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ABSTRACT∗

The task of general object classification via images has been studied extensively. It involves

distinguishing very different object categories like a dog or a cat. On the other hand, the task of

fine-grained classification deals with the recognition of images having subtle visual differences

among the classes or categories. The marginal visual difference between different classes in fine-

grained images makes this very task harder.

The work of this thesis is inspired by how the human visual system looks for fine attention

details to recognize an object in the image. Our brain is trained to look for some particular fine dis-

criminative details by repetitively scanning through the image. Through our work, we tried to focus

on these marginal differences to extract more representative latent features via deep learning mod-

els. Similar to human vision, our network recurrently focuses on the parts of images to spot small

discriminative parts among the classes. Moreover, we show through interpretability techniques

how our network focus changes from coarser to finer details. Our network uses only image-level

labels and does not need bounding box/part annotation information to spot these changes. Further,

the simplicity of our network makes it an easy plug-n-play module increasing its usability in other

applications.

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.

ii



DEDICATION

To my mother, my father, and my entire family who supported me throughout my career.

iii



ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my supervisor, Prof. Zhangyang (Atlas) Wang of

Department of Computer Science and Engineering at Texas A&M University for the continuous

support of my work and research through-out my masters even when the road got tough. He has

always encouraged me to challenge the status quo and has provided numerous valuable life-long

learning that would surely help me in the future. I would also like to thank my co-advisor Prof.

Nima Khademi Kalantari, and committee member Tie Liu for their guidance during the work.

I would especially like to thank my fellow Vita Informatics Group (VITA) lab member Tianlong

Chen without whose technical and intellectual guidance; this thesis would never have taken this

shape.

Finally, and most importantly, I would like to acknowledge the support of my family and friends

for always encouraging me throughout my years of study.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Zhangyang (Atlas)

Wang [advisor], Professor Nima Khademi Kalantari of the Department of Computer Science and

Engineering and Professor Tie Liu of the Department of Electrical and Computer Engineering. All

other work conducted for the thesis was completed by the student with timely advise from fellow

colleague Tianlong Chen.

Funding Sources

This work did not have any funding.

v



NOMENCLATURE

RCNN Region-Convolutional Neural Network

CNN Convolutional Neural Network

FG Fine Grained

DNN Deep Neural Network

RNN Recurrent Neural Network

FFT Fast Fourier Transform

BN Batch Normalization

LSTM Long-Short Term Memory

MLP Multi Layer Perceptron

ML Machine Learning

VGG Visual Geometry Group

GAP Global Average Pooling

CAM Class Activation Maps

Grad-CAM Gradient Class Activation Map

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Our Proposal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Weakly Supervised Patch Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Two-Stream Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3.1 Global Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3.2 Local Stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.4 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4.1 Classification Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4.2 Ranking Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.5 Joint Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. EXPERIMENT DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. ANALYSIS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. ABLATION STUDIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Effect of Network Components on Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Attention vs Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Are All Scale Equally Discriminative? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7. CAN WE GET FINER? ADDING SELF-ATTENTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8. FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

viii



LIST OF FIGURES

FIGURE Page

1.1 Figure shows the distinction between generic image classification and fine-grained
classification. The generic image classification usually distinct very different im-
age categories like dog, cat, elephant but fine-grained recognition deals with fine
categories like bird species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Figure shows the presence of very small and subtle variations between different
classes/categories in fine-grained dataset.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Figure shows the presence of variations in form of scale, view, winged/non-winged
pose among the images of a same class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Figure shows the fine difference between two very visually similar yet different
categories of images. Only focusing on discriminative region (in this case peck)
can help to identify correct class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 The pipeline of our two-stream architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Output of weakly supervised patch detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Attention maps corresponding to hidden representations of LSTMs for CUB200-
2011 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Attention maps corresponding to hidden representations of LSTMs for Stanford
Dog dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Accuracy corresponding to using feature at different time steps of LSTM . . . . . . . . . . . . 24

6.2 The figure shows the correct/incorrect classification when feature corresponding to
time step 1,2,5,6,9 is used only for classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Figure shows the placement of self-attention module with the recurrent LSTMs.The
feature map represents output from last convolution layer of local-stream. . . . . . . . . . . . 27

7.2 The figure shows the zoomed details of the self-attention block. The green blocks
shows the MLP layer to produce query vectors and answer vectors. The Key and
Values comes from feature map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.3 The figure shows an example where self-attention improves the attention area. It
denotes the grad-cam visualization of hidden representation of LSTMs (a) without
self-attention module and (b) with self-attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



