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ABSTRACT

Exposure variables are often misclassified in observational studies. Any analysis

that does not make proper adjustments for misclassification may result in biased

estimates of model parameters and that may lead to distorted inferences.

In this dissertation I study this bias in cohort and retrospective matched case-

control study. For the matched case-control study, I consider a binary exposure

variable whereas for the cohort study I consider a multicategory exposure variable

that has more than two nominal categories. The novel aspect of this work is the

use of instrumental variables to reduce the bias due to the misclassification of the

exposure variable when no validation data are available. Each of the works, one

involving matched case-control and the other involving the cohort data, consists of

two major steps. First I study the parameter identifiability and obtain sufficient

conditions for identifiability. Then I propose model estimation and inference meth-

ods after adopting the sufficient conditions of identifiability. In the first work, I use

two methods of estimation including the efficient approach. In the second work, I

use a variational Bayesian inference procedure aided by the automatic differentiation

variational inference (ADVI) technique. Operating characteristics of the methods are

assessed and compared with existing approaches through simulation studies. Simula-

tion studies clearly indicate when and how the proposed methods are advantageous.

Each of the methods are applied to analyze real datasets. For the matched case-

control study scenario, the proposed methods are applied to the nested case-control

data sampled from the 1989 United States birth registry where the reported smoking

status of mothers during pregnancy is considered to be the misclassified exposure.
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For the cohort data scenario, the proposed Bayesian method is applied to the US

breast cancer mortality data sampled from the Surveillance Epidemiology and End

Results (SEER) database, where reported treatment therapy is considered to be the

misclassified exposure variable.
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1. INTRODUCTION

For this dissertation, I address the issue of using a misclassified exposure variable

X in various logistic regression models, and novel ways to address to correct this bias.

In this first chapter, I will review various logistic regression models commonly used

for observational studies. I then discuss how misclassified exposure variables cause

biased parameter estimates via a literature review, as well as providing an analytical

proof of the effects of misclassification, and also by demonstrating this bias in a

small simulation study. In chapter 2, I consider misclassification of X in the setting

of matched case control data, where data are stratified and must be analyzed in the

framework of the conditional logistic regression. I propose frequentist methods to

adjust for misclassification in this setting. In chapter 3, I consider a general setting in

which the exposure variable has more than two categories; then I study identification

and develop an efficient Bayesian method to estimate the model parameters. Finally,

in chapter 4, I discuss directions of future work.

1.1 Logistic regression estimates under the presence of misclassified covariates

1.1.1 Review of standard logistic regression

Logistic regression is a statistical method used to model the association between

a set of covariates and a binary response variable [1]. Let Y be the response variable

and X is a scalar predictor. Then the success probability under the logistic regression

is

pr(Y = 1|X; β) =
exp(β0 + β1X)

1 + exp(β0 + β1X)
, (1.1)
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where β = (β0, β1)T . Suppose that X is also a binary variable. Then, the parameter

β1 represents the log odds ratio for Y = 1 from X = 1 to X = 0. That is,

β1 = log

{
odds(X = 1)

odds(X = 0)

}
= log

{
pr(Y = 1|X = 1)/pr(Y = 0|X = 1)

pr(Y = 1|X = 0)/pr(Y = 0|X = 0)

}
,

where the odds(X = a) represents the ratio of probability of Y = 1 given X = a to

the probability of Y = 0 given X = a. The odds ratio, or OR, provides a measure

of how likely a subject or observation would get a success Y = 1 given that they

have some covariate X = 1 over how likely they would get a success given that their

covariate X = 0. An odds ratio of 1 indicates that the odds of Y = 1 is the same

regardless of whether X = 0 or 1, while an odds ratio greater than 1 indicates that

those who have X = 1 are more likely to obtain Y = 1. Finally an odds ratio less

than 1 indicates that those who have X = 0 are less likely to have Y = 1. We can

estimate β1 using the frequencies of different values of X and Y .

Suppose that we have a dataset that consists of n independently and identically

distributed (iid) copies of (X, Y ) sampled from an underlying population. Let n00

represent the total number of observations who exhibit X = 0 and Y = 0, n01

represent the total number of observations who exhibit X = 0 and Y = 1, n10 be

the total number of X = 1 and Y = 0, and n11 be the total number of X = 1 and

Y = 1. These numbers can be expressed in the following Table 1.1, referred the 2 ×

2 contingency table:

Table 1.1: 2 × 2 Contingency Table
Y

0 1

X
0 n00 n01

1 n10 n11

2



With these frequencies, the odds ratio is estimated by

exp(β̂1) =
n11n00

n10n01

.

And the estimator of the log-odds ratio β1 is β̂1 = log{n00n11/n01n10}. These es-

timators are actually the maximum likelihood estimator, and can be obtained by

maximizing the log-likelihood function L(β) with respect to β, where

`(β) =
n∏
i=1

{pr(Y = 1|Xi; β)}Yi{1− pr(Y = 1|Xi; β)}1−Yi =
n∏
i=1

exp{Yi(β0 + β1Xi)}
1 + exp(β0 + β1Xi)

.

In general, when X consists of a set of predictor variables or X is a numeric predictor,

the estimate of the set of regression parameter β1 in a logistic regression model is

obtained by maximizing the likelihood function. The maximization step is usually

carried out using the iterative re-weighted least square (IWLS) method. It is well

known that the MLE enjoys very nice properties. The details can be found in [25].

In this dissertation, we consider binary Y and use the logistic model in all chapters.

1.1.2 Polytomous logistic regression

When the response Y has more than two nominal categories, then one can use the

polytomous (or multinomial) logistic model to write the probability. Typically the

lowest category of Y is considered as the baseline (reference) category. For example,

suppose the variable Y takes values in (1, . . . , J), and X is the vector of covariates.

If 1 is selected as the baseline then the model for Y is

pr(Y = j|X; β) =
exp(βj0 + βTj1X)

1 +
∑J

r=2 exp(βr0 + βTr1X)
,

3



for j = 2, . . . , J . Since
∑J

j=1 pr(Y = j|X; β) = 1, pr(Y = 1|X) can be cal-

culated using the formula 1 − pr(Y = 2|X) − · · · − pr(Y = J |X). Here β =

(β20, β
T
21, . . . , βJ0, β

T
J1)T . Also, the logit is now defined as log{pr(Y = j|X; β)/pr(Y =

1|X; β)} = βj0 +βTj1X with j ∈ (2, . . . , J), where the probability on the denominator

is that for the baseline category.

Assuming that one has a random sample of consisting of n iid copies of (X, Y )

from the underlying population, the β-parameter can be estimated by maximizing

the log-likelihood function

`(β) =
n∑
i=1

J∑
j=1

I(Y = j)log{pr(Y = j|Xi; β)}

=
n∑
i=1

[ J∑
j=2

I(Y = j)log{pr(Y = j|Xi; β)}+ I(Y = 1)log{pr(Y = 1|Xi; β)}
]

=
n∑
i=1

[ J∑
j=2

I(Y = j)log{pr(Y = j|Xi; β)}

+
J∑
j=2

{1− I(Y = j)}log{pr(Y = 1|Xi; β)}
]

=
n∑
i=1

[ J∑
j=2

I(Y = j)log

{
pr(Y = j|Xi; β)

pr(Y = 1|Xi; β)

}
+ log{pr(Y = 1|Xi; β)}

]

=
n∑
i=1

[ J∑
j=2

I(Y = j)(βj0 + βTj1Xi) + log

{
1−

J∑
j=2

pr(Y = j|Xi; β)

}]
.

For the work in this dissertation, the response Y will be considered binary. However,

in Chapter 3, I will consider a scenario where X is a categorical variable and hence

will need to use the multinomial logistic regression to model its probabilities.

1.1.3 Case-control studies

Besides through random samples from the targeted population, data may be

collected through a case-control sample. In a case-control sample, usually, random

4



samples are collected from the case group (Y = 1) and control group (Y = 0)

separately. Typically, case-control samples are used for studying a rare disease where

chances of having Y = 1 is low in the population. Suppose that the exposure X is a

binary variable, then the odds ratio of Y = 1 from X = 1 to X = 0 is

OR =
pr(Y = 1|X = 1)/pr(Y = 0|X = 1)

pr(Y = 1|X = 0)/pr(Y = 0|X = 0)

=
pr(Y = 1, X = 1)/pr(Y = 0, X = 1)

pr(Y = 1, X = 0)/pr(Y = 0, X = 0)

=
pr(X = 1|Y = 1)pr(Y = 1)/pr(X = 1|Y = 0)pr(Y = 0)

pr(X = 0|Y = 1)pr(Y = 1)/pr(X = 0|Y = 0)pr(Y = 0)

=
pr(X = 1|Y = 1)/pr(X = 1|Y = 0)

pr(X = 0|Y = 1)/pr(X = 0|Y = 0)
.

Observe that the OR is expressed in terms of conditional probabilities pr(X = x|Y =

0) and pr(X = x|Y = 1), and they can be consistently estimated from the control

and case samples, respectively. Hence, the odds ratio can also be estimated from the

case-control data. Thus, β1 (or exp(β1)) of the logistic model (1.1) can be estimated

from the case-control sample. The next question is if the intercept β0 of model (1.1)

can be estimated from the case-control sample. Clearly,

exp(β0) =
pr(Y = 1|X = 0; β)

pr(Y = 0|X = 0; β)
=

pr(X = 0|Y = 1; β)pr(Y = 1; β)

pr(X = 0|Y = 1; β)pr(Y = 1; β)
.

Although pr(X = 0|Y = 0; β) and pr(X = 0|Y = 1; β) can be estimated from the

control and case samples, the absolute risk pr(Y = 1; β) or pr(Y = 0; β) cannot.

Hence, β0 cannot be estimated from the case-control data; but it is not a cause

of concern when the interest lies in finding association between the response and

exposure variables. This idea holds true for any type covariate X.

To avoid or reduce spurious association (the association that is mostly caused by

5



other variables) sometimes data are collected through a matched case-control study.

In such a study, cases and controls are matched at various levels of the matching

variables. Usually confounding variables are used for matching. So, at different

values of the matching variables, cases and controls are identified and then exposure

information is ascertained. For example, a person’s age may affect the association

between a therapy and a health outcome. To prevent the confounding effects of age

to cause spurious association, cases and controls are identified at some age groups.

Then the therapy information is collected from the cases and controls. If one case

and M controls are collected at every level of the matching variables, referred to as

an 1:M matched case-control study. A 1:1 matched case-control study occurs when

M= 1 . Case(s) and controls at every value of the matching variables form a stratum.

In a matched case-control data, the number of cases and controls are fixed at every

stratum, but the number of strata is large, say n.

Suppose that the interest is in estimating the log-odds ratio parameter for the set

of exposure variables X using a 1: M matched case-control data with n observations.

The data from the jth subject in the ith stratum are (Yi,j, Xi,j), for j = 1, . . . ,M +

1, and i = 1, . . . , n. Since there are one case and M controls in every stratum,∑M+1
j=1 Yi,j = 1. The probability model for the response Y in the ith stratum is

pr(Yi,j = 1|Xi,j; β) =
exp(β0,i + βT1 Xi,j)

1 + exp(β0,i + βT1 Xi,j)
.

The intercept terms β0,is are allowed to vary with strata. Through this model, it is

assumed that the log-odds ratio parameters do not change with strata. That means

the association between X and Y is homogeneous across the strata. To estimate β1

usually conditional logistic regression method is used. The conditional likelihood for

the ith stratum is the probability of observing Yi,j given Xi,j and the condition that

6



there is only one case in the ith matched set,

Li(β1) = pr(Yi,j = yi,1, . . . , Yi,M+1 = yi,M+1|Xi,1, . . . , Xi,M+1,

M+1∑
j=1

Yi,j = 1)

=
exp(

∑M+1
j=1 βT1 Xi,jyi,j)∑M+1

j=1 exp(βT1 Xi,j)
.

The likelihood Li(β1) is completely free from the stratum specific intercept β0,i. This

is possible because for the logistic model
∑M+1

j=1 Yi,j is the sufficient statistic for β0,i.

Then the likelihood of all strata is L(β1) =
∏n

i=1 Li(β1), and then β1 is estimated by

solving the score equations

Sβ1 =
n∑
i=1

M+1∑
j=1

{
Yi,j −

exp(βT1 Xi,j)∑M+1
j′=1 exp(βT1 Xi,j′)

}
Xi,j = 0.

For a binary exposure variable X, the data from the kth stratum can be summarized

as follows:

Case(Y = 1) Control(Y = 0) Total

Exposed (X = 1) nk11 nk10 nk1+

Unexposed (X = 0) nk01 nk00 nk0+

Here nkjl denotes the number of observations with X = j and Y = l in the kth

stratum, j, l = 0, 1, and k = 1, . . . , n, and nkj+ = nkj0 + nkj1. Furthermore, nk01 and

nk10 are called discordant pairs. Then the score function reduces to

Sβ1 =
n∑
k=1

{
nk11 −

exp(β1)nk1+

exp(β1)nk1+ + nk0+

}
=

n∑
k=1

{
exp(β1)nk1+(nk11 − 1) + nk0+

exp(β1)nk1+ + nk0+

}
.

For a 1:1 matched case-control dataset, there are four types of strata: 1) nk11 =

1, nk01 = 0, nk10 = 1, nk00 = 0, 2) nk11 = 0, nk01 = 1, nk10 = 1, nk00 = 0, 3) nk11 =

1, nk01 = 0, nk10 = 0, nk00 = 1, 4) nk11 = 0, nk01 = 1, nk10 = 0, nk00 = 1. Suppose that

7



the number of strata of types 1, 2, 3, 4 are s11, s01, s10, s00, respectively. Then the

score function can be written as

Sβ1 = s11 + s10 − s11

2∑
j=1

exp(β1)∑2
j′=1 exp(β1)

− s01
exp(β1)

exp(β1) + 1
− s10

exp(β1)

exp(β1) + 1

= s10 − (s01 + s10)
exp(β1)

exp(β1) + 1
.

Hence, the conditional logistic regression (CLR) estimator of β1 is the solution of

0 = s10 − (s01 + s10)
exp(β1)

exp(β1) + 1
= s10{exp(β1) + 1} − (s01 + s10) exp(β1)

= s10 − s01 exp(β1),

and the estimator is β̂1 = log(s10/s01), where s01, s10 are called discordant sets

(strata). There is connection between the CLR estimator and test and the McNemar

test for this 1:1 matched data.

Before discussing the connection I provide a brief overview of the McNemar test.

The purpose of the McNemar test is to assess whether there is a difference in the case

and control in terms of the exposure status for 1:1 matched paired data. To do this,

the discordant pairs nk01 and nk10 are used in the McNemar test statistic z2
0 = ((n21−

n12)/
√
n21 + n12)2, which is distributed as χ2 with 1 degree of freedom. However, the

McNemar test can be directly applied in the conditional logistic regression setting

by testing the hypothesis that β1 = 0. This follows since β̂1 is a function of the

discordant sets s01, s10, from which s01 is the number of sets in which the discordant

pairs nk01 and nk10 occur.

When there are M controls, this implies the use of 1:M matched paired data.

Hence instead of using the McNemar test one would instead apply the Cochran

Mantel-Haenszel (CMH) test. In this setting the hypothesis is H0 : OR = 1, where
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OR = exp(β1) is the odds ratio parameter. Again, this can be tested directly in the

conditional logistic setting by using a score test statistic for the hypothesis H0 : β1 =

0 [16, 39].

1.1.4 Presence of misclassified variables in logistic regression and its effect

Having discussed the types of logistic regression model, I now consider the sce-

nario where instead of observing X a misclassified form of it, W is reported. First,

consider how the misclassification causes the frequencies of W to differ from X as

denoted below

Y
0 1

W
0 n∗00 n∗01

1 n∗10 n∗11

and so the estimate of the odds ratio using W instead of X is calculated as

exp(β̂∗1) =
n∗11n

∗
00

n∗10n
∗
01

.

The underlying parameter β∗1 can be considered as coming from a mispecified

model [65] (White, 1982), where the incorrect covariate is used in the logistic model.

Hence, the resulting estimate does not converge to the true β1. The expected differ-

ence between the estimator β̂∗1 and the true β1, i.e., E(β̂∗1) − β1, will be referred to

as the misclassification bias. I will consider its form in the next section.
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1.1.4.1 Analytical forms of the bias due to misclassified exposure in logistic

regression

Before analyzing the form of E(β̂∗1 − β1), I consider work of [15] and [42]. [15]

provided the analytical background for finding the tractable form of the analytical

bias for a binary misclassified variable in a logistic regression setting. [42] further

expanded on [15] by considering the analytical bias for a categorical misclassified

variable. First, I assume that W and X are both discrete with categories (0,1).

Define the joint probabilities as πi,j = pr(Y = i,X = j) and pi,j = P (Y = i,W = j)

for the response Y and X, and Y and W , respectively. The probability models for

Y given X and Y given W are as follows:

pr(Y = 1|X = j) ≡ π1|j =
exp(β0 + β1I(j = 1))

1 + exp(β0 + β1I(j = 1))
,

pr(Y = 1|W = j) ≡ p1|j =
exp(β∗0 + β∗1I(j = 1))

1 + exp(β∗0 + β∗1I(j = 1))
,

where the parameters β = (β0, β1)T corresponding to the model using the true X

and β∗ = (β∗0 , β
∗
1)T correspond to the model using the misclassified variable W .

Next I define α = (αi00, αi01, αi11, αi10) as the set of misclassification and nonmis-

classification probabilities. In particular, the nonmisclassification probabilities are

αi11 = pr(W = 1|X = 1, Y = i) and αi00 = pr(W = 0|X = 0, Y = i), and the

corresponding misclassification probabilities are αi01 = pr(W = 0|X = 1, Y = i) and

αi10 = pr(W = 1|X = 0, Y = i). For the rest of this section I will consider the sce-

nario with non differential misclassification, which means that αijk = αjk, hence the

misclassification is independent of the response Y . I will define the asymptotic bias

in terms of these misclassification probabilities. Finally, I refer to the misclassifica-

tion bias as ∆j(α) = βj − β∗j where j = 0, 1 corresponding to the model parameters
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of β.

To obtain the form of the misclassification bias I first rewrite the parameters in

terms of the misclassification probabilities. I first start with the parameters β. I will

use the relation πi|j/πi′ |j = πi,j/πj/πi′ ,jπj = πi,j/πi′ ,j, where i
′ 6= i and πj = pr(X =

j).

Then

π1,0

π0,0

=

exp(β0)
1+exp(β0)

1− exp(β0)
1+exp(β0)

=
exp(β0)

1 + exp(β0)
× 1 + exp(β0)

1

= exp(β0)

which implies that β0 = log(π1,0
π0,0

). Similarly,

π1,1

π0,1

=

exp(β0+β1)
1+exp(β0+β1)

1− exp(β0+β1)
1+exp(β0+β1)

=
exp(β0)

1 + exp(β0 + β1)
× 1 + exp(β0 + β1)

1

= exp(β0 + β1),

and together with the result for β0 above it indicates that β1 = log(π1,1π0,0/π0,1π1,0).

Using this logic, I define the parameters β∗ using the relations pi,j/pi′,j, giving the

forms β∗0 = log(p1,0
p0,0

) and β∗1 = log(p1,1p0,0/p0,1p1,0). Note that the joint probabilities

of Y and W , pi,j, can be written in terms of the misclassification probabilities α and

the joint probabilities Y and X, πi,j. To see this I use simple conditional probability

properties on pi,j:

pi,j = pr(Y = i,W = j)

11



=
∑
x∈X

pr(Y = i,W = j|X = x)pr(X = x)

= pr(Y = i,W = j|X = 0)pr(X = 0) + pr(Y = i,W = j|X = 1)pr(X = 1)

= pr(Y = i,W = j,X = 0) + pr(Y = i,W = j,X = 1)

= pr(W = j|Y = i,X = 0)pr(Y = i,X = 0)

+pr(W = j|Y = i,X = 1)pr(Y = i,X = 1)

= pr(W = j|X = 0)pr(Y = i,X = 0) + pr(W = j|X = 1)pr(Y = i,X = 1)

= αj0πi,0 + αj1πi,1,

where I use the non-differential misclassification property on the second to last line.

Using these properties I derive the form of the bias for each of the parameters. For

∆0,

∆0(α) ≡ β0 − β∗0 = log

(
π1,0

π0,0

)
− log

(
p1,0

p0,0

)
= log

( π1,0
π0,0
p1,0
p0,0

)
= log

(
π1,0p0,0

π0,0p1,0

)
= log

(
π1,0 × {α0,0π0,0 + (1− α11)π0,1}
π0,0 × {α00π10 + (1− α11)π1,1}

)
= log

(
π1,0α00π0,0 × {1 + (1−α11)

α00π0,0
π0,1}

π0,0α00π1,0 × {1 + (1−α11)
α00π1,0

π1,1}

)

= log

(
1 + ξ0

α01

α00

1 + ξ1
α01

α00

)
,

where ξi = πi,1/πi,0 = pr(Y = i,X = 1)/pr(Y = i,X = 0) = pr(X = 1|Y =

i)/pr(X = 0|Y = i, ), which represents the retrospective odds of the true exposure

X given Y . Hence there is no bias between the intercept terms β0 and β∗0 when the

inner term of the log function equals 1. This would occur if ξ0 = ξ1 , or if α01 = 0.
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A similar derivation is done for the bias of ∆1:

∆1(α) ≡ β1 − β∗1 = log

(
π1,1π0,0

π0,1π1,0

)
− log

(
p1,1p0,0

p0,1p1,0

)
= log

(
π1,1π0,0p0,1p1,0

π0,1π1,0p1,1p0,0

)
= log

(
π1,1π0,0

π0,1π1,0

{π0,1α11 + π0,0(1− α00)}{π1,0α00 + π1,1(1− α11)}
{π1,1α11 + π1,0(1− α00)}{π0,0α00 + π0,1(1− α11)}

)

= log

π1,1π0,0

π0,1π1,0

(π0,1α11){1 + π0,0(1−α00)

π0,1α11
}(π1,0α00){1 + π1,1(1−α11)

π1,0α00
}

(π1,1α11){1 + π1,0(1−α00)

π1,1α11
}(π0,0α00){1 + π0,1(1−α11)

π0,0α00
}


= log

{1 + π0,0(1−α00)

π0,1α11
}{1 + π1,1(1−α11)

π1,0α00
}

{1 + π1,0(1−α00)

π1,1α11
}{1 + π0,1(1−α11)

π0,0α00
}


= log

(
{1 + ξ−1

0
α10

α11
}{1 + ξ1

α01

α00
}

{1 + ξ−1
1

α10

α11
}{1 + ξ0

α01

α00
}

)
.

