equipment Details” as summarized in the histogram 

and boxplot in Figure 6. 
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Figure 6.  Equipment Details Quantity Type “Each” Histogram and Boxplot 

 
 

Figure 6 was plotted log-log to best represent the extent of the data in a small space.  The 

mode is one with a count of 20,130 component-sections, but some component-sections have zero 

“each” pieces of equipment and one has a value of 2007 “each”.  The installation year for this 

piece of equipment is also 2007, so it can be concluded that the value was erroneously carried 

over into the wrong field.  Other issues crop up as well.  One building has 179 HVAC units that 

subsequently each have 179 HVAC units in their component-sections.  Another facility has 10 

HVAC units each with 355 units per component-section.  It would require a per-building 

analysis for each building in the 81 locations represented in ‘Equipment Details’ as well as 
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comparison against building size and type and assumptions about how the building is used.  This 

is outside the scope of this thesis. 

An addition difficulty with “Equipment Details” is that it lacks a field for age since 

installation.  “Component-Section Details” has this field, along with a field for the year of 

installation.  This allows for a data verification step where the sum of Age and InstallDate is the 

day the data was calculated and “rolled-up.”  There should be the same number for all 

component-sections to ensure consistency and that all component-sections are being compared in 

the same time snapshot.  A graphical summary of the distribution for “Year Rolled-Up” in 

“Component-Section Details” can be found in Figure 7. 

Due to the aforementioned problems with “Equipment Details” further analysis on this 

spreadsheet was discontinued and only “Component-Section Details” is fully cleaned and used 

for evaluation.  The “rolled-up” year was set to 2018 and this eliminated 54.7% of the 1,048,575 

component-sections.  Additionally, the other fields mentioned in Table 8 were scrubbed for 

abnormalities that are broadly applicable.  For CRV and PRV, all values less than or equal to zero 

were removed.  CRVs greater than PRV were also removed because the sum of CRVs for a 

building should at most equal the PRV for that building.  Finally, SEC_Beta values less than zero 

were removed because they imply a negative remaining service life.  A summary can be found in 

Table 9. 
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Figure 7.  Sum of Age and InstallDate Histogram and Boxplot 

 

Table 9.  Phase 1 Data Removal for ‘Component-Section Details’ 
Rule % All 

Removed 
# All 
Removed 

% D305006 
Removed 

# D305006 
Removed 

Age + InstallDate = 2018 54.68 573,377 73.50 15,918 
Cost Factors 

- CRV > 0 
- PRV > 0 
- PRV > CRV 

8.16 85,584 4.39 951 

SEC_Beta > 0 0.29 3,015 0.24 53 
Result 56.32 590,377 74.26 16,083 

 
 

 Table 9 also includes the impact of Phase 1 of cleaning on the D305006 Package Units.  

Out of the 21,657 such units in the database, only 5,574 were retained for further cleaning and 

analysis.  The effect of setting the “rolled-up” year to 2018 is more pronounced on the Package 
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Units component-section, with 73.5% removed compared to the overall 54.7% of all component-

sections removed. 

Phase 2 Cleaning 

 Phase 2 of cleaning was focused exclusively on examining the relevant fields from Table 

8 for D305006 Package Units.  Here, the approach was to explore the summary statistics and 

graphical representations of data.  As in “Equipment Details”, “Component-Section Details” has 

apparent problems with the “each” type for measuring the number of equipment units per 

component-section.  The analysis for this was saved until Phase 2 for “Component-Section 

Details” so that only one type of equipment, the D305006 Package Unit, is analyzed.  Only 8 of 

5,574 D305006 Package Unit component-sections has an “each” count.  Seven of these have a 

count of one unit per component-section, and one is a count of 8,000 units per component-

section.  The component-section with 8,000 units was therefore removed.  A further look at this 

specific building shows that it is unlikely to have 8,000 Package Units and this value is entered 

in error.  Several other building component-sections such as C101001 Fixed Partitions, B202001 

Windows, and D501001 Main Transformers also have a count of 8,000 units per component-

section (47 component-sections total have this value for this building). 