LIST OF TABLES

TABLE Page

5.1 It shows the accuracy for our network over baseline for CUB200-2011 dataset
c©2020 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 It shows the accuracy for our network over baseline for Stanford Dogs dataset
c©2020 IEEE.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Effect of different components on classification accuracy for CUB200-2011 dataset
c©2020 IEEE.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Effect of feature summation vs attention on CUB200-2011 dataset. ’∼’ denotes
the summation of all the features between specific time steps c©2020 IEEE.. . . . . . . . . . 23

x



1. INTRODUCTION∗

1.1 Overview

Image classification is one of the most researched area in the field of computer vision and

machine learning [1, 2, 3]. The aim of this problem is to identify a object within an image like

identification of dog or cat in an given image. The various methods developed in the area of

image classification forms a solid bedrock over which more more advanced problems like object

detection [4, 5, 6], visual question answering [7], image segmentation [8, 9] are developed. Figure

Figure 1.1: Figure shows the distinction between generic image classification and fine-grained
classification. The generic image classification usually distinct very different image categories like
dog, cat, elephant but fine-grained recognition deals with fine categories like bird species.

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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1.1 shows the difference between generic and fine grained image classification. Generic image

classification deals with recognizing a broader category like dog, cat, person. On the other hand,

the fine-grained image classification deals with recognizing identity of an object at much finer

level like bird species, dog species. This makes the fine grained recognition problem much more

intricate. For example, answering whether an image has cat or dog is much easier than telling

which specie of bird is present in the image. Fine-grained image classification is challenging due

to very small inter-class but large intra-class variations among the classes (identities). The presence

of small inter-class variation is due to very subtle differences within these classes as shown in fig

1.2 while there could be large intra-class variations due to difference in illumination, background,

pose, scales, and viewpoint as evident in figure 1.3.

Figure 1.2: Figure shows the presence of very small and subtle variations between different
classes/categories in fine-grained dataset.

Fine-grained image classification has been an active research area that recognizes sub-categories

(SUV, jeep, sedan) within some meta-category(cars). Deep neural networks have shown astound-

ing performance in generic image classification. It has become the de-facto tool to extract powerful

representations from the images. Deep learning approaches for fine-grained classification fall into

two separate paradigms: localization-classification network [10, 11, 12], and end-to-end feature

encoding [13, 14, 15]. The first category makes use of a separate localization network along with

the classification network. The localization network is used to localize the discriminative image

2



Figure 1.3: Figure shows the presence of variations in form of scale, view, winged/non-winged
pose among the images of a same class.

regions/parts. In order to localize these fine changes, earlier work [16, 17] has relied on human-

annotated bounding box/par annotations (eg: head, wings, feather color). But, all these human-

based manual annotations make the process quite intensive, laborious, and subjective. Also, the

manual annotation may be possible for small scale datasets like CUB200-2011 [18] and Stanford

dataset [19, 20] but not feasible for large-scale image dataset say ImageNet [1]. Convolution neural

networks (CNNs) were hence leveraged for weakly supervised part-learning with category-labels

only, assuming no dependencies on bounding box/part annotations [21, 22, 23].

In the localization-classification network, the localization subnetwork focuses on learning the

objects parts shared among the same classes while the classification subnetwork extracts discrimi-

native features from these localize objects to make them different among classes. The localization

network is used to extract very fine grained details which are discriminative among classes. Figure

1.4 shows an example of presence of a (only) fine detail which is different in two very similar yet

different classes. This complementary network architecture requires separate losses [16, 10] and

tends to be computationally expensive.

The second category is to encode higher-order statistics of convolutional feature maps to en-

hance the feature presentation of the image [13, 24, 25, 26]. One of the first works in this category

3



was the use of Bilinear CNNs [13] which computes pairwise feature interactions by two indepen-

dent CNNs to capture the local differences in the image. Another work [27] proposed to encode

CNN representation with Fisher Vector representation giving much superior performance on sev-

eral datasets. But using higher-order dynamics makes the network less human-interpretable when

compared to the localization-classification sub-network.

Following the paradigm of localization-classification network, we tried to study the problem

of fine grained recognition specifically in the context of finding these fine subtle variation and the

level of granularity where they are most discriminative.

Figure 1.4: Figure shows the fine difference between two very visually similar yet different cate-
gories of images. Only focusing on discriminative region (in this case peck) can help to identify
correct class.

