
NON-LINEAR AND SPARSE DISCRIMINANT ANALYSIS WITH DATA COMPRESSION

A Thesis

by

ALEXANDER FRANK LAPANOWSKI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Irina Gaynanova
Committee Members, Anirban Bhattacharya

Debdeep Pati
Simon Foucart

Head of Department, Daren Cline

August 2020

Major Subject: Statistics

Copyright 2020 Alexander F. Lapanowski

ABSTRACT

Large-sample data became prevalent as data acquisition became cheaper and easier. While a

large sample size has theoretical advantages for many statistical methods, it presents computational

challenges either in the form of a large number of features or a large number of training samples.

We consider the two-group classification problem and adapt Linear Discriminant Analysis to the

problems above. Linear Discriminant Analysis is a linear classifier and will under-fit when the true

decision boundary is non-linear.

To address non-linearity and sparse feature selection, we propose a kernel classifier based on

the optimal scoring framework which trains a non-linear classifier. Unlike previous approaches,

we provide theoretical guarantees on the expected risk consistency of the method. We also allow

for feature selection by imposing structured sparsity using weighted kernels. We propose fully-

automated methods for selection of all tuning parameters, and in particular adapt kernel shrink-

age ideas for ridge parameter selection. Numerical studies demonstrate the superior classification

performance of the proposed approach compared to existing nonparametric classifiers. We also

propose automatic methods for ridge parameter selection and guassian kernel parameter selection.

To address the computational challenges of a large sample size, we adapt compression to the

classification setting. Sketching, or compression, is a well-studied approach to address sample

reduction in regression settings, but considerably less is known about its performance in clas-

sification settings. Here we consider the computational issues due to large sample size within

the discriminant analysis framework. We propose a new compression approach for reducing the

number of training samples for linear and quadratic discriminant analysis, in contrast to existing

compression methods which focus on reducing the number of features. We support our approach

with a theoretical bound on the misclassification error rate compared to the Bayes classifier. Em-

pirical studies confirm the significant computational gains of the proposed method and its superior

predictive ability compared to random sub-sampling.

ii

DEDICATION

To Mom, whose love and support made this possible.

iii

ACKNOWLEDGMENTS

I offer my love and thanks to my Mom, whose love and care are everything to me.

To Taylor, Shahina, and all my friends at Texas A&M who have offered friendship and endless

shared memories.

To my teachers for believing in me and encouraging me along the way. In particular, I want

to thank Mr. David Kirck, Brother Xavier, Mr. Brian Bacon, Mr. Thaier Mukhtar, Dr. Mitya Bo-

yarchenko, Dr. Roman Vershynin, Dr. Yaniv Plan, Dr. Mark Rudelson, and Dr. Alexei Poltoratski.

Finally, to Dr. Irina Gaynanova, whose commitment, thoughtfulness, and statistical insight

made for a wonderful advisor. I have grown in every facet as a researcher under her mentoring.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Irina Gaynanova,

Professor Anirban Bhattacharya, and Professor Debdeep Pati all from the Department of Statistics,

and Professor Simon Foucart of the Department of Mathematics.

All work conducted for the thesis (or) dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a graduate fellowship from Texas A&M University.

v

NOMENCLATURE

Rp p-dimensional Euclidean Space

∥ · ∥2 Euclidean norm on Rp

∥ · ∥∞ Supremum norm on Rp

∥ · ∥F Frobenius norm on the set of matrices with fixed dimensions

xi p-dimensional feature vector

yi Class label corresponding to xi

(xi, yi) Training sample-label pair

X n× p matrix of training samples

Y Vector of training labels corresponding to X

H Reproducing Kernel Hilbert Space

k Reproducing kernel associated withH

Φ Map from p-dimensional Euclidean Space toH

⟨· , ·⟩H Inner product inH

∥ · ∥H Norm inH induced by ⟨· , ·⟩H

Qg mg × ng matrix corresponding to group g = 1, 2

Xg g-th group sample mean n−1
g

∑
xg
i

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Problem Statement . 1
1.2 Review of Linear Discriminant Analysis . 1

1.2.1 Fisher Discriminant Analysis . 2
1.2.2 Linear Discriminant Analysis Using Discriminant Functions 3
1.2.3 Equivalence of the Fisher Discriminant Analysis and Discriminant Func-

tion Decision Rules . 4
1.3 Optimal Scoring. 6

1.3.1 Equivalence of Linear Discriminant Analysis and Optimal Scoring 7
1.4 Review of Reproducing Kernel Hilbert Spaces. 9

1.4.1 Constructing Reproducing Kernel Hilbert Spaces . 10

2. SparseKOS. 13

2.1 Introduction . 13
2.1.1 Related Work . 14
2.1.2 Notation . 15

2.2 Kernel Optimal Scoring . 16
2.2.1 Reproducing Kernel Hilbert Spaces . 16
2.2.2 Kernel Optimal Scoring. 16
2.2.3 Classification of a New Data Point . 17

2.3 Error Bounds for Kernel Optimal Scoring . 18
2.4 Sparse Kernel Optimal Scoring . 21

vii

2.4.1 Optimization Algorithm . 23
2.4.2 Update of Weights . 25

2.5 Parameter Selection . 25
2.5.1 Gaussian Kernel Parameter Selection . 25
2.5.2 Ridge Parameter Selection. 26
2.5.3 Sparsity parameter selection . 27

2.6 Empirical studies . 27
2.6.1 Simulated model 1 . 28
2.6.2 Simulated model 2 . 29
2.6.3 Benchmark datasets . 30

2.7 Discussion . 33
2.8 Derivation of Projection Formula (2.4) . 35
2.9 Technical Proofs . 36

2.9.1 Proofs of Theorems 1 and 2 . 37
2.9.2 Supplementary Theorems. 38
2.9.3 Proofs of Supplementary Theorems . 39

2.10 Supplementary Lemmas . 44

3. COMPRESSING LARGE SAMPLE DATA FOR DISCRIMINANT ANALYSIS 52

3.1 Introduction . 52
3.1.1 Related Works . 53
3.1.2 Notation . 55

3.2 Compressed LDA . 56
3.3 Error bound of Compressed LDA . 57
3.4 Extensions . 60

3.4.1 Projected LDA . 60
3.4.2 Compressed QDA . 61

3.5 Simulation Studies . 62
3.5.1 ZIP Code Data. 63
3.5.2 MNIST Data. 65
3.5.3 Skin Segmentation Data . 66

3.6 Discussion . 69
3.7 Extension to Kernel Discriminant Analysis . 71

3.7.1 Compressed Kernel Matrices . 72
3.8 Discussion . 77
3.9 Proof of Miscalculation Error Rate . 78
3.10 Technical Proofs . 79

4. R PACKAGE FOR SPARSE KERNEL OPTIMAL SCORING AND COMPRESSED
LINEAR DISCRIMINANT ANALYSIS . 102

4.1 Introduction . 102
4.2 Quick Start . 102

4.2.1 Quick LDA Example. 103

viii

4.2.2 Quick QDA Example . 104
4.2.3 Quick Sparse Kernel Optimal Scoring Example. 106

4.3 Compressed Linear Discriminant Analysis . 110
4.3.1 Full LDA . 110
4.3.2 Compressed LDA . 111
4.3.3 Sub-Sampled LDA . 113
4.3.4 Projected LDA . 114
4.3.5 Fast Random Fisher Discriminant Analysis . 116

4.4 Compressed Quadratic Discriminant Analysis . 118
4.4.1 Full QDA . 119
4.4.2 Compressed QDA . 120
4.4.3 Sub-Sampled QDA. 122

4.5 Sparse Kernel Optimal Scoring . 123
4.5.1 Parameter Selection . 124
4.5.2 Hierarchical Parameters . 125
4.5.3 KOS. 126

5. CONCLUSIONS . 127

REFERENCES . 128

ix

LIST OF FIGURES

FIGURE Page

2.1 Simulated training and test data with four features, only features 1 and 2 contribute
to class separation. Reproduced from [1]. 21

2.2 Comparing the projection values (2.4) of the test data in Figure 2.1 with and with-
out sparsity. Reproduced from [1]. 22

2.3 Comparison between generalized cross-validation (GCV) and proposed Stabiliza-
tion method for selection of ridge parameter γ over 100 replications. Top: Selected
values of γ; Bottom: Misclassification error rates. Reproduced from [1]. 27

2.4 Misclassification error rates based on 100 replications of simulated model 1. Re-
produced from [1]. 29

2.5 Average of the absolute values of the weight values for each feature across the
100 independent simulations of model 1. Bars represent plus or minus twice the
standard error. Reproduced from [1]. 29

2.6 Misclassification error rates based on 100 replications of simulated model 2. Re-
produced from [1]. 30

2.7 The mean absolute values of weights |wj| for each feature across 100 replications
of simulated model 2. The bars represent ±2 standard errors. Reproduced from [1]. 31

2.8 Average of the absolute values of the weight values based on 100 replications of
the Blood Donation simulation. Error bars indicate plus or minus two standard
errors of the mean. Reproduced from [1]. 32

2.9 Misclassification error rates based on 100 replications for the blood donation data
set. Reproduced from [1]. 32

2.10 Misclassification error rates based on 100 replications of the climate model failure
simulation data. Reproduced from [1]. 33

2.11 Credit card Default simulation. Misclassification error rates based on 100 repli-
cations for sparse kernel optimal scoring (sparse KOS), kernel optimal scoring
(KOS), random forests, kernel support vector machines (Kernel SVM), neural net-
works, K-nearest neighbors (KNN), and sparse linear discriminant analysis (Sparse
LDA). Reproduced from [1]. 34

x

2.12 Average absolute values for the feature weight values across the 100 simulations of
the Credit Card Default simulation. Bars represent plus or minus twice the standard
error of the mean. Reproduced from [1]. 34

2.13 Average ratio of number of nonzero weights across the 100 splits in each simula-
tion study using the benchmark data sets. Reproduced from [1]. 35

2.14 Proof charts for Theorems 4 and 5. Reproduced from [1]. 36

3.1 Zip Code Data. Top: Misclassification error rates across 100 replications for each
value of m with s = 0.01 and γ = 10−4. The dashed line represents the 6.88%
error rate of Full LDA. Bottom: The execution times for 100 independent com-
pressed and full covariance formations. 64

3.2 Zip Code Data. Misclassification error rates of compressed and sub-sampled QDA
across 100 replications for each value of m with s = 0.01 and γ = 10−3. The
dashed line represents the 8.82% error rate of Full QDA. 65

3.3 MNIST Data. Top: Misclassification error rates across 100 replications for each
value of m with s = 0.01 and γ = 10−3. The dashed line represents the 10.60%
misclassification error rate of Full LDA. Bottom: The execution times for 100
independent compressed and full covariance formations. 67

3.4 MNIST Data. Misclassification error rates of compressed and sub-sampled QDA
across 100 replications for each value of m with s = 0.01 and γ = 10−3. The
dashed line represents the 14.04% error rate of Full QDA. 68

3.5 Skin Segmentation Data, misclassification error rates across 100 replications for
each vale of m. Top: Linear classification methods with s = 10−3 and γ = 10−4.
The dashed line represents the 6.93% error rate of Full LDA. Bottom: Qadratic
classification methods with s = 10−3 and γ = 10−4. The dashed line represents
the 1.64% error rate of Full QDA. 69

3.6 Skin Segmentation Data, the two classes are separated by both shape and color.
Top: First two principal components based on the 5, 000 training samples. Bot-
tom: First two principal components based on 5, 000 compressed samples with
s = 0.001. 70

3.7 Left: 500 simulated data set where the classes are separated by shape and color.
Right: 100 compressed samples. While the original data set is separable with
respect to the classes, the compressed samples are not. 71

3.8 Proof chart for Theorem 10. 80

4.1 Scatter plot of first two features of LDA training data. Classes are distinguished by
color and shape. 103

xi

4.2 Scatter plot of first two features of QDA training data. Classes are distinguished
by color and shape. 105

4.3 Scatter plot of the KOS training data. Classes are distinguished by color and shape.
Only the first two features contribute to class separation.. 107

4.4 Plot of the Discriminant Vector Coefficients generated by the KOS function on the
KOS training data. 109

xii

LIST OF TABLES

TABLE Page

2.1 Description of benchmark datasets. Reproduced from [1]. 31

2.2 Mean misclassification errors (%) over 100 random splits, standard errors are in
brackets. Reproduced from [1]. 31

xiii

1. INTRODUCTION

1.1 Problem Statement

Linear Discriminant Analysis (LDA) [2, Chapter 11] is a popular classification technique which

seeks to separate classes of training data with hyper-planes. However, it has several drawbacks: (i)

it will under-fit the data when the true decision boundaries between classes are non-linear; (ii) it

uses all p features in the decision rule, and consequently over-fits in the high-dimensional setting;

and (iii) it is computationally expensive when the training data has a large number of samples and

medium-sized number of features.

This dissertation addresses (i)-(iii) by proposing several variants of LDA for the two-class

setting. In particular, we propose a kernel discriminant classifier based on the optimal scoring

framework which has simultaneous sparse feature selection. We also propose a novel sample-

reduction technique based on compression within LDA and provide the theoretical framework for

adapting compression to kernel discriminant analysis. Lastly, we include an R package vignette

which instructs researchers on using the package biClassify. This package implements all of the

proposed methods.

1.2 Review of Linear Discriminant Analysis

Let {(xi, yi)}ni=1 be independent pairs of feature vectors xi ∈ Rp and labels yi ∈ {1, 2}. Let

X =

(
X1⊤ X2⊤

)⊤

be the corresponding n×pmatrix of training samples, whereXg ∈ Rng×p is

the sub-matrix consisting of ng samples xg
i belonging to class g = 1, 2. Let Y = ({1}n1 , {2}n2)⊤

be the corresponding vector of class labels. We let X := n−1
∑n

i=1 xi be the overall training

sample mean, and let Xg be the gth class sample mean n−1
g

∑ng

i=1 x
g
i .

Assumption 1. Conditional on group membership, the training samples xi are i.i.d. normal ran-

dom vectors N(µg,Σw) with group mean µg ∈ Rp and covariance matrix Σw ∈ Rp×p such that

µ1 ̸= µ2.

Assumption 1 states that the group distribution means are different but that the group covari-

1

ances are equal.

There are several equivalent variants of the two-class LDA problem which are presented below.

1.2.1 Fisher Discriminant Analysis

Fisher Discriminant Analysis (FDA) [2, Section 11.5] seeks a vector β ∈ Rp such that the

values β⊤xg
i are well-separated between classes.

Given the within-class covariance matrix and between-class covariance matrices

Σ̂w :=
1

n

2∑
g=1

ng∑
i=1

(xg
i −Xg)(x

g
i −Xg)

⊤ and Σ̂b =
2∑

g=1

ng

n
(Xg −X)(Xg −X)⊤, (1.1)

the Fisher Discriminant Ratio is defined as

β⊤Σ̂bβ

β⊤Σ̂wβ
. (1.2)

FDA seeks that vector β̂ ∈ Rp which maximizes (1.2). One can solve for the discriminant

vector by solving

maximize
β∈Rp

β⊤Σ̂bβ

subject to β⊤Σ̂wβ = 1.

Let d ∈ Rp be the vector of the class mean differences

d :=

√
n1n2

n
(X1 −X2), (1.3)

then FDA estimates β as β̂ := Σ̂−1
w d.

Theorem 1 (Theorem 11.5.1 of [2]). The vector β̂ in Fisher’s linear discriminant function is the

eigenvector of Σ̂−1
w Σ̂b corresponding to the largest eigenvalue.

Given the estimated discriminant vector β̂ ∈ Rp, the FDA classification rule labels a new

2

x ∈ Rp by minimizing the Mahalanobis distance to the group centers

argmin
g=1,2

{
(x−Xg)

⊤β̂ (β̂⊤Σ̂wβ̂)
−1β̂⊤(x−Xg)− 2 log(ng/n)

}
. (1.4)

1.2.2 Linear Discriminant Analysis Using Discriminant Functions

An equivalent formulation of LDA maximizes the likelihood ratio of the group distributions

with plug-in estimates for the parameters. Let πg be the prior group probabilities of sampling from

class g = 1, 2. The likelihood function for group g is

L(µg,Σw|x) =
1

(2π|Σw|)p/2
exp

(
− (x− µg)

⊤Σ−1
w (x− µg)

2

)
πg.

Classify a sample x as belonging to group 1 if and only if L(µ1,Σw|x)π1 ≥ L(µ2,Σw|x)π2.

Equivalently, consider the ratio of likelihood functions

L(x;µ1,Σw)

L(x;µ2,Σw)
= exp

(
− 1

2
(x− µ1)

⊤Σ−1
w (x− µ1) +

1

2
(x− µ2)

⊤Σ−1
w (x− µ2)

)
π1
π2

= exp

(
− 1

2

[
{−2x⊤Σ−1

w µ1 + µ⊤
1 Σ

−1
w µ1} − {−2x⊤Σ−1

w µ2 + µ⊤
2 Σ

−1
w µ2}

])
π1
π2

= exp

(
− 1

2
[x⊤Σ−1

2 (µ2 − µ1) + µ⊤
1 Σ

−1
w µ1 − µ⊤

2 Σ
−1
w µ2]

)
π1
π2
.

The Bayes Rule classifies x to class 1 if and only if the likelihood ration is greater than or equal to

1. Taking the logarithm of the likelihood ratio gives the equivalent rule of labelling x as belonging

to class 1 if and only if

1

2
x⊤Σ−1

w (µ1 − µ2) ≥ µ⊤
1 Σ

−1
w µ1 − µ⊤

2 Σ
−1
w µ2 − log(π1/π2).

In practice, the population parameters µg,Σw, and πg are replaced by their sample estimates

3

Xg, Σ̂w, and ng/n, yielding

1

2
x⊤Σ̂−1

w (X1 −X2) ≥ X
⊤
1 Σ̂

−1
w X1 −X

⊤
2 Σ̂

−1
w X2 − log(n1/n2). (1.5)

Equation (1.5) can be expressed in terms of discriminant functions

δg(x) = x⊤Σ̂−1
w Xg −

1

2
XgΣ̂

−1
w Xg + log(ng).

That is, (1.5) is equivalent to the rule which maximizes the discriminant functions

maximize
g=1,2

δg(x). (1.6)

1.2.3 Equivalence of the Fisher Discriminant Analysis and Discriminant Function Decision

Rules

This section proves that the Fisher Discriminant Rule (1.4) and the discriminant function deci-

sion rule (1.6) are equivalent.

We first show that maximizing the discriminiant functions δg is equivalent to minimizing the

Mahalanobis Distance.

Since x⊤Σ̂−1
w x is not class-dependent, we may add x⊤Σ̂−1

w x to both δg(x) (g = 1, 2) and

preserve the classification rule. This gives

δ2(x) + x⊤Σ̂−1
w x ≥ δ1(x) + x⊤Σ̂−1

w x,

where

δg(x) + x⊤Σ̂−1
w x = x⊤Σ̂−1

w Xg −
1

2
X

⊤
g Σ̂

−1
w Xg + log(πg) + x⊤Σ̂−1

w x

= −1

2
(x−Xg)

⊤Σ̂−1
w (x−Xg) + log(ng/n).

(1.7)

Thus, maximizing the discriminant functions is equivalent to minimizing the Mahalanobis distance

4

penalized according to class proportion.

The Mahalanobis distance is the squared Euclidean distance of the data normalized by the

sample within-group covariance

(x−Xg)
⊤Σ̂−1

w (x−Xg) = ∥Σ̂−1/2
w (x−Xg)∥2.

In computing the distance of a sample x to the class means, we may consider only the distance

of the projection onto subspace spanned by the difference of group means. Let P
Σ̂

−1/2
w d

be the

orthogonal projection onto the span of Σ̂−1/2
w d. This projection is

P
Σ̂

−1/2
w d

= Σ̂−1/2
w d [(Σ̂−1/2

w d)⊤(Σ̂−1/2
w d)]−1 (Σ̂−1/2

w d)⊤ =
Σ̂

−1/2
w (d d⊤)Σ̂

−1/2
w

d⊤Σ̂−1
w d

The Pythagorean decomposition gives

∥Σ̂−1/2
w (x−Xg)∥2 = ∥PΣ̂

−1/2
w d

Σ̂−1/2
w (x−Xg)∥2 + ∥(I − PΣ̂

−1/2
w d

)Σ̂−1/2
w (x−Xg)∥2.

For β := Σ̂−1
w d,

∥P
Σ̂

−1/2
w d

Σ̂−1/2
w (x−Xg)∥2 =

∥∥∥∥Σ̂−1/2
w (d d⊤)Σ̂

−1/2
w

d⊤Σ̂−1
w d

Σ̂−1/2
w (x−Xg)

∥∥∥∥2

= (d⊤Σ̂−1
w d)−2∥Σ̂−1/2

w (d d⊤)Σ̂−1
w (x−Xg)∥2

= (d⊤Σ̂−1
w d)−2∥Σ̂−1/2

w d β⊤(x−Xg)∥2

=
(x−Xg)

⊤βd⊤Σ̂
−1/2
w Σ̂

−1/2
w d β⊤(x−Xg)

(d⊤Σ̂−1
w d)2

= (x−Xg)
⊤β(d⊤Σ̂−1

w d)−1 β⊤(x−Xg)

= (x−Xg)
⊤β(β⊤Σ̂wβ)

−1 β⊤(x−Xg).

Thus, the projected distance of the sample x to the class sample mean projected onto the differ-

ence of group means vector equals the Mahalanobis distance of the sample projected onto the

5

discriminant vector β.

We now prove that ∥(I − P
Σ̂

−1/2
w d

)Σ̂
−1/2
w (x − Xg)∥2 does not depend on the class g. The

projection (I − P
Σ̂

−1/2
w d

) collapses the sphered difference in group means Σ̂
−1/2
w d into the zero

vector. Hence, consider the difference

(I − P
Σ̂

−1/2
w d

)Σ̂−1/2
w (x−X1)− (I − P

Σ̂
−1/2
w d

)Σ̂−1/2
w (x−X2)

= (I − P
Σ̂

−1/2
w d

)Σ̂−1/2
w (X2 −X1)

= (I − P
Σ̂

−1/2
w d

)Σ̂−1/2
w d = 0,

proving the claim.

Thus, the Fisher Discriminant classification rule (1.4) is equivalent to the discriminant function

rule (1.6).

1.3 Optimal Scoring

Optimal scoring [3] is an equivalent formulation of LDA, but it is solved as a least-squares

regression problem. It proceeds by transforming the categorical response into a numeric response

and then performing least-squares regression to produce a discriminant vector β̂OS ∈ Rp.

Assumption 2. The training data X ∈ Rn×p is column-centered. That is, 1⊤
nX =

∑n
i=1 xi = 0.

Under Assumption 2, the Optimal Scoring problem for binary classification finds the discrimi-

nant vector β ∈ Rp and the scores vector θ ∈ R2 which minimize

minimize
θ∈R2 , β∈Rp

1

n
∥Y θ −Xβ∥22

subject to n−1θTY ⊤Y θ = 1, θTY ⊤Y 1 = 0.

(1.8)

To better understand the constraints imposed in (1.8), note that n−1θ⊤Y ⊤Y θ = n−1∥Y θ∥22.

When paired with the constraint θ⊤Y ⊤Y 1 = (Y θ)⊤1 = 0, the transformed response Y θ is con-

strained to be mean-zero and unit-variance. Geometrically, the equation n−1∥Y θ∥22 = 1 defines an

ellipse in R2, while the constraint (Y θ)⊤1 defines a line running through the origin. They intersect

6

at the pair of antipodal points ±
(√

n2

n1
−
√

n1

n2

)⊤

. We define the score vector to be

θ̂ :=

(√
n2

n1
−
√

n1

n2

)⊤

.

Substituting θ̂ into (1.8) gives the least-squares regression problem

minimize
β∈Rp

1

n
∥Y θ̂ −Xβ∥22 (1.9)

which, in the n > p setting, has the closed-form solution

β̂OS = (X⊤X)−1X⊤Y θ̂. (1.10)

Moreover, the solution β̂ corresponds to the discriminant vector in LDA up to scaling, see e.g.

[4, Section 3.4] or Section 1.3.1 below. Thus, LDA can be reduced to finding the solution to

computing (1.10).

1.3.1 Equivalence of Linear Discriminant Analysis and Optimal Scoring

This section proves the equivalence of Linear Discriminant Analysis and Optimal Scoring in

the two class setting.

Theorem 2 (Equality of Classification Rules). Let β̂ := Σ̂−1
w d be the Fisher Discriminant Vector,

and let β̂OS the optimal scoring solution (1.10). Then using β̂ and β̂OS in classification rule (1.4)

gives equivalent classifiers.

In order to prove Theorem 2, we first need a series of preliminary Lemmas.

Lemma 1. We have n−1X⊤Y θ̂ =
√
n1n2 n

−1 (X1 −X2) = d.

7

Proof. We have

1

n
X⊤Y θ̂ =

1

n

(
X⊤

1 X⊤
2

)Y1θ̂
Y2θ̂

 =
1

n

(√
n2

n1

∑
X1 −

√
n1

n2

∑
X2

)

=
1

n

(√
n2

n1

n1X1 −
√
n1

n2

n2X2

)
=

√
n1n2

n
(X1 −X2).

Lemma 2. Let Σ̂w and Σ̂b be the within-group and between-group covariance matrices (1.1). Then

n−1X⊤X = Σ̂w + Σ̂b.

Proof. We start with

Σ̂W =
1

n

2∑
g=1

ng∑
j=1

(xjx
⊤
j − xjX

⊤
g −Xgx

⊤
j +XgX

⊤
g)

=
1

n

2∑
g=1

ng∑
j=1

xjx
⊤
j −

1

n

2∑
i=1

(ng∑
j=1

xj

)
X

⊤
g −

1

n

2∑
i=1

Xg

(ng∑
j=1

xj

)⊤

+
1

n

2∑
g=1

ng∑
j=1

XgX
⊤
g

=
1

n

2∑
g=1

ng∑
j=1

xjx
⊤
j −

1

n

2∑
g=1

ngXgX
⊤
g −

1

n

2∑
g=1

ngXgXg +
1

n

2∑
i=1

ng∑
j=1

XgXg

=
1

n

2∑
i=1

ng∑
j=1

xjx
⊤
j −

1

n

2∑
g=1

ngXgX
⊤
g

=
1

n
XTX − Σ̂b

which proves the Lemma.

We now prove a result which states that the optimal scoring solution β̂OS of (1.10) is a scale

multiple of the Fisher Discriminant vector β̂.

Theorem 3 (Scale Multiple). Let β̂OS ∈ Rp be the optimal scoring solution (1.10), and let β̂ =

Σ̂−1
w d be the linear discriminant vector. Then β̂OS = αβ̂ with α = (1 + d⊤Σ̂−1

w d)−1.

Proof. The Woodbury Matrix Identity for adding a rank-one matrix gives

(Σ̂w + Σ̂b)
−1 = Σ̂−1

w −
Σ̂−1

w dd⊤Σ̂−1
w

1 + d⊤Σ̂−1
w d

.

8

Then

β̂OS = (Σ̂w + Σ̂b)
−1d = Σ−1

w d−
(
Σ−1

w dd⊤Σ̂−1
w

1 + d⊤Σ̂−1
w d

)
d

=

(
1− d⊤Σ̂−1

w d

1 + d⊤Σ̂−1
w d

)
Σ̂−1

w d =

(
1

1 + d⊤Σ̂Wd

)
Σ̂wd.

This proves the theorem.

We now present the proof of Theorem 2.

Proof of Theorem 2. Applying Theorem 3 gives β̂OS = αβ̂ for some non-zero constant α ∈ R.

The Mahalanobis distances between a test sample x and the class means Xg is equal to

minimize
g=1,2

{
(x−Xg)

⊤β̂OS(β̂
⊤
OSΣ̂W β̂OS)

−1β̂⊤
OS(x−Xg)− 2 log(ng/n)

}
=minimize

g=1,2

{
(x−Xg)

⊤αβ̂(αβ̂⊤Σ̂W β̂α)
−1αβ̂⊤(x−Xg)− 2 log(ng/n)

}
=minimize

g=1,2

{
(x−Xg)

⊤β̂(β̂⊤Σ̂W β̂)
−1β̂⊤(x−Xg)− 2 log(ng/n)

}

where the last equality comes from the α2 inside the inverse term (αβ̂⊤Σ̂W β̂α)
−1 canceling with

the α2 coming from the pair of differences (x−Xg)
⊤αβ̂. This last term is the Fisher Discriminant

classification rule (1.4).

1.4 Review of Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces (RKHS) generalize linear regression and classification

models into flexible non-linear ones. The data is mapped into a RKHS H via Φ : Rp → H

with an accompanying kernel k : Rp × Rp → R such that ⟨Φ(x),Φ(x′)⟩H = k(x,x′) for any

x,x′ ∈ Rp. We let ∥ · ∥H be the norm induced by the inner product ⟨· , ·⟩H. By the reproducing

property ofH: ⟨Φ(x), f⟩H = f(x) for all x ∈ Rp and f ∈ H. Thus, any classifier that relies on the

training data only through the inner products can be kernelized by substituting kernel evaluations

in place of inner products. This effectively creates a classifier inH rather than in Rp.

9

Some commonly-used kernels are the gaussian kernel k(x,x′) = exp(−σ−2∥x − x′∥22) with

parameter σ > 0, the polynomial kernel k(x,x′) = (1 + ⟨x,x′⟩)d with d being a positive integer,

and the sigmoid kernel k(x,x′) = tanh(c ⟨x,x′⟩+ t) with c > 0, t ≥ 0. We refer the reader to [5,

Chapter 13] for a review on kernel construction and selection. We let K ∈ Rn×n denote the kernel

matrix Ki,j := k(xi,xj) based on observed feature vectors {xi}ni=1.

1.4.1 Constructing Reproducing Kernel Hilbert Spaces

This sub-section summarizes the process for constructing Reproducing Kernel Hilbert Spaces.

This treatment is merely a summary, and the reader is referred to [5] for additional details.

Constructing H and Φ proceeds in two broad steps: (i) build a pre-Hilbert space H0 satisfying

all of the desired properties (ii) construct H by taking the completion of H0 and checking that all

the desired properties continuously extend fromH0 toH.

Fix some kernel k : Rp × Rp → R, and let

H0 =

{ n∑
i=1

αik(xi, ·)
∣∣∣∣ for n ∈ N and with αi ∈ R and xi ∈ Rp for i = 1, . . . , n

}
(1.11)

be the vector space of all finite linear combinations of kernels which are centered on a finite subset

of points in Rp. Additionally, let Φ0 : Rp → H be the map defined by Φ0(x) := k(x, ·).

Let

f =
n∑

i=1

αik(xi, ·) and g =
m∑
j=1

βjk(x
′
j, ·)

be any two elements in H0, where {x1, . . . ,xn} and {x′
1, . . . ,x

′
m} are arbitrary finite subsets of

Rp. The pre-inner product between f and g is defined to be

⟨f, g⟩H0 =

⟨
n∑

i=1

αik(xi, ·) ,
m∑
j=1

βjk(x
′
j, ·)

⟩
H0

:=
n∑

i=1

m∑
j=1

αiβjk(xi,x
′
j). (1.12)

An important property of Reproducing Kernel Hilbert Spaces is that they have the reproducing

property, which means that function evaluation f 7→ f(x) is a continuous linear functional for any

10

fixed x ∈ Rp. From (1.12), we have

f(x) =
n∑

i=1

αik(xi,x) =

⟨
n∑

i=1

αik(xi, ·) , k(x, ·)

⟩
H0

=
⟨
f,Φ0(x)

⟩
H0 .

A function f ∈ H0 could have multiple expressions of the form (1.11). One can check,

using the reproducing property, that the pre-inner product (1.12) is invariant under the particu-

lar expression of f and g used. That is, if f =
∑n

i=1 αik(xi, ·) =
∑ñ

ℓ=1 α̃ℓk(x̃ℓ, ·) and g =∑m
j=1 βjk(x

′
j, ·) =

∑m̃
t=1 β̃tk(x̃

′
t, ·), then

⟨
n∑

i=1

αik(xi, ·) ,
m∑
j=1

βjk(x
′
j, ·)

⟩
H0

=

⟨
ñ∑

ℓ=1

α̃ℓk(x̃ℓ, ·) ,
m̃∑
t=1

β̃tk(x̃
′
t, ·)

⟩
H0

.

The pre-inner product induces a semi-norm ∥ · ∥H0 onH0 defined by

∥f∥H0 :=
√
⟨f, f⟩H0 =

√√√√ n∑
i=1

n∑
j=1

αiαjk(xi,xj).

Since ⟨·, ·⟩H0 is invaraint under the particular representation of f , so too is the semi-norm.

Let

Null(∥ · ∥H0) := {g ∈ H0 | ∥g∥H0 = 0}

be the null-space of the semi-norm ∥ · ∥H0 . The equivalence class [f] of all representations of the

function f ∈ H0 is equal to the coset f + Null(∥ · ∥H0). Instead of H0, consider the quotient

space H/Null(∥ · ∥H0), where quotienting by the null-space of ∥ · ∥H0 collapses all equivalent

representations of the same function f into one equivalence class [f].

The pre-inner product ⟨·, ·⟩H0 and semi-norm ∥ · ∥H0 induce a proper inner product and norm

on the quotient spaceH/Null(∥ · ∥H0). The quotient space has the reproducing property as well.

The final step to defining H and Φ is to take the completion of the quotient space H/Null(∥ ·

∥H0) with respect to the induced norm ∥ · ∥H0 . Denote this completion by H. The quotient space

isomorphically embeds within its completionH/Null(∥·∥H0)→ H, and so each equivalence class

11

[Φ0(x)] has a unique representation inH, denoted by Φ(x).

One can check that any continuous function defined on H/Null(∥ · ∥H0) extends continuously

toH- including the inner product ⟨·, ·⟩H0 and its induced norm ∥·∥H0 .1 Denote by ⟨·, ·⟩H and ∥·∥H

the extended inner product and norm.

For more on completing normed spaces and continuously extending functions, see [6, Chapter

2].

1This fact tacitly uses the completeness of R or C (or whichever field the inner product maps to).

12

2. SPARSE FEATURE SELECTION IN KERNEL DISCRIMINANT ANALYSIS VIA

OPTIMAL SCORING∗

2.1 Introduction

Linear Discriminant Analysis (LDA) is a popular linear classification rule [2, Section 11],

however it has two limitations. First, it will underfit the data when the best decision boundary is

nonlinear. Secondly, LDA uses all p features even though not all may contribute to class separation.

Including such “noise” features into the classification rule can harm classification performance.

To account for non-linearity, several authors consider kernel discriminant analysis [7, 8, 9,

5]. While the methods have good empirical performance, to our knowledge there is a lack of

theoretical guarantees on the risk of the learned classifiers. At the same time, the methods do not

perform feature selection, and as such will overfit in the presence of “noise" features.

The majority of kernel theory assumes a convex loss function. An additional challenge with

kernel FDA is incorporating sparse feature selection, as the method developed in [10] assumes a

convex loss function as well.

On the other hand, several sparse generalizations of LDA have been proposed [11, 12, 13],

however the methods still result in linear classification boundaries.

This Chapter addresses the gap between kernel and sparse LDA methods by using an optimal

scoring framework [3] to construct a kernel-based classifier. Unlike previous approaches, we pro-

vide theoretical guarantees on the risk consistency of the proposed kernel optimal scoring. We also

allow the method to perform feature selection by adapting the weighted kernel idea from [10]. To

avoid computational costs associated with selecting multiple tuning parameters, we develop a new

Stabilization method for ridge parameter selection. The method is based on the shrinkage ideas

from [14] for stabilization of kernel matrices. Our empirical results indicate that the Stabilization

method leads to better error rates than generalized cross-validation (GCV) [15, 16, 17], and we

∗Reprinted with permission from “Sparse feature selection in kernel discriminant analysis via optimal scoring”
by Alexander F. Lapanowski and Irina Gaynanova, 2019. Proceedings of Machine Learning Research, 1704-1713,
Copyright 2019 by Alexander F. Lapanowski and Irina Gaynanova.

13

believe this method of parameter selection could be of independent interest.

Kernel classifiers often require the selection of several parameters, but [10] does not provide

guidance for doing so. This Chapter provides fully-automatic selection methods for gaussian ker-

nel, ridge, and sparsity parameters which avoids cross-validation over all three parameters. This

is done by a new automatic ridge parameter selection technique based on [14], which could be of

independent interest.

In summary, this Chapter makes the following contributions:

• we develop a kernel LDA method based on optimal scoring framework

• we provide theoretical results on the risk consistency of the proposed classifier

• we use weighted kernels to implement feature selection within kernel LDA

• we propose a new stabilization method for ridge parameter selection.

2.1.1 Related Work

In this section we draw connections between our work and existing literature on kernelized

optimal scoring as well as sparse feature selection within kernels.

To our knowledge, the kernelized version of the optimal scoring problem has not been consid-

ered in the literature except for the work of [9]. Unlike [9], we fix the scores and provide theoretical

guarantees for the method. Another major distinction of our method is the feature selection which

is achieved by weighting the kernel and adding a sparsity penalty to the weights.

Weighted kernels with sparse weights have been considered in [10, 18] in the context of kernel

regression and kernel support vector machines. The framework can not be applied to the origi-

nal kernel LDA method [8], however it could be adapted to the proposed kernel optimal scoring

problem due to its least squares formulation.

Learning the optimal weight vector can be viewed as a kernel learning problem. While most

of the kernel learning literature focuses on finding the linear or quadratic combination of prede-

termined kernels [19, 20], learning the weights corresponds to adjusting the feature support of the

14

kernel matrix. This is also distinctive from the sparse kernel learning literature, where the kernel

is assumed to be additive with respect to the features [21, 22]. Our framework does not impose

additivity, thus enabling interactions between the features.

Kernel methods often require selection of multiple tuning parameters. In particular, sparse

KOS has the kernel parameters, ridge penalty, and sparsity penalty which all must be selected.

Several methods for automatic kernel parameter selection have been proposed. [23] selects the

parameters which minimizes an upper bound on the number of errors made by a leave-one-out

cross-validation procedure. [9] minimizes an estimate of the VC-dimension of the set of learnable

functions. [24] minimizes a trade off between kernel values of points in the same class with kernel

values of points in separate classes. Our approach is inspired by [25] in implementing cross-

validation over quantiles of distances between points. Unlike [25], we restrict our consideration to

distances between points in separate classes.

Likewise, there is no consensus on a method for selecting a ridge parameter. One of the most

commonly used approaches is k-fold cross-validation, as in [26, 27, 28, 29]. [30, Corollaries 3 and

4.] selects the ridge parameter based the rate of eigenvalue decay for the kernel. [31] minimizes

a validation mean-squared error over a uniform grid of values. The most popular method for

automatic ridge parameter selection is generalized cross-validation (GCV) [15, 17, 16]. However,

we have found that GCV can under-select the ridge penalty when the data contains noise features.