 Age and Install Date were examined next.  It can be seen in Figure 8 that Age has a 

strong positive skew of 1.22 and half of the units are less than 18 years old.  The furthest outlier 

is 98 years old, putting this unit at an installation year of 1920.  The arithmetic mean can be 

found in the third quartile at 23.6 years. 
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Figure 8.  Age Histogram and Boxplot 

 

 Install Date is depicted in Figure 9 and complements the Age data in Figure 8 with a 

negative skew of -1.2.  To limit the number of outliers, the maximum age is limited to units 76 

years old or younger.  This is equivalent to an Install Date of 1942.  The age limit was based off 

the mean age of 23.6 years plus three standard deviations of 17.4 years (52.2 years).  50 

component-sections were removed under this criterion.  HVAC equipment used for comfort 

cooling has existed since the 1890s, and HVAC was installed in U.S. federal government 

buildings such as the Chamber of the House of Representatives in 1928.  The rooftop and 

package units we are familiar with today did not start appearing until the 1950s. (Howell et al., 

2013).  Therefore, it is unlikely that any HVAC units built prior to 1942 are still in operation 
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Figure 9.  Install Date Histogram and Boxplot 
 
 

 CRV was analyzed but no significant discrepancies were found.  The Phase 1 elimination 

of CRV greater than PRV eliminated the more egregious extremes, such as one component-

section with a CRV of $46 million in a building with a PRV of $224,000.  In Phase 2, the 

maximum CRV is $2.9 million.  Figure 10 shows the summary data for CRV in a log-log plot to 

best encapsulate the extend of the data.  If not adjusted, the skew for the CRV is 9.7, but by 

taking the log10 of the CRV values, the skew is reduced to -0.4.  The median cost is $29,000 and 

the average cost is $48,000.  Figure 11 shows the probability plot for the logarithmically adjusted 

data.  There are more component-sections with low values than compared to a normal 

distribution and a kurtosis of -0.48 due to less component-sections existing in general in the tails 

of the distribution. 
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Figure 10.  CRV Histogram and Boxplot 
 
 

 
Figure 11.  CRV Probability Plot 
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 RSL and Expected Service Life were examined with no component-sections subsequently 

removed.  RSL values are all between 0 and 20, where 20 is the maximum value of Expected 

Service Life found in D305006 Package Units.  When a component-section reaches a CI of 40, 

its RSL becomes zero.  Figure 12 summarizes the remaining service life.  The median 

component-section has seven years of service life remaining and the average is 6.5 years.  844 

component-sections represent the mode value of zero years remaining service life.  The 

distribution has low skew of 0.23 but this amount is still statistically significant at a p-value 

approaching zero. 

 

 
Figure 12.  RSL Histogram and Boxplot 
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The Expected Service Life values are either 10, 15, or 20 years for D305006 Package 

Units summarized in Table 10.  91% of the 5,574 component-sections have a service life of 20 

years.  In summary, after Phase 2 of cleaning there are 5,523 component-sections or 99% of 

D305006 Package Units remaining from the Phase 1 pass of 5,574 component-sections. 

 

Table 10.  Expected Service Life Quantities 
Expected Service Life # Of 
10 years 78 
15 years 411 
20 years 5,085 

 
 

Phase 3 Cleaning 

 Phase 3 of cleaning did not involve the removal of any further component-sections but 

was used to characterize the types of distributions of data fields that would be used for analysis.  

