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 ABSTRACT 

 

Reservoirs play a significant role in water management, with functions related to 

water supply, hydropower generation, flood protection, and biodiversity conservation. To 

operate reservoirs efficiently for maximum benefit, it is essential to monitor their 

characteristics and states. Satellite remote sensing provides the unique advantage of 

observing reservoirs from space. In this dissertation, a series of algorithms was developed 

to generate high-resolution 3-D bathymetry maps and long-term storage records at a global 

scale, which can support a variety of applications such as global hydrological modeling 

and local water resources related studies. These algorithms and datasets are presented 

through the following three studies:  

(1) In the first study, an algorithm was developed to generate 3D reservoir 

bathymetries by combining elevations collected by the Ice, Cloud, and Land Elevation 

Satellite (ICESat-2) airborne prototype with area values from Landsat-based water 

classifications (from 1982 to 2017). Validations over four transects of Lake Mead show 

R2 values ranging from 0.82 to 0.99 and Root Mean Square Error (RMSE) values from 

1.18 m to 2.36 m. It is expected that the newly launched ICESat-2 should enable the 

derivation of bathymetries over an unprecedented number of reservoirs. 

(2) The bathymetry generation algorithm was then applied to satellite altimetry 

and imagery observations to generate a global dataset for 347 global reservoirs. This 

dataset represents a total volume of 3123 km3, accounting for 50% of the global reservoir 

capacity. Validations over 20 reservoirs indicate that the dataset has an overall good 
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accuracy. It suggests that this approach can also be applied to small reservoirs (with 

surface areas of a few square kilometers or less) and natural lakes.  

(3) In the last study, multi-source remote sensing data—in combination with an 

improved area-depth-storage database—were used to estimate the monthly storage 

variations for 7245 reservoirs globally from 1999 to 2018. Results show that there is an 

overall continuous increase of global reservoir total storage at a rate of 27.44 ± 0.96 

km3/yr, which is attributed to the construction of new dams. However, the reservoir 

normalized storage shows a significant decrease. It is found that reservoir storage 

variations are very sensitive to climate variability, especially for reservoirs in South 

America and Africa. 
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1. INTRODUCTION  

 

With the ongoing rapid population growth and socio-economic development, the 

demand for fresh water is continually increasing (Cook and Bakker 2012). It is reported 

that over 2 billion people are experiencing high water stress, and about 4 billion people 

are suffering severe water scarcity for more than one month each year (WWAP 2019). 

Future water security can be further exacerbated by prolonged droughts under a changing 

climate (Seckler et al. 1999; Zhao et al. 2018). Serving as a buffer against climate 

extremes, numerous reservoirs have been constructed to facilitate water supply, flood 

control, and hydropower generation (Cheng et al. 2008; Fu 2008; Grigg 1996; Lehner and 

Döll 2004; Li et al. 2010; Moy et al. 1986). Meanwhile, reservoirs constitute an essential 

component of global hydrological and carbon cycles (Falkowski et al. 2000; Mulholland 

and Elwood 1982), as well as climate regulation (Oki and Kanae 2006; Tranvik et al. 

2009). Given the fact that reservoir observations and characteristics are rarely shared at a 

large scale (Zhang et al. 2014), reservoir information inferred from satellite remote sensing 

is especially valuable. 

To operate reservoirs efficiently for maximum benefit, it is essential to monitor 

their characteristics and states. Bathymetry, which characterizes the underwater 

topography, provides information critical for all aspects of reservoir management 

(Lakewatch 2001). Through a bathymetric map, key parameters related to reservoir system 

functions (e.g., surface area, volume, maximum length and width, and shoreline length) 

can be calculated. More importantly, reservoir bathymetry is a required input for 
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hydrodynamic circulation and water quality models—which are used for supporting 

navigation, routing, dredging planning, and sedimentation analysis (Hell et al. 2012). At 

the global scale, spatially explicit knowledge of reservoir bathymetries (and their 

associated parameters) is crucial for the understanding and modeling of Earth system 

processes and their interactions with the environment (Messager et al. 2016; Yigzaw et al. 

2018). 

Water retained by global reservoirs have long term impacts on global and regional 

water cycles (Zhou et al. 2016). However, gauge observations for reservoir storages are 

still lacking, and are not always shared. Additionally, because reservoir operation rules 

are not publicly available, reservoirs have not been implemented in hydrological models 

in an operational manner at a large scale. A historical long-term record of reservoir storage 

can not only improve our understanding about the roles of reservoirs in altering the 

hydrological cycle, but can also help calibrate and validate reservoir operation rules 

incorporated into models. Since the early 1990s, satellite radar altimeters have been 

utilized to measure the water levels of large lakes and reservoirs (Birkett 1994). Recently, 

more studies have focused on generating consistent satellite-based reservoir storage 

estimations using elevation and area data collected from multiple sensors (Busker et al. 

2019; Crétaux et al. 2011; Gao et al. 2012; Zhang and Gao 2016). Although Gao et al. 

(2012) generated a 19-year reservoir storage dataset representing 15% of the total global 

capacity and Busker et al. (2019) evaluated the storage variation for 137 lakes from 1984 

to 2015, long-term storage records for more reservoirs are critically needed for water 

management applications across scales. 
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In summary, it is essential to acquire high-resolution 3-D reservoir bathymetry 

information and long-term storage records at a global scale for supporting various 

applications—especially with ongoing climate change and the escalating water crisis. 

Therefore, the overarching objective of this dissertation is to develop novel algorithms to 

leverage existing satellite data for breaking the key barriers with regard to generating 

reservoir bathymetry information and estimating reservoir storage variations. To achieve 

this goal, three scientific questions will be answered specifically: 

(1) Can we derive 3-D reservoir bathymetry by combining satellite imagery and 

altimetry data? 

(2) How can we generate high-resolution 3-D reservoir bathymetry at a global 

scale with observations collected from existing satellite data? 

(3) With the ongoing climate change and the escalating water crisis, what are the 

long-term variations of reservoir storage at river basin, continental, and global scales? 

In order to answer the above questions, the structure of this dissertation progresses 

from the development of an algorithm to generate 3-D reservoir bathymetry by combining 

satellite altimetry and imagery data (Chapter 2), to extending this method to the global 

scale to develop the first consistent high-resolution 3-D reservoir bathymetry dataset 

(Chapter 3), and then to leveraging long-term satellite observations to estimate storage 

variations for global reservoirs (Chapter 4).   

In Chapter 2, a novel algorithm was developed and tested using the ICESat-2 

airborne prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), with 

Landsat-based water classifications (from 1982 to 2017).  MABEL photon elevations were 
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paired with Landsat water occurrence percentiles to establish the Area-Elevation (A-E) 

relationship, which in turn was applied to the percentile image to obtain partial bathymetry 

over the historic dynamic range of reservoir area. The bathymetry for the central area was 

projected to achieve the full bathymetry. The bathymetry image was then embedded onto 

the Digital Elevation Model (DEM) to replace the constant values for waters. Results were 

validated over Lake Mead against survey data. Validations over four transects show 

Coefficient of Determination (R2) values from 0.82 to 0.99 and Root Mean Square Error 

(RMSE) values from 1.18 m to 2.36 m. In addition, the A-E and Elevation-Volume (E-V) 

curves have RMSEs of 1.56 m and 0.08 km3, respectively. Over the entire dynamic 

reservoir area, the derived bathymetry agrees very well with independent survey data, 

except for the highest and lowest percentile bands. With abundant overpassing tracks and 

high spatial resolution, the newly launched ICESat-2 should enable the derivation of 

bathymetry over an unprecedented number of reservoirs. 

In Chapter 3, a 30 m resolution bathymetry dataset was generated for 347 global 

reservoirs, representing a total volume of 3123 km3 (50% of the global reservoir capacity). 