1.2 Research Questions

The common thread between various designs and architectures in the field of fine grained image

recognition is the presence of localize network to extract the marginal discriminative representa-

4



tions of the parts of image. But they don’t explore the scale at which these marginal differences

provide most information helpful in discrimination. Moreover, very less research has been done to

make them explainable.

Through our work on this topic, we aim to tackle following two questions:

• What is the level of granularity of distinguishing parts that provide most benefit to the clas-

sification accuracy?

• How to view these marginal differences in human-interpretable form?

• We also analyzed the "What" and "Where". "What" features are most dicriminative and

network attend to. Also, "Where" is it present in whole image.

1.3 Contributions

To overcome the above-mentioned challenges, we propose a novel attention-based recurrent

convolutional neural network for fine-grained image classification. Our network recursively at-

tends from coarse to the finer region of image or parts of the image to focus on the discriminative

region more finely. Our model is simple, computationally inexpensive, and interpretable. Our mo-

tivation is that by processing an image or a part of the image recursively, we can focus on most

discriminative details by continuously removing insignificant ones and other background noises.

Further, by aggregating the finer regions from the image via suitable attention we can pinpoint the

most discriminative region in the image. Additionally, the module is plug-and-play which greatly

enhances its scalability and usability.

Our network consists of a weakly supervised patch extraction network which extracts different

patches corresponding to an image. Another network attends to each patch by recurrently process-

ing it via LSTMs. We use uni-directional stacked LSTMs to recurrently pass the patch through the

time steps of LSTMs. Then, an attention layer is used to aggregate the finer representation from

the output of the LSTMs. Specifically, we used the ’soft’ attention methodology that discredits

irrelevant areas and focuses on discriminative finer scale. We append this network to the baseline

5



image classifier giving way to a two-stream architecture. To leverage the power of ensembles, the

representative features are (weighted) fused and then passed to the end classifier.

Our contributions can be summarized as the following:

• We propose a novel recurrent attention network which progressively attends to and aggregate

finer image details, for more discriminative representations.

• We show through various ablation studies the human interpretability of our attentions and

features.

• We conduct experiments on two challenging benchmarks (CUB200-2011 birds [18], Stan-

ford Dogs [19]), and show performance boosts over the baselines.

1.4 Outline

The remainder of the thesis is organized into following sections. Section 2 provides a brief

survey of various parts of model referred. Section 3 discusses in detail the approach and method-

ology of our design. This includes the architecture, design setup, datasets, and other experimental

details. Section 4 discuss the ablation studies to support the results and how it answers our research

problem. Section 5 quantifies our results. Section 6 sheds some light on future direction. Finally,

section 7 discuss the strength and limitation of approach leading to the conclusion.
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2. RELATED WORK∗

Learning discriminative features have been studied extensively in the field of image recognition

and also for fine-grained classification. Due to the great success of deep learning, powerful deep

convolutional based features [28, 29, 30, 31] forms the backbone for most of the recognition task.

This has shown a great boost in performance when compared to hand-crafted features. To model

subtle difference, a bilinear structure [13] is used to compute pairwise differences. The use of

boosting to combine the representation of multiple learners also helps to improve classification

accuracy [32].

Many models [33, 34] falls under the localization-classification paradigm. The main idea be-

hind these approaches is to first find the discriminative regions and then compare their appearance.

The localization framework requires the semantic parts like (head, body) to be shared among ob-

jects in the same class yet be discriminative to be different across other classes. Also, another

paradigm uses second-order information in fine-grained feature extraction. Pooling methods that

utilize second-order information[35, 26] have proven to enhance the extraction of more meaningful

information.

Given the subtle differences between fine-grained categories, it becomes imperative to focus on

and extract meaningful features from them. There has been extensive research [36, 34, 37, 38, 39]

to develop interpretable models that visualize regions attended by the network. In [36], Class

Activation Maps (CAMs) are used to provide object-level attention thus not providing much finer

discriminative details. Over time, there have been variants developed [40, 41], that explore the

backward propagation to identify salient image features. In [34, 37, 38], attentions are at a much

finer level where the focus is more on the parts of the object that are discriminative rather than

the whole body/object. In [39], the authors associate the prototypical aspect to the object part to

reason out the classification prediction for an image. Our network makes a simple approach based

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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on [40] to visualize the fine attention areas in the patches.

Attention has been incorporated in visual related tasks from long time [42, 43, 44, 45]. At-

tention models are aimed at identifying discriminative image parts that are most responsible for

recognition. We follow on the same methodology of the visual-attention model to aggregate the

output of LSTMs to have weighted attention to the most discriminative patch/part of the image.