The primary field for testing the hypothesis is that of CI in Figure 13.  The mean CI for D305006 

Package Units is 67.5, and the median is 76.  The data has strong negative skew at -1.14 and 

positive kurtosis of 0.51.  To aid in analysis, the skew can be reduced by means of a data 

transformation.  Three different transformations were considered for CI.  These are a square root, 

natural logarithm, and logarithm base 10.  The results of these transformations are summarized in 

Table 11.  The log base 10 transformation was chosen for use in assisting further analysis. 
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Figure 13.  CI Histogram, Boxplot, and Probability Plot 
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Table 11.  CI Transformation Comparison 
Transformation Skew Kurtosis 
Original -1.1393 0.5110 
Square root 0.5328 -0.4481 
Natural log -0.4060 0.4479 
Log base 10 -0.4060 0.4479 

 
 
 
 The improvement in normality for the distribution is shown in Figure 14.  The equations 

for performing the transformations are the following: 

 Square Root= √(101 - CI) (6) 
 
 Natural log= ln(101 - CI) (7) 
 
 Log base 10= log10

(101 - CI) (8) 
 
These transformations were conducted as recommended by Osborne (2002).  The distribution is 

negative, so the data must be reflected by making it in negative.  Since these functions require 

positive numbers, the data was subtracted from its maximum value of 100 plus 1.  The size of 

original, non-transformed data is n = 5,574 and per Hazra & Gogtay (2016) sample sizes greater 

than 100 constitute large distributions and can “nearly always be analyzed with parametric tests” 

(p. 252).
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Figure 14.  Transformed CI Histogram, Boxplot, and Probability Plot 
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 RSL was examined but does not make a good fit for transformation due to its bimodal 

nature.  As can be seen in Figure 15, 831 component-sections have an RSL of zero.  Chapter IV 

provides further analysis on RSL by way of linear regression with CI. 

 

 

Figure 15.  RSL Histogram and Boxplot 
 
 

Age was transformed to provide a better fit to a normal distribution.  The original data is 

represented in Figure 16 and the chosen log base 10 transform data is in Figure 17. 
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Figure 16.  Age Histogram, Boxplot, and Probability Plot 
 

 

 

 

 



 

46 
 
 

 

Figure 17.  Transformed Age Histogram, Boxplot, and Probability Plot
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The equations used for transforming Age are as follows.  Age was originally positively 

skewed so it can be inputted raw into the transformation function without shifting or reflecting it: 

 Square Root= ඥAge (9) 
 
 Natural log= ln(Age) (10) 
 
 Log base 10= log10

(Age) (11) 

A comparison of different transformation methods is summarized in Table 12.  Log base 

10 performed the best and reduced the skew from 1.16 to -0.06. 

 

Table 12.  Age Transformation Comparison 
Transformation Skew Kurtosis 
Original 1.1629 0.5335 
Square root 0.5940 -0.4577 
Natural log -0.0581 -0.7312 
Log base 10 -0.0581 -0.7312 

 
 

Methods of Analysis 

Three analytic tools were used in Chapter IV for conducting analysis of the data and 

results are presented there.  Analysis of Variance (ANOVA) was used for determining statistical 

differences between groups.  Tukey’s Honest Significant Difference (HSD) was used to conduct 

pairwise comparison of data sets between different categories in those data sets.  Linear 

regression was used to understand the relationships between continuous variables.  Here is a 

summary of the statistical tests and analysis conducted for the “Component-Section Details” data 

set: 

 One-way ANOVA roll-up of D305006 Package Unit CI by location corrosivity category 

 Tukey’s HSD of D305006 Package Unit CI by location corrosivity category 

 Linear regression of natural logarithm transformed CI data by RSL 
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 One-way ANOVA roll-up of D305006 Package Unit Age by location corrosivity 

category 

 Tukey’s HSD of D305006 Package Unit Age by location corrosivity category 
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CHAPTER IV 

RESULTS 

Condition Index 

 CI was broken divided into the four available categories found in the data, C2, C3, C4, 

and C5.  To conduct an ANOVA, three assumptions must be met: 

 Independence of samples.  The samples are all independently taken and do not depend on 

one another, so this condition is met. 

