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ABSTRACT

Maintenance costs and machine availability are the most important concerns of any company

that owns large machinery, especially gas turbine engines. With the advent of the 4th wave of the

industrial revolution also known as Industrial Internet of Things (IIoT), the focus has shifted onto

optimal utilization of the equipment. Reduction in the installation costs of sensors helped compa-

nies to install them on their key equipment. The live data from the sensors can now be utilized to

monitor the health of the machines. This thesis proposes a prognostic technique to predict time-to-

failure of gas turbine engines using standard machine learning and deep learning techniques that

puts the data from sensors to good use. Our proposed approach provides accurate feedback on the

health of the machine to the concerned personnel. Our approach includes developing multiple Re-

current Neural Network (RNN) models to predict the sensor readings of the engine and then using

a Support Vector Machine (SVM) to classify these readings as safe or failure. The objective of

this thesis is to establish supporting evidence for the proof of concept of the created time-to-failure

prognostic technique. We have demonstrated the performance of our approach on the data-sets

made available by NASA with different failure modes and then compared the performance of our

approach with the current industry standard for land-based gas turbine engines.
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1. INTRODUCTION

1.1 Motivation

In this competitive business world, every company expects the machinery to run without any

unexpected breakdowns because equipment failure leads to significant wastage of resources and

potentially affects the company economically. These failures may also lead to the injuries of the

operators and in extreme cases, fatalities. This is the reason why the maintenance of machinery

is of high importance in any company across any industry. Any machine that has moving parts is

subject to wear and tear and hence requires appropriate maintenance.

Gas turbines are one of the most expensive pieces of equipment that are used both in indus-

trial and aviation applications. Reliability and availability are the most sought out qualities in Gas

turbines and a lot of money is invested globally for the operation and maintenance of these en-

gines [1]. This trend is expected to continue given their importance in the respective applications.

Globally, $ 69 billion was spent on Maintenance, Repair and Overhaul (MRO) in the year 2018

alone excluding overhead according to International Air Transport Association. Out of which 42%

was spent on the engine maintenance alone. With 4.1 % increase per annum, it is estimated to

reach $ 103 billion by 2028 [2]. Hence continuous monitoring and maintenance of these critical

components is given high importance by companies.

Figure 1.1: World MRO spend by segment in Aviation, 2018
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Running these engines at the optimal working conditions is also very important because com-

panies do not want their engines to consume more fuel as it reduces their profit margin and there

is an increased probability of wear when running at suboptimal conditions. Therefore, operating

these engines at their clean operating conditions does have a significant contribution in reducing the

operating costs of these engines. This can be achieved by incorporating an improved maintenance

policy and utilizing the latest advances in predictive analytics for the health condition monitoring

of these engines.

Figure 1.2: Top avenues for saving in aviation industry

In this work, we propose a model that utilizes the latest machine learning and deep learning

techniques to predict the time to failure of gas turbine engines. We believe that the incorporation

of this model in the existing maintenance policy would help the company in utilizing its resources

to their complete potential which will, in turn, reduce the operational and maintenance costs in-

creasing the profitability of the company.

1.2 Evolution of Industrial Maintenance

The First Industrial Revolution (18th Century) resulted in the shift to production using ma-

chines. Back then, the handling of the machinery was fairly simple i.e. use it till it fails and

repair/replace it only when it no longer runs. This can be called reactive maintenance and it was
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not planned as the downtime back then was not critical. With the introduction of electricity-driven

machines in the wake of the Second Industrial Revolution, the need for proactive care of the ma-

chines was established. The second world war made the industry very competitive and downtime

was no longer tolerable in the industry. This led to the birth of preventive maintenance where

certain schedules were developed and regular maintenance was being performed and certain ob-

servations were also being noted to prevent the machines from unexpected failures. Though this

reduced downtime this proved to be very expensive and inefficient. Later on, reliability centered

maintenance and risk-based maintenance were developed which proved to be more efficient than

the earlier practices. But still, these methods did not involve live tracking the health of the ma-

chines and hence there is scope for improvement.

Figure 1.3: Evolution of Maintenance Strategies

Figure 1.4: Summary of the strategies
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With the advent of industry 4.0, the latest industrial revolution, Artificial Intelligence was in-

corporated into the manufacturing environment, forever changing the way the machines collect and

interpret the data. Industrial Internet of things (IIoT) emphasizes the importance of maximizing

equipment utilization. The substantial decrease in the installation costs of sensors further aided

the installation of sensors in all machines both critical and perfunctory. These sensors can now

seamlessly integrate with the company’s IT infrastructure which gives a good basis for the data

analysis models to monitor the health of the machines that are critical to the company.

Thus the availability of large sensor data, both historical and real-time has offered the scope for

predictive analytics. This paved the path to predictive maintenance where we apply advanced ana-

lytics to predict machine failures before they occur. In [3], they proposed an RNN model based on

LSTM to predict the RUL of Lithium-ion batteries. They used LSTM as it can model sequential

data and capture long-term dependencies among the capacity degradation of lithium-ion batter-

ies. In [4], they proposed an Embed-RUL approach for RUL estimation. Embed-RUL utilizes

a sequence-to-sequence model based on Recurrent Neural Networks (RNNs) to generate embed-

dings for multivariate time series sequences. The embeddings for normal and degraded machines

tend to be different, and are therefore found to be useful for RUL estimation. In [5], the author

described the impact of CNN and LSTM on RUL estimation and also used data augmentation

for improved accuracy. All these approaches are trying to predict the remaining useful life of the

machine by training model on sensor readings from engines with their corresponding RUL. Our

proposed approach differs from the above in the sense that we use the sensor readings to train our

model to predict the sensor readings of the next n time steps using RNN with LSTM and classify

them as failure or safe using an SVM. We believe this novel approach has the potential to predict

if the engine fails in the next n cycles. In the background section we look at the literature of SVM,

RNN implemented using LSTM and corresponding model architectures.

In this thesis, we developed various models to predict the remaining useful life left in a turbofan

engine using RNN in conjunction with SVM to classify failures. This was achieved by training our

models on the historical data of the gas turbine engines of the same type. The dataset is explained
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in detail in section 1.4.

Before going into the description of the failure dataset, here is a brief description of failures in

a gas turbine engine.

