
EFFICIENT AND SCALABLE WHOLE PROGRAM RACE DETECTION FOR JAVA

AND ANDROID PROGRAMS

A Thesis

by

YANZE LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Shaoming Huang
Committee Members, Jennifer Welch

I-Hong Hou
Head of Department, Scott Schaefer

August 2020

Major Subject: Computer Science

Copyright 2020 Yanze Li

ABSTRACT

Races are common in all concurrency systems, including multithreaded programs,

event-driven programs, distributed systems, etc. Therefore it is crucial to have tools to

reveal potential races in a software system. Existing static race detection tools either can-

not scale well on large programs or report too many false positives due to not reasoning

happens-before relations. On the other hand, dynamic race detection tools are bound by

test inputs. Thus they only have low code coverage.

This research presents an efficient race detection framework design along with two im-

plementations, SWORD and SDROID, that can efficiently detect races on real-world Java

programs and Android apps. The design leverages the state-of-the-art context-sensitive

pointer analysis and uses a concept called "origin" to efficiently compute the alias infor-

mation between concurrent entities (e.g., threads, events, etc.). It detects races based on

a flow-sensitive lockset algorithm and a highly optimized Static Happens-Before (SHB)

graph. To further support race detection on Android apps, we create an abstract thread

model to enable reasoning about the behavior of Android apps and their underlying An-

droid Runtime System. We then extend our race detection framework based on the abstract

model.

Our evaluation compares SWORD with two state-of-the-art static race detectors. The

results indicate SWORD achieves a 10x speedup over previous work and has the highest

precision on whole program race detection for Java programs. We also use SDROID to

successfully expose some previously unknown bugs in some popular Android apps.

ii

ACKNOWLEDGMENTS

There are a number of people without whom this thesis might not have been written,

and to whom I am greatly indebted.

I would like to especially thank my adviser, Jeff Huang, for bringing me into the realm

of programming language and software engineering. He provided countless insightful

advises and taught me how to do impactful researches.

Thanks to my other committee members, Jennifer Welch and I-Hong Hou, for con-

tributing a great deal to my development as a graduate by giving me the benefit of their

times and advises.

Thanks to my colleagues Peiming, Brad, and Bozhen for supporting me and discussing

interesting research ideas with me.

Special thanks to my colleague Gang, for drinking beer with me and listening to me

complaining when I was upset.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Jeff Huang and

Jennifer Welch of the Department of Computer Science and Engineering and Professor

I-Hong Hou of the Department of Electrical and Computer Engineering.

All the work conducted for the thesis was completed by the student independently.

Funding Sources

The graduate study was supported by an assistantship from Texas A&M University.

iv

NOMENCLATURE

ART Android Runtime

CFG Control-flow Graph

HB Relation Happens-Before Relation

IR Intermediate Representation

LSP Language Server Protocol

OSA Origin Sharing Analysis

PTA Points-to Analysis

PTS Points-to Set(s)

PAG Pointer Assignment Graph

SHB Graph Static Happens-Before Graph

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. ix

1. INTRODUCTION. 1

1.1 Data Race Detection in a Nutshell . 1
1.1.1 Dynamic Analysis . 1
1.1.2 Static Analysis . 2
1.1.3 Hybrid Analysis . 3

1.2 Event-Driven System . 4
1.2.1 Race Conditions . 5
1.2.2 Android System . 6

1.3 Pointer Analysis . 7
1.4 IDE Integration and Debugging Information . 8
1.5 Limitations . 9
1.6 Contributions . 9
1.7 Outline of Thesis . 10

2. SWORD: A SCALABLE WHOLE PROGRAM RACE DETECTOR FOR JAVA 11

2.1 Target Language. 11
2.2 Pointer Analysis . 12

2.2.1 The Necessity of Pointer Analysis in Race Detection 12
2.2.2 Context-Sensitive Pointer Analysis . 13
2.2.3 Origin-Sensitive Pointer Analysis . 15
2.2.4 Origin vs Other Contexts . 17

vi

2.3 Checking Happens-Before Relation . 18
2.3.1 Static Happens-Before Graph . 19
2.3.2 An Optimized SHB Graph . 21
2.3.3 Checking Happens-Before Relations . 23

2.4 Origin Sharing Analysis . 24
2.5 Lockset Tracking . 27
2.6 Data Race Detection . 28

2.6.1 Synchronization-Region-Based Race Detection . 29
2.7 Collecting Stack Traces . 30
2.8 Related and Future Work . 33

3. SDROID: A SCALABLE WHOLE PROGRAM RACE DETECTOR FOR AN-
DROID . 35

3.1 Android Background . 35
3.2 Harness Creation . 37
3.3 Event as Origin . 38
3.4 Race Detection for Android . 43
3.5 Related and Future Work . 43

4. EVALUATION . 46

4.1 Methodology . 46
4.2 Evaluation of SWORD. 47

4.2.1 Performance . 48
4.2.2 Precision . 49
4.2.3 Case Study . 49

4.3 Evaluation of SDROID . 51
4.3.1 Performance . 52
4.3.2 Precision . 52
4.3.3 Case Study . 53

5. CONCLUSION. 55

REFERENCES . 57

vii

LIST OF FIGURES

FIGURE Page

1.1 2 types of race conditions . 5

2.1 A simple example to explain context-sensitive PTA. 13

2.2 An extended example from Figure 2.1. Variable a1 and a2 are both passed
into preprocess before being passed into process. The function preprocess
is a nested identity function that directly returns its argument after N (N >
2) function calls.. 15

2.3 Call graph difference between 2-callsite-sensitive PTA and origin-sensitive
PTA.. 16

2.4 An example showing origin-sensitive PTA cannot distinguish thread local
variables while object-sensitive can. 17

2.5 An SHB Graph constructed by D4 [1] . 21

3.1 An “origin” view of threads and events. 38

3.2 An overview of the Android thread model. 40

viii

LIST OF TABLES

TABLE Page

2.1 Original SHB Graph.. 19
3.1 The origin entries for SWORD and SDROID (incomplete). 39

4.1 Performance and accuracy for SWORD and RacerD on different bench-
marks. c© [2019] IEEE. Reprinted, with permission, from Y. Li, B. Liu, and J. Huang,
“Sword: A Scalable Whole Program Race Detector for Java” in 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pp. 75–78, IEEE, 2019. 47

4.2 Performance comparison between SWORD and D4. 48

4.3 The performance result for SDROID on different Android apps(Time: s). . . 52

ix

1. INTRODUCTION

1.1 Data Race Detection in a Nutshell

The sharp increase in the number of cores in hardware brings up the necessity of writ-

ing parallel programs. Concurrency bugs, especially data races, are notoriously challeng-

ing to find, verify, and fix in real life, due to the complexity of concurrency and their

natural non-determinism. To mitigate those issues, developers rely on data race detectors

to help them find potential races.

A data race is defined as two instructions accessing the same shared memory concur-

rently without any synchronizations. Existing techniques to detect data races broadly fit

into three categories, static analysis, dynamic analysis, and hybrid analysis.

1.1.1 Dynamic Analysis

Dynamic analysis requires program executions during the analysis process. Those

tools first instrument the program (either on source code, IR, or binaries), and collect

runtime information by executing the programs. They then use either an offline or online

algorithm to detect races from the observed traces or even predict potential races based

on current race-free traces. Previous tools such as fasttrack [2] and eraser [3], try to log

shared memory accesses and lock acquisitions, and then use the vector clock algorithm [4]

to detect races.

Dynamic tools are usually complete, meaning they may miss existing races in the

programs, but all the races reported are real. The limitation of dynamic analysis, however,

lies in 3 major aspects:

1. It brings significant overhead to the target programs. In most case, the slowdown is

between 2x to 50x;

1

2. It has low code coverage. If a dynamic tool wants to discover most of the races that

exist, it requires a set of fine-grained inputs and multiple rounds of execution.

3. It can only be integrated into the testing phase or the production phase. Empirical

studies have shown that the later phase a bug is detected, the more expensive to get

it fixed.

Consequently, dynamic analysis performs well on small or middle-sized programs with

simple inputs, but it is difficult to scale to larger programs or be adopted by industry.

1.1.2 Static Analysis

Static analysis, on the other hand, does not require running the programs to detect

races. Static tools usually take an Intermediate Representation (IR) of a program as input

and abstract the program execution. For example, the program execution can be modeled

as a directed graph, or we can create an abstract machine that interprets the target program.

As a result, a program analysis problem is transformed into a graph reachability problem

or state-machine transitions.

Specifically, static data race detection reasons about three properties for each pair of

memory accesses within the target program:

1. If the variables currently being accessed point (refer) to a shared memory location.

2. If the two memory accesses can happen in parallel

3. If the two memory accesses are protected by a shared lock.

Previous works such as RacerX [5], Chord [6], LOCKSMITH [7] use context-sensitive

and/or flow-sensitive dataflow analysis to reason about locks, while not precisely reasoning

about happens-before relations. Therefore, their analysis results contain a big portion of

false positives, and the expensive dataflow analysis they use leads to scalability issues in

large programs.

2

RacerD [8] is a race detector based on separation logic [9] and can analyze programs in

a compositional way, i.e., only analyzing the newly introduced code changes. However, in

order to be scalable, RacerD does not rely on pointer analysis to identify shared variables

and locks. Instead, it is based on syntactic pattern 1 and a simple ownership analysis to

determine shared variables and assumes all lock operations are well-formed. Other than

that, RacerD does not reason about happens-before relations. It uses the lock information

and program annotations to infer if two functions may happen in parallel. Thus, RacerD is

neither sound nor complete, but it is proved to be practical in industries due to its scalable

design.

ECHO [10] is an IDE-based incremental data race detector that first introduces a

static happens-before (SHB) graph to reason about happens-before (HB) relations. Upon

a change in the source code (addition, deletion, or modification), ECHO only analyzes

the change introduced instead of re-analyzing the whole program. For about 92% of the

code changes in small/middle-sized programs, ECHO takes no more than 0.1s to detect

races [10].

Based on ECHO, D4 [1] first introduces an incremental pointer analysis. It optimizes

the race detection by making a more efficient SHB Graph structure and designing parallel

algorithms for pointer analysis updates and race detection.

However, both D4 and ECHO are specially designed for incremental analysis. When

analyzing the whole program, they can take a few hours to finish. Therefore, it is still not

practical to apply ECHO and D4 as whole program data race detectors.

1.1.3 Hybrid Analysis

Hybrid analysis is a kind of analysis that combines both static and dynamic techniques.

RaceFuzzer [11] is a tool that uses a lightweight static analysis to obtain a set of po-

1For example, if two memory operations are both accessing obj.f, although the variable obj may
refer to different heap objects, RacerD considers them as aliases due to the identical syntactic pattern.

3

tential data race locations. Then it fuzzes the program using a set of predefined inputs.

During the fuzzing process, it controls the thread scheduling in order to reveal different

thread interleavings.

Generally speaking, hybrid analysis can achieve the best precision, but it also suffers

from both disadvantages of static and dynamic analysis. In order to get a smaller size

of potential race locations, it requires sophisticated static analysis. To effectively expose

races during the fuzzing process, it also requires a set of fine-grained inputs.

1.2 Event-Driven System

The Event-driven paradigm allows programmers to design flexible systems, and it has

become popular in a range of domains. However, the underlying event processing intro-

duces extra complexities for program analysis. Not only because event-driven systems

may suffer from events being damaged, delayed, or lost, but more importantly, the events

are handled in a non-deterministic way.

On the other hand, event-driven systems and thread-based systems share some intrinsic

similarities. Back in the late 70s, Lauer and Needham compared event-driven systems

with thread-based systems [12] and concluded that events and threads were intrinsically

dual to each other. Later on, people argued about using threads vs. events from different

perspectives [13, 14, 15].

Regardless of the pros and cons between threads and events, the connections between

the two concepts are obvious – they are both an encapsulation of a unit of operations,

and they both have non-determinism. Therefore, it is intuitive for a static analyzer to

extend its multithreaded model to support modeling events, so that it covers more types of

concurrency bugs.