 Normality of distributions.  The skew and kurtosis of the population are -1.14 and 0.52, 

respectively.  Blanca et al. (2017a) conducted a Monte Carlo simulation study of 22 

different distributions and found that for three groups, a skew of 2 and kurtosis of 6 were 

robust and had Type I error rates less than 5%. 

 Equality of variances.  Blanca et al. (2017b) conducted a Monte Carlo simulation study of 

various scenarios for different variance ratios, pairings, and coefficient of sample size 

variations.  The procedure provided on p. 945 was followed to test for this assumption: 

o The variance ratio for the CI data is 1.6, which is greater than the target of 1.5. 

o Calculate correlation of group sample size and variances.  Per Figure 18, this 

correlation of 0.08 is close to 0 and therefore the ANOVA can be conducted. 

With the assumptions met, CI was be tested in an ANOVA.  Figure 19 depicts the box plots and 

grand mean for this data set.  Corrosivity category C2 has the largest range and C3 the smallest.  

The grand mean is depicted as the gray line. 
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Figure 18.  Correlation of Sample Size and Variance for CI Corrosivity Categories 
 
 
 

 
Figure 19.  CI Boxplots 
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 The ANOVA results are summarized in Figure 20.  The categories are statistically 

different with a p-value approaching zero.  The Tukey HSD is shown in Figure 21. 

 
 

 
Figure 20.  CI ANOVA Results 
 
 
 

 
Figure 21.  CI Tukey HSD Results 
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 On a pairwise basis, C3 and C4 are not statistically different (p-value = 0.9969) and C4 

and C5 are not statistically different (p-value = 0.2896).  The ranking of mean CI from high to 

low is C3, C4, C5, and C2.  C2 does not match expectations for it having the highest CI and is 

statistically isolated as the lowest mean CI (highest p-value = 0.0013).  C2 also has the lowest 

standard error of 0.4856.  The ratio of largest to smallest sample size is 7.5 from C2 to C4.  The 

unequal sample sizes cannot be corrected for, because most locations in the database are not 

located in high corrosion zones. 

 To strengthen the ANOVA result, a test was conducted of log base 10 transformed CI 

data. 

 Independence of samples.  No change, samples independent. 

 Normality of distributions.  The skew and kurtosis of the population are -0.41 and 0.47, 

respectively.  Blanca et al. (2017a) reports that values less than one maintain F-test 

robustness. 

 Equality of variances: 

o The variance ratio for the CI data is 1.4, which is within the target of 1.5. 

All assumptions for this ANOVA are met and the boxplot are summarized in Figure 22.  Due to 

the nature of the transformation, lower values represent better condition and higher values worse 

condition.  The ANOVA results are summarized in Figure 23.  The F-ratio of 17.5 is lower than 

the F-ratio of 31.9 in the untransformed data, but the mean CI values across corrosivity 

categories remain statistically different at p-value approaching zero. 
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Figure 22.  CI log base 10 Boxplots 
 
 

 
Figure 23.  CI log base 10 ANOVA Results 
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 A change in Figure 24 is that the mean CI values are paired in two statistically similar 

groups, C2 and C5; and C3 and C4.  C2 still has the “worst” CI at the transformed value of 1.44.  

C4 now has the “best” CI at the transformed value of 1.35, but this is not statistically different 

enough from C3 (p-value = 0.6212). 

 
 

 
Figure 24.  Log base 10 CI Tukey HSD Results 
 
 

Remaining Service Life 

 RSL was correlated with CI to determine if its behavior is different enough to warrant 

further investigation by ANOVA.  The raw correlation is shown in Figure 25.  As previously 

mentioned, RSL cannot be negative so all the values are truncated at a CI of 40 to equal zero, 

giving the data a discontinuous slope at this point.  By taking the log base 10 of CI as in 

Equation 8, a linear regression can be conducted.  This is depicted in Figure 26. 
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Figure 25.  Correlation of RSL and CI Raw Data 
 
 
 

 
Figure 26.  Correlation of RSL and CI Transformed Data 
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 Correlation coefficients are greater than 0.91 for all corrosion categories.  This strong fit 

occurs even with the RSL = 0 values included.  The correlation results match the expectation 

from Equation 2, where RSL can be derived from the expected service life and time in years. 