First, A-E relationships for the identified reservoirs were derived by combining altimetry 

data from multiple satellites with Landsat imagery data. Next, the resulting A-E 

relationships were applied to the Surface Water Occurrence (SWO) data from the 

European Commission Joint Research Centre (JRC) Global Surface Water (GSW) dataset 

to obtain bathymetry values for the dynamic areas of the reservoirs. Lastly, an 

extrapolation method was adopted to help achieve the full bathymetry dataset. The 

remotely sensed bathymetry results were primarily validated against the following: (1) 
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They were validated against A-E and E-V relationships derived from the in situ elevations 

and volumes for 16 reservoirs, with root-mean-square error (RMSE) values of elevation 

from 0.06 m to 1.99 m, and normalized RMSE values of storage from 0.56% to 4.40%. 

(2) They were also validated against survey bathymetric maps for four reservoirs, with R2 

values from 0.82 to 0.99 and RMSE values from 0.13 m to 2.31 m. The projected portions 

have relatively large errors and uncertainties (compared to the remotely sensed portions) 

because the extrapolated elevations cannot fully capture the underwater topography. 

Overall, this approach performs better for reservoirs with a large dynamic area fractions. 

It can also be applied to small reservoirs (e.g., reservoirs with surface areas of a few square 

kilometers or less), where ICESat observations are available, and to large natural lakes. 

With the contribution of ICESat-2, this dataset has the potential to be expanded to 

thousands of reservoirs and lakes in the future. 

In Chapter 4, long-term Landsat observations were used to estimate the monthly 

storage variations for 7245 global reservoirs from 1999 to 2018. For each reservoir, the 

A-V relationship was either derived from the 3-D bathymetry using a remote sensing 

method or estimated through an improved simulation method. Validation over 277 

reservoirs indicates that the storage estimates have an overall good agreement with in situ 

observations, with the bathymetry based method performing better than the simulation 

method. Next, storage variations were evaluated across the global, continental, and river 

basin scales. Results show an overall continuous increase in global reservoir total storage 

at a rate of 27.44 ± 0.96 km3/yr, which is primarily attributed to the construction of new 

dams. This storage growth is primarily because of Asia (20.53 ± 0.73 km3/yr), which 
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accounts for about 75% of the global increase. Meanwhile, the reservoir normalized 

storage—which is defined as the ratio of the actual storage to the storage capacity—was 

used to evaluate the relative storage variations.  A significant decrease of the normalized 

storage suggests that global reservoirs are experiencing water shortages. Moreover, the 

response of global reservoirs to climate variability—using the El Niño-Southern 

Oscillation (ENSO) as an indicator—was evaluated across spatial scales. Results suggest 

that reservoir storage is negatively correlated to ENSO, which explains the decrease of 

reservoir normalized storages in South America and Africa. Lastly, the storage variations 

were evaluated in terms of reservoir functions. Results show that reservoirs with a 

hydropower purpose have a relatively high normalized storage, and are more sensitive to 

ENSO. The normalized storages of water supply reservoirs have declined considerably, 

correlating with the increasing water stress seen under growing municipal water demand. 
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2. DERIVING HIGH-RESOLUTION RESERVOIR BATHYMETRY FROM ICESAT-

2 PROTOTYPE PHOTON-COUNTING LIDAR AND LANDSAT IMAGERY* 

 

2.1. Introduction 

Knowledge of bathymetry (i.e. underwater topography) is critical for the 

understanding and accurate modeling of many lake, reservoir and river processes 

including surface water and energy exchanges, circulation, stream discharge, and 

biogeochemical cycles (Heathcote et al. 2015; Mishra et al. 2010; Mohammed and 

Tarboton 2011). Lake bathymetries and their associated storage levels can significantly 

influence local and regional weather (Dutra et al. 2010; Rouse et al. 2005; Samuelsson et 

al. 2010), despite lakes and reservoirs covering only 2.4% of all continents (Lehner and 

Döll 2004). Although lake and reservoir models have been coupled to weather models 

(such as the European Centre for Medium-Range Weather Forecasts’ Integrated 

Forecasting System), to incorporate heat storage effects (Balsamo et al. 2012) lake and 

reservoir depth and surface area are treated as static due to the lack of bathymetry 

information. Considering the large variations of lake and reservoir extent (and therefore 

depth) (Pekel et al. 2016), a more dynamic representation of lakes and reservoirs is 

required in weather forecast models. Furthermore, water retained by reservoirs has long 

term impacts on the hydrological systems over most large river basins (Chao et al. 2008; 

 

*Reprinted from IEEE Transactions on Geoscience and Remote Sensing, Volume 57, Yao Li, Huilin. Gao, 

Michael F. Jasinski, Shuai. Zhang, and Jeremy D. Stoll, “Deriving HighResolution Reservoir Bathymetry 

from ICESat-2 Prototype Photon-counting Lidar and Landsat Imagery”, Pages 7883-7893, Copyright 

(2019), with permission from IEEE 
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Lehner et al. 2011a; Lettenmaier and Milly 2009; Nilsson et al. 2005). Although reservoirs 

have been explicitly represented in an increasing number of large scale hydrological 

models and Earth System Models (Döll et al. 2009; Haddeland et al. 2006; Hanasaki et al. 

2006; Voisin et al. 2017; Zhou et al. 2016), the bathymetry in these models has virtually 

always been oversimplified. For instance, Hanasaki et al. (2006) simulated reservoir 

release amount while assuming a constant surface area. This directly inhibits the ability of 

simulating daily streamflow in a manner suitable for global flood forecasting (Zajac et al. 

2017). Within individual reservoirs, bathymetry is a required input for hydrodynamic 

circulation and water quality models—which are used for supporting navigation, routing, 

dredging planning, and sedimentation analysis (Hell et al. 2012). 

Despite its importance, spatially explicit knowledge of reservoir bathymetry (and 

the associated parameters) is crucially lacking at a global scale (Messager et al. 2016). 

Bathymetry is typically mapped through surveys with echo-sounding equipment, airborne 

lidar, and optical imaging sensors (Gao 2009). The echo-sounding method is highly 

accurate but inefficient and expensive (Odhiambo and Boss 2004). Airborne lidar using 

high energy sensors can penetrate through relatively deep waters (up to tens of meters 

depending on the water clarity) with high accuracy (Hilldale and Raff 2008), but it is 

relatively expensive for rivers and limited by swath width (Gao 2009), preventing its 

application at larger scales. Over the Alaska North Slope, Saylam et al. (2017) used 

airborne lidar to map the bathymetry of thousands of small shallow lakes. While more 

cost-effective for lakes and reservoirs, optical sensing is limited by water depth and optical 

properties (Wang and Philpot 2007). It further requires simultaneous in situ observations, 
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whose spatial distributions and reliability affect bathymetric accuracy. More recently, 

some global datasets have emerged that use alternative approaches to infer lake and 

reservoir geometry information, but they are insufficient for providing high-resolution 3-

D bathymetry data that are locally practical. For instance, lake bathymetry information 

derived from the ETOPO1 Global Relief Model (Amante 2009) has been used in climate 

modeling (Kourzeneva et al. 2012), but it is only applicable to large lakes and reservoirs 

(e.g., the Great Lakes) due to its coarse resolution (1 arc-minute). Yigzaw et al. (2018) 

developed a global storage-area-depth dataset that used an optimal geometric shape for 

each reservoir—but this dataset does not provide the 3-D bathymetry information. Tseng 

et al. (2016) projected the underwater slope using the Digital Elevation Model (DEM) data 

above the water surface and combined this approximated bathymetry with Landsat area to 

estimate water elevation variations at the Hoover Dam. Although the resultant water 

surface height was verified by in situ data, the accuracy of their projected bathymetry was 

not directly evaluated. Both HydroLAKES (Messager et al. 2016) and the Global 

Reservoir and Dam database (GRanD) (Lehner et al. 2011a) only provide the mean depth 

of reservoirs—which is inadequate to generate storage-area-depth relationships. Indeed, 

the bathymetry problem is essentially an elevation measurement problem. The fast growth 

of space-borne radar altimetry has potential use for deriving reservoir bathymetry, though 

current studies are mainly focused on the derivation of area-volume-elevation 

relationships (Crétaux et al. 2016; Crétaux et al. 2011; Zhang et al. 2017a). More recently, 

Getirana et al. (2018) combined the time series radar altimetry and Landsat data to derive 

the 3-D bathymetry of the lower portion of Lake Mead. This method is potentially 
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applicable only to large bodies where elevation observations from radar altimeters are 

available (Gao 2015).   