Here there would be no bias between β1 and β∗1 when either α10 = α01 = 0 or if

ξ0 = ξ1 .

Having shown the form of bias in a logistic model setting I consider the form of

the bias E(β̂∗1 − β1) when I only considered count data. Because

β̂∗1 = log

(
p̂0,0p̂1,1

p̂1,0p̂0,1

)
= log

(
n∗00n

∗
11

n∗10n
∗
01

)
and β̂1 = log

(
π̂0,0π̂1,1

π̂1,0π̂0,1

)
= log

(
n00n11

n10n01

)
,

then E(β̂∗1 − β1) can be expressed as

E(β̂∗1 − β1) = E(β̂∗1 − β1 + β̂1 − β̂1)

= E(β̂∗1 − β̂1) + E(β̂1 − β1)

= E

{
log

(
p̂0,0p̂1,1

p̂1,0p̂0,1

)
− log

(
π̂0,0π̂1,1

π̂1,0π̂0,1

)}
,

where E(β̂1 − β1) = 0 follows because β̂1 is the unbiased estimator based on the
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correctly measured data. Next, applying the formulations from [15] yields

E(β̂∗1 − β1) = E

{
log

(
(α10π̂1,0 + α11π̂1,1)(α00π̂0,0 + α01π̂0,1)

(α10π̂0,0 + α11π̂0,1)(α00π̂1,0 + α01π̂1,1)

)}
−E

{
log

(
π̂0,0π̂1,1

π̂1,0π̂0,1

)}
= E {log (α10π̂1,0 + α11π̂1,1)}+ E {log (α00π̂0,0 + α01π̂0,1)}

−E {log (α10π̂0,0 + α11π̂0,1)} − E {log (α00π̂1,0 + α01π̂1,1)}

−E {log (π̂0,0)} − E {log (π̂1,1)}+ E {log (π̂1,0)}+ E {log (π̂0,1)} ,

where the log operator is applied to the insides. While calculation of these terms

is nontrival; we can see from the last line that term E(β̂∗1 − β1) may equal 0 when

the misclassification probabilities α01 = α01 = 0, implying that α00 = α11 = 1. The

conclusion of this proof is that the difference between β̂∗1 and β1 is nonzero when

misclassification exists. Finally [6] pointed out the effects of misclassified data not

only causes bias in the estimates, but can reduce the power of a significance test.

1.1.5 Simulation

Having shown the misclassification issue theoretically, I demonstrate this issue

concretely by conducting a few simple simulations. DefineX as a binary variable with

pr(X = 1) = 0.55. Let Y be a binary response with the model pr(Y = 1|X) = [1 +

exp{−(β0 + β1X)}]−1, where β0 = −1 and β1 = 0.5. We model Wa, the misclassified

version of X, as follows: set the misclassification probabilities pr(Wa = 1|X = 0)

and pr(Wa = 0|X = 1) to 0.3. So, the misclassified version Wa is generated by

setting Wa = X × Ṽ + (1−X)× (1− V̂ ), where Ṽ and V̂ are the Bernoulli random

variables with success probabilities, 1 − pr(Wa = 1|X = 0) = 0.7 and 1 − pr(Wa =

0|X = 1) = 0.7. I also consider Wb, defined similarly as Wa but with the following

misclassification probabilities pr(Wb = 0|X = 1) = 0.3, pr(Wb = 1|X = 0) = 0.05.
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I generated a cohort of size n = 1000, which means each cohort consisted of n

iid copies of (Y,X,Wa,Wb). To analyze each cohort data, I fit a logistic model for

Y on X, Y on Wa and Y on Wb, and reported the average bias of the parameter

estimates based on 500 replications. I also report the average standard deviation of

the estimates in parenthesis.

Table 1.2: Average bias of logistic regression parameters using true exposure X and
misclassified exposure Wa and Wb.

β̂0 β̂1

X −0.006(0.151) 0.011 (0.196)
Wa 0.181 (0.141) −0.298(0.192)
Wb 0.145 (0.127) −0.164(0.193)

The results are summarized in Table 1.2. Here I note two things. First, the bias

of the estimates using the misclassified Wa and Wb is much larger than if X was used

in the regression model. More importantly, it is evident that the bias occurs in both

β0 and β1, hence the misclassification can impact all model parameters. These results

show the importance of addressing this misclassified covariate issue. Additionally,

I consider the power of the significance tests when using Wa and Wb. Under the

scenario where the true variable X, the power is 100% for β1. However, if the

misclassified variables are used, the power for β1 are 75.1% and 89.0%, corresponding

to Wa and Wb, respectively.

Previously I considered only nondifferential misclassification. Next, I consider the

effect of differential misclassification in a similar simulation as in Table 1. However,

now the model for Wc, the misclassified version of X, is as follows: set the misclas-

sification probabilities pr(Wc = 1|X = 0, Y = 1) and pr(Wc = 0|X = 1, Y = 1) to
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0.3, and set pr(Wc = 1|X = 0, Y = 0) and pr(Wc = 0|X = 1, Y = 0) to 0.1. In

this situation, the misclassification probabilities are dependent on the value of the

Y . I regressed Y on X and Y on Wc in a logistic regression model and report aver-

age bias of parameter estimates based on 500 replications. I also report the average

standard deviation of the estimates in Table 1.3. We see the inclusion of differential

Table 1.3: Average bias of logistic regression parameters using true exposure X and
misclassified exposure Wc under differential misclassification.

β̂0 β̂1

X −0.006(0.151) 0.011(0.196)
Wc 0.185(0.141) −0.309(0.192)

misclassification causes the average bias to increase for both β0 and β1 even more so

than nondifferential misclassification. Additionally when using Wc, the power for β1

is 75.8%.

1.1.6 Misclassification in real world data sets

I have demonstrated, theoretically and through some simulations, the implica-

tions of misclassified variables in a logistic regression setting; whether misclassified

variables occur in reality is another question. A literature review shows the preva-

lence of misclassified variables in the realm of public health domain. This is due to

the use of observational data recorded by incomplete or through inaccurate methods.

In public health surveys, misclassified variables typically occur due the user response

under duress or recall bias. For example, [18] studied the impact of misclassification

due to subject fatigue from having to answer too many questions, and this fatigue

negatively impacts statistical power in a logistic regression setting. [49] found higher

rates of misclassification of self reported mammography use by black women than
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white women in the Behavioral Risk Factor Surveillence System (BRFSS). [60] found

that a retrospective questionnaire overestimated the intensity of children’s headaches

. However, misclassified data can also occur in patient records. One example is data

obtained from Surveillance, Epidemiology and End Results (SEER), which contains

cancer incidence data from specific regions in the United States. [35] studied the the

rate of under-ascertainment of radiotherapy receipt in the SEER data for Los An-

geles and Detroit subject diagnosed from June 2005 to February 2007. They found

that higher rates of under reporting of radiotherapy receipt in the SEER data were

mainly associated with age of the patient and patient’s insurance type.

A similar example comes from [24], who found misclassification of race and ethnic-

ity in the Greater Bay Area Cancer Registry, which may have been caused by faulty

collection methods such as using the patient’s surname in determining race/ethnicity.

1.2 Assessment of current methods to address misclassification

Much research has been conducted to address the issue of misclassification in co-

variates and responses for various models. [8] provided a classical review of measure-

ment error in different regression settings and gave details on methods of adjustment

for this error. [28] provided an overview of misclassified discrete variables as well

as mismeasured continuous variables, and used Bayesian attempts to adjust for the

misclassification in simple scenarios. [7] studied the effect of using a misclassified

exposure on the bias of the parameters of a linear regression model. They provided

both a mathematical and numerical example to illustrate the effect.

The most common approach in reducing the misclassification bias is the use of a

subset of the data, referred to as validation data, which contains the true exposure

along with the misclassified exposure variable. The justification is that estimated

misclassification probabilities from the subsample can be used to make inferences on
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the disease-exposure association for those not in the sample [9]. There are several

approaches of making use of the validation data. Towards that goal, [47] proposed

a matrix approach. In this method they estimated of the corrected log-odds ratio

by solving a system of equations involving the sample proportions p̂r(W = 1|X̃ =

1, Y = i) and p̂r(W = 0|X̃ = 0, Y = i). Here the sample proportions are based on

X̃ which are measurements obtained from the validated data.

There are also approaches to modeling the bias inducing mechanisms parametri-

cally, then estimating the error free covariates using these models. [57] considered a

parametric approach that incorporated a likelihood for the participants from the full

study and a likelihood for participates who also have validation data. Within each

of the likelihoods are validation selection model, a logistic model for the binary re-

sponse, and a reclassification model for estimating the values of the non-misclassified

covariates. One assumption they make is that the model for being selected into

the validation study is independent of the true non-misclassified covariates. Finally,

another way of addressing the misclassification issue is through the MC-SIMEX ap-

proach [36].

In this approach, they proposed a two step process consisting of simulation and

extrapolation. In the simulation step, the misclassified variable is simulated using

a misclassification matrix, Π, whose diagonal elements are restricted to the range

of (0.5, 1) to create a pseudo data set. There are multiple pseudo data sets created

for a fixed grid of values λ. In the extrapolation step, the data from each pseudo

data set is used in a regression to generate parameter estimates. The parameter

estimates obtained are then finally used in another least squares regression to obtain

the MC-SIMEX estimator. The variance can be obtained through different methods

including the use of a bootstrap technique.

An alternative approach to correcting the misclassification was suggested by [40].
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Rather then trying to model the true exposure unknown variable, they suggested

correcting the misclassification through a bias factor. This bias factor is dependent

on the sensitivity of misclassification for different categories of the exposure. The

sensitivity is modeled parametrically using a beta distribution.

The main difference between my approach and previous work is that I consider

limited or no access to validation data to estimate the misclassification. In particular,

I consider the amount of improvement possible if there is only access to instrumen-

tal variables that are also measured along with the misclassified exposure, binary

response, and other prognostic factors. The motivating feature of instrumental vari-

ables is that they have an associated with the true exposure variable, but not with

the outcome variable. Particularly, the conditional on the true exposure variable,

the instrumental variable must be independent of the outcome. The use of instru-

mental variables comes primarily from the economic field - [55] suggested the use

of instrumental variables to address measurement error in certain econometric mod-

els. Additionally he considered ways of reducing the size of the set of instruments

required through dimension reduction tools such as canonical correlation. However,

instrumental variables have also advocated for use in other areas of research. For

example, [31] considered the use of instrumental variables in the field of causal infer-

ence as a technique to control bias due to unmeasured confounding variables. That

said, my work will encompass the use of instrumental variables in both frequentist

and Bayesian settings for bias adjustment due to misclassification.
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2. MATCHED CASE-CONTROL DATA WITH A MISCLASSIFIED

EXPOSURE: WHAT CAN BE DONE WITH INSTRUMENTAL

VARIABLES?1

2.1 Introduction

The purpose of matched case-control designs are to determine the association

between an outcome and an exposure from observational studies. To remove the

influence of confounding variables, cases are matched with controls based on these

potential confounding variables, that results in a stratum or a matched set. The

matched case-control data set will then have many of these matched sets. A logistic

model is typically used to model the disease incidence in terms of the exposure

and other adjustment covariates (prognostic factors). Parameter estimation occurs

by maximizing a conditional likelihood function. However, the estimators of the

parameters are biased when the exposure variable is mismeasured or misclassified.

This bias may occur due to many different reasons including but not limited to recall

error and misreporting. For this work, I will focus on the bias due to a misclassified

binary exposure variable in a matched case-control study.

Several Bayesian and frequentist methods have been developed to address the

misclassification bias of a binary exposure variable in a matched study. For conven-

tion, I use the notations Y , X and W to refer to the binary disease indicator, the

binary exposure variable, and the misclasssified version of X. Usually, X is not ob-

served in the main study but Y and W are, while for the validation data Y , X, and

W are observed. Also, the validation dataset has a much smaller sample size than

1Portions of this work reprinted with permission from Manuel, C.M. and Wang, S. and Sinha, S.,
”Matched Case-Control Data with a Misclassified Exposure: What can be done with Instrumental
Variables?”, Biostatistics, 2019, kxz012, by permission of Oxford University Press
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the main study. However, this validation dataset can be used to estimate the mis-

classification probabilities. This is important because to remove the misclassification

bias these estimated misclassification probabilities are used in the analysis.

I now discuss some previous research conducted in this field. [53] considered

a full likelihood approach for handling a misclassified binary exposure in matched

case-control data. He derived the likelihood in a multinomial model format, with the

cell probabilities being functions of the common odds ratio and non-differential mis-

classification probabilities. Assuming the existence of validation data, he estimated

the parameters using a Bayesian framework. [51] also developed a Bayesian method

of estimating the parameters for a binary exposure variable that was misclassified

in matched case-control data. However they assumed that the correct values of the

exposure were available on a number of matched sets. In one of the three methods

that the authors proposed, they estimated the parameter from the validation data

only where the true values of the exposure were available. Afterwards, they utilized

the first stage analysis result as a prior distribution for use in the second stage of

the analysis. In the second stage the likelihood was based on the matched sets from

which only the misclassified exposure was observed but not the true exposure. [11]

developed a Bayesian approach where the main parameters of interest included the

exposure prevalence, specificity, and sensitivities among cases and controls. They

proposed a Bayesian inference with flexible priors for each of these parameters. [41]

also considered a Bayesian method for misclassification bias in a 1:1 matched case-

control study. Rather than assuming the existence of validation data, they supposed

that expert prior knowledge exists and could be incorporated for the disease-exposure

association and misclassification probabilities. [47] compared three methods of bias

reduction: the matrix method, the inverse matrix method, and the maximum like-

lihood approach, under differential and non-differential misclassification scenarios.
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In a regular case-control study with a misclassified binary exposure, [43] considered

different robust weighted estimators for the odds ratio parameter based on two val-

idation data sets. The types of validation data include an internal validation data

set and an external but less precise validation data set.

Finally, in a different approach, [17] considered replacing some terms in the

Mantel-Haenszel estimator with their corresponding conditional expected values given

the observed data. To obtain these conditional expected values, the misclassification

probabilities were required, and they were obtained from a validation data. Because

of issues in computing the large sample variance, the authors suggest a Bayesian

credible interval for the common odds ratio parameter with non-informative priors.

The main difference between the previous works and the problem I address is

that I do not assume the existence of validation data. Hence, there is no need for

the true binary exposure X to be available in any part of the data. Rather, I require

that a set of instrumental variables are available for the study subjects. Using the

definition given in [26], the instrumental variables are defined as variables that are

correlated with X, yet are uncorrelated with the response as well as the confounding

variables conditional on X. Therefore, my goal is to propose a statistical method of

inference for this scenario. While instrumental variables are frequently used to solve

issues of endogeneity, no one has used instrumental variables to reduce the misclas-

sification bias from either a retrospective case-control or matched case-control study.

In particular, instrumental variables have been used to estimate parameters in a lin-

ear regression or polynomial regression model with a mismeasured numeric covariate

[5, 30]. However, the use of instrumental variables for addressing misclassification

bias of a binary covariate in a retrospective study is limited [33, 56].

My work is inspired by the research of [33], who demonstrated that the misclas-

sification probabilities and the latent model for X are nonparametrically identifiable
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when there is a discrete instrumental variable. For parameter estimation, [33] pro-

vides a matrix diagonalization technique. In comparison to [33]’s work, I 1) assume

the existence of many confounding variables as well as several instrumental vari-

ables, 2) I assume a parametric model for the distribution of X, and finally, 3) I

assume that conditional on the true exposure, the misclassification probabilities do

not depend on other variables. Based on these assumptions, I propose two methods

of estimation in a non-trivial conditional likelihood setting. To make the method

numerically work for a reasonable sample size, a parametric model assumption on

the conditional distribution of X is necessary.

For this problem, I propose two estimation methods. The first method is a two

step procedure. In the first step, I estimate the misclassification probabilities and

the conditional distribution of the true exposure given the confounding variables

and instrumental variables. In the second step, I obtain the induced model of the

response given the observed variables. In doing so, I make use of the model estimated

in the first step. Finally, a conditional likelihood is constructed and maximized

to estimate the disease-exposure association parameters. The second method is an

efficient method. I now outline the remainder of the article. Some further background

information is provided in Section 2, while in Section 3 the methodology is discussed

explicitly. In Section 4, I provide simulation studies and assessment. Finally, I apply

the proposed methods to the analysis of a real data set in Section 5. The real data is

a nested case-control data that is generated from the US birth cohort from the year of

1989. The data is analyzed to determine the effect of smoking during pregnancy, the

main exposure of interest, on the incidence of low birth weight. I propose the use of

instrumental variables to reduce the misclassification bias since the average number

of cigarettes smoked daily cannot be measured accurately. Additionally, there are no

validation data to access the misclassification probabilities for the exposure. Finally,
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Section 6 contains a discussion of this work.

2.2 Models and Background

I assume that that there is 1:M matched case-control data set with n strata. Thus

for each case subject, there are M control subjects within each stratum. The notation

ai,j denotes the variable a for the jth subject in the ith stratum. I denote the matched

data set by Yi,j, Xi,j,Zi,j,Si, j = 1, . . . , (M+1), i = 1, . . . , n. Y , X, and Z represent

the response, the main binary exposure, and prognostic factors used for adjustment,

and S represents the set of confounding variables used in matching cases and controls.

The definition of confounding variables I use comes from [27], who states that the

confounding variables S causally influence both X and Y [27]. Because the matching

is done based on the values of the confounding variables, all subjects within a matched

set have the same values of S. Note that the value of S does not vary within a

given stratum. I partition the prognostic factor Z as Z = (ZT
1 ,Z

T
2 )T , where Z1

is a prognostic factor that is causally independent of the exposure and Z2 is the

prognostic factor that is a confounding variable. In our context, X is never observed

but a misclassified version of X, W , is recorded instead. Additionally, I assume that

W is independent of the other data (S,X∗,Z, Y ) conditioned on the true exposure

X. I now define α0 = pr(W = 1|X = 0) = pr(W = 1|X = 0, Y = 0) = pr(W =

1|X = 0, Y = 1) and α1 = pr(W = 0|X = 1) = pr(W = 0|X = 1, Y = 0) = pr(W =

0|X = 1, Y = 1). Additionally, I assume the existence of a set of instrumental

variables X∗ for X is in the data. Following the definition [26], the instrumental

variables satisfy the following conditions: a) X∗ do have a direct influence on X, b)

X∗ may have a direct influence on Z1 (a non-confounder), c) X∗ is independent of

all the confounding variables found in S and Z2, d) conditional independence of X∗

and Y for a given X and Z1. However, I point out that that statistical validity of
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the proposed methods does not rely on the dependence of X∗ and any component

of Z. These assumptions are depicted in Figure 2.1 where the arrows indicate the

variables of influence (the variable from which the arrow originates from) and the

variables being influenced (the variable pointed at by the arrow). In this set-up,

S

W

Y

X

X∗

Z2

Z1

Figure 2.1: Schematic diagram showing how variables are related. (Manuel, Wang,
Sinha 2019)

the observed data are {Yi,j,X∗i,j,Wi,j,Zi,j,Si, j = 1, . . . , (M + 1), i = 1, . . . , n}. In

general, the assumed model of Y for the ith stratum is

pr(Yi,j = 1|Si, Xi,j,Zi,j) = H{g0(Si) + β1Xi,j + βT2Zi,j}, (2.1)

where H(u) = 1/{1+exp(−u)}. Here g0(Si) indicates how the stratification variable

influences success probability of the response variable, whereas β1 and β2 association

parameters for X and Z, respectively. The model can also be generalized through

the inclusion of an interaction term between X and Z.

When there are no Z2 in the data, then S will be the only set of confounding

variables used for matching. This means that the regression parameter β1 in Equation
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(3.1) will have a causal interpretation conditional on Z = Z1 (32). Also, regardless

of the presence of the prognostic factors Z1 and Z2, the dependence betweenX∗ and

Z1, and the independence of X∗ and Z2, the proposed estimation techniques are

always valid. When the true X is observed in the data, the parameter β = (β1,β
T
2 )T

can be estimated through maximizing the conditional likelihood Lc(β). Conditioning

on the number of cases for each stratum eliminates the nuisance parameter g0(Si) .

Thus,

Lc(β|X,Z) =
n∏
i=1

pr{Y = Yi,j, j = 1, . . . , (M + 1)|Si, Xi,j,Zi,j,

j = 1, . . . , (M + 1),
M+1∑
j=1

Yi,j = 1}

=
n∏
i=1

∏M+1
j=1 prYi,j(Y = 1|Si, Xi,j,Zi,j)pr(1−Yi,j)(Y = 0|Si, Xi,j,Zi,j)∑M+1
k=1 pr(Y = 1|Si, Xi,k,Zi,k)

∏
r 6=k pr(Y = 0|Si, Xi,r,Zi,r)

=
n∏
i=1

∑M+1
j=1 Yi,j exp(β1Xi,j + βT2Zi,j)∑M+1
j=1 exp(β1Xi,j + βT2Zi,j)

.