Age 

 Age was analyzed in a similar fashion to CI for raw and transformed data.  Testing the 

ANOVA assumptions: 

 Independence of samples.  Sample ages are independent. 

 Normality of distributions.  The skew and kurtosis of the population are 1.16 and 0.53, 

respectively.  These are lower than the 6 skew and kurtosis 2 values tested by Blanca 

(2017a). 

 Equality of variances: 

o The variance ratio for the CI data is 2.2, which is greater than the target of 1.5. 

o Calculate correlation of group sample size and variances.  Per Figure 27, the 

correlation of 0.15 is close to 0 and therefore the ANOVA can be conducted. 

 

 
Figure 27.  Correlation of Sample Size and Variance for CI Corrosivity Categories 
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 Figure 28 shows that C4 has the narrowest range of ages with approximately half younger 

than 15 years since installation.  C5 has the largest range with some component-sections nearly 

70 years old.  The ages across different corrosivity categories is statistically different at a p-value 

approaching zero, depicted in Figure 29. 

 

  
Figure 28.  Age Boxplots 
 
 

  
Figure 29.  Age ANOVA Results 
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 As shown in Figure 30, C2 and C5 are paired statistically significant (p-value = 0.5393) 

and C3 and C4 are statistically significant pairs (p-value = 0.5386).  There is a mean difference 

of approximately four to five years between the two groups.  The order of the groups is the same 

order as the low to high CI found in the log base 10 transformed data in Figure 24. 

 

  
Figure 30.  Age Tukey HSD Results 
 
 
 
 The final test conducted is for log transformed Age data to verify the results.  Confirming 

the assumptions for ANOVA: 

 Independence of samples.  No change, samples independent. 

 Normality of distributions.  The skew and kurtosis of the population are -0.06 and -0.73, 

respectively.  These values are within the less than one tolerance for maintaining F-test 

robustness. 

 Equality of variances: 
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o The variance ratio for the CI data is 1.5, which meets the target of 1.5 needed for 

no further checking.  

Figure 31 summarizes the boxplots for the transformed Age data.  Higher values 

represent younger component-sections and lower values represent older component-sections.  

The ranges are similar, with C4 as the shortest. 

 

  
Figure 31.  Log base 10 Age Boxplots 
 

 In Figure 32, the previous results are repeated for a statisically significant different 

between categories (p-value approaches zero).  The ordering and pairing of values is preserved in 

Figure 33 as was shown in Figure 30. 



 

60 
 
 

 

  
Figure 32.  Log base 10 Age ANOVA Results 
 
 

 
Figure 33.  Log base 10 Age Tukey HSD Results 
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CHAPTER V 

DISCUSSION 

 The primary objective of finding a statistically significant difference in mean CI between 

corrosion categories was met.  The result of interest is that the Tukey HSD and summary 

statistics revealed that corrosion category C2 had the lowest mean CI.  Outside of C2, the mean 

CI values in descending order are C3, C4, and then C5.  C3 and C4 are statistically similar, so it 

is difficult to discern if there truly is a decrease from one category to the next.  This pattern is 

close to the one shown in the log base 10 transformed CI data.  However, Osborne (2002) notes 

that transformation of data preserves the order of values, but not necessarily the ratios or 

differences between them.  Due to the reversal by subtraction and logarithm taken, the upper CI 

values are condensed, and the difference in the lower CI values is more greatly exaggerated.  

This is the intent of the transform, and becomes more apparent in that C4 bridges between C3 

and C5 in the original data but does not do so and is independent of C2 and C5 in the 

transformed data. 