4

1.2.1 Race Conditions

The event-driven systems are usually built around a single-threaded "event loop", that

collects incoming events and dispatches them to the corresponding event handlers. The

execution of events cannot overlap with each other, but the order of event sequence and

the event dispatching is non-deterministic.

Therefore, in a single-threaded event-driven system, there’s no "data race" we dis-

cussed above, but only "race conditions" between events. In general, we can summarize

race conditions into two types:

A

B

C

C

(a) Atomicity Violation

A

B

B

(b) Order Violation

Figure 1.1: 2 types of race conditions

1. Atomicity Violation: As shown in Figure 1.1a, assuming the event A, B, and C all

access the same memory location, where event C unexpectedly happens between the

event A and B, thus violating the atomicity between the event A and B.

2. Order Violation: As shown in Figure 1.1b, assuming the event A and B both access

the same shared memory, and the event B mistakenly happens before event A, thus

5

violate the expected order between the two events. For example, reading a variable

(event B) before it is initialized (event A).

To analyze an event-driven system, we first need to infer the atomicity constraints (the

A-B in Figure 1.1a) and the order constraints (the A-B in Figure 1.1b) to detect potential

violations. On the other hand, in a concurrent event-driven system, except for the nor-

mal data races between threads, there will also be data races between threads and event

handlers.

1.2.2 Android System

Android is the most prevalent platform for smartphones and tablets. According to an

empirical study from 2008 to 2013 [16], concurrency is within the top 5 causes of bugs.

Android is a concurrent event-driven system centered around the main thread (i.e., the

UI thread) that manages UI responses. Other threads are mostly used for time-consuming

tasks such as I/O requests or heavy computations. The UI thread runs an event loop. Event

handlers are registered by developers in response to events such as user interactions or

system notifications.

Previous works that use dynamic analysis to detect races in Android [17, 18, 19] re-

quire special devices to collect traces from the Android system, and may take several

hours to run the offline analysis. On the other hand, they still share the input-dependent

and low-coverage issues of dynamic analysis.

Existing static analysis tools [20, 21, 22, 23] either only target at generic event-driven

systems, without leveraging the innate relations between Android event handler, or use

expensive techniques, such as symbolic execution, to reason about races. Therefore those

techniques can not scale well on large Android apps.

6

1.3 Pointer Analysis

Pointer analysis (i.e., points-to analysis, PTA), is a technique that computes the value

of pointer variables statically, i.e., what memory addresses or heap objects can a pointer

point to or a variable refer to at runtime? Virtually all interesting static program analyses

rely on PTA, e.g., race detection, model checking, program optimization, security analysis,

etc.

Since precise PTA is theoretically undecidable [24], certain abstractions must be made

to achieve a practical PTA. Therefore, the precision of a PTA can be viewed from multiple

dimensions:

Flow-sensitivity concerns if the PTA takes the program execution order into account.

For a flow-insensitive PTA, a pointer can point to any heap objects assigned to it within

the whole program scope, even if some assignments happen after the pointer dereference.

While in a flow-sensitive PTA, the PTS at different pointer dereferences are different based

on the possible values that can flow to the current location.

Context-sensitivity concerns if the PTA distinguishes different contexts of function

calls. For a context-insensitive PTA, the pointers within a function call end up pointing

to all arguments ever passed in from the function invocations. Since it is impossible to

know how many function calls are actually made during the runtime, the identifier for a

new context also varies. For example, we can distinguish contexts from the function call-

site (the line where a function is invoked, call-site-sensitive), or the receiver object of the

function (object-sensitive).

Field-sensitivity concerns if the PTA distinguishes different fields of a struct or class

instance. This significantly influences the PTA precision for object-oriented programming

languages.

Other than the dimensions listed above, PTA still varies from other perspectives, such

7

as the heap modeling, the branch conditions, and handling array indices. Previous re-

searches have explored all aspects of pointer analysis [25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38], such as efficient algorithms to solve points-to constraints, different

modellings of heap objects, and more effective choices of contexts, etc.

However, most previous works only discuss PTA from a generic perspective instead of

a specific application. For data race detection, we find that a flow-sensitive PTA is usually

infeasible for practical use. At the same time, a field-sensitive PTA is always needed

in order to distinguish object fields. The context-sensitivity, however, not only affects the

scalability of the PTA but also has a huge impact on analysis precision. Previous researches

rarely chose contexts based on the semantics of the higher-level applications; therefore, in

this thesis, we proposed am origin-sensitive PTA, which is both precise and scalable in

terms of race detection.

1.4 IDE Integration and Debugging Information

Empirical studies have shown that a bug is more like to be fixed if it can be detected at

an earlier phase [39]. Therefore, if we can provide programmers with sufficient debugging

information within the IDE, along with their fresh memories of the current code changes,

a race should be easier to understand and fix.

Among the tools we mentioned above, ECHO is the only one with IDE integration.

The IDE integration of ECHO has two major limitations. First, it does not provide stack

trace information. Therefore it is unclear to programmers how a race could be triggered

in real execution. Second, the whole analysis runs inside the IDE’s UI thread, causing a

significant slow down to the IDE.

In the thesis, we propose an efficient stack trace collection algorithm along with some

heuristics to shrink the size of race reports to make the bug report more readable to pro-

grammers. Then we leverage the Language Server Protocol (LSP) [40] to build a clien-

8

t/server mode IDE plugin. This plugin has been integrated into Eclipse, IntelliJ IDEA.

1.5 Limitations

Based on the previous researches introduced above, we summarize the limitations of

current whole-program race detectors for both Java and Android:

1. Existing PTA is not fully optimized for multithreaded/event-driven programs

2. Existing tools either do not reason about HB relations or they cannot scale well on

whole-program analyses for large programs

3. Existing Android race detectors cannot scale to large Android apps.

4. Existing tools do not provide stack trace information in their report.

5. The IDE Integration for race detection tools is poorly supported.

1.6 Contributions

This thesis has addressed the previous limitations for whole-program race detectors,

by introducing:

1. A new context called origin, that unifies threads and events to support efficient PTA

in both multithreaded and event-driven systems.

2. A highly optimized SHB Graph design and race detection algorithm that scales well

for whole program race detection on large programs.

3. An extended multithread/event-driven model for detecting races in Android apps.

4. An efficient algorithm for collecting stack traces for the races detected.

5. An IDE integration for the race detector leveraging LSP.

Besides, the first part of this thesis (SWORD) has been accepted and presented on

ICSE’ 19 [41], and the second part of this thesis (SDROID) is included in a current sub-

mission to OSDI’ 20. The SHB Graph design and the race detection algorithm described

9

in this Chapter 2 has been extended to a LLVM-based race detector for OpenMP programs,

which is under a current submission to SC’ 20.

1.7 Outline of Thesis

In Chapter 2, I formalize the problem of detecting data races and discuss the existing

techniques in ECHO and D4, based on which I introduce origin-sensitive PTA, optimized

SHB Graph, and synchronization-region-based race detection algorithm. Besides the op-

timizations, I also show how to extend the SHB Graph to support efficient collection of

stack trace information.

In Chapter 3, I introduce the Android system, especially its event-driven part, and

extend the definition of origin-sensitive PTA and the race detection algorithm to support

efficient race detection in Android apps.

In Chapter 4, I first introduce how SWORD and SDROID is implemented. Then I

evaluate both SWORD and SDROID against the start-of-the-arts from precision and per-

formance. The results show SWORD can efficiently analyze real-word programs, and its

happens-before reasoning can significantly eliminate false positives. SDROID success-

fully detects real races in Firefox that involve both threads and events. Additionally, I

also present the race report and IDE integration of SWORD, some discussions are made

regarding the LSP and the engineering difficulty of developing such plugins.

Chapter 5 summarizes the thesis, recaps the contributions and lists some potential fu-

ture work.

10

2. SWORD: A SCALABLE WHOLE PROGRAM RACE DETECTOR FOR JAVA

In this chapter, I formally introduce my work SWORD, a scalable whole-program race

detector for Java.

2.1 Target Language

In this section, we first introduce a simplified programming language ,SIMJava [10],

which is a subset of Java. This language serves as the target language for this paper. The

feature within the language will be handled soundly (i.e., we are able to detect all data

races within SIMJava), while other features (features in Java but not in SIMJava) will

either not be handled or introduce unsoundness.

The syntax of the language is defined as below:

〈program〉::= 〈definition〉 〈expr〉
〈definition〉::= class C 〈body〉
〈body〉::= extends 〈cls〉 {〈field〉∗ 〈method〉∗}
〈field〉::= 〈type〉 f

〈method〉::= 〈type〉mn(args∗) { e∗ return z }

〈type〉::= 〈cls〉 | int | long

〈cls〉::= C | Object

〈expr〉::= x = new 〈cls〉 (allocation)
| x = y (simple assignment)
| x = y.f (field read)
| x.f = f (field write)
| x = o.m(arg∗) (method call)
| x = y[i] (array read)
| x[i] = y (array write)
| t.start() (thread fork)
| t.join() (thread join)
| synchronized (x){〈expr〉∗} (lock)
| loop(〈expr〉) {〈expr〉∗} (loop)
| if(〈expr〉) {〈expr〉∗} (conditional branch)
| 〈expr〉∗

11

The important statements are highlighted above. As we see, other than assignments

and memory reads/writes, SIMJava supports three fundamental synchronizations, i.e. fork,

join, and synchronized. The fork and join introduce inter-thread HB relations, while syn-

chronized introduces mutual exclusions. The loop expression represent both for-loop and

while-loop, and we need to correctly handle them because it can cause multiple thread

creations. The conditional branches are ignored during our analysis (therefore it’s not

highlighted), because supporting path-sensitive analyses requires symbolic reasoning for

condition variable, which will significantly undermine the performance. On the other

hand, ignoring conditional branch can still guarantee the soundness of our analysis, be-

cause we consider the conditional branch will always be executed, therefore no race will

be missed.

2.2 Pointer Analysis

Pointer analysis (also known as points-to analysis) is a static program analysis tech-

nique that determines the value of pointer variable or expressions. Since heap is the pri-

mary structure for global program data, PTA thus acts as the foundation for most of the

interprocedure program analysis. The input of a PTA is a sequence of program instruc-

tions, the output of the PTA is a points-to set (PTS) for each pointer variable and a call

graph for the whole program.

2.2.1 The Necessity of Pointer Analysis in Race Detection

There are two fundamental problems for static race detection to start with:

1. Identifying the method being called at each method invocation site.

2. Identifying shared memory that might be accessed concurrently by multiple threads

For the first problem, we need a complete call graph for the program we analyze. More

specifically, for a method call x.m(), we can only figure which methods get called by first

12

knowing which objects x may points to. Then we can query the class hierarchy to resolve

the concrete method body. For the second problem, we need to know the PTS of each

variable being accessed to see if it contains any thread sharing objects.

Altogether, we can see PTA is the underlying analysis that supports the whole race

detection process. Without PTA, race detectors have to leverage additional information

such as optional annotation or common program patterns to infer pointer values [8], thus

making the analysis unsound.

2.2.2 Context-Sensitive Pointer Analysis

In SWORD, we use a context-, field-sensitive, flow-insensitive pointer analysis. As

discussed in Chapter 1, we need field-sensitivity to accurately analyze a object-oriented

programming language like Java, and our PTA is flow-insensitive due to the scalability

issue. Therefore, the design choice lies in how to properly choose contexts.

We first introduce the following example to show how context-sensitive may signifi-

cantly help data race detection:

1		void	main()	{
2						Thread	t1	=	new	Thread(()->{
3										process();
4						});
5						Thread	t2	=	new	Thread(()->{
6										process();
7						});
8						t1.start();
9						t2.start();
10	}
11	//	thread	body
12	void	process()	{
13					A	a	=	new	A();
14					a.f++;
15	}

Figure 2.1: A simple example to explain context-sensitive PTA.

13

In this simple example, thread t1 and t2 are two threads that have the same thread

body, process. Under a context-insensitive PTA, the method calls at line 3 and 6 are

indistinguishable, therefore the PTA thinks both threads access the same object a at line

14. Therefore, a false data race is detected.

To overcome this issue, we can use a "callsite-sensitive" PTA, which distinguish dif-

ferent method calls based on their callsite. In the same example above, process at line

3 is different from process called at line 6, because they are called from different lines.