For the naive approach, X gets replaced by W in Lc and so the estimators are now

defined as argmaxβLc(β|W,Z). The degree of bias in naive estimators depends on

the severity of the misclassification.

2.3 Proposed methodology

2.3.1 Intuitive estimator

I now discuss the first estimator. The goal is to estimate the regression parameters

β in model (3.1), which requires the conditional distribution of Y given the observable

random variables S,W,X∗,Z. First I specify a model for X given S,X∗, Y = 0,Z.

This model along with the misclassification probabilities induces the model for X

given S,W,X∗, Y = 0,Z, and is denoted as pr(X = 1|S,W,X∗, Y = 0,Z). The
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resulting induced model pr(X = 1|S,W,X∗, Y = 0,Z) along with model (3.1) yields

the model for Y given S,W,X∗,Z. Subsequently the estimation is carried out in

two steps. To proceed, first I assume a logistic model for the probability of X = 1

given S, X∗, Z in the control population:

pr(X = 1|S,X∗, Y = 0,Z) = H(γ0 + γT1S + γT2X
∗ + γT3Z). (2.2)

The term H(γ,S,X∗,Z) is used to denote H(γ0 + γT1S + γT2X
∗ + γT3Z), with

γ = (γ0,γ
T
1 ,γ

T
2 ,γ

T
3 )T . Next I obtain the induced conditional probability model for

the observed W :

pr(W = 1|S,X∗, Y = 0,Z)

= pr(W = 1|S, X = 0,X∗, Y = 0,Z)pr(X = 0|S,X∗, Y = 0,Z)

+pr(W = 1|S, X = 1,X∗, Y = 0,Z)pr(X = 1|S,X∗, Y = 0,Z)

= pr(W = 1|X = 0, Y = 0,Z)pr(X = 0|S,X∗, Y = 0,Z)

+pr(W = 1|X = 1, Y = 0,Z)pr(X = 1|S,X∗, Y = 0,Z)

= α0{1− pr(X = 1|S,X∗, Y = 0,Z)}+ (1− α1)pr(X = 1|S,X∗, Y = 0,Z)

= α0 + (1− α0 − α1)H(γ,S,X∗,Z), (2.3)

where the second equality comes from the assumptions placed on the misclassification

probability, and α0 = pr(W = 1|X = 0) and α1 = pr(W = 0|X = 1).

Using results from[29], I make the assumption that 0 < α0 + α1 < 1, which

guarantees model parameter identification. A detailed proof of the identifiability

is given in Appendix A.1. [29] applied this restriction for parameter identification

for the scenario of misclassified response variables. Next I write α0 and α1 using

the formulas α0 ≡ α0(η) = exp(η0)/{1 + exp(η0) + exp(η1)} and α1 ≡ α1(η) =
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exp(η1)/{1+exp(η0)+exp(η1)}, where η0, η1 ∈ R, and this formulation make (α0, α1)

to automatically satisfy the restriction 0 < α0 + α1 < 1. Next I denote pr(W =

1|S,X∗, Y = 0,Z) by pw(η,γ,S,X∗,Z). Then γ and η = (η0, η1)T are estimated

by maximizing the following likelihood:

L1(γ,η) =
n∏
i=1

M+1∑
j=1

[{
pw(η,γ,Si,X

∗
i,j,Zi,j)

}Wi,j

×
{

1− pw(η,γ,Si,X
∗
i,j,Zi,j)

}1−Wi,j
](1−Yi,j)

.

I define the estimators γ̂ and η̂ for γ and η as

(γ,η) = arg max
γ ,η
L1(γ,η).

In particular, I obtain γ̂ and η̂ by solving Sγ(η,γ) =
∑n

i=1 Ui,γ(η,γ) = 0 and

Sη(η,γ) =
∑n

i=1 Ui,η(η,γ) = 0, where

U i,γ(γ,η) =
M+1∑
j=1

(1− Yi,j)
{
Wi,j − pw(η,γ,Si,X

∗
i,j,Zi,j)

}
× 1

pw(η,γ,Si,X
∗
i,j,Zi,j){1− pw(η,γ,Si, X∗i,j,Zi,j)}

×{1− α0(η)− α1(η)}H(γ,Si,X
∗
i,j,Zi,j)

×{1−H(γ,Si,X
∗
i,j,Zi,j)}



1

Si

X∗i,j

Zi,j


,

U i,η(γ,η) =
M+1∑
j=1

(1− Yi,j)
{
Wi,j − pw(η,γ,Si,X

∗
i,j,Zi,j)

}
× 1

pw(η,γ,Si,X
∗
i,j,Zi,j){1− pw(η,γ,Si,X

∗
i,j,Zi,j)}
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×

 α0(η){1− α0(η)} − α0(η){1− α(η)}H(γ,Si,X
∗
i,j,Zi,j)

−α0(η)α1(η)− α1(η){1− α(η)}H(γ,Si,X
∗
i,j,Zi,j)

 ,
with 1 − α(η) = 1 − α0(η) − α1(η). I then obtain the induced model for X given

W = ω, X∗, S, and Z among the control subjects as follows:

pr(X = 1|S,W = 1,X∗, Y = 0,Z)

=
pr(W = 1|S, X = 1,X∗, Y = 0,Z)pr(X = 1|S,X∗, Y = 0,Z)

pr(W = 1|S,X∗, Y = 0,Z)

=
(1− α1)H(γ,S,X∗,Z)

α0 + (1− α0 − α1)H(γ,S,X∗,Z)
, (2.4)

pr(X = 1|S,W = 0,X∗, Y = 0,Z)

=
pr(W = 0|S, X = 1,X∗, Y = 0,Z)pr(X = 1|S,X∗, Y = 0,Z)

pr(W = 0|S,X∗, Y = 0,Z)

=
α1H(γ,S,X∗,Z)

1− α0 − (1− α0 − α1)H(γ,S,X∗,Z)
. (2.5)

Now, the induced model for the response Y given S, W , X∗, Z is provided in the

following lemma.

Lemma 1. Under the assumptions stated previously the induced model for Y given

S, W , X∗, and Z is

pr(Y = 1|S,W,X∗,Z) = H{g0(S) + βT2Z + g1(β1,Si,W,X
∗,Z,η,γ)}, (2.6)

where

exp{g1(β1,S,W = 1,X∗,Z,γ,η)}

=
exp(β1)(1− α1)H(γ,S,X∗,Z) + α0{1−H(γ,S,X∗,Z)}

α0 + (1− α0 − α1)H(γ,S,X∗,Z)
,
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exp{g1(β1,S,W = 0,X∗,Z,γ,η)}

=
exp(β1)α1H(γ,S,X∗,Z) + (1− α0){1−H(γ,S,X∗,Z)}

1− α0 − (1− α0 − α1)H(γ,S,X∗,Z)
.

Model (2.6) for the response Y is in terms of observed variables, S, W , X∗, and

Z, and it involves the main association parameters β. To estimate β, we form the

conditional likelihood function based on this induced probability model and maximize

with respect to β. Now I define the estimator of β as

β̂ = arg max
β
L2(β|η̂, γ̂),

where the conditional likelihood function is

L2(β|η,γ) =
n∏
i=1

pr{Yi,j, j = 1, . . . , (M + 1)|Si,Wi,j,X
∗
i,j,Zi,j,

j = 1, . . . , (M + 1),
M+1∑
j=1

Yi,j = 1}

=
n∏
i=1

∏M+1
j=1

{
prYi,j(Y = 1|Si,Wi,j,X

∗
i,j,Zi,j)∑M+1

k=1

{
pr(Y = 1|Si,Wi,k,X

∗
i,k,Zi,k)

×pr(1−Yi,j)(Y = 0|Si,Wi,j,X
∗
i,j,Zi,j)

}
×
∏

r 6=k pr(Y = 0|Si,Wi,r,X
∗
i,r,Zi,r)

}
=

n∏
i=1

∑M+1
j=1 Yi,j exp{βT2Zi,j + g1(β1,Si,Wi,j,X

∗
i,j,Zi,j,η,γ)}∑M+1

j=1 exp{βT2Zi,j + g1(β1,Si,Wi,j,X
∗
i,j,Zi,j,γ,η)}

=
n∏
i=1

exp[
∑M+1

j=1 Yi,j{βT2Zi,j + g1(β1,Si,Wi,j,X
∗
i,j,Zi,j,η,γ)]∑M+1

j=1 exp{βT2Zi,j + g1(β1,Si,Wi,j,X
∗
i,j,Zi,j,η,γ)}

.

Therefore, β̂ can be determined by solving Sβ1(β, η̂, γ̂) =
∑n

i=1 Ui,β1(β, η̂, γ̂) = 0
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and Sβ2(β, η̂, γ̂) =
∑n

i=1U i,β2(β, η̂, γ̂) = 0, where

Ui,β1(β,η,γ) =
M+1∑
j=1

[
Yi,j −

exp{βT2Zi,j + g1(β1,Si,Wi,j,X
∗
i,j,Zi,j,η,γ)}∑M+1

k=1 exp{βT2Zi,k + g1(β1,Si,Wi,k,X
∗
i,k,Zi,j,η,γ)}

]
×gβ1(β1,Si,Wi,j,X

∗
i,j,Zi,j,η,γ),

U i,β2(β,η,γ) =
M+1∑
j=1

[
Yi,j −

exp{βT2Zi,j + g1(β1,Si,Wi,j,X
∗
i,j,Zi,j,η,γ)}∑M+1

k=1 exp{βT2Zi,k + g1(β1,Si,Wi,k,X
∗
i,k,Zi,j,η,γ)}

]
×Zi,j,

with gβ1(·) = ∂g1(·)/∂β1. I now present the following main theorem whose proof can

be found in the Appendix.

Theorem 1. Under the standard regularity conditions and as n→∞, the asymptotic

distribution of
√
n(β̂ − β) converges to a mean-zero normal distribution. Addition-

ally, the asymptotic variance of
√
n(β̂ − β) can be consistently estimated by the last

(p + 1) rows and the last (p + 1) columns of Â−1(
∑n

i=1U iU
T
i /n)Â−T , where Â =

−(1/n)∂Sθ/∂θ, Sθ = (STγ (γ,η),STη (γ,η), Sβ1(β,γ,η),STβ2
(β,γ,η))T and U i =

(UT
i,γ,U

T
i,η, Ui,β1 ,U

T
i,β2

)T .

2.3.2 Efficient estimator

The estimator obtained from the second method requires the following.

Lemma 2. For the proposed models (3.1) and (2.2) and the assumptions placed on

the misclassification probabilities,

i) pr(Y = 1|S,X∗,Z) = H{g0(S) + βT2Z + g2(γ, β1,S,X
∗,Z)},

ii) pr(X = 1|S,X∗,Z, Y = 1) = H(γ0 + β1 + γT1S + γT2X
∗ + γT3Z),

iii) pr(W = 1|S,X∗,Z, Y = 1) = α0 + (1− α)H(γ0 + β1 + γT1S + γT2X
∗ + γT3Z)
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where (1− α) = (1− α0 − α1) and

g2(γ, β1,S,X
∗,Z) = log{1−H(γ,S,X∗,Z) + exp(β1)H(γ,S,X∗,Z)}.

The likelihood for the observed data {Wi,j, Yi,j, i = 1, . . . , (M + 1)} from the ith

stratum conditional on Si,X
∗
i,j,Zi,j, j = 1, . . . , (M + 1) is defined as

Li =
M+1∏
j=1

pr(Wi,j, Yi,j|Si,X∗i,j,Zi,j) =
M+1∏
j=1

pr(Wi,j|Si,X∗i,j, Yi,j,Zi,j)

×pr(Yi,j|Si,X∗i,j,Zi,j).

Lemma 2 says that pr(Yi,j|Si,X∗i,j,Zi,j) is in a logistic form that still contains the

nuisance intercept parameter g0(Si). The dimension of this parameter increases with

the number of matched sets n. However, note that
∑M+1

j=1 Yi,j, the total number of

successes in the ith stratum, is the complete sufficient statistic for the stratum specific

intercept g0(Si). By conditioning on this complete sufficient statistic, the conditional

likelihood becomes free of this stratum specific intercept. Now, from the arguments of

[23] and [52], the maximum conditional likelihood estimator of θ = (βT ,γT , η0, η1)T

(η0, η1 in lieu of α0 and α1) is semiparametric efficient. Subsequently, the conditional

likelihood for the ith stratum is

Li,c =

{M+1∏
j=1

pr(Wi,j|Si,X∗i,j, Yi,j,Zi,j)

}

×pr(Yi,1, . . . , Yi,M+1|Si,X∗i,j,Zi,j, j = 1, . . . , (M + 1),
M+1∑
j=1

Yi,j = 1)

=
M+1∏
j=1

{
prWi,j(Wi,j = 1|Si,X∗i,j, Yi,j = 1,Zi,j)

×pr(1−Wi,j)(Wi,j = 0|Si,X∗i,j, Yi,j = 1,Zi,j)

}Yi,j
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×
{

prWi,j(Wi,j = 1|Si,X∗i,j, Yi,j = 0,Zi,j)

×pr(1−Wi,j)(Wi,j = 0|Si,X∗i,j, Yi,j = 0,Zi,j)

}1−Yi,j

×
∑M+1

j=1 Yi,j exp{βT2Zi,j + g2(γ, β1,Si,X
∗
i,j,Zi,j)}∑M+1

j=1 exp{βT2Zi,j + g2(γ, β1,Si,X
∗
i,j,Zi,j)}

.

Following Equation (2.3) and Lemma 2, pr(W = 1|S,X∗, Y = 0,Z) must be re-

placed by α0 + (1−α0−α1)H(γ0 +γT1S+γT2X
∗+γT3Z) and pr(W = 1|S,X∗, Y =

1,Z) by α0 + (1− α0 − α1)H(γ0 + β1 + γT1S + γT2X
∗ + γT3Z).

Subsequently, the efficient estimator θ̂eff for θ can be obtained by solving Seff,θ =∑n
i=1 ∂log(Li,c)/∂θ = 0. The asymptotic variance for θ̂eff is estimated by inverting

−
∑n

i=1 ∂
2log(Li,c)/∂θ∂θT , the negative of the Hessian matrix .

2.4 Simulation study

Simulation design: In order to simulate a matched case-control data set, I

first generated a large population with a sample size N = 80000 with 6 variables,

(S,W,X,X∗, Z, Y ), corresponding to the stratification variable, the misclassified bi-

nary exposure, the true binary exposure, the instrument, the prognostic factor, and

the response of interest. From this population I sampled n cases (Y = 1), and for

each case I sampled M = 2 controls randomly from the population by matching the

value of the stratification variable S. Variables S, X∗, and Z were generated from a

Uniform(−1, 1), Normal(0, 0.52) and Normal(0, 0.52) distributions, respectively. The

binary exposure X was simulated from the Bernoulli distribution with the success

probability H(γ0 + γ1S + γ2X
∗), γ0 = −1, γ1 = 1. I set two values for γ2, 1 and

2, which corresponds to a moderate and a strong association between the exposure

and its instrument. Under this simulation setting, the marginal prevalence of X was

approximately 30%. Then, Y was simulated from the Bernoulli distribution with
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the success probability H(−2 − 2S + X + 0.5Z),with β1 = 1 and β2 = 0.5. The

marginal prevalence of Y = 1 in the population was 20%. Finally, the surrogate

(misclassified) variable was modeled as W = B × X + (1 − B∗) × (1 − X), where

B ∼ Bernoulli(1− α1) and B∗ ∼Bernoulli(1− α0). Here I considered two scenarios,

the first being α0 = α1 and the other scenario being α0 6= α1. Under the first sce-

nario, I looked at three different settings of the misclassification probabilities MC1:

α0 = α1 = 0.2, MC2: α0 = α1 = 0.1, and MC3: α0 = α1 = 0.05. Under the second

scenario, I considered three different settings considered MC1: α0 = 0.2, α1 = 0.1;

MC2: α0 = 0.2, α1 = 0.05; MC3: α0 = 0.1, α1 = 0.05.

A control was considered to be matched with a given case when the absolute

difference between the values of the confounding variable for the case and control

subjects was less than 0.01. Two controls were randomly chosen from the set of all

matched controls identified in the population for a given case. I also set two different

sample sizes, n = 200 and 1000. Since, I considered 1:2 matched case-control studies,

when n = 200, there were 200 cases and 400 controls for every matched data set,

and when n = 1000, there were 1000 cases and 2000 controls in every matched data

set.

Method of analysis: Every simulated data set was analyzed using four ap-

proaches. First I estimated β = (β1, β2)T using the true X, referred to as M1. This

method acted as the baseline for the other approaches. Note that in a real data

analysis, M1 is unrealistic since X is not observed, . In the second method, referred

to as M2, I replaced X by W in the conditional likelihood Lc(β|X,Z), . In the third

method, referred to as M3, I analyzed the simulated data sets using the proposed

intuitive method (two step estimation). Finally, I analyzed the data sets by the

efficient method, referred to as M4. For each one of the 4 scenarios (2 values for n,

and 2 different associations between the instrument and the exposure variable) under
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each set of misclassification probabilities, I conducted 5000 simulations. Since there

is no validation data set or replicated data, I cannot use the regression calibration

approach, commonly applied for reducing bias.

I compared the methods in terms of the operating characteristics of the estimator

of β = (β1, β2)T . The statistics used as comparison include the relative median

bias, a robust standard deviation calculated as (Q3 − Q1)/1.349 (SD∗ in Tables

2.1–2.3), where Q1 and Q3 are the first and third quartile of the 1000 estimates

of the parameter, the standard deviation of the estimator using 1000 estimates, an

average of the estimated standard errors, the 95% coverage probability using the

Wald confidence interval, and the mean squared error. These summary measures

were calculated based only on the converged data sets.

In the computation when either the absolute value of β̂1 or the standard error of

β1 is greater than 5, I declared that data set as non-convergent. For a sample size of

n = 200, roughly 7–8% data sets did not converge under M3; under M4 1–2% data

sets had convergence issues. For a sample size of n = 1000, approximately 4–5%

data sets did not converge in M3, while for M4 0–0.5% data sets faced convergence

issues. There were no convergence problems for methods M1 and M2. The results

presented in tables are based solely on the converged data sets.

Results: Results for the first scenario when the misclassification probabilities are

the same are displayed in table 2.1. The performance of M1 is intuitively the best

compared to M2, M3, and M4 in terms of all measures since the true values of X were

used. Likewise, the estimator for β2 performs equally under the different methods.

However, the performance of β̂1, the coefficient for X that is not observed in the

data, varies greatly across the methods and scenarios. Regardless of the scenario

and sample size used, the bias of β̂1 under method M2 is large, leading to a coverage

probability for β1 far from the nominal level of 0.95. The bias and variance under M3
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and M4 decreases as the strength of the association between X and X∗ gets stronger.

Moreover, as the association between X and X∗ increases, the coverage probability

gets closer to the nominal level. For a large sample size, M3 performs well, but

for almost all scenarios M4 is the top performer in terms of bias reduction and low

MSE. Intuitively , the estimator for M4 shows less variability than the estimator

under M3. When n = 1000, bias decreases when the association between X and X∗

changes from moderate (S1) to strong (S2) . However in all three scenarios: MC1,

MC2, and MC3, it is evident that increasing the sample size leads to decrease in

the standard errors of the proposed methods by nearly half. This naturally leads

to a decrease in MSE, and shows the superiority of the M3 and M4 over the naive

approach.
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Now I consider Table 2.2, containing the simulation results for the unequal mis-

classification probabilities scenarios. Under both sample sizes, M3 performs better

than M2 in terms of bias for scenarios with a large sample size and moderate to

strong association between X and X∗. Under M3, the bias, variability, and the

distance between the coverage probability and its nominal level for the estimator

of β1 decrease as association between X and X∗ increases. Similarly to the equal

misclassification probability setting, increasing n from n = 200 to n = 1000 as well

as increasing the association between X and X∗ substantially decreases the standard

errors and MSE of the proposed estimator. This gives M3 and M4 an advantage over

M2. Note that M4 performs the best in terms of bias, MSE as well as variability.
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Finally, I considered the scenario in which there are multiple instruments and

multiple confounding variables. To do this the simulated data sets were generated

by closely mimicking the real data set with multiple confounding and instrumental

variables; see Section 5 which discusses the data more thoroughly. I only considered

newborns whose mother was Black, and after applying the necessary exclusions I had

N = 42933 subjects. From this population I generated the a pseudo-population by

sampling 42933 subjects with replacement . The values corresponding to confound-

ing variables, covariates, and instrumental variables were automatically assigned for

subjects selected in this pseudo-population, . To generate the true exposure variable

X, the logistic model was applied

pr(X = 1|S,X∗) = H(−3.39 + 1.29S1 + 0.36S2 + 1.66S3 + 0.67S4 + 0.91S5

+1.09S6 + 0.28S7 + 0.14X∗1 − 0.32X∗2 − 0.21X∗3

+0.99X∗4 ), (2.7)

with S1 = 1 when the number of years of education of the mother was less than 12 and

0 otherwise, S2, S3 corresponding to the indicator variables representing prenatal care

beginning in either second or third trimester, respectively , S4, S5, S6, S7 representing

indicator variables corresponding to the mother’s age in [23, 26], [27, 30], [31, 39],

≥ 40, X∗1 = is the instrumental variable for cigarette state tax rate for 1989, X∗2 being

the instrumental variable, expressed in thousands, for logarithm of the median family

income of the county where the child was born divided by 1000, minus the average

of the logarithm of the median family income, X∗3 = 1 the instrumental variable

indicating a black father and 0 for white father, and finally X∗4 = 1 the instrument if

the number of years of education of the father was less than 12 and 0 otherwise. Note

that the coefficients applied in model (2.7) are close to the estimates of γ parameters
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from the real data analysis of the Black mother data. I then generated the surrogate

variable W as W = B × X, where B ∼ Bernoulli(1 − α1). Following the real data

analysis using method M3, I set α0 = 0 and α1 = 0.45. Next the binary response Y

was simulated with the following model

pr(Y = 1|S, X, Z) = H(−3.2 + 0.19S1 − 0.03S2 + 0.37S3 + 0.09S4 + 0.32S5

+0.57S6 + 0.55S7 + 0.69X + 0.33Z).