In [12], the author uses weakly supervised model to generate different patches of the same image

containing different parts of images. We used a similar approach to extract patches from the images

which is further used to look for finer details. This method does not use any external information

like part annotations/bounding box information.
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3. METHODOLOGY∗

3.1 Our Proposal

3.1.1 Overview

Figure 3.1: The pipeline of our two-stream architecture.

Figure 3.1 shows the pipeline of our overall architecture. Given an image I and its correspond-

ing label c, our network aims to look longer via recurrently iterating through a patch of an image to

extract more fine-grained information. A bottom-up weakly supervised object detection approach

is used to extract meaningful patches (parts of the images) [46]. This network uses only the cat-

egory level labels and does not use any part annotations or bounding box information. Further,

a two-stream feature extractor is used to extract global and object-level feature representations.

The global branch is a simple CNN based feature extractor that extract features from whole image

providing global representational context. On the other hand, the local branch takes in a part of

image and recurrently process it top-down to extract fine representations at several levels. This is

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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followed by an attention layer to attend to most discriminative attention details in view to boost the

overall classification accuracy.

3.1.2 Weakly Supervised Patch Extraction

Figure 3.2: Output of weakly supervised patch detection

The local stream of the architecture (defined here 3.1.3.2) uses a part of an image specifically

the region of the image representative of some part of the image. Many datasets provide the part-

annotation information but we wanted our method to be generalize to the datasets even when those

annotation information is not available. Hence, we generated our patches in weakly supervised

fashion. That means to extract the significant parts of image only category level information is

utilized. There has been many methods to extract the patches in weakly supervised manner [47,

12, 48]. We specifically used the methodology in [39]. The methodology defines the prototypical

patches for each of the images according to the highest activation of feature maps during the

training phase. We tune this architecture to extract N patches for each image as shown in figure

3.2.
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3.1.3 Two-Stream Architecture

Once we get a set of patches for each training image I, we randomly select a patch Pi from the

set of patches P obtained. Hence, the input to the two-stream architecture consists of image I and

a patch Pi defined by a pair of coordinates.

[(xtli , y
tl
i ), (x

br
i , y

br
i )] (3.1)

where tl and br represents top-left and bottom-right. The pair of coordinates denotes top-left and

bottom-right corners of the box over the part of image. Assuming top-left corner in the original

image as the origin of a pixel coordinate system, x-axis and y-axis is defined from left-to-right and

top-to-bottom respectively.

As shown in figure 3.1, there are two streams in the architecture. The top stream consists

of a convolution-based feature extractor followed by the classification layer and softmax layer.

The second stream takes patch from images and extracts feature representations via CNN. These

features are recurrently passed through Long-Short Term Memory (LSTMs) to get better and finer

representations focusing on fine discriminative regions within the patch. These finer patches are

weight-aggregated via an attention layer. Finally, the output of attention layer is passed through

classification and softmax layer. Both of the stream are optimized via the weighted-loss function

formed by adding the cross-entropy losses from the both the stream. Both of these streams are

discussed in detailed in the following subsections.

3.1.3.1 Global Stream

Given an input image I, we first extract deep features by passing the image through a convo-

lution neural network. The neural network is pretrained on ImageNet [1]. The extracted represen-

tations can be written as Wg * I, where Wg denotes the representative weight of the whole neural

network and * denotes all the convolution, pooling, and non-linear functions performed on the

input image. The features are further passed through a softmax layer which outputs a probability

11



distribution over fine-grained categories. Mathematically,

GI = F(Wg ∗ I) (3.2)

where GI represents global representation for image and F(.) denotes the Global Pooling

Layer (GAP) [49] followed by a full-connected softmax layer which transforms the deep features

into probabilities. The global stream is used to extract global representative features of the images.

The reasons for including this simple branch are two-fold. First, the motivation is to provide

more global information into the network during the training since the patches/part of the object

extracted focus on the object itself. Second, it provides a simple baseline over which our local

stream can be added demonstrating the plug-n-play functionality of our main contribution.

3.1.3.2 Local Stream

The output of weakly supervised patch extraction framework is dominant parts of an image as

P = [P1, P2, P3, ..., Pn], where each Pi could be defined as a pair of coordinates of bounding box

for a region of an image. The image regions are cropped from the image as shown in the figure 3.1.

The set of cropped image regions can be denoted as I(P) = [ I(P1), I(P2), I(P3), ..., I(Pn)].