The method developed here is based on a covariance stabilization technique presented in [14].

Empirical results show the superior performance of our stabilization method compared to GCV.

2.1.2 Notation

We use the following notation throughout the Chapter. For a vector v ∈ Rp, let ∥v∥2 :=√∑p
i=1 |vi|2 be the Euclidean norm, ∥v∥1 :=

∑p
i=1 |vi| be the ℓ1 norm, and ∥v∥∞ := max |vi|

be the ℓ∞ norm. Let ⟨x,x′⟩ :=
∑p

i=1 xix
′
i be the Euclidean inner product in Rp. For a matrix

M ∈ Rn×k, let Mi,j denote the (i, j) element of M . Let ∥M∥op := sup∥x∥2=1 ∥Mx∥2 be the

operator norm, and let ∥M∥F :=
√∑n

i=1

∑k
j=1 |Mi,j|2 be the Frobenius norm. Let I be the n× n

identity matrix. Let 1 ∈ Rn be the vector of all 1s, and let C = I − n−111T be the centering

15

matrix.

2.2 Kernel Optimal Scoring

2.2.1 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces (RKHS) are commonly used in creating non-linear clas-

sifiers. The data is mapped into a RKHS H via Φ : Rp → H with an accompanying kernel

k : Rp × Rp → R such that ⟨Φ(x),Φ(x′)⟩H = k(x,x′) for any x,x′ ∈ Rp. We let ∥ · ∥H be the

norm induced by the inner product ⟨· , ·⟩H. By the reproducing property ofH: ⟨Φ(x), f⟩H = f(x)

for all x ∈ Rp and f ∈ H. Thus, any classifier that relies on the training data only through the

inner products can be kernelized by substituting kernel evaluations in place of inner products. This

effectively creates a classifier inH rather than in Rp.

Some commonly-used kernels are the gaussian kernel k(x,x′) = exp(−σ−2∥x − x′∥22) with

parameter σ > 0, the polynomial kernel k(x,x′) = (1 + ⟨x,x′⟩)d with d being a positive integer,

and the sigmoid kernel k(x,x′) = tanh(c ⟨x,x′⟩+ t) with c > 0, t ≥ 0. We refer the reader to [5,

Chapter 13] for a review on kernel construction and selection. We let K ∈ Rn×n denote the kernel

matrix Ki,j := k(xi,xj) based on observed feature vectors {xi}ni=1.

2.2.2 Kernel Optimal Scoring

In this section we derive the kernelized formulation of the optimal scoring problem (1.9). Let

f be the discriminant function in H with corresponding map Φ and kernel k. We substitute each

inner product in the original space x⊤
i β = ⟨xi, β⟩ with inner product inH, ⟨Φ(xi)−Φ, f⟩H, where

we apply centering to Φ(xi) via Φ := n−1
∑n

i=1Φ(xi) to take into account column-centering of

X . The corresponding optimal scoring problem inH takes the form

minimize
f∈H

∥∥∥∥Y θ̂ −

⟨
Φ(x1)− Φ , f

⟩
H

...⟨
Φ(xn)− Φ , f

⟩
H


∥∥∥∥2

2

.

16

By the Representer Theorem [32], the minimizing f̂ lies in the finite-dimensional span of the

centered data, that is it is sufficient to consider minimization over f =
∑n

i=1 αi[Φ(xi) − Φ] for

some αi ∈ R. Combining the Representer Theorem with kernel representation of inner-products

inH leads to the equivalent coefficient space formulation of the kernel optimal scoring problem:

minimize
α∈Rn

∥Y θ̂ − CKCα∥22. (2.1)

Kernel methods may over-fit the training data without further restriction on the set of functions

f ∈ H, [33, 5, 34]. A common approach is to restrict the norm ∥f∥2H = α⊤CKCα, and we add a

ridge penalty to the objective function (2.1)

minimize
α∈Rn

{
1

n
∥Y θ̂ − CKCα∥22 + γαTCKCα

}
, (2.2)

where γ > 0 controls the level of regularization. For numerical stability, we also add εI with small

ε > 0 to the ridge penalty so that CKC is replaced with CKC + εI . A similar adjustment is used

in [8, 9]. We fix ε = 10−5 throughout the Chapter. The problem has a closed-form solution leading

to

α̂ = {(CKC)2 + nγ(CKC + εI)}−1CKCY θ̂. (2.3)

We call (2.2) the kernel optimal scoring problem or KOS.

2.2.3 Classification of a New Data Point

In this section we describe how to use KOS for classification. Let α̂ be as in (2.3), and let

f̂ =
∑n

i=1 α̂i[Φ(xi)− Φ]. Given a new data point x ∈ Rp, let

K(X,x) =

(
k(x1,x) · · · k(xn,x)

)⊤

.

17

We define the projected value P (x) as the inner-product between x mapped and centered inH and

f̂ so that P (x) is equal to

⟨
Φ(x)− Φ, f̂

⟩
H
= (K(X,x)⊤ − n−11⊤K)Cα̂. (2.4)

The derivation of (2.4) is in Section 2.8.

KOS classifies x ∈ Rp using nearest centroids classification on the projected values. Specifi-

cally, let µk = 1
nk

∑
i∈Gk

P (xi) be the mean projected values of group k (projected centroid). We

classify x ∈ Rp according to the minimal distance to projected centroids

argmin
k=1,2

|P (x)− µk|.

2.3 Error Bounds for Kernel Optimal Scoring

Problem (2.2) can be viewed as a regularized empirical risk minimization problem

f̂ = argmin
f∈H

{
Remp(f) + γ∥f∥2H

}
, (2.5)

where for a fixed f ∈ H

Remp(f) :=
1

n

n∑
i=1

|y⊤i θ̂ −
⟨
Φ(xi)− Φ, f

⟩
|2. (2.6)

By duality, for every γ ≥ 0 there exists a τ ≥ 0 such that

f̂ = argmin
∥f∥H≤τ

{Remp(f)} . (2.7)

While the relationship between γ and τ is data-dependent, Lemma 5 in Section 2.10 shows that τ ≤

Cmin(γ−1, γ−1/2) for some constant C > 0. For technical clarity, we analyze (2.7) throughout.

There are two complications in analyzing the empirical risk in (2.6): θ̂ is dependent on all yi

18

through n1, n2, and Φ is dependent on all xi. Hence, the error terms |y⊤i θ̂ −
⟨
Φ(xi)− Φ, f

⟩
|2 are

dependent. The empirical risk can be equivalently written as

Remp(f, β) =
1

n

n∑
i=1

|y⊤i θ̂ − β − ⟨Φ(xi), f⟩ |2,

with the minimizing β̂ = −⟨Φ, f⟩ since 1⊤Y θ̂ = 0. We therefore introduce a modified empirical

risk using population scores θ∗ and an extra intercept parameter β ∈ R. The population scores θ∗

result from substituting πk instead of nk/n in θ̂.

Definition 1. Let πk = P (i ∈ Ck) be the prior class probabilities, k = 1, 2. The population scores

are defined as θ∗ = (
√
π2/π1 −

√
π1/π2)

⊤.

For a fixed f ∈ H and β ∈ R, the modified empirical risk is

R̃emp(f, β) =
1

n

n∑
i=1

|y⊤i θ∗ − β − ⟨Φ(xi), f⟩ |2.

Unlike the empirical risk, the modified empirical risk is the average of iid terms. For a fixed f ∈ H

and β ∈ R, the corresponding expected risk is

R(f, β) := E(x,y)|y⊤θ∗ − β − ⟨Φ(x), f⟩ |2.

Let f̂ be as in (2.7) and let β̂ = −⟨Φ, f̂⟩. We next derive probabilistic bounds on the expected

risk of f̂ . Throughout, we use the following assumptions.

Assumption 3. Let πmax = max(π1, π2), πmin = min(π1, π2). There exists a constant C > 0 such

that ∥θ∗∥∞ =
√
πmax/πmin ≤ C.

This assumption implies that the prior group probabilities are not degenerate, that is π1 ≍ π2.

Assumption 4. There exists a constant κ > 0 such that ∥Φ(x)∥H ≤ κ for all x ∈ Rp. Equivalently,

supx∈Rp k(x,x) ≤ κ2.

19

Assumption 5. The RKHSH is separable.

Remark 1. The gaussian kernel satisfies Assumption 4 with κ = 1 and satisfies Assumption 5 by

Theorem 7 in [35].

Using (2.7), we define the set of admissible functions f as Hτ := {f ∈ H : ∥f∥H ≤ τ}, and

the set of admissible intercepts β as Iτ := {β ∈ R : |β| ≤ ∥θ∗∥∞ + κτ}.

Remark 2. The intercept β̂ ∈ Iτ by Assumption 4. The extra term ∥θ∗∥∞ comes from minimizing

the modified empirical risk.

Let

(f̃ , β̃) := argmin
f∈Hτ , β∈Iτ

R̃emp(f, β). (2.8)

be the minimizers of the modified empirical risk over the set of admissible functions and intercepts,

and let

(f ∗, β∗) = argmin
f∈Hτ , β∈Iτ

R(f, β) (2.9)

be the minimizers of the expected risk over the set of admissible functions and intercepts. Our

proofs rely on characterizing (i) the difference between (2.7) and (2.8), and (ii) the difference

between (2.8) and (2.9). The detailed proofs are in Section 2.9, and below we state the main

results.

Theorem 4. Under Assumptions 3–5, there exist constants C1, C2, C3 > 0 such that

P
(
R(f̂ , β̂) > R(f ∗, β∗) + ε

)
≤ C1Nε exp

(
− C3nε

2

(∥θ∗∥∞ + κτ)4

)
,

where Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(C2τ
2ε−2).

Theorem 5. Under Assumptions 3–5, there exist constants C1, C2, C3 > 0 such that

P
(
R(f̂ , β̂) > Remp(f̂) + ε

)
≤ C1Nε exp

(
− C3nε

2

(∥θ∗∥∞ + κτ)4

)
,

where Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(C2τ
2ε−2).

20

●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
● ●

●●
●

●

●●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●

●●●

●

●

● ●
●

●

●

●●
●●

●●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

Train Test

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Feature 1

F
ea

tu
re

 2 Category

●● 1

2

●

●●

●

●

●
●● ●

●
●

●
●

●●
●

●

●
●

●●
●

●

●

● ●●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

Train Test

−1.5 −1.0 −0.5 0.0 0.5 1.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−1

0

1

Noise 1

N
oi

se
 2 Category

●● 1

2

Figure 2.1: Simulated training and test data with four features, only features 1 and 2 contribute to
class separation. Reproduced from [1].

Theorem 4 bounds the expected risk of f̂ compared to the best in-class expected risk, whereas

Theorem 5 bounds it in terms of the empirical risk of f̂ .

2.4 Sparse Kernel Optimal Scoring

The regularized KOS problem (2.2) performs no feature selection, that is all p features are used

in construction of f̂ and the subsequent classification rule. In many applications, however, it is

reasonable to expect that not all the features contribute to class separation. Including such noisy

features in the discriminant rule can lead to poor classification performance. Figure 2.1 shows an

example of this phenomenon based on simulated data with four features. Only the first two features

contribute to class separation, while the third and fourth features are noise.

Figure 2.2 shows the projected data values (2.4) formed by applying KOS to (i) all four features

and (ii) only the first two features. The class separation is perfect based on the two “true" features,

but the projected values overlap with the addition of noisy features, thus illustrating the need for

21

−1.0

−0.5

0.0

0.5

1.0

KOS Sparse KOS

Sparsity

P
ro

je
ct

io
n Category

1

2

Figure 2.2: Comparing the projection values (2.4) of the test data in Figure 2.1 with and without
sparsity. Reproduced from [1].

feature selection within KOS.

To incorporate feature selection, we borrow the ideas from [10] and introduce a weight vector

w ∈ Rp, where we restrict each feature as wj ∈ [−1, 1]. The weight vector is used to form the

weighted kernel matrix (Kw)i,j = k(wxi, wxj), where wx = (w1x1, . . . , wpxp)
T is the Hadamard

product between the weight vector w and observed feature vector x. If w = 1, Kw = K from

Section 2.2.2. Otherwise, w can be used to rescale features with respect to each other, and more

importantly perform feature selection. If wj = 0 for some feature j, then the kernel matrix Kw is

formed without the jth feature, successfully eliminating that feature from the classification rule.

The main difficulty, of course, is that the optimal weight vector w is unknown, and therefore has

to be learned in addition to learning the discriminant function f .

Guided by these considerations, we adjust (2.2) to perform joint minimization over the coef-

ficient vector α ∈ Rn and the weight vector w ∈ Rp. To encourage feature selection, we add an

ℓ1-penalty on w as in [10] leading to the following minimization problem:

minimize
α∈Rn, w∈Rp

{
1

n
∥Y θ̂ − CKwCα∥22 + λ∥w∥1 + γαT (CKwC + εI)α

}
subject to − 1 ≤ wi ≤ 1 for i = 1, . . . , p.

(2.10)

Here λ ≥ 0 is the tuning parameter that controls the sparsity of the weight vector w, with

22

larger values leading to sparser solutions. We call (2.10) sparse kernel optimal scoring. Given the

solution pair (ŵ, α̂), we perform classification as in Section 2.2.3 with Kŵ being substituted for K

and ŵx substituted for x in forming the projected values P (x) in (2.4).

Remark 3. Unlike our restriction wk ∈ [−1, 1], [10] considers wk ∈ [0, 1]. Both lead to w2
k ∈

[0, 1], but we found that the latter may force all the weights to zero even when λ = 0. This behavior

is avoided when the weights are allowed to be negative.

2.4.1 Optimization Algorithm

In this section we describe the optimization algorithm for problem (2.10) given the fixed values

of γ, λ ≥ 0. Methods for parameter selection are presented in Section 2.5. We define the objective

function in (2.10) as

Obj(w, α) =
1

n
∥Y θ̂ − CKwCα∥22 + λ∥w∥1 + γαT (CKwC + εI)α. (2.11)

There are two main challenges in solving (2.10): (i) non-convexity of the objective function

(2.11) in (α,w) and (ii) non-convex mapping w 7→ Kw. [10] propose to overcome these chal-

lenges by (i) iterative minimization over α and w and (ii) linearization of the weighted kernel

matrix Kw with respect to the current value of weight vector. We adapt the algorithm from [10] to

problem (2.10).

Given the current value of the weight vector w, we form the corresponding weighted kernel

matrix Kw and update α according to (2.3) with K substituted with Kw. Given the current value

of the coefficient vector α, we update w using linearization of kernel matrix.

Consider the first-order Taylor approximation of Kw with respect to w centered at previous

value w(t−1):

K̃w = Kw(t−1) +∇wK
T
w(t−1)(w

(t) − w(t−1)).

23

Input : X ∈ Rn×p, Y ∈ Rn×2, θ̂, σ > 0, γ > 0, λ ≥ 0 , convergence threshold εcon

Output: Discriminant coefficients α̂ and feature weights ŵ.
t← 0

w(0) ← 1
(Kw(0))i,j ← k(w0xi, w

0xj), Kw(0) ← {(Kw0)i,j}
repeat

t← t+ 1

Update α(t) according to (2.3) with K = Kw(t−1)

Update w(t) using coordinate descent with updates according to (2.14)
(Kw(t))i,j ← k(w(t)xi, w

(t)xj)

until Obj(α(t), w(t))− Obj(α(t−1), w(t−1)) < εcon

return α̂ = α(t), ŵ = w(t)

Algorithm 1: Sparse Kernel Optimal Scoring

We substitute K̃w in place of Kw within (2.10). Let T ∈ Rn×p be

T :=


∑n

ℓ=1(Cα)ℓ∇w Kw(t−1)(x1,xℓ)
T

...∑n
ℓ=1(Cα)ℓ∇w Kw(t−1)(xn,xℓ)

T

 .

For fixed α, the minimization problem (2.10) with respect to w can be written as

minimize
w

{
1

2
w⊤Qw − β⊤w +

λ

2
∥w∥1

}
subject to − 1 ≤ wi ≤ 1 for i = 1, . . . , p;

(2.12)

where

Q =
1

n
(CT)⊤CT ∈ Rp×p,

β =
1

n
T⊤C[Y θ̂ − CKw(t−1)Cα + CTw(t−1)]− 2−1γT⊤Cα ∈ Rp.

(2.13)

Section 2.4.2 provides details on kernel linearization and weight vector update, while the full

algorithm is presented in Algorithm 1.

24

2.4.2 Update of Weights

In this section, we describe the update of weight vector using the linearization of kernel matrix

as proposed in [10].

Problem (2.12) is of the same form as the penalized lasso problem [36, Chapter 5] with extra

convex constraints on w. Therefore, we can use coordinate-descent algorithm to solve (2.12).

Consider optimizing (2.12) with respect to wk. From the KKT conditions [37], the solution

must satisfy

ŵk = sign(w̃k)min(|w̃k|, 1), (2.14)

where

w̃k :=
1

Qkk

Sλ/2

(
βk −

∑
i ̸=k

Qkiwi

)
,

and Sλ/2(x) := sign(x)max{|x| − λ/2, 0} is the soft-thresholding function. The coordinate-

descent algorithm proceeds by applying update (2.14) on each feature k until convergence.

The full algorithm for (2.10) is summarized as Algorithm 1. While the update of w is based

on approximation of objective function (2.11), in our experience the objective function is always

decreasing at each iteration. In case of convergence issues, one can use a line search along a

descent direction of w [10]. We refer to [10] for further discussion of algorithmic convergence.

2.5 Parameter Selection

This section describes the selection of the kernel parameter (tailored to the gaussian kernel

parameter σ2), ridge parameter γ, and sparsity parameter λ.

2.5.1 Gaussian Kernel Parameter Selection

We propose to use 5-fold cross-validation to minimize the error rate. To reduce computational

cost, we only consider five tuning parameters based on the {.05, .1, .2, .3, .5} quantiles of the set

of squared distances between the classes

{∥xi1 − xi2∥22 : xi1 ∈ C1, xi2 ∈ C2}.

25

This approach is similar to the one used in the R package kernlab [25], which takes values between

.1 and .9 quantiles of the distance statistic ∥x − x′∥2 between distinct data points taken from a

random subset of the full data. [38] and [25] state that good performance can be achieved with

any value of σ in this range. Our approach is different in that (i) we select one value based on CV,

(ii) only look at the distances between classes, and (iii) only consider lower quantiles. We find

that this yields good predictive accuracy, and we conjecture that the reason is the presence of noise

features, which inflate the distance values ∥xi1−xi2∥2. This is supported by empirical observation

that the quantiles based on the full set of features will exceed the corresponding quantiles based on

the reduced set of informative features.

2.5.2 Ridge Parameter Selection

Due to the computational expense of cross-validation, we propose an alternative approach for

ridge parameter selection based on the shrinkage of kernel matrix. [14] proposes to stabilize the

kernel matrix via shrinkage towards a target matrix, and derives an optimal value for the shrinkage

parameter. Following [14], in KOS we want to stabilize (CKwC)
2 with the target matrix CKwC+

εI , and therefore consider

(CKwC)
2 + γ(CKwC + εI)

for γ > 0. Let t = γ/(1 + γ), then the optimal value of t is t̂ = min(max(0, t̃), 1), where

t̃ :=
n

(n− 2)

(∥diag(CKC)∥2F − 1
n
∥CKC∥2F

∥CKC∥2F

)
.

Solving back for γ gives the ridge penalty γ̂ = t̂/(1− t̂). We call this approach Stabilization.

Generalized cross-validation (GCV) [15, 17, 16] is another common method for selection of

ridge parameter, however we found that it performs poorly compared to proposed Stabilization

method. Figure 2.3 compares the selected ridge parameters as well as corresponding error rates

for two methods. We generate 100 training and testing datasets following the model in Section

2.6.1. Each time we consider five possible kernel parameters σ2 based on the distance quantiles as

in Section 2.5.1. We then select ridge parameters by either GCV or proposed stabilization method,

26

0.0

0.1

0.2

0.3

0.05 0.1 0.2 0.3 0.5

Distance Quantiles

R
id

ge
 P

ar
am

et
er

 V
al

ue
s

Method

GCV

Stabilization

0.0

0.1

0.2

0.3

0.4

0.05 0.1 0.2 0.3 0.5

Distance Quantiles

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

GCV

Stabilization

Figure 2.3: Comparison between generalized cross-validation (GCV) and proposed Stabilization
method for selection of ridge parameter γ over 100 replications. Top: Selected values of γ; Bot-
tom: Misclassification error rates. Reproduced from [1].

and choose the best sparsity parameter for each as in Section 2.5.3. We find that GCV consistently

selects smaller value for the ridge parameter than our approach leading to higher error rates. We

conjecture that surprisingly poor performance of GCV is due to the presence of noise variables,

although we do not have the formal justification.

2.5.3 Sparsity parameter selection

We select λ using 5-fold cross-validation (CV) to minimize the error rate over a grid of 20

equally-spaced values in [10−10λmax, λmax]. We set λmax = 2∥β∥∞, where β is as in (2.13), since

the solution ŵ to (2.12) is zero if λ ≥ λmax (see Lemma 3 of Section 2.10).

2.6 Empirical studies

We compare the performance of the following methods: (i) sparse kernel optimal scoring

(Sparse KOS); (ii) kernel optimal scoring (KOS); (iii) random forests; (iv) kernel support vec-

27

tor machines (kernel SVM); (v) neural networks; (vi) K-nearest neighbors (KNN); and (vii) sparse

linear discriminant analysis (sparse LDA).

We implement sparse KOS using the gaussian kernel with parameters selected as in Section

2.5, KOS is implemented by setting λ = 0 and w = 1. We use the R package randomForest

[39] to create a classifier with 50 decision trees. We use the R package kernlab [25] for kernel

SVM using the gaussian kernel with parameter selected as in Section 2.5.1. We use keras [40]

to implement a neural network with the ReLU activation function, 50 units, 100 epochs, and the

default batch size. We use class [41] for KNN with K = 5. We use the R package MGSDA [42]

for sparse LDA.

2.6.1 Simulated model 1

We generate data as in Figure 2.1 with p = 4 features (x1, x2, x3, x4). The first two features

satisfy
√
x2i1 + x2i2 ≥ 2/3 if the ith sample is in class 1, and

√
x2i1 + x2i2 ≤ 2/3 − 1/10 if the ith

sample is in class 2. We generate 300 samples with each feature from the uniform distribution on

[−1, 1] and only leave samples that satisfy one of the class requirements (n ≈ 270). The remaining

two features are generated as independent gaussian noise variables, xij ∼ N (0, 2−1) for j = 3, 4

and all samples i. We use 2/3 of the samples for training, and 1/3 for testing, maintaining the class

proportions. We repeat the data generation process and the split 100 times, the misclassification

error rates over test data sets are presented in Figure 2.4.

Sparse KOS performs the best out of all classifiers with random forest being second-best.

Sparse LDA performs the worst, likely due to non-linear optimal classification boundary. Sparse

KOS has excellent feature selection in this study. It gives nonzero weight to the first two features

in all 100 splits, and it gives ŵj = 1 for j = 1, 2 in 98 out of 100 replications, and ŵj = 0 for

j = 3, 4 in 99 out of 100 replications.

The results show that sparse kernel optimal scoring out performs the six other non-parameteric

classifiers. The median misclassification error rate for sparse KOS is 0.00%, and the upper quartile

error rate is 1.11%. By comparison, the lower quartile error rate for random forest classification

is 1.08% and the median is 2.15%. Sparse linear discriminant analysis has a median error rate of

28

0.0

0.1

0.2

0.3

Sparse KOS KOS Random Forest Kernel SVM Neural Networks KNN Sparse LDA

Classification Method

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es
 o

n
Te

st
 D

at
a

Figure 2.4: Misclassification error rates based on 100 replications of simulated model 1. Repro-
duced from [1].

0.00

0.25

0.50

0.75

1.00

1 2 3 4

Feature

M
ea

n
A

bs
ol

ut
e

V
al

ue

Figure 2.5: Average of the absolute values of the weight values for each feature across the 100
independent simulations of model 1. Bars represent plus or minus twice the standard error. Repro-
duced from [1].

28.65%. Kernel SVM has a median error rate of 5.38%, while KOS has a median error rate of

8.60%. Neural Networks have a median error rate of 7.53%.

2.6.2 Simulated model 2

We generate data with p = 10 features and n = 400 samples such that xi3 + sin(xi4 + xi1) <

(xi2)
2 if sample i belongs to class 1, and xi3 + sin(xi4 + xi1) ≥ (xi2)

2 if sample i belongs to class

2. We use the uniform distribution on [−1, 1] for each xij , so that the last 6 features are uniform

noise.

29

0.1

0.2

Sparse KOS KOS Random Forest Kernel SVM Neural Networks KNN Sparse LDA

Classification Method

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es
 o

n
Te

st
 D

at
a

Figure 2.6: Misclassification error rates based on 100 replications of simulated model 2. Repro-
duced from [1].

As with the previous example, we use 2/3 of the samples for training, and 1/3 for testing, where

the split is performed to maintain the class proportions. We repeat the data generation process and

the split 100 times. The misclassification error rates over test datasets are presented in Figure 2.6.

The lowest misclassification error rates are achieved by sparse KOS, KOS, and neural network

classifiers. Sparse KOS behaves similarly to KOS because sparse KOS is unable to consistently se-

lect true features. Nevertheless, it gives higher weight values to true features as displayed in Figure

2.7. As with the previous example, sparse LDA performs the worst due to optimal classification

boundary being non-linear.

2.6.3 Benchmark datasets

We consider three datasets summarized in Table 2.1, which are publicly available from the

UCI Machine Learning Repository. We randomly split each dataset 100 times preserving the class

proportions, and use 2/3 for training and 1/3 for testing. We do not present the error rates for sparse

LDA due to its poor performance on these datasets (it classifies every point to the largest of two

groups), the misclassification error rates for all other methods are in Table 2.2.

In the blood donation study [43], the goal is to determine whether a person will donate blood

given four features: Recency (months since last donation), Frequency (total number of donations),

Monetary (total blood donated in cubic centimetres), and Time since first donation. Sparse KOS

30

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

Feature

M
ea

n
A

bs
ol

ut
e

V
al

ue

Figure 2.7: The mean absolute values of weights |wj| for each feature across 100 replications of
simulated model 2. The bars represent ±2 standard errors. Reproduced from [1].

Dataset Features size Sample size
Blood donation [43] p = 4 n = 748
Climate model failure [44] p = 18 n = 540
Credit card default [45] p = 24 n = 3, 000

Table 2.1: Description of benchmark datasets. Reproduced from [1].

Blood Donation Climate Model Credit Default
Sparse KOS 22.1 (0.18) 4.9 (0.13) 18.2 (0.06)
KOS 22.2 (0.20) 5.4 (0.12) 19.1 (0.08)
Random Forest 24.3 (0.18) 8.2 (0.06) 19.1 (0.08)
Kernel SVM 22.4 (0.12) 8.7 (0.00) 20.0 (0.08)
Neural Network 23.9 (0.04) 5.4 (0.15) 21.7 (0.04)
KNN 23.5 (0.20) 7.6 (0.08) 20.8 (0.08)

Table 2.2: Mean misclassification errors (%) over 100 random splits, standard errors are in brack-
ets. Reproduced from [1].

consistently gives large weights (|wj| > 0.9) to every feature but Frequency. The latter gets large

weight in only 50% of splits. Sparse KOS performs similarly to KOS, and we conjecture this is

because all four features are important for classification.

31

0.00

0.25

0.50

0.75

1.00

Recency Frequency Monetary Time

Feature

M
ea

n
A

bs
ol

ut
e

V
al

ue

Figure 2.8: Average of the absolute values of the weight values based on 100 replications of the
Blood Donation simulation. Error bars indicate plus or minus two standard errors of the mean.
Reproduced from [1].

0.20

0.25

0.30

Sparse KOS KOS Random Forest Kernel SVM Neural Networks KNN

Classification Method

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es
 o

n
Te

st
 D

at
a

Figure 2.9: Misclassification error rates based on 100 replications for the blood donation data set.
Reproduced from [1].

In the climate model study [44], the goal is to predict whether a climate simulation will crash

based on 18 initial parameter values. Sparse KOS consistently selects 4 out of 18: features 1, 2

(variable viscosity parameters), feature 13 (tracer and momentum mixing coefficient), and feature

14 (base background vertical diffusivity).The error rates for 100 iterations are shown in Figure

2.10. Figure 2.13 shows a boxplot of the model sizes over those 100 iterations. The median

number of nonzero coefficients used in sparse KOS is 7. Sparse KOS has the best classification

performance on these data, which is likely due to its feature selection.

32

0.025

0.050

0.075

0.100

Sparse KOS KOS Random Forest Kernel SVM Neural Networks KNN

Classification Method

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es
 o

n
Te

st
 D

at
a

Figure 2.10: Misclassification error rates based on 100 replications of the climate model failure
simulation data. Reproduced from [1].

The credit card data [45] have 30,000 data points, but we restrict to n = 3, 000 for compu-

tational simplicity. The goal is to predict the default of a customer for the credit payment based

on 24 available features. Sparse KOS has the best classification performance, followed by KOS

and random forests. We found that sparse KOS always selects feature 6 (the repayment status in

September, 2005, the latest monthly payment recorded), and almost never selects other features.

This indicates that the most recent payment history is strongly indicative of credit default.

The misclassification error rates for 100 iterations are depicted in Figure 2.11. Sparse KOS

clearly performs better than the other six classifiers. The median misclassification error rate for

sparse KOS is 18.0%, and the upper quartile rate is 18.5%. By comparison, the next best classifier,

random forests, has a lower quartile error rate of 18.6% and a median rate of 19.3%. KOS has a

lower quartile rate of 18.7% and a median rate of 19.2%. Sparse LDA has a constant error rate

across all iterations because it classifies all test data points as belonging to the same class.

2.7 Discussion

In this Chapter, we propose a kernel discriminant classifier with sparse feature selection called

sparse kernel optimal scoring. An advantage of sparsity is that it often improves the classification

performance (see Section 2.6), and leads to more interpretable classification rules. The nonzero

weights produced by sparse KOS can be used to judge the importance of features. While we have

33

0.18

0.20

0.22

Sparse KOS KOS Random Forest Kernel SVM Neural Networks KNN

Classification Method

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es
 o

n
Te

st
 D

at
a

Figure 2.11: Credit card Default simulation. Misclassification error rates based on 100 replications
for sparse kernel optimal scoring (sparse KOS), kernel optimal scoring (KOS), random forests,
kernel support vector machines (Kernel SVM), neural networks, K-nearest neighbors (KNN), and
sparse linear discriminant analysis (Sparse LDA). Reproduced from [1].

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Feature

M
ea

n
A

bs
ol

ut
e

V
al

ue

Figure 2.12: Average absolute values for the feature weight values across the 100 simulations of
the Credit Card Default simulation. Bars represent plus or minus twice the standard error of the
mean. Reproduced from [1].

focused the discussion on the case of two classes, the method can be generalized to multiple classes

using optimal scoring formulation in [46].

One limitation of sparse KOS is that it requires the construction of a n × n kernel matrix K,

and therefore is computationally prohibitive for large n cases. An interesting direction for fu-

ture research is to investigate the appropriate low-dimensional approximations of K within kernel

optimal scoring framework.

34

0.00

0.25

0.50

0.75

1.00

Blood Donation Climate Model Credit Default

Data Set

P
ro

po
rt

io
n

of
 N

on
−

ze
ro

 W
ei

gh
ts

Figure 2.13: Average ratio of number of nonzero weights across the 100 splits in each simulation
study using the benchmark data sets. Reproduced from [1].

2.8 Derivation of Projection Formula (2.4)

Proof. Since f̂ =
∑n

i=1 α̂i[Φ(xi)− Φ],

⟨
Φ(x)− Φ, f̂

⟩
H

=

⟨
Φ(x)− Φ ,

n∑
i=1

α̂i[Φ(xi)− Φ]

⟩
H

=
n∑

i=1

α̂i

⟨
Φ(x)− Φ,Φ(xi)− Φ

⟩
H

=
n∑

i=1

α̂i ⟨Φ(x),Φ(xi)⟩H −
n∑

i=1

α̂i

⟨
Φ(x),Φ

⟩
H −

n∑
i=1

α̂i

⟨
Φ,Φ(xi)

⟩
H +

n∑
i=1

α̂i

⟨
Φ,Φ

⟩
H

=
n∑

i=1

α̂ik(x,xi)− (1⊤α̂)
1

n

n∑
i=1

k(x,xi)−
1

n

n∑
i=1

n∑
j=1

α̂ik(xj,xi) + (1⊤α̂)
1

n2

n∑
i=1

n∑
j=1

k(xi,xj).

Let K(X,x) :=

(
k(x1,x) · · · k(xn,x)

)⊤

. Then from the above display

⟨
Φ(x)− Φ, f̂

⟩
H
= K(X,x)⊤α̂− n−1K(X,x)⊤11⊤α̂− n−11⊤Kα̂ +

1

n2
1⊤K1(1⊤α̂)

= K(X,x)⊤Cα̂− 1

n
1⊤KCα̂

= (K(X,x)⊤ − 1

n
1⊤K)Cα̂,

35

Theorem 4Theorem 5

Theorem 9Theorem 6 Theorem 7 Theorem 8

Lemma 7Lemma 6 Lemma 9Lemma 8

Lemma 12Lemma 11Lemma 10

Figure 2.14: Proof charts for Theorems 4 and 5. Reproduced from [1].

where C = I − n−111⊤ is the centering matrix.

2.9 Technical Proofs

In this section we prove the results stated within the main text. We use C, C1, C2, . . . to

denote absolute positive constants that don’t depend on the sample size n but which may depend

on ∥θ∗∥∞, κ, or τ . Their values may change from line to line. The dependence between the main

Theorems and supplementary results is depicted below.

36

2.9.1 Proofs of Theorems 1 and 2

Proof of Theorem 4. Consider

R(f̂ , β̂)−R(f ∗, β∗)

= R(f̂ , β̂)− R̃emp(f̂ , β̂)︸ ︷︷ ︸
I1

+ R̃emp(f̂ , β̂)− R̃emp(f̃ , β̃)︸ ︷︷ ︸
I2

+ R̃emp(f̃ , β̃)−R(f ∗, β∗)︸ ︷︷ ︸
I3

.

By the union bound and de Morgan’s law,

P
(
R(f̂ , β̂)−R(f ∗, β∗) > ε

)
≤ P

(
I1 >

ε

3

)
+ P

(
I2 >

ε

3

)
+ P

(
I3 >

ε

3

)
.

Applying Theorems 6, 7 and 8 to I1, I2 and I3 correspondingly, there exist constants C,Ci > 0

such that

P
(
R(f̂ , β̂)−R(f ∗, β∗) > ε

)
≤ 2Nε exp

(
− nε2

128(∥θ∗∥∞ + κτ)4

)
+ C2 exp

(
− C3nε

2

1 + (κτ)2

)
+ 2 exp

(
− nε2

16(∥θ∗∥∞ + κτ)4

)
≤ C4Nε exp

(
− C5nε

2

(∥θ∗∥∞ + κτ)4

)
,

where Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(Cτ 2ε−2). This concludes the proof of Theorem 4.

Proof of Theorem 5. Consider

R(f̂ , β̂)−Remp(f̂) = R(f̂ , β̂)− R̃emp(f̂ , β̂)︸ ︷︷ ︸
I1

+ R̃emp(f̂ , β̂)−Remp(f̂)︸ ︷︷ ︸
I2

.

By the union bound and de Morgan’s law,

P
(
R(f̂ , β̂)−Remp(f̂) > ε

)
≤ P

(
I1 >

ε

2

)
+ P

(
I2 >

ε

2

)
.

37

Applying Theorem 6 for I1 and Theorem 9 for I2, the exist constants Ci > 0 such that

P
(
R(f̂ , β̂)−Remp(f̂) > ε

)
≤ 2Nε exp

(
− nε2

128(∥θ∗∥∞ + κτ)4

)
+ C3 exp

(
− C4nε

2

1 + (κτ)2

)
≤ C5Nε exp

(
− C6nε

2

(∥θ∗∥∞ + κτ)4

)
,

where Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(C1τ
2ε−2). This concludes the proof of Theorem 5.

2.9.2 Supplementary Theorems

Theorem 6. Under Assumptions 3-5, there exists a constant C2 > 0 such that for all ε > 0,

P
(

sup
f∈Hτ , β∈Iτ

{R(f, β)− R̃emp(f, β)} > ε
)
≤ 2Nε exp

(
− nε2

128(∥θ∗∥∞ + κτ)4

)
,

where Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(C2τ
2ε−2).

Theorem 7. Let β̂ = −
⟨
Φ, f̂

⟩
H

. Under Assumptions 3 and 4, there exist constants C1, C2 > 0

such that for all ε > 0,

P
(∣∣∣R̃emp(f̂ , β̂)− R̃emp(f̃ , β̃)

∣∣∣ > ε
)
≤ C1 exp

(
− C2nε

2

1 + (κτ)2

)
.

Theorem 8. Under Assumptions 3 and 4, for all ε > 0

P
(
R̃emp(f̃ , β̃)−R(f ∗, β∗) > ε

)
≤ 2 exp

(
− nε2

16(∥θ∗∥∞ + κτ)4

)
.

Theorem 9. Let Assumptions 3 and 4 be true, and let β(f) := n−1
∑n

i=1 y
⊤
i θ

∗ −
⟨
Φ, f

⟩
H =

Y θ∗ −
⟨
Φ, f

⟩
H be the minimizing β ∈ Iτ for fixed f ∈ Hτ in the modified empirical risk. There

exists constants C1, C2 > 0 such that for all ε > 0

P
(
sup
f∈Hτ

|Remp(f)− R̃emp(f, β(f))| > ε
)
≤ C1 exp

(
− C2nε

2

1 + (κτ)2

)
.

Definition 2. The empirical measure Tx with respect to {xi}ni=1 is defined as Tx := n−1
∑n

i=1 δ(xi),

38

where δ(xi) is the point mass at xi. The space L2(Tx) is the setHτ equipped with the semi-norm

∥f∥L2(Tx) :=

√√√√ 1

n

n∑
i=1

|f(xi)|2 =

√√√√ 1

n

n∑
i=1

| ⟨Φ(xi), f⟩H |2.

Definition 3. Let (X, d) be a pseudometric space. An ε-net is any subset X̃ ⊂ X such that for

any x ∈ X , there exists a x̃ ∈ X̃ satisfying d(x, x̃) < ε. The ε-covering number of (X, d) is the

minimum size of an ε-net for X .