Hence, PTA treats them as two different function calls by creating two different nodes in

the call graph. As a result, the variable a in different process functions will point to a dif-

ferent object of class A, and therefore the memory access at line 14 is not a shared memory

access.

As we can see, context-sensitivity essentially models the context-switching process in

a real execution. Other than choosing "callsite" as context identifier (callsite-sensitive) [42,

43], we can also choose the receiver objects as context identifiers (object-sensivie) [44].

However, we cannot arbitrarily distinguish all method calls based on their contexts, oth-

erwise, the number of distinguishable method calls grows exponentially, thus making the

analysis unscalable. To avoid this, PTA usually will set a k-limit of the number of context

it tracks. For example, for a 2-context-sensitive PTA whose k is 2, the analysis will only

distinguish method calls by the most recent two callsites.

K-limiting brings new imprecision for PTA. The example in Figure 2.2 is extended

from the previous one, where we add an identify function id and pass variable a to it

before it is accessed at line 15. Now the PTS of a at line 14 depends on the PTS of a in

line 23 (the return value of id). Now if we use 2-callsite-sensitive to analyze the code, the

simplified call graph is shown in Figure 2.3a. We can see that the contexts of both threads

become identical once the PTA hits function id2. Therefore, the PTS of variable a in both

threads may points to both the object created at line 13 from t1 and t2. And during the

14

17	A	id(A	a)	{
18					return	id2(a);
19	}
20	//	id3,	id4,	id5...
21	...	
22	A	idN(A	a)	{
23					return	a;
24	}

1		void	main()	{
2						Thread	t1	=	new	Thread(()->{
3										process();
4						});
5						Thread	t2	=	new	Thread(()->{
6										process();
7						});
8						t1.start();
9						t2.start();
10	}
11	//	thread	body
12	void	process()	{
13					A	a	=	new	A();
14					a	=	id(a);
15					a.f++;
16	}

Figure 2.2: An extended example from Figure 2.1. Variable a1 and a2 are both passed into
preprocess before being passed into process. The function preprocess is a nested identity
function that directly returns its argument after N (N > 2) function calls.

race detection, we have to conservatively consider the memory access at line 15 is a shared

access thus report a data race between t1 and t2.

2.2.3 Origin-Sensitive Pointer Analysis

As we can see from the failing case in the last section, the limitation of k-context-

sensitive PTA is it unconditionally updates the context at every function call. While the

contexts of some call chains, such as the function id, don’t contribute to the PTA precision.

Moreover, for race detection, not all pointers, but only the ones that are shared across

multiple threads need to be accurately computed.

Definition 1. Origin: an origin is a function that creates a thread and defines the thread

entry.

Here we give a simple definition of Origin, and we use origin as the context identifier.

15

main

t1.run

t2.run

<start@8>

<id@14,	id2@18>

id2
<start@6>

<id2@19,	id3>

id3 ... idN

<id[N-1],	idN>process

process

<start@8,	process@3>

<start@8,	process@6>

id

id

<process@3,	id@14>

<process@6,	id@14>

(a) Call graph under 2-callsite-sensitive PTA

main

t1.run

t2.run

<T1>

<T2>

idN

<T1>

process

process

<T1>

<T2>

id

id

<T1>

<T1>

...

idN

<T2>

...

(b) Call graph under origin-sensitive PTA

Figure 2.3: Call graph difference between 2-callsite-sensitive PTA and origin-sensitive
PTA.

Specifically for Java, the origin includes following things:

1. The run()V functions from the java.lang.Runnable object given at a thread

creation.

2. The overridden run()V method in any subclass of java.lang.Thread

3. Any API (function wrapper) that creates and/or starts a thread

Following the definition of origin, if we apply origin-sensitive PTA to the example in

Figure 2.2, the run()V functions (written as a lambda expression for simplicity) passed

to the Thread constructor are identified as two origins, say T1 and T2. Now the call graph

in PTA looks like Figure 2.3b. Since the invocation of method idN no longer affects the

context update, each thread remains its own context across the whole analysis, therefore,

the PTS for a at line 14 and 15 only includes the object A created at the current thread, and

not causes any false positive for race detection.

To sum up, the origin sensitive makes the PTA thread-aware, so that it can distinguish

the thread local objects from different threads. The lower frequency of context update also

makes origin-sensitive PTA more more scalable than k-callsite-sensitive PTA.

16

2.2.4 Origin vs Other Contexts

The origin context is orthogonal to other choices of context such as object and callsites.

It is a common practice to combine multiple contexts abstraction as a "hybrid context" to

achieve better performance and accuracy in practice [45]. The same intuition also works

for origin-sensitive PTA.

In object-oriented programming languages, such as Java, different kinds of threads

are usually implemented as subclass of java.lang.Thread where their routines are

defined within the run() method and the thread local variables are defined as fields of

this thread class. Figure 2.4 exhibit such a program where f is a thread local field being

accessed in the thread routine run().

1		void	main()	{
2						A	a1	=	new	A();	//	o1
3						A	a2	=	new	A();	//	o2
4						a1.start();
5						a2.start();
6		}

7		class	A	extends	Thread	{
8						private	int	f	=	0;
9						@Override
10					public	void	run()	{
11									f++;
12					}}

Figure 2.4: An example showing origin-sensitive PTA cannot distinguish thread local vari-
ables while object-sensitive can.

If we mark run() as an origin entry, then the initialization of A is invoked outside of

the origin, thus the field f of a1 and a2 cannot be distinguished by PTA. Now if we also

consider the receiver object as a context, in addition to origin, then the PTA will distinguish

the initialization calls for a1 and a2, because they are on different receiver objects (o1 and

o2, respectively). As we can see in this simple example, origin can be combined with other

contexts to achieve better precision for the PTA.

17

2.3 Checking Happens-Before Relation

The happens-before relation is a relation between the result of two events (even if exe-

cuted out of order), so that one event should happen before the other. In Java specifically, a

happens-before relationship is a guarantee that memory written to by statement A is visible

to statement B, that is, that statement A completes its write before statement B starts its

read [46].

The happened-before relation is formally defined as the least strict partial order on

events such that:

1. If events a and b occur on the same process, a → b (a happens-before b) if the

occurrence of event a preceded the occurrence of event b;

2. If event a is the sending of a message and event b is the reception of the message

sent in event a, a→ b.

Like all strict partial orders, the happened-before relation is transitive, irreflexive and an-

tisymmetric.

The most famous algorithm of computing happens-before relations in distributed sys-

tem should be the vector clock from Lamport timestamps [4], which provide a partial

ordering of events with a high overhead. And this concept later was adopted by program

analysis to check data races. Fasttrack [2] leverages the vector clock and records only

the epoch of the last read to reduce the number of events need recording. iFT [47] is an

efficient algorithm, that uses only the epochs of the access histories, which requires O(1)

operations to maintain the access history. For static analysis tool, [10] first abstract the

program traces into a static happens-before graph, thus transform the reason of happens-

before relations into a graph reachability problem.

SWORD is also a static analysis tool based on the concept of a static happens-before

18

Table 2.1: Original SHB Graph.

Intra-thread SHB Graph Construction
Statement SHB Node & Edge

¶ x.f = y ∀〈o,Ok〉 ∈ pts(〈x,Oi〉), write(〈o,Ok〉.f)
· x = y.f ∀〈o,Ok〉 ∈ pts(〈y,Oi〉), read(〈o,Ok〉.f)
¸ x[idx] = y ∀〈o,Ok〉 ∈ pts(〈x,Oi〉), write(〈o,Ok〉.∗)
¹ x = y[idx] ∀〈o,Ok〉 ∈ pts(〈y,Oi〉), read(〈o,Ok〉.∗)
À x = y.m(a1, ..., an) ∀〈m′,Oi〉 ∈ dispatch(〈y,Oi〉,m),

add HB edge: call(〈m,Oi〉)⇒ mfirst(〈m,Oi〉)

º synchronized(x){ ∀〈o,Ok〉 ∈ pts(〈x,Oi〉), lock(〈o,Ok〉),
. . . } unlock(〈o,Ok〉)

Inter-thread SHB Graph Construction
Statement SHB Node & Edge

» x.entry(c1, ..., cn) ∀〈entry,Oj〉 ∈ dispatch(〈x,Oi〉, entry),
add HB edge: entry(Oj)⇒ originfirst(Oj)

¼ x.join() ∀〈join,Oj〉 ∈ dispatch(〈x,Oi〉, join),
add HB edge: originlast(Oj)⇒ join(Oj)

graph, while SWORD leverages some observation from general concurrent program to

optimize the design of SHB Graph, thus achieves a significant performance improvement.

In this section, we start from introducing the naive SHB Graph used in ECHO, and

discuss its limitation on large programs. Then we elaborate the optimized SHB Graph

used in SWORD.

2.3.1 Static Happens-Before Graph

The SHB Graph is essentially a static trace of the target program. Each instruction

corresponds to an event, which is the node of the SHB Graph. Events are connected by

directed edges to represent their happens-bebfore relations. For example, an edge A→ B

means event A happens-before event B.

Table 2.1 reflects the mapping between instructions and events. The construction of

SHB Graph starts from the main() method of a program. The program will be rep-

19

resented as a topologically sorted control-flow graph (CFG), where each node is a Basic

Block (a sequence of instructions without jumps). The instructions within each basic block

are then traversed sequentially. This traversal scheme guarantees the SHB Graph conser-

vatively preserves the program execution order, except that both branches of a if-condition

will be "executed".

Construction rule ¶ to º handles inter-thread instructions, where all memory reads

and writes are interpreted as read events and write events in the SHB Graph and all syn-

chronization code blocks are interpreted as a lock event at the start together with a unlock

event at the end. More importantly, two consecutive events are connected by happens-

before edge, i.e. the event of the previous instruction has an directed edge pointing towards

the current event.

Rule » and ¼ handles thread fork/join instructions. The handling of thread fork/join

is a fix-point algorithm, where we keep a list of "static threads" that we haven’t traversed.

At beginning, only the entry of the main thread is pushed to the list (i.e., the main()

function). Upon the encounter of a thread fork, we query the call graph to identify the

thread entry (i.e., the overridden run() method) and push the thread fork site into the

list. At a thread join site, we query the PTA to figure out the thread object who is calling

the join() method, and keep this information for later use. At next iteration, we pop a

thread entry from the list, and draw an edge from its fork site to the head of the current

static trace. Then we traverse the instructions within this child thread following the rules

described above. When we hit the end of the current thread, we draw an HB edge from the

end of the trace to the join site the its parent thread, based on the information we previously

collected. The interative process keeps going until no new thread fork is found.

There are several corner cases need special handling to guarantee the termination and

soundness of the above traversal:

Recusion. Recursive function calls will cause endless traversal during the SHB Graph

20

construction. To handle this situation, we maintain a static call-stack that records the

current functions we are traversing. Every time we enter a function call, we check the

call-stack to make sure we won’t re-enter a recursive function.

Thread Creation in Loops. Some programs will spawn a set of threads within a loop,

or recursively spawn threads and use condition checks to terminate. From source code

perspective, there’s only one thread fork site, while in real execution, a set of threads will

be spawned. The soundness of our analysis will be undermined if the thread races with

itself. To accommodate such situation, we unroll the loop or recursion once so that at

least two static threads are created. Hence, our analysis can detect the self-races of those

threads.

2.3.2 An Optimized SHB Graph

The SHB Graph described in Section 2.3.1 is similar to the one proposed in ECHO. In

D4, in order to further optimized the incremental update of the SHB Graph, uses a more

compact graph storage. Specifically, D4 constructs a unique subgraph for each method-

/thread and connect the subgraphs with different happens-before edges instead of duplicate

them.

Figure 2.5: An SHB Graph constructed by D4 [1]

21

Figure 2.5 demonstrates an SHB Graph constructed by D4, which contains the sub-

SHB Graph for thread t1 and t2 and method m1 and m2. Such design enables minimal

updates on the SHB Graph regarding a source code change, therefore it speed up the

incremental race detection dramatically.