1.3 Performance Degradation in a gas turbine

Fouling and erosion are some of the common types of degradation which can be partially recov-

ered through maintenance whereas airfoil distortions and platform distortions lead to permanent

degradation which cannot be recovered. The deterioration can be identified as short term and long

term based on the evolution time frame of the deterioration. Short term/rapid deterioration can

happen any time during the engine’s operation because this will most likely be due to a single

event e.g., some foreign item entry into the compressor. Long term deterioration is the one that

is more gradual and is the expected mode of degradation because the components are exposed to

high temperatures constantly and contaminant accumulation in some parts of the engine [1]. We

can generally develop prediction models for long term deterioration only.

1.3.1 Common physical faults

Some common physical faults that occur in a gas turbine have been discussed briefly.

1.3.1.1 Fouling

This is caused by the adherence of contaminants on the surface of the gas turbine components.

This results in a change of airfoil shapes and an increase in surface roughness which leads to

deterioration in the performance. Compressor failure leads to decreased flow capacity and lower

efficiency. It has also been agreed in the literature that fouling influences the flow capacity more

than the efficiency. Most of the total performance loss in a gas turbine is due to the compressor

fouling. This deterioration can be recovered by performing appropriate maintenance [1].

1.3.1.2 Erosion

It is a gradual loss of the material from the surface of any component which is usually caused

by contaminants such as sand, dust, water droplets, etc. Any of the gas-path components can be
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subject to erosion but it usually has a higher influence in turbines than in compressors. Similar

to fouling performance deterioration due to erosion can be represented using flow capacity and

efficiency. It was also observed that industrial gas turbines are less prone to erosion than the

aircraft engines [1].

1.3.1.3 Corrosion

Corrosion is an irreversible deterioration of the gas turbine components which occurs due to

oxidation or chemical interaction with the air contaminants and combustion gases. This reduces

the compressor flow capacity, efficiency of the compressor and turbine. This can be prevented by

proper coating [1].

Several other modes cause performance degradation, they can be referred from the literature.

Figure 1.5 below gives the classification of the gas turbine faults [6].

Figure 1.5: Classification of common faults in gas turbine engines

In figure 1.6, a basic overview of a maintenance process is explained. The physical faults

change the engine performance parameters which can be observed by the deviations in the pa-

rameters that are being measured through sensors (temperature, pressure, shaft speed, fuel flow

and power output). These are generally used as fault indicators in the engine health monitoring.
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Figure 1.6: Maintenance process overview

Once we observe abnormal sensor readings we diagnose the reason behind the same and take

corresponding corrective actions.

1.4 Failure trajectory dataset

The dataset used for testing the performance of our proposed prognostic technique was made

available by NASA at their "Prognostics Center of Excellence Data Repository" [7]. This data was

simulated using C-MAPSS, a tool for simulating a realistic large commercial turbofan engine. This

software was coded using MATLAB R© and SIMULINK R© [8]. The tool emulates an engine model

of 90,000 lb thrust class and includes atmospheric model capable of simulating operations at alti-

tudes ranging from sea level to 40,000 ft, Mach numbers from 0 to 0.90 and sea-level temperatures

from -60 to 103 ◦F.

Figure 1.7 describes the components of a turbofan engine used in C-MAPSS. A turbofan engine

is a turbine engine where the first stage compressor rotor is larger in diameter than the rest of the

engine. This stage is called the fan. The air passes through the fan near its inner diameter also

passes through the remaining stages in the core of the engine and is compressed further. The air

through the outer diameter does not pass through the core of the engine but it passes outside of

the engine, thus this is called bypass air and the ratio of bypass air to core air is called the bypass

ratio. This air accelerated by the fan contributes to the thrust as well at low forward speeds and
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low altitudes. In this engine, thrust is developed by a fan rotor system [9].

Figure 1.8 shows how various modules are assembled in the simulation. C-MAPSS allows the

user to simulate the effects of faults and deterioration in rotating components of the engine (Fan,

LPC, HPC, HPT and LPT). This deterioration can be observed by the outputs which are being

monitored using sensors. 21 variables have been chosen for this study.

1.4.1 Sensors

The sensors that are being taken into account can be seen in table 1.1. Altitude, Mach number

and TRA are the operational settings and the rest are the sensors that are sensing the variables of

interest.

Figure 1.7: Simplified diagram of engine simulated in C-MAPSS

1.4.2 Damage propagation modelling

Generally, in degradation models, exponential behavior of fault evolution is common. This

dataset was created with a generalized equation for wear, w = AeB(t). Further details about this

can be found at [8].
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Symbol description Units
Unit No. Unit number –
Time time, in cycles –
Altitude Operational setting 1 ft
Mach No. Operational setting 2 –
TRA Operational setting 3 –
T2 Total temperature at fan inlet ◦R
T24 Total temperature at LPC outlet ◦R
T30 Total temperature at HPC outler ◦R
T50 Total temperature at LPT outlet ◦R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio(P50/P2) –
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to PS30 pps/ppi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio –
farB Burner fuel-air ratio –
htbleed Bleed Enthalpy –
Nfdmd Demanded fan speed rpm
PCNfRdmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

Table 1.1: Different sensor variables in the Data set

1.4.3 Scenario

Scenarios considered in this dataset were developed considering a number of engines through-

out their usage history and that each engine might be used under different conditions. It was also

assumed that we cannot solely quantify the damage accumulation after a flight based on the flight

duration and conditions. This compels us to rely on the sensor data to get the required information

on the health of the engine.
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Figure 1.8: Layout of various modules and their connections

1.4.4 Failure modes considered

The failure modes considered in this dataset are the degradation in the HPC and Fan modules

under six different combinations of Altitude, TRA and Mach number. For this study, the dataset

with a single operating condition was considered and model to deal with multiple operating con-

ditions will be done in the future. This dataset consists of multiple multivariate time series. Each

series can be considered as the failure trajectory from a different engine i.e. a fleet of engines

of the same type. Initial wear and manufacturing variation were also considered for the engines.