I obtained the intercept and regression coefficients corresponding to S by regressing

Y on S in the population of the Black mothers. The coefficients which correspond

to X and Z are the estimates of β1 and β22 for the Black mothers in the real data

analysis when using the proposed approach with α0 = 0. Additionally, set Z = 1

if the father’s age was greater or equal to 31 and 0 otherwise. This resulted in

approximately 4.5% of the data with Y = 1. After creating this pseudo-population,

nested case-control data were generated by sampling n = 1800 cases with 3600

matched controls. This process of generating a pseudo-population and subsequent

sampling of a nested case-control data was replicated 5000 times.

I analyzed each simulated nested case control data set using the four methods

mentioned earlier, M1, M2, M3, M4. For M3 and M4 I used α0 = 0. The first panel

of Table 2.3 displays the results. The bias of estimating β1 is greatly reduced in M3

and M4 when compared with M2, and they also have coverage probabilities much

closer to the nominal level than that of M2. The reduced MSE also demonstrates

the substantial bias reduction in M3 and M4. In particular, when compared to M2,

the MSE for β1 is 10% less in M3 and 14% less in M4. Once again, M4 turns out to

be the best performing method.

Finally, within the last simulation design, I considered another case where S1,
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one of the confounding variables, was not used to form matched sets. Instead, S1

was only used in the incidence model for Y as a prognostic factor (like Z2 according

to our notation). I estimated the corresponding regression parameter, denoted by

β3, as well as the regression parameters for X and that for the original Z variable.

The second panel of Table 2.3 displays the results for this situation. As in the other

simulations, both M3 and M4 perform very well and M4 is slightly better than M3.

In short, the results of the simulation studies demonstrate that these proposed

methods perform better in reducing the bias significantly when compared to the

naive approach. The proposed methods appear to work very well when there is a

strong association between the true exposure and the instruments and the sample

size is large. Incorporating any available prior information on the misclassification

probabilities would help to improve the performance of these methods.

2.5 Real Data Analysis

Description of the data and variables: I consider the data from the 1989 U.S.

Natality Birth Records [48], which was introduced in the Introduction. This data

contains information on the birth records for infants who were born to residents and

nonresidents within the United States during the year 1989, and provides information

on the mother, the father and the child. For this analysis I define the binary response

Y = 1 when a newborn’s birth weight is less than 2500 grams, and 0 otherwise.

Additionally, I defined X = 1 when a mother smoked more than 2 cigarettes daily

during the pregnancy and 0 otherwise. Because there is no consensus on the definition

of various levels of smoking, I took 2 as a cut-off which distinguished between 1) no,

intermittent, and very light smokers, and 2) light, moderate and heavy smokers.

The surrogate variable W is defined based on the reported average daily number

of cigarettes smoked (> 2 cigarettes as 1 and <= 2 as 0) . Here the intuition is
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Table 2.3: Results of the simulation study with n = 1800 in the case of multiple
instruments and multiple confounding variables. (Manuel, Wang, Sinha 2019)
Panel 1: all confounding variables are used in matching, Panel 2: all but one con-
founding variables are used in matching and the other confounding variable is used
as a covariate for adjustment, MT: method, Bias: relative median bias ×100, SD∗:
simulation standard deviation based on quantiles ×100, SD: simulation standard
deviation ×100, SE: estimated standard error ×100, CP: 95% coverage probability
based on the Wald confidence interval, MSE: mean squared error, M1: Conditional
logistic analysis when true X is used, M2: Conditional logistic analysis when X is
replaced by W , M3: proposed two-step method, M4: proposed efficient estimator

MT M1 M2 M3 M4
β1 β2 β1 β2 β1 β2 β1 β2

Bias −0.03 0.34 −13.98 −0.04 −0.99 0.38 0.80 0.34
SD∗ 7.88 8.12 9.84 8.13 12.90 8.44 12.48 8.27
SD 7.94 8.13 9.93 8.08 13.24 8.34 12.84 8.22
SE 7.80 7.88 9.67 7.83 13.45 8.09 12.63 7.98
CP 94.25 94.47 82.46 94.55 94.18 94.50 94.60 94.64
MSE 0.63 0.66 1.93 0.65 1.75 0.70 1.66 0.68

MT M1 M2 M3 M4
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

Bias −0.52 −0.32 1.02 −13.78 0.05 53.11 −1.17 0.06 1.94 0.20 −0.01 0.04
SD∗ 8.12 7.96 10.96 10.20 7.95 0.90 12.97 8.14 13.64 12.47 8.07 12.66
SD 8.03 8.07 11.13 10.16 8.03 10.93 13.10 8.22 13.71 12.61 8.16 12.85
SE 7.83 7.89 11.04 9.77 7.84 10.85 14.79 8.19 15.71 12.51 7.93 12.50
CP 97.00 94.48 94.96 82.56 94.46 83.30 94.66 94.94 94.66 94.42 94.22 93.96
MSE 0.65 0.65 1.24 1.93 0.64 2.29 1.72 0.68 1.88 1.59 0.67 1.65
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that those who smoked more than 2 cigarettes or smoked regularly during pregnancy

were more likely to suffer from recall bias in reporting their daily average number

than those who were non smokers or smoked 2 or less. The following four variables

were selected as instruments: cigarette state tax rate for 1989, the logarithm of the

median family income of the county where the child was born divided by 1000 minus

the average of the logarithm of the median family income expressed in thousands,

father’s race, and the father’s number of years of education coded as a binary variable

(< 12 and >= 12). In the literature cigarette tax, father’s education and family

income have been demonstrated as potential instrumental variables for the mother’s

smoking (59, 19, 46). I don’t consider family income since it could directly impact

birthweight, instead, we used the median family income of the county where the

mother lived. Additionally, family income was not reported in the dataset, so there

is no question of using it as an instrument or a confounding variable. Mother’s

age, mother’s education, and when prenatal care began were selected as confounding

variables since intuitively they could influence birthweight as well as the mother’s

smoking behavior. I defined the age of the mother into 5 categories, with 18–22 as

the reference category, 23–26, 27–30, 31–40, and > 40. Mother’s education was coded

as a binary variable: 0 for < 12 years and 1 for ≥ 12. Finally, when prenatal care

began was coded as 3 category variable: 1st trimester set as the reference category,

2nd trimester, and 3rd trimester. A few subjects (Black: 1.0%, White: 0.3%) had no

prenatal care and so I combined that category with the prenatal care that began in

the 3rd trimester category. To carry out this analysis, I assume that 1) conditional

on the true smoking level, the reported smoking level, and all other variables are

independent and 2) conditional on the true smoking level, the instrumental variables

and the response are independent. Note that these are plausible assumptions. But

truly there is no way to verify these assumptions without knowing the true smoking
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level, and violation of these assumptions likely to cause bias. Also, I want to point

out that in this data example the nondifferential misclassification assumption may be

violated due to dichotomization of the numeric exposure variable [21], and developing

a proper methodology for dealing with this scenario is a part of my future research.

As some exclusion criteria, I dropped subjects whose mother and father had a race

other than Black and White, which represents about 3% newborns. This percentage

includes the scenario where one of the parents is Black/White and the other parent

is neither Black nor White, but does not include the scenario where both parents

are neither Black nor White. Additionally, I removed the newborns whose mother

or father was less than 18 years of age, and those who were not the first child of

the parents. Newborns that were born in the states of Alaska, Delaware, Montana,

New Hampshire, and Oregon were also excluded since these states did not have

state tax on cigarettes in 1989. Moreover, newborns born in Colorado, Maryland,

New Jersey, Rhode Island, and Wyoming were excluded because these state’s tax

rates did not apply to cigarettes. Finally, I divided the birth cohort into two groups:

Black and White mothers, and conducted the analysis of these two groups separately.

After applying these exclusions, my data contained 42933 newborns to Black mothers

(group 1) and 347041 newborns to White mothers (group 2).

For forming matched data, I proceeded as follows. First, I identified all 2021

newborns with Y = 1 from group 1. I then randomly selected 2000 newborns out

of 2021 newborns as cases to be included in my matched set for black group, and

for each selected subject (newborn), M = 2 controls from 40912 were randomly

sampled by matching the confounding variables. This then yielded 2000 cases and

4000 controls for the matched data set. In group 2, there were 6646 newborns with

Y = 1, and subsequently 340395 newborns with Y = 0. Utilizing the same sampling

mechanism a 1:2 matched case-control data was created for group 2, meaning there
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were also 2000 cases and 4000 controls .

Results: Three methods of analysis were conducted: M2 (naive), M3 (intuitive

two stage method) and M4 (efficient method). Note that method M1 cannot be

used, like in the simulations, since the true X is never observed in this real data.

The results for black and white mothers are presented in the first and second panels,

respectively, of Table 2.4.
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First, I discuss the results for the black mothers. Under the the regular identifia-

bility condition 0 < α0 + α1 < 1, the estimates for α0 and α1 in M3 were 0.014 (s.e.

0.013) and 0.521 (s.e. 0.148). It is to be noted that the estimates of α0 and α1 in M3

and M4 are quite close and therefore I exclude the estimates for M4. Additionally,

I concluded that α0 was not significantly different from zero based on the aforemen-

tioned results. Subsequently, I reanalyzed the data with the constraint that α0 = 0,

and proceeded to estimate all the other parameters along with α1 ∈ (0, 1). Under

this situation estimated α1 was 0.46 (s.e. 0.112).

Under all three methods of analysis, M2, M3, M4, I found that mother’s smoking

has a positive association with low birthweight. When setting α0 = 0, the estimated

odds ratios for smoking are 1.7, 2.15 , and 1.99 for M2, M3 and M4 respectively.

This indicates that there is approximately 26% and 17% increase in the odds ratio

estimate when comparing M2 to M3 and M2 to M4. Additionally, the father’s age

has a statistically significant association with the risk of low birthweight under M2,

M3, and M4 but not under M3 and when I set α0 = 0. Note that the standard error

for β1 is slightly larger under M3 and M4 than in M2. We expect this increase in M3

and M4 since the methods consider the uncertainty of not observing the true values

of X.

For the white women, applying the regular identifiability condition 0 < α0 +α1 <

1 in M3 yields estimates for α0 and α1 were 0.014 (s.e. 0.003) and 0.271 (s.e. 0.096)

respectively. Again, because of these results I also conducted the second analysis

setting α0 = 0. From this second setting I found α̂1 = 0.251 (s.e. 0.089) for M3.

Note that all three methods M2, M3, M4 indicate that white mother’s smoking is

positively associated with low birthweight, just like the black mothers. However,

our analysis indicates that both categories of father’s age are significantly associated

with the low birthweight in all methods of analysis as well as the cases where α0 = 0
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and α0 > 0.

2.6 Discussion

In this chapter, I have proposed two consistent methods for reducing the bias

when estimating disease-exposure association parameters in a matched case-control

study. The novelty of the methods is to make use of instruments to recover the

measurement uncertainty when the data are not accompanied by any validation

data. The methodology contains with an uncertainty measure of the estimators,

and contains a theoretical justification of the large sample properties. The realistic

simulation studies clearly show the advantages and when the proposed methods are

effective in reducing bias.

The basic idea of this work can be generalized to a multicategory exposure vari-

able with added complexity of estimating comparatively a large number of misclassi-

fication probabilities. The proposed methodology can easily be extended to the case

when the instrumental variables are observed for a subset of the main data set. I

think, to handle potential convergence problems in the proposed methods one may

consider a penalized estimator using [20]’s penalty function.
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3. ADDRESSING MISCLASSIFICATION BIAS OF AN EXPOSURE

VARIABLE WITH MULTIPLE CATEGORIES

3.1 Introduction

Misclassification in covariates is a known problem, and much research has been

conducted to address this issue. In particular, regression models with misclassified

binary regressors have been studied by researchers from epidemiology and econo-

metrics. In this chapter I will focus on misclassification of a multicategory exposure

variable, and how to reduce the bias in the model estimation with the help of instru-

mental variables. I begin by discussing some pertinent literature.

In the presence of a misclassified binary covariate, [44] considered how the model

parameters from a nonparametric model can be identifiable using instrumental vari-

ables. His model was nonparametric in the sense that the form of the conditional

mean of the response, given the true non-misclassified covariate and other correctly

measured covariates, is unknown. For identification to occur in this nonparametric

setting, [44] made the following set of assumptions: (I), the conditional expectation

function is identified given knowledge of the population distribution of the response,

the true non-misclassified covariate, and other correctly measured covariates; (II)

there are restrictions on the total amount of misclassification that occur in the mis-

classified covariate; (III) there is a conditional independence of the misclassified

covariate and the instrument variables given the true exposure and other covariates;

(IV) the instrument is informative about the true non-misclassified covariate; and

(V) the true non-misclassified covariate is associated with the mean of the response

variable. Model estimation of the parameters was done nonparametrically using a

kernel density estimator. [44] also considered a parametric model for the regression
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function, and suggested to use a sieve maximum likelihood method for estimation

purposes.

[10] considered identification and estimation of the nonparametric conditional

mean model of a continuous response when a binary exposure is misclassified. Thus

the observed data contain the measurements on the response, the misclassified bi-

nary exposure and a set of error-free covariates. The beauty of this approach is that

the authors did not require any validation data, replicated measurements or instru-

mental variables for identification of the model parameters. They obtained a novel

identification results under some restrictive moment conditions. In the discussion of

the paper, [10] proposed model estimation through sieve estimators or generalized

method of moments.

[28] considered the Bayesian estimation of the association between a disease status

and a binary exposure using a case-control data set where the observed exposure

was misclassified. He then considered two scenarios. In scenario one, he assumed

that sensitivity - the conditional probability that the misclassified covariate equals

one given the true non-misclassified covariate equal one, and the specificity - the

conditional probability that the misclassified covariate equals zero given the true

covariate are equal zero, are known. In scenario two, he assumed the sensitivity and

specificity are unknown. [28] then modeled the number of controls who are apparently

exposed, and the number of cases who are apparently exposed as binomial random

variables. The parameter used for these binomial random variables is the probability

of apparent exposure given the disease status; and this probability is a function of the

sensitivity and specificity. Both of these probabilities are modeled using beta priors.

In the second scenario, [28] suggested ”adjusting with uncertainty” (AWU) method,

that is assigning priors to these parameters but centering them at the guessed value.

Assessing the effects of misclassification in variables with more than two categories
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has been studied in epidemiological research. For example, [3] studied the effect of

non-differential misclassified categorical covariates, and derived analytical forms of

the odds ratios in this misclassification setting and it was expressed as a weighted

averages of the set of the correctly classified odds ratios for all the pairs of categories.

[64] studied the effects of non-differential misclassification in a categorical ex-

posure on the direction of the bias. They noted that when a non-differential mis-

classified binary exposure is used, the bias will tend towards the null hypothesis.

However, they mentioned that this does not occur when the exposure is categori-

cal, and that the direction of the bias can reverse. Therefore, [64] was interested

in determining when the trend of association between the misclassified categorical

exposure and the response matches the trend between the true non-misclassified ex-

posure and the response. They found that the trends match only when the mean

of the response, conditional on the true exposure, is monotonically increasing and

when the mean of the misclassified exposure, conditional on the true exposure, is

monotonically increasing .

In spite of these studies, work to correct the bias due to misclassification in

variables with more than two categories is not as prevalent. In a Poisson regression

model, [63] derived analytical forms of the bias of categorical exposure variables

subject to misclassification.

My work is closely related to the approach of [33], who obtained nonparametric

identification of the conditional probability or the density of the response given a

categorical exposure and a set of error-free covariates based on the observable data

on a misclassified version of the categorical exposure with two or more categories,

error-free covariates, the response and a set of instrumental variables. He obtained

identification results under a set of constraints. Besides this elegant result, I was cu-

rious if there is any identification issue in a parametric setting. Therefore, I assumed
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a parametric model for the response given the categorical exposure and the error-free

covariates and another parametric model for the true categorical exposure given the

error-free covariates and the instrumental variables. It turned out the identification

issue is still present in my parametric setting. Then I obtained parametric identifi-

cation under a condition and this condition was one of the conditions that [33] used.

Due to my parametric setting, I was able to prove the result using the connection

between model identification and information matrix [54]. Beyond identification, I

considered a novel estimation procedure that seamlessly allows the integration of the

prior information in making inference. In order to apply the proposed method to

large scale epidemiological datasets, I have applied a variational Bayesian inference

procedure using the automatic differentiation approach of [38].

As mentioned by [28], parameter identification is an important issue in modeling

misclassified data, as nonidentifiability can lead to poor estimation results. My work

addresses this issue by considering sufficient conditions for parameter identification in

the widely used logistic model and integrating these conditions into model estimation.

The identification result and the scalable estimation procedure will be useful to

practitioners who often use parametric models for their analysis.

The structure for the rest of this chapter is as follows. In Section 2, I discuss

the issue and sufficient conditions for identification. Parameter estimation using the

variational inference approach is discussed in Section 3. Section 4 contains some

simulations to assess the performance of the proposed approach, while Section 5

contains an application of the novel method to a real world data set. Concluding

remarks are given in Section 6.

53



3.2 Parameter Identification

3.2.1 Background

Define Y , X, Z as the binary outcome, categorial exposure, and a set of other

covariates. Let W be the misclassified version of X, and X∗ be a set of instrumental

variables for X. Following the definition of instrumental variables, X∗ only affects

X, but it has no direct link with W , Y or Z [26]. Here I list a set of assumptions

that are used in this chapter.

1. The variables X and W have the equal number of categories.

2. Conditional on X, W does not depend on other variables.

The observed data are n iid copies of (X∗,W, Y, Z). Suppose that both X and W

have r categories and they are denoted by 1, . . . , r. Assume the following model for

the outcome

pr(Y = 1|X,Z; β) = 1− pr(Y = 0|X,Z)

=
exp{β0 +

∑r
k=2 I(X = k)βx,k + βTz Z}

1 + exp{β0 +
∑r

k=2 I(X = k)βx,k + βTz Z}
. (3.1)

Here βx,2, . . . , βx,r are the regression parameters corresponding to X and βz is the

regression parameter corresponding to Z containing numeric or binary 0-1 variables.

Here β = (β0, βx,2, . . . , βx,r, β
T
z )T . Conditional on the covariate Z, the odds ratio

of the outcome for changing X from k′ to k is exp(βx,k − βx,k′). I also assume the

following probability model for X given X∗ and Z,

pr(X = r|X∗, Z; γ) =
exp(γr0 + γTr1X

∗ + γTr2Z)

1 +
∑r

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

, for r = 2, 3, . . . , r,

pr(X = 1|X∗, Z; γ) =
1

1 +
∑r

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

,

(3.2)
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where X∗ is a p-vector consisting of a set of binary 0-1 or numeric instrumental

variables, and γ = (γ20, γ
T
21, γ

T
22, γ30, γ

T
31, γ

T
32, . . . , γr0, γ

T
r1, γ

T
r2)T . The misclassification

probability matrix is

X

W 1 2 3 . . . r

1 α11 α12 α13 . . . α1r

2 α21 α22 α23 . . . α2r

...
...

r αr1 αr2 αr3 . . . αrr

with α1j = 1− α2j − α3j − · · · − αrj, j = 1, . . . , r. To be specific here

αi,j = pr(W = i|X = j), i, j = 1, . . . , r. (3.3)

The goal is estimation of β-parameters of model (3.1) along with the other param-

eters for the model for X and the misclassification matrix. Before proceeding for

estimation, I investigate if the model parameters are identifiable. The reason is that

if the parameters are not identifiable, then there are many more model parameters

than what are defined through our models, and consequently the concept of estima-

tion is meaningless. For identification I use the seminal paper,[54] that formalized

the definitions of identifiability and provided conditions of identifiability. First I

state two definitions from [54] :

Definition 1. Two structures are said to be observationally equivalent if they imply

the same probability distribution for the observable random variable V .

Definition 2. A parameter point ω∗ is locally identifiable if there exists an open

neighborhood of ω∗, Ωω∗ ⊂ Ω containing no other ω ∈ Ω, that are not observationally

equivalent.
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Define θ = (α21, α22, α23, . . . , α2r, α31, α32, α33, . . . , α3r, . . . , αr1, αr2, αr3, . . . , αrr, γ
T )T .