Once a region I(Pi) (say ith patch) is cropped from image I, it is passed through the pre-trained

convolution neural network as:

Fi = (Wg ∗ I(Pi)) (3.3)

where Wg represents the overall weights of CNN and * denotes convolution, pooling, and other

non-linear functions. The dimension of output feature Fi is w x h x c where w, h, c represents the

width, height, and channel of feature map. Note that the CNN in global stream and local stream

does not share weights. The feature map Fi is recurrently passed through different time steps of

stacked-LSTMs. The motivation of this step is to make the details finer as the feature map of

patch passes through several time steps of LSTMs. So, the input to each time step is the same

feature map Fi. The output of the first layer of LSTMs is passed as input to the second layer. The

temporal representative function of stacked-LSTMs can be denoted as φ. Hence, the outputs of

12



stacked-LSTMs can be modeled as

[φ(F1
i ), φ(F

2
i ), ...., φ(F

T
i )] (3.4)

where t = 1,2,3 ... T denotes the time steps of stacked-LSTMs and φ denotes the function modelled

after each time step by LSTMcell. φ(Ft
i ) ∈ RD is the D dimensional vector denoting output of

feature part( ith patch) Fi at time step t. Our experiments 5 validates our hypothesis about how

feature changes over the time steps to focus on finer details of parts.

Once we have finer details of a patch through the LSTM, an attention network is used to per-

form a weighted aggregation over these finer features. We believe the advantages of attention is

two-fold. First, the trainable weights of attention layer help to provide more weights to the discrim-

inative finer scale of the patch. The attention network helps to focus on the scale of the patch which

maximizes the classification accuracy by removing the noisy parts. Secondly, the weighted aggre-

gation of these different time-step features aggregates fine details within the patch. The output of

attention layer can be written as:

Ai =
T∑

t=1

αtφ(Ft
i ) (3.5)

where

αt =
exp(Wt · φ(Ft

i ))∑T
t=1 exp(W

t · φ(Ft
i ))

(3.6)

where Ai is the output of attention network and Wt ∈RD is the trainable weight parameter assigned

to feature at each time step. Finally, the D-dimensional output from attention layer is to pass

through a network of fully-connected neural network and softmax to generate class probability

vector for fine-grained categories given by:

LI = F
′
(Wl ∗ Ai) (3.7)

where LI represents the probability distribution, Wl encapsulates the weights of full-connected

layer after attention,F ′(.) denotes the softmax layer, and Ai denotes output from attention network.
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Such design enforces the network to gradually attend to the most discriminative region of patch/part

of the image and boost confidence in the prediction of an image.

3.1.4 Loss Functions

The proposed dual-stream architecture is optimized via two different types of loss functions,

i.e., classification loss and margin-based ranking loss. Specifically, we minimize the following

joint multi-task loss function:

Ltotal = Lc(Yg
n,Y

l
n,Y) + λ ∗ Lr(p

g
t , p

l
t) (3.8)

Where λ limits contribution of ranking loss to the overall objective function and is empirically set.

The meaning of the terms involved in loss function is discussed in the following section.

3.1.4.1 Classification Loss

One of the loss function used to optimize network is the cross-entropy based classification

loss. Here, we used two different instances of the same classification loss. So, for a given image

the multi-scale loss function can be defined as follows:

Lc =
N∑

n=1

[LXE(Yg
n,Y) + λ

′ ∗ LXE(Yl
n,Y)] (3.9)

where LXE represents classification loss over nth sample. Yg
n denotes predicted label from the

probability distribution of global image GI and correspondingly Yl
n denotes the predicted label

from probability distribution of patch representation of local stream LI . Y is the ground truth label

vector for nth training image. The λ1 controls the amount of patch representation’s influence on

overall optimization. The specific classification loss used is the cross-entropy loss given by:

LXE(Yg
n,Y) = −

C∑
k=1

YklogYg
n (3.10)
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where C denotes the total number of classes. Such a design helps the network to learn both global

and region based local patch representative features simultaneously.

3.1.4.2 Ranking Loss

Another loss function used is inspired from [10]. The margin based loss function is denoted by

Lr and given by:

Lr(p
g
t , p

l
t) = max{0, pgt − plt +margin} (3.11)

where pt denotes the probability corresponding to correct label t. This enforces that difference

between the probability of correct label for global branch and for local branch is not greater than

some margin. The global branch uses whole image context and learns the higher level semantics

which produces better results with much higher confidence. Therefore, we want the local-branch

to also take predictions from global branch as reference. This leads the local-branch to generate

results with much more confidence.