Both ECHO and D4 suffer from performance issue when trying to do a whole-program

analysis upon large programs. This is mainly because their connectivity checking is almost

a naive Depth-First-Search. For large programs, the number of events within the SHB

Graph can be millions, therefore it is extremely inefficient to check the connectivity be-

tween two event. Meanwhile, since the number of edges involved in the graph enormous,

it is also hard for us to effectively cache some pre-computed result, due to the low cache

hit rate.

To address the performance issue above, we proposed an SHB Graph that is fully

optimized for whole-program race detection. The key observation is that, the majority of

the HB edges are intra-threaded, which can be represented in a much efficient way, while

only the less common inter-threaded HB edges are critical. Therefore, we represent these

two different types of edges in different ways:

Intra-thread HB edges are now represented as monotonically increasing IDs associ-

ated with each event. To achieve this, we have to duplicate the events in a method that is

called in multiple places. This process can also be viewed as inlining all the method calls

so that the trace of each thread is just a sequence of event, without inter-procedure calls.

Now if we assign an monotonically increasing IDs for each event we create, for example,

we assign the first event we create with ID 1 and the second with ID 2. The unique ID acts

like a "static timestamp", where the events with smaller IDs happens-before the ones with

larger IDs. This way, we turn the intra-thread connectivity checking into a constant time

integer comparsion.

Inter-thread HB edges remain unchanged. But since the thread forks/joins only take

22

a small portion of all the events, we only need to keep much fewer explicit edges as we

previously do.

2.3.3 Checking Happens-Before Relations

Now that checking the HB relations within a single thread is trivial, we only need to

consider the inter-thread scenarios. The algorithm for checking HB relations is shown

in Algorithm 2. The high level idea of this algorithm is we only check the connectivity

between those nodes connected by inter-thread HB edges (i.e., thread fork/join sites).

Algorithm 1: CheckHappensBefore
input : e1, e2 - events, each associated with their belonging thread id

shb - SHB Graph, the trace for each thread is index by the thread id
output: true/false - whether the two events has a happens-before relation

1 trace1← shb[e1.tid]
2 trace2← shb[e2.tid]
3 start1← findNextOut(trace1, e1)
4 end2← findLastIn(trace2, e2)
5 if canReach (shb, start1, end2) then
6 return true
7 else
8 end1← findLastIn(trace1, e1)
9 start2← findNextOut(trace2, e2)

10 return canReach(shb, start2, end1)

For a pair of events, say e1 and e2, we first find the immediate succeeding outgoing

node (start1) of e1 (either a thread fork or the end of the trace) and the immediate pre-

ceding incoming node (end2) of e2 (either a thread join or the start of the trace) (line 1-4).

Then we checked the connectivity from start1 to end2. This is equivalent to checking the

connectivity from e1 to e2, as e1 happens-before start1 and end2 happens-before e2 (the

transitivity of happens-before relations). If e1 can reach e2 (line 5), then we have proven

23

e1 happens before e2. otherwise, we check the connectivity from the other direction (line

8-10). The canReach function in the pseudo-code is a DFS.

In this algorithm, all connectivity checks are around the synchronization related nodes.

Since there are only a small number of those nodes, we can efficiently cache the synchro-

nization nodes within each thread trace to speedup findNextOut and findLastIn

and the connectivity result between those nodes to speedup canReach.

2.4 Origin Sharing Analysis

Another core part for race detection is identifying all the shared memory locations and

the corresponding memory access events on them. To obtain such information, we extend

the previous work, thread sharing analysis [48] (TSA), to origin sharing analysis (OSA).

Comparing to the escape analysis that is widely used in compiler optimizations [49]. OSA

and TSA care about if an object is accessed by multiple origins/threads, while escape

analysis cares about whether the lifetime of an object exceeds the current scope. More

specifically, four major limitations of escape analysis are listed in the TSA paper [48]:

1. a thread-escaped object may not be accessed by multiple threads.

2. an object being thread-escaped does not mean all data associated with the object are

shared.

3. standard escape analysis algorithms do not directly work for array accesses.

4. the immutable objects that are only read after initialization should not be viewed

as origin-sharing objects as they do not cause data races (while they can still be

thread-escaped).

Except for the limitations listed above, classic escape analysis requires constructing an

Information FLow Graph for the whole program and propagating the shared nodes in the

graph until reaching a fix point. This process is expensive, and existing tools cannot finish

24

within 30 minutes on toy programs.

On the other hand, the OSA algorithm presented in this section naturally fits into the

SHB Graph construction process, and only requires an efficient extra check to identify all

potential thread sharing objects in the target program.

Comparing to the original TSA algorithm, there are two subtle changes. First, we

extend the concept of being "thread sharing" to "origin sharing". Therefore, the algorithm

can naturally be used for detecting shared objects across all kinds of origins. Second,

the OSA algorithm fits into the SHB Graph process and collects all read/write events into

their corrsponding Reads Map and Writes Map. These maps provide the inputs for data

race detection.

In OSA, the shared memory is represented by the abstract objects constructed by PTA.

For each abstract object, we maintain a write map and a read map, where we build a

mapping between the static threads and the read/write access events on the abstract object.

Algorithm 2 traverses the read and write events within each origin (line 2-3). For each

read/write event, we query the PTA for the abstract object the current event is accessing

(line 4). Then we push the current origin and the events to the read/write maps of the ob-

jects being accessed (line 7-8 and 11-12). Once the read/write maps are collected, we can

use Algorithm 3 to identify shared abstract objects. The intuition behind Algorithm ref3

is that the key set of each read/write map relect the number of origins reading/writing the

object. Therefore, we can conclude an object is origin-sharing under three conditions:

1. there are more than one origins writing to the object (line 4-5).

2. there are one origin writing the object and more than one origins reading the object

(line 6-7).

3. there are exactly one origin writing the object and a different origin reading it (line

8-10).

25

Algorithm 2: OriginSharingAnalysis
input : PTA - pointer analysis

CG - program call graph
output: SharedObjects - a set of shared abstract objects

1 origins← all discovered origins
2 for o ∈ origins do
3 for event ∈ o do
4 pts← getPointsToSet(event)
5 if isWrite(event) then
6 for obj ∈ pts do
7 wmap← getWritesMap(obj)
8 wmap← (o, event)

9 else if isRead(event) then
10 for obj ∈ pts do
11 rmap← getReadsMap(obj)
12 rmap← (o, event)

13 FindSharedObjects()

Algorithm 3: FindSharedObjects
input : AbstractObjects - all abstract objects encountered
output: SharedObjects - a set of shared abstract objects

1 for obj ∈ AbstractObjects do
2 rmap← getReadsMap(obj)
3 wmap← getWritesMap(obj)
4 if wmap.size > 1 then
5 SharedObjects← obj
6 else if wmap.size = 1&&rmap.size > 1 then
7 SharedObjects← obj
8 else if wmap.size = 1&&rmap.size = 1 then
9 if writes and reads are on different thread then

10 SharedObjects← obj

26

2.5 Lockset Tracking

SWORD uses a fairly straightforward approach to handle locks. Each read/write event

in the SHB Graph will be associated with a lockset at its creation. To compute the lockset,

SWORD maintains a global list during the SHB Graph construction. The list consists

of the locks being hold at the current event (represeted by the abstract object the lock

variables points to). Hence, upon the creation of an event, we make a copy of the global

list and associate it with the event, as its lockset.

Once a lock/unlock event is encountered, we query the PTA to see which abstract

objects the lock variable may point to, and we update the lockset by pushing abstract

objects into or popping the abstract object out of the global list.

To check if two events shares the same locks, we do an intersection between the two

locksets associated with the events. If the intersection contains at least one abstract object,

these two events are protected by the same locks.

Using canonical lockset ID. The above algorithm brings significant overhead on both

memory and performance when the number of events is huge. Storing a list on each

event and repeatedly doing the intersection are expensive. We observe that the number

of different combinations among mutexes is much smaller than the number of conflict

memory accesses we need to check for races. Therefore, we assign each combination of

mutexes (including the empty lockset) a canonical ID and associate each event with an

ID. This not only reduces the memory overhead for storing lock information in the SHB

graph, but also speeds up the lockset checking process. All memory accesses with an

identical lockset ID, or different IDs corresponding to overlapping locksets, are protected

by the same lock(s), and the intersection IDs between two locksets can be cached for later

checks.

27

2.6 Data Race Detection

Based on the three components we introduced. OSA enables SWORD to detect a set of

object shared between thread along with their corresponding memory access events. SHB

Graph enables SWORD to check the HB relation between a pair of events. The lockset

tracking helps SWORD reason about the protection of locks.

For the last step, detecting data race, all we need to do is enumerate each pair of shared

memory accesses and check their HB relations and lock sharing states respectively.

Algorithm 4: CheckDataRace
input : SharedObjects - all shared objects within the target program
output: races - a set of detected data races returned from EnumerateRaces

1 for obj ∈ SharedObjects do
2 rmap← getReadsMap(obj)
3 wmap← getWritesMap(obj)
4 for o, writes ∈ wmap do
5 for o

′
, reads ∈ rmap do

6 if o 6= o
′ then

7 races←EnumerateRaces (writes, reads)

8 if wmap.size() > 1 then
9 for o

′
, writes

′ ∈ wmap do
10 if o 6= o

′ then
11 races← EnumerateRaces (writes, writes′)

Algorithm 4 describes the overall process for checking data races. We first iterate over

all shared objects and get their read maps and write maps (line 1-3). Since a data race

must have at least one write event involved, we then start iterating over the origins and the

write events within the origin on the write map (line 4). Finally, we try to find another set

of write events or read events from different origin (on the same shared object) and pass

28

Algorithm 5: EnumerateRaces
input : writes - a set of write events

xs - a set of read or write events
shb - the SHB Graph

output: races - a set of detected data races
1 for w ∈ writes do
2 for x ∈ xs do
3 if checkHB (shb, w, x) = false then
4 if shareLock (w, x) = false then
5 races← (w, x)

the two sets of events to EnumerateRace to check if any pairs of those memory access

events can be potential races (line 5-11).

The logic of EnumerateRace is rather simple, we enumerate over the two sets of

given memory access events. For each pair of events, we consider them as a potential race

if: 1. they don’t have an HB relation; 2. they do not share a common lock.

2.6.1 Synchronization-Region-Based Race Detection

The data race checking algorithm can be inefficient if there’s intensive reads/writes

upon each shared object, which brings an explosion on the pair of memory accesses we

need to enumerate. We observe that a huge number of enumerations can be omitted by a

technique called Synchronization-Region-Based Race Detection. To explain the idea, we

first give a formal definition of synchronization regions.

Definition 2. Synchronization Region: An event sequence in the same origin with no

synchronization status changes.

More specifically to our SHB Graph, it means a sequence of read/write events whose

lockset id is the same, and there’s no thread fork/join in between. In the context of data

race detection, all the reads and writes within the same synchronization region can be

29

regarded as a single read and write. This is because there are only two properties that

determine if a memory access potentially races with another (assuming they are accessing

the same object):

1. its immediate succeeding outgoing node and the immediate preceding incoming

node in the SHB Graph;

2. its lockset.

For the memory accesses within the same synchronization region, the above two prop-

erties remain the same. Therefore they appear no difference in race detection. In almost all

programs, we observe that a synchronization region protects a large sequence of memory

accesses on the same origin-shared object(s). Therefore this technique significantly reduce

the number of memory access pairs we need to enumerate. Algorithm 6 shows a simple

way to shrink all read/write events within the same synchronization region into the first

event of this region.

Other than shrinking the number of memory access events we need to enumerate, the

concept of synchronization region also gives us a hint on how to simplify the SHB Graph.

Logically, we "inline" all the method calls we have encountered during the SHB Graph

construction, thus the frequently called methods will generate a large amount of events.

Now that we know in a synchronization region, all the reads/writes on the same object

are equivalent to data race detection, we can simply skip the repeated method calls that

happen in the same synchronization region, thus reduce the size of the SHB Graph1.