Thus, the objective of this study is to explore the potential of generating high-

resolution reservoir bathymetry at a global scale using the data collected by the photon-

counting lidar onboard the new Ice, Cloud, and Land Elevation Satellite (ICESat-2). As 

the first satellite laser ranging altimeter, ICESat collected elevation data with an 

approximately 70 m footprint and 170 m along-track spacing, which has been widely used 

for measuring lake and reservoir levels (Phan et al. 2012; Zhang et al. 2011) and 

calculating the Area-Elevation (A-E) relationship (Zhang et al. 2014). ICESat-2 decreases 

the footprint and along-track spacing to 14 m and 0.7 m, respectively, thereby improving 

its capability to obtain high-quality bathymetric information. Recent analysis of airborne 

Multiple Altimeter Beam Experimental Lidar (MABEL) observations over several inland 

water bodies indicates that ICESat-2 can penetrate the water to more than 10 meters, 

depending on water quality (Jasinski et al. 2016). In this study, a novel algorithm is 

developed to derive bathymetry by combining one transect of MABEL airborne elevation 

data with historic series Landsat image classifications. As the prototype of ATLAS on 

ICESat-2, MABEL can retrieve surface elevation values with a mean precision of 

approximately 5–7 cm (Jasinski et al. 2016). By relating the MABEL data to the water 

occurrence percentile images from Landsat, the 3-D bathymetry can be derived. With the 

launch of ICESat-2 in September 2018, this algorithm holds great promise for generating 

bathymetry for global reservoirs with areas as small as several square kilometers. 
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2.2. Data and Methods 

2.2.1. Data 

The generation of the bathymetry results in this study relied on information from 

two data sources: Landsat and MABEL. From 1982 to 2017, Landsat Thematic Mapper 

(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) 

images (at a spatial resolution of 30 m) were obtained from the United States Geological 

Survey (USGS) (https://earthexplorer.usgs.gov/). A total of 410 high-quality images, 

completely free of cloud contamination, were collected over the Lake Mead area (Table 

2.1). 

Table 2.1 Specification of Landsat images used to generate the water occurrence 

percentile image 

Satellite Sensor Band Period Number 

Landsat-4 TM NIR (760 nm – 900 nm) 1982–1992 6 

Landsat-5 TM NIR (760 nm – 900 nm) 1984–2011 293 

Landsat-7 ETM NIR (770 nm – 900 nm) 1999–2003 63 

Landsat-8 OLI NIR (851 nm – 879 nm) 2013–2017 48 

 

MABEL elevation data were collected over Lake Mead on February 24, 2012, with 

reported clear sky conditions and a relatively low water turbidity of 1.6 NTU (Jasinski et 

al. 2016). The flight overpassed the western part of Lake Mead in a southwest to northeast 

direction (Figure 2.1a). MABEL collected data over a ~2 m footprint along its track using 

the same 532-nm photon-counting lidar as ATLAS. Figure 2.1b shows the profile of the 

MABEL track, with the red dots indicating the samples used (in this study) to establish 

the A-E relationship. The information from the captured photons was then processed to 

generate an elevation dataset with an average segment length of 50 m. Because the original 

MABEL data were referenced to the WGS84 ellipsoid datum, they were converted to the 

https://earthexplorer.usgs.gov/
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EGM96 geoid so that the final bathymetry could be merged with the Shuttle Radar 

Topography Mission (SRTM) DEM data properly. Given a specific location, the EGM96 

geoid height (N) can be calculated using the latitude and longitude information via the 

online tool provided by the National Geospatial-Intelligence Agency Office of Geomatics 

(http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/intpt.html). Then, the 

orthometric height with respect to the EGM96 geoid (H) (at the given location) can be 

calculated as the difference between the WGS84 ellipsoid height h (i.e., MABEL reported 

elevation) and the EGM96 geoid height (N). 

The SRTM 1 arc-second (~30 meters) elevation data were obtained from the USGS 

EarthExplorer website (https://earthexplorer.usgs.gov/). As the first near-global high-

resolution DEM (from 56◦ S to 60◦ N), the SRTM dataset has been widely used in various 

research fields (including geology, geomorphology, glaciology, and hydrology) (Bailey et 

al. 2007; Wright et al. 2006; Yang et al. 2011). However, because the radar signal cannot 

penetrate through water—and because the SRTM data were only collected once—

reservoir bathymetry information below the water level at the SRTM acquisition time 

cannot be accessed. More recently, Yamazaki et al. (2017) developed a high-accuracy 

global DEM database with 3 arc-second (~90 meters) resolution. Still, this dataset cannot 

provide elevation information below the water surface. 

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/intpt.html
https://earthexplorer.usgs.gov/
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Figure 2.1 (a) Location map and (b) elevation profile of the MABEL samples.  The points 

in (b) represent the samples collected by MABEL. Those in red are the samples used in 

this study to establish the Area-Elevation (A-E) relationship. 

 

The Lake Mead lidar survey data collected by the United States Bureau of 

Reclamation (USBR) in 2009 were used to validate the part of the bathymetry product 

which was generated using MABEL data. This dataset provides detailed elevation contour 

values for the emergent shoreline areas of Lake Mead, and it covers an area of 445.48 km2 

with elevation values ranging from 334.06 m (1096 feet) to 374.90 m (1230 feet) at a 0.61 

m interval (2 feet). For validation purposes, the lidar contours were converted to elevation 

point values and then resampled to the bathymetry values at a resolution of 30 m using the 

Inverse Distance Weighted (IDW) interpolation method to match the resolution of the 

resultant bathymetry. In addition, the contour data—with an elevation interval of 10 m, 

collected by the 2001 sedimentation survey—were used to validate the projected portion 

of the bathymetry. 

2.2.2. Methods 

This reservoir bathymetry generation algorithm contains three main steps (Figure 

2.2). First, a water occurrence percentile image was generated for Lake Mead using 

Landsat image classifications over the lake’s historic dynamic elevation variation range. 
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The occurrence percentile essentially provides the bathymetry contours over the reservoir 

dynamic area. Second, MABEL elevation data were paired up with the water occurrence 

percentile image to establish the A-E relationship, which was then used to identify and 

assign elevation values to the contours. Third, the A-E relationship was applied to the 

percentile image to obtain the bathymetry for the dynamic reservoir area—which was then 

used to project the bathymetry for the central area. The full bathymetry was then embedded 

onto the SRTM data to replace the constant DEM value. 

 

Figure 2.2 Flowchart of the bathymetry generation algorithm. It consists of three parts 

(separated by the blue boxes): (1) The water occurrence percentile image was generated 

from the Landsat classifications, which essentially provided the bathymetry contours; (2) 

The Area-Elevation (A-E) relationship was established by combining the area from the 

occurrence percentile image with MABEL elevation values. This was then used to identify 

and assign elevation values to the contours; (3) The A-E relationship was applied to the 

percentile image to obtain the bathymetry for the dynamic lake area, which was used to 

project the bathymetry for the central area to obtain the full lake bathymetry. Then, the 

full bathymetry was overlapped with the SRTM DEM data to replace the constant value. 
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2.2.2.1. Water occurrence percentile 

The water occurrence percentile image shows the frequency at which each pixel is 

classified as water, which can be calculated as the ratio of the time classified as water vs. 

the total observation time. The percentile image can characterize the elevation gradients 

and act as the base map of the bathymetry (Zhao and Gao 2018).  