3.1.5 Joint Representation

Once the network is trained end-to-end, we obtain two feature representations of an image I,

one from the global stream GI and another from the local stream LI. These descriptors are global

and finer part-attention region representations. Hence, to boost the performance we merge the

feature output from two-stream to evaluate the performance on the test set. The merge is weighted

is the same way as the losses of both streams are weighted.
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4. EXPERIMENT DETAILS∗

4.1 Dataset

We evaluate the usability and interpretability of our network on the following two datasets:

• CUB200-2011[18] is one of the most used fine-grained classification dataset with 11,788

images from 200 classes. We followed the conventional split with 5,994 training images and

5,794 test images.

• Stanford Dogs[19] contains 120 breeds of dogs taken from ImageNet. It has 20,580 images

with 12,000 training images and 8,580 test images.

4.2 Implementation Details

We initialize the Convolutional Neural Network of both the stream with ImageNet pre-trained

VGG network, specifically VGG19 variant. We do not use any part annotation or bounding box

information. The patches are extracted in a weakly supervised manner. For the global stream,

We have followed the standard practice as per literature. The input to the global-branch CNN

is 448x448 image. To reduce computation, we removed all the fully connected layers before the

classifier layer of VGG19 and replace them with the Global Average Pooling (GAP) layer followed

by a classifier layer and softmax.

For Local stream, the output of the weakly supervised network is a set of multiple patches

for an image. These patches have varying spatial dimensions. Hence, before passing into local

stream’s CNN the patches are resized to 224 x 224. The feature map from the final convolutional

layer is passed through another Global Average Pooling (GAP) layer to output a 512 -dimensional

feature(D). This feature vector is passed through stacked-LSTMs with a hidden size of 512. Note

that the feature vector is the same across all the time-steps of LSTMs hence it is computed only

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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once. The output of each step is fed to the attention layer which creates a soft-score for each

of the time steps. These scores are multiplied with LSTM’s features and summed to produce a

representative feature of the same dimension (512).

The global and local branch VGG19 uses different base learning rate. The initial learning rate

for global branch is 0.001 and for local branch is 0.01 . The every 40 epochs , the learning of both

stream is reduced by a factor of 0.1.

End-to-end training of both streams proceeds with global and local stream having softmax with

cross-entropy losses and ranking losses. The margin for ranking loss is empirically set to 0.5. The

λ is set to 0.5 and λ′ is set to 1.0 . At test time, these softmax layers are removed and the prediction

is based on the same weighted combination of the features from two stream.
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5. ANALYSIS AND RESULTS∗

Attention Areas: Insights into the behavior of the local branch can be obtained by visualizing

the features of the attention layer and drawing the attention heatmap around the attended regions

within the patch. We ran Grad-CAM [40] on the output of the local stream to visualize the finer

attended region within the patch.

The effect of hidden representations of LSTMs from various time-steps is shown in figure

5.1. Using Grad-CAM, [40] we can see the part of the image a time step’s hidden representation

attends to. Aligning with our motivation, we can see that the attention in heatmap goes finer as

we go deeper from the initial time step. As seen in figure 5.1 , the initial hidden representations

in LSTMs focus on much broader areas of the patch, but as we recurrently pass the patch through

the deeper LSTM cells the attention becomes finer. Moreover, in some cases 5.1 the attention

spans changes from generic regions like the whole face to more subtle variations in ears feather,

beak 5.2. But finer does not mean it is more discriminative. Different image/patches might require

focusing on different level of fineness in order to be most discriminative. Hence, a soft attention

layer is used that provides more weights to representative scale of patch. This helps to attend to

most discriminative level or region of patch which maximizes the classification accuracy.

Further, the simplicity of the module makes it possible to use it as a plug-n-play module. The

local stream can be attached to any network which will be helpful to visualize how the network

is attending to the various region of an image. It helps to inject interpretability and get a better

understanding of the network evident from figure 5.2

Quantitatively, We tried to see the effect of the addition of this local stream (providing fine

discriminative features) representations to the global stream (providing the higher level semantic)

on the overall classification accuracy. We ran over two datasets described in section 4.1. The

results show we gain a boost in classification accuracy over the standard baseline as tabulated in

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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Table 5.1: It shows the accuracy for our network over baseline for CUB200-2011 dataset c©2020
IEEE.

Model Accuracy(%)
VGG19 [28] 77.8

VGG19 + local-stream 79.8

table 5.1 for CUB200 dataset and table in 5.2 for Stanford dogs dataset.