If the parameters (β, θ) are not identifiable, then for every (β, θ) I can find another

(β∗, θ∗) that are observationally equivalent. More particularly, if (β, θ) and (β∗, θ∗)

are observationally equivalent, then



pr(Y = 1,W = 1|X∗, Z; β, θ)

...

pr(Y = 1,W = r|X∗, Z; β, θ)

pr(Y = 0,W = 1|X∗, Z; β, θ)

...

pr(Y = 0,W = r|X∗, Z; β, θ)

pr(W = 1|X∗, Z; β, θ)

...

pr(W = r|X∗, Z; β, θ)



=



pr(Y = 1,W = 1|X∗, Z; β∗, θ∗)

...

pr(Y = 1,W = r|X∗, Z; β∗, θ∗)

pr(Y = 0,W = 1|X∗, Z; β∗, θ∗)

...

pr(Y = 0,W = r|X∗, Z; β∗, θ∗)

pr(W = 1|X∗, Z; β∗, θ∗)

...

pr(W = r|X∗, Z; β∗, θ∗)



(3.4)

for every X∗ and Z. Here

pr(Y = 1,W = r′|X∗, Z; β, θ) =
r∑
j=1

pr(Y = 1|X = j, Z; β)pr(W = r′|X = j,X∗, Z; θ)

×pr(X = j|X∗, Z; γ),

pr(W = r′|X∗, Z; β, θ) =
r∑
j=1

pr(W = r′|X = j,X∗, Z; θ)pr(X = j|X∗, Z; γ).

for r′ = 1, . . . , r. So, the question is if (β, θ) are really non-identifiable, and which is

now investigated on a case-by-case basis.
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3.2.2 Non-identifiability of model parameters

Case 1: Both W and X have 2 categories

Suppose pr(X = 2|X∗, Z; γ) = H(γ0 + γT1 X
∗+ γT2 Z), and the misclassification prob-

ability matrix is

X

W 1 2

1 α11 α12

2 α21 α22

with α11 = 1 − α21 and α12 = 1 − α22. Define θ = (α21, α22, γ
T )T , where γ =

(γ0, γ
T
1 , γ

T
2 )T . Then

pr(W = 2|X∗, Z; θ) = α21pr(X = 1|X∗, Z; γ) + α22pr(X = 2|X∗, Z; γ)

= α21{1− pr(X = 2|X∗, Z; γ)}+ α22pr(X = 2|X∗, Z; γ)

= (α22 − α21)pr(X = 2|X∗, Z; γ) + α21.

Observe that a different set of parameters θ† = (α†21, α
†
22, γ

†,T )T , where γ† = −γ,

α†22 = α21 and α†21 = (α22 − α21), gives back the same probability as before, i.e.,

pr(W = 2|X∗Z; θ†) = pr(W = 2|X∗, Z; θ). That means θ and θ† are observationally

equivalent. Hence, the misclassification probabilities and the regression parameter

γ are not identifiable. This non-identifiability holds irrespective of X∗ being a cate-

gorical or continuous variable.

For brevity of notations define p1∗,i = pr(X = 1|X∗i , Zi; γ), p2∗,i = P (X =

2|X∗i , Zi; γ), pw1∗,i = pr(W = 1|X∗i , Zi; θ), pw2∗,i = pr(W = 2|X∗i , Zi; θ), αd22 = α22−α21,
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and a⊗2 = aaT for any generic vector a. The likelihood function is

L =
n∏
i=1

{pr(W = 1|X∗i , Zi; θ)}I(Wi=1){pr(W = 2|X∗i , Zi; θ)}I(Wi=2).

Then the information matrix is

I(θ) =
n∑
i=1

1

pw1∗,ip
w
2∗,i


A1,i A2,iX

∗,T
i A2,iZ

T
i

AT2,iX
∗
i (α2dp1∗,ip2∗,i)

2(X∗i )⊗2 (α2dp1∗,ip2∗,i)
2X∗i Z

T
i

AT2,iZi (α2dp1∗,ip2∗,i)
2ZiX

∗,T
i (α2dp1∗,ip2∗,i)

2Z⊗2
i

 , (3.5)

where

A1,i =


p2

1∗,i p1∗,ip2∗,i α2dp
2
1∗,ip2∗,i

p1∗,ip2∗,i p2
2∗,i α2dp1∗,ip

2
2∗,i

α2dp
2
1∗,ip2∗,i α2dp1∗,ip

2
2∗,i (α2dp1∗,ip2∗,i)

2

 , A2,i =


α2dp

2
1∗,ip2∗,i

α2dp1∗,ip
2
2∗,i

(α2dp1∗,ip2∗,i)
2

 .

If X∗ or Z contains at least one single numeric (continuous) component, I(θ) is non-

singular. I want to point out that this non-singularity of I(θ) does not contradict

with the non-identification of parameters. The reason is explained in Theorem 1 of

[54]. However before explaining the theorem, we provide the following definition.

Definition 3. Let M(ω) be a matrix whose elements are continuous functions of ω

everywhere in Ω. Then the point ω∗ ∈ Ω is said to be a regular point of the matrix if

there exists an open neighborhood of ω∗ in which M(ω) has constant rank.

The result of Theorem 1 of [54] states that if θ is a regular point of I(θ), then non-

singularity and parameter identification are equivalent. If p and q are the dimensions

of X∗ and Z, then I(θ) has rank 3 + p + q when α21 6= α22 and all components of

X∗ and Z are numeric, otherwise its rank is 2, hence it is not a matrix of constant

rank. So, according to the definition of a regular point, θ is not a regular point of
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I(θ) [54].

Case 2: Both W and X have 3 categories

Now suppose the following model:

pr(X = r|X∗, Z;γ) =
exp(γr0 + γTr1X

∗ + γTr2Z)

1 +
∑3

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

, for r = 2, 3,

pr(X = 1|X∗, Z;γ) =
1

1 +
∑3

k=2 exp(γk0 + γTk1X
∗γTk2Z)

,

where X∗ is a p-vector consists of a set of binary or numeric instrumental variables,

and the misclassification probability matrix is

X

W 1 2 3

1 α11 α12 α13

2 α21 α22 α23

3 α31 α32 α33

with α11 = 1 − α21 − α31, α12 = 1 − α22 − α32, α13 = 1 − α23 − α33. Define

θ = (α21, α22, α23, α31, α32, α33, γ
T )T , where γ = (γ20, γ

T
21, γ

T
22, γ30, γ

T
31, γ

T
32)T . Then

pr(W = 2|X∗, Z; θ) = α21pr(X = 1|X∗, Z; γ)

+α22pr(X = 2|X∗, Z; γ) + α23pr(X = 3|X∗, Z; γ)

= α21{1− pr(X = 2|X∗, Z; γ)− pr(X = 3|X∗, Z)}

+α22pr(X = 2|X∗, Z; γ) + α23pr(X = 3|X∗, Z; γ)

= α21 + (α22 − α21)pr(X = 2|X∗, Z; γ)

+(α23 − α21)pr(X = 3|X∗, Z; γ),
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and similarly,

pr(W = 3|X∗, Z; θ) = α31 + (α32 − α31)pr(X = 2|X∗, Z; γ)

+(α33 − α31)pr(X = 3|X∗, Z; γ).

Observe that a different set of parameter θ† = (α†21, α
†
22, α

†
23, α

†
31, α

†
32, α

†
33, γ

†,T )T , γ† =

(γ†20, γ
†,T
21 , γ

†
30, γ

†,T
31 )T , γ†20 = γ30, γ†30 = γ20, γ†21 = γ31, γ†31 = γ21, γ†22 = γ32, γ†32 = γ22,

α†21 = α21, α†22 = α23, α†23 = α22, α†31 = α31, α†32 = α33, α†33 = α32, gives back the same

probability as before, i.e., pr(W = 2|X∗, Z; θ†) = pr(W = 2|X∗, Z; θ) and pr(W =

3|X∗, Z; θ†) = pr(W = 3|X∗, Z; θ). For example, we examine pr(W = 3|X∗, Z; θ†):

pr(W = 3|X∗, Z; θ†) = α†31 + (α†32 − α
†
31)pr(X = 2|X∗, Z; γ†)

+(α†33 − α
†
31)pr(X = 3|X∗, Z; γ†)

= α31 + (α33 − α31)pr(X = 2|X∗, Z; γ†)

+(α32 − α31)pr(X = 3|X∗, Z; γ†)

= α31 + (α33 − α31)

{
exp(γ†20 + γ†T21 X

∗ + γ†T22 Z)

1 +
∑3

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

}
+(α32 − α31)

{
exp(γ†30 + γ†T31 X

∗ + γ†T32 Z)

1 +
∑3

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

}
= α31 + (α33 − α31)

{
exp(γ30 + γT31X

∗ + γT32Z)

1 +
∑3

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

}
+(α32 − α31)

{
exp(γ20 + γT21X

∗ + γT22Z)

1 +
∑3

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

}
= α31 + (α33 − α31)pr(X = 3|X∗, Z; γ†)

+(α32 − α31)pr(X = 2|X∗, Z; γ†)

= pr(W = 3|X∗, Z; θ).

The same derivation can be used to show pr(W = 2|X∗, Z; θ†) = pr(W =
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2|X∗, Z; θ). Subsequently θ and θ† are observationally equivalent. Hence, the mis-

classification probabilities and the regression parameter are not identifiable.

Case 3: Both W and X have r > 3 categories

I now consider the following model. Suppose

pr(X = r|X∗, Z;γ) =
exp(γr0 + γTr1X

∗ + γTr2Z)

1 +
∑r

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

, for r = 2, 3, . . . , r,

pr(X = 1|X∗, Z;γ) =
1

1 +
∑r

k=2 exp(γk0 + γTk1X
∗ + γTk2Z)

,

where X∗ is a p-vector consists of a set of binary or numeric instrumental variables,

and the misclassification probability matrix is

X

W 1 2 3 . . . r

1 α11 α12 α13 . . . α1r

2 α21 α22 α23 . . . α2r

...
...

r αr1 αr2 αr3 . . . αrr

with α1j = 1−α2j−α3j−· · ·−αrj, j = 1, . . . , r. Define γ = (γ20, γ
T
21, γ30, γ

T
31, γ40, γ

T
41, . . . ,

γr0, γ
T
r1)T and then θ = (α21, α22, α23, . . . , α2r, α31, α32, α33, . . . , α3r, . . . , αr1, αr2, αr3, . . . ,

αrr, γ
T )T . Then for any k = 2, . . . , r,

pr(W = k|X∗, Z; θ) = αk1pr(X = 1|X∗, Z; γ) + · · ·+ αkrpr(X = r|X∗, Z; γ)

= αk1 + (αk2 − αk1)pr(X = 2|X∗, Z; γ) + (αk3 − αk1)

×pr(X = 3|X∗, Z; γ) + · · ·+ (αkr − αk1)pr(X = r|X∗, Z; γ).

Observe that a different set of parameter θ† = (α21, α22, . . . , α2r, α31, α32, . . . , α3r, α41,

α42, . . . , α4r . . . , αr1, αr2, . . . , αrr, γ
†,T )T , where γ† = (γ†30, γ

†,T
31 , γ

†
20, γ

†,T
21 , γ40, γ

T
41, . . . ,
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γr0, γ
T
r1)T gives back the same probability as before, i.e., pr(W = k|X∗, Z; θ†) =

pr(W = k|X∗, Z; θ) for k = 1, . . . , r. Thus θ and θ† are observationally equiva-

lent. Hence, the misclassification probabilities and the regression parameter are not

identifiable.

3.2.3 Parameter identifiability under constraints

The parameters can be locally identifiable under constraints. Suppose that there

are c constraints on the parameters, Gk(θ) = 0, k = 1, . . . , c, and define

ψ(θ) =


∂G1(θ)/∂θT

...

∂Gc(θ)/∂θ
T

 .

Theorem 2 of [54] says that if θ in the constrained parameter space is a regular point

for I(θ) and ψ(θ), then θ is identifiable if and only if the rank of V (θ) is dθ, the

dimension of θ, where

V (θ) =

 I(θ)

ψ(θ)


(dθ+c)×dθ

.

Now, I introduce the following constraint.

(C1) The misclassification probability matrix ((αij)) is strictly diagonally dominant.

That is αii >
∑

j 6=i αji or equivalently αii > 0.5.

Assumption (C1) is one of the assumptions that [33] used for nonparametric identi-

fication of the probability models pr(Y |X,Z), pr(W |X,Z), and pr(X|X∗, Z) when

W,X,X∗ are all categorial variables. Now, I state the result in the following theorem.

Theorem 1. If pr(Y |X,Z) and pr(X|X∗, Z) follow the models specified in (3.1) and
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(3.2), respectively, and assumption (C1) holds, then all the parameters are identifi-

able.

Proof: The proof of this result will partly be based on the method of induction and

partly on rigorous mathematics. First, I consider the case where both X and W

have two categories.

Both W and X have two categories: Let us adopt constraint (C1). Then α11 > 0.5

and α22 > 0.5, that means α21 < 0.5 and α22 > 0.5. So,

ψ(θ) =

 -1 0 0T 0T

0 1 0T 0

 .
Observe that in the constrained space, θ is a regular point for I(θ) given in (3.5) and

ψ(θ). Now, the rank of V (θ) is dθ. Hence, the parameters are identifiable. I want to

point out that [45] obtained parameter identifiability under another condition that

is, in our current notations, α12 + α21 < 1. However, this condition and constraint

(C1) are not equivalent. Particularly, (C1) implies α12 + α21 < 1 but not vice versa.

Both W and X have three categories: Model for X given instrumental variable X∗

is

pk∗,i ≡ pr(X = k|X∗i , Zi; γ) =
exp(γk0 + γTk1X

∗
i + γTk2Zi)

1 +
∑3

r=2 exp(γr0 + γTr1X
∗
i + γTr2Zi)

, k = 2, 3,

p1∗,i ≡ pr(X = 1|X∗i , Zi; γ) =
1

1 +
∑3

r=2 exp(γr0 + γTr1X
∗
i + γTr2Zi)

,

and the induced model for W given X∗ is

pwk∗,i ≡ pr(W = k|X∗i , Zi; θ) = αk1 + (αk2 − αk1)pr(X = 2|X∗i , Zi; γ)

+(αk3 − αk1)pr(X = 3|X∗i , Zi; γ),
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for k = 2 and 3 and pw1∗,i = 1− pw2∗,i − pw3∗,i. Define αd22 = α22 − α21, αd23 = α23 − α21,

αd32 = α32−α31 and αd33 = α33−α31. The information matrix I(θ) can be partitioned

as follows:

I(θ) =



A1 A2 B2 B3

AT2 A3 C2 C3

BT
2 CT

2 A4 A5

BT
3 CT

3 AT5 A6


,

where

A1 =
n∑
i=1

(
1

pw1∗,i
+

1

pw2∗,i

)
p2

1∗,i p1∗,ip2∗,i p1∗,ip3∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i

 ,

A2 =
n∑
i=1

1

pw1∗,i


p2

1∗,i p1∗,ip2∗,i p1∗,ip3∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i

 ,

A3 =
n∑
i=1

(
1

pw1∗,i
+

1

pw3∗,i

)
p2

1∗,i p1∗,ip2∗,i p1∗,ip3∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i

 ,

A4 =
n∑
i=1

[
{−(αd22 + αd32)(1− p2∗,i) + (αd23 + αd33)p3∗,i}2

pw1∗,i
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+
{αd22(1− p2∗,i)− αd23p3∗,i}2

pw2∗,i
+
{αd32(1− p2∗,i)− αd33(p3∗,i)}2

pw3∗,i

]
p2

2∗,i

 1

X∗i


⊗2

,

A5 =
n∑
i=1

[
1

pw1∗,i
{−(αd22 + αd32)(1− p2∗,i) + (αd23 + αd33)p3∗,i}

×{−(αd23 + αd33)(1− p3∗,i) + (αd22 + αd32)p2∗,i}

+
{αd22(1− p2∗,i)− αd23p3∗,i}{αd23(1− p3∗,i)− αd22p2∗,i}

pw2∗,i

+
{αd32(1− p2∗,i)− αd33p3∗,i}{αd33(1− p3∗,i)− αd32p2∗,i}

pw3∗,i

]
p2∗,ip3∗,i

 1

X∗i


⊗2

,

A6 =
n∑
i=1

[
{(αd22 + αd32)p2∗,i − (αd23 + αd33)(1− p3∗,i)}2

pw1∗,i

+
{αd23(1− p3∗,i)− αd22p2∗,i}2

pw2∗,i
+
{αd33(1− p3∗,i)− αd32p2∗,i}2

pw3∗,i

]
p2

3∗,i

 1

X∗i


⊗2

,

B2 =
n∑
i=1

{
(αd22 + αd32)(1− p2∗,i)− (αd23 + αd33)p3∗,i

pw1∗,i
+
αd22(1− p2∗,i)− αd23p3∗,i

pw2∗,i

}

×


p1∗,ip2∗,i

p2
2∗,i

p3∗,ip2∗,i

 (1 X∗,Ti ),

B3 =
n∑
i=1

{
(αd23 + αd33)(1− p3∗,i)− (αd22 + αd32)p2∗,i

pw1∗,i
+
αd23(1− p3∗,i)− αd22p2∗,i

pw2∗,i

}
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×


p1∗,ip3∗,i

p2∗,ip3∗,i

p2
3∗,i

 (1 X∗,Ti ),

C2 =
n∑
i=1

{
(αd22 + αd32)(1− p2∗,i)− (αd23 + αd33)p3∗,i

pw1∗,i
+
αd32(1− p2∗,i)− αd33p3∗,i

pw3∗,i

}

×


p1∗,ip2∗,i

p2
2∗,i

p3∗,ip2∗,i

 (1 X∗,Ti ),

C3 =
n∑
i=1

{
(αd23 + αd33)(1− p3∗,i)− (αd22 + αd32)p2∗,i

pw1∗,i
+
αd33(1− p3∗,i)− αd32p2∗,i

pw3∗,i

}

×


p1∗,ip3∗,i

p2∗,ip3∗,i

p2
3∗,i

 (1 X∗,Ti ).

Note that when α31 = α32 = α33 and α21 = α22 = α23, the information matrix is

singular. Thus, θ is not a regular point for the information matrix. Now, assume

that the misclassification matrix is diagonally dominant. That means α11 > 0.5,

α22 > 0.5 and α33 > 0.5. Under this condition,

ψ(θ) =


-1 0 0 -1 0 0 0T 0T

0 1 0 0 0 0 0T 0T

0 0 0 0 0 1 0T 0T

 .

Observe that in the constrained space, θ is a regular point for I(θ) and ψ(θ). Now,
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the rank of V (θ) is dθ. Hence, the parameters are identifiable.

Both W and X have four categories: Define

pk∗,i ≡ pr(X = k|X∗i , Zi; γ) =
exp(γk0 + γTk1X

∗
i + γTk2Zi)

1 +
∑4

r=2 exp(γr0 + γTr1X
∗
i + γTr2Zi)

, k = 2, 3, 4

p1∗,i ≡ pr(X = 1|X∗i , Zi; γ) =
1

1 +
∑4

r=2 exp(γr0 + γTr1X
∗
i + γTr2Zi)

,

and the induced model for W given X∗ is

pwk∗,i ≡ pr(W = k|X∗i , Zi; θ) = αk1 + (αk2 − αk1)pr(X = 2|X∗i , Zi; γ)

+(αk3 − αk1)pr(X = 3|X∗i , Zi; γ)

+(αk4 − αk1)pr(X = 4|X∗i , Zi; γ),

for k = 2, . . . , 4, and pw1∗,i = 1 − pw2∗,i − pw3∗,i − pw4∗,i. Define αd22 = α22 − α21, αd23 =

α23 − α21, αd24 = α24 − α21, αd32 = α32 − α31, αd33 = α33 − α31, αd34 = α34 − α31,

αd42 = α42 − α41, αd43 = α43 − α41, and αd44 = α44 − α41. The information matrix I(θ)

can be partitioned as follows:

I(θ) =



A1 A2 A2 B1 B2 B3

AT2 A3 A2 C1 C2 C3

AT2 AT2 A4 D1 D2 D3

BT
1 CT

1 DT
1 A5 A6 A7

BT
2 CT

2 DT
2 AT6 A8 A9

BT
3 CT

3 DT
3 AT7 AT9 A10


,
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where

A1 =
n∑
i=1

(
1

pw1∗,i
+

1

pw2∗,i

)


p2
1∗,i p1∗,ip2∗,i p1∗,ip3∗,i p1∗,ip4∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i p2∗,ip4∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i p3∗,ip4∗,i

p1∗,ip4∗,i p2∗,ip4∗,i p3∗,ip4∗,i p2
4∗,i


,

A2 =
n∑
i=1

(
1

pw1∗,i

)


p2
1∗,i p1∗,ip2∗,i p1∗,ip3∗,i p1∗,ip4∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i p2∗,ip4∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i p3∗,ip4∗,i

p1∗,ip4∗,i p2∗,ip4∗,i p3∗,ip4∗,i p2
4∗,i


,

A3 =
n∑
i=1

(
1

pw1∗,i
+

1

pw3∗,i

)


p2
1∗,i p1∗,ip2∗,i p1∗,ip3∗,i p1∗,ip4∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i p2∗,ip4∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i p3∗,ip4∗,i

p1∗,ip4∗,i p2∗,ip4∗,i p3∗,ip4∗,i p2
4∗,i


,

A4 =
n∑
i=1

(
1

pw1∗,i
+

1

pw4∗,i

)


p2
1∗,i p1∗,ip2∗,i p1∗,ip3∗,i p1∗,ip4∗,i

p1∗,ip2∗,i p2
2∗,i p2∗,ip3∗,i p2∗,ip4∗,i

p1∗,ip3∗,i p2∗,ip3∗,i p2
3∗,i p3∗,ip4∗,i

p1∗,ip4∗,i p2∗,ip4∗,i p3∗,ip4∗,i p2
4∗,i


,

B1 =
n∑
i=1

[
1

pw1∗,i

{
(αd22 + αd32 + αd42)(1− p2∗,i)− (αd23 + αd33 + αd43)p3∗,i
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−(αd24 + αd34 + αd44)p4∗,i