Remark 4. Distances inHτ are given by the semi-norm generated by L2(Tx). Distances in Iτ are

given by the Euclidean distance d(β1, β2) = |β1 − β2|.

2.9.3 Proofs of Supplementary Theorems

Proof of Theorem 6. Let {(xj, yj)}2nj=n+1 be independent from {(xi, yi)}ni=1 and identically dis-

tributed set of n pairs, and let Tx be the empirical measure on {(xi, yi)}2ni=1. Let R̃emp(f, β) be the

modified empirical risk on {(xi, yi)}ni=1, and R̃′
emp(f, β) on {(xj, yj)}2ni=n+1. By symmetrization

lemma (see, for example, Lemma 2 in [47]), for nε2 ≥ 2

P
(

sup
f∈Hτ , β∈Iτ

{R(f, β)− R̃emp(f, β)} > ε

)
≤ 2P

(
sup

f∈Hτ , β∈Iτ
{R̃′

emp(f, β)− R̃emp(f, β)} >
ε

2

)
.

Let c = 64(∥θ∗∥∞ + κτ), and let {f1, . . . , fM} be the smallest L2(Tx) ε/
√
2c-net of Hτ and

{β1, . . . , βK} an ε/c-net of Iτ . Applying Lemma 6 to the above display

P
(

sup
f∈Hτ , β∈Iτ

{R(f, β)− R̃emp(f, β)} > ε

)
≤ 2P

(
maximize
f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃′
emp(f, β)− R̃emp(f, β)} >

ε

4

)
.

Applying Lemma 7 to the right-hand expression gives the final inequality

P
(

sup
f∈Hτ , β∈Iτ

{R(f, β)− R̃emp(f, β)} > ε

)
≤ 2{1 + 2(∥θ∗∥∞ + κτ)/ε} exp

(C1τ
2

ε2

)
exp

(
− nε2

128(∥θ∗∥∞ + κτ)4

)
.

39

This completes the proof of Theorem 6.

Proof of Theorem 7. Let β(f) = Y θ∗ −
⟨
Φ, f

⟩
H. By definition of f̃ , β̃ = β(f̃), R̃emp(f̂ , β̂) ≥

R̃emp(f̃ , β̃). On the other hand, since Remp(f̂) ≤ Remp(f̃),

R̃emp(f̂ , β̂)− R̃emp(f̃ , β̃)

= R̃emp(f̂ , β̂)−Remp(f̂) +Remp(f̂)−Remp(f̃) +Remp(f̃)− R̃emp(f̃ , β̃)

≤ R̃emp(f̂ , β̂)−Remp(f̂) +Remp(f̃)− R̃emp(f̃ , β̃)

≤ R̃emp(f̂ , β̂)− R̃emp(f̂ , β(f̂)) + R̃emp(f̂ , β(f̂))−Remp(f̂) +Remp(f̃)− R̃emp(f̃ , β̃)

≤
∣∣∣R̃emp(f̂ , β̂)− R̃emp(f̂ , β(f̂))

∣∣∣︸ ︷︷ ︸
I1

+2 sup
f∈Hτ

∣∣∣Remp(f)− R̃emp(f, β(f))
∣∣∣︸ ︷︷ ︸

I2

.

The union bound and de Morgan’s law proves

P
(
R̃emp(f̂ , β̂)− R̃emp(f̃ , β̃) > ε

)
≤ P

(
I1 >

ε

2

)
+ P

(
I2 >

ε

2

)
.

Consider I1

∣∣∣R̃emp(f̂ , β̂)− R̃emp(f̂ , β(f̂))
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

(
y⊤i θ

∗ −
⟨
Φ(xi)− Φ , f̂

⟩
H

)2

− 1

n

n∑
i=1

(
y⊤i θ

∗ − Y θ∗ −
⟨
Φ(xi)− Φ , f̂

⟩
H

)2∣∣∣
=

∣∣∣2 1
n

n∑
i=1

Y θ∗
(
y⊤i θ

∗ −
⟨
Φ(xi)− Φ, f̂

⟩
H

)
− 1

n

n∑
i=1

(Y θ∗)2
∣∣∣

=
∣∣∣(Y θ∗)2 − 2(Y θ∗)

1

n

n∑
i=1

⟨
Φ(xi)− Φ, f̂

⟩
H

∣∣∣
= |Y θ∗|2.

By Lemma 9, there exists C1 > 0 such that P(I1 > ε/2) ≤ 2 exp(−C1nε) for all ε > 0. By

Theorem 9, there exists constants C2, C3 > 0 such that P(I2 > ε/2) ≤ C2 exp[−C3(nε
2)/{1 +

40

(κτ)2}]. Combining the bounds for I1 and I2 gives

P
(
R̃emp(f̂ , β̂)− R̃emp(f̃ , β̃) > ε

)
≤ 2 exp(−C1nε) + C2 exp

(
− C3nε

2

1 + (κτ)2

)
≤ C4 exp

(
− C5nε

2

1 + (κτ)2

)

for some constants Ci > 0. This completes the proof of Theorem 7.

Proof of Theorem 8. Consider

R̃emp(f̃ , β̃)−R(f ∗, β∗) = R̃emp(f̃ , β̃)− R̃emp(f
∗, β∗) + R̃emp(f

∗, β∗)−R(f ∗, β∗)

≤ R̃emp(f
∗, β∗)−R(f ∗, β∗),

where the last inequality follows since R̃emp(f̃ , β̃) ≤ R̃emp(f
∗, β∗) by the definition of f̃ , β̃.

Let zi := |y⊤i θ∗−β∗−⟨Φ(xi), f
∗⟩H |2, then R̃emp(f

∗, β∗) = n−1
∑n

i=1 zi is the average of i.i.d.

random variables with Ezi = R(f ∗, β∗) by definition of expected risk. Since |zi| ≤ 4(∥θ∗∥∞ +

κτ)2, by Hoeffding’s inequality

P(|R̃emp(f
∗, β∗)−R(f ∗, β∗)| > ε) = P

(∣∣∣n−1

n∑
i=1

(zi−Ezi)
∣∣∣ > ε

)
≤ 2 exp

(
− nε2

16(∥θ∗∥∞ + κτ)4

)
.

Proof of Theorem 9. By definition of Remp(f) and R̃emp(f, β(f)),

Remp(f)− R̃emp(f, β(f))

=
1

n

n∑
i=1

|y⊤i θ̂ −
⟨
Φ(xi)− Φ, f

⟩
H |

2 − 1

n

n∑
i=1

|y⊤i θ∗ − β(f)− ⟨Φ(xi), f⟩H |
2

=
1

n

n∑
i=1

|y⊤i θ̂ −
⟨
Φ(xi)− Φ, f

⟩
H |

2 − 1

n

n∑
i=1

|y⊤i θ∗ − Y θ∗ −
⟨
Φ(xi)− Φ, f

⟩
H |

2.

41

Expanding the squares and cancelling equal terms yields

Remp(f)− R̃emp(f, β(f))

=
1

n

n∑
i=1

{
(y⊤i θ̂)

2 − (y⊤i θ
∗)2 − 2y⊤i (θ̂ − θ∗)

⟨
Φ(xi)− Φ, f

⟩
H

− 2Y θ∗
⟨
Φ(xi)− Φ, f

⟩
H + 2y⊤i θ

∗Y θ∗ − (Y θ∗)2
}

=
1

n

n∑
i=1

{
(y⊤i θ̂)

2 − (y⊤i θ
∗)2

}
− 1

n

n∑
i=1

{
2y⊤i (θ̂ − θ∗)

⟨
Φ(xi)− Φ, f

⟩
H

}
+ (Y θ∗)2

= I1 + I2(f) + I3,

where I1 and I3 are independent of f . By the union bound and de Morgan’s law,

P
(
sup
f∈Hτ

|Remp(f)− R̃emp(f, β(f))| > ε
)
≤ P

(
|I1| >

ε

3

)
+P

(
sup
f∈Hτ

|I2(f)| >
ε

3

)
+P

(
|I3| >

ε

3

)
.

We bound each probability separately. Since yi ∈ R2 is an indicator vector of class membership

for sample i, using the definition of θ̂ and θ∗

|I1| =
∣∣∣∣ 1n∑{

(y⊤i θ̂)
2 − (y⊤i θ

∗)2
}∣∣ ≤ max

i
|(y⊤i θ̂)2 − (y⊤i θ

∗)2|

= max
(
|n1/n2 − π1/π2|, |n2/n1 − π2/π1|

)
.

By Lemma 8, there exist C1, C2 > 0 such that P(|I1| > ε/3) ≤ C1 exp(−C2nε
2).

42

By Hölder’s and Cauchy-Schwarz inequalities

|I2(f)| =
∣∣∣∣ 1n

n∑
i=1

2y⊤i (θ̂ − θ∗)
⟨
Φ(xi)− Φ, f

⟩
H

∣∣∣∣
≤ 1

n

n∑
i=1

2|y⊤i (θ̂ − θ∗)| · |
⟨
Φ(xi)− Φ, f

⟩
H |

≤ 2∥θ̂ − θ∗∥∞ max
i
|
⟨
Φ(xi)− Φ, f

⟩
H |

≤ 2max
(
|
√
n1/n2 −

√
π1/π2|, |

√
n2/n1 −

√
π2/π1|

)
max

i
∥Φ(xi)− Φ∥H ∥f∥H

≤ 4max
(
|
√
n1/n2 −

√
π1/π2|, |

√
n2/n1 −

√
π2/π1|

)
κτ,

where we used Assumption 4 in the last inequality. Since the upper bound does not depend on f ,

the same bound holds for supf∈Hτ
|I2(f)|. Combining the bound with Lemma 8 gives for some

C3, C4 > 0

P
(
sup
f∈Hτ

|I2(f)| > ε
)
≤ P

(
max

(
|
√
n1/n2 −

√
π1/π2|, |

√
n2/n1 −

√
π2/π1| >

ε

4κτ

)
≤ C3 exp(−C4

nε2

(κτ)2
).

By Lemma 9, there exists C5 > 0 such that P(|I3| > ε/3) ≤ 2 exp(−C5nε).

Combining the bounds for I1, I2 and I3 gives

P
(
sup
f∈Hτ

|Remp(f)− R̃emp(f, β(f))| > ε
)

≤ C1 exp(−C2nε
2) + C3 exp(−C4

nε2

(κτ)2
) + 2 exp(−C5nε)

≤ C6 exp
(
− C7

nε2

1 + (κτ)2

)

for some C6, C7 > 0. This completes the proof of Theorem 9.

43

2.10 Supplementary Lemmas

Lemma 3. Consider minimizing f(w) = 2−1wTQw − βTw + 2−1λ∥w∥1 with respect to w ∈ Rp

with wi ∈ [−1, 1], where Q is positive semi-definite and λ ≥ 0. If λ ≥ 2∥β∥∞, then the minimizing

w is the zero vector.

Proof. Consider 2−1λ∥w∥1 − βTw =
∑p

i=1(λ/2|wi| − βiwi). If λ ≥ 2∥β∥∞, this expression is

non-negative for all w ∈ Rp and a minimum occurs at w = 0. Since Q is positive semi-definite,

wT 1
2
Qw is always non-negative with a minimum at w = 0. It follows that for λ ≥ 2∥β∥∞ the sum

of these terms attains minimum at w = 0.

For a matrix A ∈ Rn×n, let A− denote a generalized inverse.

Lemma 4. Let M = [(CKC)2 + nγ(CKC)]−CKC, then ∥M∥op ≤ (nγ)−1.

Proof of Lemma 4. The kernel matrix K is positive semi-definite since by the reproducing property

for any α ∈ Rn

α⊤Kα =

⟨
n∑

i=1

αiΦ(xi) ,
n∑

i=1

αiΦ(xi)

⟩
H

=
∥∥∥ n∑

i=1

αiΦ(xi)
∥∥∥2

H
≥ 0.

It follows that CKC is also positive semi-definite. Let {λi}ki=1 be the set of non-zero eigen-

values of CKC, then {λi/(λ2i + nγλi)}ki=1 are the non-zero eigenvalues of M = [(CKC)2 +

nγ(CKC)]−CKC. The function t 7→ t/(t2 + nγt) is bounded above by (nγ)−1 for t > 0, hence

∥M∥op ≤ (nγ)−1.

Lemma 5. Let γ > 0. The minimizer f̂ in (2.2) satisfies ∥f̂∥H ≤ 1/
√
γ. Additionally, if Assump-

tion 4 holds for κ > 0, then ∥f̂∥H ≤ 2κ/γ.

Proof of Lemma 5. Comparing the value of objective function in (2.2) at f = f̂ with the value at

f = 0 gives

γ∥f̂∥2H ≤
1

n

n∑
i=1

∣∣∣y⊤i θ̂ − ⟨
Φ(xi)− Φ, f̂

⟩
H

∣∣∣2 + γ∥f̂∥2H ≤
1

n

n∑
i=1

|y⊤i θ̂|2 = 1.,

44

where the last equality follows since n−1θ̂Y ⊤Y θ̂ = 1. It follows that ∥f̂∥H ≤ 1/
√
γ.

On the other hand, since f̂ =
∑n

i=1 αi(Φ(xi)−Φ), by the triangle inequality and Assumption 4

∥f̂∥H =
∥∥∥ n∑

i=1

αi(Φ(xi)− Φ)
∥∥∥
H
≤

n∑
i=1

|αi|∥Φ(xi)− Φ∥H

≤ max
i
∥Φ(xi)− Φ∥H∥α∥1 ≤ 2κ∥α∥1 ≤ 2κ

√
n∥α∥2.

Since α = {(CKC)2+γnCKC}−CKCY θ̂, applying Lemma 4 and using ∥Y θ̂∥2 =
√
θ̂Y ⊤Y θ̂ =

√
n gives

∥α∥2 ≤ ∥{(CKC)2 + γnCKC}−CKC∥op∥Y θ̂∥2 ≤
∥Y θ̂∥2
nγ

≤ 1√
nγ
.

Combining the above two displays gives ∥f̂∥H ≤ 2κ/γ.

Lemma 6. Under Assumptions 3 and 4, let {(xi, yi)}ni=1 and {(xj, yj)}2nj=n+1 be two independent

copies of i.i.d. data, and let Tx be the empirical measure on their union. Let R̃emp(f, β) be the

modified empirical risk on {(xi, yi)}ni=1, and R̃′
emp(f, β) on {(xj, yj)}2ni=n+1. Let c = 64(∥θ∗∥∞ +

τκ), and let {f1, . . . , fM} be the smallest L2(Tx) ε/
√
2c-net of Hτ , and let {β1, . . . , βK} be an

ε/c-net of Iτ . Then

P
(

sup
f∈Hτ
β∈Iτ

{R̃emp(f, β)− R̃′
emp(f, β)} >

ε

2

)
≤ P

(
maximize
f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃emp(f, β)− R̃′
emp(f, β)} >

ε

4

)
.

Proof of Lemma 6. Let f ∈ Hτ , β ∈ Iτ be such that R̃emp(f, β)− R̃′
emp(f, β) > ε/2. There exists

fj ∈ {f1, . . . , fM} and βℓ ∈ {β1, . . . , βK} such that ∥fj − f∥L2(Tx) < ε/
√
2c and |β − βℓ| < ε/c.

Applying Lemma 11 gives

√√√√ 1

n

n∑
i=1

|f(xi)− fj(xi)|2 <
ε

c
and

√√√√ 1

n

2n∑
i=n+1

|f(xi)− fj(xi)|2 <
ε

c
.

45

Applying Lemma 10 yields

|R̃emp(f, β)− R̃emp(fj, βℓ)| < 8
ε

c
(∥θ∗∥∞ + κτ) =

ε

8
,

and similarly |R̃′
emp(f, β) − R̃′

emp(fj, βℓ)| < ε/8. Therefore, R̃′
emp(f, β) − R̃emp(f, β) > ε/2 for

some f ∈ Hτ , β ∈ Iτ implies R̃′
emp(fj, βℓ)− R̃emp(fj, βℓ) > ε/4 for some fj and βℓ. Therefore,

P
(

sup
f∈Hτ , β∈Iτ

{R̃′
emp(f, β)− R̃emp(f, β)} >

ε

2

)
≤ P

(
maximize
f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃′
emp(fj, βℓ)− R̃emp(fj, βℓ)} >

ε

4

)
.

Lemma 7. Under Assumptions 3-5, let {f1, . . . , fM} and {β1, . . . , βK} be as in Lemma 6. There

exist a constant C1 > 0 such that for all ε > 0,

P
(

maximize
f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃emp(f, β)− R̃′
emp(f, β)} >

ε

4

)
≤ Nε exp

(
− nε2

128(∥θ∗∥∞ + κτ)4

)
,

where Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(C1τ
2ε−2).

Proof of Lemma 7. Let σ = {σi}ni=1 be i.i.d. Radamacher random variables, P(σi = 1) = P(σi =

−1) = 1/2. Let

R̃σ
emp =

1

n

n∑
i=1

σi|y⊤i θ∗ − β − ⟨Φ(xi), f⟩H |
2, R̃

′σ
emp =

1

n

2n∑
i=n+1

σi|y⊤i θ∗ − β − ⟨Φ(xi), f⟩H |
2.

Since (yi, xi) and (yn+i, xn+i) are independent, and have the same distribution, the distribution of

ξi := (|y⊤i θ∗ − β − ⟨Φ(xi), f⟩H |2 − |y⊤n+iθ
∗ − β − ⟨Φ(xn+i), f⟩H |2) is the same as distribution of

46

σiξi. Let Z = {(xi, yi)}2ni=1, then

PZ

(
max

f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃emp(f, β)− R̃′
emp(f, β)} >

ε

4

)

= PZ,σ

(
max

f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃σ
emp(f, β)− R̃

′σ
emp(f, β)} >

ε

4

)
.

Let Am,k be the event Am,k = {R̃σ
emp(fm, βk)− R̃

′σ
emp(fm, βk) > ε/4} for m = 1, . . . ,M(Z); k =

1, . . . , K; where M(Z) emphasizes the dependence of M on Z. Using properties of conditional

expectation and union bound

PZ,σ

(
max

f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃σ
emp(f, β)− R̃

′σ
emp(f, β)} >

ε

4

)
= PZ,σ(∪M(Z)

m=1 ∪Kk=1 Am,k)

= EZ

{
Pσ(∪M(Z)

m=1 ∪Kk=1 Am,k|Z)
}

≤ EZ {M(Z)KPσ(Am,k|Z)} .

For fixed fm, βk and conditionally on Z, the terms ψi := σi(|y⊤i θ∗ − βk − ⟨Φ(xi), fm⟩H |2 −

|y⊤n+iθ
∗ − βk − ⟨Φ(xn+i), fm⟩H |2), i = 1, . . . , n, are independent, mean-zero random variables

with |ψi| ≤ 4(∥θ∗∥∞ + κτ)2. Applying Hoeffding’s inequality gives

Pσ(Am,k|Z) = Pσ

(1
n

n∑
i=1

ψi > ε/4
∣∣∣Z) ≤ exp

(
− nε2

128(∥θ∗∥∞ + κτ)4

)
.

On the other hand, since Iτ is a one-dimensional sphere of radius ∥θ∗∥+ κτ , K is independent

of the data and K ≤ 1 + 2(∥θ∗∥∞ + κτ)/ε. Combining this with the above two displays gives

PZ,σ

(
max

f∈{f1,...,fM}
β∈{β1,...,βK}

{R̃σ
emp(f, β)− R̃

′σ
emp(f, β)} >

ε

4

)

≤ {1 + 2(∥θ∗∥∞ + κτ)/ε}EZ{M(Z)} exp
(
− nε2

128(∥θ∗∥∞ + κτ)4

)
.

Recall that {f1, . . . , fM} is the smallest L2(Tx) ε/
√
2c-net of Hτ , with c = 64(∥θ∗∥∞ + τκ).

47

By Lemma 12

EZ{M(Z)} ≤ sup
Z={(xi,yi)}2ni=1

M(Z) ≤ exp

(
C1τ

2

ε2

)
(2.15)

for some constant C1 > 0. Setting Nε = {1 + 2(∥θ∗∥∞ + κτ)/ε} exp(C1τ
2ε−2) completes the

proof of Lemma 7.

Lemma 8. Under Assumption 3 there exist constants C1, C2 > 0 such that for all ε > 0,

P
(
max

(
|n1/n2 − π1/π2|, |n2/n1 − π2/π1|

)
> ε

)
≤ C1 exp

(
− C2nε

2
)
,

P
(
max

(
|
√
n1/n2 −

√
π1/π2|, |

√
n2/n1 −

√
π2/π1|

)
> ε

)
≤ C1 exp

(
− C2nε

2
)
.

Proof of Lemma 8. We provide the proof for n1/n2, the proof for n2/n1 is analogous. The first

inequality is equivalent to Lemma 1 in [48]. For the second inequality, by Taylor expansion of the

square root function centered at π1/π2

√
n1/n2 −

√
π1/π2 = 2−1

√
π2/π1(n1/n2 − π1/π2) + o(n1/n2 − π1/π2).

Since |n1/n2 − π1/π2| = Op(n
−1/2) by the first inequality, it follows that there exist a constant

C3 > 0 such that |
√
n1/n2 −

√
π1/π2| ≤ C2{log(η−1)/n}1/2 with probability at least 1 − η.

Setting ε = C3{log(η−1)/n}1/2 and solving for η completes the proof.

Lemma 9. Let Assumption 3 be true. For all ε > 0, we have

P
(
(Y θ∗)2 > ε

)
≤ 2 exp(−nε/∥θ∗∥∞).

Proof of Lemma 9. Let zi = y⊤i θ
∗, then zi are independent,

E(zi) = E(yi)⊤θ∗ = π1

√
π2
π1
− π2

√
π1
π2

=
√
π1π2 −

√
π1π2 = 0

48

and

(Y θ∗)2 = (n−1

n∑
i=1

y⊤i θ
∗)2 = (n−1

n∑
i=1

zi)
2.

Since |zi| ≤ ∥θ∗∥∞ =
√
πmax/πmin, by Hoeffding’s inequality for ε > 0

P
(∣∣∣n−1

n∑
i=1

zi

∣∣∣2 > ε
)
= P

(∣∣∣n−1

n∑
i=1

zi

∣∣∣ > √ε) ≤ 2 exp(−nε/∥θ∗∥∞).

Lemma 10. Let Assumptions 3 and 4 be true, and suppose that {f1, . . . , fM} is an L2(Tx) ε-net

of Hτ and that {β1, . . . , βK} be an ε-net of Iτ . Then for any admissible f and β, let fj and βℓ be

members of the ε-nets so that ∥f − fj∥L2(Tx) < ε and |β − βℓ| < ε. Then

∣∣∣R̃emp(f, β)− R̃emp(fj, βl)
∣∣∣ ≤ 8ε

(
∥θ∗∥∞ + κτ

)
. (2.16)

Proof of Lemma 10. By the reproducing property ofH, ⟨Φ(xi), f⟩H = f(xi), and

∣∣∣R̃emp(f, β)− R̃emp(fj, βl)
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

|y⊤i θ∗ − β − ⟨Φ(xi), f⟩H |
2 − 1

n

n∑
i=1

|y⊤i θ∗ − βℓ − ⟨Φ(xi), fj⟩H |
2
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

|y⊤i θ∗ − β − f(xi)|2 −
1

n

n∑
i=1

|y⊤i θ∗ − βℓ − fj(xl)|2
∣∣∣

=
∣∣∣− 2

1

n

n∑
i=1

y⊤i θ
∗{β + f(xi)− βℓ − fj(xi)}+

1

n

n∑
i=1

[{β + f(xi)}2 − {βℓ + fj(xi)}2]
∣∣∣

≤ 2∥θ∗∥∞
∣∣∣β − βl + 1

n

n∑
i=1

{f(xi)− fj(xi)}
∣∣∣︸ ︷︷ ︸

I1

+
∣∣∣ 1
n

n∑
i=1

[{β + f(xi)}2 − {βℓ + fj(xi)}2]
∣∣∣︸ ︷︷ ︸

I2

.

49

Consider

I1 = 2∥θ∗∥∞
∣∣∣∣β − βl + 1

n

n∑
i=1

{f(xi)− fj(xi)}
∣∣∣∣ ≤ 2∥θ∗∥∞

{
|β − βl|+

1

n

n∑
i=1

|f(xi)− fj(xi)|

}

≤ 2∥θ∗∥∞

{
ε+

[1
n

n∑
i=1

|f(xi)− fj(xi)|2
]1/2}

≤ 4∥θ∗∥∞ε,

where we used n−1
∑n

i=1[|f(xi) − fj(xi)|2]1/2 ≤ [n−1
∑n

i=1 |f(xi) − fj(xi)|2]1/2 due to Jensen’s

inequality, and that ∥f − fj∥L2(Tx) < ε and |β − βℓ| < ε.

Consider I2. Using a2 − b2 = (a + b)(a − b), the Cauchy-Schwarz inequalty, and Jensen’s

inequality,

I2 =
1

n

∣∣∣∣ n∑
i=1

{β + f(xi) + βℓ + fj(xi)}{β − βℓ + f(xi)− fj(xi)}
∣∣∣∣

≤ 2(sup
β∈Iτ
|β|+ sup

x,f∈Hτ

|f(x)|) 1
n

n∑
i=1

(|β − βj|+ |f(xi)− fj(xi)|)

≤ 2(∥θ∗∥∞ + κτ + sup
x,f∈Hτ

| ⟨Φ(x), f⟩H |)(ε+
1

n

n∑
i=1

|f(xi)− fj(xi)|)

≤ 2

(
∥θ∗∥∞ + κτ + κτ

)(
ε+

√√√√ 1

n

n∑
i=1

|f(xi)− fj(xi)|2
)

= 4ε
(
∥θ∗∥∞ + 2κτ

)
.

Combining the bounds for I1 and I2 completes the proof of Lemma 10.

Lemma 11. Let {(xi, yi)}2ni=1 be the data, and consider an L2(Tx) ε-net {f1, . . . , fM} ofHτ . Then

{f1, . . . , fM} is an
√
2ε-net with respect to the empirical measure on half of the data {(xi, yi)}ni=1.

Proof of Lemma 11. Since {f1, . . . , fM} is ε-net with respect to {(xi, yi)}2ni=1, for any f ∈ Hτ ,

there exists fj such that √√√√ 1

2n

2n∑
i=1

|f(xi)− fj(xi)|2 < ε.

50

If 1
2n

∑2n
i=1 |f(xi)− fj(xi)|2 = 0, then 1

n

∑n
i=1 |f(xi)− fj(xi)|2 = 0. Otherwise

√√√√ 1

n

n∑
i=1

|f(xi)− fj(xi)|2 =

√√√√2n

2n

1

n

n∑
i=1

|f(xi)− fj(xi)|2
∑2n

i=1 |f(xi)− fj(xi)|2∑2n
i=1 |f(xi)− fj(xi)|2

=

√
2n

n

∑n
i=1 |f(xi)− fj(xi)|2∑2n
i=1 |f(xi)− fj(xi)|2

√√√√ 1

2n

2n∑
i=1

|f(xi)− fj(xi)|2 <
√
2ε,

hence {f1, . . . , fM} is
√
2ε-net with respect to {(xi, yi)}ni=1.

Lemma 12 (Theorem 2.1 of [49]). Let Assumption 5 be true, and Let M(Z) be the size of an

L2(Tx) ε-covering number of Hτ with data Z = {(xi, yi)}ni=1. There exists a C > 0 independent

of n, such that

sup
Z={(xi,yi)}ni=1

M(Z) ≤ exp

(
Cτ 2

ε2

)
. (2.17)

Remark 5. [50] notes that “Theorem 2.1 of [49] considered only the Gaussian RKHS, however

the proof of the entropy bound for p = 2 in their notation only requires that the RKHS is separable.”

It is this case which is presented in Lemma 12.

51

3. COMPRESSING LARGE SAMPLE DATA FOR DISCRIMINANT ANALYSIS

3.1 Introduction

Linear Discriminant Analysis (LDA) [33] is a linear classification rule which separates the

classes by maximizing between-class variability compared to within-class variability. Applying

LDA requires constructing the within-class covariance matrix, which has complexityO(n p2) in the

number of training samples n and number of features p. As large-sample data acquisition became

prevalent, it became computationally expensive to apply LDA to such data even for moderately-

sized p.

Compression [51, 52, 53, 54, 55], or sketching, is a popular approach for scaling algorithms

to large data. Given the training data X ∈ Rn×p, compression uses a random matrix Q to either

reduce the number of rows (samples) or columns (features) in X . The corresponding reduced-size

QX or XQ is called a sketch of the original X . The sketch is used in place of X to approximate

the solution of the full algorithm. For example, compression is used in least-squares regression

[56, 55]; non-negative least-squares regression [51]; ridge regression [57, 58] and ℓ1-penalized

regression [59]. Compression for a broader class of convex minimization problems is considered

in [53].

Despite the widespread use of compression in regression contexts, and considerable progress

in theoretical understanding of its performance in regression, compression has not been widely

used in discriminant analysis. Specifically, existing works on compression in LDA [60, 61] focus

on reducing the number of features p, and thus do not consider the case where the computational

bottleneck is due to the large number of samples n. On the other hand, existing results on com-

pression due to large n in the regression literature [57, 58] can not be applied to discriminant

analysis. In regression, the training data X ∈ Rn×p is treated as fixed, with continuous response

Y ∈ Rn modelled conditionally on X . In contrast, in discriminant analysis the observations in

X ∈ Rn×p are treated as random, and are modelled conditionally on the discrete class membership

52

Y ∈ {1, 2}n. Thus, the theoretical analysis of compression in LDA requires different techniques

than for regression.

In this Chapter, we address these challenges and bridge the existing gap between compression

with large n in regression and compression with large n in discriminant analysis. This Chapter

makes the following contributions:

• We develop a new method, Compressed LDA, for large sample data that is based on separate

compression within each class in contrast to joint compression of existing approaches [62];

• We derive a finite-sample bound on misclassification error rate of Compressed LDA com-

pared to the optimal error rate of the Bayes classifier;

• We extend Compressed LDA to the setting with unequal class covariance matrices leading

to Compressed Quadratic Discriminant Analysis (QDA) [33], to our knowledge this it the

first method that considers compression within the QDA context;

• We demonstrate significant computational advantages of our methods compared to discrim-

inant analysis on the full data and their superior classification performance compared to

methods based on random sub-sampling or joint compression [62].

3.1.1 Related Works

Existing works on compression in LDA [60, 61] focus on reducing the number of features p,

and thus do not consider the case where the computational bottleneck is due to the large number of

samples n. To our knowledge, the only exception is the Fast Random Fisher Discriminant Analysis

(FRF) of [62].

In [62], the authors use joint compression of classes to form a sketchQX ∈ Rm×p, m≪ n, via

a random matrixQ ∈ Rm×n, and then use the sketch within the generalized eigenvalue formulation

of LDA to form the approximate discriminant vector βc ∈ Rp. The discriminant vector is applied

to form the projected training data β⊤
c xi ∈ R, which is used to train LDA instead of original

xi ∈ Rp. The m compressed samples in QX ∈ Rm×p are thus only used to form βc. This is

53

because these m samples can not be assigned class labels, as multiplication by Q allows mixing of

both classes. Furthermore, due to this mixing, it is not possible to form class-specific covariance

matrices based on compressed samples in QX , and thus the method of [62] cannot be extended to

QDA. In contrast, our method applies separate class compression, not only allowing an extension

to QDA, but also leading to significantly better empirical performance (in terms of both lower error

rate and lower variance).

Another difference between this Chapter and the work of [62] is the corresponding theoretical

analysis. In [62], the authors compare the compressed discriminant vector βc to the discrimi-

nant vector β̂ based on the full data by deriving the bound on the difference of projection values

|(x−X)⊤(βc− β̂)|, where X = n−1
∑n

i=1 xi is the training sample mean and x ∈ Rp is a random

test sample. It is unclear, however, whether this bound directly translates into a similar difference

in misclassficiation error rates, which is a more natural loss within a classification context. Further-

more, since the bound is provided with respect to β̂ rather than the true population β∗, it is unclear

how the performance of the method of [62] compares to the performance of the Bayes classifier.

In contrast, we directly analyze the misclassification error rate of the proposed Compressed LDA

method, and derive a finite-sample bound on its rate compared to the Bayes classifier.

In the regression literature on compression, the quality of the compressed solution βc is typi-

cally evaluated either by bounding mean-squared error compared to the underlying true parameter

vector β∗ [58], or by considering the ε-optimality. Let f be the objective function that is minimized

within the given algorithm (e.g. standard least-squares, ℓ1-penalized least-squares, etc.) over some

subset S of Rp, where the function f is based on the full training data. The compressed solution

βc is said to be ε-optimal [63, 55] if

min
β∈S

f(β) ≤ f(βc) ≤ (1 + ε)2 min
β∈S

f(β).

While ε-optimality is natural in a regression context, where the loss in the objective function repre-

sents the sample average of targeted population loss, LDA solves a generalized eigenvalue problem

54

rather than directly minimizing the misclassification error rate. Thus, bounding the misclassifica-

tion error rate of Compressed LDA directly in terms of the Bayes error rate provides a more direct

answer regarding its theoretical performance, and it is consistent with results in the LDA literature

without compression [64, 65, 66].

Another sample size reduction method outside of compression is squashing [67, 68, 69], which

partitions the n training samples into d distinct segments, calculates a fixed number of moments k

for each segment, and then generates a smaller number of new samples within each segment pre-

serving the corresponding original moments. Each new sample comes with a weight that accounts

for a possible discrepancy between the distribution of samples across segments in the original data

and the distribution of samples across segments in the new data. Because of the weights, one

can not simply apply LDA to the new "squashed" data, as the weights will need to be included

to modify the estimation algorithm. Furthermore, while squashing reduces the number of training

samples, its computational complexity depends on the number of partitions d, number of calcu-

lated moments k, and the number of newly-generated samples. Since partitioning the data may

lead to an exponential number of segments d in the number of features p, applying squashing in

LDA context may be more computationally expensive than training LDA on the full data, and thus

we do not pursue this approach here.

3.1.2 Notation

For a vector v ∈ Rp, we let ∥v∥2 be the Euclidean norm
√∑p

i=1 |vi|2. For a matrix M ∈ Rk×p,

we let Mi,j be its (i, j)-th element, ∥M∥op = sup∥v∥2≤1 ∥Mv∥2 be its operator norm, and ∥M∥F =√∑
i,j |Mi,j|2 be the Frobenius norm. For a random variable Z, we let ∥Z∥Ψ2 = inf{t > 0 :

E exp(Z2/t2) ≤ 2} be its sub-Gaussian norm and ∥Z∥Ψ1 = inf{t > 0 : E exp(|Z|/t) ≤ 2} its

sub-Exponential norm. We use Φ(·) and ϕ(·) to denote the cdf and the pdf of the standard normal

distribution, respectively.

55

3.2 Compressed LDA

Our goal is to reduce the computational complexity of LDA while maintaining its classification

performance. To achieve this, we propose to separately compress each class of training data Xg ∈

Rng×p via a sparse Rademacher matrix Qg ∈ Rmg×ng as defined below.

Definition 4. A matrix Qg ∈ Rmg×ng is a sparse Rademacher matrix with parameter s ∈ (0, 1) if

the elements Qg
j,k are i.i.d. with distribution

P(Qg
j,k = 1) = P(Qg

j,k = −1) =
s

2
, P(Qg

j,k = 0) = 1− s.

Definition 5. The j-th compressed data sample in class g is

xg
j,c =

1
√
ng s

ng∑
i=1

Qg
j,i(x

g
i −Xg) +Xg, (3.1)

where Qg
j,i are entries of the sparse Rademacher matrix Qg ∈ Rmg×ng of Definition 4.

Definition 6. The compressed within-class sample covariance matrix Σ̂w,c ∈ Rp×p is defined as

the within-class sample covariance matrix of the compressed xg
j,c

Σ̂w,c :=
1

m

2∑
g=1

mg∑
j=1

(xg
j,c −Xg)(x

g
j,c −Xg)

⊤. (3.2)

The compressed discriminant vector is βc := Σ̂−1
w,cd, where d is defined as in (1.3).

The proposed Compressed LDA classifies a new x ∈ Rp as in (1.4), with β̂ and Σ̂w replaced

by βc, and Σ̂w,c. Algorithm 1 summarizes the full workflow for Compressed LDA.

Our proposed compression scheme is analogous to partial compression within the compressed

regression literature, see e.g. Section 2.1 of [58]. Given the matrix of covariates X ∈ Rn×p and

response Y ∈ Rn, partial compression calculates the inner-product X⊤Y on the full data and only

uses compression to approximate X⊤X . The rationale is that calculating X⊤Y only has com-

plexity O(n p) compared to complexity O(n p2) for calculating X⊤X . Similarly in discriminant

56

Input : X ∈ Rn×p, Y ∈ {1, 2}n, s ∈ (0, 1), m≪ n.
Output: Compressed discriminant vector βc.
Compute Xg, g = 1, 2, and d as in (1.3).
Set mg = ⌊ngm/n⌋, g = 1, 2.
Form compressed samples xg

j,c in (3.1), j = 1, . . . ,mg, g = 1, 2.
Form Σ̂w,c ∈ Rp×p as in (3.2).
Set βc = Σ̂−1

w,cd.
Use βc, Σ̂w,c in rule (1.4) instead of β̂, Σ̂w.
return βc

Algorithm 2: Compressed LDA

analysis, calculating d on the full data only has complexity O(n p), whereas calculating Σ̂w has

complexity O(n p2), and thus we only use compression to approximate the latter term.

The proposed compression scheme has several advantages. First, by compressing the classes

individually, we are able to unambiguously assign labels to the compressed samples, thus allowing

us to form the compressed within-class covariance matrix. This is not possible with the method of

[62], which allows mixing samples from both classes in one compressed sample. Secondly, using

sparse Radamacher compression matrices leads to both memory and computational advantages

compared to e.g. random Gaussian compression matrices. Due to sparsity, the average complexity

of data compression (3.1) is O(nmps) rather than O(nmp) for dense matrices. Thus, the overall

average complexity of data compression and construction of Σ̂w,c is O(nmps + mp2) compared

to the complexity O(np2) of LDA on the full data. Choosing m and s so that ms << p ensures

that Compressed LDA is faster than full LDA. The computational costs of compression (3.1) can

be further reduced by parallelizing the construction of QgXg.

3.3 Error bound of Compressed LDA

In this section we derive a bound on the misclassification error rate of Compressed LDA com-

pared to the optimal rate of the Bayes classifier. To our knowledge, this is the first such result for

a sample compression method within the discriminant analysis framework. We use Assumption 1,

which is standard for LDA (see e.g. [2, Section 11]).

We next define the Bayes classifier, which gives the optimal (minimal) error rate under As-

57

sumption 1.