The sensor noise was also taken into account. Each series starts with the engine functioning nor-

mally, then it pickups a fault because of which there will be a gradual degradation until the system

fails. We tested our approach on two datasets, FD001 and FD003. In the FD001 dataset, there

are 100 engines’ failure trajectories with engines operating at sea level and the fault that occurs

is High-Pressure Compressor (HPC) degradation. In the FD003 dataset, there are 100 engines’

failure trajectories with the engines operating at sea level and the engine failures are due to HPC

degradation and fan degradation.
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2. BACKGROUND

2.1 Introduction to Machine Learning

Arthur Samuel coined the term Machine Learning (ML) in 1959 [10] and he stated that "it gives

the computer the ability to learn without being explicitly programmed". It is the most influential

and powerful technology in the present-day world. This is a tool that can convert information

into knowledge. Over the past 50 years, there has been an exponential increase in data collection

and this data will be useless unless we analyze it and identify the underlying patterns. Machine

Learning techniques automatically find the hidden patterns in the complex data that would be

difficult to identify otherwise. This knowledge could be used to make predictions and can also be

used for complex decision making. Machine learning has already become a part of our life. Every

time we use Google search, give voice commands to a Bluetooth speaker, use face unlock on our

phone, we are using Machine Learning which is an integral part of the engine performing the given

tasks. ML model which is a crucial component of that engine is constantly learning and improving

its performance from every interaction.

2.1.1 Terminology

We call the set of data examples that has features that help in solving the problem as a dataset.

These features are important pieces of data that help us in understanding the problem. We call the

internal representation that the ML algorithm has learned after training on the data as the model.

This is the output we get after the training of the algorithm.

2.1.2 Process

Generally, the process starts with the collection of data on which the algorithm is trained.

Next comes data preparation where the data is processed and cleaned into an appropriate format.

Extracting the best features and feature reduction also come under this. The next step is training

where the ML algorithm is trained on the data. Next, the hyperparameters in the model are tuned

using a cross-validation dataset. After this, the model performance can be evaluated on the test set.
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2.1.3 Types

All the different approaches to perform Machine Learning can be broadly classified into two

major categories, Supervised Learning and Unsupervised Learning.

2.1.3.1 Supervised learning

In supervised learning, the ML algorithm learns the mapping between the inputs and the out-

puts. Here the algorithm has access to features and corresponding labels. This is called supervised

learning because it is similar to learning under the supervision of a teacher. Once the model is

trained, it can predict the target responses when new data is given. The supervised learning prob-

lems can be divided into regression and classification problems. In a classification problem, the

output would be a categorical variable whereas in a regression problem the output is a real contin-

uous variable.

2.1.3.2 Unsupervised learning

Unsupervised learning is where the algorithm will only have the input data to train but no corre-

sponding labels. Unsupervised learning is used to learn the underlying structure in data which can

be used to understand hidden patterns within the data. These algorithms are called unsupervised

learning because unlike supervised learning, the algorithm does not know the correct answers and

there is no teacher to supervise. Here, these are made to discover interesting patterns in the data

on their own. Unsupervised learning algorithms can be grouped into clustering and association

problems. Clustering is where the algorithm discovers inherent groupings within the data whereas

in association type learning, we want to discover the mappings that describe large portions of the

data.

For developing our time-to-failure prognostic technique, we have used Support Vector Ma-

chines and Recurrent Neural Networks. Both of them were used as supervised learning problems

in this work.

12



2.2 Support Vector Machines

2.2.1 Introduction

Support Vector Machine (SVM) is a well-known machine learning algorithm that has become

quite popular over the years through its performance on classification problems. It can conceptu-

ally be described as an algorithm that non-linearly maps input vectors to a very high dimensional

feature space where a decision boundary is constructed.

2.2.2 History

The SVM algorithm was put forward by Vladimir N. Vapnik and Alexey Ya.Chervonenkis

through the development of statistical learning theory. But it can be said that the model close to the

current form was formulated when a soft margin classifier was introduced by Cortes and Vapnik

[11].

2.2.3 Mathematical formulation

2.2.3.1 Statistical Learning theory

The supervised learning problem can be specified as below in a statistical learning theory [12].

Consider a set j of training data (x1, y1)..(xj, yj) inRn×R sampled as per an unknown probability

distribution function P (x, y). V (y, f(x)) is the loss function that measures error when f(x) is

predicted instead of the actual value y for a given x. The solution to the supervised learning

problem would be finding the function(x) that minimizes the expectation of the error on the new

data, this can be represented as below:

∫
V (y, f(x))P (x, y)dxdy (2.1)

Empirical Risk Minimization (ERM) principle is employed to infer the function over the hy-
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pothesis space that reduces the expected error. Minimizing the empirical error can be written as:

1

j

j∑
i=1

V (yi, f(xi)) (2.2)

2.2.3.2 Formulation

The traditional view of SVM is that they find an ‘optimal’ hyperplane as the solution to the

learning problem. In the basic formulation of SVM (linear case), the hyperplane lies in the space

of the input data x. Hypothesis space, in this case, is the subset of all hyperplanes of the form:

f(x) = w.x+ b (2.3)

In general formulation, SVM finds a hyperplane in a different space than the input space x.

This space will be induced by a Kernel K, in this case, it is a dot product in that space. Kernel

induces hypothesis space which is now a set of hyperplanes in the feature space. Set of functions

in a Reproducing Kernel Hilbert Space (RKHS) defined by K can be referred from these papers

[13] [14].

The hypothesis space of the SVM is a subset of a set of hyperplanes defined in an RKHS which

can be described as

{f : ||f ||2k <∞} (2.4)

where k is the kernel that defines the RKHS and ‖f‖2k is the RKHS norm of the function [14]. In

the linear case, Kernel K(x1, x2) = x1.x2 is the dot product and the functions considered are of

the form described above in the hyperplane equation for the linear one and RKHS norm is simply

‖f‖2k =‖w‖2, norm of w. The goal of the SVM is to find a solution that gives the optimal RKHS

norm.

Another approach is using a loss function and we are going to consider this for the classification

problems. The goal of classification is to minimize the misclassification error, so a loss function

sign(−yf(x)) can be used for a binary classification problem and based on the sign of the function
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f(x) classification will be done. Owing to computational reasons due to scaling, the actual loss

function for SVM is |1 − yf(x)|+ [13]. This is also called soft margin loss function because of

the standard margin interpretation. The points for which the loss function is zero are the ones that

have the margin of at least 1
‖f‖2k

.

yf(x)

‖f‖2k
(2.5)

For SVM Classification, this margin is a very important geometric quantity, kindly refer to the

literature for further information on this concept.