To obtain the water occurrence percentile image, the water classifications were 

first conducted by applying the Iterative Self-Organizing Data Analysis Techniques 

Algorithm (ISODATA) (Melesse and Jordan 2002; Ren et al. 2008) to the 410 Landsat 

Near-infrared (NIR) images collected over Lake Mead from 1982 to 2017. NIR was 

selected because it is strongly absorbed by water but barely absorbed by terrestrial 

vegetation and dry soil (McFeeters 1996). Compared to the methods that involve using 

water indexes—such as the Normalized Difference Water Index (NDWI) (McFeeters 

1996)—the unsupervised ISODATA technique has the advantage of producing consistent 

water classifications without having to choose a threshold based on water body and season 

(Li and Sheng 2012; Zhang et al. 2017b). To reduce the computation cost and enhance the 

classification accuracy, a mask was constructed by buffering 10 km of the Lake Mead 

shapefile. The classification process was performed within the masked area of each image. 

However, some of the Landsat images were also contaminated by mountain shadows. 

Lake Mead is partly surrounded by mountain ranges, such as the River Mountains and the 

Muddy Mountains (the portion within the Boulder Basin). Due to the effect of satellite 

incident angle, mountain shadows may appear in some images—and these images are very 

likely to be misclassified as water bodies. To correct this, any water pixel in the water 
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classification image which has an elevation value greater than 400 m was reclassified as 

land. A water occurrence percentile image was then created for Lake Mead. To reduce the 

impacts of random errors, pixels with occurrence values less than 1% were removed from 

the percentile image. 

2.2.2.2. Area-Elevation (A-E) relationship 

The A-E relationship is an essential element of the bathymetry retrieval algorithm. 

A-E relationships vary with water body and have been used as the key function for 

calculating storage values from either surface area values or elevation values (Crétaux et 

al. 2016; Gao et al. 2012; Zhang et al. 2017a). To derive the A-E relationship for Lake 

Mead, MABEL elevation points were projected onto the occurrence percentile image, with 

each point corresponding to a specific percentile value—each of which could be regarded 

as a contour. The corresponding water area within that specific contour was then 

calculated. As shown in Jasinski et al. (2016), MABEL photons penetrated the water body 

to about 9.2 m of depth. These elevation measurements (below the water surface) were 

also paired up with the occurrence percentile image, which allowed for four more samples 

for deriving the A-E relationship (Figure 2.1b). Figure 2.3 suggests that the resulting Lake 

Mead A-E relationship is very robust (with an R2 value of 0.98). 
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Figure 2.3 (a) The locations of the MABEL samples and (b) the Area-Elevation (A-E) 

relationship of Lake Mead. 

 

2.2.2.3. Bathymetry generation and SRTM DEM update  

The elevation at each percentile contour was determined by applying the A-E 

relationship to the area enclosed by that contour. Because the water occurrence percentile 

image is based on 35 years of Landsat classifications, this procedure led to a full dynamic 

range of bathymetry values. For the central reservoir area, the Tseng et al. (2016) 

algorithm was adopted to project the part of bathymetry not accessible by MABEL and 

Landsat. In Tseng et al. (2016), an algorithm was developed to extend the part of Lake 

Mead bathymetry not measured by SRTM DEM using the elevation information of the 

surrounding land area. They projected the bathymetry with an elevation range from 320 

m to 372 m. In this study, we applied the Tseng et al. (2016) algorithm to extrapolate our 

remotely sensed partial bathymetry (from MABEL and Landsat) into a bathymetry 

containing the central reservoir area. We modified the Tseng et al. (2016) algorithm by 

utilizing the storage capacity information to determine the reservoir bottom level. The 

cumulative storage associated with the nth contour from the bathymetry was estimated 

using equation (2.1): 
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𝑉𝑛  =  𝑉𝑐 −  ∑
(ℎ𝑖+1 −  ℎ𝑖)(𝐴𝑖+1 +  𝐴𝑖)

2

𝑛

𝑖=1

                                    (2.1) 

where 𝑉𝑐 represents the storage at capacity and n is the number of contours below the 

capacity elevation (ℎ𝑐 ). 𝑉𝑐 and ℎ𝑐 were obtained from surveying data provided by the 

USBR, and the area at capacity (𝐴𝑐) was obtained by applying ℎ𝑐 to the A-E relationship. 

𝐴𝑖 is the entire water surface area enclosed by the ith contour, which corresponds to the 

elevation ℎ𝑖. Thus, the storage value corresponding to each contour was obtained. At the 

end of each projection step, we calculated the cumulative storage from all contours. When 

the cumulative storage reached the reservoir capacity, the projection of bathymetry was 

terminated.  

By combining the remotely sensed and projected bathymetry, the full bathymetry 

was obtained. This was then embedded onto the SRTM DEM dataset to replace the 

constant value. We calculated the elevation value associated with the reservoir area that 

corresponded to the constant DEM value using the MABEL-based A-E relationship.  Then 

the elevation difference between this elevation value and the constant DEM value was 

used to correct the bathymetry data. It is worth noting that our bathymetry data has a higher 

accuracy than the DEM data, and the purpose of the correction is simply to keep the DEM 

data consistent.     

2.2.2.4. Validation scheme  

This study used the USBR lidar survey and sedimentation survey datasets to 

validate the bathymetry product. The lidar survey—which is of high resolution and quality 

but only available along the coast—was adopted for evaluating the part of bathymetry 
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directly derived from remotely sensed data. First, four transects from the north, south, 

west, and east regions were selected across the shorelines of Lake Mead. The elevations 

of these transects from this study were compared with their counterparts from lidar. To 

further evaluate the performance of the remotely sensed bathymetry over the entire 

reservoir, we divided the percentile image into ten bands (at a 10% increment) and 

compared the elevation statistics within each band (i.e., we compared the mean and 

standard deviation). This can better scrutinize which parts (higher or lower elevation 

zones) tend to have larger/smaller errors (e.g., standard deviations, overestimations vs. 

underestimations). It should be noted that the evaluated variable is the elevation, not the 

percentile. In addition, indirect validations were conducted over the full bathymetry by 

comparing our results for the A-E and Elevation-Volume (E-V) relationships with their 

counterparts from the lidar and sedimentation survey datasets. The A-E and E-V 

relationships based on lidar and sedimentation data were provided by the United States 

Bureau of Reclamation (USBR 2008, 2011). Equation (2.1) is used to calculate the storage 

from the bathymetry data, from which the E-V relationship can be derived. 

The sedimentation data were primarily used for evaluating the projected part of the 

bathymetry. Because the contour data provided by the USBR (with an elevation interval 

of 10 m) are not continuous, it is difficult to directly use this dataset to validate the 

bathymetry values. Thus, we first visually compared the contours generated from the 

projected bathymetry with the survey contours. Although the bathymetry contours from 

the sedimentation survey are fragmental, USBR did provide a look-up table detailing the 

A-E and E-V relationships (USBR 2008, 2011). Thus, we compared these reported 
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relationships with those from this study to quantify the overall performance of the 

projected bathymetry. 

2.3. Results 

2.3.1. Bathymetry results 

For the remotely sensed bathymetry values, the elevation range is from 330.62 m 

to 369.65 m, which corresponds to a water surface area from 313.20 km2 (inner zone) to 

601.05 km2 (outer zone), representing 58% of the reservoir capacity. When the SRTM 

DEM data were collected in February 2000, the reservoir area was about 587.50 km2 with 

a constant elevation value (372 m), which means that no bathymetry information was 

acquired below the water surface. In comparison, our remotely sensed results can provide 

additional reservoir bathymetry information associated with an additional 274.30 km2 

(47%) of reservoir area. 