Definition 7. Under Assumption 1, and for equal prior class probabilities π1 = π2, the Bayes

decision rule classifies x ∈ Rp to class 1 if and only if δ⊤Σ−1
w (x−µ) ≥ 0, where δ = (µ1−µ2)/2,

and µ = (µ1 + µ2)/2.

The corresponding optimal misclassification error rate is given by [2, Chapter 11.6]

Ropt := Φ(−
√
δ⊤Σ−1

w δ). (3.3)

We consider the case of equal prior class probabilities for clarity of technical derivations, which

focus on the effects of compression. For the same reason, we assume equality of class sizes and

their corresponding compression dimensions.

Assumption 6. n1 = n2 = n/2 and m1 = m2 = m/2.

These assumptions can be relaxed at the expense of more technical proofs without affecting

the resulting rates, e.g. Hoeffding inequality bounds ng/n in terms of πg with rate O(n−1/2). As

our main focus is the effect of compression, we do not pursue this relaxation here.

We next bound the misclassification error rate of the proposed Compressed LDA in Section 3.2

in terms of the optimal rate Ropt in (3.3). Under Assumption 6, the Compressed LDA rule assigns

new x to class 1 if and only if d⊤Σ̂−1
w,c(x − X) ≥ 0. Under Assumptions 1-6, by [65, Section 2],

the corresponding error rate of Compressed LDA is given by

Rc =
1

2

2∑
g=1

Φ

(
d⊤Σ̂−1

w,c{(−1)g(µg −Xg)− d}√
d⊤Σ̂−1

w,c Σw Σ̂−1
w,cd

)
. (3.4)

We now state our main result, which compares the misclassification error rate Rc of Com-

pressed LDA to the optimal rate Ropt. Since our focus is on the large sample data, we treat p as

fixed which implies that Ropt > 0 is bounded from below, and hence Rc − Ropt → 0 implies

Rc/Ropt → 1. We state our result in the latter form below.

58

Theorem 10. Under Assumptions 1 and 6, and for π1 = π2, there exists an absolute constant

C > 0 such that with probability at least 1− η,

|Rc −Ropt| ≤ C P K2
s

√
log(η−1) + p

m
,

where P = ϕ(
√
δ⊤Σ−1

w δ) (
√
δ⊤Σ−1

w δ + 1), and K2
s = [s log

(
1 + s−1

)
]−1.

The upper bound depends on the sparsity level s through Ks, which appears in the proofs as

the sub-Gaussian norm of the elements of Qg/
√
s (see Lemma 18 in Section 3.10). As s → 0,

fewer training samples are used when forming each compressed sample, and the upper bound

of Theorem 10 increases. As s → 1, more training samples are included, and the upper bound

decreases. However, as s increases so does the run time for Compressed LDA. Thus, there is a

trade-off between accuracy and speed determined by s.

Existing results in the LDA literature (i.e. [65]) have error ratesOp(n
−1/2). Since Compressed

LDA reduces the sample size to m, the rate Op(m
−1/2) in Theorem 10 is expected. While the

decay rate is typical, our theoretical approach is not. The main difficulty in analyzing Compressed

LDA is dependency across m compressed samples as (i) they share the sample class mean Xg, and

(ii) different rows of the compression matrixQg can share the location of non-zero entries, and thus

the same xg
i may appear in (3.1) for different values of j. To overcome these difficulties, we use

independence between the compression matricesQg and original data matricesXg when bounding

the difference between Σ̂w,c and Σw. The detailed proof of Theorem 10, as well as supplementary

Theorems and Lemmas, are presented in Sections 3.9 and 3.10.

Finally, while the scaling Op(m
−1/2) in Theorem 10 is the same as what would be expected

under sub-sampling (randomly selecting m/2 samples from each class and discarding the rest), we

found that empirically compression offers two advantages: (i) it has the smaller misclassification

error rate variance (see e.g. Figures 3.1-3.3), which is likely due to using multiple xg
i in forming

each compressed sample; (ii) it is more robust to violations of normality assumption in the original

data as the summation within (3.1) induces normality of compressed samples (see Figure 3.6).

59

3.4 Extensions

3.4.1 Projected LDA

The Compressed LDA proposed in Section 3.2 proceeds by (i) forming a discriminant vector

βc based on compressed samples in (3.1); (ii) using βc and compressed within-class sample covari-

ance matrix Σ̂w,c in classification rule (1.4). An alternative approach is to use step (i) only, project

the original training data using βc to form zgi = β⊤
c xg

i ∈ R, and then apply LDA on the pairs

{zi, yi}, where now the samples zi are one-dimensional scalars rather than p-dimensional vectors.

Thus, the within-class variance of the projected data β⊤
c Σ̂wβc is used in decision rule (1.4) rather

than β⊤
c Σ̂w,cβc. We call this alternative approach Projected LDA. If the two classes have equal

sample sizes, that is Assumption (6) holds, Compressed LDA and Projected LDA rules coincide

as both will classify a new x according to

argmin
g=1,2

{(x−Xg)
⊤βc}2.

However, if n1 ̸= n2, the two methods will in general differ due to discrepancy between β⊤
c Σ̂wβc

and β⊤
c Σ̂w,cβc.

The Projected LDA is analogous to the Fast Random Fisher Discriminant Analysis proposed

in [62]: both use compression to form the discriminant vector βc, and then apply LDA on the

projected values. The key difference between the two approaches is the compression scheme: [62]

jointly compress both classes when forming βc, whereas we propose separate class compression.

We found that the latter is preferable, and Section 3.5 shows that Projected LDA has consistently

better classification performance than the method of [62].

In terms of computational efficiency, Projected LDA described here and Compressed LDA of

Section 3.2 are comparable - the main computational bottleneck of both is calculation of com-

pressed Σ̂w,c. In terms of theoretical guarantees, since the methods coincide under Assumption 6,

the results of Theorem 10 apply to Projected LDA as well. In practice, the sample sizes are often

not exactly equal, and thus in Section 3.5 we observe some difference in the empirical performance

60

Input : X ∈ Rn×p, Y ∈ {1, 2}n, s ∈ (0, 1), m≪ n.
Output: Compressed discriminant vector βc.
Compute Xg for g = 1, 2.
Form compression matrices 1√

ngs
Qg ∈ Rmg×ng as in Definition 4.

Form compressed samples 1√
ngs
Qg(Xg −Xg) +Xg as in Definition 5.

Form d ∈ Rp and Σ̂w,c ∈ Rp×p as in Definition 6. Set βc = Σ̂−1
w,cd.

Project Training data β⊤
c x

g
i and form projected covariance β⊤

c Σ̂wβc.
Use βc and β⊤

c Σ̂βc in classification rule (1.4).
return βc

Algorithm 3: Projected LDA

of Compressed LDA and Projected LDA. We found, however, that neither method has uniformly

better classification performance over the other.

3.4.2 Compressed QDA

The proposed compression scheme (3.1) is applied separately to each class, and thus allowing

us to assign classes to the compressed samples. This, in turn, allows us to compute class-specific

compressed covariance matrices, which motivates us to consider an extension of Compressed LDA

to the case of unequal class covariance structures.

Quadratic Discriminant Analaysis (QDA) [33] is a generalization of LDA to the case of unequal

class covariance matrices, which weakens Assumption 1.

Assumption 7. Conditional on class membership g = 1, 2, the samples xg
i ∈ Rp are i.i.d.

N(µg , Σ
g
w).

Under Assumption 7, the Bayes decision rule classifies a new sample x ∈ Rp by minimizing

argmin
g=1,2

{
(x− µg)

⊤(Σg
w)

−1(x− µg) + log |Σg
w| − 2 log(πg)

}
, (3.5)

where |Σg
w| is the determinant of Σg

w. The QDA classification rule is the sample plug-in rule, where

the population parameters µg, Σg
w, and πg are replaced by their sample estimatesXg, Σ̂

g
w, and ng/n.

As our compression scheme proposed in (3.1) is applied separately to each class, it can be used

61

Input : X ∈ Rn×p, Y ∈ {1, 2}n, s ∈ (0, 1), m≪ n.
Output: Compressed discriminant vector βc.
Compute Xg for g = 1, 2.
Form compression matrices 1√

ngs
Qg ∈ Rmg×ng as in Definition 4.

Form compressed samples 1√
ngs
Qg(Xg −Xg) +Xg as in Definition 5.

Form Σ̂g
w,c ∈ Rp×p for g = 1, 2 as in Definition 6.

Use Σ̂1
w,c and Σ̂2

w,c in decision rule (3.5).
return Σ̂g

w,c ∈ Rp×p for g = 1, 2
Algorithm 4: Compressed QDA

to form class-specific compressed covariance matrices.

Definition 8. The compressed sample covariance matrix for class g = 1, 2 is defined as

Σ̂g
w,c :=

1

mg

mg∑
j=1

(xg
j,c −Xg)(x

g
j,c −Xg)

⊤.

We define the Compressed QDA decision rule by substituting Σ̂g
w,c instead of Σg

w in (3.5), and

Xg, ng/n instead of µg, πg, respectively. Thus, Compressed QDA classifies a new sample x ∈ Rp

according to

argmin
g=1,2

{
(x−Xg)

⊤(Σ̂g
w,c)

−1(x−Xg) + log |Σ̂g
w,c| − 2 log(ng/n)

}
.

Algorithm 4 summarizes Compressed QDA.

3.5 Simulation Studies

In this section we empirically evaluate the performance of the proposed compression methods

on three publicly available datasets: Zip Code [33], MNIST [70] and Skin Segmentation [71]. For

each dataset, we compare five linear classifiers: (L1) Compressed LDA of Section 3.2; (L2) Pro-

jected LDA of Section 3.4.1; (L3) Fast Random Fisher Discriminant Analysis (FRF) of [62]; (L4)

LDA trained on sub-sampled data drawn uniformly from both classes; and (L5) LDA trained on

the full data (Full LDA). We also separately compare three quadratic classifiers: (Q1) Compressed

62

QDA of Section 3.4.2; (Q2) QDA trained on sub-sampled data drawn uniformly from both classes;

and (Q3) QDA trained on the full data (Full QDA).

For each method, we evaluate the out-of-sample misclassification error rate as a function of

reduced number of training samples m = m1 +m2 (with m = n for full methods L5 and Q3). To

assess variability due to compression or sub-sampling, we use 100 replications for each value of

m. Within each classifier, a small multiple of the identity matrix γIp is added to the corresponding

estimate of the within-class covariance matrix Σw for numerical stability. We use γ = 10−4 for

Zip Code and Skin Segmentation data, and γ = 10−3 for the MNIST data as it has a much larger

number of features p compared to other datasets, and thus requires stronger regularization. We use

s = 0.01 for Zip Code and MNIST datasets, and s = 10−3 for the Skin Segmentation dataset as

the latter has considerably larger sample size n; thus for all datasets s = O(n−1/2).

We also compare the execution times of forming the compressed within-class covariance matrix

Σ̂w,c and full within-class covariance matrix Σ̂w. For compression, we consider the time required

to both compress the data via Qg and to form Σ̂w,c. The timing results are reported using a Linux

Machine with Intel Xeon E5-2690 with 2.90 GHz.

3.5.1 ZIP Code Data

The Zip Code Data [33] has n = 7, 291 training samples with p = 256 features. The samples

are images of handwritten digits for zip codes, and each feature corresponds to a normalized gray-

scale pixel of an image. The original data has ten classes, each corresponding to a digit from 0 to

9, which we merge into two classes of even and odd digits. The classes are well-balanced, with

48% to 52% split between the class 1 odd digits and class 2 even digits. The corresponding test

data has n = 2, 007 samples.

The top of Figure 3.1 displays the misclassification error rates of (L1)-(L5) across 100 inde-

pendent trials for each value of m. As expected, the performance of all methods improves with

the increase in compression dimension m. Both Compressed LDA and Projected LDA have better

classification performance compared to FRF and sub-sampled LDA. For example, when m = 500,

Compressed LDA has a mean misclassification error rate of 12.60% (se 0.08%), and Projected

63

0.1

0.2

0.3

0.4

0.5

250 500 1000 2000
Reduced Sample Amount m

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

Compressed LDA

Projected LDA

Fast Random Fisher

Sub−sampled LDA

0.0

0.5

1.0

1.5

250 500 1000 2000 Full
Reduced Sample Amount m

T
im

e
(s

) Method

Compression

Full

Figure 3.1: Zip Code Data. Top: Misclassification error rates across 100 replications for each value
of m with s = 0.01 and γ = 10−4. The dashed line represents the 6.88% error rate of Full LDA.
Bottom: The execution times for 100 independent compressed and full covariance formations.

LDA has mean error rate 12.73% (se 0.08%). In contrast, FRF has a mean rate of 13.84% (se

0.08%), and sub-sampling has mean rate 15.31% (se 0.13%). Compressed and Projected LDA

have similar error rates due to the balanced class sizes in this dataset, see Section 3.4.1.

Compressed and Projected LDA have the lowest mean error rates and standard errors across all

values of m. Sub-sampling has the highest mean error rates for m ≥ 500, which is likely because

pixel values for images of handwritten digits are not normally distributed. Unexpected to us, FRF

has the highest error rates for m = 250 despite using compression. We suspect this is due to its

joint compression of both classes (rather than separate class compression used by our methods),

which likely leads to higher variance in the estimated discriminant vector when m is relatively

64

0.08

0.12

0.16

0.20

500 1000 1500 2000
Reduced Sample Amount m

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

Compressed QDA

Sub−sampled QDA

Figure 3.2: Zip Code Data. Misclassification error rates of compressed and sub-sampled QDA
across 100 replications for each value of m with s = 0.01 and γ = 10−3. The dashed line
represents the 8.82% error rate of Full QDA.

small. When m ≥ 500, the error rates of FRF are better than sub-sampling, but still worse than the

proposed approaches.

The bottom of Figure 3.1 compares the execution times of forming compressed and full within-

class covariance matrices, where the execution time for compression includes both formation of

compressed samples in (3.1) and calculation of Σ̂w,c. As expected, compression is significantly

faster. For instance, when m = 2, 000, the compression takes on average 0.19 seconds (se 0.01 s),

while the construction of full covariance matrixtakes on average 0.36 seconds (se 0.01 s).

Figure 3.2 displays the misclassification error rates of (Q1)-(Q3). Compressed QDA has uni-

formly lower mean error rates and lower variance than QDA on sub-sampled data for the same

values of m. For instance, when m = 500, Compressed QDA has a mean error rate of 12.22% (se

0.08%) while sub-sampled QDA has the mean error rate of 19.27% (se 0.14%). For m ≥ 2, 000,

the misclassification error rate of Compressed QDA matches that of Full QDA.

3.5.2 MNIST Data

The MNIST Data [70] has n = 60, 000 training samples with p = 784 features. The samples

are pictures of handwritten digits, and each feature corresponds to a normalized grayscale pixel for

an image. The original data has ten classes, each corresponding to a digit from 0 to 9, which we

65

merge into two classes of even and odd digits. The classes are well-balanced with a 51% to 49%

split between the class 1 odd digits and class 2 even digits. The test data has n = 10, 000 samples.

The top of Figure 3.3 shows the misclassification error rates of the linear methods across 100

independent trials for each value of m. As with the Zip Code data, both Compressed LDA and

Projected LDA have the lowest misclassification error rates compared to FRF and sub-sampled

LDA. For instance, when m = 2, 000, the mean error rate for Compressed LDA is 13.93% (se

0.04%), and the mean error rate for Projected LDA is 13.98 (se 0.04%). In contrast, FRF has mean

rate 15.71% (se 0.05%), and sub-sampled LDA has mean rate 16.05% (se 0.05%). As with the

Zip Code data, Compressed and Projected LDA have similar rates due to the balanced class sizes,

see Section 3.4.1. Unlike the Zip Code data, FRF performs comparable to sub-sampling even for

larger values of m. This suggests that joint class compression leads to sub-optimal classification

performance compared to proposed separate class compression, and the difference is particularly

striking when the number of features p is large.

The bottom of Figure 3.3 compares the execution times of forming compressed and full within-

class covariance matrices. As expected, compression is considerably faster. Even when m =

10, 000, the mean time for compression (9.31 seconds, se 1.29) is significantly smaller than the

time of forming Σ̂w on the full data (23.53 seconds, se 2.29).

Figure 3.4 shows the misclassification error rates of the quadratic methods. Compressed QDA

has uniformly better performance than sub-sampling, it has both lower mean error rates and lower

variances. For example, when m = 1, 000, Compressed QDA has mean error rate 19.24% (se

0.06%) while sub-sampled QDA has mean error 29.42% (se 0.21%).

3.5.3 Skin Segmentation Data

The Skin Segmentation Data [71] has n = 245, 057 samples with p = 3 features. The features

are Red, Blue, and Green pixel values for randomly sampled image pixels. The goal is to learn

which colors represent skin, and subsequently classify those pixels as corresponding to skin or not.

Unlike the Zip Code and MNIST datasets, here the classes are unbalanced, with 21% (skin) to 79%

(not skin) split. We select 90% of the data from each class for training, and use the remaining 10%

66

0.10

0.15

0.20

0.25

1000 2000 5000 10000
Reduced Sample Amount m

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

Compressed LDA

Projected LDA

Fast Random Fisher

Sub−sampled LDA

5

10

15

20

25

1000 2000 5000 10000 Full
Reduced Sample Amount m

T
im

e
(s

) Method

Compression

Full

Figure 3.3: MNIST Data. Top: Misclassification error rates across 100 replications for each value
of m with s = 0.01 and γ = 10−3. The dashed line represents the 10.60% misclassification
error rate of Full LDA. Bottom: The execution times for 100 independent compressed and full
covariance formations.

for testing.

The top of Figure 3.5 displays the misclassification error rates of the linear methods across

100 independent trials for each value of m. Compressed LDA, Projected LDA, and FRF all have

superior classification performance over sub-sampled LDA, especially in terms of variance for the

same value of m. For instance, when m = 25, Compressed LDA has an average error rate of

7.42% (se 0.09%), with 7.57% (se 0.09%) for Projected LDA, and 7.38% (se 0.09%) for FRF. In

contrast, sub-sampled LDA has error 8.78% (se 0.40%). Unlike the Zip Code and MNIST datasets,

FRF performs comparably to the proposed approaches, which supports our previous conjecture

67

0.15

0.20

0.25

0.30

0.35

1000 2000 5000 10000
Reduced Sample Amount m

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

Compressed QDA

Sub−sampled QDA

Figure 3.4: MNIST Data. Misclassification error rates of compressed and sub-sampled QDA across
100 replications for each value of m with s = 0.01 and γ = 10−3. The dashed line represents the
14.04% error rate of Full QDA.

that the difference between joint compression and separate class compression is more pronounced

for larger values of p. The bottom of Figure 3.5 displays the corresponding error rates for the

quadratic methods. While the mean error rates between Compressed QDA and sub-sampled QDA

are similar, Compressed QDA has much smaller variance, which is consistent with results we

observed for other datasets.

The Skin Segmentation Data only has p = 3 features, and thus one may ask whether the

compression is really necessary since it doesn’t offer significant computational advantages for

small values of p. We found, however, that compression still allows to use much smaller number

of samples to obtain good predictive accuracy, as Compressed LDA reaches the Full LDA error rate

of 6.93% at onlym = 100. Furthermore, our main reason for including this dataset as an example is

to illustrate how compression can induce normality in the compressed samples when the normality

for original samples does not hold. The top of Figure 3.6 shows the first two principal components

of 5, 000 original training samples, whereas the bottom of Figure 3.6 shows the first two principal

components of 5, 000 compressed samples. The original training samples clearly are not normally

distributed as the main directions of variation display non-linear class separation. In contrast, each

class of compressed data has an elliptical shape suggesting the normal distribution and a linear

68

0.05

0.10

0.15

0.20

0.25

25 50 100 200
Reduced Sample Amount m

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

Compressed LDA

Projected LDA

Fast Random Fisher

Sub−sampled LDA

0.00

0.03

0.06

0.09

50 100 200 500
Reduced Sample Amount m

M
is

cl
as

si
fic

at
io

n
E

rr
or

 R
at

es

Method

Compressed QDA

Sub−sampled QDA

Figure 3.5: Skin Segmentation Data, misclassification error rates across 100 replications for each
vale of m. Top: Linear classification methods with s = 10−3 and γ = 10−4. The dashed line
represents the 6.93% error rate of Full LDA. Bottom: Qadratic classification methods with s =
10−3 and γ = 10−4. The dashed line represents the 1.64% error rate of Full QDA.

classification boundary. Thus, Compressed LDA is more robust to the assumption of normality

than sub-sampling. For the Skin Segmentation Data, this leads to Compressed LDA having slightly

lower mean misclassification error rates compared to sub-sampling, and significantly smaller error

variances across the replications.

3.6 Discussion

We propose a sample reduction scheme for discriminant analysis through compression. The

advantage of compression over sub-sampling is illustrated in Section 3.5, where the proposed

Compressed LDA consistently has better classification performance than LDA trained on sub-

69

−200

−100

0

100

200

0 100 200 300 400
First Principal Component

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

Class

1

2

−100

0

100

200

−200 0 200 400
First Principal Component

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

Class

1

2

Figure 3.6: Skin Segmentation Data, the two classes are separated by both shape and color. Top:
First two principal components based on the 5, 000 training samples. Bottom: First two principal
components based on 5, 000 compressed samples with s = 0.001.

sampled data. The compression scheme is further extended to Projected LDA and Compressed

QDA, which again show superior predictive accuracy compared to the same classifiers trained on

sub-sampled data.

There are several directions of future research that could be pursued. First, while we only con-

sidered binary classification, our approach can be extended to the multi-class setting by applying

compression (3.1) to all G classes. Secondly, given our results on compressing in the number of

samples, and existing results on compressing in the number of features [60, 61], it would be of in-

terest to simultaneously consider both compression schemes within discriminant analysis. Finally,

here we focused on linear and quadratic classification rules which may be too restrictive. Exploring

70

Train Compressed

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1

0

1

Feature 1

F
ea

tu
re

 2 Category

1

2

Figure 3.7: Left: 500 simulated data set where the classes are separated by shape and color. Right:
100 compressed samples. While the original data set is separable with respect to the classes, the
compressed samples are not.

compression within the kernel discriminant analysis framework [72] will allow for more flexible

non-linear classification boundaries.

3.7 Extension to Kernel Discriminant Analysis

Much work has been done in scaling kernel methods to large n data. Two of the most common

approaches are the Nyström method and Random Fourier Features (RFF). However, both of these

methods require O(nm) memory. The compression method presented here requires only O(m2)

or O(n) bits of memory while also having competitive classification performance.

The above compression scheme extends to the setting of Reproducing Kernel Hilbert Spaces to

perform non-linear classification on large data. However, naively compressing the original samples

can ruin non-linear separation, as shown in Figure 3.7.

As in Chapter 2, let Φ : Rp → H be a mapping so that the kernel trick ⟨Φ(x) , Φ(x′)⟩H =

k(x, x′) hold for some kernel k : Rp × Rp → R. Let

Φg = Φ(Xg) =


Φ(xg1)

...

Φ(xgng
)



71

be the mapped class-g data, g = 1, 2. Let

Φ1

Φ2

 =

Φ(X1)

Φ(X2)

 = Φ(X) =


Φ(x1)

...

Φ(xn)


be the block representation of the entire mapped data set. Let Φg represent the g-th class mean of

the mapped data 1
ng

∑ng

j=1Φ(x
g
j). Finally, let

Q =

Q1

Q2

 ∈ Rm×n

be the block-diagonal compression matrix with Qg ∈ Rmg×ng , g = 1, 2.

3.7.1 Compressed Kernel Matrices

We first present the compression scheme in H and then translate it to operations on the kernel

matrix K ∈ Rn×n in the coefficient space.

The compressed mapped data inH has the block form

Q1(Φ1 − Φ1) + Φ1

Q2(Φ2 − Φ2) + Φ2

 .

By the Representer Theorem, the discriminant function f ∈ H lies in the span of the compressed

data

f =
2∑

g=1

mg∑
ℓ=1

αg
ℓ

{ ng∑
j=1

Qg
ℓ,s(Φ(x

g
i)− Φg) + Φg

}
.

72

Definition 9. Let M ∈ Rm×n be the matrix with block diagonal structure

M =


Q1 + 1m1

1
n1
1⊤
n1

Q2 + 1m2

1
n2
1⊤
n2

 ,

and let

Cd =

Cn1

Cn2

 ∈ Rn×n

be a block diagonal centering matrix for

Cng = I − n−1
g 11⊤, g = 1, 2.

Then Kc = MCdKCdM
⊤ ∈ Rm×m is the compressed kernel matrix corresponding to the kernel

matrix evaluated on the compressed samples inH.

Lemma 13. The MatrixMCd ∈ Rm×n reduces toQCd ∈ Rm×n, and hence Kc = QCdK(QCd)
⊤.

Proof. We have

MCd =
Q1 + 1m1

1
n1
1⊤
n1

Q2 + 1m2

1
n2
1⊤
n2


In1 − 1

n1
1n11

⊤
n1

In2 − 1
n2
1n21

⊤
n2

 =

=

Q1C1 +
1
n1
1m11

⊤
n1
− 1

n1
1m11

⊤
n1

Q2C2 +
1
n2
1m21

⊤
n2
− 1

n2
1m21

⊤
n2


=

Q1C1

Q2C2

 .

73

This, in turn, is equal to

[Q1

Q2

−
Q11n1

1
n1
1⊤

Q21n2

1
n2
1⊤
n2

]K1,1 K1,2

K2,1 K2,2


[Q1

Q2

−
Q11n1

1
n1
1⊤

Q21n2

1
n2
1⊤
n2

]⊤

This will expand into four separate terms:

Q1

Q2


K1,1 K1,2

K2,1 K2,2


Q1

Q2


⊤

︸ ︷︷ ︸
(I)

−

Q11n1

1
n1
1⊤

Q21n2

1
n2
1⊤
n2


K1,1 K1,2

K2,1 K2,2


Q1

Q2


⊤

︸ ︷︷ ︸
(II)

−

Q11n1

1
n1
1⊤

Q21n2

1
n2
1⊤
n2


K1,1 K1,2

K2,1 K2,2


Q1

Q2


⊤

︸ ︷︷ ︸
(III)

+

Q11n1

1
n1
1⊤

Q21n2

1
n2
1⊤
n2


K1,1 K1,2

K2,1 K2,2


Q11n1

1
n1
1⊤

Q21n2

1
n2
1⊤
n2


⊤

︸ ︷︷ ︸
(IV)

Our strategy for computing these quantities are to go row-by-row for each Ki,j and compute the

row mean and the vectors QiKi,j. We can then store the results in an array

74

Derivation of Compressed Kernel Matrix. Compute



⟨∑n1

s=1Q
1
1,s(Φ(x

1
s)− Φ1) + Φ1 , f

⟩
...⟨∑ni

s=1Q
1
m1,s

(Φ(x1s)− Φ1) + Φ1 , f
⟩

⟨∑n1

s=1Q
2
1,s(Φ(x

2
s)− Φ2) + Φ2 , f

⟩
...⟨∑n2

s=1Q
1
m2,s

(Φ(x2s)− Φ2) + Φ2 , f
⟩


=



⟨∑n1

s=1Q
1
1,s(Φ(x

1
s)− Φ1) + Φ1 ,

∑2
i=1

∑mi

ℓ=1 α
i
ℓ

{∑ni

s=1Q
i
ℓ,s(Φ(x

i
s)− Φi) + Φi

}⟩
...⟨∑ni

s=1Q
1
m1,s

(Φ(x1s)− Φ1) + Φ1 ,
∑2

i=1

∑mi

ℓ=1 α
i
ℓ

{∑ni

s=1Q
i
ℓ,s(Φ(x

i
s)− Φi) + Φi

}⟩
⟨∑n1

s=1Q
2
1,s(Φ(x

2
s)− Φ2) + Φ2 ,

∑2
i=1

∑mi

ℓ=1 α
i
ℓ

{∑ni

s=1Q
i
ℓ,s(Φ(x

i
s)− Φi) + Φi

}⟩
...⟨∑n2

s=1Q
1
m2,s

(Φ(x2s)− Φ2) + Φ2 ,
∑2

i=1

∑mi

ℓ=1 α
i
ℓ

{∑ni

s=1Q
i
ℓ,s(Φ(x

i
s)− Φi) + Φi

}⟩


= Kcα

for some m×m compressed kernel matrix Kc.

The (i, j) coordinate of the (1, 1) upper left block of M is equal to

⟨
n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) + Φ1 ,

n1∑
t=1

Q1
j,t(Φ(x

1
t)− Φ1) + Φ1

⟩
=⟨

1

n1

n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) ,

1

n1

n1∑
t=1

Q1
j,s(Φ(x

1
t)− Φ1)

⟩

+

⟨
n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) , Φ1

⟩
+

⟨
n1∑
t=1

Q1
j,t(Φ(x

1
t)− Φ1) , Φ1

⟩
+

1

n
1⊤K1,1 1

n1

1

75

The intermediary equation

⟨
1

n1

n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) , Φ1

⟩
=

1

n1

n1∑
s=1

Qi,s

⟨
Φ(xs),Φ1

⟩
− (

1

n
Qi1)

1

n
1⊤K1,1 1

n
1

=
1

n1

QiK
1,1 1

n1

1− (
1

n1

Qi1)
1

n1

1⊤K1,1 1

n
1 =

1

n1

Qi(I −
1

n1

11⊤)K1,1 1

n1

1 =
1

n
QiC1K

1,1 1

n1

1,

and applying this over both i and j gives

1

n
QiC1K

1,1C1Q
⊤
j

1

n
+

1

n1

QiC1K
1,1 1

n1

1+
1

n1

1⊤K1,1C1
1

n1

Q⊤
j +

1

n1

1⊤K1,11
1

n1

.

Combining like terms gives

QiC1K
1,1

(
C1Q

⊤
j +

1

n
1

)
+

1

n1

1⊤
n1
K1,1

(
C1Q

⊤
j + 1

1

n1

)
=

(
1

n1

1⊤ +QiC1

)
K1,1

(
C1Q

⊤
j +

1

n1

1n1

)
.

This is the (i, j)-component, which implies that the (1, 1) upper block of the matrix M is equal to

M1,1 =

(
1

n1

1m11
⊤
n1

+
1

n1

Q1C1

)
K1,1

(
C1

1

n1

Q1⊤ +
1

n1

1n11
⊤
m1

)
Likewise, by changing the index i, the lower right (2, 2) is equal to

M2,2 =

(
1

n2

1m21
⊤
n2

+Q2C2

)
K2,2

(
C2Q

2⊤ +
1

n2

1n21
⊤
m2

)

Let us now compute the off diagonal matrices of M . Here, we focus on the (1, 2) diagonal, for

76

the (2, 1) diagonal will merely be its transpose. We have

⟨
1

n1

n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) + Φ1 ,

1

n2

n2∑
s=1

Q2
i,s(Φ(x

2
s)− Φ2) + Φ2

⟩

=

⟨
1

n1

n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) ,

1

n2

n2∑
s=1

Q2
i,s(Φ(x

2
s)− Φ2)

⟩
+

⟨
1

n1

n1∑
s=1

Q1
i,s(Φ(x

1
s)− Φ1) , Φ2

⟩

+

⟨
Φ1 ,

1

n2

n2∑
s=1

Q2
i,s(Φ(x

2
s)− Φ2)

⟩
+
⟨
Φ1 , Φ2

⟩
=

1

n1

Q1
iC1K

1,2C2
1

n2

Q2
j
⊤
+

1

n1

Q1
iC1K

1,2 1

n2

1n2 +
1

n1

1n1K
1,2C2

1

n2

Q2
j
⊤
+

1

n1

1⊤
n1
K1,2 1

n2

1n2

=

(
1

n1

1⊤
n1

+
1

n1

Q1
iC1

)
K1,2

(
C2

1

n2

Q2
j
⊤
+

1

n2

1n2

)
.

It follows that the upper (1, 2) coordinate block matrix is

(
1m1

1

n1

1⊤
n1

+Q1C1

)
K1,2

(
C2Q

2⊤ +
1

n2

1n21
⊤
m2

)
.

3.8 Discussion

We propose a sample reduction scheme for discriminant analysis through compression. The

advantage of compression over sub-sampling is illustrated in Section 3.5, where the proposed Com-

pressed LDA consistently has better classification performance than LDA trained on sub-sampled

data. Also, we derive a non-asymptotic bound on the misclassification error rate of Compressed

LDA compared to the Bayes classifier. The compression scheme is further extended to Projected

LDA and Compressed QDA, which again show superior predictive accuracy compared to the same

classifiers trained on sub-sampled data.

There are several directions of future research that could be pursued. First, while we only con-

sidered binary classification, our approach can be extended to the multi-class setting by applying

compression (3.1) to all G classes. Secondly, given our results on compressing in the number of

samples, and existing results on compressing in the number of features [60, 61], it would be of in-

77

terest to simultaneously consider both compression schemes within discriminant analysis. Finally,

here we focused on linear and quadratic classification rules which may be too restrictive. Exploring

compression within the kernel discriminant analysis framework [72] will allow for more flexible

non-linear classification boundaries.

3.9 Proof of Miscalculation Error Rate

Proof. If x ∼ N(µ1,Σw) belongs to class 1, it is misclassified if and only if d⊤Σ̂−1
w,c(x−X) ≥ 0.

The probability of misclassifying x conditioned on the class y being 1 is

P
(
d⊤Σ̂−1

w,c(x−X) < 0
∣∣ y = 1

)
.

Note that

d⊤Σ̂−1
w,c(x−X) ∼ N(m1 , σ̃w).

where

m1 = d⊤Σ̂−1
w,c(µ1 −X), σ̃w = d⊤Σ̂−1

w,cΣwΣ̂
−1
w,cd.

Thus, the probability of misclassifying x is

Φ

(
−m1√
σ̃w

)
= Φ

(
−

d⊤Σ̂−1
w,c(µ1 −X)√

d⊤Σ̂−1
w,cΣwΣ̂−1

w,cd

)
= Φ

(
−
d⊤Σ̂−1

w,c(µ1 −X1) + d⊤Σ̂−1
w,cd√

d⊤Σ̂−1
w,cΣwΣ̂−1

w,cd

)
.

where the last equality results from the identity µ1 −X = (µ1 −X1) + d.

Likewise, let us assume that x ∼ N(µ2,Σw) belongs to class 2. Just as before,

d⊤Σ̂−1
w,c(x−X) ∼ N(m2 , σ̃w).

with

m2 = d⊤Σ̂−1
w,c(µ2 −X), σ̃w = d⊤Σ̂−1

w,cΣwΣ̂
−1
w,cd.

78

The conditional probability of misclassifying x is

P
(
d⊤Σ̂−1

w,c(x−X) ≥ 0
∣∣ y = 2

)
.

Thus, the probability of misclassifying a data point which belongs to group 2 is

1− Φ

(
−mcomp

2√
σ̃w

)
= 1− Φ

(
−

d⊤Σ̂−1
w,c(µ2 −X)√

d⊤Σ̂−1
w,cΣwΣ̂−1

w,cd

)

= Φ

(
d⊤Σ̂−1

w,c(µ2 −X)√
d⊤Σ̂−1

w,cΣwΣ̂−1
w,cd

)
= Φ

(
d⊤Σ̂−1

w,c(µ2 −X2)− d⊤Σ̂−1
w,cd√

d⊤Σ̂−1
w,cΣwΣ̂−1

w,cd

)
,

where the second equality is a result of 1 − Φ(−t) = Φ(t) and the last equality is a result of

µ2 −X = (µ2 −X2)− d.

Thus, the total misclassification error rate for compressed Linear discriminant analysis is

P
(
d⊤Σ̂−1

w,c(x−X) < 0
∣∣ y = 1

)
π1 + P

(
d⊤Σ̂−1

w,c(x−X) ≥ 0
∣∣ y = 2

)
π2

=
1

2

2∑
g=1

Φ

(
(−1)gd⊤Σ̂−1

w,c(µg −Xg)− d⊤Σ̂−1
w,cd√

d⊤Σ̂−1
w,cΣwΣ̂−1

w,cd

)
.

3.10 Technical Proofs

This supplement contains a proof of Theorem 10 along with supplemental Theorems and Lem-

mas. In the following C denotes an absolute constant which may change from line to line. If

multiple constants appear in the same expression, C1, C2, etc. will be used to differentiate them.

We make the following assumption which is useful for simplifying expressions in the theory.

Assumption 8. The number of compressed samples m is large enough so that log(η−1)/m ≤ 1.

Additionally, the number of original training samples n is large enough so that log(η−1) ≤
√
n.

Remark 6. Assumption 8 is mild. For instance, if η = 10−10, then m must be at least 24, and n

must be at least 531. If η = 10−2, then m muust be at least 5, and n must be at least 22

79

Theorem 10
- Misclas-
sification

Error Rate

Theorem 11
- Error De-
composition

Theorem 12
- Bound for
d⊤Σ̂−1

w,cd

Theorem 13
- Bound

for d⊤Σ−1
w d

Theorem 14
- Bound
for Σ̂−1

w,c

Theorem 15
- Bound
for Σ̂w,c

Lemma 14
- Quadratic

Form
ε - net

Lemma 15
- Hanson-

Wright
Bound

Lemma 16
- Norm
Bounds

for Com-
pression
Matrix

Lemma 17
- Con-
ditional
Hanson-
Wright

type Bound

Lemma 18
- Sub-

Gaussian
norm Ks

Figure 3.8: Proof chart for Theorem 10.

Proof of Theorem 10. By Theorem 11, the compressed LDA misclassification error rateRc has the

form

Rc = f(ε11, ε
2
1, ε2) =

1

2

2∑
g=1

Φ

(
εg1 − δ⊤Σ−1

w δ√
ε2 + δ⊤Σ−1

w δ

)
,

where εg1 and ε2 are defined in Theorem 11. Let ε = (ε11, ε
2
1, ε2). Taking the first-order Taylor

80

expansion of f centered at 0 gives

Rc = f(ε) = Φ(−
√
δ⊤Σ−1

w δ) +∇f(0)⊤ε+ op(∥ε∥2) = Ropt +∇f(0)⊤ε+ op(∥ε∥2).

Plugging this expansion into |Rc −Ropt| gives

|Rc −Ropt| =
∣∣∣∣Φ(−√δ⊤Σ−1

w δ) +∇f(0)⊤ε + op(∥ε∥2)−Ropt

∣∣∣∣
≤

∣∣∣∣Ropt +∇f(0)⊤ε−Ropt

∣∣∣∣+ op(∥ε∥2)

=

∣∣∣∣∇f(0)⊤ε∣∣∣∣+ op(∥ε∥2)

≤ C∥∇f(0)∥2 ∥ε∥2,

where we absorbed the lower-order op(∥ε∥2) into the absolute constant C > 0.