To summarize, the SVM machine learning models work towards minimizing the empirical

error while taking the complexity of the hypothesis space into consideration by minimizing the

RKHS norm. In practice, SVMs give us the flexibility to perform a trade-off between empirical

error and the complexity of the hypothesis space. The SVM classification can be represented by

the below optimization problem :

min
f
‖f‖2k + C

j∑
i=1

|1− yf(x)| (2.6)

Here, C is the regularization parameter that controls the tradeoff between the empirical error and

the complexity of the hypothesis space to be used.

2.2.4 Implementation

SVM involves solving the optimization described above which can be converted to a Quadratic

programming (QP) problem. The QP formulation for SVM classification is as follows:

min
f

‖f‖2k + C

j∑
i=1

ξi

s.t. yif(xi) ≥ 1− ξi for all i,

ξ ≥ 0

(2.7)
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Variables ξi are the slack variables which measure the error made at a point (xi, yi). In the above

formulation, the number of constraints will be the same as the number of observations in the

training data. This will become challenging when the observations are large. Several proposals

have been made that speed up the SVM training. One such method proposed was the primal-dual

optimization method which can be referred at [15]. SVM dual formulation :

min
αi

j∑
i=1

αi −
1

2

j∑
i=1

j∑
l=1

αiαlyiylK(xi, xl)

s.t. 0 ≤ αi ≤ C, for all i,
j∑

i=1

αiyi = 0

(2.8)

Here, K represents the Kernel that was employed. This is usually referred to as the kernel trick,

this is employed because in higher dimensional spaces, dot project may be intractable. So special

kernel functions that operate on lower-dimensional vectors xi and xl are used and this produces a

value equivalent to the dot product of higher dimensional vectors.

2.3 Recurrent Neural Networks

2.3.1 Introduction

Artificial neural network (ANN) is an interconnected group of artificial neuron layers that uses

a mathematical or computational model for solving complex Artificial Intelligence (AI) problems.

ANN can change its structure based on external or internal information that flows through the

network. It is generally considered that given enough training data, neural networks can figure

out the function that maps the inputs to the output. ANNs with recurrent connections are called

RNNs. Recurrent Neural Network is a quite popular architecture among the classes of Artificial

Neural Networks. RNNs which come under sequence models are widely used in the research

where sequential data is involved. A standard network cannot work in the case where inputs and

outputs are of different lengths in different examples and they do not share the features learned

across different positions of the input. An RNN model is capable of handling these. It has an
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advantage over other neural networks as it can process the input of varying length i.e the input

need not be of fixed length. Feature sharing can reduce the number of parameters in our model and

RNNs employ this technique. For large input, we can store the historical information that can be

used later. [16]

2.3.2 History

As per the literature, John Hopfield is credited with the first formulation of Recurrent like

neural network in 1982 [17]. This was built in the context of neuroscience. This was the first

attempt at understanding the mechanism of content-addressable memory.

2.3.3 Standard RNN cell

In RNNs, the layers consist of neurons that are affected by both past and current inputs through

feedback connections. Different RNN architectures can be made by organizing the recurrent layers.

The inner connections and different types of cells give RNNs the flexibility to possess different

capacities [18].

2.3.3.1 Notation

Consider X denotes the input training data and y is corresponding output. X(i)<t> denotes

the tth element in the sequence of the training example i and T (i)
x denotes the length of the input

sequence. y(i)<t> denotes the tth element of output sequence in the training example i and T (i)
y

denotes the length of the output sequence [16].

2.3.3.2 Formulation

These are the most common cells found in the RNNs. They generally have sigmoid or tanh

activation functions. Figures 2.1 and 2.2 illustrate the same RNN, figure 2.2 represents an unrolled

version of the RNN in figure 2.1. In this network, Tx = Ty and in the cases where they are not

equal, the architecture will be different. Generally, we initiate random activation at time zero,

usually, it will be a vector of zeros. In RNN, the parameters that are used for each time step are

shared. The parameters governing the connection between x<1> to the hidden layer is the weight
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matrix Wax and it is the same set of parameters that will be used for every time step. Similarly,

the activation of horizontal connections are governed by the same set of parameters Waa and will

be the same for every time step. Similarly, the parameters Wya will also be shared across different

time steps. It can also be observed that while predicting the output at each time step, information

from not only the input at that particular time step but also from previous time steps is utilized

(through the activation from the previous time step).

Figure 2.1: Schematic of standard recurrent cell

The mathematical formulation of this cell is as follows:

a<0> = ~0

a<t> = g(Wa[a
<t−1>, x<t>] + ba)

Wa = [WaaWax]

[a<t−1>, x<t>] =

a<t−1>

x<t>


(2.9)
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Figure 2.2: Schematic of standard recurrent cell (unrolled)

y<t> = g(Wya
<t> + by) (2.10)

Here, Wa is Waa and Wax stacked horizontally, [a<t−1>, x<t>] is a<t−1> and x<t> stacked

vertically. g() represents the corresponding activation function and b represents bias [16].

2.3.3.3 Loss function

We can use the appropriate loss functions depending on our problem. If the problem is a

classification problem, we can use a cross-entropy loss function and if it is a regression problem,

then we can use the mean squared error as the loss function.

L<t>(y∧<t>, y<t>) = −y<t>log(y∧<t>)− (1− y<t>)log(1− y∧<t>) (2.11)

This is the loss for a single example and the loss for the entire sequence is given by the summation

over all the calculated single example losses of the sequence.

L<t>(y∧, y) = Σ
Ty

t=1L
<t>(y∧<t>, y<t>) (2.12)
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However, one weakness in this basic recurrent neural network cell is that the information from

much earlier in the sequence cannot influence the output of a later sequence. In other words, these

standard recurrent cells are not capable of handling long-term dependencies. As the gap between

the related input grows it is difficult to connect the information. This was attributed to the vanishing

or exploding gradients which will be discussed later in section 2.3.5 [18][16].