The remotely sensed bathymetry (for the entire reservoir area, with three sub-

regions zoomed in upon) is shown in Figure 2.4. Overall, the bathymetry has evident 

gradients, which are in agreement with the surrounding terrain of Lake Mead. For the 

western region (Figure 2.4b), the bathymetry has steep elevation gradients across the 

shorelines, and the shapes of islands within this area are clearly captured. For the northern 

region (Figure 2.4c), the gradients are gradual, indicating that this part of the reservoir is 

relatively flat as compared to the western part. As shown in Figure 2.4d, the topography 

near the Colorado River has been clearly captured.  
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Figure 2.4 The remotely sensed bathymetry of Lake Mead: (a) Overall bathymetry; (b-d) 

close up views of three sub-regions: (b) the west, (c) the north, (d) the east. The transects 

labeled 1 to 4 consist of points which are used for validation purposes. 

 

Based on the Tseng et al. (2016) method, we projected the bathymetry for the 

central area, which ranges from 263.00 m to 330.62 m. The lowest elevation value (263.00 

m) was determined by using the storage information calculated after equation (2.1). We 
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calculated the storage for each contour layer (from outer to inner) and accumulated them. 

When the elevation is at 263.00 m, the accumulated storage reached the capacity value 

and we thus ended the projection. Figure 2.5a shows the full bathymetry of Lake Mead, 

including the remotely sensed part (330.62 m - 369.65 m) and the projected part (263.00 

m - 330.62 m). Although the performance of the projected bathymetry varies with region, 

it has an overall good pattern. Close up views of two regions were selected to show the 

details. In the subset area shown in Figure 2.5b, the contours based on the projected 

bathymetry agree well with those from the sedimentation survey data. However, in the 

sub-domain depicted by Figure 2.5c, the projected results largely missed those from the 

survey—which was caused by the assumption made in Tseng et al. (2016) that the slope 

remains constant. The resultant full bathymetry was then embedded onto the SRTM DEM 

data. The comparison between the bathymetry and SRTM DEM is shown in Figure 2.6. It 

is evident that the elevation of Lake Mead from DEM is constant (372 m) over the entire 

reservoir. In order to be accurate, we first applied the reservoir area from the DEM (587.50 

km2) to the MABEL-based A-E relationship to estimate its corresponding elevation 

(367.82 m). A systematic bias of 4.18 m was found between this elevation value and that 

according to the SRTM DEM. A bias correction of 4.18 m was then applied to the 

bathymetry such it can be seamlessly combined with the DEM. Thus, the part of the DEM 

with a constant value of 372 m was replaced by the part of the bathymetry results 

representing 372 m and below (after the systematic bias correction). Moreover, contour 

maps with different horizontal intervals (e.g., 5 m, 10 m, and 20 m) were drawn from the 
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bathymetry, which can help to delineate the profile. An example of the contour map at a 

20 m interval is shown in Figure 2.6. 

 
Figure 2.5 (a) Full bathymetry of Lake Mead, including the remotely sensed bathymetry 

(330.62 m - 369.65 m) and the projected bathymetry (263.00 m - 330.62 m). Close up 

views of two regions with (b) satisfactory and (c) unsatisfactory performances are selected 

to show the details. Note that the contour data from both sources have an elevation interval 

of 10 m. The contour data are not shown in (a) because they are relatively dense and would 

not be useful to the reader. 
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Figure 2.6 (a) Full bathymetry and (b) SRTM DEM data over Lake Mead. The contour 

map (with a 20 m interval) is derived from the bathymetry information, and the DEM 

elevation is constant (372 m) over the entire lake. 

 

2.3.2. Validation of the bathymetry 

The remotely sensed bathymetry product was validated using survey lidar data by 

comparing elevation values over selected transects and over the entire reservoir (by 

percentile band). Moreover, the full bathymetry was indirectly validated by comparing the 

A-E and E-V curves from this study with those derived from the sedimentation survey. 

First, for the remotely sensed bathymetry, the elevations at four representative 

transects (whose locations are shown in Figure 2.4a) were evaluated. The elevation 
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profiles and scatter plots for these four transects using the data from this study (and the 

lidar data) are shown in Figure 2.7 and Figure 2.8, respectively. The estimated elevations 

show a good correlation with those from the lidar survey, with R2 values of 0.99, 0.99, 

0.98, and 0.82 for Transects 1 to 4, respectively. The corresponding Root Mean Square 

Error (RMSE) values are 2.36 m, 1.18 m, 2.35 m, and 1.54 m. The statistical results of 

these four transects are shown in Table 2.2. In addition, the Colorado River bottom can be 

clearly observed from the east transect profile (Figure 2.7d). In contrast, the river bottom 

according to the lidar measurements appeared to be flat. The three outliers appearing in 

Figure 2.8d are due to the disagreement over the Colorado bottom, which leads to the 

relatively low R2 for this transect. Overall, the results indicate that the bathymetry product 

has relatively high accuracy. 

Table 2.2 Statistical results of MABEL and lidar elevations for the validation transects 

ID 
Elevation 

data 

Max 

(m) 

Min 

(m) 

Mean 

(m) 

SD 

(m) 
N R2 

RMSE 

(m) 
P-value 

1 
MABEL 366.73 334.95 349.17 9.71 

20 0.99 2.36 4.62×10-19 
lidar 368.81 334.67 351.02 10.77 

2 
MABEL 368.86 337.24 342.23 8.46 

76 0.99 1.18 7.49×10-72 
lidar 368.24 335.89 341.96 9.05 

3 
MABEL 368.60 336.31 351.30 8.75 

49 0.98 2.35 2.95×10-42 
lidar 369.42 334.67 353.17 9.48 

4 
MABEL 367.75 348.40 358.27 2.80 

87 0.82 1.54 6.82×10-33 
lidar 368.24 345.79 358.03 3.48 
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Figure 2.7 Elevation profiles for the four validation transects: (a) Transect 1 as shown in 

Figure 2.4, in the west part of Lake Mead, from southwest to northeast, (b) Transect 2 as 

shown in Figure 2.4, in the north part of Lake Mead, from west to east, (c) Transect 3 as 

shown in Figure 2.4, in the south part of Lake Mead, from south to north, and (d) Transect 

4 as shown in Figure 2.4, in the east part of Lake Mead, from west to east. 
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Figure 2.8 Scatter plots of the four validation transects: (a) Transect 1 as shown in Figure 

2.4, in the west part of Lake Mead, from southwest to northeast, (b) Transect 2 as shown 

in Figure 2.4, in the north part of Lake Mead, from west to east, (c) Transect 3 as shown 

in Figure 2.4, in the south part of Lake Mead, from south to north, and (d) Transect 4 as 

shown in Figure 2.4, in the east part of Lake Mead, from west to east. 

 

Figure 2.9 compares the statistical results of the elevations from the bathymetry 

obtained from this study with that obtained from the lidar survey within each percentile 

band (at a 10% interval).  Although there is a clear overestimation in the 1-30% range and 

an underestimation in the 80-100% range, the derived bathymetry overall agrees very well 

with the lidar survey data. The survey data show a larger variation within each band, which 
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can be attributed to both the higher resolution and the measurement error of the raw data. 

However, it is unclear why the survey elevations in the 90-100% band are higher than 

those in the 80-90% band. 

 
Figure 2.9 Comparisons of the statistical results of the elevations within each percentile 

band (at a 10% interval) over the entire lake area. For the 1-30% range, the mean elevation 

is overestimated by MABEL, whereas it is underestimated for the 80-100% range. 