 As demonstrated in Figures 25 and 26, CI has a strong correlation with RSL.  Values 

“above” the regression lines in Figure 26 have lower Cis than expected for RSL and the opposite 

is true for values “below” the regression line.  It is also apparent that some component-sections 

are on different “tracks” as seen in the C3 subplot of Figure 26.  These likely have similar α 

values (Equation 2) where α determines the acceleration of deterioration.  Since RSL correlates 

so well with CI, it can be inferred that the C2 and C5 locations also have the lower RSL values, 

while C3 and C4 have higher RSL values. 
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 The results for Age are similar in both the raw and log base 10 transformed variants.  

Table 13 shows a comparison of the ranking of Age vs CI by corrosivity categories.  They are 

ranked in order of “worst to best” for each value, so low to high for CI and old to new for Age. 

 

Table 13.  Comparison of CI and Age Ranking 
CI (low to high) Age (old to new) 

C2 C2 
C5 C5 
C4 C3 
C3 C4 

 

 
 Age is not a primary factor for determining CI since component-sections can undergo 

multiple repair and part replacements over their lifetime.  A repair can bring an aged component-

section back to a CI of 95.  Nevertheless, it could be that Age and CI exhibit some relationship 

by corrosion category that results in the category with the oldest inventory also exhibiting the 

worst CI.  Excluding outliers, the C2 category also had the widest range of CI from 1 to 100 

whereas the next largest range was C4 at 10 to 100. 

 There are three major possibilities for the discrepancy with C2.  This could be due to (1) 

the limitations made in Chapter III, (2) errors in the data, or (3) flaws in the premise of the 

assumptions in Chapter III.  The locations in the data provide a good snapshot of active duty 

(AD) USAF locations at permanent locations across the global and across mission types.  Most 

of the D305006 sections tested are from C2 environments, but the largest category by number of 

locations was C3. 

If there are significant discrepancies in funding or the amount of preventive maintenance 

or corrective maintenance completed by different corrosivity categories, then these factors may 

overwhelm the impact of corrosion or amplify to a high degree.  Further information and 
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research would be needed to decouple the impact of funding and work completion.  The analysis 

conducted here is also predicated on looking at a single snapshot in time of BUILDER data, and 

not how condition changes over time.  This is a problem that is not easily solved because 

BUILDER is not fully implemented across the USAF and it will take time to further develop 

historical data on how CI changes temporally and across repair and replace cycles.  There is no 

equivalent data set or system similar to BUILDER data available for historical research.   

Additionally, there could be errors in the data.  As part of the cleaning efforts in Chapter 

III, over 75% of the data for D305006 Package Units was removed due to discrepancies and data 

that appeared to be unreasonable.  Errors are two-fold, good data could have been rejected and 

bad data could have been kept.  Ultimately, these errors cannot be fully corrected or accounted 

for while one is removed from the physical assets that this data represents.  Another issue could 

be errors due to outdated data.  Since condition assessments are conducted at a rate of 20% of 

total building area per year, some condition information could be five years old by the time it is 

analyzed.  Although BUILDER projects out CI based on its model, faster or slower degradation 

rates may not be accurately accounted for and the condition may not represent reality if the 

component-section were assessed today. 

Finally, the central premise that corrosion is the primary factor affecting HVAC 

equipment could be incorrect.  Although there is research that supports the notion that corrosion 

is a major factor in HVAC degradation, Bhatia (2020) notes that material defects and deposition 

of contaminants are also significant factors.  Material defects may not be readily apparent and 

may be more likely to influence the probability of failure as opposed to long-term and 

continuous degradation.  The probabilistic method proposed by Alley et al. (2017) for 

incorporating probability of failure into BUILDER may be a necessary step to help account for 
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defects that cause spontaneous failure.  Alternatively, existing maintenance ticket data could be 

used to identify incidences of failure by corrosivity category and see if there is any correlation or 

if it is decoupled from corrosive effects. 
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CHAPTER VI 

CONCLUSION 

Summary 

 In conclusion, the RQ was only partially answered and yielded an unexpected correlation 

of average condition by corrosion category for the D305006 Package Units. 