2.7 Collecting Stack Traces

Collecting stack trace information for the reported races is essential for people to un-

derstand how a race can be triggered.
1In a sense, this is an unsound optimization, because the pointer information in a method differs based

on the calling environment. However, a synchronization region cannot cross origins and our PTA is flow-
insensitive, thus making this optimization correct in our analysis

30

Algorithm 6: ShrinkMemoryAccess
input : xs - a set of read or write events on the same shared object within an

origin (thread)
tid - the thread id which xs belongs to
shb - the SHB Graph

output: xs′ - a set of read or write events in different synchronization-regions
1 trace← shb[tid]
2 prev ← null
3 prevLastIn← null
4 prevNextOut← null
5 for x ∈ xs do
6 lastIn← findLastIn(trace, x)
7 nextOut← findNextOut(trace, x)
8 if prev = null then
9 xs

′ ← x
10 else if prev.lockset 6= x.lockset ∨ prevLastIn 6= lastIn ∨ prevNextout 6=

nextOut then
11 xs

′ ← x

12 prev ← x
13 prevLastIn← lastIn
14 prevNextOut← nextOut

31

To support the collection of stack trace, we only need to make a small extension to our

SHB Graph design. In our current SHB Graph, we will create a method call event at each

method call (rule À in Table 2.1). These call events help us to generate a list of method

called, and their unique IDs suggest when they are called. However, the call event list does

not contain any information about when each method is returned. To accommodate this,

our solution is to associate a return ID with each call event. The return ID is the unique

ID of the last event within the method, and this can be simply achieved by memorizing the

current call event when we enter a method call, and set the return ID to the last event ID

once we finish traversing all the instructions within a method.

Algorithm 7: CollectStackTrace
input : e - the event whose stack trace we want to collect

tid - the thread id which xs belongs to
shb - the SHB Graph

output: st - a list of call events representing the stack trace of e
1 trace← shb[tid]
2 callEvents← getCallEvents(trace)
3 for call ∈ callEvents do
4 if call.id > e.id then
5 break
6 else if call.rid ≥ e.id then
7 st← call

The algorithm for computing the call stack trace for an event e is presented as Algo-

rithm 7. The getCallEvents will return all the call events within the static trace of the

current thread, sorted by the event ID (line 2). The we traverse the method calls in order.

If the ID of a call is smaller than the target event e, yet its return ID (call.rid) is larger

than e, this mean at the point e is executed, call has not returned yet (line 6). Therefore,

we should insert the call to the stack trace list (line 7). We can stop the traversal once we

32

meet a call whose ID is larger than e, because all the following calls will happen after e

(line 4-5).

2.8 Related and Future Work

Race detection has been considered as an important research topic for decades. Both

static and dynamic algorithm has been proposed to tackle the problem. One of the key

challenges is how to compute and represent Happens-Before Relationships. Offset-span

labeling [50], which is an online scheme that labels threads in a fork-join graph, labels each

task with a vector of tuples. Vector Clock [51, 4] records a clock for each thread in the

system, and the virtual clock is increased upon every synchronization event. Two events

are considered to be parallel if the two vector clock are not ordered. Flanagan et al [2]

improve the vector clock algorithm by replacing heavyweight vector clocks with adaptive

lightweight representation as they find the full generality of vector clocks is unnecessary

in most cases.

Dynamic Race Detection Tools. Google’s Thread Sanitizer [52], also known as TSAN,

proposed a hybrid algorithm that uses both happens-before and lockset to detect data races.

TSAN has been used to find hundreds of races in real world application. Helgrind [53] is

a tool based on Valgrind [54]. Helgrind only detects happens-before relationships and it

supports a subset of the dynamic annotations in TSAN. Intel’s Inspector [55] is another

dynamic data race detection tool that uses Intel PT [56] to trace the program. It uses a

Concurrent Provenance Graph to record control, data and schedule dependencies.

Static Race Detection Tools. Chord [6], ECHO [10], D4 [1], RacerD [8] are static race

detection tools on Java. Chord is based on object-sensitive, flow-insensitive alias analysis

and escape analysis. RacerD leverages separation logic to detect races. It abandons the

alias analysis and uses syntactic patterns to check alias information to achieve scalabil-

ity. ECHO, SWROD, and D4 use field-sensitive but context-insensitive PTA. ECHO and

33

D4 primarily focus on the incremental race detection, hence the SHB Graph design for

handling function calls is different from SWORD.

LOCKSMITH [7], RELAY [57] are two static race detectors for C that both focus on

precise lockset reasoning. RELAY uses a context-sensitive bottom-up algorithm leverag-

ing the function summaries and symbolic analysis. LOCKSMITH uses a context-, flow-

sensitive correlation analysis to infer the protection of locks and applies a sharing analysis

to rule out thread local variables.

34

3. SDROID: A SCALABLE WHOLE PROGRAM RACE DETECTOR FOR

ANDROID

3.1 Android Background

Android applications are a representative class of modern software that contains com-

plex interations between threads and events. For instance, in Android apps, there are

hundreds of different types of events that can be created from the Activity lifecycles, UI

interactions, or the system services [58]. Meanwhile, the app logic may create any number

of normal Java threads and AsyncTask to improve performance.

Android Platform. All the Android apps run on top of the Android Framework, which

orchestrates the control flow between apps’ components and mediates all the intra-app,

inter-app, and hardware-software communications. Typically, Android apps are written in

Java (or partly in C/C++ throught Java Native Interface) and compiled into Dalvik byte-

code that either executes on top a Dalvik virtual machine (Android version < 5.0) or then

gets translated to native code and run on the Android Runtime (Android version ≥ 5.0).

Android app architecture. An app consists four types of components: (1) Services,

for performing long-running background operations, (2) Content Providers, for managing

data accesses, (3) Activities, for managing user interfaces, and (4) Broadcast receivers, for

responding broadcast messages from the system or other applications.

Activities are the most critical components. Android apps are usually a collection of

Activities and they switch between activities upon user interactions. For example, in the

Youtube Android app, the “Home” screen corresponds to the HomeActivity. When

the user clicks the “Search” box, the app switches to the MediaSearchActivity.

And once the user click the setting button, the app goes to the SettingActivity.

The lifetime of Activities is a state machine, where each state is associated with an event

35

so programmers can register callback functions to update the interfaces, e.g., upon the

Activity creation, the callback function onCreate() is invoked to initialize the content

of UIs, and upon Activity destruction onDestroy() is called to properly destruct the

UIs. On the other hand, GUI components are placed within each Activity to form the

specific UI layout. Each UI component can also be bound with callbacks in response

to user interactions. Components are strongly isolated, the only way for components to

communicate with each other is through message passing (in Android Framwork, this is

called Intent).

Threads. There are three kinds of threads in Android system: 1. looper thread; 2. back-

ground thread; 3. binder thread. Looper threads is a long-running thread with a message

loop. The looper thread receives messages and pushes them into a message queue, which

later dispatches the message to its corresponding message handler. In other word, the

looper thread is the "event-loop" we described in Chapter 1. The "main" thread of each

Android app, also known as the UI thread, is nothing but a looper thread that handles

all the interactions with UI components. Since each message is an "event", the messages

can be pushed into the queue in different order, but each message is processed atomically.

Background threads is just a normal thread that is typically used for background computa-

tion. Binder threads are used for inter-process communication between apps and Services,

each Service maintains a pool of binder threads so that it can handle multiple service calls

simultaneously.

Typically, the majority of the executions happen within the UI thread. When encoun-

tering the app encounters some heavy computations, they can be offloaded to background

thread.

36

3.2 Harness Creation

In Android apps, there isn’t an explicit main method as in other Java programs, that

can be used as the analysis entry. Instead, the main entry of an Android app is the Main

Activity (i.e., the home screen) declared by the developers and instantiated by the Android

Runtime (ART). Since the creation process of the main Activity is implicit from the source

code of an Android app, we need to craft a harness that soundly models the process of the

Activity creation. To do so, we first recognize the main activity by parsing and reading the

AndroidManifest.xml within each Android apk to find the declared main Activity. Then

an anlysis harness is generated as the code shown below. The lifecycle event handlers

(onCreate(), onDestory(), etc.) for an activity construction and destruction are

called in a sequence before and after all normal event handlers. Their order of invocation

must be the same as the code below. Hence, the happens-before relations among lifecycle

events are correctly retained. The normal event handlers are called in between the lifecycle

event handlers in arbitrary order, because there is no execution order enforced by ART.

Code 1: An example harness for Andorid activities.

1 public static void harness() {

2 // a newly starting activity

3 XXXActivity a = new XXXActivity();

4 //lifecycle event handlers

5 a.onCreate();

6 a.onStart();

7 a.onResume();

8

9 // normal event handlers

10 a.onKeyDown(...);

11 a.onMenuItemSelected(...);

12 ...

37

13

14 // lifecycle event handlers

15 a.onPause();

16 a.onStop();

17 a.onDestory();

18 }

This harness allows us to start analyzing an Android apps from its main Activity. Dur-

ing the analysis, other Activities can be created by startActivity(). We create a

harness using the same template for every Activity we meet, and resume our analysis by

entering the harness method.

3.3 Event as Origin

The normal Java threads can be created the same way in Android apps. However,

we also need to model the behavior of event handlers to detect races related to non-

deterministic event handling. As we mentioned in Chapter 1, events and threads are inher-

ently similar. Therefore, we extend our definition of Origin to unify the concept of thread

and event.

//	Java	Thread
new	Thread(runnable).run()

//	General	Event	Handler
new	EventHandler().handle(event)

//	Android	Event	Callback
onMenuItemClick(menuItem)

Origin(entry,	attribute)

Figure 3.1: An “origin” view of threads and events.

Figure 3.1 shows a generalized definition of an origin where the entry corresponds to a

38

thread start or event handler, and the attribute corresponds to the data passed to the thread

or event handler.

Table 3.1: The origin entries for SWORD and SDROID (incomplete).

Threads Events

java.lang.Thread.start() onClick(. . .)
java.lang.Runnable.run() onMenuItemClick(. . .)
java.util.concurrent.Callable.call() onLocationChanged(. . .)
.

* Due to the enormous number of possible entries, we only list some representitive ones.

Some Representative entries for origins are listed in Table 3.1. Because projects may

have their customized thread creation APIs or event handlers, the actual selection of origin

entries are subject to change, for example, some less important event handlers can be

ignored.

In SDROID, we select a list of commonly used event handlers as origin entries (e.g.,

the entries listed in Table 3.1) and handle them similarly as threads. More specifically,

since there are too many event handlers exist in the Android framework, we categorize

them into two types, namely Entry Callbacks and Posted Callbacks [21] ,and explain how

we model each one of them in detail. Figure 3.2 displays an overview of how we model

each type of event handlers (callbacks).

Entry Callbacks. Entry callbacks are event handlers externally invoked by ART. In

other words, entry callbacks are those event handlers we invoked in the analysis harness 1.

These callbacks are bound with Activity lifecycles and UI interactions. We do not consider

the lifecycle event handlers as origin entries, because their invocations are bounded to

1This is also the reason why we need to create a harness for them, because they are implicitly invoked
by ART during the real executions.

39

Main Thread
(UI Thread)

Main Activity:
onPause
onStop

onDestory

Main Activity:
onCreate
onStart

onResume

(a) Event callbacks

onClick
onLocationChanged

(d) BroadcastReceiver

Registered in
AndroidManifest.xml

registerReceiver

onReceive

onReceive

(b) Handler (c) AsyncTask

sendMessage

Other
Activities:
onCreate
onStart

...
onStop

onDestory

post

handleMessage

run

execute
onPreExecute doInBackground

publishProgress
onProgressUpdate

onPostExecute

(e) Service

onStartCommand

onService
Conncted

onService
DisConnected

onBind

bindService

startService
onStart

Command

Thread Origin

Event Origin

Figure 3.2: An overview of the Android thread model.

Activity’s lifecycle and cannot be triggered by users in a non-deterministic way, therefore

they reside in the same thread where the Acitivity is created (e.g., the main thread in

Figure 3.2). On the other hand, since the normal event handlers (e.g., onClick) are

triggered in arbitrary order, we consider them as origin entries. In other words, we see

them as a kind of “special threads” during the race detection (Figure 3.2(a)).

Posted Callbacks. Posted callbacks are event handlers internally triggered by Android

apps. They are related to Android components other than Activities: Handler, AsyncTask,

BroadcastReceiver and Service.