}
+
αd22(1− p2∗,i)− αd23p3∗,i − αd24p4∗,i

pw2∗,i

]

×



p1∗,ip2∗,i

p2
2∗,i

p3∗,ip2∗,i

p4∗,ip2∗,i


(1 X∗,Ti ),

B2 =
n∑
i=1

[
1

pw1∗,i

{
(αd22 + αd32 + αd42)(1− p2∗,i)− (αd23 + αd33 + αd43)p3∗,i

−(αd24 + αd34 + αd44)p4∗,i

}
+
αd32(1− p2∗,i)− αd33p3∗,i − αd34p4∗,i

pw3∗,i

]

×



p1∗,ip3∗,i

p2∗,ip3∗,i

p2
3∗,i

p4∗,ip3∗,i


(1 X∗,Ti ),

B3 =
n∑
i=1

[{
1

pw1∗,i
(αd22 + αd32 + αd42)(1− p2∗,i)− (αd23 + αd33 + αd43)p3∗,i

−(αd24 + αd34 + αd44)p4∗,i +
αd42(1− p2∗,i)− αd43p3∗,i − αd44p4∗,i

pw4∗,i

}]

×



p1∗,ip4∗,i

p2∗,ip4∗,i

p3∗,ip4∗,i

p2
4∗,i


(1 X∗,Ti ),
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C1 =
n∑
i=1

[
1

pw1∗,i

{
−(αd22 + αd32 + αd42)p2∗,i + (αd23 + αd33 + αd43)(1− p3∗,i)

−(αd24 + αd34 + αd44)p4∗,i

}
+
−αd22p2∗,i + αd23(1− p3∗,i)− αd24p4∗,i

pw2∗,i

]

×



p1∗,ip2∗,i

p2
2∗,i

p3∗,ip2∗,i

p4∗,ip2∗,i


(1 X∗,Ti ),

C2 =
n∑
i=1

[
1

pw1∗,i

{
−(αd22 + αd32 + αd42)p2∗,i + (αd23 + αd33 + αd43)(1− p3∗,i)

−(αd24 + αd34 + αd44)p4∗,i

}
+
−αd32p2∗,i + αd33(1− p3∗,i)− αd34p4∗,i

pw3∗,i

]

×



p1∗,ip3∗,i

p2∗,ip3∗,i

p2
3∗,i

p4∗,ip3∗,i


(1 X∗,Ti ),

C3 =
n∑
i=1

[
1

pw1∗,i

{
−(αd22 + αd32 + αd42)p2∗,i + (αd23 + αd33 + αd43)(1− p3∗,i)

−(αd24 + αd34 + αd44)p4∗,i

}
+
−αd42p2∗,i + αd43(1− p3∗,i)− αd44p4∗,i

pw4∗,i

]

×



p1∗,ip4∗,i

p2∗,ip4∗,i

p3∗,ip4∗,i

p2
4∗,i


(1 X∗,Ti ),
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D1 =
n∑
i=1

[
1

pw1∗,i

{
−(αd22 + αd32 + αd42)p2∗,i − (αd23 + αd33 + αd43)p3∗,i

+(αd24 + αd34 + αd44)(1− p4∗,i)

}
+
−αd22p2∗,i − αd23p3∗,i + αd24(1− p4∗,i)

pw2∗,i

]

×



p1∗,ip2∗,i

p2
2∗,i

p3∗,ip2∗,i

p4∗,ip2∗,i


(1 X∗,Ti ),

D2 =
n∑
i=1

[
1

pw1∗,i

{
−(αd22 + αd32 + αd42)p2∗,i − (αd23 + αd33 + αd43)(1− p3∗,i)

+(αd24 + αd34 + αd44)(1− p4∗,i)

}
+
−αd32p2∗,i − αd33p3∗,i + αd34(1− p4∗,i)

pw3∗,i

]

×



p1∗,ip3∗,i

p2∗,ip3∗,i

p2
3∗,i

p4∗,ip3∗,i


(1 X∗,Ti ),

D3 =
n∑
i=1

[
1

pw1∗,i

{
−(αd22 + αd32 + αd42)p2∗,i − (αd23 + αd33 + αd43)p3∗,i

+(αd24 + αd34 + αd44)(1− p4∗,i)

}
+
−αd42p2∗,i − αd43p3∗,i + αd44(1− p4∗,i)

pw4∗,i

]

×



p1∗,ip4∗,i

p2∗,ip4∗,i

p3∗,ip4∗,i

p2
4∗,i


(1 X∗,Ti ),
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A5 =
n∑
i=1

[
1

pw1∗,i

{
− (αd22 + αd32 + αd42)(1− p2∗,i) + (αd23 + αd33 + αd43)p3∗,i

+(αd24 + αd34 + αd44)p4∗,i

}2

+
{αd22(1− p2∗,i)− αd23p3∗,i − αd24p4∗,i}2

pw2∗,i

+
{αd32(1− p2∗,i)− αd33p3∗,i − αd34p4∗,i}2

pw3∗,i

+
{αd42(1− p2∗,i)− αd43p3∗,i − αd44p4∗,i}2

pw4∗,i

]
p2

2∗,i

 1

X∗i


⊗2

,

A6 =
n∑
i=1

[
1

pw1∗,i

{
− (αd22 + αd32 + αd42)(1− p2∗,i) + (αd23 + αd33 + αd43)p3∗,i

+(αd24 + αd34 + αd44)p4∗,i

}
×
{

(αd22 + αd32 + αd42)p2∗,i − (αd23 + αd33 + αd43)(1− p3∗,i)

+(αd24 + αd34 + αd44)p4∗,i

}
+
{αd22(1− p2∗,i)− αd23p3∗,i − αd24p4∗,i}{−αd22p2∗,i + αd23(1− p3∗,i)− αd24p4∗,i}

pw2∗,i

+
{αd32(1− p2∗,i)− αd33p3∗,i − αd34p4∗,i}{−αd32p2∗,i + αd33(1− p3∗,i)− αd34p4∗,i}

pw3∗,i

+
{αd42(1− p2∗,i)− αd43p3∗,i − αd44p4∗,i}{−αd42p2∗,i + αd43(1− p3∗,i)− αd44p4∗,i}

pw4∗,i

]

×p2∗,ip3∗,i

 1

X∗i


⊗2

,

A7 =
n∑
i=1

[
1

pw1∗,i

{
− (αd22 + αd32 + αd42)(1− p2∗,i) + (αd23 + αd33 + αd43)p3∗,i
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+(αd24 + αd34 + αd44)p4∗,i

}
×
{

(αd22 + αd32 + αd42)p2∗,i + (αd23 + αd33 + αd43)p3∗,i

−(αd24 + αd34 + αd44)(1− p4∗,i)

}
+
{αd22(1− p2∗,i)− αd23p3∗,i − αd24p4∗,i}{−αd22p2∗,i − αd23p3∗,i + αd24(1− p4∗,i)}

pw2∗,i

+
{αd32(1− p2∗,i)− αd33p3∗,i − αd34p4∗,i}{−αd32p2∗,i − αd33p3∗,i + αd34(1− p4∗,i)}

pw3∗,i

+
{αd42(1− p2∗,i)− αd43p3∗,i − αd44p4∗,i}{−αd42p2∗,i − αd43p3∗,i + αd44(1− p4∗,i)}

pw4∗,i

]

×p2∗,ip4∗,i

 1

X∗i


⊗2

,

A8 =
n∑
i=1

[
1

pw1∗,i

{
(αd22 + αd32 + αd42)p2∗,i − (αd23 + αd33 + αd43)(1− p3∗,i)

+(αd24 + αd34 + αd44)p4∗,i

}2

+
{−αd22p2∗,i + αd23(1− p3∗,i)− αd24p4∗,i}2

pw2∗,i

+
{−αd32p2∗,i + αd33(1− p3∗,i)− αd34p4∗,i}2

pw3∗,i

+
{−αd42p2∗,i + αd43(1− p3∗,i)− αd44p4∗,i}2

pw4∗,i

]
p2

3∗,i

 1

X∗i


⊗2

,

A9 =
n∑
i=1

[
1

pw1∗,i

{
(αd22 + αd32 + αd42)p2∗,i − (αd23 + αd33 + αd43)(1− p3∗,i)

+(αd24 + αd34 + αd44)p4∗,i

}
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×
{

(αd22 + αd32 + αd42)p2∗,i + (αd23 + αd33 + αd43)p3∗,i

−(αd24 + αd34 + αd44)(1− p4∗,i)

}
+
{−αd22p2∗,i + αd23(1− p3∗,i)− αd24p4∗,i}{−αd22p2∗,i − αd23p3∗,i + αd24(1− p4∗,i)}

pw2∗,i

+
{−αd32p2∗,i + αd33(1− p3∗,i)− αd34p4∗,i}{−αd32p2∗,i − αd33p3∗,i + αd34(1− p4∗,i)}

pw3∗,i

+
{−αd42p2∗,i + αd43(1− p3∗,i)− αd44p4∗,i}{−αd42p2∗,i − αd43p3∗,i + αd44(1− p4∗,i)}

pw4∗,i

]

×p3∗,ip4∗,i

 1

X∗i


⊗2

,

A10 =
n∑
i=1

[
1

pw1∗,i

{
(αd22 + αd32 + αd42)p2∗,i + (αd23 + αd33 + αd43)p3∗,i

−(αd24 + αd34 + αd44)(1− p4∗,i)

}2

+
{−αd22p2∗,i − αd23p3∗,i + αd24(1− p4∗,i)}2

pw2∗,i

+
{−αd32p2∗,i − αd33p3∗,i + αd34(1− p4∗,i)}2

pw3∗,i

+
{−αd42p2∗,i − αd43p3∗,i + αd44(1− p4∗,i)}2

pw4∗,i

]
p2

4∗,i

 1

X∗i


⊗2

.

Note that when α41 = α42 = α43 = α44, α31 = α32 = α33 = α34, α21 = α22 =

α23 = α24, the information matrix is singular. Thus, θ is not a regular point for

the information matrix. Now, assume that the misclassification matrix is diagonally

dominant. That means α11 > 0.5, α22 > 0.5, α33 > 0.5, and α44 > 0.5. Under this
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condition,

ψ(θ) =



-1 0 0 0 -1 0 0 0 -1 0 0 0 0T 0T

0 1 0 0 0 0 0 0 0 0 0 0 0T 0T

0 0 0 0 0 0 1 0 0 0 0 0 0T 0T

0 0 0 0 0 0 0 0 0 0 0 1 0T 0T


.

Observe that in the constrained space, θ is a regular point for I(θ) and ψ(θ). Now,

the rank of V (θ) is dθ. Hence, the parameters are identifiable.

So, what I have proved is that θ is identifiable under the strictly diagonal dom-

inance constraint on the misclassification probability matrix. This has been proved

rigorously for the two categories, three categories, and four categories of X as well

for W . Now, let us revisit the definition of observational equivalence given in (3.4).

Clearly, two θ and θ∗ cannot be observationally equivalent under (C1). The question

remains: is it possible to find (θ, β) and (θ, β∗) that are observationally equivalent?

First, consider the case when both X and W have two categories. Note that (θ, β)

and (θ, β∗) are observationally equivalent implies

pr(Y = 1,W = 2|X∗, Z; θ, β) = pr(Y = 1,W = 2|X∗, Z; θ, β∗), (3.6)

for every X∗ and Z. Since,

pr(Y = 1,W = 2|X∗, Z; θ, β)

= pr(Y = 1|X = 1, X∗, Z; β)pr(W = 2|X = 1, X∗, Z, θ)

+{pr(Y = 1|X = 2, X∗, Z; β)pr(W = 2|X = 2, X∗, Z, θ)

−pr(Y = 1|X = 1, X∗, Z; β)pr(W = 2|X = 1, X∗, Z, θ)}pr(X = 2|X∗, Z; θ)
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= pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)

+{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)}pr(X = 2|X∗, Z; θ),

(3.6) implies that

0 = pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ)

+

[
{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)}

−{pr(Y = 1|X = 2, Z; β∗)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ)}
]

×pr(X = 2|X∗, Z; θ) (3.7)

for every X∗ and Z. Let us take two arbitrary values of X∗, X∗1 and X∗2 . Plugging

in these two values in (3.7) results in

0 = pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z; θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z; θ)

+

[
{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)}

−{pr(Y = 1|X = 2, Z; β∗)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ)}
]

×pr(X = 2|X∗1 , Z; θ) (3.8)
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and

0 = pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ)

+

[
{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)}

−{pr(Y = 1|X = 2, Z; β∗)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ)}
]

×pr(X = 2|X∗2 , Z; θ). (3.9)

Now, subtracting (3.8) from (3.9), I obtain

0 =

[
{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z; θ)}

−{pr(Y = 1|X = 2, Z; β∗)pr(W = 2|X = 2, Z; θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z; θ)}
]

×{pr(X = 2|X∗2 , Z; θ)− pr(X = 2|X∗1 , Z; θ)} (3.10)

for every Z. Now, {pr(X = 2|X∗2 , Z; θ) − pr(X = 2|X∗1 , Z; θ)} cannot be zero for

every Z and any two arbitrary choices X∗1 and X∗2 . Hence, (3.10) implies that

0 =

[
{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z; θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z; θ)}

−{pr(Y = 1|X = 2, Z; β∗)pr(W = 2|X = 2, Z; θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z; θ)}
]

(3.11)
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for every Z. So, (3.11) and (3.7) together imply that pr(Y = 1|X = 1, Z; β)pr(W =

2|X = 1, Z, θ) − pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ) = 0 for every Z.

Summing up the above arguments, I say (3.7) holds if the two equations

pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)

−pr(Y = 1|X = 1, Z; β∗)pr(W = 2|X = 1, Z, θ) = 0,

pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 2, Z; β∗)pr(W = 2|X = 2, Z, θ) = 0 (3.12)

hold for every Z. That means pr(Y = 1|X = 1, Z; β) = pr(Y = 1|X = 1, Z; β∗)

and pr(Y = 1|X = 2, Z; β) = pr(Y = 1|X = 2, Z; β∗) for every Z. But this cannot

hold because the model for Y given X and Z is identifiable. Hence, the assumption

that (θ, β) and (θ, β∗) are observationally equivalent cannot be true. It is seen that

for proving result (3.12) from (3.7) it is critical that X∗ is independent of 1) Y

conditional on X and Z and 2) W conditional on X.

Now, I generalize this idea for the case when both X and W have r categories.

In this case,

pr(Y = 1,W = 2|X∗, Z; θ, β)

= pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)

+{pr(Y = 1|X = 2, Z; β)pr(W = 2|X = 2, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)}pr(X = 2|X∗, Z; θ)

+ · · ·+ {pr(Y = 1|X = r, Z; β)pr(W = 2|X = r, Z, θ)

−pr(Y = 1|X = 1, Z; β)pr(W = 2|X = 1, Z, θ)}pr(X = r|X∗, Z; θ).

78



The observationally equivalent relation pr(Y = 1,W = 2|X∗, Z; θ, β) = pr(Y =

1,W = 2|X∗, Z; θ, β∗) implies

pr(Y = 1|X = j, Z; β)pr(W = 2|X = j, Z, θ)

−pr(Y = 1|X = j, Z; β∗)pr(W = 2|X = j, Z, θ) = 0,

for j = 1, . . . , r and every Z, that in turn implies pr(Y = 1|X = j, Z; β) − pr(Y =

1|X = j, Z; β∗) for j = 1, . . . , r and every Z. This is in contradiction with the

fact that the assumed model for Y given X and Z is identifiable. Hence, model

parameters (θ, β) are identifiable under constraint (C1).

3.3 Inference

3.3.1 Bayesian inference

To estimate the model parameters I used a Bayesian procedure. For a Bayesian

inference I need two important things, the likelihood of the data that stems from the

assumed probability models, and the prior distribution of the parameters. In order

to integrate the diagonal dominance constraint I write

αi,j =
0.5 exp(ηi,j)

1 +
∑

s 6=j exp(ηs,j)
, i 6= j, (3.13)

and

αi,i = 1−
∑
s 6=i

αs,i, i = 1, . . . , r. (3.14)

The η-parameters are in the real line. Define θt as θ with α-parameters replaced

by η’s. Now the likelihood of the parameter (θt, β) given the observed data D =
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{(Wi, X
∗
i , Yi, Zi), i = 1, . . . , n} is

L(θt, β) =
n∏
i=1

r∏
r′=1

[
{pr(Y = 0,W = r′|X∗i , Zi; θt, β)}1−Yi

×{pr(Y = 1,W = r′|X∗i , Zi; θt, β)}Yi
]I(Wi=r

′)

, (3.15)

where for s = 0 and 1

pr(Y = s,W = r′|X∗i , Zi; θt, β) =
∑
x

pr(Y = s|X = x, Zi; β)pr(W = r′|X = x; θt)

×pr(X = x|X∗i , Zi; θt).

The expression of pr(Y = s|X = x, Zi; β), pr(X = x|X∗i , Zi; θt), and pr(W = r′|X =

x; θt) are given in (3.1), (3.2), (3.3), respectively. Suppose that π(β) and π(θt) are

the prior distribution on the parameters β and θt, respectively. In the standard

Bayesian inference, Markov Chain Monte Carlo technique is applied, where each

parameter is sampled from its full conditional distribution. When this chain is for

a large number of times, the sampled values of the parameters can be considered

to be sample from the posterior distribution of the parameters. Then any statistic

of the posterior distributions can be estimated with sufficient accuracy. Although

this technique is widely used, the computation time is a big challenge, specially

when the conditional distributions are not the standard distribution from where

samples can be easily drawn. In our specific case, all the conditional distributions

are non-standard distributions. Sampling from them requires implementation of the

Metropolis-Hastings algorithm with a suitable proposal distribution.
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3.3.2 Automatic Differentiation Variational Inference (ADVI)

To avoid slow MCMC procedure one can apply the variational inference (VI)

procedure. Although the VI procedure is technically less accurate than the MCMC

based approach, it produces fast results. Particularly, in the VI inference, the poste-

rior distributed is approximated by a parametric model. First, a family of parametric

models is assumed to approximate the posterior distribution. Then its parameters

are estimated by minimizing the Kullback-Lieblier distance between the assumed

parametric model and the actual posterior distribution. Thus, the problem reduces

to an optimization problem. Though VI procedure is quite fast compared to the

MCMC based process, it requires model specific derivations and implementation

through computer coding. Therefore, I use the automatic differentiation VI method

of [38] that uses a scalable variational inference algorithms. Here is a brief description

of the ADVI.

First, I transform all the parameter θ, β into unconstrained real parameters, call

them ζ. Now, suppose π(ζ|D), the posterior distribution of ζ, will be approximated

by a parametric density fp(ζ;ϑ). Here ϑ denotes the set of parameters. Then the

task is to estimate ϑ by minimizing the Kullback-Liebler divergence between fp(ζ;ϑ)

and π(ζ|D). The Kullback-Liebler divergence between the two densities is

KL(fp(ζ;ϑ), π(ζ|D)) =

∫
log

{
fp(ζ;ϑ)

π(ζ|D)

}
fp(ζ;ϑ)dζ.

Let

ϑ∗ = argminϑKL(fp(ζ;ϑ), π(ζ|D)).
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Then

ϑ∗ = argminϑKL(fp(ζ;ϑ), π(ζ|D))

= argminϑKL(fp(ζ;ϑ), π(ζ)π(D|ζ))

= argmaxϑ

{
−KL(fp(ζ;ϑ), π(ζ)π(D|ζ))

}
= argmaxϑ

∫ [
log{π(ζ)}+ log{π(D|ζ)} − log{fp(ζ;ϑ)}

]
fp(ζ;ϑ)dζ

= argmaxϑ

(
Efp [log{π(ζ)}] + Efp [log{π(D|ζ)}]− Efp [log{fp(ζ;ϑ)}]

)
= argmaxϑ

(
Efp [log{π(D|ζ)}]−KL[log{fp(ζ;ϑ)}, π(ζ)]

)
.

Note that Efp [log{π(D|ζ)}] − KL[log{fp(ζ;ϑ)}, π(ζ)] is called the evidence lower

bound (ELBO). The first term Efp [log{π(D|ζ)}] is the expected log-likelihood with

respect to fp(ζ;ϑ), while the second term KL[log{fp(ζ;ϑ)}, π(ζ)] is the Kullback-

Leibler divergence between the approximating posterior and the prior distribution.

In the ADVI approach, the support of the latent variables is first automatically

transformed into the real coordinate space. Second, the ELBO is computed using

Monte Carlo (MC) integration, which only requires being able to sample from the

variational distribution. Third, stochastic gradient ascent is used to maximize the

ELBO and automatic differentiation is used to compute gradients without any user

input. Thus, I just need to input the model, parameters, and priors. Then one of the

following two approaches needs to be applied: 1) the mean-field approach, where the

posterior distribution of the transformed parameters assumed to follow independent

normal distributions, and 2) full-rank approach where the posterior distribution of

the transformed parameters are assumed to follow a multivariate normal distribution.

[37] has provided a STAN package to implement this procedure. In order to apply

ADVI, the main assumption is that the probability model is differentiable, which
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means that the probability model is a continuous and differentiable function of the

transformed variable ζ over the Euclidian space.

3.3.3 ADVI algorithm

Since the parameters in ζ has support on the real line, this means that trans-

forming the latent parameters is not required and hence I can skip the first step.

In the second step I assume the full rank Gaussian approximation, that means

fp(ζ;ϑ) ≡ MN(ζ;µ, LLT ), where L is a lower triangular matrix of real valued entries,

and MN stands for multivariate normal. Here ϑ is a vector containing µ and entries

of L. Note that µ and LLT represent the posterior mean and the variance-covariate

matrix of the joint posterior distribution of the transformed parameter vector ζ.