RQ.  How does HVAC equipment condition correlate by level of environmental 

corrosivity, as evidenced by BUILDER data on air conditioning equipment? 

 A statistically significant difference in HVAC equipment condition by 

environmental corrosivity was identified. 

 The pairwise correlation of categories is inconsistent with the lowest category of 

environmental corrosivity also exhibiting the worst condition. 

The original intent of this paper was to gain a better understanding of the interplay 

between corrosion and condition data but the results show that answering that question is not 

straightforward and there are other factors in play for the condition of HVAC systems.  

Unexpectedly, the age of D305006 Package Units different to a significant degree between 

corrosion categories.  This indicates that those categories have units that are being maintained far 

beyond their original service life, and this may be why those categories also have the lowest 

average CI.  Additionally, three quarters of the data had to be excluded from analysis.  It is 

apparent from the data that many values are copied and pasted into different fields, resulting in 

visible, widespread errors such as those described in Chapter III.  The data represents a 

significant investment in labor and resources to collect it, but it is difficult to analyze if not 

correctly entered into BUILDER. 
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Contribution 

The contribution of this research is an enhanced understanding of how component-

section condition data correlates with real physical phenomena and challenges the assumption 

that corrosion is the primary driver for condition degradation in HVAC equipment.  This is also a 

step in the direction of developing a corrosion cost factor similar to area cost factors for 

describing the budgetary and condition-based impact of corrosion in large and widespread real 

property portfolios. 

Recommendations 

This research raises questions on which factors primarily drive condition degradation of 

HVAC equipment in FCA data and the assumptions and limitations of this research should be 

revisited in future works to fully account for their impact.  Additional suggestions for researchers 

include: 

 Although there is limited historical BUILDER data due to the recency of its 

implementation in the USAF, the dataset continues to grow, develop, and receive 

updates by ongoing condition assessments.  A more long-term study would be 

able to capture the time component of corrosion and degradation.  Per AFIMSC, 

the USAF BUILDER data will not be fully useable for statistical analysis for 

another 10 years to capture trend data. (Vandeveer, M., personal communication, 

October 9, 2020). 

 Additional statistical analysis of the data can be used.  A key limitation in this 

research is that real world effects and data were analyzed using a normal 

distribution and transformation was required to validate the analysis.  Other 

distributions may provide better results for the data. 
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 A more granular corrosivity categorization system could be used.  ESI has 20 

categories compared to the six using ISO 9223.  The ESI system may be a better 

way to identify discrepancies and possibly used to focus in on locations that 

strongly deviate from expectations so they can be further analyzed. 

 Conduct analysis on the basis of historical MAJCOM data or mission type.  

Significant historical differences in funding by MAJCOM could contribute to 

having an inventory that has a statistically significant, lower CI than average.  

Mission types should be considered as well, because support facilities or non-

critical facilities may have historically had less funding than mission critical 

facilities at a location.  For example, installations with active flying missions may 

spend more maintaining airfield pavements and less on facilities compared to 

installations that operate space-based equipment and therefore have operational 

personnel working in space operations facilities. 

 Analyze the data weighted based on CRV.  This research was conducted on a per 

item basis, but an analysis based on CRV may yield further insight.  It may be that 

higher corrosivity locations have more expensive equipment than lower corrosion 

zones and therefore have lower CI when weighted for replacement cost. 

Suggestions for practical application by technicians include: 

 Improve the data quality in the BUILDER database.  As noted in Chapter IV, 

approximately 75% of the available data was not included for HVAC equipment 

due to issues identified in data cleaning.  Karanja & Mayo (2016) highlight the 

labor-intensiveness of conducting condition assessments and recommend 

increased standardization and of tasks and reduction of time spent by inspectors 
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moving from one location to the next.  Automation may be a tool for allowing 

inspectors to spend more time evaluating distresses and less time in transit. 