We now compute ∥∇f(0)∥2. The partial derivatives are

∂f

∂εg1
(0) =

1

2
ϕ

(
−δ⊤Σ−1

w δ√
δ⊤Σ−1

w δ

)[
1√

δ⊤Σ−1
w δ

]
=
ϕ(
√
δ⊤Σ−1

w δ)

2
√
δ⊤Σ−1

w δ

and
∂f

∂ε2
(0) = −1

4
ϕ

(
−δ⊤Σ−1

w δ√
δ⊤Σ−1

w δ

)[
−δ⊤Σ−1

w δ

(δ⊤Σ−1
w δ)3/2

]
=
ϕ(
√
δ⊤Σ−1

w δ)

4
√
δ⊤Σ−1

w δ
,

where ϕ denotes the standard normal density. It follows that

∥∇f(0)∥2 =
ϕ(−

√
δ⊤Σ−1

w δ)

2
√
δ⊤Σ−1

w δ
∥
(
1 1 1/2

)
∥2 =

3ϕ(
√
δ⊤Σ−1

w δ)

4
√
δ⊤Σ−1

w δ
.

We now focus on bounding the error term ∥ε∥2. We have

∥ε∥2 ≤ ∥ε∥1 = |ε11|+ |ε21|+ |ε2|.

81

Applying Theorem 11 proves that with probability at least 1− η :

|εg1| ≤ C K2
s (∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m

|ε2| ≤ C K2
s (∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m
.

It follows that with probability at least 1− η :

|Rc −Ropt| ≤ C
ϕ(
√
δ⊤Σ−1

w δ)√
δ⊤Σ−1

w δ
K2

s (∥Σ−1/2
w δ∥22 + ∥Σ−1/2

w δ∥2)
√

log(η−1) + p

m

≤ C ϕ(
√
δ⊤Σ−1

w δ)K2
s (

√
δ⊤Σ−1

w δ + 1)

√
log(η−1) + p

m
.

This proves the Theorem.

Theorem 11. LetRc be the misclassification error rate (3.4) of the compressed LDA decision rule.

Then Rc has the form

Rc =
1

2

2∑
g=1

Φ

(
εg1 − δ⊤Σ−1

w δ√
ε2 + δ⊤Σ−1

w δ

)
,

where

εg1 = (−1)gd⊤Σ̂−1
w,c(µg −Xg)− d⊤Σ̂−1

w,cd+ δ⊤Σ−1
w δ

ε2 = d⊤Σ̂−1
w,c Σw Σ̂−1

w,cd− δ⊤Σ−1
w δ.

Then the error terms ε1 and ε2 have the following upper bounds with probability at least 1− η :

|εg1| ≤ C K2
s (∥Σ−1/2

w δ∥2 + ∥Σ−1/2
w δ∥22)

√
log(η−1) + p

m
,

82

and

|ε2| ≤ C K2
s (∥Σ−1/2

w δ∥2 + ∥Σ−1/2
w δ∥22)

√
log(η−1) + p

m
.

Here, C > 0 is an absolute constant, and Ks = {s log(1 + s−1)}−1/2 is the sub-Gaussian norm of

Qg
i,j/
√
s- the entries of the compression matrices.

Proof of Theorem 11. We have

|εg1| ≤ |d⊤Σ̂−1
w,c(µg −Xg)|︸ ︷︷ ︸

(I)

+ |d⊤Σ̂−1
w,cd− δ⊤Σ−1

w δ|︸ ︷︷ ︸
(II)

We first bound (I). Consider

|(I)| = |d⊤Σ̂−1
w,c(µg −Xg)| = |d⊤Σ−1/2

w (Σ1/2
w Σ̂−1

w,cΣ
1/2
w)Σ−1/2

w (µg −Xg)|

≤ ∥d⊤Σ−1/2
w ∥2︸ ︷︷ ︸
A1

∥Σ1/2
w Σ̂−1

w,cΣ
1/2
w ∥op︸ ︷︷ ︸

A2

∥Σ−1/2
w (µg −Xg)∥2︸ ︷︷ ︸

A3

.

We bound A1 − A3 separately.

For A1, by Assumptions 1 and 6, Σ−1/2
w d ∼ N(Σ

−1/2
w δ, n−1Ip). By the triangle inequality and

Proposition 1.1 of [73], the following holds with probability at least 1− η for any η ∈ (0, e−1) :

∥Σ−1/2
w d∥2 ≤ ∥Σ−1/2

w δ∥2 + ∥Σ−1/2
w (d− δ)∥2

≤ ∥Σ−1/2
w δ∥2 +

(
p

n
+

2
√
p log(η−1)

n
+

2 log(η−1)

n

)1/2

≤ ∥Σ−1/2
w δ∥2 +

(
p log(η−1)

n
+

2
√
p log(η−1)

n
+

2p log(η−1)

n

)1/2

≤ ∥Σ−1/2
w δ∥2 + C

√
p log(η−1)

n

We now bound A2. By Theorem 5, the following inequality holds with probability at least

83

1− η/3 :

∥Σ1/2
w Σ̂−1

w,cΣ
1/2
w ∥op ≤ ∥Ip∥op + ∥Σ1/2

w Σ̂−1
w,cΣ

1/2
w − Ip∥op ≤ 1 + C2K

2
s

√
log(η−1) + p

m
.

We now bound A3. By Assumptions 1 and 6, Σ−1/2
w (µg −Xg) ∼ N(0, n−1

g Ip). By Proposition

1.1 of [73], the following holds with probability at least 1− η :

∥Σ−1/2
w (µg −Xg)∥2 ≤ C

√
p log(η−1)

n
.

Combining the bounds for A1-A3, with probability at least 1− η :

|d⊤Σ̂−1
w,c(µg −Xg)|

≤ C

(
∥Σ−1/2

w δ∥2 + C

√
p log(η−1)

n

)(
1 + C2K

2
s

√
log(η−1) + p

m

)√
p log(η−1)

n

≤ CK2
s∥Σ−1/2

w δ∥2

√
p log(η−1)

n
,

(3.6)

where the last inequality came from absorbing lower-order terms into the absolute constant C.

We now bound (II). By the triangle inequality and Theorems 12–13, with probability at least

1− η:

|d⊤Σ̂−1
w,cd− δ⊤Σ−1

w δ| ≤ |d⊤Σ̂−1
w,cd− d⊤Σ−1

w d|+ |d⊤Σ−1
w d− δ⊤Σ−1

w δ|

≤ C1K
2
s ∥Σ−1/2

w δ∥22

√
log(η−1) + p

m
+ C2∥Σ−1/2

w δ∥2

√
p log(η−1)

n

≤ C (K2
s ∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m
.

For s ≤ 0.8, we have Ks ≥ 1. Thus,

|d⊤Σ̂−1
w,cd− δ⊤Σ−1

w δ| ≤ C (K2
s ∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m

≤ C K2
s (∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m
.

(3.7)

84

Combining (3.6) and (3.7) gives with probability at least 1− η :

|εg1| ≤ C1K
2
s (∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m
+ C2K

2
s∥Σ−1/2

w δ∥2

√
p log(η−1)

n

≤ C K2
s (∥Σ−1/2

w δ∥22 + ∥Σ−1/2
w δ∥2)

√
log(η−1) + p

m
,

where the lower-order term has been absorbed into the absolute constant C1.

We now focus on bounding ε2. The triangle inequality gives

|ε2| = |d⊤Σ̂−1
w,c Σw Σ̂−1

w,cd− δ⊤Σ−1
w δ| ≤ |d⊤Σ̂−1

w,c Σw Σ̂−1
w,cd− d⊤Σ−1

w d|︸ ︷︷ ︸
A1

+ |d⊤Σ−1
w d− δ⊤Σ−1

w δ|︸ ︷︷ ︸
A2

.

We bound A1-A2 separately.

First consider A1. Using identity Ip = Σ
−1/2
w Σ

1/2
w gives

|A1| = |d⊤Σ̂−1
w,cΣwΣ̂

−1
w,cd− d⊤Σwd|

= |d⊤Σ−1/2
w (Σ1/2

w Σ̂−1
w,cΣ

1/2
w)(Σ1/2

w Σ̂−1
w,cΣ

1/2
w)Σ−1/2

w d− d⊤Σ−1
w d|

≤ ∥Σ−1/2
w d∥22 ∥(Σ1/2

w Σ̂−1
w,cΣ

1/2
w)2 − Ip∥op.

Let A = Σ
1/2
w Σ̂−1

w,cΣ
1/2
w . Then ∥(Σ1/2

w Σ̂−1
w,cΣ

1/2
w)2 − Ip∥op is bounded above by

∥Ip − A2∥op = ∥(Ip + A)(Ip − A)∥op

≤ ∥2Ip + (A− Ip)∥op∥Ip − A∥op

≤ [2 + ∥Ip − A∥op] ∥Ip − A∥op.

Using the assumption that ∥Ip−A∥op < 1 and Theorem 14, we have with probability at least 1−η :

∥Ip − A2∥op < 3∥Ip − A∥op ≤ C K2
s

√
log(η−1) + p

m
(3.8)

for some absolute constant C > 0.

85

By Theorem 13, the following holds with probability at least 1− η/2 :

∥Σ−1/2
w d∥22 ≤ ∥Σ−1/2

w δ∥22+ |d⊤Σ−1
w d−δ⊤Σ−1

w δ| ≤ ∥Σ−1/2
w δ∥22+C∥Σ−1/2

w δ∥2

√
p log(η−1)

n
. (3.9)

Combining (3.8) and (3.9) proves that the following bound on A1 holds with probability at least

1− η :

|d⊤Σ̂−1
w,cΣwΣ̂

−1
w,cd− d⊤Σwd|

≤
(
∥Σ−1/2

w δ∥22 + C∥Σ−1/2
w δ∥2

√
p log(η−1)

n

)
C K2

s

√
log(η−1) + p

m

≤ C K2
s (∥Σ−1/2

w δ∥2 + ∥Σ−1/2
w δ∥22)

√
log(η−1) + p

m
.

(3.10)

To bound A2, Theorem 13 proves that with probability at least 1− η/2,

|A2| = |d⊤Σ−1
w d− δ⊤Σ−1

w δ| ≤ C∥Σ−1
w δ∥2

√
p log(η−1)

n
.

Since A2 is a smaller-order term compared to (3.10), we absorb it into the absolute constant C.

Thus, with probability at least 1− η :

|ε2| ≤ C K2
s (∥Σ−1/2

w δ∥2 + ∥Σ−1/2
w δ∥22)

√
log(η−1) + p

m
.

This completes the proof.

Theorem 12. Let the samples X ∈ Rn×p be distributed according to Assumption 1. Let d and

δ ∈ Rp be as in Definition 6, and let Σ̂w,c be the compressed within-group covariance matrix.

Then with probability at least 1− η,

|d⊤Σ̂−1
w,cd− d⊤Σ−1

w d| ≤ C K2
s ∥Σ−1/2

w δ∥22

√
log(η−1) + p

m
,

86

where C > 0 is an absolute constant, and Ks = {s log(1+ s−1)}−1/2 is the sub-Gaussian norm of

Qg
i,j/
√
s.

Proof of Theorem 12. We have

|d⊤Σ̂−1
w,cd− d⊤Σ−1

w d| = |d⊤Σ−1/2
w Σw(Σ̂

−1
w,c − Σ−1

w)Σ1/2
w Σ−1/2

w d|

≤ ∥Σ−1/2
w d∥22 ∥Σ1/2

w Σ̂−1
w,cΣ

1/2
w − Ip∥op.

By Theorem 14, with probability at least 1− η/2,

∥Σ1/2
w Σ̂−1

w,cΣ
1/2
w − Ip∥op ≤ C K2

s

√
log(η−1) + p

m
.

for some absolute constant C > 0, and whereKs = {s log(1+s−1)}−1/2 is the sub-Gaussian norm

of Qg
i,j/
√
s by Lemma 18.

By the triangle inequality and Theorem 13, with probability at least 1− η :

∥Σ−1/2
w d∥22 = |d⊤Σ−1

w d− δ⊤Σ−1
w δ + δ⊤Σ−1

w δ|

≤ ∥Σ−1/2
w δ∥22 + |d⊤Σ−1

w d− δ⊤Σ−1
w δ| ≤ ∥Σ−1/2

w δ∥22 + C∥Σ−1/2
w δ∥2

√
p log(η−1)

n
.

Combining the two displays above and absorbing the lower order term into the absolute con-

stant C, we have that with probability at least 1− η

|d⊤Σ̂−1
w,cd− d⊤Σ−1

w d| ≤
(
∥Σ−1/2

w δ∥22 + C∥Σ−1/2
w δ∥2

√
p log(η−1)

n

)
C1K

2
s

√
log(η−1) + p

m

≤ C K2
s∥Σ−1/2

w δ∥22

√
log(η−1) + p

m
.

Theorem 13. Let the samples in X ∈ Rn×p be distributed according to Assumption 1, and let d

and δ be as in Definition 6. Then for η ∈ (0, e−1), the following upper bound holds with probability

87

at least 1− η,

|d⊤Σ−1
w d− δ⊤Σ−1

w δ| ≤ C∥Σ−1/2
w δ∥2

√
p log(η−1)

n

for some absolute constant C > 0.

Proof of Theorem 13. Completing the square gives

|d⊤Σ−1
w d− δ⊤Σ−1

w δ| = |(d− δ)⊤Σ−1
w (d− δ) + 2(d− δ)⊤Σ−1

w δ|

≤ ∥Σ−1/2
w (d− δ)∥22 + 2∥Σ−1/2

w δ∥2 ∥Σ−1/2
w (d− δ)∥2.

Assumptions 1 and 6 give Σ−1/2
w (d−δ) ∼ N(0, n−1Ip). By Proposition 1.1 of [73], with probability

at least 1− η,

∥Σ−1/2
w (d− δ)∥22 ≤

p

n
+

2
√
p log(η−1)

n
+

2 log(η−1)

n
.

For η ∈ (0, e−1), we have log(η−1) ≥ 1. It follows that

∥Σ−1/2
w (d− δ)∥22 ≤

p

n
+

2
√
p log(η−1)

n
+

2 log(η−1)

n

≤ p log(η−1)

n
+

2
√
p log(η−1)

n
+

2p log(η−1)

n

≤ C
p log(η−1)

n
.

Then

∥Σ−1/2
w (d− δ)∥22 + 2∥Σ−1/2

w δ∥2 ∥Σ−1/2
w (d− δ)∥2

≤ C1
p log(η−1)

n
+ C2∥Σ−1/2

w δ∥2

√
p log(η−1)

n

≤ C∥Σ−1/2
w δ∥2

√
p log(η−1)

n
.

88

Theorem 14 (Inverse Covariance Bound). Let the samples X ∈ Rn×p be distributed according to

Assumption 1 with shared covariance Σw ∈ Rp×p. Let Σ̂w,c be the within-group sample covariance

matrix of the compressed data with sparsity parameter s > 0. Then with probability at least 1− η,

∥Ip − Σ1/2
w Σ̂−1

w,cΣ
1/2
w ∥op ≤ C K2

s

√
log(η−1) + p

m

for some absolute constant C > 0, and where Ks = {s log(1 + s−1)}−1/2 is the sub-Gaussian

norm of Qg
i,j/
√
s.

Proof. For A := Σ
−1/2
w Σ̂w,cΣ

−1/2
w , the above is of the form ∥Σ−1

w ∥op∥A−1− I∥op. By Theorem 15,

∥I − A∥op < 1 with high probability. Then A has the geometric sum expansion of its inverse

A−1 =
∑∞

k=0(I − A)k. Thus,

∥Ip − A−1∥op =

∥∥∥∥Ip − ∞∑
k=0

(Ip − A)k
∥∥∥∥

op
=

∥∥∥∥ ∞∑
k=1

(Ip − A)k
∥∥∥∥

op

≤
∞∑
k=1

∥Ip − A∥kop =
∞∑
k=0

∥Ip − A∥kop − 1

=
1

1− ∥Ip − A∥op
− 1 =

∥Ip − A∥op

1− ∥Ip − A∥op
= ∥Ip − A∥op + op(∥Ip − A∥op),

where the last equality comes from the Taylor Expansion of the function t/(1− t) centered at 0.

Applying Theorem 15 and absorbing the lower-order op(∥Ip−A∥op) into the absolute constant

C proves that with probability at least 1− η,

∥Ip − Σ1/2
w Σ̂−1

w,cΣ
1/2
w ∥op ≤ C K2

s

√
log(η−1) + p

m

Theorem 15 (Covariance Bound). Let the samples X ∈ Rn×p be distributed according to As-

sumption 1 with shared covariance Σw ∈ Rp×p. Let Σ̂w,c ∈ Rp×p be the within-group sample

89

covariance matrix of the compressed data with sparsity parameter s > 0. Then with probability at

least 1− η:

∥Σ−1/2
w Σ̂w,cΣ

−1/2
w − Ip∥op ≤ C K2

s

√
log(η−1) + p

m
, (3.11)

for some absolute constant C > 0, and where Ks = {s log(1 + s−1)}−1/2 is the sub-Gaussian

norm of Qg
i,j/
√
s.

90

Proof of Theorem 15. By the definition of Σ̂w,c,

Σ−1/2
w Σ̂w,cΣ

−1/2
w

=
1

m

2∑
g=1

mg∑
j=1

Σ−1/2
w (xg

j,c −Xg)(x
g
j,c −Xg)

⊤Σ−1/2
w

=
1

m

2∑
g=1

mg∑
j=1

Σ−1/2
w

(
1
√
ngs

ng∑
i=1

Qg
j,i(x

g
i −Xg) +Xg −Xg

)
(

1
√
ngs

ng∑
ℓ=1

Qg
j,ℓ(x

g
ℓ −Xg) +Xg −Xg

)⊤

Σ−1/2
w

=
1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
j,iΣ

−1/2
w (xg

i − µg + µg −Xg)

)
(

1
√
ngs

ng∑
ℓ=1

Qg
j,ℓΣ

−1/2
w (xg

ℓ − µg + µg −Xg)

)⊤

=
1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
j,iΣ

−1/2
w (xg

i − µg)

)(
1
√
ngs

ng∑
ℓ=1

Qg
j,ℓΣ

−1/2
w (xg

ℓ − µg)

)⊤

︸ ︷︷ ︸
A1

− 1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
j,iΣ

−1/2
w (xg

i − µg)

)(
1
√
ngs

ng∑
ℓ=1

Qg
j,ℓΣ

−1/2
w (µg −Xg)

)⊤

︸ ︷︷ ︸
A2

− 1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
j,iΣ

−1/2
w (µg −Xg)

)(
1
√
ngs

ng∑
ℓ=1

Qg
j,ℓΣ

−1/2
w (xg

ℓ − µg)

)⊤

︸ ︷︷ ︸
A3

+
1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
j,iΣ

−1/2
w (µg −Xg)

)(
1
√
ngs

ng∑
ℓ=1

Qg
j,ℓΣ

−1/2
w (µg −Xg)

)⊤

︸ ︷︷ ︸
A4

.

We bound A1 −A4 separately. We do this by considering a fixed v ∈ Rp with norm ∥v∥2 = 1. We

first bound each v⊤Aiv and then generalize to a norm bound using an ϵ-net argument.

91

Consider

v⊤A1v =
1

2

2∑
g=1

v⊤
[

1
√
ng

1
√
ng

ng∑
i,ℓ=1

{
1

mg

mg∑
j=1

1

s
Qg

j,iQ
g
j,ℓ

}
Σ−1/2

w (xg
i − µg)(x

g
j − µg)

⊤Σ−1/2
w

]
v

=
1

2

2∑
g=1

ng∑
i,ℓ=1

{
1

mg

mg∑
j=1

1

s
Qg

j,iQ
g
j,ℓ

}
1
√
ng

⟨
Σ−1/2

w (xg
i − µg) , v

⟩ 1
√
ng

⟨
Σ−1/2

w (xg
j − µg) , v

⟩
=

1

2

2∑
g=1

1

ngmg

Zg⊤RgZ
g,

where Zg ∈ Rng is the vector with i-th coordinate
⟨
Σ

−1/2
w (xg

i − µg), v
⟩

, and Rg = 1
s
Qg⊤Qg ∈

Rng×ng . By Assumption 1, Zg ∼ N(0, Ing). By Lemma 15, with probability at least 1− η :

|v⊤(A1 − Ip)v| = |v⊤A1v − 1| =
∣∣∣∣12

2∑
g=1

1

ngmg

Zg⊤RgZ
g − 1

∣∣∣∣ ≤ C K2
s

√
log(η−1)

m
. (3.12)

The terms A2 and A3 are transposes of each other, and so we handle them simultaneously. Left

and right multiplying by v gives

1

2

2∑
g=1

v⊤
[

1

mg

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
i,jΣ

−1/2
w (xg

i − µg)

)(
1
√
ngs

ng∑
ℓ=1

Qg
ℓ,jΣ

−1/2
w (µg −Xg)

)⊤]
v

=
1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
i,j

⟨
Σ−1/2

w (xg
i − µg) , v

⟩)(1
√
ngs

ng∑
ℓ=1

Qg
ℓ,j

)⟨
Σ−1/2

w (µg −Xg) , v
⟩
.

By Assumption 1,
⟨
Σ

−1/2
w (µg −Xg) , v

⟩
∼ N(0, n−1

g). By the Gaussian concentration in-

equality, with probability at least 1− η/3:

∣∣∣∣ ⟨Σ−1/2
w (µg −Xg) , v

⟩ ∣∣∣∣ ≤ C

√
log(η−1)

ng

= C ′

√
log(η−1)

n
(3.13)

for some absolute constants C,C ′ > 0. The last equality comes from Assumption 6.

92

By the general Hoeffding’s Inequality, Theorem 2.6.3 of [74], with probability at least 1−η/3 :

∣∣∣∣ 1
√
ngs

ng∑
ℓ=1

Qg
ℓ,j

∣∣∣∣ ≤ CKs

√
log(η−1), (3.14)

where Ks = {s log(1 + s−1)}−1/2 is the sub-Gaussian norm of Qg
i,j/
√
s by Lemma 18.

Lastly,

1

m

2∑
g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
i,j

⟨
Σ−1/2

w (xg
i − µg) , v

⟩)

=
1

2

2∑
g=1

1
√
ng

ng∑
i=1

(
1

mg

mg∑
j=1

1√
s
Qg

i,j

)
Zg

i ,

(3.15)

where the Zg
i are as above. Let Xig = m−1

g

∑mg

j=1Q
g
i,j/
√
s, then by Lemma 18 the sub-Gaussian

norm of Xig is Ks/
√
m. Conditioning on vectors Zg = (Zg

1 , . . . , z
g
ng
), and applying Hoeffding’s

Inequality to Qg
i,j gives that with probability at least 1− η/6 :

∣∣∣∣12
2∑

g=1

1
√
ng

ng∑
i=1

(
1

mg

mg∑
j=1

1√
s
Qg

i,j

)
Zg

i

∣∣∣∣ = ∣∣∣∣ 2∑
g=1

ng∑
i=1

1

2
√
ng

Zg
iXig

∣∣∣∣
≤ CKs

√
log(η−1)

m

(
∥Z1∥22 + ∥Z2∥22

n

)1/2

.

Let Z =

(
Z1⊤ Z2⊤

)⊤

∈ Rn. By Theorem 3.1.1 of [74],

P
(∣∣∣∣ 1√

n
∥Z∥2 − 1

∣∣∣∣ ≥ t

)
= P(|∥Z∥2 −

√
n| ≥

√
n t) ≤ 2 exp(−c n t2).

This is equivalent to the following upper bound holding with probability at least 1− η/6 :

(
∥Z1∥22 + ∥Z2∥22

n

)1/2

=
1√
n
∥Z∥2 ≤ 1 + C

√
log(η−1)

n
,

where C > 0 is an absolute constant. Combining the above two displays gives the following bound

93

for (3.15), which holds with probability at least 1− η/3 :

∣∣∣∣12
2∑

g=1

1
√
ng

ng∑
i=1

(
1

mg

mg∑
j=1

1√
s
Qg

i,j

)
Zg

i

∣∣∣∣ ≤ C1Ks

√
log(η−1)

m

(
1 + C2

√
log(η−1)

n

)

≤ C Ks

√
log(η−1)

m
.

(3.16)

Putting (3.13), (3.14) and (3.16) together shows that with probability at least 1− η,

|v⊤A2v| =∣∣∣∣ 1m
2∑

g=1

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
i,j

⟨
Σ−1/2

w (xg
i − µg) , v

⟩)(1
√
ngs

ng∑
ℓ=1

Qg
ℓ,j

)⟨
Σ−1/2

w (µg −Xg) , v
⟩ ∣∣∣∣

≤
(
C1Ks

√
log(η−1)

m

)
C2Ks

√
log(η−1)

(
C3

√
log(η−1)

n

)
≤ CK2

s

log(η−1)√
n

√
log(η−1)

m
≤ CK2

s

√
log(η−1)

m
.

We have used Assumption 8 in the last inequality.

For A4, left and right multiplying by v gives

v⊤A4v

= v⊤
[
1

2

2∑
g=1

1

mg

mg∑
j=1

(
1
√
ngp

ng∑
i=1

Qg
i,jΣ

−1/2
w (µg −Xg)

)(
1
√
ngp

ng∑
ℓ=1

Qg
ℓ,jΣ

−1/2
w (µg −Xg)

)⊤]
v

=
1

2

2∑
g=1

{
1

mg

mg∑
j=1

(
1
√
ngp

ng∑
i=1

Qg
i,j

)2}⟨
Σ−1/2

w (µg −Xg) , v
⟩2
,

where the last equality is true since Σ
−1/2
w (µg −Xg) is independent of i, j, and ℓ.

By Assumption 1,
⟨
Σ

−1/2
w (µg −Xg) , v

⟩
∼ N(0, n−1

g). The Gaussian concentration inequal-

ity proves that with probability at least 1− η/2 :

∣∣∣∣ ⟨Σ−1/2
w (µg −Xg) , v

⟩ ∣∣∣∣2 ≤ C
log(η−1)

ng

.

94

The squared terms (
1
√
ngp

ng∑
i=1

Qg
i,j

)2

are sub-Exponential because they are the squares of sub-Gaussian random variables. By Lemma

2.7.6 of [74], the sub-Exponential norm satisfies

∥∥∥∥(1
√
ngp

ng∑
i=1

Qg
i,j

)2∥∥∥∥
Ψ1

=

∥∥∥∥ 1
√
ngp

ng∑
i=1

Qg
i,j

∥∥∥∥2

Ψ2

= C K2
s ,

where C > 0 is an absolute constant and Ks is the sub-Gaussian norm of Qg
i,j/
√
s by Lemma 18.

Thus, by Bernstein’s Inequality, with probability at least 1− η:

∣∣∣∣ 1

mg

mg∑
j=1

(
1
√
ngs

ng∑
i=1

Qg
j,i

)2∣∣∣∣ ≤ C K2
s max

{
log(η−1)

mg

,

√
log(η−1)

mg

}
≤ C K2

s

√
log(η−1)

mg

.

Combining the above displays, with probability at least 1− η, |v⊤A4v| is bounded above by

|v⊤A4v| ≤ CK2
s

√
log(η)−1

mg

log(η−1)

ng

≤ CK2
s

log(η−1)

n
,

where we have used Assumptions 6 and 8.

Combining the above bounds for A1 − A4 shows that with probability at least 1− η :

|v⊤(Σ−1/2
w Σ̂w,cΣ

−1/2
w − Ip)v| ≤ C1K

2
s

√
log(η−1)

m
+ C2K

2
s

√
log(η−1)

m
+ C3K

2
s

log(η−1)

n

= C K2
s

√
log(η−1)

m
.

We now generalize to a norm bound via an ε-net argument. Let N be a 1/3-net on the unit

95

sphere of Rp. There exists a 1/3-net such that |N | ≤ 7p (see Corollary 4.2.13 of [74]). Thus,

P
(
sup
v∈N
|v⊤(Σ−1/2

w Σ̂w,cΣ
−1/2
w − Ip)v| ≥ t

)
= P

(∪
v∈N

{|v⊤(Σ−1/2
w Σ̂w,cΣ

−1/2
w − Ip)v| ≥ t}

)
≤

∑
v∈N

P(|v⊤(Σ−1/2
w Σ̂w,cΣ

−1/2
w − Ip)v| ≥ t)

≤
∑
v∈N

exp

(
− C mt2

K4
s

)
= |N | exp

(
− C mt2

K4
s

)
≤ exp(p log(7)) exp

(
− C mt2

K4
s

)
= exp

(
C1 p− C2

mt2

K4
s

)
.

This tail inequality is equivalent to the following upper bound holding with probability at least

1− η :

sup
v∈N
|v⊤(Σ−1/2

w Σ̂w,cΣ
−1/2
w − Ip)v| ≤ C1K

2
s

√
log(η−1) + C2p

m

≤ C K2
s max{1,

√
C2}

√
log(η−1) + p

m
.

Absorbing max{1,
√
C2} into the absolute constant C1 gives a uniform bound on the ε-net N .

Applying Lemma 14 proves the final reuslt.

Lemma 14 (page 88 of [74]). Let ε ∈ [0, 1/2). Then for any ε-net N of the unit sphere of Rp, we

have

sup
v∈N
|v⊤(Σ̂w,c − Σw)v| ≤ ∥Σ̂w,c − Σw∥op ≤

1

1− 2ε
sup
v∈N
|v⊤(Σ̂w,c − Σw)v|.

Lemma 15. For g = 1, 2, letZg ∼ N(0, Ing), letQg ∈ Rmg×ng consist of i.i.d. sparse Rademacher

random variables with sparsity parameter s, and letRg = Qg⊤Qg/s. Then with probability at least

96

1− η: ∣∣∣∣12
2∑

g=1

1

ngmg

Zg⊤RgZ
g − 1

∣∣∣∣ ≤ C K2
s

√
log(η−1)

m
,

where C > 0 is an absolute constant, and Ks = {s log(1 + s−1)}−1/2 is the sub-gaussian norm of

Qg
i,j/
√
s.

Proof of Lemma 15. By Lemma 17, with probability at least 1− η/2:

∣∣∣∣12
2∑

g=1

1

ngmg

Zg⊤RgZ
g − 1

∣∣∣∣ ≤ 1

2

2∑
g=1

∣∣∣∣ 1

ngmg

Zg⊤RgZ
g − 1

∣∣∣∣
≤ 1

2

2∑
g=1

(
C

ng

∥Rg∥op

√
log(η−1)

mg

+

∣∣∣∣ 1

ngmg

tr(Rg)− 1

∣∣∣∣)
(3.17)

for some absolute constant C > 0. We bound each term individually.

By Lemma 16, with probability at least 1− η/2 :

C
2∑

g=1

1

ng

∥Rg∥op

√
log(η−1)

mg

≤ C
2∑

g=1

K2
s

[
1 +

√
log(η−1)

ng

]√
log(η−1)

mg

≤ C K2
s

√
log(η−1)

m
,

where we have absorbed the lower-order term into the absolute constant C and used Assumption 6.

Since tr(Rg) = ∥Qg/
√
s∥2F , by Hoeffding’s Inequality, Theorem 2.6.3 of [74], the following

inequalities hold with probability at least 1− η/2:

∣∣∣∣ 1

ngmg

tr(Rg)− 1

∣∣∣∣
=

1

2

2∑
g=1

∣∣∣∣ 1

ngmg

∥∥∥∥ 1√
s
Qg

∥∥∥∥2

F

− 1

∣∣∣∣ = 1

2

2∑
g=1

∣∣∣∣ 1

ngmg

ng∑
i=1

mg∑
j=1

{(
1√
s
Qg

i,j

)2

− 1

}∣∣∣∣
≤ 1

2

2∑
g=1

K2
s

√
log(η−1)

ngmg

= 2K2
s

√
log(η−1)

nm
,

where Assumption 6 was used in the last equality.

97

Combining the above two displays with (3.17), and absorbing the lower order terms gives

∣∣∣∣12
2∑

g=1

1

ngmg

Zg⊤RgZ
g − 1

∣∣∣∣ ≤ C K2
s

√
log(η−1)

m

with probability at least 1− η for some absolute constant C > 0.

Lemma 16 (Norm Bound). Let Q ∈ Rm×n be a matrix consisting of i.i.d. sparse Rademacher

random variables with sparsity parameter s, and let R = Q⊤Q/s. Then with probability at least

1− η:

∥R∥op

nm
≤ C

K2
s

m

[
1 +

√
log(η−1)

n

]
,

where C > 0 is an absolute constant, and Ks = {s log(1 + s−1)}−1/2 is the sub-gaussian norm of

Qi,j/
√
s.

Proof of Lemma 16. By Lemma 18, Ks = {s log(1 + s−1)}−1/2 is the sub-Gaussian norm of

Qi,j/
√
s. By Theorem 4.4.5 of [74], with probability at least 1− η :

∥R∥op =

∥∥∥∥ 1√
s
Q

∥∥∥∥2

op
≤ CK2

s (
√
m+

√
n+

√
log(η−1))2

Including the scaling (nm)−1 gives

∥R∥op

nm
=
CK2

s

nm
(
√
m+

√
n+

√
log(η−1))2 =

C K2
s

m

[√
m

n
+ 1 +

√
log(η−1)

n

]2
≤ CK2

s

m

[
2 +

√
log(η−1)

n

]2
≤ CK2

s

m

[
1 +

√
log(η−1)

n

]
,

where we have expanded the square and absorbed the lower-order terms into the absolute constant

C > 0.

98

Lemma 17 (Conditional Hanson-Wright). Let Z ∼ N(0, In), and let R ∈ Rn×n be a matrix of

rankm. Conditioning onR, and for η ∈ (0, e−1), the following upper bound holds with probability

at least 1− η :

∣∣∣∣ 1

nm
Z⊤RZ − 1

∣∣∣∣ ≤ C

n
∥R∥op

√
log(η−1)

m
+

∣∣∣∣ 1

nm
tr(R)− 1

∣∣∣∣, (3.18)

where C > 0 is an absolute constant.

Proof of Lemma 17. Since Z ∼ N(0, In), the conditional expectation equals

E[Z⊤RZ |R] = tr(RIn) + 0⊤R 0 = tr(R).

The Hanson-Wright Inequality, Theorem 6.2.1 of [74], gives the conditional tail bound

P(|Z⊤RZ − tr(R) | ≥ t nm |R) = P(|Z⊤RZ − E[Z⊤RZ |R]| ≥ t nm |R)

≤ 2 exp

(
− C min

(
t2m2 n2

∥R∥2F
,
tmn

∥R∥op

))

for some absolute C > 0. This is equivalent to the following upper bound holding with probability

at least 1− η:

1

nm
|Z⊤RZ − tr(R)| ≤ C

mn
max

{
∥R∥F

√
log(η−1) , ∥R∥op log(η

−1)

}
.

Using the fact that ∥R∥F ≤
√
m∥R∥op and m ≥ log(η−1) for η ≤ e−1, this is further bounded by

1

nm
|Z⊤RZ − tr(R)| ≤ C

mn
max

{√
m∥R∥op

√
log(η−1) , ∥R∥op log(η

−1)

}
≤ C

n
∥R∥op max

{√
log(η−1)

m
,
log(η−1)

m

}
=
C

n
∥R∥op

√
log(η−1)

m
.

(3.19)

99

Applying the triangle inequality and substituting (3.19) gives the final result:

∣∣∣∣ 1

nm
Z⊤RZ − 1

∣∣∣∣ ≤ ∣∣∣∣ 1

nm
Z⊤RZ − 1

nm
tr(R)

∣∣∣∣+ ∣∣∣∣ tr(R)nm
− 1

∣∣∣∣
≤ C

n
∥R∥op

√
log(η−1)

m
+

∣∣∣∣ tr(R)nm
− 1

∣∣∣∣.

Lemma 18 (Sub-Gaussian Norm). Let X be sparse Rademacher random variable satisfying for

some s ∈ (0, 1)

P (X = 0) = 1− s, P (X = 1) = P (X = −1) = s/2.

Then the sub-Gaussian norm of X is K = {log(1 + s−1)}−1/2, and the sub-Gaussian norm of

X/
√
s is Ks = {s log(1+s−1)}−1/2. Additionally, the sub-Gaussian norm of X2/s is s−1{log(1+

s−1)}−1/2.

Proof. By definition of sub-Gaussian norm,

K = inf{t > 0 : E exp(X2/t2) ≤ 2}.

Consider for some t > 0,

E exp(X2/t2) = exp(0/t2)(1− s) + exp(1/t2)s = 1− s+ exp(1/t2)s.

Then E exp(X2/t2) ≤ 2 is equivalent to

1− s+ exp(1/t2)s ≤ 2

exp(1/t2)s ≤ 1 + s

exp(1/t2) ≤ 1 + s−1

1/t2 ≤ log(1 + s−1)

t2 ≥ {log(1 + s−1)}−1.

100

The term Ks = {s log(1 + s−1)}−1/2 follows from scaling X by s−1/2.

Additionally, the sub-gaussian norm of the squared X2/s is
∥∥X2/s∥Ψ2 = ∥X2∥Ψ2/s. Because

X has values 0 and ±1, it follows that X4 = X2. Thus,

E exp(X4/t2) ≤ 2

E exp(X2/t2) ≤ 2

exp(1/t2)s ≤ 1 + s

exp(1/t2) ≤ 1 + s−1

t/t2 ≤ log(1 + s−1)

t2 ≥ {log(1 + s−1)}−1.

Hence, the sub-gaussian norm of X2/s is s−1{log(1 + s−1)}−1/2.

101

4. R PACKAGE FOR SPARSE KERNEL OPTIMAL SCORING AND COMPRESSED

LINEAR DISCRIMINANT ANALYSIS

4.1 Introduction

biClassify is an R package for adapting Linear Discriminant Analysis (LDA), Quadratic Dis-

criminant Analysis (QDA), and Kernel Discriminant Analysis to a variety of situations where the

conventional methods may not work. In particular, this package implements methodology for the

following problems:

1. Linear and Quadratic classification in the large-sample case with small-to-medium sized

number of features. The available compressed LDA and QDA methods of Sections 3.2 and

3.4.2 provide alternatives to random sub-sampling which are shown to produce lower mean

misclassification error rates and lower standard error in the misclassification error rates.

2. Kernel classification where the data has a medium-to-large number of features. In this case,

one would like to learn a non-linear decision boundary and have simultaneous sparse feature

selection. The sparse kernel optimal scoring method is presented in Section 2.4.

The following is a vignette manual for instructing researchers how to use the the biClassify

R package. Text appearing in the verbatim font denotes R code, commands, or function

arguments.

4.2 Quick Start

The purpose of this Section is to give the user a quick overview of the package and the types

of problems it can be used to solve. Accordingly, we implement only the basic versions of the

available methods, and more detailed presentations are given in later sections.