Next I apply the elliptical standardization to convert the variational factors to

standard normals using the transformation ξ = Sϑ(ζ) = L−1(ζ − µ). Hence the

solution to transformed objective function is now defined as

ϑ∗ = argmax
ϑ
L(ϑ) = argmax

ϕ
EMN(ξ;0,I)

[
log{p(D, S−1

ϑ (ξ))}
]
− E

fp(ζ ;ϑ)
[log{fp(ζ;ϑ)}],

where S−1
ϑ (ξ) = Lξ+µ = ζ. In our specific case, ζ = (βT , θTt )T and p(D, ζ) = L(θt, β)

given in (3.15).

Therefore, the gradients required for optimization are defined as

∇µL(θt, β) = EMN(ξ;0,I)

{
∇ζ log p(D, ζ)

}
,

∇LL(θt, β) = EMN(ξ;0,I)

{
∇ζ log p(D, ζ)

}
+ (L−1)T .

In particular, for each iteration of the algorithm, I apply the automatic differentiation

method to calculate the gradients ∇ζp(D, ζ) on the inside of the expectations, then
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use MC integration to approximate the expectation:

∇µL(θt, β) ≈ 1

S

S∑
s=1

∇ζ log p(D, ζ) (3.16)

∇LL(θt, β) ≈

(
1

S

S∑
s=1

∇ζ log p(D, ζ)

)
+ (L−1)T , (3.17)

where s = 1, . . . , S represents the sth sample drawn from the distribution ofMN(ξ; 0, I).

The algorithm is as follows:

Input: Dataset D = (X∗1:n,W1:n, Y1:n, Z1:n), model p(D, ζ)

• Set i = 1, µ(1) = θ̂ = (β̂, γ̂), and L(1) = I.

• Set ζ(1) ∼ N(0, 2).

• While ELBO(current)− ELBO(previous) > threshold.

– Draw M samples ζm ∼MN(0, I).

– Approximate ∇µL(θt, β) using Equation (3.16).

– Approximate ∇LL(θt, β) using Equation (3.17).

– Update µ(i+1) = µ(i) + diag(ρ(i))∇µL(θt, β), where ρ(i) is the step size

whose formula can be found in Kucukelbir et al. (2017).

– Update L(i+1) = L(i) + diag(ρ(i))∇LL(θt, β).

– Set i = i+ 1.

– end.

• Return µ∗ = µ(i).

• Return L∗ = L(i).
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The speed of the algorithm is dependent on the sample size and size of the

threshold used to determine convergence. I compared the performance of the ADVI

algorithm for estimating the model parameters with the Hamiltonian Monte Carlo

(HMC) algorithm, a traditional MCMC based Bayesian approach which is also imple-

mented in RStan. I consider the simulation setup of scenario S1 from 3.3 (detailed

in the simulation section). For the ADVI approach, I considered a converegence

threshold of 10−5. Because HMC is an MCMC method, I considered 100 and 1000

iterations per chain. As a metric of comparison, I used the average time in minutes

to complete ten replications of this scenario.

Table 3.1: Mean time (minutes) to complete 10 replications of Proposed Method
using ADVI and HMC
n: Sample Size, ADVI: Automatic Differentiation Variational Inference, HMC:

Hamiltonian Monte Carlo, Threshold: Stopping criterion for ADVI method,
Iteration: Number of iterations per chain

ADVI HMC
Threshold Iteration

n 10−5 100 1000
5000 24.47 27.51 151.66
10000 51.68 80.70 358.25

The results are shown in Table 3.1. The performance between the ADVI and

algorithms is similar when the number of iterations for HMC is small, however as

the number of iterations HMC is increased the time to complete ten replications

increases exponentially.
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3.4 Simulation

Simulation Design: In the simulation study I generated cohorts consisting of

n independent observations. The cohort consisted of n iid copies of (X∗,W, Y, Z).

In all scenarios, Z was simulated from uniform(−1, 1), and Y was a binary 0-1

response variable. In the first scenario a binary 0-1 instrumentX∗ was generated from

Bernoulli(0.55), and X was generated with success probability pr(X = 2|X∗, Z; γ) =

1−pr(X = 1|X∗, Z; γ) = H(γ1 +γ2X
∗+ 0.3Z), with γ1 = −1 and γ2 = 1 so that the

marginal success probability of pr(X = 2) was 0.4 and subsequently pr(X = 1) = 0.6.

I considered this situation as one where X∗ is mildly associated with the true X and

refer to this as MA. I also considered a situation where X∗ is strongly associated

with X through the model pr(X = 2|X∗) by setting γ2 = 2, and it is referred to as

SA. The misclassified variable W was generated as follows:

W =

 2 if B × I(X = 2) +B∗ × {1− I(X = 2)} = 1,

1 otherwise,

with B ∼ Bernoulli(1− α22) and B∗ ∼ Bernoulli(1− α11).

Here I considered two levels of misclassification: (1) α12 = α21 = 0.2 and (2)

α12 = α21 = 0.05. Under the setup where α12 = α21 = 0.2, the marginal probability

of W = 2 was 44%. Finally, I considered a binary response variable Y which was

generated with the success probability

pr(Y = 1|X,Z; β) = H{β0 + βx,2I(X = 2) + βzZ}.

with βz = 0.5. I set β0 = −2 and βx,2 = 1 so that marginally pr(Y = 1) = 0.21. For

this scenario I considered sample sizes of n = 2000 and n = 5000.
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In scenario II, I considered W and X as categorical variables with 3 categories.

There were three versions of scenario II; scenario IIa is the one in which there is one

instrument, while in scenarios IIb and IIc, I considered two instrumental variables.

In scenario IIb, both instruments were strongly associated with X while in scenario

IIc both instruments were moderately associated with X.

In scenario IIa, the probability for the jth category of X was modeled as

pr(X = j|X∗, Z; γ) =
exp{γj1 + γj2I(X∗i = 1) + γj3Z}

1 +
∑3

j=2 exp{(γj1 + γj2I(X∗i = 1) + γj3Z}
,

with j = 2, 3 and where γ21 = 0.25, γ22 = 2, γ23 = 0.3, γ31 = 0.5, γ32 = 2.5, γ33 =

−0.3, and X∗ ∼ Bernoulli(0.55). In scenario IIb, the probability for the jth category

of X was modeled as

pr(X = j|X∗, Z; γ) =
exp{γj1 + γj2I(X∗1i = 2) + γj3Z + γj4X

∗
i2}

1 +
∑3

j=2 exp{(γj1 + γj2I(X∗1i = 2) + γj3Z + γj4X∗i2}
,

with j ∈ (2, 3) and where γ21 = 0.25, γ22 = 2, γ23 = 0.3, γ24 = 1, γ31 = 0.5, γ32 =

2.5, γ33 = −0.3, γ34 = −1, X∗1 ∼ Bernoulli(0.55) and X∗2 ∼ Uniform(−1, 1).

Finally, in scenario IIc the probability model for the jth category of X was

modeled is the same as in scenario IIb, however I took γ22 = 0.7 and γ32 = 1.

In scenarios IIa, IIb, IIc, I calculated pr(X = 1|X∗, Z; γ) = 1−pr(X = 2|X∗, Z; γ)−

pr(X = 3|X∗, Z; γ).

I then generatedX from Multinomial(pr(X = 1|X∗, Z), pr(X = 2|X∗, Z; γ), pr(X =

3|X∗, Z; γ)).

87



The misclassification matrix for the tri-category X and W case was

α =


α11 α12 α13

α21 α22 α23

α31 α32 α33

 ,

where the misclassification probabilities were set as α21 = 0.025, α31 = 0.015, α11 =

0.96, α22 = 0.85, α32 = 0.05, α12 = 0.10, α23 = 0.1, α33 = 0.70, α13 = 0.2. Then to

generate W , I sampled ηw from uniform(0, 1) and then set

W =


1, if 0 < ηW < pr(W = 1|X = j),

2, if pr(W = 1|X = j) ≤ ηW < pr(W ≤ 2|X = j),

3, if pr(W ≤ 2|X = j) ≤ ηW ,

where pr(W ≤ i|X = j) =
∑i

w=1 pr(W = w|X = j) represents the cumulative

probability. Finally, I generated Y as a binary variable with the success probability

pr(Y = 1|X,Z) = H(β0 + βx,2I(X = 2) + βx,3I(X = 3) + β2Z), with β0 = −2, β1 =

1, β2 = 0.7, β3 = 0.5.

I considered sample sizes of n = 5000 and n = 10000. For Table IIc, I also

considered an additional sample size of n = 20000.

Finally, I considered a simulation, referred to as scenario III, in which I mim-

icked the black women group of the breast cancer data set analyzed in Section 3.5.

Demographic information summarizing this subgroup can be found there.

The instrumental variable X∗, was simulated from the three category multinomial

distribution with pr(X∗ = 1) = 0.74, pr(X∗ = 2) = 0.22, and pr(X∗ = 3) =

0.04. There were two binary prognostic factors, Z1 and Z2, simulated from Bernoulli
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distribution with success probabilities pr(Z1 = 1) = 0.23 and pr(Z2 = 1) = 0.31.

The model for the true exposure X for the jth category was

pr(X = j|X∗; γ) =
exp{γj1 + γj2I(X∗1i = 2) + γj3X

∗
i2 + γj4Z1 + γj5Z2}

1 +
∑3

j=2 exp{γj1 + γj2I(X∗1i = 2) + γj3X∗i2 + γj4Z1 + γj5Z2}
,

with j = 2, 3 and I set γ21 = 0.47, γ22 = 0.80, γ23 = 0.36, γ24 = −0.99, γ25 =

−2.00, γ31 = −0.09, γ32 = −4.12, γ33 = 0.87, γ34 = −0.45, γ35 = 1.75. The pa-

rameters were the corresponding estimates from the data on black women using the

proposed method (case 2).

To generate the misclassified exposure W , I considered the estimated misclassifi-

cation matrix from the data using the method of case 2:

α =


0.683 0.001 0.066

0.221 0.500 0.270

0.096 0.499 0.664

 ,

with the elements of the matrix corresponding to pr(W = i|X = j) for the ith row

and j column. For a given level of X that specifies the column of α, W was generated

by the multinomial distribution with the corresponding column probabilities. Finally,

Y was generated as a binary variable with pr(Y = 1|X,Z; β) = H(β0 + β1I(X2 =

1) + β2I(X3 = 1) + β3Z1 − β4Z2), with β0 = 1.13, β1 = 0, β2 = 1.98, β3 = −0.5, β4 =

−2.07. Here I considered the sample size of n = 10000. Like the previous scenarios,

I considered two versions of the prior standard deviations: (S1) σ = 2, (S2) σ = 5.

Method of Analysis: Each data set was analyzed using three methods. First,

assuming the true X is observed, I fitted a logistic model to Y with X and Z as the

regressor variables, and refer to this method as M1. This is a purely a hypotheti-

cal method, because other than the simulation setting the true X is never known.
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However, this hypothetical method is included for the sake of comparison. Second, I

regressed Y on W and Z in a logistic model, this is referred to as method M2. Note

that M2 is the naive method. Third, I considered the proposed method and refer to

it as M3. Under all scenarios, I used 200 replications. For methods M1, M2, and M3,

I used the ADVI technique with full rank approximation using the program RStan.

Under M1 and M2, the priors for the parameters were all set as Normal(0, 22).

For the proposed method M3, I used the naive estimates as the prior means for

the β-parameters. Also, the regression coefficients for the model of W on X∗ and Z

were used as the prior means for the γ parameters. For the η-parameters prior means

were set to zero. For the prior standard deviations, I considered two situations: S1)

σ = 2 and S2) σ = 5.

For every data set I recorded the posterior mean and standard deviation for

each parameter. Then I summarized these results by calculating the median of the

posterior means and the median of the posterior standard deviations for each of these

parameters. I reported the 95% credible intervals and the median length of the 95%

credible intervals for each parameter. Finally, I report the mean square error for

each parameter. Finally, I set the threshold of convergence for the ADVI algorithm

to 10−5.
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Results: Table 3.2 contains the results for Scenario I. Under M1, the bias of

the posterior mean for the parameter is negligible for different sample sizes, and

the posterior standard deviation decreased with the sample size. Under M2, the

estimates tend to be biased regardless of the sample size. For M3, within a fixed

sample size, the bias of the estimate and the variance decreased as the strength of

association between the instrument γ2 and the true X increased. Subsequently, the

size of the credible intervals also decreased. However, the greatest impact of the

change in bias and variance is observed when the level of misclassification is reduced.

When considering the effect of an increasing sample size, particularly from n = 2000

to n = 5000, it is evident that the posterior standard deviations decrease in half for

a fixed level of association between the instrument. Also, the bias of M3 decreases

with the sample size.
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The results for scenario IIa are given in Table 3.3. For all sample sizes, I find

that my approach performs better than using the naive estimator in terms of bias

reduction. The advantage of M3 is clearly seen as the sample size increases. The

results for M3 show that the estimator for the regression coefficient for Z is biased,

and the bias seems to decrease with the sample size. It is evident that the MSE is

slightly smaller under S1 when the prior σ = 2.

The results for scenario IIb are given in Table 3.4. As in scenario IIa, there are

similar results - M3 performs better than M2 in terms of bias reduction especially as

the sample size increases. Moreover, the inclusion of the second instrument appears

to reduce the bias greatly, particularly for βx,3.

The results for scenario IIc are given in Table 3.5. When the instruments are

moderately associated with X, M3 performs better than M2 in terms of bias and

MSE when the sample size is increased.
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Finally, I discuss the results of the real data based simulation study, which can

be found in Table 3.6. It can be seen that naive method severely underestimates βx,2

and βx,3. The proposed method produces lower MSE than the naive method, though

not as small as using the true X. However, based on the previous simulations, the

MSE would further decrease if the sample size increases. Also, the results seem to be

not sensitive to the prior standard deviations that were considered in the simulation

study.
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3.5 Real Data Analysis

For the purpose of illustrating our methodology, I applied the methods to analyze

the data from the Surveillance, Epidemiology, and End Result (SEER) database

provided by the National Cancer Institute [34]. SEER contains information on all

cancer incidences starting in 1973 from different cancer registries located in eighteen

different states throughout the United States. I restricted the analysis to breast

cancer data based on the SEER data, 1975-2016.

The goal is to find association between the 5-year survival and the treatment

therapy after adjusting the effect of the age of diagnosis and the stage of the disease.

For the purpose of analysis I considered only female subjects that were diagnosed

with the breast cancer disease with stages II and III during 2007, 2008, 2009 and 2010.

The reason for excluding subjects who were diagnosed prior to 2007 is due to the

unavailability of insurance information from previous years. I do not consider other

stages because there is not much of variations in the treatment therapy. The response

Y is defined as 0 or 1 if a subject dies before 5 years or survives 5 years or more.

I considered only two racial groups, black and white, which includes hispanic black

and hispanic white. This is based on the variable number 2: Race recode (White,

Black, Other) in the SEER database. Summary information about the demographics

of the two groups can be found in Table 3.7. I included female patients with only one

reported tumor, using the variable numbers 149: Sequence number and 150: First

malignant primary indicator.

The treatment therapy is considered to be the main exposure variable X. I con-

sidered only surgical treatment, surgical treatment and chemotherapy, and a com-

bination of surgical treatment, chemotherapy and radiation treatment, as the three

treatment options. [2] suggested that these type of treatments are the most common
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for stage II cancer, therefore I focused only on these options. The reported treatment

therapy in SEER is considered to be misclassified [50], and according to my notation

it is W . The dichotomized age of diagnosis 1 (≥ 65 years) or 0 (< 65 years), and

dichotomized stage variable 1 (stage III) and 0 (stage II) were used as two prog-

nostic factors, and they were denoted by Z = (Z1, Z2)T . I excluded subjects whose

age of diagnosis was less than 35 years. I took a three category insurance status as

the instrument X∗, from the variable based on the variable field number 201: In-

surance Recode (2007+). The basis for using the insurance status as an instrument

comes from different sources. For example, [12] found that medicaid status was as-

sociated with late stage diagnosis and treatment utilization, [22] found lower use of

chemotherapy receipt for those on medicare aged 65 and up, and finally [13] found a

non-zero association between insurance type and receipt of surgical treatment. The

categories of X∗ are insured/insured no specifics, any medicaid, and not insured.

After all the exclusions, there were 43,453 and white and 7,069 black women left in

the two datasets, respectively.

I took the following model for the response Y

pr(Y = 1|X,Z; β) = H{β0 + βx,2I(X = 2) + βx,3I(X = 3) + βz,1Z1 + βz,2Z2},

where βx,2 and βx,3 are the log-odds ratio parameter when the therapy is surgical

treatment and chemotherapy and a combination of surgical treatment, chemotherapy

and radiation treatment, respectively. Here, only surgical treatment was considered

as the reference category. Also, βz,1 is the effect of age greater than equal to 65

years while less than 65 years is considered as the reference category. Finally, βz,2 is

the effect (regression parameter) corresponding to stage III with reference to stage

II. Once again, the goal is statistical inference of these parameters. Unlike the
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Table 3.7: Summary statistics of black and white women in SEER cohort that were
analyzed.

Variable Category Black White
Response (Y ) Survival ≥ 5 years 72% 78%
Misclassified Treatment (W ) Surgical Only 23% 27%

Surgical and Chemotherapy 31% 29%
Surgical, Chemotherapy, and Radiation Therapy 46% 44%

Insurance Status (X∗) Insured/Insured No Specifics 74% 86%
Any Medicaid 22% 12%
Not Insured 4% 2%

Age (Z1) < 65 77% 71%
≥ 65 23% 29%

Stage of cancer (Z2) Stage II 69% 73%
Stage III 31% 27%

Age (Actual data) Minimum 35 35
25% Percentile 47 48
Median 54 57
75% Percentile 64 67
Max 103 107

simulation study, the true X is not observed. So, first I analyzed the data using

the naive method by regressing Y on W and Z using the ADVI method of Bayesian

inference. I refer to this approach as M2, and set the priors for all components of

β as Normal(0, 22). Second, I analyzed the data using the proposed method and

refer to it as M3. For the proposed method, I used three different sets of prior

distributions. In the first case, the priors for all components of ζ = (βT , γT , ηT )T

were set to Normal(0, 22). In the second case, the priors for all components of ζ

were now set to Normal(0, 52). Finally, in case 3, I gathered prior information from

previous work. [50] looked at the radiation and chemotherapy information from the

SEER database and validated it with the medicare claim data. They found, for

chemotherapy pr(CR = 0|CT = 1) = 0.017 and pr(CR = 1|CT = 0) = 0.32, and for

radiation therapy, pr(RR = 0|RT = 1) = 0.18 and pr(RR = 1|RT = 0) = 0.03, where

CR, RR, SR denote reported status of chemotherapy, radiation and surgery, while
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CT , RT , ST denote the true status of chemotherapy, radiation and surgery. Also, 0

and 1 stand for no and yes, respectively. Following [14], I set the misclassification

probability for surgery, pr(SR = 0|ST = 1) = pr(SR = 1|ST = 0) = 0.2. Under

the conditional independence assumption, I calculated pr(SR = s1, CR = s2, RR =

s3|ST = s4, CT = s5, RT = s6) = pr(SR = s1|ST = s4)pr(CR = s2|CT = s5)pr(RR =

s3|RT = s6). The above prior probabilities helped to compute the following prior

misclassification probability table:

(ST , CT , RT )

(SR, CR, RR) (1,0,0) (1,1,0) (1,1,1)

(1,0,0) 0.53 0.01 0.00

(1,1,0) 0.25 0.76 0.14

(1,1,1) 0.01 0.02 0.64

The (1, 1)th entry of the above table is pr(SR = 1, CR = 0, RR = 0|ST = 1, CT =

0, RT = 0) = pr(SR = 1|ST = 1)pr(CR = 0|CT = 0)pr(RR = 0|RT = 0) = 0.8×0.68×

0.97 = 0.53, the (2, 2)th entry is pr(SR = 1, CR = 1, RR = 0|ST = 1, CT = 1, RT =

0) = pr(SR = 1|ST = 1)pr(CR = 1|CT = 1)pr(RR = 0|RT = 0) = 0.8×0.983×0.97 =

0.76 and the (3, 3)th entry is pr(SR = 1, CR = 1, RR = 1|ST = 1, CT = 1, RT = 1) =

pr(SR = 1|ST = 1)pr(CR = 1|CT = 1)pr(RR = 0|RT = 1) = 0.8×0.983×0.82 = 0.64.

The other entries were obtained in the similar way. However, before using this

approach I had to standardize the table since the elements in each column do not

add to 1. This was done by dividing each element of a column by its column sum. For

example, the sum of the first column is equal to 0.79, so dividing the first element in

the first column by 0.79 leads to the new standardize estimate of 0.67. This approach

lead to the following misclassification probability matrix found in Table 3.8.
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Table 3.8: Modeling misclassifications for the treatment types
(ST , CT , RT )

(SR, CR, RR) (1,0,0) (1,1,0) (1,1,1)
(1,0,0) 0.67 0.02 0.00
(1,1,0) 0.32 0.95 0.18
(1,1,1) 0.01 0.03 0.82

Now, with this standardized misclassification probability matrix in hand, I solved

the η-parameters of (3.13) and (3.14) where αi,j’s are the (i, j)th entry of the above

misclassification matrix. I took these solutions of η as the mean of the normal

prior of the η-parameters, and used 2 as the standard deviation. This prior for

the η parameters was used for both the black and white women analysis. For the

β-parameters, I used the naive estimate of β as the mean of the normal prior and

the prior standard deviation was set to 2. Similarly for the γ-parameters, I used

naive estimates of γ from regressing W on X∗ and Z as the mean of a normal prior

distribution with the prior standard deviation set to 2.