 Conduct rule-based automated maintenance of the database.  The errors identified 

in Table 9 can be used to prevent entry of erroneous data and automatically flag 

data issues for inspection and correction. 
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APPENDIX 

Table 14.  Component-Section Details, Adapted (Desrosiers, 2020) 

ID Column Data Type Description 

0 Cost_Escalation_N Float Area cost escalation factor 

1 CI Int Component-section condition 
index 

2 SI Int System index 

3 MatEquipType String Component-section type 

4 CRV Int Component (component-
section) replacement value 

5 BldgArea Int Building quantity 

6 CATCODE Int DoD facility category code 

7 System String Level 2 of UNIFORMAT  

8 BldgNum Int Building number 

9 MDI Int Mission dependency index  

10 PRV Float Building plant replacement 
value 

11 MaximumRSL_Standard Int Used for determining 
replacement (remaining service 
life) 

12 SectionName String Assessor chosen name for 
section 

13 RPUID Int Real Property Unique ID 

14 Component String Level 3 of UNIFORMAT 

15 CompType String Component-section material 

16 MinimumCI_Standard Int Used for determining repair  

17 Age Int Age in years since installed or 
constructed 

18 SEC_Beta Float β for calculating CI 
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Table 14.  Continued 

ID Column Data Type Description 

19 FAC Int Building type for PRV 
determination 

20 RSL Float Remaining service life 

21 InstallDate Int Install or construct date 

22 RPATotalUnitOfMeasureCode String Quantity type of measurement 
for component-section 

23 SumOfRPATotalUnitOf 
MeasureQuantity 

Int Quantity for measurement of 
component-section 

24 SEC_Alpha Float α for determining CI 

25 Expected_Service_Life Int Overall expected service life (E 
in CI calculation) 

26 BldgSize_Eng_UM String Unit of measure for building 

27 Anonymous String Anonymized location 

28 ClimateZoneCode String Climate variable 

29 MainClimate String Climate variable 

30 Precipitation String Climate variable 

31 Temperature String Climate variable 

 

 
Table 15.  Equipment Details 

ID Column Data Type Description 

0 BldgNum Int Building number 

1 System String Level 2 of UNIFORMAT  

2 Component String Level 3 of UNIFORMAT 

3 MatEquipType String Component-section type 

4 CompType String Component-section material 
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Table 15.  Continued 

ID Column Data Type Description 

5 SectionName String Assessor chosen name for 
section 

6 Install Date Int Install or construct date 

7 YearSource String Qualification of where install 
date came from 

8 Qty Int Equipment quantity 

9 UoM String Quantity measurement type 

10 CRV Int Component (component-
section) replacement value 

11 CI Int Component-section condition 
index 

12 AssetID String Self-explanatory 

13 ID_Number String Assessor comment of local 
name 

14 Equipment_Type String Assessor comment of 
equipment type 

15 Equipment_Make String Manufacturing company  

16 Model String Manufacturer model number 

17 Serial_Number String Assessor comment on 
equipment plate serial number 

18 Capacity String Assessor comment of 
equipment capacity 

19 Manufacturer String Manufacturing company 

20 Date_Manufactured String Self-explanatory 

21 Date_Installed Int Self-explanatory 

22 Control_Type_Make String Assessor comment 

23 Warranty_Date Int Warranty end date 

24 Warranty_Company String  Self-explanatory 

25 Location String Location in building 
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Table 15.  Continued 

ID Column Data Type Description 

26 Comment String Assessor inspection comment 

27 Warranty_Date2 Int  Warranty end ate 

28 Warranty_Company2 String Self-explanatory 

29 RPUID Int Real Property Unique ID 

30 Anonymous String Anonymized location 

31 ClimateZoneCode String Climate variable 

32 MainClimate String Climate variable 

33 Precipitation String Climate variable 

34 Temperature String Climate variable 

 