We first load the package.

library(biClassify)

102

1

1

11

1
1

1

1

1
1

1
1 1

1

1
11

1
1

1

1
1

1
11 1
11

1

11
1 1

1

1
1

1
11

1

11 1

1

11
1

1
1 11

1

1 1
1

1

1

1

1

1

1
1 1111

1 1

1
1

1
1 1

1

1

1
1

1

1

1
1

11

11
111

1
1

1 111
1

11
111

1 1
11

1

1
1

1

1 1
1 1

1
11 1

1
11
1

1
1 1

1

1

1

1 1111

1

111

1
1

11

1 11 1

1
1

1

1

1

1 1
1

1

11
1

1
1

1
11

1
1 1
1
1

1

11
1

1

1

1

1
1

1 1 1
1

1
1

11

1

11
1
1

1

1

1 1

1

1

1
1

1

1
1

1
1

1
11

1

1

11

1

1

1

1
1

1 111

1

1

1
11 11
1

1

1
1

1

1
1 11

1 1
1

1 1

1

1
1

1

1
111

1

1
1

1

1
1

1

1
1

11 1 11
1

1
11
11

1
11

1

11

1

1 111
1

111

1 1 1

1

1

1
1

1
1 11

1

1
1

1
1

1
1

1

1
1 1

1

1
1

1
1

1

1
1 1

1
1

1

1 1 1

1

1

1
11 1

1

1

11

1
1

1

1 1
1

1

1

1
1 1

1

11
11

1
1

11
1

1

1
1

1

1
1

11 1

1

1
1

1

1 1

1

1

11

1
1 1

11

1

1

1
1

1
1

111

11
1

11
1

11

1
11

1
1
1 1

11
1

1
1

11
1 111

1
11

1

1

1 11
1

1

1

11

11 1 1

1

1 11
1

1

1
1

1 11
1 1

1
1

1
1 1

1

1
1

1

11
1

1

11

1
1 1

1

1
1

1

1
1

1

11

1
1

1

1

1

1
1 1 1

1

1

11
1

1

1 1
1

1

1
1 1

1 1

1
1

1 11
1

1
1

11
1

1
1 1

1

1
1

1

1
1

1

1

1

11

1
1

11 1

1

1

1
1

1

1
1 11

1

1

1

1

11 11

1

1
1 111

1
1
1

11 1
111

11
1

1 1

1
111
1
1

1
1 1

1

1

1

1111 11
1

1

1

1 11

1

1
1 1
1

1

1
11 1

1

1

1
1

11
1

1
1

1
1

1

1
1

1 11

11

1

1111 1
1

1

11
1 1

1
11

1

1

1 1

1

1

1

1 1
1

11

1

1

11
1

1

1
1

1
1

1

1
1 1

1

11
1

111
1

1
11

1
1

1

11
11 1

1

1

1

111

1

1
1

1

1

1
11

1

1

1

111

11
1

1

1

1
11 1

1
1

1
11

1

11
1 1

11

1
1

1

1
1

1

1

1
11

1
1 1

1

111

1

1
1

1 1

11 111
1

1 1

1
1

1
1

1

1
11

1
1

1

1

1

1 1
1

1

1

11

1
11

1
1

1
11 1

1

1

1
1

1

1
1

11
1

1
1

1
11

11 1
1

1
1

1

1
1

1

1
111

1
11 1

1 111 1
1

1

11

1

11

1

1 1
1

1

1
1

11

111
1

11
11 1

1
1
1

1

1

111 111
11

1

1
1

1

1 11
1

1

11
1

1

1
1

1
1

1
1

11

1

11 11
1

1

1
1

1

1
1

11
11 1

1
1

11

1

11
1 1

1

1

11

1

1
1 1

111
1

1

1

1
1

11

1

1
1

1 1
1
11

1

1
11

1

1

1

1

1
1
1

1
1

1

1
1

11

1

1 1

1
1 11

1

11
1 1

1
11

1
1

1 1 1

1
1

1
1

1

1

1
1

1

11
1

1 11 1

1

1 1

11

1
1

1

1
1

1

1
1

1

1

1
11

1
1

1

1

1
1

1

1
1 1
1

11

11
1

1

1
11

1

1

1
11 1

1

1
11

1

1

1 11
1

1

1

1

1 11

1
11 1

1

1
1

111

11

11

1
1

1
1
1

11

1
1
1

1
1
1

1
1

1
111

111
1

1 1
1

1
1

1
1

1
1

1

1

1 1

1 1
11

1

1
1

1
1

1

111

1
1

1

1 1
1

1
1

1
1

1
1

1

1

1
1 1 1

1
1

1

1
1

1
1 11

1
11

1
1

11
1 1

1

1

1

1
1
11

1
1

1
11

1

1
1

1

1
1
1

1

1

1
1
1

1 1

1

1
1

11

1

1

11
1

1

1
1

1

11

1

1

1

1
1

1

1
1

1
111 1

1

1
1

1
11

1

1 1

1

1
1

1

1

1

1
1

1

1
1

1

1
11 11

1
1

1 11 1

1

1
1

11 111

11
1

11

1
1

1

1
1

11
11

1 1

1 1
1

1

1

1

1 1

1

1
1

11
1

1

1
1

1
1
11
1

1 11
11

1
1

1
1 11

1
1

1

11 1
1

1
1

1
1 11

1
1

1

1
1

1

1

11

1
1

1 1

1

1

1

1

1
1

1
11

1

11
1

1 11

1
11
1
1
1 1

1

1

1

1

1

1
1

1 1

1

1

1

1
1 1

1

1
1

1
1

1
1

11
1
1 11
1

1
1

1
1

1
1 1

1

1

1

11
1
1

1 1

11
11

1

1

1
1

1

1
111

11 111
1

1

1 11

1

1 11
1

1 1
1

1

1

1

1

1

1
1

1

1 1 1
1

1

11
1

11

1

1
11 1

1

1

1 1
1

1 11 1

1

1

1

1

1
1

1 1

1

1

1

1
1

1
1
1

1

11 1
111 1

1

1
1

1
11

1

11

1
1

1

1

1 1

1
1

1
1

1
111

1

1

1
11

1

1
1

1

1
1

1

1

1 1
1 1 11 1

1

1

1

1
1

1

11
1

1

1

1
1 1

1 1

1
1

11

1

1 1

1
1

11 1

1
11

1
1

1

1

11 1
11 1

1
1

1

1
1

1

11
1

1
1

1

1
1

11
11 1
1

1 1
11 1

1

1 1
1

1

1
1

1 1

1 1
1

1

1 1

1 11 1 111
1

1

1
1

1
1

1

1

1
111

1
1

1

11
1

1
1 111

1
1

11

1

11
1 1

1

1
1

1

1

1

1
1 1
1

11
1

1

1

1
1 1

1
1

1

1

1
1 1

111 1
11

11 11

1

11
1

1

1 1
111

1
1

11
1

1

1
1

1

1 1

1

1
1

1

1 1

11
1

1
1 1

1
1

1

111

111

1

1
1

1
11 1

11

1

1 1 1
1

1

1 1

1

1

11
1

1

1

1

1
1 1 1

1
1

1
1

1
1

1 1
1

1

1

111

1
1

11
1

1

11
1

1

1
1
1

1

1

1

1

1

1

1
11

11

1

1

1
1 1

1

1

1

1

1
11

11

11

1
1

1
1

11

1

1
1

1

1

1

1 1
1

1
1

1
1 1

11

1

11
1

1

1
1

1

111
1

1

1

1

1

1
1

1
1

1

1

1 111
1

1
1

1
1
1

1

111 1
1

1

1
11
1

1
11 11

1

1

1

1

1

1

1
1

1
11

11

1

1

1

1

1

1

1
1

1
1 1

1

1
1

1

1

1
1

1
11

1 111

1

1
1

1 1

1

1 11

1

1 1
11

111

1

1
1

1
1

1

1
1

1
1

1

1 1
11

1

11
1

1

111

1

1

11
1

11

1

11
1

11
1

1
1

1
1

11

1
1
1
1

1
1

1

11
1

1
11

1

1
11 11

111
1

1
1

11

1
1

1
1

1
11 1

1

1

11
1

1

1 1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

11
1

1

1 1
1

1 1

1
111

11 1
1 1

1

1

1
1

1

1

1
1

1 1 1

1

1
11 11 1

1

1 1

1
11

1

1 11
11

1
1

1
1

1

1

1

1

11
1

1

1
1 1

1

1

1

1 1
1

1

1

1

1 1

1
11

1
11 11

1

11 1
111

1

1

1
1 1

1
1

1

1

1
11

1
1

1
1 1

1

1

1
1
11

1
11

11 111

1
1

1

1
1

11

111
111

1

1

1

11

1

11

1

1

1

1
1

1

1

1

1 1
111

1

11
1 11 1

1
1

11
1

1

1

11
1

1
1

1

1 11 11
1

11

1
11
1

11
1 11

1
1

1
1

1
11 1

11
1

1
1 1

1 1

1 11 11
11

1
1

1

1

1

1

1

1

1
11 1

1
1

11 11
1 11

1

1

1

1

1
1

1
1

11 1
1 111

1

1
1

1
1 11

1
11

1 1
1 1

1
11

1

1

1 1
1

1

1 1
1 1 1

1
1

1

1
1

1

11
1

11

1

1
1

1

1
1

11
11

1
1

1

1

1

1
1

1
1
111

1
1 1

1

1

1

1

1

1

1
11111

1

1
1

1

1

1 1
1

1

1

1
1 1

1
1

1
1

1
1 1 1

1 1
1

1 1 1

1

1

1

1

1 1

1

1
1

1 1
11

1 1
1

1 1

1

1
1

11

11

1
1
1

1
1

1
1

1
11 1

1
11

1

1

1

1
1
1

11
1

1
1

1
1

11 1
1

1
1

11

1
11
1 1

1
111 11 111

1

11

1

1

111

1
11

1
1

1
1

1

1
1

1
11

1
1

11

1

1
11

1
11
1
1 11

1 1 1
1

1
1

11

11

1
1
1
1

1
1

1
1

1

1

1

1
11

1 11
1

1

1

1
1

1 1

1

1

11 11
1
1

1

1

1

1
111

1
1

1

1

1

1
1

1

1
1

1

1

1

1
1

11

1

1
11

1

1
1

1 1
1

1

1

1

1 1

1
1

1

1
1

11
11 1

1

1
1

1
1

1
1

1
1

1
1 11

1
1

1
1

1

1
1 1

1

1

1

1
1

1

1
1
1

1

1
1

1
111

1

111 1
1

1
1

1

11 1

1

1 11
1

1 1
1

11

1

1
11

1

1
1

1

1
1

1
1

1

1

11

1

1

11
1

1

11

1

1
1 1

1 1
1

1

1

11

1

1
1

111
11

111 11

1 1

11 111

1

1

1
1 1

11
1 1

1

1
1

1

1
1

1
1

1
1

1

1

1
1

1
1 1

1

1 1
1

1
1

1

1
1

1

1

1
1

1 1
111 1

1

1

1

1 1

1

1
1

1

1
1

1 11
1

1 1
1

1

1
1

11
1

11
1

1
1 1

1

1

11
11

1

11

1
1 1

1 111
1

1
1

11 1
1

1
1 1111
1

1

11

1
11

1
1

1

1
1 1
1
11

1

1

1

11
1 1

11

1
1

1

111
1

1
11

1

1 1

1

11
11

1
1

1 11 11

1

1
1

11

1
1

1
1 1

1
1

11
1

11 1

1

1

1 11
1

1
1
1

1

1
1

1 1
1

1
1

1
1

1

1
1
1

1
1

1
1

11
1

11
1
1111

11

1

1
1

1 1

1
1

1

1

11
1 1111

1
111
1

11
1

11
1 1
1

1

1
1
1

1
1

1

1
111

1

1
1

1
1

1
1

1
1

1

1

1
1

1

1
1 1

1

1

1
11 11

11
11 1

1
1

1
1

11

111

1

11
1

1
11

1
1

1

1

1

1

1

1
1

11
1

1

1

1

1

1 1

1
1

1

1111

1

11
11

1
1

1
1

11
1

1

1

1

11

1

11 1

1

1
11 1

1

1 11

1

1

1 1
1

1

1

11

1

11

1

1

1

1 1

1

1

1
1

11 1

1

1

1111
111 1

111 1
1

1

1 11 1

1

1
11

1
1 1

1
11

1

1

11 11
1

1

1

11 1
1

11

1
1

1
1

1

1111

1

1
11

1

1
1 11

1
1

1

1

1
1

1 1
1 11

1
1

1

1 1
11

1
11
1 11
1

11 11
11

11

11
1

1

1
11

1
1 11

1

1
1

11

11
1 1

1
1

1

1

1
1

1

1

1
1
1

1 11
11

11
1

1

1
1

1 1
1

1

1
1

1 1

1

1

1 1
11

1 1
1

11 1
11

1
1

1
1

1
1

1

11
1

11

1

1

1
11

1 1

1
1

1

1
1

1

1

1

1

1
1 1

1

1

1

1

1
1 1

1

11
1

1

1

1 1

1

1

1
11

1

1

11
1

1
1 11

1
1

1
11 1

11

1
11 1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

11

1

1
1

11
1

1
1

1 1
1

1
1

1
1

1

1
1 1

11
1

1

1

1
11

1
1

1

1

1

1
1

1 1

1
1

1

1
111

11 1

1
1

111

1

11
1

1

1
11

1

1
1

1
1
11

1
1

1

1
1 1

1
1

11

1

1 11
1

1
1 11 1

1

1

1
1

1
1

1

1
1

1 11

1
1

1
1

1 1

1

1
11 1
11111 1

1
111 11

11
1

1

1
11

1

11

1
1

1
1

1

1
1
1 1

1

11
1

1 1
1 11
1

1

1
1

1

1

1

1
11

1
1

11
1

1

11
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1 11 11 1
1

1
1 1

1
1
1

11

1

1
11

1

1
1 11

1
1

1

1 1
11

11
1

1
11

1
1

1

1

1 1

11
1

1 11

1

1 1
1

1 1

1

1
1 1

1

1

1

1

1
1

1
1 11

1

1
11

1

1 1 11
1

1

1

1

1
11 11

1

1

11
1

1
1
11

1
1

11

1

11
1 1

1
1

1

11
1 1

1
1

111

1

1

1
1 1

1

1 1

1

11

1
1 1

1
1

1
1

11

1

1
11

1

11
1

1
1

1

1

1

1

1 1

1

1
1

1 1

1
1

1

1

1
1

1

1

1
1

1

1
1

1

1
1

1
11

1
1

1 1
1

1

1

11

1
1
1

1
1

111
1

1
11

1
1 1

1
1

1

1
11 1

11

1

1
1

1

1
1

1
1

11

11

1
1

11
11

1
1

1 1

1

1
1

1 1

1
1

11
1

1
1

1
11

1
1

1
1

1
1

1
1

1
1

1

1

1

1
1 11 1

1

1

1
1 1111

1

1 1
1

11
1

11

1
1 1

1
1

1

1
1

1
1 11

11
1 1

1

1

1

1

1
1

1

1
1
1

1
1

1

1

1 11 1 1
1

1
1 1 1

1
1

1
1

1
111 1

1 11
1

11
1

1
1

11
1

1

1
1

1
1

1

1
1

11
1

1 11

1
1

1
1

1
1

1
1 1

1
1

11
1
11

1

1

11 1

1

1

1 1
1

1
1

11

11

1

1
1

1 1

1

1 11

1
1

1

1

1
1

1

1 1

1

1 1
1

1
1

1
1

1
1

1

1

11

1

1

1
1

1

11
1

1
1

1

1
1 111

11
1

1
1

1
1

1 1
1

1

1
1
1

1
1

1 1
1 1 1

1 1

1 1 11
1

1

1
1

1

11 1

1

111 1
1

1

1
11 1 1

11 1

1
1

1 111

1

1

1

1
1

1
1

1
11 1
1

1

1
11 1

11
11 1

1
111

1

1
1

1

111
1

1
1

1

1

1
1

1

1

111 11
1
1

111 1

1

111
1 1

111
1

1 1
1

1

1

11

1

1 111

1

1 1
111

11

1
1

1

1

1
1

1
1

1
11

11 1
111

1
11

1
1

1

1
111

1

1
1 1

1

1 1
1

1
1

1
1

11 11 11
1

1

1

11 1
11

11
1

1

1
1

1
1

11
111

1

1
1 1

1

1
11

1

1

1

1111 1
1

1

1
1

11 1 1

1 1

1 11
1
11

11
1

1
1

1
1

1

1
11 1

1
1

1

1 1
1

111

11
1

1

1
1

11
1
11

1
1

1

1

1

1
11 1

1

1

1 1
1

1

1 11
1

1
11

11
1

11
11

1

1

1

1 1

1

1

11
1

1

1

1

1
1 1

1

1

11

1

1

1
1

1 1 1
1

11
1

1

1

1
1

1 1

1

11
1

1

11

1
1

1

1

1
1

1
1

1
1

1
1

11

11

1

1

1

1

1

1

1

11
1

1

1
11 1

1
1

1
1

1 1
1

1

1

1
1
1

1
1

1
11

1 11
1
1

1
11

11111 1

1
1

1

1
11 1

1
1

11
1

11
11

11 1

1
1

1

1

1
11

1
1

1

1

1

11
1 111

1
1

1
1

1

1
1

1
1

11

1

1
11 111

1

1

1
1

1 11
1

11 1111 1
1

1
1

11

1

1

1
1

1 1
1

11
1

1

1
1

1

1

1

1

1
11

1

1
1

1

1
1

1
1

1

1
1

1

1

11

1

1 11
11

1

1

1

1

1

1
1

1
1

1
1

1
1

1

1
11

1

1

1

1

1
1 1

1

1

11

1

1
11

1
1

1

1
1

1
1

1

1
11

1
1

1
111

1
1
1

1
1

1
11

1 1
1

11 11
11
1 11

1 1
1 1

1

1

11
1

1

1

1

1 1 1

1

1

1
1

1
1 1

1
1

1
1

1
1

1

1
1
1
111

1
1

1

1

1
1

1
1 1
1

1

1
1 1

1
1

1

1

1

1

1
1

1
1

1
1

1 1

1
11

1

1

1
11 1

1
1

1
1

1 111
1

1

1
1

1

1
1 1111

1

1
1

1
1

111
1

1
1

11
1 11 1

1

11
11

1

1

1

1
1 11

1
1 1

1
11

1
1 1

1
1 11

1
1 1

1
11

1
11

1

1

1 1

111

1

1

1
1

1
1

1
1
1

1

1

1

1
1

1 1

1

1 1

1

1
1

1
1 11

1

1

1
1 11

1
1

1
1

1

1 11
11

1
111

1

1
1

11
1 1

1

1
1
1

1
1
111

11
1
11

11

11
1 11

11 1
1

1
1

1
1

11 1

1

1

1

1
1

1

11
1

1
1 1

11
11 111

1
1
1

11

1

1
1111 1 1

1

1
1
1

1

1 1
1

1
1

11

1

1

1

1
11

1

1
1

1
1

1

1
1

1

1
1

1
11

1

111

1

1
1

1
1
1

1

1
1

1 1
1
1

1
11

1

1

111 1
1

1
1

1

1
1

1
1

11

1

1
1

1

1 1

1
1

11

1

1

1

11111
1

1

1
1 111 1

11 1
1

1

1
1

1

1
1

11 1
1

1

1

1

1
1 1

1 1

1

11 1
1 11

11
1

1

1
1 11

1 11
1

1
1
11

1

1 1

1

1
1

1
11

1
1

1

11
1

1
1

1 1
1

1
1

1

1

1

1
1
1

1
1

1
1

1
1

1
1

11 1

1

11
1

11

1
1 111

1

11

1

1

1

1

11

1

1

1
1 1

1

11
11 1

1

1
1
1 1
1

1
1 1

11 11 11

1
1

1
1

1

1

1
111

1
1

1
1

1
1 11

1
1

11

1

1

1
1

1

1
1

1
111

11

1

1

1
1

1 1
1 1

1
1
1
11

1
1

1
1

111
1 1

11

1

1
1

1
1

1
1

1
1

1
111 111

1
1

1
1

1

1

1

1
1

1
1

1

1 11

1
1

1
1 11

1
1 11

1
1 11
1

1
1

1

1

1

1
1

111

1 1

1
11
1

1
1 1

1 1
1

1
1

11
1 1 1

11
11

11

1

1

1 1

1
1
1

1

1

1
1

1

1

1
1

1

1

1

1

1
11

1
1

1
1

1111 11
1

1

11
1
1

11
1

11
11 11

1

1 11
1 1

11 1
1
1

1
1

1
1

1
1

11 1
1111 1

1
1

1
1

1

1
1

1
1

111 11 11
11

1

11
1

1
1

1 11 11
1

1
11 11

1

1

1
1

1
1

1
11

1

1

11
1

1

1

1
11 11

1
1

11
1

1

11 1
1

1

11
1
11

1

1
1
1

1
1

1
1 1

11

1

11
11

1

1

1

1

1
1

1
1

1
11 1

1

11

1

1

11 1

1
111

1
1

11
1

1
1

1

1

1
1

1

1
11 1

11 1
1

1

11

1

1

1
1
11
1

1
1 11

1

1

1 111

1
1

1
1

1 1
1

1

11

1

1 1
1

1

1 1
1

1 1
1 1

1
111

1
1

1

1
11

1

11 1
111

1
1

1

111
1

1
1

11
1

1
1

11 1

11

1

1
1

1

1 1
1

1

1

1
1

1

11
11

1
1

1
1

1

1
1

1
1

1
11

1
11 1

1

111
1

11
1

1
111

1
1

1
1 111

1
1

11

1

1

1
1

1
1

1
1

1
11

1 1

1

1

1

1

1

1
11

1

1
1

11
1

111
1

1
1

1

11

1

1
1

1

1 111

11
11

1

1
1 1

1

1
1

1

1
1
1

1

1
11

111

1
1

1
1

1
1

1

1
1 1

1

1

1
1

1

1
1 1 1

1
1

1 11
1

1

1
11 1 1

1

1

11
11 11
11

1
1
1

1
11
111 111

1
1

1 1
1 1

1

1
1

11
1 11
1

11 1

1
1

1

1

1
1

1

1
1

1 1

1

1
1

1
1 1
1

1

1

1
1

1

11
1

1
1 1 1

1

1
1

1

1

1

1

1
1

1

1

1
1

1 1
1

1

111
1 1

1

111
1

1

1

1

11
1

11

1 11

1
1

1
1
111

1

1

1

1 1
1

1

1
1

1 11

1

1
1 1
1

111 1
1 1 1

11
1

1
11

1

1111

1

1
1

1

11
1
1

1
1

1

1

1
1

1
1 1

1

1 1
11

1
11 11

1

1
1

1
1

1
1

1

1
1

1
1

1

111

1 11
11

1

1

1

1
1

1
1
1

1

1

1

11 1
1111

11

11
1

1

1 1

11
1

1
11 11

1

1

1
11 1

11

11 1

1
11 1
1

1

1
1

11

1
1

1
1

1

1
1

1

1
11 11

1

1
1

1

1 1 1

1

1
1

1 1
11111 11

1

1
1 1

1

1
1

1
1

11
1

1
1

1
1

1 1
1

1

1

11 11
1

11
11 1

1 1 1
1

1

1

1
1 1

1
1

1
111

1 1
1

1

1

1
11
1

1
11

1

1 1
11

1 1

1

1
1

11

1

11
1

11
1

1
1

11

1

1
1

1

1
1

1 11 1
1

1

1
1
1
1

1

1 1

1
1

111

1

1
1

1
1

1

1
1

1
1
1 11

1
1

1
1

1

1

1

1 11
11
1
1

1

1
1

1
1

1
1

11 11
1

1
1

1 1
1 1

1

1 11

1

1

1
1 1
1

1 1
11

1 11
1

1
1

1
1 1
1

1

1

1
1

1
1

1

1

11
1

1

1

1
11

111 1
1

1

1

1
1

1

1
1

1

11

1
1

1 1
1

1

1

1
1

1
1

1

1

1
11 1

1

1
11

1

1
11 11 1

1 1
1

1
1

1 1

1

11

1

11
1

1

1
11 11

1 1

1
1

1

1

11

1

11

11
1

1 11

1

1
1

1
1

1 11
1

1 1

1
1

111
1

1

1

1

1
1

1
1

1

1
1

1 1
1111 111

11
11

1

11

1
11

11
1 11

1
1

1
1

1
1

1
1

11

1
1 1

1
1

1 1

1

1

1

1 11
1

1 111 1 11 1
1

1
1

1
1

1

111
1

1
1

1

1
1

1 111 111
1

1

1

1

1
1 1

11
1

1

1

1

1 1

1
1

1 1

111111
11

1
11 11 1

1

11

1
11 1

1
1

1

1

1
1

1 1 11 1
1 1

11

1

1

1

11

1

1
11

1
1 1

11 1
11

11

1 111
1
1

1
1

11
1

1
1

1

1

1 1
1111

1

1
11
11

1

1 1

1

1
11

1

1 1
1

1
1 1 1

1

1

1

1111111

11

1 1
1

1

1
1

1 1
1 1

1

1 1
1

11

1

1
1

1
1 11 1

1

1

1

1 1
1 1111

1

1

1

1

1111
1

1
11
1

1

1 11

11

1

11

1
1

1
1

1

1
1 11

1

11
1

1
1

1

1

1

1

1

1
111

1

1
1

1

1

1

1

1
1

1 11
11

1

1

1

1

1 11 1 1
1 1

1

1

1
11

1

1
1 11

1
1

11 1
1

1
1

11 1
1

1
1

1
11

1

111

1

1
11
1

1
1
1
1 1

1
1

1

111
1 1

1
1

1
1

1
1 1

1
11

11
11 1

1 1
1

1

11
11

1 1

1

1

1

1
1 1

11 1 1
1

1
1111

11
1

1
1

1
11

1

1

11 1

1

1
1

11

111
11 1

1

1

1

11
1

1
1

11
1
1
1

1
1

1
11
1

1 1 1 11
1

1
1

1
1

1
1

1
111

1
11

1

1

1
111

11
111

1
11 1

1

1 1
11 11 11 1

11

1

1

1
11

1
1

1
1 1

1

1

1 1
1

1
1

1 1

1

1
1 11

1

1

11
1

1

11
1

1
1 111 1 1

1
11 11 1

1

1 1
1

11
11

1

11 1

1
1

1

1 1

11 1

1

1
1

1

1

1
1 1

11
1

1 1
1

1
1

1
1 1

1
1

1

1
1 1

1

11

1
11
11 1

11
1

1 1

1

1

1
1 1 1
1

1
1 1

11
1

11

11
1

1

1 1
1 1

1

11

1

1
11

1
1 1

11 111
1

1
1

1
1

1

1

1

11
1 1

11 1
1

1

1

1

1

1

1

11 11
11

11

1
1
1

1 1
11

1

1

1

1111
1

1

1

1
1 1
1

1

1

1
1

1

11
1
111

1
11

1

1
1

1

1
1

1
1

1

1 1

1
1

1 1
1

1 1

1
1

1

1

1
11

1
1

1 11

1 1
111

1

1

1
1

1
11

1
1

11

1

1
1

1
1

1111
11 1

1
1

11
1

1

1
1

1

1
1

1

1

1

1

1

1
1 1

1
1

1 1
11

1
1

1

11
1

1
1

1 1
1

11
1

1

1
11

1
1

1
1

1

1

11
1

1
1

1
1 1 1

1

1

1
1

11 1

11
1

1

1
1

1
1

1

1
1

1

1

1
1 11

1
11

111

1
1

1
1

11

2
2

2
2 2

2
2
2

22

2

2
2 2

2
2

2

22 22 2

2

2
2

2

2

2
2

2
2

2

2

2 2

2

2
2

2

22
2

2

22
2

2
2
2

2

2
2

2
2 2

2
2

2
22

2

2
2
2

22

2

2
2 2 2 2

2

2
2

2

2

22

2
2

22 22 2
2

2
2

2
2

2

2 2

2

2

2
2

2
2 2

2
2

2 222
22

22 22
2

2
2 22 2

2
2 2

2

2
2

222 2
2

2
2

2

2
2

2
2 2

2 2

2
2
2

2222

2

2 22

2

2
2

22

2
2

22
2

2

22

2

2

2

2
22

2

2
2 2

2

22 2

2

222 2
2

2
2

2
22

2

2 2

2
2 2

2 2

222
2

22 222
2

22

2
2

2

2
2

2

2
2

2 22
2

2
22

22
2

2

22
2 2

2 2

2

2

2
22

2
22

2

2

2

2
2 2

2

2 22
2

22
2

2
22

2
2

2
2 2

2
2

2

2

2
2 22

2
2

22

2 2

2

2
2

2
2

222

2

2
2

2

2 22
2

22

2
2

2

2

2

2

2
2

2

22

2

2 2
2

2

2
2

2
2

2
2

2 22
2 2

2
22

2
2 2 2 22

2
2

2

2

2
2 2 22

2

22
2

2
2

22 2 2

2

2

2 22
22

2
2

2 2 222
2 2

2

2
2

2 2
2

2
2

2

2

2
2

2
2

2

2
2 2

2 2

2

2 2 2
2

2

22

2 2

2
2

2
2

2

2

2

22

2
2

2
2

2
2

2

2
2

2
2

2 2

2

2
2

2

2
2

22

2

2
2

2

2
2

2

2
22

2
222

2

22
2

2

2
22

2
2

2 2222 2

2
2
2

2 2

2

2 2

2
2

2
2

2
2

2

22
2

22
2

2

2
2
2

2
2

2
2

222
22

22

2
2 22

2 2
2 2
22 222

2
2 2

2

2
2

2
22 2

2
2
2

2

2

2
22

2

2

2
2

2

2

2
2

2
22

2

2
22

22 2
2

2 2
2 2

2

2

2
2

2
2

2
2

2
2

2
2

2
222

2
2

2
22

2

22 22

2 2
2

2 2

2
22

22 2

2

2

2
2

2
22 22

22
2 22

22 2
222 2

2
2

2

2
222

2

2

2

2

2
222

2
22 2 2
22

2 2
2

2
2

2
22

22
2

2
22

2
22 2

2

2

2

22
2

2
2

2

22

22
22

2
2

2
2
2

2

2
2

2
2

2
22

22

2

2 2
2

2

2

2 2
2

22

2

2

2
2

2

2

2
2

2 2

2

2
2
2

22 22
2

2
2

2

2

2 2
2 2222

2
22

2

22
2 2

2
2

2 2

2

2
2

2

2

22

2

2
2

2

2 2

2

2 2
2

2
2

2
2

2

2
2

2
2

222
22

2

2
2

2
2

2
2 2

22
2

2

2

2

2

2
2

2

2

2 2 2
2

2

2

2
2

2
2

2
222

2
2

2
2 2

2

2
2

22 2
22
2

2
2

22
2

22

2

2
22 2

2
2

2

2
2

2
2

2222

2

2
2

2

2
2

2

2
2

2
2

2 2

22

2

2
2 2

2 2
2
2

2
2

2
2

2

2

2
2

2

2
22 2

22
2

2

2
2

2222
2

2
2

2 2

2

2
2

2
2

22
2

2

2
2

2

2
2

2

2

2
2

2
2

2

22
2

2
2

2

2 22

2

2 2

2

2

2

2

2

2
22

2
2

2 2

2
2 2

2

2

2

2

2

2
22 2 2 2

2

22

2

2
2

22

2

2

2

2

2

2
2

2
2
2

2

2
22

2

2

2
2

2

2
2

22
2

2
2

2
2 2

2
2

2

2222
2

2

2

2
22

22

2

2

22

2

2 2
2

2

2
2 2 2

2

2

2

2
2

2

2
2

2

2
22

2

2

2 222

22
2

2
2 22

22
2

2
2

2 2

2

2
2

2

2
2

2

2

2
2
2 2

2
2

2
22 2

2
2

2

2

2

22

2

2
2 2

2
22 22 2

2

2
2 22

22

2
2

2
2
2

2
2

2

2
22

2
2

2

2

2

2

2

2

2
2

22 22
2

2
2

2
2

2

2
2

2
2

22

2
2

2

22
2

2

2 2

2

2 22
22

2

2

22

2 2
222

2 2
2 2

2 2

2
2
2

2
22 2

2

2 2 222 2

2
2

2 22 2

2

2

2

2

2

2
22

2

2

2
2

2

22 2

2
2

2

2

2

22
22

22 2 22
2

2

2
2

2 2

2

2
222

2

2

2

2
2

2
2 2

2

2

2

2
2

2
22

2

2

2
2 2

2 22 2

2
2

2 22
2

2

2
2

2

222
2

2

2
2

2
2

2

2
2

2

2

22

2
2
2

2
22

2
2

2

2
2

2
222

2
22

2

22

22 2
2

2 2

2

222
2

2

22

2

2
2

2

2 2
2

2

2
2

2

22
2

2

2

22

2

2

2
2 2

2
22

2

2

2
2

22
2

2222
2

2

22 22 22
2

2
2 2

22 22

2
2 2

2
2

2
2

2
22

2
2 2

2 2
2

2
2
2

2

2

2
2

222
2

2
2

2

2
22

2

2

2
2

222
2

2

22 2 222 2
2

2
2

22 2
2

2
2

22
2

2

2
2

2 2

2
222 2

2

2

2

2

2 2
2

2

222
2

2
2

2

2

2

2

22
22

2
2

2

2 22

2 2

2
2

2

2
22

2
2

2 2
2

2

2
2
22

2

2
2

22

2

2 2
2

2

2

2

2

2

2
2

222
2

2
2 22

2
2

2

2
2

2

22

2 2
222

2
2
2

2

2

2
2

2

22

2 22

2
2

2
2

2

2

2 2

2 2
2

2
22

2 22
2

22

2

2
2

22

2

2
222

2
2

2

2
2 2

2

2

22
2

2

2
2

2

22

2

2
2

2 22
2

2

2 22
22

2
22

2
2

2

2
2

2

2

22 22
2

2 2

2

222 2

2
2

2

2
2

2

2
2

2

2 2
22 22 2 2222 2

2
2 2 22

2

2

2

2
2 2

2
2

2

2

22 2
2

2
222

2

2
2
2

22
2

2 22
2

22
2

2

2

2
22

2
2

2
22 2

2

2

2
2

2

2

2
22

2

2
2

2 2
2

2
2

22

2

2

2
2

22 2

2

2 2 2

2

2

22
2

2

2 2
22

2

2
2

2 2

2

2
222

22
2

22
2

2

2

22

2 22 2 2
2 22

2
2

2
2

2
2

2

2
2

2 2

2

2

2
22

2

22
2

2

2

2
2 2

2

2

2 2
2

2

2

2
2

22
2

2
2

2
2 222

2

2
2

2

22

2 2
2

2
222
2

2
2

2
22

2

2

2
2

2
2

2 22
2

2
2

22

2

2
2
2
222

2
2

2

222

22

2

2

2

2 2
2

22
2

2

2
2

222
2

2

2
2

2
2

2

2
2

2
2

22

2

2
22 22

222
2 2
2

22

2
2

2
22 22

2

2

2

22
2

2

22

2 2

2
2

22

2

2 2
2 2

22

2

2

2

2
2

2
2

2

2
2

22
2

2
2

2
2

2 22
2

2
2

2
2 2 222

2
2

22

2

2

222
22

2
2

2

2
2

2

2
222

2

22

2
2

222
2 2

2
2

2
222
2

2
2

2

2

2

2

22

2

2
2

2
2

22

2 2
2 2

2 2

2

2

2
2

2
2 222

22

2
2

2

2
2 2

2
2

2
2 2

2

2

2

2

2 2
22

2
22

2

2
2 222

2

2
2

22

2

22 2

22

2 2
2

2
22

2

2
2

2
22

2

22
2

2 22

2

2

22
2

2

2
22

2

2 2

2

2

2
22

2

2

2

2
22

22

2

2
2

2
2

2
2

2

2
2

2
2

2
2

2
2

2

2

22

2

22
2

22
2

22

22
2

2
2

2
2

2
2

2

2

2 2
2

2

2
2

22
22 2

2
22

2 22 22
22

2

22 2
2

2 2
2222

2

2

222

2

2

2
22

2 2

2
2

2
2

2

2

2

2
2

2

2

2
2

2

2
2

2

2 2
22

2

2 2

2
2

2
22

22
2

2

2

2

2

2

2 2
2

2

2 2

22
2

2
2

2

2

2
2

222 2
22
22

2
22

2 22
2

2

2

2

22
2

2 2
2

2
2

2

2

2

2

2
2

2
2

2
2

2

22

2

2
2

2

2
2

2

2
2

2
2

2

2

2
222

2

2
22

2
2

22

2

2
2 2

2
2

2
2

22

2

2 2
2222 2

2 22
2

2
2

2

2 2

22 2

2 2
2

2

22
2

22
2

2
2

2
2

2
2
2

2 2

2

2
2

2

2

22 2
2 2

2
2

2
2

2

22
2

22

2

2
2

2
2

2

2
2

2

2

2

2

22
2

22

22

2

2

2
2 2

2

22
2

2
22 2

2

2

2
2

2

2 2
2

2
2 222
22 2 2

2

22
2

22

2

2 2
2
2

2
2

2
2 2

2

2
22

2
2

2
2

2
2

2
2

2 222
22

2
2 222

2

22 2
2
2 2

2

2

2
2

22 22

2
2

2
2
2

2
2 22

2 2
222 2

2

2
2

2

2

22
2

22
2

22

2
2

2
2

2

22

2
2

2
2

2
2

2

2

2
2 2

2
2 2 22

2
22

2

2

222 22
2

2
222

222 2 22

2

2

2

2
22

2 2
2

2
22

2

2 2
2

2

2
22

22
2

2 2
22

2

2

2
2 2 2

2 22 2

2

22 2

2 2

2
2

2

2
2 2

22
2

2

2

2
22

2

2
2 2

2
2

2
2

2

2
2

2

2 2

2

2
2 2

22

2
22
2

2

2

2
2

2

2

2 2
2

22
2

2

2
2

2

2
22

2

2

2

2
2

22
2
22

2

2 2

2

2

2
2

2
222

2

2

2 2

2

2
2

2
2

2

2
2

2
22

2 2
2

2
2

2
2

2

2
2

2
2

2
2

22 22
2

2

2 2
22 22 2

2

22
22

22 2
22

2 2

2

2
2 2
2

2
22

2 22
2

2
22

2 2

2
22
2

2

2

22
2

2 2222

2

2
22

2
22

2

2

2
2 2

2 2

2
2

2

2 2

22 2 2

2
2 22

2

2

2
2

2
22

2

2

2

2
2

2

222
2 2

2 2

22

222
22

2

2 2
2 2

222

2
2

22
2

2

2
22

2
22

2 2
22
22

2

2

2

2
22

22

2 2

2
2

2

2

2

22
2

2
2

2
2

22 2
2

2 222

2
2

22
2

2
2

2
222

2

2

2
2

22 22 2 2
22

2
2 2

2 2
2

2
2

22

2

2
2

2 2
2 22

2
2
22

2 22
2

2 222 2
2

2
2

2
2 2

2 22

2

2

2

2

22
2

2

2

22
2

2

2

2

2

2 22
222

222

2

2
2

2 2

2
2 2

22
2

2

2

22

2

2

2
2

2

2
2

2
22

2 2
2

2

2
2

2
2

2
222 2

2

222 22
2

2
22 2

2
2222

2

22
2
2

22

22 22 2

2
2

2

2

22 2 2
2

2

−6 −4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

Scatter Plot of LDA Training Data

Feature 1

F
ea

tu
re

 2

Figure 4.1: Scatter plot of first two features of LDA training data. Classes are distinguished by
color and shape.