First, the Handler is associated with a looper thread (a thread with a message queue),

and it provides two APIs to either send a message to the message queue (sendMessage)

or dispatch a Runnable task for the looper thread to execute (post). The sendMes-

sage method delivers a message object to the message queue, and later this message

40

will be dispatched to the handleMessage method. The post method enqueues a

Runnable object which will be executed later by the looper thread. Both methods post

an event to the receiving looper thread. As shown in Figure 3.2(b), SDROID models them

as threads created by the caller of these methods. This model guarantees the HB relation

between the instructions in the caller and the instructions in the event handler are properly

retained.

Second, the Android framework provides another high-level concurrency construct,

AsyncTask, with which the main thread can easily communicate. Once the main thread

called execute, onPreExecute will first be invoked on the main thread. Then the

AsyncTask will execute its doInBackground method in a background thread. Once the

background task is finished, the main thread will finally call onPostExecute. During

the background processing, AsyncTask can update the progress of the task to the main

thread by calling publishProgress. Then the event handler onProgressUpdate

will be invoked in the main thread. Since all event handlers but onPreExecute are

invoked non-deterministically. We recognize all the other three event handlers as origin

entries, and create a static thread for them to detect races, as shown in Figure 3.2(c). A

difference between doInBackground with other callbacks is that it is executed in a

background thread, so it can cause both race conditions and data races.

Third, the BroadcastReceiver responds to the system-wide broadcasting. It only has

one event handler onReceive, which will be triggered by sendBroadcast(Intent).

Ideally, we should identify and analyze the target onReceive method every time we hit

a sendBroadcast, and recognize it as an origin entry. However, sendBroadcast

does not specify the receiver that handles this broadcasted message, and the receiver can

be registered based on the message type (a field of the Intent object passed to send-

Broadcast) either in AndroidManifest.xml or by calling registerReceiver API.

Finding the target receiver for each sendBroadcast requires precisely knowing the

41

value of the Intent object, which is generally undecidable. To overcome this technical

limitation, we directly look at the the registration sites of receivers, and for each receiver

registration, we create a new origin by calling their onReceive method, as shown in

Figure 3.2(d).

Fourth, The Service handles background processing. There are two ways to interact

with a Service:

1. You can explicitly invoke a service by calling startService(Intent). The

service will be created if it hasn’t been yet, and the lifecycle event handler onCre-

ate will be called. After that, the handler onStartCommand will be invoked to

performance the actual service logic. To handle this kind of service invocation, we

can craft a harness for a service the same way we did for activities. The harness only

consists of onCreate and onStartCommand, and the harness should be consid-

ered as an origin entry, because the service operations happen in the background

threads.

2. Another approach to interact with service is to bind an application to it. Once the

API bindService is called, the event handler onBind and onServiceCon-

nected will be called subsequently. After the connection between the client and

service is established, the application can access the data from the service syn-

chronously through a Binder object return from onBind. If later the connection

is lost, the callback onServiceDisconncted will be invoked. As shown in

Figure 3.2(e), we recognize all three callbacks as origin entries and analyze them

one after another to reflect their happens-before relations.

The accurate analysis on Services also requires the reasoning of the value of Intent

object. Because the Services are also registered in the AndroidManifest.xml, we can apply

the same scheme for handling Receivers.

42

3.4 Race Detection for Android

Since our goal is to extend the race detection framework introduced in Chapter 2 to

support the thread model in Android. The race detection process is mostly unchanged.

Upon each origin entry, SDROID generates a static trace for that origin. The static traces

between origins are connected by inter-origin edges (i.e., the inter-thread edges).

The only difference is we somehow still needs to distinguish between thread origins

and event origins, because events essentially can only be executed on a single thread (the

looper thread), therefore they cannot have data races with other events. To accommodate

that, we introduce a global lock for event origins. The global lock will be acquired once

we enter an event origin and released when we exit. This approach guarantees that no data

races will be detected between the event handlers, because they all run on the UI thread.

As a result, our analysis framework is able to model such a concurrent event-driven

system, and seamlessly detect data races between origins. As for detecting race conditions,

since race conditions are mostly semantic bugs that highly depend on specific code logic,

we cannot easily detect them without user specification. However, we can apply different

heuristics (i.e., bug patterns) to detect a subset of those race conditions. For example, if

one event only write to the an shared object with value null, while another event only

reads this object, then it is very likely to cause a Null Pointer Exception. Such heuristics

are easy to implement in our race detection framework, and they can further cooperate

with user specifications to detect a larger variations of race conditions we introduced in

Chapter 1.

3.5 Related and Future Work

Races in event-driven programs have attracted much attention recently [59, 18, 17,

19, 20, 60, 22, 21]. Event-based races are even more challenging to detect than thread-

based races because most events are asynchronous and the event handlers can be triggered

43

in many different ways. Moreover, the difficulty in detecting event-based races can be

exacerbated by interactions between threads and events, which are common in distributed

systems and mobile apps.

The state-of-the-art dynamic race detectors [52, 61] do not perform well in detect-

ing event-based races, due to the large space of causal orders among event handlers and

threads, as well as the large number of events and event sequences.

Dynamic race detectors that specifically targeting at Android apps [59, 18, 19, 17]

all need a special device to log the execution traces for Android apps, thus making the

tool even harder to use in the development process. Moreover, to effectively expose bugs

in the traces, the user needs to run the app with a sequence of predefined interactions

to properly trigger those events, as a result, it is extremely hard for those techniques to

expose previously unknown bugs. To accurately analyze the collected traces, all previous

tools require several seconds to several hours to process the traces offline. Comparing

with these tools, SDROID does not require a logging device, and it usually requires only

several minutes to analyze a large size Android app. Furthermore, SDROID can detect

many more potential bugs exist in the Android apps.

For static analyzers, FSCS [60] only support event-driven system in general, without

any support for Android system. DEvA [22] is a static technique that requires manual

description of the framework, and it detects "event anomaly" in general. Therefore it is

much harder to use and can cause false negatives due to the incomplete description. Be-

sides, this technique in a sense is orthogonal to SDROID as we mentioned in Section 3.4.

Adopting certain levels of user specification can help SDROID to better detect potential

semantic bugs between events (i.e., event anomalies). nAdroid [21] is a static tool that

focus on detecting null pointer exceptions in Android apps. It is the first work trying to

view events and threads thus enabling using existing data race detector to analyze Android

apps. However, nAdroid uses Chord [6] as it’s underlying framework, which is pretty old

44

and has no HB relation reasoning. In consequence, nAdroid has to apply a set of unsound

heuristics to filter out detected bugs. Moreover, the Android model proposed by nAdroid

is incomplete, while SDROID first proposed a complete model to abstract all kinds of

possible behavior in an Android app and considering more inherent HB relations between

Android events. SIERRA [20] uses symbolic execution to analyze Android apps statically.

In general, symbolic execution cannot scale to large programs, thus SDROID has a much

better performance over SIERRA. On the other hand, SIERRA considers some more so-

phisticated event handling scenarios, such as pausing an Activity and then re-enter this

Activity multiple times, causing a sequence of onPause and onResume events to be

triggered. Symbolic analysis enables SIERRA to accurately analyze these cases SDROID

does not handle accurately, thus reporting less false positives in general. We consider those

advantages in SIERRA as our future research directions.

In summary, SDROID leverages a data race detection framework that has been proven

successful in Java programs and extends this framework to the Android system by propos-

ing a complete Android thread model that conservatively models most kinds of potential

behavior in an Android app. There are still some corner cases we do not handle. For exam-

ple, users can associate a Looper object to any Java thread and turn it into a looper thread

just like the UI thread. Our model currently does not handle this case. Moreover, we fail

to find some good heuristics to detect common race conditions between events in practice,

it is possible to carry out more case studies to understand race conditions in real-world

Android app as well as incorporating user provided specifications.

45

4. EVALUATION 1

We implemented both SWORD and SDROID based on ECHO, which is based on the

program analysis framework WALA [62]. We evaluated SWORD on a collection of 12

different real-world Java applications from DaCapo-9.12 [63], petablox [64] and Github.

In this section, we report the results of our experiments and make some discussion based

on the experimental results.

4.1 Methodology

For SWORD, we mainly compare our tool with the most recent two tools available,

RacerD and D4. RacerD is inherently compositional and require annotations to increase

its coverage. Therefore, for small benchmark, we records the classes being analyzed and

manually annotated then as @ThreadSafe, so that we guarantees both tools achieve the

same code coverage. Since for large benchmarks, we are unable to precisely annotate

every class analyzed, this experiment is only performed at 7 benchmarks. Besides, since

RacerD does not consider external libraries, we also configured SWORD to skip analyzing

all external library. Since D4 uses the same framework as SWORD, we simply run D4’s

initial analysis (which analyzes the whole program) and record the execution time to show

the performance improvement achieved by SWORD. As for the number of races, D4 and

SWORD technically reports the same number of races, but they organize the race report

in a different way, so we skip recording those numbers as they are not providing useful

information.

For Android race detection, RacerD is the only publicly available static race detector

that supports Android apps. However, RacerD can only be integrated into the command-

1 c© [2019] IEEE. Adapted, with permission, from Y. Li, B. Liu, and J. Huang, “Sword: A Scalable
Whole Program Race Detector for Java” in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pp. 75–78, IEEE, 2019.

46

Table 4.1: Performance and accuracy for SWORD and RacerD on different benchmarks.
c© [2019] IEEE. Reprinted, with permission, from Y. Li, B. Liu, and J. Huang, “Sword: A Scalable Whole

Program Race Detector for Java” in 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), pp. 75–78, IEEE, 2019.

RacerD SWORD
Program LOC Alarms∗ Runtime† Alarms Runtime

tsp 454 6/44 1.2s 46 1s
elevator 1088 1/52 2.8s 45 1s
weblech 1322 10/53 2s 13 1.4s

sor 7176 44/64 3.3s 8 1.1s
sunflow 24713 59/1632 10.3s 1150 135s
lusearch 48128 222/2786 25s 1420 13s
avrora 70057 79/4788 30s 27 74s
∗ # of alarms without annotations / # of alarms with annotations
†RacerD has similar performance with or without annotations

line building process, and we are unable to successfully integrating RacerD for most of the

open-source project. Therefore, we are only able to evaluate SDROID alone and discuss

its accuracy and performance based on the statistics provided from previous papers. All

open-source Android apps are collected from F-Droid [65]. In addition, we also pick two

well-known commercial Android apps (Chrome and Zoom) to test if our analyzer can scale

to common commercial programs.

4.2 Evaluation of SWORD

Table 4.1 shows the whole-program analysis results for RacerD and SWORD. The

table is collected from SWORD’s original paper [41], therefore the performance results

cannot fully reflect the optimizations we discussed in Chapter 2. Nevertheless, this exper-

imental result is sufficient to show the effectiveness of SWORD on whole-program race

detection.

Table 4.2 shows the performance comparision between D4 and SWORD. As we can

see, SWORD outperforms D4 in all benchmarks and achieves an overall 10x speedup.

47

Table 4.2: Performance comparison between SWORD and D4.

D4(1-Origin) SWORD
Program KLOC Runtime Runtime Speedup

Batik 191 14.93s 3.35s 4.45x
Eclipse 239 8.03s 2.3s 3.49x

Pmd 104 13.32s 0.91s 14.63x
Sunflow 169 26.01s 2.34 11.12x
Xalan 175 35.73s 3.33s 10.73x

Zookeeper 108 271.20s 41.39s 6.55x

4.2.1 Performance

For small benchmarks, SWORD and RacerD both manifest a fast detection speed.

When the programs grow large, RacerD tends to have a better performance on average,

because it utilizes a cheap ownership analysis to replace PTA. This design makes the per-

formance of RacerD mainly depends on program sizes and is not affected by complexity.

In contrast, SWORD performs a origin-sensitive PTA, which is much more precise but

also more expensive. Nevertheless, SWORD can complete the detection within 3 minutes

for all the benchmarks. Another interesting observation is the performance of SWORD is

disproportionate to the program size. For example, sunflow has smaller program size than

lusearch, but it contains more abstract threads and shared memory accesses, which require

significantly more computation (135s vs 13s) to determine the happes-before relations and

locksets.