 

In addition, we also quantified the uncertainties of the remotely sensed bathymetry. 

Since the penetration depth of MABEL elevation measurements depends on the water 

conditions, we changed the number of underwater pairs used in the A-E relationship and 

calculated the uncertainties of the retrieved elevations. The resultant uncertainties are from 

-1.39 m (when the penetration depth was 9.2 m) to 1.30 m (when the penetration depth 

was 0 m), showing that our results are reliable.       

Second, the A-E relationship—the critical factor affecting the reliability and 

accuracy of the bathymetry data—was examined to indirectly validate the product. 

Although the MABEL based A-E relationship appears to be more linear than the one from 

lidar, it has shown good overall consistency with the latter (with an R2 of 0.99 and an 

RMSE of 1.56 m) (Figure 2.10a). With regard to the A-E relationship from the projected 
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bathymetry, although it has a good correlation with the A-E relationship from the 

sedimentation survey data (R2 = 0.99), the vertical bias is relatively large (RMSE = 4.78 

m). The survey reservoir storage values at each contour elevation were also utilized in the 

validation. Based on the elevation values and their corresponding areas from the 

bathymetry, the storage values can be calculated using equation (2.1). Figure 2.10b shows 

the E-V curves derived from the bathymetry and the survey lidar and sedimentation data. 

By comparing the E-V relationships between remotely sensed bathymetry and lidar survey 

data (with an R2 of 1.00 and an RMSE of 0.08 km3), it is evident that they are in very good 

agreement. Whereas for the comparison of the E-V relationships between the projected 

bathymetry and the sedimentation survey data, they have a good consistency (R2 = 1.00) 

but a large vertical mismatch (RMSE = 1.05 km3). 

 
Figure 2.10 Comparison of (a) the Area-Elevation (A-E) relationship and (b) the 

Elevation-Volume (E-V) relationship for Lake Mead. The MABEL based A-E and E-V 

relationships were compared with those from the lidar survey (with statistical values 

labeled in black), and the A-E and E-V relationships derived from projected bathymetry 

were compared with those from the sedimentation survey (with statistical values labeled 

in red). 
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2.4. Discussion and Conclusions 

Although ICESat-2 is a follow-on mission to ICESat, it differs from its predecessor 

in its reliance only on the 532 nm wavelength and photon-counting detector technology.  

These two features allow for both light penetration into the subsurface, and the high spatial 

resolution required for bathymetric sampling.  The analysis of MABEL data in the current 

Lake Mead test case is thus not only representative of ICESat-2, but any future satellite 

lidar possessing a 532 nm wavelength with photon-counting technology. 

This study is the first attempt to improve the process of measuring reservoir 

bathymetry using ICESat-2 data and has the potential of generating bathymetry for global 

reservoirs when ICESat-2 ATLAS data become available. With high vertical precision (5-

10 cm per 100-m segment length), a small along-track sampling interval (0.7 m), a small 

footprint diameter (17 m), and narrow horizontal track spacing (three sets of beam pairs; 

90 m between each neighboring pair, 3 km between each pair set) (Markus et al. 2017), 

ATLAS is expected to capture the topography around numerous inland water bodies with 

areas as small as a few tenths of a square kilometer. Figure 2.11 shows the ICESat-2 

ground tracks over selected regions during two years. Over the Tibetan Plateau, even the 

smallest lake (0.4 km2) reported by HydroLAKES—a global digital map database for 

lakes with surface areas greater than 10 ha— would have four overpasses. For lakes and 

reservoirs larger than 1 km2, there are usually multiple tracks (for instance, there are 14 

tracks over the Timnath Reservoir). A total of 423 tracks are found in two years for Lake 

Mead, as compared to 52 ICESat overpasses (from 2003 to 2009) and 119 radar altimeter 

overpasses (with five satellite radar sensors considered from 2000 to 2014). Particularly, 
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the spatial resolution and vertical precision of ICESat-2 are significantly better than those 

of ICESat and radar altimeters. Thus, ICESat-2 has a unique advantage for reducing the 

errors and uncertainties of the future bathymetry product. 

 

Figure 2.11 ICESat-2 ground tracks for (a) some natural lakes in the Tibetan Plateau, 

China (0.4 km2< area < 498.06 km2); (b) Lake Mead, Nevada, USA (area=580.95 km2); 

and (c) the Timnath Reservoir, Colorado, USA (area=2.33 km2). The line colors represent 

the different tracks from the different passes. ICESat-2 ground tracks were downloaded 

from https://icesat-2.gsfc.nasa.gov/science/specs  

 

Previous studies have shown that the photon counting MABEL system can profile 

the subsurface light attenuation—depending on pulse strength, water clarity, and 

atmospheric conditions—down to about one Secchi disc depth  (SDD) under clear skies 

(Jasinski et al. 2016).  The 2012 experiment over Lake Mead, which exhibited a low 

turbidity of 1.6 NTU, was flown during clear night skies with low backscatter, resulting 

https://icesat-2.gsfc.nasa.gov/science/specs
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in a penetration of 9.2 meters.  Other water bodies with higher turbidity and less favorable 

meteorological conditions would exhibit less penetration. As shown in this study, the 

underwater elevation samples collected by MABEL have an added value to improve the 

elevation range of the resulted bathymetry (through a more accurate A-E relationship). It 

is true that the water clarity may not be ideal during every ICESat-2 overpass, and for 

some reservoirs the water clarity is always low. However, for the reservoirs where the 

laser cannot reach significant depth, the samples across the shoreline area can provide 

extra data points (because of the high spatial resolution of ICESat-2). For instance, the 

three highest points in Figure 2.1b actually are within/near Lake Mead’s elevation at 

capacity, even though the percentile image did not cover them since none of the 410 

selected Landsat images were collected when the reservoir level was the highest. 

Furthermore, during the 3-year expected operational life of ICESat-2, we will be able to 

obtain elevation values from multiple tracks. The minimum elevation to be sampled by 

each ICESat-2 track depends on both the penetration depth and the water surface level. 

Because water surface level varies both seasonally and interannually, a good range of 

nearshore elevation values can be collected from multiple tracks passing over a given 

reservoir—even for reservoirs with low clarity (penetration). Even if the ICESat-2 

observations cannot cover the entire dynamic area of a given reservoir, an extrapolation 

of the derived A-E relationship using the contour area values of the percentile image (from 

35 years of Landsat imagery covering a large range of area dynamics) will lead to a good 

representation of the reservoir bathymetry. Such bathymetry results can satisfy the 

demands of most applications (such as hydrologic modeling and reservoir management). 
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The projected bathymetry results have relatively large uncertainties because this 

method assumes that the underwater slope remains constant. The method linearly 

extrapolates the slope of the boundary, which was derived from the nearby grids (3 by 3 

window). Therefore, the quality of the data (i.e., the elevation within the 90%-100% 

percentile) used to calculate the slope determines the performance of the projection. 

Although the projected bathymetry is not as robust as the remotely sensed bathymetry, it 

bridges the gap for the area far off the coast and helps to achieve the full bathymetry. The 

accuracy and uncertainties of the detected reservoir bottom depend on several factors. The 

first of these involves the errors and uncertainties associated with the capacity values of 

elevation and storage—which can directly result in biased bottom estimations. The second 

factor involves the A-E and E-V relationships in both the dynamic portion and the 

extrapolated portion. On one hand, the extrapolated portion tends to have much larger 

elevation errors due to the simplified assumption of constant slope. On the other hand, for 

the same elevation interval, the extrapolated portion is associated with a much smaller 

volume than that from the upper dynamic part. In this study, because the capacity values 

were adopted from the USBR, the A-E and E-V relationships performed reasonably well 

in the dynamic portion (Figure 2.10). Furthermore, the bottom elevation derived from this 

study (263.0 m) is close to that measured through the sedimentation survey (272.8 m).      