4.2.1 Quick LDA Example

Our first example illustrates the compressed LDA function on data well-suited for LDA. The

first two features of the training data in LDA_Data are plotted below:

data(LDA_Data)

plot(LDA_Data$TrainData[,2]~LDA_Data$TrainData[,1],

col = c("orange","blue")[LDA_Data$TrainCat],

pch = c("1","2")[LDA_Data$TrainCat],

xlab = "Feature 1",

ylab = "Feature 2",

main = "Scatter Plot of LDA Training Data")

103

Figure 4.1 displays the resulting scatter plot.

This data set has n = 10, 000 training samples with p = 10 features. It is normally distributed

with class means equal to ±1 and a shared covariance matrix with entries Σi,j = (0.5)|i−j|. The

test data was independently generated from the same class distributions and proportions, but it has

only n = 1, 000 samples.

Let us use compressed LDA to predict the test data labels.

test_pred <- LDA(TrainData = LDA_Data$TrainData,

TrainCat = LDA_Data$TrainCat,

TestData = LDA_Data$TestData,

Method = "Compressed")

mean(test_pred != LDA_Data$TestCat)

[1] 0

The automatic implementation of compressed LDA predicted the Test labels perfectly. However,

this is due, in part, to the classes being well-separated and having the same covariance structure.

Let us now consider an example of where LDA will not perform well.

4.2.2 Quick QDA Example

Our next example illustrates the compressed QDA function on data well-suited for QDA. The

first two features of the training data in QDA Data are plotted below:

data(QDA_Data)

plot(QDA_Data$TrainData[,2]~QDA_Data$TrainData[,1],

col = c("orange","blue")[QDA_Data$TrainCat],

pch = c("1","2")[QDA_Data$TrainCat],

xlab = "Feature 1",

ylab = "Feature 2",

main = "Scatter Plot of QDA Training Data")

104

1
1

1
1 1

1

11

11
1 1

111
1 11 11

1

1 1
1

1

111
1

1
1

1

1

1

1
1 1 1

1 1

1

11
1

1
11

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1
1

1 1

1

1

11

1
1
1

1

1
1

11 1
1

1
1

11
1

1
1

1

1

1

1 1
1

1
1 1

1

1
1 11

11

1
1

1

1

1
1

1

1
11 1

11
1

1
11 1

1 1
1

1

1

1

1
1

1

1
1

1

1

1 11
11

1
1

11 1 11
1

1 11

1
1

1

1

1

1 1
1

1 1
1

1 11
1

1

11 11
1

1
1 1

1 1
1

1

1
1

1
1

1

1
11

1
1
11

1

1 1

11 1
1

1 1 111
1

1 1
1

1
1 1

1
111

11
1

1

1
1

1111
11

1

1

1

1

1 1

1

1

1

1

1

1

1

11 1
11

1

1
11

1
1

1

1
1

1 1
1 1

1
1 11

1

1

1

1 11 1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1

1

1

11

11
1 11

1
1

1

1

1 1

11
1

11
1

1
1

1

11

1

1
1

1
1

1
1

1 1
1

1

1
1 1

1

1
1

1

11

1

1

1
1 1

1 1

11
11

1

1

1

1 111
11

1

1
1

1
1

1

1 1
11

1 11 1 1
11

1

11 1

1
1

11
11

1

11 1
11

1

1

11 11
11

1

11
1

1

11

1

11 11

1

1
1

11

1
1

1

1
1

1
1 11

1

11
1

1

1 1
1

1
111

1 11
1

1 111

1
1

11
11
1

1
1

1
1

11

1

1

1

1

11 1

1
11 1

11

1

1

1 1
1

11
1

1 1
1 11
1

1
1

11

1 1

1

11
1

1
1

1 11 1
11

1
1 1

11 1

1

1 1

1
1

1
1

11 1
1 1

1
1

1111
1 1 1

1
11 11 1

1

1

1

11
1

1
1

1

11

1
1

1
1

11
1

1
1

1

11

1
1

1

1

1
1

1 1

1

1
1

1
1

1
1

11

1

1

1

1

1

1

1 1
1

11
1

1
1

1
1

1
11 1111 1

1
11

1

1 11

111

1
1

1

1
11 1111 1

1

11

1
1

11

1

1

1

1

1
1

11
111

1
11 1

1

1
1

1

1
11

1

1

1
1

1
1 11 11

1
1

1
1

11

1

1

1
11

1
1

1

1

111
111 11

1

11

1

1
1

1
1
11

1 1

1
1

1 1

1

1

11
1 1

1

1
1

1
11 1

1
1

1

1
1

1
1

1
1

1
1

1
1

1

1
1
1111

11

1

11
1
1
1

1

1
1 11

1
1
1

11
111

1
1

111
1 1

1

11 1

1

1
1

1

1
1 111

1

11

1
1

1

1
1

1
1

1
1

1
1 1

1 1

1
1

1
1

1 1
1
1 1

11 1

1
1 1

1
1

1

1

1
1

1 1

1

11

1
1

1
11

1
1

1 1
11

1
111

1
1

11
1

11

1 1
1

1

11

11

1

1 1
1 11

1
1

1
11

1

1
1

1

1

1

1
11

1

1
1

1
1

1

1

1 1

1
11

1

1

1

11

1

1
1

1
1

11

1
1

1
1

11 11
1

1

1

11 11

1

1
1 1

1 1 1
11 11 11

11
11

1

1
1 1

1
1
1

1 1
1

1

1
1

1

1 1
11

1

1

1

11

111 1

1

11
1 111

1

1
1 1

1
1

1

1

1
1

1

1

11

1
1

1

1
1

1
1

1
1

1
1

1

1

1 1111
1

1

1
1

1 111

1

1
1

1

1
1 1

1 1

1
11

1 1

1
1 1

1

11

1

1

1
1
1

1
11

1
1

1
11

1

1

1

1 1
11

1
111

1
1
1

1

1
1

1

1
1

1 11

1

1
1

1
1

1
1

1

1 11
11

1

1
11
1

1 1 1

1
1 1

1
1 1111

1

1
1

111

1
1 1

1

11

1

1
1 1

1

11
1

1
1 1111

1

1
1

1

11

1

1

1

1
1 1
1 1

1

1

1

1

1
1

1
1

1

1

1
1

11
1

1 11
1

1

1

1 1
1
11

1
1

1
1

1

1

1
1
1

11
1

1

1

1

1
1 1

11

1
1

1

1

1

1

1

1
1 1

1
11

1
1

1 11
1

1
11 1

1

1
1 11 11

1
1

1
1

111
11 11

1 1

1
1

1
1 1

1

1

1

1
1

111

11

1
1 1

1 1
11

1

11

1

1
1111

11
1

1

1 1
1 1

1
1 1

1 1
1

1

1

1

1

1
1

1

1

1

111
111

1
1 1
11

11

1

1

1 1
1

1 111
11

1

1

1

11
1

1
1

1
11 1

1 11
1

1

11

1
1

1
1

1

1

1
1

11

1

1
1

1
1

1 1111
1

1

1

11
1 1

1
11

1

1
1

1 1 1

1
1

1

1
1
1

1

1
1

1

11
1

1 1 1
11 1

1 11

1
1 11

11 1
1

1
1

1

1
1

1
1
1

1

1
1

1

1

1 1
1

1
1

1

11

1
1 1 1

1
1

1
1

1

1
1

1
1

111 1
11

1

1

11 1
1

111
1

1 1
1

1

1
1 1

1
1

1
1 1

1
1

11

1
1

1 1

1

11

1
11

1
1

11

1

11
11

11 1
11

1 1
1

1

11

1

11
1

1
11

1

1 1

1

1

1
1

1

1
1

1
1 11

1 1

1
1

11

11
11

1

1

1

1

11 1
1

1

1

1
1

11

1

1 1

1
1

1
1

1

1 11

1

1
1 1

1
1

1 1 1

1

1
11

1
1 11

1 1

1 1
1

11
1 1 1

1

1
1

11 1
1 1

1
1

1

11 111
1

1

11 11
1

1 11
1

11
1

11

1

1 1
1

1

1 11

1
1

1

1
1

1

1

1

11
1

11
1

1

1

1 1

1
1

1
1 1

1

1

1
1 1 11

11
1

1

1

1
1

11

1

1

1

1 1

1

1

1

1

1
1

1

1

11
1

1 1
1

1
1

11

11

1 1

1 1

1
1111

1
11

111

1
1
1
11 11

1
1

11

1
11

11

11

1
1 11

1
1

1

1

1
1

11

1

11
1

1
1
111

1
1 1

1

1111
11

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1
11

1

1
1

1
1

1

1

111

1 1

1

11 1

1

1
1

1

1

1

1
1
1

1

111
1

1

11
11

1
11

1
1

1 1 11
1

1
1

11

1

11
1

1
1

1 1
1

1
1 1

1

1 1

1

1 1 1

1

1
1

11 11
1

11
1

1

1

1

1

1
1

1

1
11

1
111

1

1
1

1

1
1
11

1

1

1
11 11

1

1

1
1

111

111
1 11

1 1

11
1 1

1
1
1

1
1

1

1 1
1

1 1
1

1

1
1

1
1 1

1
1
1

1

1
1

1

1

11

1

1

1
1

1

1
111 1

1
1

1 111 1
1

1

1

1
1

1

1
1

1
1

1

1
1

1
1
11 1 1

1
11

11
1
1

1

1
11

1
11 1 1

1
1

1

11 1
11

11

1111 111
1

1
1

1
1

111

1

1
1

1

1
1

1
1

1
1

1 1
1

11 1
1

1
11 1

1 1

1

1
1

1

1

111 1

1

1
1

11
11

1

1
1

1
1

1
1

1

1
1

1

1
1 1
1

1

11 1
1

11
1

1
11

1 1

1

1
1

1

1 1 1
1 1

1
1

1
11

1
11

1

1

1

11

1

1

1 11
1

1
1
1

1

11
1
111

1

1

1

11

1 1

1
1

11
1

1
1 1

1

11111 11

1

1
1

1 11
1

1 1
1

1

1

1
1

1
1

11

1
1 1
1

1

1

1

1

1 1111
1

11
1

11 111
1

1
1 11

1
1

11 1

1

11
11

1
1

1
1

1
111 1

1
1 1

1
1 11

1
1

1
1

1

1 11 1
1

11

1

1
11

1

1

1111 1
1

1

11
1

1

1
11

1
1

1

1

11
1

1
1

1

1

11
1

1
11

1 1

1

1

1
1

1

1

111
1

1
11
11
1 1

11 1
1

1
1
111 1

11
11

1
1 11

11
1

1
1 1 1 11

1

1
1

11
1 1

1

1

11
1

1

1

1
1

1
1

1

1

1
1

1 1
1 1

1

1
1

1

1

1
1

1
1

1
1

1

1

1

1 1
1 1

1 11

1
11

1

1 1
1

1
1

1
1

1
1 111

1
11

1
1

111
1

1
1

1
1

1

1
11

11

1
1 11

1
11

1

1 1
1 11

1

1
1

11
1

1
1

1
11

11

1
1

1 1

111

1

11

1
1

1

11
1
1

1 1
1

1
1

1

1

1

1

1

11

1

1

11
1 1

1

1
11

1

1 11 1 1
1

1
1

1
111

1
1

1

1
1

1

1

1
1

11
1

1
1

1

1
1 1

1 1
1 1

1

1
1

1

1

1
1

1
11

1

1
11 1

1

1
1
1 111
1

1
1

1

1

11

11 11
1
11
11

1

1
1

1111 1
1
1

1

1
1

1
11

1 1

1
1

1
1

1 1
1 11 11

1

1

1

11

1
11

11

11

1
1
1

1
1

1 1

1
1

1 1 1
1

11

1

11

1

1
1

1 1
1

1

1 1 1 11
1

1
1

1
11 1

1
1

11

1
1

1
11

1
1

1
11 11 11

1
1
1 11 1

11 1
1

1
1

1
1

1

1
1

1

1
1
1

11 1
11 1

1
1

1
1

1

1
1 1
1

1
1

1

1
11

11

1

1
1

1

1
1

1
1

1
1 1

1

1 11
1

1
1

1
1

11 1

1
1 11

1
1

1

1
11

1 1
1

1

1 1 1
1

11 1
1

1

1

1

1 1

1
1

1

1
1

1
1
1
1 1
1

11
1 1

1

1 111
1

11

1

1
1

1
1

1

1
11

1

1

1

1
1

1
1

1
11

1

1

1

1 11
1

1

1

1
1

11

1 1
11

1
1

1

1

111

1

1

1

1
1

1

1
1

1

1
1

1
1

1 1
1

1
11

1

1
1

1

1
1

1

1 1

1
1

11

1
1

1

11 1
1 1

1

11
1

1
111 11 1

1
11

1

1
11

1
1

1
1

1

1
11

1

11

11

1
1
11 1

1

1

1

1
11

11

1
1

1
1

1
1

1 1
1

1

1 1
1

1 11

1

1

1

1
1

1

1
1

1
1 1

111
1

1
1

1

1
1

1

1 11 11
1

1 1 1
1

1

11
1

1
11

1
1

1

1
1

1

1
1

11 1 1

1
1

1
1

11

1
11

1

1
11

1

1 11

1

11

111 1

1

1

1
1 1

11

1
1

1
1

1111

1 1
1

1
1

1 1

1

11

1

1
1

1

11 1

1
1

1
11 1

11

1

1
1

1

11
1 1

1

1
11

1

1
1
11

1

1

1

11
1 1

1
1

1

1
111 11

1
1

1
11 1

1
1
1

1

11
1

11

1

1
1

1

1

1

1
1

1

1

1

1

1

1 1
1

1
1

111

1

1

1

1
1 111

111

11

1

1
1

1
1

1
1

1
1

1
11

1
1

1
11
11 1

1
1

1
1

1

1

1 1
1

1
11

1

1

11
1
1

1

1
1

1
1

1

11

1 1
1

1

1

1
1

1
1

1
1

1

1

11 1

1 111
1

1

1

11 1

1

11 1
111

1
11

1 1
1

1

1
1

11 1

1
1 1

1
1 1

1

1

1
1

1
1

11 1

1

1

1
11

1

1

1

11
1

1
111 1 11

1

111
1

1 1
1 1

1

1
1

1

1

1

1

1
1

1

1

1

1 1
11

1
11

11 1
1 1

11
11 1

1

1

11
1

1

11

1

1
1

1
1

1 1

1 11
11

1 1
1

1
1 1

11

11

1
1

1

1
1 1
1 1

1

1
1

1
1 11

11
1

1
1

11
1

1
1

1
1

1

1
1 1

11
111

1
1

1
11 1

1 11 1

1

1

1
1

1
11 1

1
1

1
11

1

1 11
1

1 1
1

1

1

11 1
1

1 1

1

11

1
11

1

11 1

1

1
1

1
1

1
1
1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1
1

1 1
11 11 1

1
111 1111

1
1

11
1

111 1
1

1

1
1

1
11

11
1

1
1
11

1

1

1

1 1
1

1
1

1

1

1
1 11

1
11

1

1

1

111
11

1

11
1

1
1

1
1

1
1

1
1

1
1

11 1
1

1

1
1

1
1 1

1
11

1 11
11

1

111 1

1

1

1

11
1

1

1
11 1
111

1
1
111
1

1

1
1

11 11

1

1
1

1
11 1
1

1

11
1

1

1

11 1
11

1
1
1

1
1

1

1
1

1111

1 1
1

1
1

1

1
1

1

1
1

1

1
1

1
1

11

1

1
1 1

1
1

1
11

1
1

11
1

11
1

1
1

1
1

1
1

11 1

1

1 1
1

1
11

1
11 1

11

1
1

1
1

1 11
1 1 1111

1

1

1
1 1111 11

1111
11

1

1

11

1
1

11 1
1

1

1
111

11

11 1

11

1
1 1 11 11

1
11 1

1

1
1

1 1

11

1

1

1
1

1
1

1

1
1

11 1
1

1
1

1
11 11 1

1
1

1

11
1 1

1 1
1

1

1
1

1
1

1
1

1

1
11 1

1
1
1 1

1

1

1
1

1

1

1

1

1

1 1
1

1

1 1
1
1

1

11
11 1

1

1 1
1

1
1

1

1
1
111

1

1 11
1

1

1

1 11 1 11 1

11 1
1

1
1

1
1

1
1

1

1
1

1

1

11
1 1

1
1

1
1

1
1 1

1

1

1
1

1
1

1
1

1
1

1

1 1

1

1
111

11
1

1
111

1 1

111
1 11

1

1

1

11

11

1
1

1 11 11
1

11

1
1 1

1
1 11

1
11 1 1

1

11

1
1

1 1

1
1

1
1

1
1 111

1

1

1 1

1

1

11
1

1 1
11

1
1

1

1

1
1

1
1 1 1

1
11

1

1
1

1

1

11 1

1
1

1
1

1
11

1
1

1
1

1

1
1

1

1111
11

1

1

1
1 1

1
1

11
11

1
1

11
1

1

1

1

1

11
1

1
1 11 1

1 1
1

1

1

1

11

11

1

1
1

1

111

1

1
11

1
1

1
1 111 1

1
1
1

1
1

1

1

11

11
1

1
1

1
1

1

1
1

1

1

1

1 1 1
11

1

1

11
11 1

1
11
1

11

1

11

1
1

1
11

11
1

1

11 1
11

1 1
1

1 1
1 1

1
1

1
1

1 1

1
11

11
1

11
1

1
11 1

1 1

1
11

1
1

1

111
1 1

1
1

1

1
1 11

1

1
1

1

1
1

1
1
1 1

1

1

1

1
1

11 11

1
1

1 1
1

11

1
1

1
1

1 1

1
1

1
1

1
1

1
1

1
1

1
1
1

1
1

1

1
11

1

11 111
1

1 1
1

11
111
1

1
1

1 1

1

1

1 1
1 1
1

11
1
1

11

1

1
1 1

1

1
1

11 1
1

1
1

1 1

1
1
11

1 1
1

1
1
1

1

1

1
111

1
1

1

1

1

11

1

1

1
1

1

1 1
1

1 11
1

1
1

1
1

11

1
1 1

11

1

1
1

1
1 1

1
1

11 1
1

1
11

1

11 11 1
1

1 1
1 1

1
1

1

1

11
1

1
1 1

1

1
1
11

11
1

1
11 1

1
1

1
11

1
11 11

1
1

1

1

1 1
1

1 111

1

11 1
1

1 1
1

111
1

11
11 1

11 1

1

1 1
1 11 1

11

1

1 11

1

1 11 1
1

1

11
1

1
1

111

1

1 1
1

1 1

1

1

1
1

1
1

1
1

1

11

1

1

1

1
1
11 11

1
1

1
1 1

1
1

1

1
1 1

11 1

1

1

1

1

1

1
1

1
1

1 1
1

1

1

111

1 1
11

1

1

1 1
1

1 1 1
1

11

1
11

1
1 1

1

1 1

1

1
11

11 11
1

1
1 1

1
1

1 11
1
11111

1
11
11

1

1
1

11 1
111

111

1

1

1

1
1

11
11 111

1

11

1

1 11

1
1 1 1

1

1

1

1
11

1
1

1

1
1 1

1
1
1

1

1 1 1
1 1

1
11

1

1

1

11
1

111
11

1 11
1

11

1
111

1
1

1 11
1 1

1

1
1

11

1

1
1 1

1

11

1 1
1

11
1

11
1

11
1
1

1

1

1

1

1

11
11 1

1
1 1

11
1

1
1

1
1

1
1

1
11

1 1

1

1

1

11

1
1

1
1

1
1

1
1

1

1

1
1

1

1

1
1

1

1
1

1

1 1

11
1

11

1

1
1

1
1

1
1 1

1

1

11
11

1

1
11
11

1

1

1 1
1

11 1

1

1

11
11

11
1 1

1

1

1

1
1

1
111 11 1

1

1
1

11
11

1

1

11
1

1

1
1

1
1
11
1

1 1
1

1

1

1
1

11

11

1

11
1
1 1

1

1
11

1

1
1

1

1
11
1

11 1 1

11 1

1

1
1

1

1 1

1 11
1

1
1

1

1
1

1

1

11 1 1 11

1

1 11
11

1
1 1

11 1
1
1

111
11

1
1

1
11

1
1 1

1

1
1

11
1

1

1

1

1

1
1

1

1

1

1

11 1
1

1
1

1
111

1

1
1

1

1
1

1
1

1

1
11

1
11

11

1

1
1

1
1

1
1

11

1

1
1

11 1
11 11 1

1

1

11
1

1

1

1

1

1

11

1

1

11

11

1

11

1 1
1
1

1

1

1

1

1 111

1
1

1

1

1

1 1

111

1
1

1
1 1 1

11

1

1 11

1
1

1

1

1
1

1
1

111
1

1

11 11

1

1
1

1

1

1 1

11

1

1

1
1

1
1

1 1

1

1
11

11 1

1

11
11

1
11 1

1 1
1

1

1 1
1 1

1

1

1
1

1

1
111

11
1

1

1

11

1

1

1
1

1

1
1

11 111 1
1

1
1

1

11 1
1

1

1

1
1

1

11
11

1 1 1
1

1

1
1

11

1 1

1

1
1

11
1

1
1

1

1
111

1
1

1 11
1

1
1
1
11
1

1
1

1

1111 1
1

1

1

1

1
1

1
1

1
1

11
1

1
11

1

1

1
11

1

1
1

1

1

1

1
11

11
11

1

1
1

1

1

1
11

1
1

11

1
1

1

111

1

1
11

1
1

1
1

1

11
1 1
1 1

1 1

1
1

1
1

1 11

1
11

1

111
1

1

1
1

1

1

1

1 1

1

1
1

1

1

1
1111

1

1
1

1 1

1
11 11
1
1 1

1 11

1

11
1

1

1
1
1

11
11

1

1
11

1 1

1

111
1

1

1 11
1

1
1

1 1

1 1

1

1

11
11

1

1

1 1

1
1 11

11

1

1
11

1
1

1
1111

11

111
1

1 1
1

1

1
1

1

1

11

1
1

1
11 1

1

111

1
11

1

1
1

11

1 11
1

1
11

1

1

111 1
11

1
11 1

1

1
1

11
11

1
1

1
1

1

1

1

11

11

1
1

1

1

11

1

1

1

1

11
11

1
111 1

1
1

1
1
1 1

11

1
1 111

11

1

1
1

1
1

11

1
1
1

1

1
1

1
1

1
1 1

1
1
1

1
1

1
1 111 1

1

1

1

1 1
1

11
1

1
11 1
1

1
1

1

1

1
1 1

11

1
1

1

1 11
1
1

1
1

1
11

11

1

1

11
1

1 1
11

11

1

11 1
1

1

1
1

1
1

1
1

1
1

1

1 11
1

1

1

1
1 1

1
1

1

1

1
11

1

1 1

1 1

1 1

11

1
1

11

1

1
1

1
1

1

1

11
11

111 1

1
1

1

1

11
1 1

11

1
1

11
1 1

1
1

1 1 1 1
111

1

1
1

11
1

11

11

1
1
1

1

1

11

1
11

1
1

1

1

1
1

1
1 111 1

1
1
11

1
1

1
1

1

1
1

11

1

1
111

1

111
1

1

1 1
1

1
1

1
1

1
1

1
1 1
1

1
1

1
1

1
1

1
1

1

1

11

1

1 11
1

1
1

1
1

1 1
1

1

1

1 1 1
1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

11
1

1

1

1

11
1

1

11
1

11

11 1
1

1

111
11 11

1
1

1

1
1

1

11 1

1

1 1
1

1 11
1 1

11

1 1

1

11

1
11

1

1
1

1
11
1

1

1

1
1

1

1
1

1

111 1
1

1
11

1 1
1

1
1
1

1
1

1

1
1

1

1

1
1

1
1 1

1

1
1

1
1 11

1

11
1

1
1

1
1 11

1

1
1

1

1

11

11 1

111
1

1

1
1

1
1

1
1

1

1

1 1
1

11
11

11 1 1
11

1 1
111

1

1

1

1 1
11 11

1

1
11 1
1
1

1

1
11

1
1

1 1

1

1

1

1
1

1

1
1

1
1 1 1

1
1

1 1111

1
11

1
1

1

11
1
1

1

1

11

1
1

1
1

1

1
1

11 1

1

1 1
1

1
1

1

1

1

1

1

1

1

11

1

1

1

1
1111

1

1
1

1
11

1

11
1

1

1
11 111 111
1

1 1
1

1

1

1
111 1

11 1 1
11 1

1
1

1
1

1

1

1
1

1
1

1
1

1

11

1

1
1

1

11
1

1 11
1

11

1

1
11
1

11 1

1

1
1

1
1 1
1

1
1

1

1
1

1

1
1
111

1 1

1

1

1
1
1

1

1
11

1
1
1 1

1
11

11
1

1
111
1

1 1111 11
1

1
1

1

1 1
1

1
1

11
1
1

1

1

1

11

1

1
1

1

1 1
1 11

1

1

1
111 11 111

1

11
1

11

1

1

1
1

1

11

1
11

11
1111

11
1

1

1
1

1

1

1

1
1

1

1
1

1

1

1
11 1

1

1

1
1

11 1 1
1

1
1 1

1
1 1

1
11

1

1

1
11 1 1

1
11

11

1

11 1

1

1

1

1

1
1

1

1

1

1

1

1

11
1

1
11

1
1

1 1

1

1

11

1

1
1

1 1

1
1 11 1

1

1

1
1 1

1
11

1
11

11
1

1
1

1

1 11 1

1

1

11
1

1
1

1
1 1

1
11

11

1
1 1111

1
11

1
1

11
1 1
11

1

1

1

1

1 1

11

1

11 1
1

1
1

1 11
1

1

1

1

1

1

1

11
1
1

1 11
1

1 1

1

1
1

1
111

1
1

11
1

1

1
1

1
1

1
1 1

1

1
1

11 1

1

11

1

1
1

1 1

1

1

1

1
1

1
11
1 111 11
1

1
1

111 11

1

1 11 1 11 1111
1 11

1
1

1
1

1

1

1
1

1
1
1

11 11

1

1

1

1

1 11 11

1

1
1
1

11
1
1 1

1

1
1

1 1
1

1

1

1

1

11

11
1

11

1
1

1
1

1
1

11

1
1

11

1

1
1 1

1

1 11

1
1

1

1
1

1
1
11

1
11

1

1

1
1

1
1

11

1 1
1

1
1

1 1
1

1 1
1 1

1

11
1

1
1

1
1

1

1
111 1

1
1
1
1

1
1

1

1

1
1 1

1
1

1

1

11

1
1 1

11

1

1 1

1
1 11

11
1

1

1

11
1

1

1

111
1
1 1

1
1

1

1
1

1
1

111
1

1
11

1

1 1

1

11

1
1

1
1
1

1
1 1

1

1

11

1 1
11

1 1
1

1

1
1

1

1

1

111

1

1
1111

11 1

1 111

1

1

111

1

1
1 11 1

1
1 1

1
1

1

1 1
1

1

1

111
1 1
111
1

1
1

1

1
1

1

111 1 1 11 11
1

1

111

1 1
1

1

11

1
1

1 11
1 1

1
11

1

1 11
1

1 1

1
1

1
1

1
11 1

1
1
1
1 1

1

1
1

1 1
1 1

1

1

11
1

1
1

1
1

1

1
1

11

1
11

1
1

1
1

1
1

1

1
1

11

1

1

1

1
11 1

111 1 1

1

1

1

1

1
1

1 11 1 1

1

1

1
11

11

11 1
1

11
11 1

1
1 11

1
1

1

11 1
1

1 1
111

1
1

11

1
1 11 1 111

1
111

1
1

1

1

1

1

1
1

1
1

1

1
1

11
1

1
1 1

111
1

1 1

1
11

1

1

1

1
1 1

11
11111

1 1
1

1

1
1

1
11

11

1
1

1
1

1
1

1

1 1
11

1
1

1

1
1

1

1 1
1

1
1

1
1 1

1

11
1 1

1
1

1

1
1

1

1

11

1
11

1
1

1

1

1

1
1

11

11

1
11

1 1
1 1

1
1

1

1

1
1
1

1

1

11

1 1
1

1
1

11
111

1

1
11

1
1

11
11 1

1

1

1

111

1

1
1

1

1
1

1
111

1
1

1

1

1

1 1
1

1
1

1

1
11
1

1
1

11

1

1

1
1 1

1

1
111

1

1
1

1
11

11 11
111

1

11
1
1

1

11
1 11

1 1

11

1
1

1 1

1
1 1

1

1

1
1

1

1

1
11

1
1

1

1
1

1

1
1

11
11

1
1

1

1 1 1
11 1

1

1
11

1 11
1

1
1

1 11
1 1

1
1 1

1
1

11

1

1

1
1

111

1
1

1 1

1

1
11

1
11

11
1

1

1
1

1
1

11
1

1

1

11

11 1
1

1 1

1

1
1

1
1

1
1

1

1

1

1
11 1

1

1
1

1
1

1
1

11

1

11

1

1

1

1

1

11
1

1 11
11
1

2
2 22

2 2
22

22
2

2
2

2

22
2 22 22

22
2 2

2
2 2

2
22

2

2

22 22
2

22
2

2

2
2

2

2

22

2
2

2

2

2
2

2
22 22 2

2

2

2

22

2
2

2

2 22

2
2

22
2

22

2

2
2

2 2

22 2

2

22

22 22

2 2

2

22 2

2
2

2

22 22
22
2

2

2
22

2
2

2

22
22

2
2

2

2

2 2
22
2

2
2

2

2
22
2 2

2
22

2
2

2 2
222 2

2 2
2

2

2 222
222

2

2
2 22 22

2

2

2 2
22 22

2

2
2

2
22

2

2
2

2

2

2

2 2
2

22

22 2
2

2
2

2

2
222

2
2

2

2

2

2 2

2

2
2

2
2

2

2 2

2

22
22 2

2

2 2
2

2
2

2
2

2

2
2 2 2

2

2 22

2
2

2
2

22

2

2
2 2

2

2 2

2

2
22

2

2
2

2

22
2

2

2

222
2

2

22
2 2

2

22 2
2

2
2

22
2
2

2 2
2

2
2 2

2

2

2
2

22
2

2
2 22
2

2

22
2

2

2
2

2
2 2

2 2
2

2

2
2

2

2
2

2
2
22

2
2

2

2

2

2

2
2

2

2
2

2

222
2

2

2
2

2
2

2
2

2

22
2

222
2

2
2

2

2

2 2

2

2

2
2

2
2

2

2
2
2

2

22
2

2 2
2

2222

2
2 22

2 2

2
2

22
2 22

222 2 2
2

2
22 2

2
2

2
2

2
22

2
2

2

2
2

2 22 22

2

22
2

2

2
222 2

222
22

2 22

2

2

2
2

2

2

2
2
2

2
2

2
2 2

2

2
2

2
2 2

22

2
22 2222

22
2

2

2
2 2 2

2
2

2
2
2

2 2

2

2
2

2

2

2

22
2

2
2

2

2

2 22

2

2

2
2

2

2

22

2

2
2 2 22

2
2

2
2 2

2 2

2

2
2

2
2
2

2 2
222

2 22

2

22 2
2

2

2
2

2
2

2
2

22 222
2

2

2
2

22
2

2
2

2
2

22

22
2

2
2

2

2

2

2
22

2
22

2
2

2
2

2

2 2

22

2
2
2

2

2

2 22 22
2

2

2

22

2
2
2

2

22
22 2

2
2

2

2

2
2

2 2

2

2

22 2
2 2

2

2 2
2

2
2

2

2
2

2
2 2

2 2

2
2
2

22

2 2 2

2 2
2

2
2

2

2

2
2

2

2

22
2

2
22 22

2

2
2

2

2
2

2
2 2

2
22

2 2
2

2

2
222 22

2

2

22 2

22
2 222

2
2

2

2

2

2

2
2

2
22

2 2

2

22
2

2

2

2

2 22

2
2

2

22

2

2

2

2
22 22 2

2
2

2

2
2

22 22
2

2
2

222
2

2

2 222
2 22

2 2
2

2 2

22
2

2

2
222

2

2

22
2

2
2

2

2

2

2
2

2

2

2

2

2
2

2

2

2
2

2
2

2

2 22

2
2

2
2

2

2
2

2

2

2

22
222

22

2
2

2
22

222

2 22
2

2 2

2

2 2
2

2 2
22 2

22
2
2

22
2

2

2

2

2
2

22 2
22

2
222 22

2 22
2 22

2

222
22
2

2
2

2
2

2 2 22
2

2

22
2

2

2

2
2

2
2

2
2

2
2 2

2
2
22

2
2

2

2

222
2

22

2
2
2

2
2

2
2

2
2 22

22

2
2

2
2

2

2

2
2
2

2
2

2
2

2 2
2

2
2

22 2
2 22

2

2

2
2
2

2
2

2

2

2

2 2
2

2

2
222 2

2

2 2
2 22

22 2
22

2

2
2 2

2
2

2
22

2

2

2
22 2

2
2
2

2 2
2 2

2
22

22
22
22 2222 22

2

2

22
22 2 2

2

2

22

2
22

2

2

2 2

2

2
2

2
2

22
2

2
2

2
2

2

22
22

2
2

2
2

2
2 22 22

2

2

2
2

2

222 2

2
222

2
22

2
2 2

2

2

2

2 22
2

2

2
2

2
2

22
22
2

2
22

2

2
2

2
2

2

2
2

22 2 2
2

2

2

22
2
2

2
22

2 2
2 2

222
222
2

2
2

2 22

222
2

2
2

2
2

2
2

2
22

2
2

2

22 2

2
2

22
2

2
2

2

22 2 2

2

22 2
2

2
2

2
2

2 2

22
2

2

2
2

22

2

2
2 2 2
2 2

2

2

2

2

22

2
2

2

2

2
2

2
2

22
2

2
2 2

2

2

2
2

2

2
2

2
2

2
22

2 2
2

2

2

2

2
2

22
2

2 2
2

2

2
2

2
2

2
2

22

2

22 2

2
2
2

22
2

22
22 2 2

2
2 22
2

2

2
2

2
22

2

2
2
2
2

2

2

2
2
2

2
22

2

2

22 2

2 2
22

2

2
2

2 2

2

2
2

2
2

2

2
2
2

2
2

2

2
2

22222 2 2222
2

2

2

2

2

22
22

2

2
2

2
2

2

2
2

2 2
2

2
2

2
22

2

2
2

2
2

2

2
222

2 2

2 2
2

2
2

2 2

2

2

2 2

2
2

22 2

2

22 2
2

2

2 2
22

2
2

2
2 2

2
2 2

22
2

2
2

2

2

2
2

2
2

2
22

2
222

2

2
2

2

22

2
2

2
2222

2

2
2 2

2
2

22

2

2
2

2
2222 2

2

2

22
2

22 2
2

2
2
2 2

2

2
2

2
2

2
2

2 2

2
2

2

2

2
2 2

222
2 22 2

2

2

2
2

2

2 2
2 2

2

2
2

2

2
2 2

2

2
2 2

2
2

2
2 2 22

2
22

2
2

2 2

2
2 2

2

2
2

2 2 2
22

2

2

2

2 2

2

2
2 2

22

2

2 2

2

2

2
2

2 22
22

22

2
2

2
2

2
2

2
2

2

22 2

2

2
22

22
2 2

2
22

2
22

2
2

2
2

22
2 2

2
2

2

2

2
222 2

2

2 22

2 2

2

2 2
22

2 22
2

2 2
2

2
2

2
2

2
2

2
2

2

2
2

2 2
2

22 2
2

222

2
2

2
2

2

2
2222

2

2

2

2 2

2
22 2

22
2

2

22 2

2 22
2

2
2

2 2
2

2

2

2

2

2

2

222
2

22
2

2
2

2

2
2

2
22

2
2

2

2

2
2

2
22

22
2

2
2

2

2

2

22 2
2

2
2

2

2

2
2

2
22

2
2

2 2
2

2
22

2
2

22
2
22

2 22
2

2

222
2

2

22

2

2

2 2
2

2
2

2

2
2

22

2 222 2

222
2 2
2 22
2 2

22

2222
2 2 2

2

2
2

2 2

2

22

22
2

2
22

2
2
2 2

2
2

2
2

2
2

2
2 22

2
2

2
2

2

2
2

2
2

2
2 22

2

22 22
2 22

2
2 2

2 2 2

2

2

22
22

2
2

222

2
2

2

2

22
2

2
2

2 22 2
2

2
22

2
2

2

2

2 2

2
2 2

2
222

2
2

2

2
22

222
22
2

2 22

2

2

2

2
2 22

2

2 2 2

2

2

2

2
2

2

2
2 2

2
2

22
2

2

2
2

22

22
2

2
22 2

2

2
2 2

2
22

2

2
2
2

2

2

2

2
2

22
2

2
2

22

2
22
2

2

22
2

2

2 2
2

22
2

2
2

2
2

2

2

2
2

2 2
2 22

2
2 2 2

2

2 2

2
2

222

222
2

2 2

2
2 22 2

22
22 2 2

22 2

2

2
2

2

2 2

2

2

2

2
2 2

22

2

2

2

2
2

2
2

2
2

2 2

2
2

2

2

22
2

2

2

2
222 2
2

22
2

2

2

2
22

2
2 22

22

2

22
2 222

2

2

2

2

2 2
2

2
2

2
22 2

2

2
2

22
2

2
2

2
2 2

2
2

22
22

2
2

2
2

2

2
22

22

22

22

2
2
22 2

2

2 22

2
2

2
2

22
22

2
2

2
2
2

2
2

2
22

2
2

2

22

2
22

2
2

2

2

2

2

2

2
2 2

22
22

2

2
2

22
22

2

22

22

2

2
2
2

22
2 2

2
2

2

2
2

2

2
2

222
2

2
22

2
2 2

2
2

2
22

2

222
2

2

222 2

2
2

2

2 22
2 2

2
2

2

2
2

2
22

2
2

22
2

2
22

22
22

2
2 2
2 2 2

2

2 2

2

22 22
2
2

2
22

2
2

2 222

2

2 22

2

2
2
2

2
22 22 222

222

2
2

2

2
2 2 2

2

2

2
2

2

2 2
2 2

2

2
2

2
2

2

2
22 22

22

2 22
2

2
2

2 2
2

2

2
2

2

2

2

2

2 2
2

2
2

2
22 2 2
2

2
2

2

2
2

2

2
2

2

2

2
22

2
2

2

2
2

2
2

2
2

2 2
2

2 2
2

2
2 22

22
2

2

2
2

2
2

2
2

222

2
2

2

2
2

2 2
2 2

2

2

2 2 2

2
2 2

2

2
2

2
2

22
22

2

2

2
2
22

2 22
22

2
2222

2
2222

2

2
22

2
2

2
2 22 2
2

22

2 222
2

2
2

2
2

2 22

2 2
2

2 2
2

2
2
2

22

2

2
2

2

2
2

2

22 2
2

2 22

2

2

2 2

2

2

222 2

2
2

22
2

2
2

2

2
2

2

2
2
2

2

2
2

2
22

22
22

2 2
2

2 2

2
2

22 2

2
22

2
22

2

2 2
2

2
2

2

22
2

2 2
2

2

2

2

2

2
2

2

2
2

2

2

2222
2

2 2
2

22 22
2

2

2

2

2
2

2

2

2

2
2

2
2 2

2 2

2
2 2 2

2

2
2 22 2

2

2

22

22

2

2

22

2
22

2
2 2

2

2

2
2

2

2

2
2 2

2

2

2

2 2
2

2

2
2

2
2
2

2

22

2
2

2

22

2 2
2

2
2

2

2

2

2 22
2

2
2

2 2
2

2
22 2

2

22
2 2

2

2

2

2

2

2
222 2 2

2
222 2 2
2

22

2
2

2 2
2

2 2
22 2

2
2 2 2

2
2

2
2

2

2

2
2

2

2

2
2

2
2

2

22
22
22

2

2
2

2
2

2

2

2

2
2

2
2

22 2
2 2

2

2
2

2
2
2
2

2

2
22

2

2 2 2
2 2

2

2
2 2

2

2

22
22

2
2 2

2

2 2 2

2
2

22

2

2
22

2
2

22
2

2
22 2
2

2

222 2

22
2

2

22
2

22
2

2
2

2

2
2

22 22
2
22

2
22 2

2
22

2
2

2

22
2

2
2

22
2

2
2

2

2 2
22 22

2

2

2

2 2
22 2

2
2

2
2 222

2

2
22

22
2

22
2
2

2
2 222

2

2

2

2

2

22

2
2

2

2
2

2

2

2

2

2
2

2
222

2

2

2

22

2
22

2
2

2
2

2 22
22

2 22
22
22

2 2

2

2

22

2

2
2

2 2 2

22

22
22

2

2 2 2

2 22

2
2

2

2

2 2 2

2
2

2

2

2

2

2

2
22

2

2 2

2
2

2

22

2 2

2

2
2

2

2 2

2

2

−6 −4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

Scatter Plot of QDA Training Data

Feature 1

F
ea

tu
re

 2

Figure 4.2: Scatter plot of first two features of QDA training data. Classes are distinguished by
color and shape.