Comparing to D4, SWORD exhibit a significant performance improvement, this is

expected, since SWORD is fully optimized for whole program race detection. However,

the optimizations on SWORD cannot easily adopted by D4. This is because D4 do not

"inline" each method call, thus the thread local trace is not a sequence. This results in a

much more expensive HB checking and less efficient memory access shrinking.

48

4.2.2 Precision

The Alarms columns in Table 4.1 show the reported race number of SWORD and

RacerD. The soundness of SWORD is guaranteed by PTA and SHB graph design. In

order to verify the accuracy for all benchmarks, we compared SWORD’s reports with

RacerD’s reports on annotated benchmarks, because they had the same code coverage.

we manually checked all reported races in the first 4 benchmarks and confirmed all extra

alarms reported by RacerD were false positives. The rest 3 large benchmarks all contain

more than a thousand alarms, therefore we checked them by sampling. We categorized all

reported races by their classes. For each class, we randomly pick three alarms to check:

1. The alarm is reported by RacerD but not by SWORD;

2. The alarm is reported by SWORD but not by RacerD;

3. The alarm is reported by both tools.

After checking all the sample alarms, we conclude that, for the first type of alarms, all

of them are false positives. For the second type, there exist some real races, which means

RacerD has false negatives. The last type of alarms consists of both false positives and

real races.

4.2.3 Case Study

We use two cases to illustrate the imprecision in RacerD that can be easily addressed

by SWORD’s HB relation checking and precise PTA. The first example below is from

Weblech, which is a multithreaded web crawler implemented in Java.
1 // TextSpider.Java: main function
2 public static void main(String[] args) {
3 ...
4 Spider spider = new Spider();
5 spider.readCheckpoint();
6 ...
7 spider.start();
8 }

49

9

10 // Spider.java: Spider class implementation
11 Class Spider extend Runnable {
12 private queue;
13

14 public void readCheckpoint() {
15 ...
16 // write on queue, RACE
17 queue = (DownloadQueue) ois.readObject();
18 ...
19 }
20

21 public void run() {
22 ...
23 // read on queue, RACE
24 synchronized(queue) {...}
25 ...
26 }
27

28 public void start() {
29 ...
30 Thread t = new Thread(this, "thread 1");
31 t.start()
32 ...
33 }
34 }

Spider is a Runnable class, and will spawn multiple threads and assign itself as

the thread routine in the start function. The method readCheckpoint will only

be called once in main before Spider.start is called. Therefore there is no con-

current access with field queue in this method. Since RacerD does not reason about

happens-before relation, it can only assume readCheckpoint may happen in parallel

with Spider.run (the thread routine), thus reporting a read-write race on queue. This

false alarm can be easily eliminate by SWORD due to its HB checking.

The second case comes from a simplified version of sor, which is a micro-benchmark

from petablox.
1 class Sor {
2 // shared variables
3 static black = new float[M][N];
4 static red = new float[M][N];
5 ...
6 public static void main(String[] args) {
7 for (i=0;i<proc;i++) {
8 // start and end are indices to black and red
9 new sor_first_row(start,end).start();

50

10 ...
11 }
12 }
13 }
14

15 class sor_first_row {
16 float[][] black_ = Sor.black;
17 float[][] red_ = Sor.red;
18 ...
19 public void run() {
20 ...
21 for (i = 0; i < Sor.iterations; i++) {
22 for (j = start; j <= end; j++) {
23 // RACE due to overlapping indices
24 black_[j][k] = red_[j-1][k] + red_[j+1][k];
25 red_[j][k] = black[j-1][k] + black_[j+1][k];
26 }
27 }
28 ...
29 }
30 }

sor_first_row is a class extends Thread. Argument start and end are consec-

utive ranges (e.g. 1 to 5; 6 to 10). The shared static array black and red are assigned to

thread local variables black_ and red_. All threads perform reads and writes on black_ and

red_, and the index of these array accesses will overlap at indices j − 1 and j + 1. How-

ever, RacerD treats black_ and red_ as pure thread local variables instead of recognizing

they refer to the static shared arrays due to missing precise PTA. Therefore, RacerD fail to

detect the real races on black_ and red_ (line 24 and 25), no matter it runs with or without

annotations.

4.3 Evaluation of SDROID

We mainly show the performance evaluation of SDROID on different kinds of Android

apps. Table 4.3 compares how effective is SDROID using origin-sensitive PTA to analyze

android programs. Since checking the race report of all these Android apps is very hard 2,

we picked Firefox-Focus as a Representative app and did a comprehensive study on its

bug report, the conclusion is discussed in the precision section.
2It’s hard to manually reason about potential user interactions. Besides, most of the commercial Android

apps are not open-sourced.

51

Table 4.3: The performance result for SDROID on different Android apps(Time: s).

0-Ctx Origin 1-CFA 2-CFA 1-Obj 2-Obj

App PA Total #O PA Total/SD PA Total/SD PA Total/SD PA Total/SD PA Total/SD

ConnectBot 2.40 2.49 11 5.45 5.57 /124% 23.85 23.99/8.63x 3512.66 3512.93/1409x >4h - >4h -
Sipdriod 5.80 16.02 15 31.48 228.33/1327% 14.33 40.88/1.55x 3436.02 3452.33/215x >4h - >4h -
K-9 Mail 6.56 8.59 23 14.73 19.49/127% 30.88 33.32/2.88x 4284.43 4288.31/498x >4h - >4h -
Tasks 6.90 7.10 7 12.72 12.90/82% 117.63 117.77/15.59x 8080.92 8081.12/1137x >4h - >4h -
FBReader 6.66 7.49 15 20.16 23.33 /211% 45.26 52.79/6.05x 2.97h 3.10h/1482x >4h - >4h -
VLC 5.35 5.39 4 46.40 46.44/762% 25.40 25.44/3.72x 3234.61 3234.68/599x >4h - >4h -
FireFox Focus 3.84 4.08 8 15.46 15.76/286% 17.96 18.34/3.50x >4h - >4h - >4h -
Telegram 20.82 41.76 134 199.79 372.93/793% 83.31 171.42/3.10x >4h - >4h - >4h -
Zoom 36.77 37.62 15 148.01 149.01/296% 198.59 200.47/4.33x >4h - >4h - >4h -
Chrome 6.14 7.35 34 108.76 111.79/1421% 18.43 22.72/2.09x >4h - >4h - >4h -

"-": the corresponding pointer analysis runs out of time.

4.3.1 Performance

As Table 4.3 has shown, origin-sensitive analysis brings a significant performance

overhead against context-insensitive analysis. This is expected, however, we find the

performance overhead brought by origin-sensitive analysis is more significant when an-

alyzing Android apps. Because most of the program logic are written within event handler

(origins), as a result, there are more events in origins, which incurs more expensive PTA.

Regardless, our analysis can still finish analyzing all Android apps within 10 minutes.

This is much more efficient than all other context-sensitive analyses such as 2-cfa and 1-/2-

object sensitivity. Comparing to all other static tools, we also see a superior performance,

and all other tools did not show their capability of analyzing large commercial programs

like Zoom and Chrome.

4.3.2 Precision

At this moment, we are not able to fully verify the precision of our Android race

detector, mainly due to two reasons. First, a concurrent program an Android app may be,

most existing apps are single-threaded, therefore we cannot find many data races. Second,

as for race conditions, they require a deep understanding of the apps’ logic, and can be

52

very hard to manually check without extensive help from developers. As a result, we pick

Firefox-Focus as a representative and mainly focus on studying the data races we detect.

Among the 15 races detected, 2 of them are confirmed to be real races, one of which will

be elaborated in the next section 3. Other 13 false positives are mainly due to lacking the

reasoning of path-condition and the imprecision in PTA caused by container object such

as ArrayList or HashMap. Those are all expected false positive cases, and we consider

handling them as our future work.

4.3.3 Case Study

SDROID is able to finish in 15s on FireFox Focus 8.0.15 (a privacy-focused mobile

browser), and detected two previously unknown bugs (both reported in Bug-1581940)

confirmed by developers from Mozilla. By the time I’m writing this thesis, one of the

bug has already been fixed in the newer version, therefore we use it as an case study. A

simplified code snippet is presented below:
1 // called from Gecko background thread
2 public synchronized IChildProcess bind() {
3 ...
4 Context ctx = GeckoAppShell.getAppCtx();//RACE
5 ...
6 }
7 // called from MainActivity.onCreate()
8 @UiThread
9 public void attachTo(Context context) {

10 ...
11 Context appCtx = context.getAppCtx();
12 if (!appCtx.equals(GeckoAppShell.getAppCtx())) {
13 GeckoAppShell.setAppCtx(appCtx);//RACE
14 ...
15 }
16 ...
17 }

The code involves both FireFox Focus and FireFox’s browser engine, Gecko. Upon

the app initialization, getAppCtx and etAppCtx are called without synchronizations,

one from Android UI thread (through onCreate event handler), the other from Gecko

3The two races have similar root causes, therefore we only elaborate one.

53

engine’s background thread. Although in reality, the creation order between UI thread and

Gecko background thread keeps the race from happening, it is possible for Gecko engine

to read an uninitialized application context thus leads to crash.

54

5. CONCLUSION

This thesis presents a fully optimized framework for doing whole-program race detec-

tion on Java and Android programs.

To achieve a scalable whole-program race detection framework, we first propose a new

context abstraction called origin for pointer analysis. This context abstraction allows PTA

to distinguish thread sharing objects versus thread-local object precisely, thus providing a

sufficient precision while maintaining reasonable performance. Besides, we leverage the

typical characteristics of the multithreaded program traces to effectively represent the HB

relations and reduce the overall SHB Graph size, which further enables efficient caching

to optimize the race detection performance greatly. We also propose a fast algorithm for

collecting stack-trace for our bug reports, thus allowing developers to understand the race

alarms better. Our evaluation shows SWORD achieves overall a 10x speedup over previous

work D4.

Next, we extend our efficient race detection framework to the Android system. To

achieve this, we unify the concept of events and threads as origins and propose a com-

prehensive Android thread model that allows us to analyze Android as a standard multi-

threaded program. As a result, we successfully extend our Java race detection framework

to Android and have found several previously unknown bugs.

Besides the technical contribution, we also make some engineering efforts to integrate

the race detectors with popular IDEs such as Eclipse and Intellij IDEA leveraging Lan-

guage Server Protocol.

In summary, this thesis presents the SWORD and SDROID, which support efficient

and scalable race detection on real-world Java and Android programs. In the short term, I

will continue this line of research, especially supporting path-sensitive analysis to improve

55

analysis accuracy. As for Android, it is still unclear whether our model soundly considers

all potential behaviors of an Android app. Therefore it will be useful to further formalize

the behavior of the Android system. Besides, effectively detecting harmful race conditions

in event-driven systems can still be explored, especially under the circumstance where user

specifications are not available. In the longer term, I’m more interested in more advanced

type systems and especially the incorporation between type system and runtime checks

(such as the contract system). I also believe a more advanced type system can bridge

the gap between static analysis and formal verification. I’m also interested in applying

static analysis/formal verification techniques into some less-studied systems such as layout

rendering systems.

56

REFERENCES

[1] B. Liu and J. Huang, “D4: fast concurrency debugging with parallel differential anal-

ysis,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,

2018, pp. 359–373, 2018.

[2] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic race de-

tection,” in Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, (New York, NY, USA), pp. 121–

133, ACM, 2009.

[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dy-

namic data race detector for multithreaded programs,” ACM Trans. Comput. Syst.,

vol. 15, pp. 391–411, Nov. 1997.

[4] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”

vol. 21, (New York, NY, USA), pp. 558–565, ACM, July 1978.

[5] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions and

deadlocks,” in Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, SOSP ’03, (New York, NY, USA), pp. 237–252, ACM, 2003.

[6] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for java,” in Pro-

ceedings of the 27th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’06, (New York, NY, USA), pp. 308–319, ACM, 2006.

[7] P. Pratikakis, J. S. Foster, and M. Hicks, “Locksmith: context-sensitive correlation

analysis for race detection,” Acm Sigplan Notices, vol. 41, no. 6, pp. 320–331, 2006.