Figure 2.3: Back propagation through time in RNN

Figure 2.3 presents a detailed view of forward and backpropagation in RNN. Forward prop-

agation is denoted by a blue line while the red line indicates backpropagation. Backpropagation

here is called backpropagation through time because we pass the activation from one element in

the sequence to another backward in terms of time. Backpropagation facilitates the computation of

all the appropriate quantities that are required to take the derivatives of parameters which are then

utilized to update the parameters using gradient descent algorithm [16].

2.3.4 Different types of RNNs

The RNN described above is a type of RNN architecture in which Tx = Ty, but in general, this

is not the case. In cases where they are not equal, we should use a different RNN architecture. The

architecture we used above is called many to many architecture. Figure 2.4 shows the different
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types of RNN architectures [19]. We have employed many to one architecture in our problem

where we will be giving a sequence as an input and the model will predict the output of the next

time step [16].

Figure 2.4: Types of RNN architectures

2.3.5 Vanishing gradients problem

In some cases, the data may have very long term dependencies where the data from much

earlier in the sequence can affect what comes much later. Basic RNN that was described earlier

is not very good at capturing such very long term dependencies. This is because of the vanishing

gradients problem just like in very deep neural networks. It will be difficult for errors in the outputs

associated with earlier time steps to affect the computations that are made later. In practice, what it
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means is that it might be difficult for the RNN to realize that it needs to memorize some information

that will impact future predictions. The basic RNN mentioned above only has local influences, for

example, output y∧<t> will be closely influenced by values close to it but not by the values much

earlier [16].

It will be very difficult for the error to backpropagate to the beginning of the sequence and

hence it will be difficult for it to modify how the neural network is doing computations earlier in

the sequence. This is the weakness of the basic RNN and they tend to be poor at capturing long

term dependencies. For the case of exploding gradients, applying gradient clipping would suffice,

but to deal with the vanishing gradients the architecture of the RNN has to be modified slightly

[16].

2.3.6 LSTM

Long short-term memory is a type of RNN architecture that enables us to capture the long term

dependencies in the data. It is more powerful and complex compared to the Gated Recurrent Unit

(GRU) which is another type of RNN that can help in solving the vanishing gradient problem.

Unlike feedforward networks, LSTMs have feedback connections. LSTM was proposed in 1997

by Sepp Hocheriter and Jurgen Schmidhuber.

The first attempt to deal with long-term dependencies were made by Hochreiter and Schmid-

huber in 1997 [20], they proposed the LSTM cell. They increased the remembering capacity of

the standard recurrent cell by introducing the concept called ’gate’ into the cell. There are multiple

variations in this, but we have used the LSTM cell with a forget gate. In 2000 Gers, Schmidhuber

and Cummins modified the original LSTM by introducing a forget gate.

Mathematically this can be represented as below :

c̃<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (2.13)

Γu = σ(Wu[a<t−1>, x<t>] + bu) (2.14)
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Figure 2.5: LSTM with a forget gate

Γf = σ(Wf [a<t−1>, x<t>] + bf ) (2.15)

Γo = σ(Wo[a
<t−1>, x<t>] + bo) (2.16)

c<t> = Γu ∗ c̃<t> + Γf ∗ c<t−1> (2.17)

a<t> = Γo ∗ tanh c<t> (2.18)

where c<t> denotes the cell state,Γu represents update gate, Γf represents forget gate, Γo represents

output gate, Wc,Wu,Wf ,Wo are the weights, c̃<t> denotes a candidate for the cell state, operator

‘*’ represents point-wise multiplication of the two vectors. When updating the cell state the input

(update) gate can decide which information to be stored, forget gate can decide what information

to throw away, when forget gate’s value Γf is 1 it keeps the information if its 0 it gets rid of all the

information and the output gate takes the decision on what information to output based on the state

of the cell. In GRU we have an update gate, a relevance gate and a candidate cell variable while in

LSTM we have an update gate, a forget gate, an output gate and a candidate cell variable. There
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is no clear evidence in the literature that LSTM is better than GRU or that the GRU is better than

LSTM. But LSTM is often the first choice as it is more powerful and general.

We have used Keras API to implement RNN with LSTM cell and the information about the

architecture has been explained in the next section.
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3. METHODOLOGY

We have established the need to predict failure before its occurrence in the gas turbine engines

in the previous sections. In this section, we introduce the current industry standard for the land-

based gas turbine engines and this was considered as the benchmark to compare our proposed

technique’s performance. We then, describe our approach to predict the time-to-failure of a gas

turbine engine. We then, present our prognostic technique which uses standard machine learning

algorithms ( SVM and RNN) to estimate time to failure of a gas turbine engine using the dataset

described earlier in section 1.

3.1 Current Industrial Approach

This is the approach currently being employed in the industry for the detection of failure of

land-based gas turbines. This approach uses the historical sensor data to get the engineering esti-

mates of the maximum and minimum values of parameters corresponding to that component. The

bounds are narrower than the bounds recommended by Original Equipment Manufacturers because

this gives some buffer time to react to failure. If the observed sensor readings of the parameters

are within these bounds the engine is considered to be operating normally. Even if a single param-

eter goes out of the bounds the engine is supposed to have reached failure and the corresponding

personnel is alerted about the imminent failure of the engine.

Algorithm 1 :Model to predict failure using bounds
1: Get historical sensor data of different engines of the same model monitored till their failure
2: Preprocess the data and figure out the sensors that have the most information regarding the

failure prediction
3: Decide upon the bounds for each sensor based on the historical data from the sensors
4: Classify the live data for each sensor as safe or unsafe
5: if Any of the sensor is classified as unsafe then
6: Alert the corresponding personnel about the critical condition of the engine
7: else
8: Continue with the next live reading from the sensors
9: end if
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Figure 3.1: Flowchart for model to predict failure using bounds

The use of this approach was observed to raise false alerts, much before the engine reaches

its critical limit. Thus, this approach leads to a conservative use of the equipment leading to a

significant loss of capability.