The photon-counting lidar based bathymetry product also leads to high-quality A-

E relationships, which will contribute to more accurate estimations of reservoir storage 

variations (when applied to either satellite imagery or altimetry data). Many studies 

suggest that the R2 of the A-E relationship directly affects the performance of the 
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corresponding remotely sensed reservoir storage estimation (Gao 2015; Li et al. 2017; 

Zhang et al. 2014). A set of comparisons—all using the same Landsat water areas from 

Zhao and Gao (2018), but different A-E relationships (for Lake Mead)—clearly 

demonstrate the benefit of accurate elevation measurements (Figure 2.12). We used the 

RMSE and the standard deviation ratio (Stdev ratio)—the ratio between the standard 

deviations of estimated and in situ reservoir storage time series—to evaluate the storage 

estimations. By combining radar altimetry data with MODIS based area estimates, the A-

E relationship from Gao et al. (2012) has the lowest R2 value (0.83) and the largest storage 

estimation error (RMSE = 2.34 km3, Stdev ratio = 0.73). The poor A-E relationship is 

mainly attributed to the low resolution of MODIS (250 m). By substituting MODIS with 

Landsat, the R2 value of the A-E relationship from Duan and Bastiaanssen (2013) was 

improved to 0.99, which leads to better storage results (RMSE = 1.24 km3, Stdev ratio = 

0.92). With elevation values obtained from the photon counting lidar, the storage error 

was further reduced (RMSE = 1.16 km3) and the Stdev ratio decreased to 0.84. Since the 

A-E relationships have different slopes and intercepts, each one has its own best-fit 

spectrum with the in situ A-E relationship. Even for the storage estimations using the least 

accurate A-E relationship from Gao et al. (2012), there is still very good agreement with 

the in situ observations when the area values are within a certain range. This can explain 

why the performances of the A-E relationships vary with the area values when estimating 

the storage values. Unlike the other two algorithms—which relied on radar altimetry data 

collected over multiple years—this algorithm leveraged elevations collected from just a 
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single lidar track. Using data from multiple ICESat-2 tracks, this algorithm can perform 

even better.  

 
Figure 2.12 Storage estimations of Lake Mead from 1984 to 2015 using different Area-

Elevation (A-E) relationships. The time-series surface area of Lake Mead was provided 

by Zhao and Gao (2018). 

 

More recently, Getirana et al. (2018) derived the bathymetry for the lower portion 

of Lake Mead. A new contribution they made is to evaluate results from a suite of 

experiments. For the best performing one, they linearly interpolated the radar altimetry 

data (from 2002 to 2015) and then paired it up with the Landsat based water extent to 

obtain the bathymetry (with an elevation range of 23.90 m). By incorporating the gauge-

based water levels (from 1983 to 2016), they improved the elevation range to 42.3 m. In 

comparison, our method generated the dynamic bathymetry at an elevation range of 39.03 

m, solely based on remote sensing data (through overlaying a single, high-quality lidar 

track over the Landsat water occurrence image). To terminate the bathymetry 

extrapolation, Getirana et al. (2018) used the in situ downstream riverbed elevation, while 

we used the reservoir storage capacity. The use of in situ riverbed elevation values may 

be limited by data availability, but reservoir capacity values can be obtained from the 

GRanD database (Lehner et al. 2011a). Furthermore, by embedding the bathymetry onto 
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the SRTM DEM dataset, results from this study may be used to support the mapping and 

modeling of flood inundation in the vicinity of the reservoir (Moknatian et al. 2017).   

This algorithm still has some limitations that need to be addressed. For example, 

even though the remotely sensed algorithm leverages 35 years of Landsat information to 

characterize the largest range of reservoir bathymetry values, it is impossible to derive the 

bathymetry of the very central area that is covered by water all of the time. Known as the 

“inactive pool”, this bottom portion of a reservoir is intended for functions such as 

sedimentation containment and ecosystem protection (Zhao et al. 2016). Because we 

projected the bathymetry for the central area to represent the full reservoir, its quality may 

not satisfy the applications that need high-quality elevations (e.g., navigation). Another 

concern is the existence of mountain shadow. Many reservoirs are located in mountainous 

regions, and areas covered by shadows can be easily misclassified as water. Although 

DEM data can help eliminate the mountain shadow within the masked area, shadows near 

the boundary can still have a minor impact on the classification result. 

In summary, we demonstrate that the 532 nm MABEL elevations and imagery 

datasets can be combined to generate high-resolution 3D reservoir bathymetry results for 

the dynamic area over the last three decades. The bathymetry for the central reservoir area 

can be projected by extrapolation, and then integrated with the remotely sensed results to 

obtain the full bathymetry. The highlight is that a 30 m resolution and high-quality 

bathymetry profile representing the complete range of the dynamic reservoir area over 

more than 30 years (i.e., 58% of Lake Mead’s capacity) was produced exclusively from 

remote sensing data.  
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Until now, there has been no cost-effective approach to derive reservoir 

bathymetry at a global scale. This approach was motivated by a need to fill in this gap and 

to eventually lead to a global bathymetry product suitable for applications across 

disciplines. It can be immediately usable once the ICESat-2 ATLAS data become 

available. 



 

 

3. A HIGH-RESOLUTION BATHYMETRY DATASET FOR GLOBAL 

RESERVOIRS USING MULTI-SOURCE SATELLITE IMAGERY AND 

ALTIMETRY* 

 

3.1. Introduction 

With ongoing rapid population growth and socio-economic development, the 

demand for fresh water is continually increasing (Cook and Bakker 2012). It has been 

projected that two-thirds of the world’s population might face water stress by the year 

2025. Future water scarcity could be further exacerbated by prolonged droughts under the 

changing climate (Seckler et al. 1999; Zhao et al. 2018). Serving as a buffer against climate 

extremes, numerous reservoirs have been constructed to facilitate water supply, flood 

control, and hydropower generation (Cheng et al. 2008; Fu 2008; Grigg 1996; Lehner and 

Döll 2004; Li et al. 2010; Moy et al. 1986). Meanwhile, reservoirs constitute an essential 

component of global hydrological and carbon cycles (Falkowski et al. 2000; Mulholland 

and Elwood 1982), as well as climate regulation (Oki and Kanae 2006; Tranvik et al. 

2009). Given the fact that reservoir observations and characteristics are rarely shared on a 

large scale (Zhang et al. 2014), reservoir information inferred from satellite remote sensing 

is especially valuable. To date, the temporal variations of reservoir water elevation, 

surface area, and storage have been successfully monitored from space at both regional 

 

*Reprinted from Remote Sensing of Environment, Volume 244, Yao Li, Huilin. Gao, Gang Zhao, and Kuo-

Hsin Tseng, “A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery 

and altimetry”, Pages 1-19, Copyright (2020), with permission from Elsevier 
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and global scales (Birkett et al. 2011; Busker et al. 2019; Crétaux et al. 2011; Gao et al. 

2012; Khandelwal et al. 2017; Yao et al. 2019; Zhang et al. 2014; Zhao and Gao 2018). 

However, there are no validated datasets for global 3-D lake/reservoir bathymetric maps 

available within the public domain (Messager et al. 2016), which hampers many water 

resource related studies and applications. 