Results: The results can be found in Table 3.9. For each method, I present the

posterior mean, standard deviation and the 95% credible interval. For both white

and black women, M2 and M3 indicate statistically significant effects (association) of

the third treatment category (having surgical, chemotherapy, and radiation therapy)

when compared to just surgery alone on the 5-year survival. However, the effect of

treatment improves the chances of survival for white women more than black women.

For the white women group, treatment categories 2 and 3 seem to show statistically

significant association with the survival when compared with the reference category

1.

In the naive approach, the odds ratio of survival for surgical therapy and chemother-

apy for black women is exp(0.37) = 1.45 while for white women this is exp(0.55) =
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Table 3.9: Analysis of the SEER data.
The upper panel is for black and the lower panel is for white women. Cases 1, 2,
3 correspond to three different sets of prior. The prior for the naive method was
similar to that of case 1. M2: Naive, M3: proposed method, PM: posterior mean;
CI: 95% credible interval

M2 M3
Case 1 Case 2 Case 3

β0 PM 1.14 1.10 1.13 1.10
CI (1.00, 1.28) (0.86, 1.34) (0.90, 1.35) (0.86, 1.33)

βx,2 PM 0.37 −0.14 −0.20 −0.13
CI (0.20, 0.53) (−0.51, 0.24) (−0.58, 0.17) (−0.50, 0.25)

βx,3 PM 0.68 1.93 1.98 1.88
CI (0.52, 0.84) (1.39, 2.48) (1.40, 2.57) (1.33, 2.44)

βz,1 PM −0.52 −0.49 −0.53 −0.49
CI (−0.65,−0.38) (−0.73,−0.24) (−0.77,−0.29) (−0.73,−0.25)

βz,2 PM −1.21 −2.03 −2.07 −1.98
CI (−1.33,−1.08) (−2.42,−1.63) (−2.49,−1.65) (−2.38,−1.59)

β0 PM 1.33 0.89 0.68 0.61
CI (1.27, 1.39) (0.72, 1.06) (0.55, 0.80) (0.45, 0.77)

βx,2 PM 0.55 0.75 1.01 1.16
CI (0.48, 0.62) (0.56, 0.95) (0.85, 1.17) (0.96, 1.37)

βx,3 PM 0.83 1.92 1.75 1.70
CI (0.76, 0.89) (1.66, 2.18) (1.58, 1.92) (1.53, 1.87)

βz,1 PM −0.64 −0.34 −0.27 −0.21
CI (−0.70,−0.59) (−0.45,−0.23) (−0.36,−0.19) (−0.34,−0.07)

βz,2 PM −0.93 −1.47 −1.20 −1.13
CI (−0.98,−0.87) (−1.69,−1.25) (−1.33,−1.07) (−1.23,−1.02)

1.73, which corresponds to a 45% and 73% increase in the odds of 5-year survival

for black women and white women, respectively, compared with the only surgical

groups. The odds ratio of survival for having surgery, chemotherapy, and radiation

therapy to the only surgery group for black women is exp(0.68) = 1.97 while that for

white women group is exp(0.83) = 2.29. These represent a 97% and 129% increase

in the odds of 5-year survival for the black women and white women, respectively.

One thing to note is that for white women, both M2 and M3 show that increasing

the variety of treatment improves the chances of 5-year survival, since β̂x,3 > β̂x,2.

However, for black women, this does not appear to be the situation for M3, cases 1,

2 and 3.
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Because I used a Bayesian approach for model estimation, I determined the best

models for the black and white women by estimating Bayes factors using the bridge-

sampling package. For black women, the Bayes factor for Case 1 vs Case 3 was

< 0.01, while the Bayes factor for Case 2 vs Case 3 was > 100. For white women,

the Bayes factor for Case 1 vs Case 3 was 6, while the Bayes factor for Case 2 vs

Case 3 was > 100. I concluded that Case 2 was the preferred model under the white

and black women analysis.

When compared to the naive approach, the proposed method indicates that hav-

ing more types of treatment has a very profound impact on survival. Under case

2 for black women, the odds ratio of survival when undergoing all three treatments

is exp(1.98) = 7.24, indicating a 624% increase in the odds of 5-year survival com-

pared to that having surgery alone. In case 3 for white women, this is odds ratio is

exp(1.75) = 5.52.

Additionally, for both white and black women, both Z1 and Z2 have statistically

significant effect on the survival probability in M3 (case 2). Overall the effect of

having Stage III cancer has a more severe impact on black women’s survival than

white. For example in case 2, black women have an exp(−2.07) = 0.13 odds ratio

when they have Stage III cancer, whereas for white women it is exp(−1.20) = 0.30.

In words, for black women, the odds of survival decreases by 87% for stage II to

stage III, while for the white women group that decrease is about 70%.

Finally, I point out some limitations of this analysis. First, X∗ should not have

any influence on Y givenX, if there is any association it will cause bias. However, this

assumption is difficult to verify since X is never observed. Second, misclassification

probabilities should not depend on the instrumental variable, but once again, in the

absence of true X this is difficult to verify.
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3.6 Discussion

In this work, I provided conditions for identification when the exposure is mis-

classified using a fast Bayesian computational algorithm. Though parameter identi-

fication for misclassified exposure has been considered in a nonparametric setup, to

the best of our knowledge no one has considered the parametric setup with the logis-

tic model which is widely used in epidemiological studies. The proposed estimation

strategy is novel in the epidemiological context, and this fast computational algo-

rithm can be applied to a large dataset. The simulation results are quite encouraging

showing the effectiveness of the proposed approach in hugely reducing bias that is

seen in the naive method. Finally I used this method to analyze the SEER data.

One limitation of the method is that I assume that the misclassification proba-

bilities do not depend on covariate Z and the response Y . In future, I will consider

relaxing this assumption which is not a trivial extension of this current work. Fur-

thermore, I will check if my identification result holds for any parametric model, or

a class of parametric models that possesses any specific characteristic.
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4. FUTURE WORK

In both chapters 2 and 3, I considered non-differential misclassification of the

exposure variable. However, differential misclassification can occur in epidemiological

studies [21] . Therefore, in future I will develop methods that can allow differential

misclassification of the exposure variable. This new methodology will depend on

the observable variables in the study, and consequently I will examine what things

are identifiable from the observable data. Secondly, throughout this dissertation the

misclassification probabilities are assumed to be independent of the other covariates

(prognostic factors) and the instrumental variable conditional on the true covariate.

In my future research I will study in what extent these assumptions can be relaxed.

The proposed methods in this dissertation do not require any validation data

that is often difficult to obtain. Rather the proposed methods make use of the

instrumental variables to learn the misclassification probabilities and consequently

the disease-exposure association. Although, it is a big jump in terms of relaxing the

requirements, finding a good/strong instrument is often a difficult task. Also, there

are certain assumptions that need to be satisfied by instrumental variables, but these

set of assumptions are not easy to verify when the true value of the exposure variable

is never known, not even for a subset of the data. Thus, part of my future research is

to study the possibility of reducing the misclassification bias without requiring any

validation data or instrumental variables [10].

Another direction of my future research includes the use of these bias reduction

methods into mediation analysis models. The purpose of mediation analysis is to

study the direct effect of a treatment or exposure on a response, and the indirect

effect of a treatment or exposure through some mediating variable. A good review
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of mediation analysis is provided by [61], who explains how mediation analysis can

be used as a tool for causal inference using the language of the potential outcome

framework. This frame posits that under a binary treatment regime, subjects will

have two potential outcomes for each treatment but due to the nature of the study

only one of those outcomes will be realized or observed. In order to make causal in-

ferences from an observational study, one has to make certain assumptions about the

study, such as unmeasured confounders assumption, the exchangeability assumption,

and consistency, and the details can be found in [58].

The typical cause of concern in mediation analysis are biases induced by con-

founding variables which may or may not be observed, and so there are verifiable

and unverifiable assumptions to validate this issue. However, misclassification or

mismeasured mediators are also a cause of concern. [62] provided some analytical re-

sults of the effect of mismeasured or misclassified mediators in a mediation analysis.

[4] conducted simulations on the effect of misclassified mediators and misclassified

exposure and demonstrated that misclassified mediators has a greater influence on

biasing indirect effects estimates than a misclassified exposure. In future, I will de-

velop the bias reduction methods to a mediation model where the mediator is a

binary or categorical variable.
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5. SUMMARY

Addressing bias in analysis of observational data due to misclassified exposure

variables is studied in this dissertation from two aspects. I first consider this issue

in the matched case control setting, using instrumental variables in two proposed

methods to adjust for misclassification in a binary exposure. Second, I consider a

more general setting, detailing sufficient conditions for identification for a general

categorical exposure, and implementing a novel bayesian algorithm for estimation.

The major progresses of this dissertation are summarized as follows:

In the second chapter two consistent methods for bias reduction when estimat-

ing the association parameters in a matched case-control study were proposed. The

novelty of the methods are the application of instrumental variables to obtain the

measurement uncertainty when there is no validation data. Although the use of

instrumental variable to reduce bias in when the binary exposure variable is mis-

classified is not new, adopting this general idea in the matched case-control studies

is indeed new. The methodology is accompanied with an uncertainty measure, and

contains a theoretical justification of the large sample properties. The simulation

studies provide insight on the proposed method’s performance. In particular, the

simulation results indicate satisfactory performance of the proposed methods when

there is a large sample size, strong association between the true exposure and the

instruments, and moderate misclassification probabilities.

In the third chapter, I demonstrated the effect of a misclassified multicategory

exposure/covariate on a binary regression model. It is shown that under some con-

straints on the misclassification probability matrix, the model parameters are iden-

tifiable. Additionally, the real data example and simulations demonstrate how using
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instrumental variables aids in reducing the bias from the misclassified covariate. Es-

timation of these parameters utilizes the recently developed ADVI method, which

is implemented in the Stan language. This computational method avoids time con-

suming MCMC method, and uses an optimization technique to do a fast Bayesian

inference for large datasets. The simulation results show that larger sample sizes

are required for bias reduction when there are more categories in the misclassified

exposure. Finally, further bias reduction is possible by incorporating more accurate

prior knowledge on the parameters.
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APPENDIX A

PROOF OF THEORETICAL RESULTS1

A.1 Identification of the parameters of the model

pr(W = 1|S,X∗, Y = 0,Z)

The identification comes from the assumed non-linear structure for pr(X =

1|S,X∗, Y = 0,Z). Had pr(X = 1|S,X∗, Y = 0,Z) been linear, the parame-

ters would not be identifiable. In short I write H(γ0 + γT1S + γT2X
∗ + γT3Z) as

H(γ,S,X∗,Z). In our case H(·) is the logistic function, which is nonlinear.

To see the identifiability issue, I need to show that for every given parameter

set (γ, α0, α1) if another parameter set (γ∗, α∗0, α
∗
1) satisfies pr(W = 1|S,X∗, Y =

0,Z;α0, α1,γ) = pr(W = 1|S,X∗, Y = 0,Z;α∗0, α
∗
1,γ

∗) for every choice of S, X∗

and Z, then (γ∗, α∗0, α
∗
1) = (γ, α0, α1). To see this, by Equation (3.3) I start with

α0 + (1− α0 − α1)H(γ,S,X∗,Z) = α∗0 + (1− α∗0 − α∗1)H(γ∗,S,X∗,Z) (A.1)

for every choice of (ST ,X∗,T ,Z∗,T )T . Let γ∗ = −γ, α∗0 = 1 − α1 and α∗1 = 1 − α0.

Then H(γ∗,S,X∗,Z) = H(−γ,S,X∗,Z) = 1−H(γ,S,X∗,Z) and

α∗0 + (1− α∗0 − α∗1)H(γ∗,S,X∗,Z) = (1− α1) + (1− 1 + α1 − 1 + α0)

×H(−γ,S,X∗,Z)

= (1− α1) + (−1 + α0 + α1)

×{1−H(γ,S,X∗,Z)}
1Portions of this work reprinted with permission from Manuel, C.M. and Wang, S. and Sinha, S.,

”Matched Case-Control Data with a Misclassified Exposure: What can be done with Instrumental
Variables?”, Biostatistics, 2019, kxz012, by permission of Oxford University Press
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= (1− α1) + (−1 + α0 + α1)

−(−1 + α0 + α1)H(γ,S,X∗,Z)

= α0 + (1− α0 − α1)H(γ,S,X∗,Z).

On the other hand, under the monotonicity restriction α0 + α1 < 1, if α∗1 = 1 − α0

and α∗0 = 1− α1, then α∗0 + α∗1 = (1− α1 + 1− α0) = 1 + (1− α0 − α1) > 1. Hence,

this particular choice of α∗0, α
∗
1 does not satisfy the restriction, and is not a cause of

concern anymore.

Finally, I check if there is any other choice of (α∗0, α
∗
1,γ

∗) that satisfies (A.1).

Suppose that there exists (α∗0, α
∗
1,γ

∗) that satisfies (A.1) for every choice of S, X∗

and Z. This implies that for every (Sk,X
∗
k,Zk), k = 1, 2, . . . ,

α∗0 + (1− α∗0 − α∗1)H(γ∗,Sk,X
∗
k,Zk) = α0 + (1− α0 − α1)H(γ,Sk,X

∗
k,Zk).

Since 1 − α∗0 − α∗1 > 0 and 1 − α0 − α1 > 0, it is readily seen that each element of

(γ∗1,γ
∗
2) must have the same sign as the corresponding element of (γ1,γ2). By letting

T = γ0 +γT1S+γT2X
∗+γT3Z → −∞ (and then T ∗ = γ∗0 +γ∗T1 S+γ∗T2 X

∗+γT3Z →

−∞ also), it is clear that α∗0 = α0. Likewise, due to the nonlinearity of H(·),

α∗1 = α1. This leads to T ∗ = T and thus γ∗ = γ, showing the identifiability of these

parameters.

A.2 Proof of Lemma 1

Because of the logistic model assumption and the assumption on W and X∗, I

can write

1− pr(Y = 0|S,W,X,X∗,Z) = pr(Y = 1|S,W,X,X∗,Z)
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= pr(Y = 1|S, X,Z)

= exp{g0(S) + β1X + βT2Z}pr(Y = 0|S, X,Z),

where g0(·) is given in model (2.1). Next, consider

pr(Y = 1|S,W,X∗,Z)

=
∑
x=0,1

pr(Y = 1|S,W,X = x,X∗,Z)pr(X = x|S,W,X∗,Z)

=
∑
x=0,1

pr(Y = 1|S, X = x,Z)pr(X = x|S,W,X∗,Z)

=
∑
x=0,1

exp{g0(Si) + β1x+ βT2Z}pr(Y = 0|S, X = x,Z)pr(X = x|S,W,X∗,Z)

=
∑
x=0,1

exp{g0(Si) + β1x+ βT2Z}pr(X = x|S,W,X∗, Y = 0,Z)

×pr(Y = 0|S,W,X∗,Z)

= pr(Y = 0|S,W,X∗,Z)
∑
x=0,1

exp{g0(S) + β1x+ βT2Z}

×pr(X = x|S,W,X∗, Y = 0,Z)

= pr(Y = 0|S,W,X∗,Z) exp{g0(S) + βT2Z}{exp(β1)

×pr(X = 1|S,W,X∗, Y = 0,Z) + pr(X = 0|S,W,X∗, Y = 0,Z)}

≡ pr(Y = 0|S,W,X∗,Z) exp{g0(S) + βT2Z + g1(β1,Si,W,X
∗,Z,γ,η)},

where the expression of g1(β1,S,W,X
∗,Z,γ,η) is obtained after plugging the ex-

pression for pr(X = 1|S,W,X∗, Y = 0,Z) and pr(X = 0|S,W,X∗, Y = 0,Z) from

Equations (3.4) and (3.5). In particular,

exp{g1(β1,S,W = 1,X∗,Z,γ,η)}

= exp(β1)pr(X = 1|S,W = 1,X∗, Y = 0,Z)

+pr(X = 0|S,W = 1,X∗, Y = 0,Z)
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= exp(β1)
(1− α1)H(γ,S,X∗,Z)

α0 + (1− α0 − α1)H(γ,S,X∗,Z)

+1− (1− α1)H(γ,S,X∗,Z)

α0 + (1− α0 − α1)H(γ,S,X∗,Z)

=
exp(β1)(1− α1)H(γ,S,X∗,Z) + α0{1−H(γ,S,X∗,Z)}

α0 + (1− α0 − α1)H(γ,S,X∗,Z)
, (A.2)

exp{g1(β1,S,W = 0,X∗,γ,η)}

= exp(β1)pr(X = 1|S,W = 0,X∗, Y = 0,Z)

+pr(X = 0|S,W = 0,X∗, Y = 0,Z)

= exp(β1)
α1H(γ,S,X∗,Z)

1− α0 − (1− α0 − α1)H(γ,S,X∗,Z)
+ 1

− α1H(γ,S,X∗,Z)

1− α0 − (1− α0 − α1)H(γ,S,X∗,Z)

=
exp(β1)α1H(γ,S,X∗,Z) + (1− α0){1−H(γ,S,X∗,Z)}

1− α0 − (1− α0 − α1)H(γ,S,X∗,Z)
. (A.3)

A.3 Proof of Theorem 1

Collecting Sγ(γ,η),Sη(γ,η), Sβ1(β,γ,η),Sβ2
(β,γ,η) together and letting θ =

(γT ,ηT , β1,β
T
2 )T and θ̂ = (γ̂T , η̂T , β̂1, β̂

T

2 )T , I can write

√
n(θ̂ − θ) = A−1

n∑
i=1

U i + op(1),

whereU ′is are iid and mean zero and finite variance random vectors. A = −E(∂U i/∂θ).

By the Central Limit Theorem I obtain the asymptotic normality of θ̂, and the

asymptotic variance of
√
nθ̂ is A−1var(U 1)A−T . This asymptotic variance can be

consistently estimated by Â−1(
∑n

i=1 Û iÛ
T

i /n)Â−T with Â = −(1/n)
∑n

i=1 ∂Û i/∂θ

and Û i being U i with θ replaced by θ̂.
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A.4 Proof of Lemma 2

Part i) of Lemma 2

pr(Y = 1|S,X∗,Z) =
∑
x

pr(Y = 1|S, X = x,X∗,Z)pr(X = x|S,X∗,Z)

=
∑
x

exp{g0(S) + β1x+ βT2Z}pr(Y = 0|S, X = x,X∗,Z)

×pr(X = x|S,X∗,Z)

=
∑
x

exp{g0(S) + β1x+ βT2Z}pr(X = x|S,X∗, Y = 0,Z)

×pr(Y = 0|S,X∗,Z)

= pr(Y = 0|S,X∗,Z)[exp{g0(S) + βT2Z}

×{1−H(γ,S,X∗,Z)}

+ exp{g0(S) + β1 + βT2Z}H(γ,S,X∗,Z)]

= pr(Y = 0|S,X∗,Z) exp{g0(S) + βT2Z}

×{1−H(γ,S,X∗,Z) + exp(β1)H(γ,S,X∗,Z)}.

This implies

pr(Y = 1|S,X∗,Z) = H{g0(S) + βT2Z + g2(γ, β1,S,X
∗,Z)},

where

g2(γ, β1,S,X
∗,Z) = log{1−H(γ,S,X∗,Z) + exp(β1)H(γ,S,X∗,Z)}.

Part ii) of Lemma 2

pr(X = 1|S,X∗,Z, Y = 1) =
pr(Y = 1|S, X = 1,X∗,Z)pr(X = 1|S,X∗,Z)

pr(Y = 1|S,X∗,Z)
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=
exp{g0(S) + β1 + βT2Z}

pr(Y = 1|S,X∗,Z)

×pr(Y = 0|S, X = 1,X∗,Z)pr(X = 1|S,X∗,Z)

=
exp{g0(S) + β1 + βT2Z}

pr(Y = 1|S,X∗,Z)

×pr(X = 1|S,X∗, Y = 0,Z)pr(Y = 0|S,X∗,Z)

=
exp{g0(S) + β1 + βT2Z}H(γ,S,X∗,Z)

exp{g0(S) + βT2Z + g2(γ, β1,S,X
∗,Z)}

=
exp(β1)H(γ,S,X∗,Z)

exp{g2(γ, β1,S,X
∗,Z)}

=
exp(β1)H(γ,S,X∗,Z)

1−H(γ,S,X∗,Z) + exp(β1)H(γ,S,X∗,Z)

=
exp(γ0 + β1 + γT1S + γT2X

∗ + γT3Z)

1 + exp(γ0 + β1 + γT1S + γT2X
∗ + γT3Z)

= H(γ0 + β1 + γT1S + γT2X
∗ + γT3Z).

Part iii) of Lemma 2

pr(W = 1|S,X∗, Y = 1,Z)

= pr(W = 1|S, X = 0,X∗, Y = 1,Z)pr(X = 0|S,X∗, Y = 1,Z)

+pr(W = 1|S, X = 1,X∗, Y = 1,Z)pr(X = 1|S,X∗, Y = 1,Z)

= pr(W = 1|X = 0)pr(X = 0|S,X∗, Y = 1,Z)

+pr(W = 1|X = 1)pr(X = 1|S,X∗, Y = 1,Z)

= α0{1− pr(X = 1|S,X∗, Y = 1,Z)}+ (1− α1)pr(X = 1|S,X∗, Y = 1,Z)

= α0 + (1− α0 − α1)pr(X = 1|S,X∗, Y = 1,Z)

= α0 + (1− α0 − α1)H(γ0 + β1 + γT1S + γT2X
∗ + γT3Z).
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