Table 5.2: It shows the accuracy for our network over baseline for Stanford Dogs dataset c©2020
IEEE.

Model Accuracy(%)
VGG19 [28] 77.2

VGG19 + local-stream 78.7
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Figure 5.1: Attention maps corresponding to hidden representations of LSTMs for CUB200-2011
dataset.
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Figure 5.2: Attention maps corresponding to hidden representations of LSTMs for Stanford Dog
dataset.
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6. ABLATION STUDIES∗

We conducted the following ablation studies to see how different components aid for the overall

increase in classification accuracy.

6.1 Effect of Network Components on Classification

Table 6.1: Effect of different components on classification accuracy for CUB200-2011 dataset
c©2020 IEEE.

Model Accuracy(%)
VGG19 [28] 77.80

VGG19 + local-stream(CNN only) 77.79
VGG19 + local-stream(CNN + LSTM) 78.20

VGG19 + local-stream(CNN + LSTM + attention) 79.60

As shown in table 6.1, presence of only Convolutional Neural Network in local-stream doesn’t

add much performance benefit. Further, a stacked-LSTM layer is added in the local-stream. Here,

the local-stream is trained using cross-entropy losses on the outputs of all the time steps. During

inference, we only consider the output of final step. This addition of stacked-LSTM layer boost the

performance by a significant margin (∼1%) , indicating the finer details provide the discrimina-

tive information. Moreover, attention layer provides extra gain to reach much better performance

showing the effectiveness of weighted aggregation of the finer features which puts more attention

to the fine scale providing better discriminative features.

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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6.2 Attention vs Summation

We investigate the effect and importance of attention in the local-stream of the network, we

tried to replace the attention layer with a simple summation of features. This can be viewed as

provided equal weightage (= 1) to each scale of fine features. Table 6.2 shows the result of an

experiment comparing simple summation of features from time step 1 to 10 with attention layer.

Each row (t1 ∼ t2 ) represents the summation of feature from time step t1 to t2. We clearly see that

the simple summation of the feature does not help in classification score. In fact, in some cases

it decreases the overall accuracy. The result validates the claim that simple summing doesn’t help

to boost the accuracy while the attention layer explicitly learns the weights for each feature at the

time steps. Hence, attention plays a pivotal role in the network.

Table 6.2: Effect of feature summation vs attention on CUB200-2011 dataset. ’∼’ denotes the
summation of all the features between specific time steps c©2020 IEEE.

Feature Summation Accuracy(%)
1 78.90

1 ∼ 2 78.78
1 ∼ 3 79.18
1 ∼ 4 78.75
1 ∼ 5 77.04
1 ∼ 6 75.32
1 ∼ 7 72.97
1 ∼ 8 71.01
1 ∼ 9 69.21
1 ∼ 10 67.64

Attention 79.60

6.3 Are All Scale Equally Discriminative?

The features at different time-steps of LSTMs attend to different scale of the discriminative

region. We wanted to see if all different scales of these regions are equally discriminative? We
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also want to explore if there is any dominant scale of representation.

We hypothesis that even though the region of discriminative parts become finer that does not

automatically lead to better translation in the classification accuracy. We also believe that there is

no one dominant scale of representation that always gives the best classification score.

Figure 6.1: Accuracy corresponding to using feature at different time steps of LSTM

Figure 6.1 shows the accuracy of using the feature of only a certain time step. There are two

things to observe in this case. First, there is quiet a variations in the accuracy of different time

steps. Also, there is no dominant feature that is better than rest of the features. The different

between time step 4 and 6 is negligible.

Second observation is there is no upward or downward trend. This states that there is no

relationship between the fineness of the region and the scale being discriminative. For a different

region, a certain level of fine-ness may be "most" discriminative at time step where another region

may be not. Hence, each region is discriminative at a certain or multiple fine level(s). This is

also evident from the figure 6.2. Each row shows the attention maps corresponding to features

at different time steps and the classification output (correct/incorrect) when corresponding time

step feature is used. As seen in figure, the top row has correct classification score at 1,5,6,9 while
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incorrect at 2. On the other hand, the bottom row has correct classification score at 2,5 but incorrect

at 1,6,9 . So, we don’t find see any dominant trend between time steps of LSTMs and classification

accuracy.