3.2 Our Approach

To improve upon the current industrial approach, we propose the creation of bounding hyper-

volumes in high dimensional space within which the unit is historically known to be operating

normally. Figure 3.2 depicts this concept pictorially. Here, a current operating point of a unit in

three-dimensional parameter space is shown. Five hypervolumes are also shown in green. These

volumes (which can be arbitrarily shaped, e.g., not necessarily boxes) represent historical values

of the multiple parameters being monitored under different operating states of the unit. When the

operating point in parameter space is within the appropriate volume for the given unit state, the
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unit is considered to be operating normally with a high probability. Among the other benefits,

this approach will eliminate any start-up/shutdown false alerts. We used Support Vector Machines

(SVMs) for the creation of bounding hypervolumes. Other classification algorithms should also be

explored and this will be explored in future work.

Figure 3.2: Notional depiction of hypervolume bounds for multiple parameter information

The current industrial approach does not have the capability to estimate time-to-failure as the

alert is triggered when an abnormal reading is observed. Time-to-failure estimation is required for

better decision making and automation of the decision-making process. We used Recurrent Neural

Networks (RNNs) for forecasting the sensor readings. This technique has seen some success in

recent past [21]. The concept of using a recurrent neural network (RNN) [22] for time-to-failure

estimation is shown in Figure 3.3. Here, an RNN has been trained to forecast time series data

associated with sensed parameters for a given component or unit. These forecasts can then be fed

back to the multiple parameter correlation model described previously to determine when failure

is expected to occur. Since the multiple parameter approach can provide probabilistic information

regarding when bounds will be exceeded, this information can also be used here to probabilistically

predict when failure will occur. This can then be used within a prescriptive analytics approach to

decision-making based on the results of an FMEA. The main challenge for the training of this
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approach is the availability of relevant data. A careful review of all available data for components

and units would be required to determine what architectures are possible. This information should

eventually be supplemented by synthetic data generated by digital twins. This data should be

validated (e.g., against both historical data that is available and via “Turing test”).

Figure 3.3: Recurrent Neural Network for Time-to-Failure Estimation

3.3 Model to predict engine failure using SVM and RNN

We have introduced our approach for estimating the time-to-failure of a gas turbine engine

earlier. To accomplish the prediction of time-to-failure, we developed a model that would tell us if

the engine will fail in the next n cycles (cycles here refer to a unit of time for e.g., the time interval

between two successive sensor readings recorded). This model can tell us if the engine fails in the

next n cycles if we have enough training data. This way, we can fix the n as per our requirement and

thus be able to predict if our engine is close to failure or not. Currently, we are predicting 10 cycles

into the future and plan to predict more cycles in the future. To create bounding hypervolumes that

denote normal operating conditions, we trained an SVM model on the training data. We have the

choice to choose the parameters that can give high sensitivity or in other words high true positive

rate. We then trained a model for each variable that can forecast the next n time steps’ readings
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of each sensor. Once we predicted all the sensor readings, what we now have are likely the future

sensor readings of the engine. We can classify them using the SVM we trained earlier. If we get

any time step classified as a failure, then we alert the concerned personnel that the corresponding

engine has reached its critical safety limit and needs to be looked at.

We developed RNN models using Keras (2.3.0), a high-level neural networks API written in

python, built on Tensorflow. Keras is more user friendly and we can build simple or complex neural

networks with minimal lines of code using Model and Sequence APIs. For advanced operations in

the future, Tensorflow is recommended. We used Scikit learn (0.21.2) package for implementing

the SVM.

Figure 3.4: Flowchart of Algorithm
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Figure 3.5: Flowchart of the Algorithm (RNN model)
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Algorithm 2 Pseudo-code for the prediction of time-to-failure of the gas turbine engine
1: Get historical sensor data of different engines of the same model monitored till their failure
2: Preprocess the data
3: Label the data as failure and safe, last 15 cycles of each engine’s failure trajectory was consid-

ered as failure and rest were considered to be safe.
4: Fit a Support Vector Machine model to this data
5: Tune the parameters to ensure high sensitivity
6: for i from 1 to n engines do
7: Create time sequences of the sensor data which will be used to train the RNN
8: Repeat the above for loop on the test data we want to predict RUL on.
9: end for

10: for i from 1 to n engines do
11: Create the corresponding label sequences to train the RNN
12: end for
13: Repeat the above for loops on test data to test the performance of the model
14: for j from 1 to m variables do
15: Create a RNN model corresponding to each variable with LSTM and dropout layers, that

can predict the next reading of the variable by looking at a fixed sequence of past readings
16: end for
17: for i from 1 to 10 do
18: Predict the next reading of each variable using the trained RNN model for the correspond-

ing variable and concatenate all these sensors values, this represents the predicted sensor
readings for the next time step.

19: Replace the first reading from the sequence and append the predicted time step to the se-
quence. We now have the sequence of the same length but with updated sensor readings.

20: Use this updated time sequence to predict the sensor readings for the next time step.
21: end for
22: We obtain the predicted sensor readings for the next 10 time steps into the future.
23: Use the trained SVM model to classify for each of the time steps
24: if SVM predicts any one of the time steps as failure then
25: Alert the concerned authority that the corresponding engine has reached its critical limit
26: else
27: Discard the first time step sensor reading of the time sequence, append the actual sensors

readings observed at the next time step and repeat from step 14
28: end if
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3.3.1 Data Preprocessing

In this dataset, for each engine, we have a time series data starting at some point in its life cycle

and the readings are recorded till the failure occurs. We also keep track of the time (in cycles) from

the time we started recording the readings until failure.

Using MinMaxScaler function in the Scikit learn package, we performed normalization of the

data. The advantage of using normalization is that all the variable values will now be on a common

scale and this will help the gradients to converge faster.

RNN is capable of taking time sequence data as input to predict the output once it is trained

on similar data. To train the RNN model, we generated sequences of sensor data for each engine

and we created the corresponding labels for each of these sequences. We used these sequences of

sensor data and the labels to train the RNN models. The complete algorithm and the architecture

of the RNN model are described in algorithm 2 and figures 3.4 to 3.9.

In this model, we labeled each time step to be a failure or no failure. We considered the last

15 readings in the failure trajectory of each engine to be a failure for this problem. But for the

industrial data on which this model will be applied this limit can be set accordingly. This labeled

data was used to train the SVM to classify the failure.