57

[8] S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey, “Racerd: compositional

static race detection,” Proceedings of the ACM on Programming Languages, vol. 2,

no. OOPSLA, pp. 1–28, 2018.

[9] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–

74, IEEE, 2002.

[10] S. Zhan and J. Huang, “Echo: Instantaneous in situ race detection in the ide,” in Pro-

ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE 2016, (New York, NY, USA), pp. 775–786, ACM,

2016.

[11] K. Sen, “Race directed random testing of concurrent programs,” in Proceedings of

the 29th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’08, (New York, NY, USA), pp. 11–21, ACM, 2008.

[12] H. C. Lauer and R. M. Needham, “On the duality of operating system structures,”

ACM SIGOPS Operating Systems Review, vol. 13, no. 2, pp. 3–19, 1979.

[13] J. Ousterhout, “Why threads are a bad idea (for most purposes),” in Presentation

given at the 1996 Usenix Annual Technical Conference, vol. 5, San Diego, CA, USA,

1996.

[14] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42, 2006.

[15] J. R. Von Behren, J. Condit, and E. A. Brewer, “Why events are a bad idea (for

high-concurrency servers).,” in HotOS, pp. 19–24, 2003.

[16] B. Zhou, I. Neamtiu, and R. Gupta, “Experience report: How do bug characteristics

differ across severity classes: A multi-platform study,” in 2015 IEEE 26th Interna-

58

tional Symposium on Software Reliability Engineering (ISSRE), pp. 507–517, IEEE,

2015.

[17] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for android applications,”

ACM SIGPLAN Notices, vol. 49, no. 6, pp. 316–325, 2014.

[18] P. Bielik, V. Raychev, and M. Vechev, “Scalable race detection for android applica-

tions,” ACM SIGPLAN Notices, vol. 50, no. 10, pp. 332–348, 2015.

[19] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and reproducing event-

based races in android apps,” in Proceedings of the 25th International Symposium on

Software Testing and Analysis, pp. 377–388, 2016.

[20] Y. Hu and I. Neamtiu, “Static detection of event-based races in android apps,” ACM

SIGPLAN Notices, vol. 53, no. 2, pp. 257–270, 2018.

[21] X. Fu, D. Lee, and C. Jung, “nadroid: statically detecting ordering violations in

android applications,” in Proceedings of the 2018 International Symposium on Code

Generation and Optimization, pp. 62–74, 2018.

[22] G. Safi, A. Shahbazian, W. G. Halfond, and N. Medvidovic, “Detecting event anoma-

lies in event-based systems,” in Proceedings of the 2015 10th Joint Meeting on Foun-

dations of Software Engineering, pp. 25–37, 2015.

[23] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang, “Static data race detection for con-

current programs with asynchronous calls,” in Proceedings of the 7th joint meeting

of the European software engineering conference and the acm sigsoft symposium on

the foundations of software engineering, pp. 13–22, 2009.

[24] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on Program-

ming Languages and Systems (TOPLAS), vol. 16, no. 5, pp. 1467–1471, 1994.

59

[25] L. O. Andersen, “Program analysis and specialization for the c programming lan-

guage,” tech. rep., 1994.

[26] J. Dietrich, N. Hollingum, and B. Scholz, “Giga-scale exhaustive points-to analysis

for java in under a minute,” in Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2015, (New York, NY, USA), pp. 535–551, ACM, 2015.

[27] D. Grove and C. Chambers, “A framework for call graph construction algorithms,”

ACM Trans. Program. Lang. Syst., vol. 23, pp. 685–746, Nov. 2001.

[28] B. Hardekopf and C. Lin, “The ant and the grasshopper: Fast and accurate pointer

analysis for millions of lines of code,” in Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’07,

(New York, NY, USA), pp. 290–299, ACM, 2007.

[29] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-to analysis,”

in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, (New York, NY, USA), pp. 423–434, ACM,

2013.

[30] J.-s. Yur, B. G. Ryder, and W. A. Landi, “An incremental flow- and context-sensitive

pointer aliasing analysis,” in Proceedings of the 21st International Conference on

Software Engineering, ICSE ’99, (New York, NY, USA), pp. 442–451, ACM, 1999.

[31] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sensitivity for

points-to analysis for java,” ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 1–41,

Jan. 2005.

[32] B. G. Ryder, “Dimensions of precision in reference analysis of object-oriented

programming languages,” in Proceedings of the 12th International Conference on

60

Compiler Construction, CC’03, (Berlin, Heidelberg), pp. 126–137, Springer-Verlag,

2003.

[33] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends Program.

Lang., vol. 2, pp. 1–69, Apr. 2015.

[34] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis: Context-

sensitivity, across the board,” in Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14, (New York, NY,

USA), pp. 485–495, ACM, 2014.

[35] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang: Demand-driven flow- and

context-sensitive pointer analysis for java,” in 30th European Conference on Object-

Oriented Programming (ECOOP 2016) (S. Krishnamurthi and B. S. Lerner, eds.),

vol. 56 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Ger-

many), pp. 22:1–22:26, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[36] M. Sridharan and R. Bodík, “Refinement-based context-sensitive points-to analysis

for java,” in Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’06, (New York, NY, USA), pp. 387–

400, ACM, 2006.

[37] M. Sridharan and S. J. Fink, “The complexity of andersen’s analysis in practice,”

in Proceedings of the 16th International Symposium on Static Analysis, SAS ’09,

(Berlin, Heidelberg), pp. 205–221, Springer-Verlag, 2009.

[38] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams,” in Proceedings of the ACM SIGPLAN 2004 Confer-

ence on Programming Language Design and Implementation, PLDI ’04, (New York,

NY, USA), pp. 131–144, ACM, 2004.

61

[39] “The true cost of a software bug.” https://www.celerity.com/

the-true-cost-of-a-software-bug.

[40] “Language server protocol.” https://microsoft.github.io/language-server-protocol/.

[41] Y. Li, B. Liu, and J. Huang, “Sword: A scalable whole program race detector for

java,” in 2019 IEEE/ACM 41st International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion), pp. 75–78, IEEE, 2019.

[42] M. Sharir, A. Pnueli, et al., Two approaches to interprocedural data flow analysis.

New York University. Courant Institute of Mathematical Sciences . . . , 1978.

[43] O. Shivers, Control-flow analysis of higher-order languages. PhD thesis, PhD thesis,

Carnegie Mellon University, 1991.

[44] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sensitivity for

points-to and side-effect analyses for java,” in Proceedings of the 2002 ACM SIG-

SOFT international symposium on Software testing and analysis, pp. 1–11, 2002.

[45] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts well: un-

derstanding object-sensitivity,” in Proceedings of the 38th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pp. 17–30, 2011.

[46] “Memory consistency error.” https://docs.oracle.com/javase/

tutorial/essential/concurrency/memconsist.html, 2019.

[47] O.-K. Ha and Y.-K. Jun, “An efficient algorithm for on-the-fly data race detection us-

ing an epoch-based technique,” vol. 2015, (New York, NY, United States), pp. 13:13–

13:13, Hindawi Publishing Corp., Jan. 2015.

[48] J. Huang, “Scalable thread sharing analysis,” in Proceedings of the 38th International

Conference on Software Engineering, pp. 1097–1108, 2016.

62

https://www.celerity.com/the-true-cost-of-a-software-bug
https://www.celerity.com/the-true-cost-of-a-software-bug
https://docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html

[49] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff, “Escape analysis

for java,” Acm Sigplan Notices, vol. 34, no. 10, pp. 1–19, 1999.

[50] J. Mellor-Crummey, “On-the-fly detection of data races for programs with nested

fork-join parallelism,” in Supercomputing’91: Proceedings of the 1991 ACM/IEEE

conference on Supercomputing, pp. 24–33, IEEE, 1991.

[51] F. Mattern et al., Virtual time and global states of distributed systems. Citeseer, 1988.

[52] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection in prac-

tice,” in Proceedings of the Workshop on Binary Instrumentation and Applications,

WBIA ’09, (New York, NY, USA), pp. 62–71, ACM, 2009.

[53] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy, “Helgrind+: An efficient dy-

namic race detector,” in 2009 IEEE International Symposium on Parallel & Dis-

tributed Processing, pp. 1–13, IEEE, 2009.

[54] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic bi-

nary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[55] J. Thalheim, P. Bhatotia, and C. Fetzer, “Inspector: data provenance using intel pro-

cessor trace (pt),” in 2016 IEEE 36th International Conference on Distributed Com-

puting Systems (ICDCS), pp. 25–34, IEEE, 2016.

[56] A. Kleen and B. Strong, “Intel processor trace on linux,” Tracing Summit, vol. 2015,

2015.

[57] J. W. Voung, R. Jhala, and S. Lerner, “Relay: Static race detection on millions of

lines of code,” in Proceedings of the the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of

Software Engineering, ESEC-FSE ’07, (New York, NY, USA), pp. 205–214, ACM,

2007.

63

[58] W. Song, X. Qian, and J. Huang, “Ehbdroid: beyond gui testing for android appli-

cations,” in 2017 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pp. 27–37, IEEE, 2017.

[59] C.-H. Hsiao, S. Narayanasamy, E. M. I. Khan, C. L. Pereira, and G. A. Pokam,

“Asyncclock: Scalable inference of asynchronous event causality,” in Proceedings

of the Twenty-Second International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’17, (New York, NY, USA),

p. 193–205, Association for Computing Machinery, 2017.

[60] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang, “Static data race detection for con-

current programs with asynchronous calls,” in Proceedings of the 7th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT Sympo-

sium on The Foundations of Software Engineering, ESEC/FSE ’09, (New York, NY,

USA), p. 13–22, Association for Computing Machinery, 2009.

[61] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient scalable thread-safety-

violation detection: Finding thousands of concurrency bugs during testing,” in Pro-

ceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,

(New York, NY, USA), p. 162–180, Association for Computing Machinery, 2019.

[62] WALA, “T. j. watson libraries for analysis (wala).” http://wala.sourceforge.net/,

2017.

[63] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,

H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-

lage, and B. Wiedermann, “The DaCapo benchmarks: Java benchmarking develop-

ment and analysis,” in OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN

64

conference on Object-Oriented Programing, Systems, Languages, and Applications,

(New York, NY, USA), pp. 169–190, ACM Press, Oct. 2006.

[64] “Petablox benchmark.” https://github.com/petablox/

petablox-bench, 2018.

[65] “F-droid.” https://f-droid.org/, 2020.

65

https://github.com/petablox/petablox-bench
https://github.com/petablox/petablox-bench
https://f-droid.org/

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Data Race Detection in a Nutshell
	Dynamic Analysis
	Static Analysis
	Hybrid Analysis

	Event-Driven System
	Race Conditions
	Android System

	Pointer Analysis
	IDE Integration and Debugging Information
	Limitations
	Contributions
	Outline of Thesis

	SWORD: A SCALABLE WHOLE PROGRAM RACE DETECTOR FOR JAVA
	Target Language
	Pointer Analysis
	The Necessity of Pointer Analysis in Race Detection
	Context-Sensitive Pointer Analysis
	Origin-Sensitive Pointer Analysis
	Origin vs Other Contexts

	Checking Happens-Before Relation
	Static Happens-Before Graph
	An Optimized SHB Graph
	Checking Happens-Before Relations

	Origin Sharing Analysis
	Lockset Tracking
	Data Race Detection
	Synchronization-Region-Based Race Detection

	Collecting Stack Traces
	Related and Future Work

	SDROID: A SCALABLE WHOLE PROGRAM RACE DETECTOR FOR ANDROID
	Android Background
	Harness Creation
	Event as Origin
	Race Detection for Android
	Related and Future Work

	EVALUATION © [2019] IEEE. Adapted, with permission, from Y. Li, B. Liu, and J. Huang, ``Sword: A Scalable Whole Program Race Detector for Java'' in 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 75–78, IEEE, 2019.
	Methodology
	Evaluation of SWORD
	Performance
	Precision
	Case Study

	Evaluation of SDROID
	Performance
	Precision
	Case Study

	CONCLUSION
	REFERENCES