105

Figure 4.2 displays the resulting scatter plot.

This data set has n = 10, 000 training samples with p = 10 features and equal class sizes. It

is normally distributed with class means equal to ±1. The class 1 covariance matrix has entries

Σ1
i,j = (0.5)|i−j|, and the class 2 covariance matrix has entries Σ2

i,j = (−0.5)|i−j| The test data

was independently generated from the same class distributions and proportions, but it has only

n = 1, 000 samples.

A modification of Quadratic Discriminant Analysis is well-suited to such data. The package

comes with a function QDA for such purposes.

test_pred <- QDA(TrainData = QDA_Data$TrainData,

TrainCat = QDA_Data$TrainCat,

TestData = QDA_Data$TestData,

Method = "Compressed")

mean(test_pred != QDA_Data$TestCat)

[1] 0

Compressed QDA gives perfect class prediction.

4.2.3 Quick Sparse Kernel Optimal Scoring Example

What happens if the data is not well-suited to either Linear or Quadratic Discriminant Analysis?

Moreover, what happens if, in addition to a non-linear decision boundary between classes, there

also appear to be variables which do not contribute to group separation?

For example, consider the KOS Data shown below.

data(KOS_Data)

par(mfrow = c(1,2))

plot(KOS_Data$TrainData[,2]~KOS_Data$TrainData[,1],

col = c("orange","blue")[KOS_Data$TrainCat],

pch = c("1","2")[KOS_Data$TrainCat],

106

1

1

1

1

11

1

1

1
1

1
1

1

1 1

1

1
1

1

1

1

1

1

1

11

1
11

1

1

1

1
1 1

11
1

1

111
1

1

1 1
1

1

2

2

2

2
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

22

2

2

2 2
22

2
2

2

2

2

2

2 2

2

2

2 2
2

2

2

2

2

2

2

2

2

2

2

2

2 2

2
2

2

2

2

2 2

2
2

22

2

2

2

2

2
2

2

2 2

2

2 2

2

2

2

2
2

2

2

2

2

2

2

2
2

22
2

2

2 2

22 2

2

2

2

2

2

2

2
2

2

2

2
2

2

2
2

2

22

2
2

2

2

2

2

2 2

2

2

2

2

2

2

2

−1.0 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

True Features

Feature 1

F
ea

tu
re

 2

1

1
1

1

1

1
11

1
1

1

1
1

11
1

1

1
1

11

1

1

1

1 11

1

1
1

1

1

1

1

1
1

11 1

1

1

1
1

1

1

1
1

1

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2 2

2
2

2

2
2

2

2

2
2

2

2

2
222

2

2

2 2

2

2
2

2

2

22
2

2

2

2 2 2

2
2

2

2 2

2

2

2

2

2 2

2

2

2

22

2
2
2

2

2

2

2

2
2

2

2
2

2
2

22
2

2

2

22

2

2

2 2

2

2

2

22

22
2

2
2

2

2
2

2

2

2
2

2
2

2

2
2

2

22 2

2

2

2

2

2
22

2
22

2

2

−1.0 0.0 1.0

−
1.

0
0.

0
0.

5
1.

0
1.

5

Noise Features

Feature 3

F
ea

tu
re

 4

Figure 4.3: Scatter plot of the KOS training data. Classes are distinguished by color and shape.
Only the first two features contribute to class separation.

xlab = "Feature 1",

ylab = "Feature 2",

main = "True Features")

plot(KOS_Data$TrainData[,4]~KOS_Data$TrainData[,3],

col = c("orange","blue")[KOS_Data$TrainCat],

pch = c("1","2")[KOS_Data$TrainCat],

xlab = "Feature 3",

ylab = "Feature 4",

main = "Noise Features")

par(mfrow = c(1,1))

Figure 4.2 displays the resulting scatter plot.

107

For this data set, neither LDA or QDA would suffice. The function KOS is the sparse kernel

optimal scoring algorithm presented in Section 2.4. It is particularly well-suited to such problems,

as can be seen from the following.

output <- KOS(TrainData = KOS_Data$TrainData,

TrainCat = KOS_Data$TrainCat,

TestData = KOS_Data$TestData)

print(output$Weight)

[1] 1 1 0 0

mean(output$Predictions != KOS_Data$TestCat)

[1] 0

plot(output$Dvec,

main = "Discriminant Vector Coefficients",

xlab = "Feature Index",

ylab = "Discriminant Coefficient Value")

Figure 4.4 displays the resulting plot of the discriminant vector coefficients.

The output Weight is how much weight the kernel classifier gives to each feature. The weight

values lie in [−1, 1], and zero weight means that the feature does not contribute to computing

the discriminant function. The KOS function correctly identifies that the first two features are

important for class separation, and gives them full weight. It also correctly identifies Features 3

and 4 as being “noise”, and it gives them zero weight.

The output Predictions are the predicted class labels for the test data. As we can see, KOS

has perfect classification.

The output Dvec are the coefficients of the kernel discriminant vector (2.3).

108

0 50 100 150

−
0.

02
0.

02
0.

06

Discriminant Vector Coefficients

Feature Index

D
is

cr
im

in
an

t C
oe

ffi
ci

en
t V

al
ue

Figure 4.4: Plot of the Discriminant Vector Coefficients generated by the KOS function on the
KOS training data.

109

4.3 Compressed Linear Discriminant Analysis

This Section provides a more in-depth treatment to the Linear Discriminant methods available

in biClassify.

There are five separate linear discriminant methods available through the LDA wrapper func-

tion:

1. Full Linear Discriminant Analysis, which is LDA trained on the full data [2, Section 11.5].

2. Compressed Linear Discriminant Analysis of Section 3.2.

3. Projected LDA of Section 3.4.1.

4. Subsampled LDA, where LDA is trained on data which is sub-sampled uniformly from both

classes.

5. Fast Random Fisher Discriminant Analysis of [62].

The individual methods are invoked by setting the Method argument. Let us first load the data

for convenience.

TrainData <- LDA_Data$TrainData

TrainCat <- LDA_Data$TrainCat

TestData <- LDA_Data$TestData

TestCat <- LDA_Data$TestCat

4.3.1 Full LDA

This method is the result of setting Method equal to "Full". This method is traditional

Linear Discriminant Analysis, as presented in [2, Section 11.5]. No additional parameters need to

be supplied, and the code will run as stated.

test_pred <- LDA(TrainData, TrainCat, TestData)

table(test_pred)

110

test_pred

1 2

700 300

mean(test_pred != TestCat)

[1] 0

The above code produces a list containing a vector of predicted class labels for TestData.

4.3.2 Compressed LDA

Compressed LDA seeks to solve the LDA problem on reduced-size data. The details of com-

pressed LDA are contained in Section 3.2. This method is the result of setting Method equal to

"Compressed". Compressed LDA reduces the group sample amounts from n1 and n2 to m1

and m2 respectively. It requires the parameters m1, m2, s.

The easiest way to run Compressed LDA is to set Mode to Automatic and not worry about

supplying additional parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Automatic")

table(test_pred)

test_pred

1 2

700 300

mean(test_pred != TestCat)

[1] 0

Automatic is the default value for Mode, and so one could run

test_pred <- LDA(TrainData, TrainCat, TestData,

111

Method = "Compressed")

table(test_pred)

test_pred

1 2

700 300

mean(test_pred != TestCat)

[1] 0

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the compression amounts

m1, m2, and sparsity level s to be used in compression. The user will type in the amounts:

output <- LDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Interactive")

"Please enter the number m1 of group 1 compression samples: "700

"Please enter the number m2 of group 2 compression samples: "300

"Please enter sparsity level s used in compression: "0.01

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they

may wish to provide all necessary parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Research",

m1 = 700, m2 = 300, s = 0.01)

table(test_pred)

test_pred

1 2

112

700 300

mean(test_pred != TestCat)

[1] 0

WARNING: The argument Mode will override any supplied parameters if its value is

Automatic or Research.

4.3.3 Sub-Sampled LDA

Sub-sampled LDA is trains LDA on data sub-sampled uniformly from both classes. To run

sub-sampled LDA, set Method equal to Subsampled. It requires the additional parameters m1

and m2.

The easiest way to run Compressed LDA is to set Mode to Automatic and not worry about

supplying additional parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Subsampled", Mode = "Automatic")

table(test_pred)

test_pred

1 2

700 300

Automatic is the default value for Mode, and so one could simply run

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Subsampled")

table(test_pred)

test_pred

1 2

700 300

113

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the sub-sample amounts

m1, m2 for each group to be used. The user will type in the amounts:

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Subsampled", Mode = "Interactive")

"Please enter the number m1 of group 1 sub-samples: "700

"Please enter the number m2 of group 2 sub-samples: "300

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they

may wish to give the LDA function all parameters.

output <- LDA(TrainData, TrainCat, TestData,

Method = "Subsampled", Mode = "Research",

m1 = 700, m2 = 300)

table(output)

output

1 2

700 300

mean(output != TestCat)

[1] 0

WARNING: The argument Mode will override any supplied parameters if its value is

Automatic or Research.

4.3.4 Projected LDA

This method is the result of setting Method equal to "Projected". It is Projected LDA,

as presented in Section 3.4.1. Projected LDA creates the discriminant vector on compressed data

114

and then projects the full training data onto the discriminant vector. Projected LDA requires the

parameters m1, m2, s.

The easiest way to run Projected LDA is to set Mode to Automatic and not worry about

supplying additional parameters.

output <- LDA(TrainData, TrainCat, TestData,

Method = "Projected", Mode = "Automatic")

table(output)

output

1 2

700 300

mean(output != TestCat)

[1] 0

Automatic is the default value for Mode, and so one could simply run

output <- LDA(TrainData, TrainCat, TestData,

Method = "Projected")

table(output)

output

1 2

700 300

mean(output != TestCat)

[1] 0

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the compression amounts

m1, m2, and sparsity level s to be used in compression. The user will type in the amounts:

115

output <- LDA(TrainData, TrainCat, TestData,

Method = "Projected", Mode = "Interactive")

"Please enter the number m1 of group 1 compression samples: "700

"Please enter the number m2 of group 2 compression samples: "300

"Please enter sparsity level s used in compression: "0.01

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they

may wish to give the LDA function all parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "Projected", Mode = "Research",

m1 = 700, m2 = 300, s = 0.01)

table(test_pred)

test_pred

1 2

700 300

mean(output != TestCat)

[1] 0

WARNING: The argument Mode will override any supplied parameters if its value is

Automatic or Research.

4.3.5 Fast Random Fisher Discriminant Analysis

This method is the result of setting Method equal to "fastRandomFisher". It is the Fast

Random Fisher Discriminant Analysis algorithm, as presented in [62]. Fast Random Fisher creates

the discriminant vector on reduced sample amounts m, and then projects the full training data

onto the learned discriminant vector. The difference between Fast Random Fisher Discriminant

116

Analysis and Projected LDA is that Fast Random Fisher mixes the groups together when forming

the discriminant vector, but Projected LDA does not. Fast Random Fisher requires the parameters

m, and s.

The easiest way to run Fast Random Fisher is to set Mode to Automatic and not worry about

supplying additional parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "fastRandomFisher", Mode = "Automatic")

table(test_pred)

test_pred

1 2

700 300

mean(test_pred != TestCat)

[1] 0

Automatic is the default value for Mode, and so one could simply run

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "fastRandomFisher")

table(test_pred)

output

1 2

700 300

mean(test_pred != TestCat)

[1] 0

and obtain the same output.

117

When Mode is set to Interactive, prompts will appear asking for the total amount of

compressed samples m and sparsity level s to be used in compression. The user will type in the

amounts:

output <- LDA(TrainData, TrainCat, TestData,

Method = "fastRandomFisher", Mode = "Interactive")

"Please enter the number m of total compressed samples: "1000

"Please enter sparsity level s used in compression: "0.01

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they

may wish to give the LDA function all parameters.

test_pred <- LDA(TrainData, TrainCat, TestData,

Method = "fastRandomFisher",

Mode = "Research", m = 1000, s = 0.01)

table(test_pred)

test_pred

1 2

700 300

mean(test_pred != TestCat)

[1] 0

WARNING: The argument Mode will override any supplied parameters if its value is

Automatic or Research.

4.4 Compressed Quadratic Discriminant Analysis

This section provides a more in-depth treatment to the Linear Discriminant methods available

in biClassify.

118

There are three seperate quadratic discriminant methods avilable through the QDA wrapper

function:

1. Full Quadratic Discriminant Analyses, which is QDA trained on the full data [33, Section

4.3].

2. Compressed Linear Discriminant Analysis of Section 3.4.2.

3. Subsampled QDA, where QDA is trained on data which is sub-sampled uniformly from

both classes.

The individual methods are invoked by setting the Method argument. Let us first load the data

for notational convenience.

TrainData <- QDA_Data$TrainData

TrainCat <- QDA_Data$TrainCat

TestData <- QDA_Data$TestData

TestCat <- QDA_Data$TestCat

4.4.1 Full QDA

This method is the result of setting Method equal to "Full". This method is traditional

Quadratic Discriminant Analysis, as presented in [33, Section 4.3]. No additional parameters need

to be supplied, and the code will run as stated. The function QDA produces predicted class labels

for TestData.

Predictions <- QDA(TrainData, TrainCat, TestData,

Method = "Full")

table(Predictions)

Predictions

119

1 2

700 300

4.4.2 Compressed QDA

This method is the result of setting Method equal to "Compressed". It is compressed QDA,

as presented in Section 3.4.2. Compressed QDA reduces the group sample amounts from n1 and

n2 to m1 and m2 respectively via compression and trains QDA on the reduced samples.

Compressed QDA requires the parameters m1, m2, s.

The easiest way to run Compressed QDA is to set Mode to Automatic and not worry about

supplying additional parameters.

output <- QDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Automatic")

table(output)

output

1 2

700 300

Automatic is the default value for Mode, and so one could simply run

output <- QDA(TrainData, TrainCat, TestData,

Method = "Compressed")

table(output)

output

1 2

700 300

and obtain the same output.

120

When Mode is set to Interactive, prompts will appear asking for the compression amounts

m1, m2, and sparsity level s to be used in compression. The user will type in the amounts:

output <- QDA(TrainData, TrainCat, TestData,

Method = "Compressed", Mode = "Interactive")

"Please enter the number m1 of group 1 compression samples: "700

"Please enter the number m2 of group 2 compression samples: "300

"Please enter sparsity level s used in compression: "0.01

table(output)

output

1 2

700 300

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they

may wish to give the QDA function all parameters.

output <- QDA(TrainData, TrainCat,

TestData, Method = "Compressed", Mode = "Research",

m1 = 700, m2 = 300, s = 0.01)

table(output)

output

1 2

700 300

121

4.4.3 Sub-Sampled QDA

Sub-sampled QDA is just QDA trained on data sub-sampled uniformly from both classes. To

run sub-sampled QDA, set Method equal to Subsampled. It requires the additional parameters

m1 and m2.

The easiest way to run sub-sampled QDA is to set Mode to Automatic and not worry about

supplying additional parameters.

output <- QDA(TrainData, TrainCat, TestData,

Method = "Subsampled", Mode = "Automatic")

table(output)

output

1 2

700 300

Automatic is the default value for Mode, and so one could simply run

output <- QDA(TrainData, TrainCat, TestData,

Method = "Subsampled")

table(output)

output

1 2

700 300

and obtain the same output.

When Mode is set to Interactive, prompts will appear asking for the sub-sample amounts

m1, m2 for each group to be used. The user will type in the amounts:

output <- QDA(TrainData, TrainCat, TestData,

122

Method = "Subsampled", Mode = "Interactive")

"Please enter the number m1 of group 1 sub-samples: "700

"Please enter the number m2 of group 2 sub-samples: "300

table(output)

output

1 2

700 300

and the output is produced.

If the user is interested in running simulation studies or has mastery over the functionality, they

may wish to give the QDA function all parameters.

output <- QDA(TrainData, TrainCat, TestData,

Method = "Subsampled", Mode = "Research",

m1 = 700, m2 = 300)

table(output)

output

1 2

700 300

WARNING: The argument Mode will override any supplied parameters if its value is

Automatic or Research.

4.5 Sparse Kernel Optimal Scoring

This section presents the kernel optimal scoring method available in the biClassify pack-

age. Kernel optimal scoring is presented in Section 2.2.2. Sparse kernel optimal scoring finds the

123

kernel discriminant coefficients α ∈ Rn of (2.3) and feature weights w ∈ [−1, 1]p.

Let us load the data set used in kernel optimal scoring

TrainData <- KOS_Data$TrainData

TrainCat <- KOS_Data$TrainCat

TestData <- KOS_Data$TestData

TestCat <- KOS_Data$TestCat

4.5.1 Parameter Selection

This subsection details how KOS selects the parameters σ2, γ, and λ.

The gaussian kernel parameter σ2 is selected based on the {.05, .1, .2, .3, .5} quantiles of the

set of squared distances between the classes

{∥xi1 − xi2∥22 : xi1 ∈ C1, xi2 ∈ C2}.

The ridge parameter γ is selected by adapting a kernel matrix shrinkage technique of [14] to the

setting of ridge regression. The sparsity parameter λ is selected using 5-fold cross-validation to

minimize the error rate over a grid of 20 equally-spaced values. More details of parameter selection

are contained in Section 2.5.

The function SelectParams implements these methods automatically.

SelectParams(TrainData, TrainCat)

$Sigma

[1] 0.7390306

$Gamma

[1] 0.137591

124

$Lambda

[1] 0.02902946

If parameters are not supplied to KOS, the function first invokes SelectParams to generate any

missing parameters.

4.5.2 Hierarchical Parameters

Sparse kernel optimal scoring has three parameters: a Gaussian kernel parameter Sigma, a

ridge parameter Gamma, and a sparsity parameter Lambda. They have a hierarchical dependency,

in that Sigma influences Gamma, and both influence Lambda. The ordering is

Top Sigma

Middle Gamma

Bottom Lambda

When using either of the functions, the user is only allowed to specify parameter combinations

which adhere to the hierarchical ordering above. That is, they can only input parameters which go

from Top to Bottom. For example, they could specify both Sigma and Gamma, but leave Lambda

as the default NULL value. On the other hand, the user would not be allowed to specify only

Lambda while leaving Sigma and Gamma as their default NULL values.

SelectParams(TrainData, TrainCat, Sigma = 1, Gamma = 0.1)

$Sigma

[1] 1

$Gamma

[1] 0.1

$Lambda

[1] 0.01078724

125

If the user supplies parameter values which violate the hierarchical ordering, the error message

Hierarchical order of parameters violated. will be returned.

SelectParams(TrainData, TrainCat, Gamma = 0.1)

Error in SelectParams(TrainData, TrainCat, Gamma = 0.1) :

Hierarchical order of parameters violated.

4.5.3 KOS

This package comes with an all-purpose function for running kernel optimal scoring.

Sigma <- 1.325386

Gamma <- 0.07531579

Lambda <- 0.002855275

output <- KOS(TestData, TrainData, TrainCat, Sigma = Sigma,

Gamma = Gamma, Lambda = Lambda)

print(output$Weight)

[1] 1 1 0 0

table(output$Predictions)

1 2

26 68

126

5. CONCLUSIONS

Linear Discriminant Analysis is a common classification tool. However, it has several dis-

advantages. The first is that it underfits the data when the true decision boundary is non-linear.

Secondly, it uses all data features which constructing the classification rule, and thus can overfit

in the high-dimensional setting where not all features are important for class separation. Lastly,

Linear Discriminant Analysis is expensive to train on large sample data.

In this dissertation, we propose several adaptations of Linear Discriminant Analysis which

address the above limitations. In particular, Chapter 2 proposes a kernel discriminant classifier

with simultaneous sparse feature selection. Chapter 3 proposes a sample reduction scheme for

discriminant analysis based on compression using sparse random matrices. Chapter 4 presents an

R package ‘biClassify’ containing implements of the proposed methods.

Future directions for research could investigate how to effectively compute the compressed

kernel matrix presented in Chapter 3. An additional avenue of future research is investigating the

effects of compressing a data matrix in both the sample space and feature space.

127

REFERENCES

[1] A. F. Lapanowski and I. Gaynanova, “Sparse feature selection in kernel discriminant analysis

via optimal scoring,” in The 22nd International Conference on Artificial Intelligence and

Statistics, pp. 1704–1713, 2019.

[2] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate analysis. Orlando, FL: Academic

Press, 1979.

[3] T. Hastie, R. Tibshirani, and A. Buja, “Flexible discriminant analysis by optimal scoring,”

Journal of the American statistical association, vol. 89, no. 428, pp. 1255–1270, 1994.

[4] T. Hastie, A. Buja, and R. Tibshirani, “Penalized discriminant analysis,” The Annals of Statis-

tics, pp. 73–102, 1995.

[5] B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regulariza-

tion, optimization, and beyond. MIT Press, 2002.

[6] Y. Eidelman, V. D. Milman, and A. Tsolomitis, Functional analysis: an introduction, vol. 66.

American Mathematical Soc., 2004.

[7] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neu-

ral Computation, vol. 12, no. 10, pp. 2385–2404, 2000.

[8] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher discriminant analysis

with kernels,” in Neural networks for signal processing IX, 1999. Proceedings of the 1999

IEEE Signal Processing Society Workshop., pp. 41–48, IEEE, 1999.

[9] V. Roth and V. Steinhage, “Nonlinear discriminant analysis using kernel functions,” in Ad-

vances in Neural Information Processing Systems, pp. 568–574, 2000.

[10] G. I. Allen, “Automatic feature selection via weighted kernels and regularization,” Journal of

Computational and Graphical Statistics, vol. 22, no. 2, pp. 284–299, 2013.

128

[11] T. Cai and W. Liu, “A direct estimation approach to sparse linear discriminant analysis,”

Journal of the American Statistical Association, vol. 106, no. 496, pp. 1566–1577, 2011.

[12] L. Clemmensen, T. Hastie, D. Witten, and B. Ersbøll, “Sparse discriminant analysis,” Tech-

nometrics, vol. 53, no. 4, pp. 406–413, 2011.

[13] I. Gaynanova, J. G. Booth, and M. T. Wells, “Simultaneous sparse estimation of canonical

vectors in the p n setting,” Journal of the American Statistical Association, vol. 111, no. 514,

pp. 696–706, 2016.

[14] T. Lancewicki, “Regularization of the kernel matrix via covariance matrix shrinkage estima-

tion,” arXiv preprint arXiv:1707.06156, 2017.

[15] P. Craven and G. Wahba, “Smoothing noisy data with spline functions,” Numerische Mathe-

matik, vol. 31, pp. 377–403, Dec 1978.

[16] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for choos-

ing a good ridge parameter,” Technometrics, vol. 21, no. 2, pp. 215–223, 1979.

[17] D. Xiang and G. Wahba, “A generalized approximate cross validation for smoothing splines

with non-gaussian data,” Statistica Sinica, pp. 675–692, 1996.

[18] J. Chen, C. Zhang, M. R. Kosorok, and Y. Liu, “Double sparsity kernel learning with auto-

matic variable selection and data extraction,” arXiv preprint arXiv:1706.01426, 2017.

[19] F. R. Bach, G. R. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic duality, and

the smo algorithm,” in Proceedings of the twenty-first international conference on Machine

learning, p. 6, ACM, 2004.

[20] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large scale multiple kernel learn-

ing,” Journal of Machine Learning Research, vol. 7, no. Jul, pp. 1531–1565, 2006.

[21] F. R. Bach, “Consistency of the group lasso and multiple kernel learning,” Journal of Machine

Learning Research, vol. 9, no. Jun, pp. 1179–1225, 2008.

129

[22] S. Sun, M. Kolar, and J. Xu, “Learning structured densities via infinite dimensional expo-

nential families,” in Advances in Neural Information Processing Systems, pp. 2287–2295,

2015.

[23] O. Chapelle and V. Vapnik, “Model selection for support vector machines,” in Advances in

Neural Information Processing Systems, pp. 230–236, 2000.

[24] C.-H. Li, C.-T. Lin, B.-C. Kuo, and H.-S. Chu, “An automatic method for selecting the pa-

rameter of the rbf kernel function to support vector machines,” in Geoscience and Remote

Sensing Symposium (IGARSS), 2010 IEEE International, pp. 836–839, IEEE, 2010.

[25] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “Kernlab-an s4 package for kernel

methods in r,” Journal of Statistical Software, vol. 11, no. 9, pp. 1–20, 2004.

[26] G. C. Cawley and N. L. Talbot, “Reduced rank kernel ridge regression,” Neural Processing

Letters, vol. 16, no. 3, pp. 293–302, 2002.

[27] G. C. Cawley, N. L. Talbot, R. J. Foxall, S. R. Dorling, and D. P. Mandic, “Heteroscedastic

kernel ridge regression,” Neurocomputing, vol. 57, pp. 105–124, 2004.

[28] P. Exterkate, “Model selection in kernel ridge regression,” Computational Statistics & Data

Analysis, vol. 68, pp. 1–16, 2013.

[29] S. An, W. Liu, and S. Venkatesh, “Fast cross-validation algorithms for least squares support

vector machine and kernel ridge regression,” Pattern Recognition, vol. 40, no. 8, pp. 2154–

2162, 2007.

[30] Y. Zhang, J. Duchi, and M. Wainwright, “Divide and conquer kernel ridge regression,” in

Conference on Learning Theory, pp. 592–617, 2013.

[31] L. H. Dicker, D. P. Foster, D. Hsu, et al., “Kernel ridge vs. principal component regres-

sion: Minimax bounds and the qualification of regularization operators,” Electronic Journal

of Statistics, vol. 11, no. 1, pp. 1022–1047, 2017.

130

[32] G. S. Kimeldorf and G. Wahba, “A correspondence between bayesian estimation on stochastic

processes and smoothing by splines,” The Annals of Mathematical Statistics, vol. 41, no. 2,

pp. 495–502, 1970.

[33] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of statistical learning. Springer

Series in Statistics New York, 2 ed., 2009.

[34] A. Nosedal-Sanchez, C. B. Storlie, T. C. Lee, and R. Christensen, “Reproducing kernel hilbert

spaces for penalized regression: A tutorial,” The American Statistician, vol. 66, no. 1, pp. 50–

60, 2012.

[35] M. Hein and O. Bousquet, “Kernels, associated structures and generalizations,” Max-Planck-

Institut fuer biologische Kybernetik, Technical Report, 2004.

[36] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity: the lasso and

generalizations. CRC press, 2015.

[37] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[38] B. Caputo, K. Sim, F. Furesjo, and A. Smola, “Appearance-based object recognition using

svms: which kernel should i use?,” in Proceedings of NIPS Workshop on Statistical Meth-

ods for Computational Experiments in Visual Processing and Computer Vision, Whistler,

vol. 2002, 2002.

[39] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R News, vol. 2,

no. 3, pp. 18–22, 2002.

[40] F. Chollet et al., “Keras.” https://keras.io, 2015.

[41] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. New York: Springer,

fourth ed., 2002.

[42] I. Gaynanova, J. G. Booth, and M. T. Wells, “Simultaneous sparse estimation of canonical

vectors in the p >> N setting,” Journal of the American Statistical Association, vol. 111,

pp. 696–706, 2016.

131

https://keras.io

[43] I.-C. Yeh, K.-J. Yang, and T.-M. Ting, “Knowledge discovery on rfm model using bernoulli

sequence,” Expert Systems with Applications, vol. 36, no. 3, pp. 5866–5871, 2009.

[44] D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang,

“Failure analysis of parameter-induced simulation crashes in climate models,” Geoscientific

Model Development, vol. 6, no. 4, pp. 1157–1171, 2013.

[45] I.-C. Yeh and C.-h. Lien, “The comparisons of data mining techniques for the predictive

accuracy of probability of default of credit card clients,” Expert Systems with Applications,

vol. 36, no. 2, pp. 2473–2480, 2009.

[46] I. Gaynanova, “Prediction and estimation consistency of sparse multi-class penalized optimal

scoring,” arXiv preprint arXiv:1809.04669, 2018.

[47] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical learning theory,” in

Advanced lectures on machine learning, pp. 169–207, Springer, 2004.

[48] I. Gaynanova and T. Wang, “Sparse quadratic classification rules via linear dimension reduc-

tion,” arXiv preprint arXiv:1711.04817, 2017.

[49] I. Steinwart and C. Scovel, “Fast rates for support vector machines using gaussian kernels,”

The Annals of Statistics, pp. 575–607, 2007.

[50] C. Zhang, Y. Liu, and Y. Wu, “On quantile regression in reproducing kernel hilbert spaces

with data sparsity constraint,” Journal of Machine Learning Research, vol. 17, no. 40, pp. 1–

45, 2016.

[51] C. Boutsidis and P. Drineas, “Random projections for the nonnegative least-squares problem,”

Linear algebra and its applications, vol. 431, no. 5-7, pp. 760–771, 2009.

[52] M. Pilanci and M. J. Wainwright, “Randomized sketches of convex programs with sharp

guarantees,” IEEE Transactions on Information Theory, vol. 61, no. 9, pp. 5096–5115, 2015.

132

[53] M. Pilanci and M. J. Wainwright, “Iterative hessian sketch: Fast and accurate solution approx-

imation for constrained least-squares,” The Journal of Machine Learning Research, vol. 17,

no. 1, pp. 1842–1879, 2016.

[54] S. S. Vempala, The random projection method, vol. 65. Providence, RI: American Mathe-

matical Society, 2005.

[55] M. W. Mahoney et al., “Randomized algorithms for matrices and data,” Foundations and

Trends R⃝ in Machine Learning, vol. 3, no. 2, pp. 123–224, 2011.

[56] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster least squares approxi-

mation,” Numerische mathematik, vol. 117, no. 2, pp. 219–249, 2011.

[57] S. Wang, A. Gittens, and M. W. Mahoney, “Sketched ridge regression: Optimization per-

spective, statistical perspective, and model averaging,” The Journal of Machine Learning

Research, vol. 18, no. 1, pp. 8039–8088, 2017.

[58] D. Homrighausen and D. J. McDonald, “Compressed and penalized linear regression,” Jour-

nal of Computational and Graphical Statistics, vol. 00, no. 0, pp. 1–14, 2019.

[59] S. Zhou, L. Wasserman, and J. D. Lafferty, “Compressed regression,” in Advances in Neural

Information Processing Systems, pp. 1713–1720, 2008.

[60] W.-H. Li, Z. Zhong, and W.-S. Zheng, “One-pass person re-identification by sketch online

discriminant analysis,” Pattern Recognition, vol. 93, pp. 237–250, 2019.

[61] B. Tu, Z. Zhang, S. Wang, and H. Qian, “Making fisher discriminant analysis scalable,” in

International Conference on Machine Learning, pp. 964–972, 2014.

[62] H. Ye, Y. Li, C. Chen, and Z. Zhang, “Fast fisher discriminant analysis with randomized

algorithms,” Pattern Recognition, vol. 72, pp. 82–92, 2017.

[63] T. Sarlos, “Improved approximation algorithms for large matrices via random projections,”

in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science

(FOCS), pp. 143–152, IEEE, 2006.

133

[64] G. McLachlan, Discriminant analysis and statistical pattern recognition, vol. 544. Hoboken,

NJ: John Wiley & Sons, 2004.

[65] J. Shao, Y. Wang, X. Deng, S. Wang, et al., “Sparse linear discriminant analysis by thresh-

olding for high dimensional data,” The Annals of Statistics, vol. 39, no. 2, pp. 1241–1265,

2011.

[66] P. J. Bickel, E. Levina, et al., “Some theory for fisher’s linear discriminant function,naive

bayes’, and some alternatives when there are many more variables than observations,”

Bernoulli, vol. 10, no. 6, pp. 989–1010, 2004.

[67] W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon, “Squashing flat files

flatter,” in Proceedings Of ACM SIGKDD, vol. 15, pp. 6–15, 1999.

[68] D. Madigan, N. Raghavan, W. Dumouchel, M. Nason, C. Posse, and G. Ridgeway,

“Likelihood-based data squashing: A modeling approach to instance construction,” Data

Mining and Knowledge Discovery, vol. 6, no. 2, pp. 173–190, 2002.

[69] D. Pavlov, D. Chudova, and P. Smyth, “Towards scalable support vector machines using

squashing,” in Proceedings of the sixth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, vol. 20, (Boston, MA), pp. 295–299, 2000.

[70] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[71] R. Bhatt and A. Dhall, “Skin segmentation dataset,” UCI Machine Learning Repository,

2010.

[72] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher discriminant analysis

with kernels,” in Neural networks for signal processing IX: Proceedings of the 1999 IEEE

signal processing society workshop, pp. 41–48, IEEE, 1999.

[73] D. Hsu, S. Kakade, T. Zhang, et al., “A tail inequality for quadratic forms of subgaussian

random vectors,” Electronic Communications in Probability, vol. 17, 2012.

134

[74] R. Vershynin, High-dimensional probability: An introduction with applications in data sci-

ence, vol. 47. Cambridge University Press, 2018.

135

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Problem Statement
	Review of Linear Discriminant Analysis
	Fisher Discriminant Analysis
	Linear Discriminant Analysis Using Discriminant Functions
	Equivalence of the Fisher Discriminant Analysis and Discriminant Function Decision Rules

	Optimal Scoring
	Equivalence of Linear Discriminant Analysis and Optimal Scoring

	Review of Reproducing Kernel Hilbert Spaces
	Constructing Reproducing Kernel Hilbert Spaces

	SparseKOS
	Introduction
	Related Work
	Notation

	Kernel Optimal Scoring
	Reproducing Kernel Hilbert Spaces
	Kernel Optimal Scoring
	Classification of a New Data Point

	Error Bounds for Kernel Optimal Scoring
	Sparse Kernel Optimal Scoring
	Optimization Algorithm
	Update of Weights

	Parameter Selection
	Gaussian Kernel Parameter Selection
	Ridge Parameter Selection
	Sparsity parameter selection

	Empirical studies
	Simulated model 1
	Simulated model 2
	Benchmark datasets

	Discussion
	Derivation of Projection Formula (2.4)
	Technical Proofs
	Proofs of Theorems 1 and 2
	Supplementary Theorems
	Proofs of Supplementary Theorems

	Supplementary Lemmas

	COMPRESSING LARGE SAMPLE DATA FOR DISCRIMINANT ANALYSIS
	Introduction
	Related Works
	Notation

	Compressed LDA
	Error bound of Compressed LDA
	Extensions
	Projected LDA
	Compressed QDA

	Simulation Studies
	ZIP Code Data
	MNIST Data
	Skin Segmentation Data

	Discussion
	Extension to Kernel Discriminant Analysis
	Compressed Kernel Matrices

	Discussion
	Proof of Miscalculation Error Rate
	Technical Proofs

	R PACKAGE FOR SPARSE KERNEL OPTIMAL SCORING AND COMPRESSED LINEAR DISCRIMINANT ANALYSIS
	Introduction
	Quick Start
	Quick LDA Example
	Quick QDA Example
	Quick Sparse Kernel Optimal Scoring Example

	Compressed Linear Discriminant Analysis
	Full LDA
	Compressed LDA
	Sub-Sampled LDA
	Projected LDA
	Fast Random Fisher Discriminant Analysis

	Compressed Quadratic Discriminant Analysis
	Full QDA
	Compressed QDA
	Sub-Sampled QDA

	Sparse Kernel Optimal Scoring
	Parameter Selection
	Hierarchical Parameters
	KOS

	CONCLUSIONS
	REFERENCES