3.3.2 Model Architecture

For simplicity, we created RNN models with the same architecture to predict each of the sensor

readings. Each model has a stacked LSTM with a dropout layer in between followed by another

dropout layer, then we have a dense layer followed by a linear activation layer which can be seen

in figures 3.6 and 3.7. The number of parameters associated with each layer can also be observed

in figure 3.6.

We have another RNN model to predict all the remaining sensor readings of the next time step

(n+1) to facilitate the prediction of the sensor of interest for (n+2)nd step. Thus, we remove the

first time step of the last sequence and append the predicted sensor readings to predict the sensor

readings for the future time steps. This second RNN model must also be developed for each of the
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Figure 3.6: RNN Model used for Sensor prediction

Figure 3.7: RNN Model architecture used for Sensor prediction

sensors to facilitate multi-step prediction. This model’s architecture can be seen in figures 3.8 and

3.9.

Once, all these models have been trained, we tested the performance on a test set. For a

particular sequence, we were able to predict the next 10 time steps and then used the trained SVM

model to classify these time steps.

We have developed a model that will tell us if the engine will fail in the next 10 cycles (cycles
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Figure 3.8: RNN Model used for prediction of rest of the sensors

Figure 3.9: RNN Model architecture used for prediction of rest of the sensors

here refer to a unit of time for e.g., the time interval between two successive sensor readings

recorded can be considered an hour for better understanding). Based on the data at hand, our

model was accurate for 10 cycles. But in the industry, where we can have a large dataset due to

continuous monitoring, we are sure that this model can be used to predict more than 10 cycles into

the future. Different RNN architectures for different sensors will be explored in the future.
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4. RESULTS

4.1 Engine failure prediction model with SVM and RNN

Our prognostic approach was established in the earlier section. Our prognostic technique uses

an SVM model to create bounding hypervolumes using sensor data when the engine is operating

normally and RNN models to forecast the sensor readings. In this section, we will first describe the

SVM model and RNN models used and then present the results of our approach on the datasets,

FD001 and FD003. We have also compared the performance of our proposed approach with the

current industry standard for land-based gas turbine engines.

4.1.1 SVM model on FD001

SVM model was trained on 80 out of 100 engines’ failure trajectories. As explained before

the last 15 cycles of each trajectory were considered failures. We employed a radial basis function

as the kernel and the hyperparameters after tuning using grid search were gamma = 0.01 and

C=1000. We have created another SVM model using weighted classes and the weights used were

{0− 1, 1− 10}. These are the results from both the non-weighted and weighted SVM models:

Figure 4.1: Confusion Matrix on the test set FD001 non-weighted classes

4.1.1.1 Performance summary of SVM on FD001

The confusion matrix of both the non-weighted and the weighted SVMs was used to measure

the performance. The results are summarized in figure 4.3. The accuracy of the non-weighted
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Figure 4.2: Confusion Matrix on the test set FD001 weighted classes

Figure 4.3: Results of SVM model on FD001

SVM model was 98% with a sensitivity of 82%. For the weighted SVM, the accuracy reduced to

97% but the sensitivity increased to 98% along with an increase in false-positive rate to 3.3%. We

can choose either of these models depending on the criticality of the equipment being monitored.

4.1.2 SVM model on FD003

The training was done similar to that on FD001. We employed a radial basis function as the

kernel and the hyperparameters after tuning using grid search were gamma = 1 and C=10. We have

created another SVM model using weighted classes and the weights used were {0 − 1, 1 − 10}.

These are the results from both the non-weighted and weighted SVM models:

Figure 4.4: Confusion Matrix on the test set FD003 non-weighted classes
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Figure 4.5: Confusion Matrix on the test set FD003 weighted classes

Figure 4.6: Results of SVM model on FD003

4.1.2.1 Performance summary of SVM on FD003

The confusion matrix of both the non-weighted and the weighted SVMs was used to measure

the performance. The results are summarized in figure 4.6. The accuracy of the non-weighted

SVM model was 99% with a sensitivity of 89%. For the weighted SVM, the accuracy reduced to

98% but the sensitivity increased to 98% along with an increase in false-positive rate to 2%. We

can choose either of these models depending on the criticality of the equipment being monitored.

4.2 RNN Model predictions

For the training of RNN models with the architecture described in the earlier section, we used

80 engines’ failure trajectories in sequences of 15 time steps. Mean Squared Error (MSE) was

used as the loss function, rmsprop was the optimizer with a batch size of 200 and epochs of 100.

As explained earlier, we used two different RNN models to forecast 10 time steps of a particular

sensor.

Figure 4.7 illustrates the predictions made by the RNN models for the sensors T24, NRc, P30

and BPR. This is the prediction of these sensors for 5 different engines over the course of their

lifetime, in the figure, each peak or trough represents the failure of an engine. The model is
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Figure 4.7: Predictions of Temperature, Pressure, Bypass ratio and Core speed using RNN models

capable of understanding the patterns of the variables as the predictions made by our RNN models

are pretty close to the actual sensor readings. Since our objective was to provide evidence for the

proof of concept, we did not explore more complex RNN architectures, they will be explored in

future work.

After training all the models for different sensors, we used the trained SVM to classify the

predicted sensor readings of the future time steps. We predicted 10 cycles into the future and

classified them as a failure or no failure. It was observed that as the engine reaches the failure limit

the classifier was able to predict the failure.

4.3 Prediction of time-to-failure of an engine using our approach

We applied our proposed time-to-failure prognostic technique on engine 81 of the FD001

dataset. The output from our proposed technique is shown in the following figure 4.8. This en-

gine has a lifetime of 240 cycles. Actual failure starts at the 225th cycle. To test our approach,

we applied it at three different stages in the life cycle of this engine. Case 1 is where the engine

is far away from failure and our approach correctly predicts no failure in the next 10 cycles. We
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then considered the stage where the engine was close to failure and our approach predicted at 215th

cycle that the engine will be failing at 224th cycle which is close to the actual failure. We also

considered the case where the failure has already started, as expected the approach indicated that

the engine has entered failure. Figures 4.8 & 4.9 give a pictorial description of the same.

Figure 4.8: Our approach on Engine 81 of FD001

Figure 4.9: Failure prediction of engine 81 using our proposed approach
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4.4 Comparison between our proposed approach and the current industrial approach

We compared the performance of our proposed approach with the current industrial approach

on the datasets, FD001 and FD003.