Figure 6.2: The figure shows the correct/incorrect classification when feature corresponding to
time step 1,2,5,6,9 is used only for classification.
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7. CAN WE GET FINER? ADDING SELF-ATTENTION

With the emergence of transformers and its other variants in language modelling field, multi-

headed self-attention has become ubiquitous in the field. The variants acting on images based

feature map has helped to increase the attention accuracy in the field of vision too [50, 51]. The

major component is the self-attention module. It forgos the recurrence in LSTM module in favor

of simple scaled dot-product multiplication between the representations. The input is viewed as

set of Key-Value pairs (K,V) and the previous output (or context) is encoded as query (Q). Under

this methodology , the output is produced by combining mapping the query with keys and values

and is called answers. Succinctly,

Attention(K,Q, V ) = softmax

(
Q ·K√

n

)
V (7.1)

The module used in our network has been inspired from the work of [52, 53, 54]. The self-

attention is inserted between the two LSTM. Self attention module works on the feature map hence

gains the advantage of working on the higher spatial semantics. So the global average pooling layer

is removed after the last convolution layer. The feature map of last convolution layer forms the

input to the self-attention module. The self -attention module hast takes feature map and previous

hidden state of LSTM and outputs the input for next LSTM. This is different than directly passing

the same patch to all time steps of LSTM. The placement of self-attention module is show in figure

7.1.

The figure 7.2 shows the detailed version inside the self-attention module. The output of the

local stream convolution neural network (used resnet34 here) forms the input and is computed only

once. The same feature map is used at each step of self-attention. The output activation map F ∈

Rh×w×c is split along channel representing keys K ∈ Rh×w×ck and values V ∈ Rh×w×cv such that

c = ck + cv . To maintain the spatial representation, a spatial bias map of dimension h×w × cs is

added to both key and value. The query vectors are the function of the hidden states of the LSTM
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cell only. The hidden states of LSTM is passed through the two hidden layer MLP of dimension

512 to output a D dimensional vector of size ck + cs . The output represents a query vector. This

query vector is dot product with the key feature map along the channel dimension and sum along

the channel to produce a two dimensional feature map of size h × w. The output is spatially

softmax which forms the attention map. The attention map is then broadcast along the channel

dimension to have channel of size cs + cv and element-wise multiplied with the value feature map.

The resultant feature map is spatially sum to output a vector of dimension cv + cs . This is called

answer vector. Next, another two layer MLP is used to output the 512 dimension vector. This

forms the input to the next time-step LSTM. The whole network makes use of "soft" attention and

hence can be trained end-to-end via backpropogation.

Figure 7.1: Figure shows the placement of self-attention module with the recurrent LSTMs.The
feature map represents output from last convolution layer of local-stream.

We believe that the self-attention will aid in refining some of those visual marginal differ-

ence and provide better representative fine grained features. Some of the examples of use of self-

attention module before and after attention is shown in figure 7.3.
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Figure 7.2: The figure shows the zoomed details of the self-attention block. The green blocks
shows the MLP layer to produce query vectors and answer vectors. The Key and Values comes
from feature map.

28



Figure 7.3: The figure shows an example where self-attention improves the attention area. It
denotes the grad-cam visualization of hidden representation of LSTMs (a) without self-attention
module and (b) with self-attention.
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8. FUTURE WORK

Currently, we use the output of a weakly-supervised framework to crop out the patches from

the images. Since our network highly relies on the patches to be representative parts of the image.

Our network’s efficiency is limited by the weakly supervised framework used. So, in future, we try

to embed the localization network with our network. On the other front, we believe the addition

of self-attention is a good start for our future work. Also, the network does a lot of dot product

based computation hence increasing the computation time and memory. Further work is needed to

fine-tune it to achieve higher accuracy with lower computation requirements.
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9. CONCLUSION∗

In this work, we propose a simple recurrent attention based module that extracts finer details

from the image providing more discriminative features for fine-grained classification. The local

stream of whole architecture produces fine-grained patches and the soft attention module attends to

the most discriminative scale by providing more weight to important features and finally aggregates

these fine details into a representative and complementary feature vector. The proposed method

does not need bounding box/part annotation for training and can be trained end-to-end. Moreover,

the simplicity of the module makes it a plug-n-play module increasing its usability. Through

the ablation study, we also show the effectiveness of each part of the network. Additionally, the

interpretable nature of the module makes it easy to visualize learned discriminative patches.

∗Part of this section is adapted from the published paper, "Focus Longer to See Better: Recursively Refined
Attention For Fine-Grained Image Classification" by Prateek Shroff, Tianlong Chen, Yunchao Wei, and Zhangyang
Wang, Conference on Computer Vision and Pattern Recognition (CVPR) Workshops c©2020 IEEE.
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