4.4.1 On the dataset FD001

We compared the two approaches on the engine 81 of FD001 dataset (figure 4.10). The current

approach predicted the failure at 211th cycle whereas the actual failure starts at 225th cycle leading

to sub-optimal utilization of the unit. On the other hand, our approach predicts failure from 224th

cycle at 215th cycle and hence, offers an opportunity for the better use of the unit over the current

approach.

Figure 4.10: Comparison between our proposed and the current industrial approach on engine 81
of FD001

Similarly, we compared both the approaches on the engine 82 of FD001 (figure 4.11). The

actual failure of this engine starts from 191st cycle but the current industrial approach predicts

failure at 10th cycle, which can be considered a false alert leading to a significant wastage of

capability of the engine. Our proposed method predicted at 194th cycle that the engine is going to

fail at 204th cycle. Though there is a delay in failure prediction by our method, this was actually
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predicted at 194th cycle which is five cycles before the actual failure giving us enough time to

prepare for it.

Figure 4.11: Comparison between our proposed and the current industrial approach on engine 82
of FD001

Figure 4.12: Comparison between our proposed and the current industrial approach on FD001
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We have compared the two approaches on the complete test data of 20 engine failure trajec-

tories. The results are illustrated in figure 4.12. The current industrial approach as stated earlier

was giving many false alarms leading to conservative use of the units as we are losing significant

capability by servicing them before they have reached their critical limits. Our approach generally

outperformed the current industrial approach and gave a better opportunity to utilize the units to

their complete potential.

4.4.2 On the dataset FD003

We compared the two approaches on engine 81 of the FD003 dataset (figure 4.13). The current

approach predicted the failure at 20th cycle which is a false alert as the actual failure starts at 333rd

cycle which leads to sub-optimal utilization of the unit. On the other hand, our approach predicts

failure from 332nd cycle at 328th cycle and hence, offers an opportunity for the better use of the

unit over the current approach.

Figure 4.13: Comparison between our proposed and the current industrial approach on engine 81
of FD003

Similarly, we have compared the two approaches on engine 82 of the FD003 dataset (figure

4.14). The current approach predicted failure at 245th cycle when the actual failure starts at 271st

cycle which leads to conservative use of the unit as it is being serviced before reaching its critical
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limit. This indicates that we are not extracting the maximum potential from the unit. On the other

hand, our approach predicts failure from 274th cycle at 268th cycle and hence offers an opportunity

for the better use of the unit over the current approach. Though there is a delay in failure prediction

by our method, this was predicted at 268th cycle which is a few cycles before the actual failure

giving us enough time to prepare for it.

Figure 4.14: Comparison between our proposed and the current industrial approach on engine 82
of FD003

Similarly, we have compared the two approaches on engine 83 of the FD003 dataset (figure

4.15). The current approach predicted failure at 140th cycle when the actual failure starts at 167th

cycle which leads to underutilization of the unit. On the other hand, our approach predicts failure

from 161st cycle at 155th cycle and hence offers an opportunity for the better use of the unit over the

current approach. Here, our proposed approach predicted failure much closer to the actual failure

than the current industrial approach.

We have compared the two approaches on the complete test data of 20 engine failure trajec-

tories. The results are illustrated in figure 4.16. The current industrial approach as stated earlier

was giving many false alarms leading to conservative use of the units as we are losing significant

capability by servicing them before they have reached their critical limits. Our approach generally
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Figure 4.15: Comparison between our proposed and the current industrial approach on engine 83
of FD003

outperformed the current industrial approach and gave a better opportunity to utilize the units to

their complete potential.

Figure 4.16: Comparison between our proposed and the current industrial approach on FD003

Thus, we demonstrated that our model in general performed better than the current industrial

approach in predicting the time-to-failure of a gas turbine engine. We also plan to develop better
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metrics of performance and quality for this comparison which will be done in collaboration with

the industrial partners.
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5. SUMMARY AND CONCLUSIONS

The developed prognostic technique showed great promise. Although RNN models developed

were with basic architectures, the results observed were very promising. This prognostic technique

is very relevant to the industries that use gas turbine engines in particular and any equipment that

requires special care in general.

5.1 Contribution

We created a time-to-failure prognostic model using two standard machine learning techniques

that showed potential for use on industrial equipment. We established supporting evidence for the

proof of concept of the time-to-failure prognosis model. An approach that can be further improved

with the availability of more sensor data to train on has been developed. We demonstrated the

approach on the available datasets and the proposed technique generally outperformed the current

industrial approach. We also plan to develop better metrics of performance and quality for this

comparison which will be done in collaboration with the industrial partner.

5.2 Conclusions and Future work

Our prognostic technique showed a lot of promise in predicting the time-to-failure of a gas tur-

bine engine and hence can be extended further with more complex neural network architecture. We

look to improve upon these models and try other model architectures to improve the performance.

We also plan to incorporate more features into the model e.g., Detection of sensor failures [23].

We plan to accomplish this via dimension reduction of the hypervolumes that bound a parameter

set under the current operating condition. This concept is shown notionally for a three-dimensional

parameter vector in figure 5.1. For example, if an operating point falls outside of the bounds of

the current operating condition hypervolume ( top plot of figure 5.1), it is necessary to rapidly test

whether this was due to a sensor error. This can be accomplished via a leave-one-out approach, by

constructing many lower-dimensional hypervolumes (lower plots) that indicate whether or not the

abnormal behavior is linked to a sensor error or it is indeed an issue with the unit itself. If the issue
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is with the sensor, relevant lower dimensional hypervolumes, with associated probabilistic edges

can be used. The basis of an FMEA can be used to determine how critical the replacement of the

erroneous sensor is. This should include an evaluation of the accuracy and confidence provided by

lower-dimensional bounding hypervolumes with probabilistic support vector machines for accu-

rate sensors [23]. We also plan to develop models that not only predict the failure but can also offer

better insight to the technical personnel about the mode of failure by leveraging sensor predictions

like in figure 5.2. Thus as mentioned before there is a lot of scope for this project which can be

explored in future study.

Figure 5.1: Sensor failure detection using multiple parameter information exploitation

Figure 5.2: Sensor predictions to identify the modes of failure
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