Bathymetry, which characterizes the underwater terrain, delineates the 3-D 

features of reservoirs. The development of 3-D reservoir bathymetry is beneficial for 

multiple applications across different regions at various spatial scales. First, the Area-

Volume-Elevation (AVE) relationship, one of the most important physical characteristics 

of a reservoir, can be derived from bathymetry data. AVE relationships play a key role in 

modeling hydrological processes, such as inundation mapping (Shin et al. 2019), 

evaporation loss estimation (Zhao and Gao 2019), sediment deposition estimation 

(Langland 2009; Rowan et al. 1995), storage monitoring (Gao 2015), and global 

hydrological modeling (Bierkens et al. 2015). Second, 3-D reservoir bathymetry can help 

characterize and understand different processes of aquatic systems. Additionally, it has 

been an essential input for various other purposes, such as circulation and thermal structure 

modeling (Bai et al. 2013; Beletsky et al. 2006), water quality and hydrodynamic modeling 

(Lindim et al. 2011; Tufford and McKellar 1999), macrophyte distribution (Britton-

Simmons et al. 2012; Lehmann 1998), and phytoplankton prediction (Alex Elliott et al. 

2005). Therefore, spatially explicit knowledge of reservoir bathymetry and its associated 

parameters is of critical importance to understand and model various Earth system 
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processes, as well as their interactions with the environment (Bierkens et al. 2015; 

Messager et al. 2016; Wood et al. 2011). 

Bathymetry values are typically collected by sedimentation surveys taken with 

echo sounders (Dunbar et al. 1999), Light Detection and Ranging (lidar) instruments 

(Hilldale and Raff 2008; Muirhead and Cracknell 1986), and optical remote sensing 

techniques (Brando et al. 2009; Lafon et al. 2002). However, it is impractical to use these 

traditional methods to develop a global scale reservoir bathymetry database (Li et al. 

2019b). Recent studies have attempted to combine satellite altimetry and imagery data to 

derive reservoir bathymetries, but these studies have mainly focused on just a few 

reservoirs. For example, Arsen et al. (2013) used Ice, Cloud, and land Elevation Satellite 

(ICESat) and Landsat data to derive the bathymetry of Lake Poopó, but the resulting 

bathymetry dataset was not validated by ground truth data, so the uncertainties associated 

with the procedure of mesh gridding and interpolation could not be quantified. Tseng et 

al. (2016) projected the bathymetry of Lake Mead using Digital Elevation Model (DEM) 

data by extrapolating the slope above the water surface into the underwater area, and then 

incorporated this with the Landsat-based water surface area to estimate the water level 

variations from 1984 to 2015. Getirana et al. (2018) evaluated fourteen different 

approaches to estimate Lake Mead’s bathymetry by combining multi-satellite datasets. Li 

et al. (2019b) developed an algorithm aimed at deriving high-resolution bathymetry by 

projecting the elevation track collected by the airborne ICESat-2 prototype onto a water 

occurrence percentile image generated from time series Landsat observations over Lake 

Mead.  



 

41 

 

Even though some global databases can provide reservoir geometry information, 

locally practical 3-D bathymetry data remain unavailable. Global DEM datasets, such as 

the Shuttle Radar Topography Mission (SRTM) DEM (Farr et al. 2007) and the TanDEM-

X DEM (Krieger et al. 2007), can provide detailed terrestrial topography over the Earth’s 

land surface area. However, because radar bands cannot penetrate into water, bathymetry 

is inaccessible except for cases when the given reservoirs are almost empty or are not yet 

constructed during the data collection period (Zhang et al. 2016). Yamazaki et al. (2017) 

corrected multiple height error components from existing DEMs and generated a high-

accuracy map of global terrain elevations. However, reservoir bathymetry information is 

still unattainable using this technique. More recently, Yigzaw et al. (2018) developed a 

global Storage-Area-Depth dataset for over 6,800 reservoirs using five hypothesized 

reservoir profile shapes. However, this dataset cannot provide 3-D reservoir bathymetry 

information, and the accuracy of the Area-Depth relationships is limited by the simplified 

representation of reservoir profile shapes.  

In this study, we leveraged satellite radar and lidar altimetry data in combination 

with Landsat-based water surface area datasets to generate a remotely sensed high-

resolution global reservoir bathymetry dataset. The Surface Water Occurrence (SWO) 

image provided by the Global Surface Water (GSW) dataset (Pekel et al. 2016) served as 

the base map for this bathymetry dataset. By incorporating the Area-Elevation (A-E) 

relationships derived by combining satellite altimetry and imagery observations into SWO 

images, the bathymetry maps were obtained. When the remotely sensed bathymetry could 

not represent the full bathymetry in terms of storage capacity, the method of Tseng et al. 
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(2016) was adopted to project the rest of the bathymetry values. The validation results 

indicate that the remotely sensed bathymetry values have high accuracy and reliability, 

while the projected bathymetry values have relatively large uncertainties and errors. 

3.2. Data 

This study used multiple satellite datasets (summarized in Table 3.1), which can 

be categorized as satellite altimetry datasets and surface area datasets. These datasets are 

described in detail in Sections 3.2.1 and 3.2.2, respectively. It should be noted that the 

water elevation is, hereafter, referred to as elevation. 

Table 3.1 Summary of the satellite datasets used in this study 

Dataset Abbreviation Link Parameter 

Ice, Cloud, and land 

Elevation Satellite  
ICESat 

https://nsidc.org/data/icesat/data

.html 

Water elevation 

Global Reservoir and 

Lake Monitor 
G-REALM 

https://ipad.fas.usda.gov/cropex

plorer/global_reservoir/ 

Water elevation 

Hydroweb Hydroweb http://hydroweb.theia-land.fr/  Water elevation 

JRC Global Surface 

Water Dataset 
GSW 

https://global-surface-

water.appspot.com/  

Surface Water 

Occurrence  

Global Reservoir 

Surface Area Dataset  
GRSAD 

https://doi.org/10.18738/T8/DF

80WG  

Monthly water 

area 

 

3.2.1. Satellite altimetry datasets 

3.2.1.1. ICESat/GLAS lidar altimetry dataset 

The Geoscience Laser Altimeter System (GLAS) aboard ICESat was the first lidar 

instrument used to measure ice sheet mass balance, cloud and aerosol height, land 

topography, and canopy characteristics (Schutz et al. 2005). GLAS transmits infrared 

(1064 nm) and visible (532 nm) laser pulses to measure the distance between the host 

satellite and the Earth’s surface, which is then converted to the elevation of a reference 

ellipsoid. This instrument was operated in campaign mode from 2003 to 2010, with a 91-

https://nsidc.org/data/icesat/data.html
https://nsidc.org/data/icesat/data.html
https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
http://hydroweb.theia-land.fr/
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
https://doi.org/10.18738/T8/DF80WG
https://doi.org/10.18738/T8/DF80WG
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day revisit period. ICESat/GLAS collected elevation data with an approximately 70 m 

footprint and 170 m along-track spacing. With a much higher spatial resolution than 

traditional radar altimeters, ICESat is capable of measuring relatively small inland water 

bodies. Meanwhile, it should be noted that due to some technical issues that affected the 

laser diode pump arrays shortly after launch, the ICESat mission was re-planned to operate 

with three campaigns per year to maximize its duration (Schutz et al. 2005), which reduced 

its duty cycle from 100% to 27% per year (Abshire et al. 2005). This issue, along with its 

orbital design, led to sparse spatial sampling. This, in turn, led to the few available 

observations needed to generate the time series, thereby hindering the consistent spatial-

temporal observations of global waters (Zhang et al. 2014). In this study, ICESat/GLAS 

L2 Global Land Surface Altimetry Data version 34 (GLAH14) (Zwally et al. 2011) were 

acquired for water level measurements.  

The ICESat data were processed using the following three steps:  

(1) Selection of the reservoirs: Reservoirs recorded in the HydroLAKES database 

(Messager et al. 2016) with ICESat overpasses were selected. 

(2) Creation of the reservoir masks: Polygons of the selected reservoirs were obtained 

from the HydroLAKES database. As most of the reservoir polygons were 

generated from the static SRTM, they may reflect a low-fill or dry-season state 

with smaller area values than the maximum. Therefore, the masks were created 

using a 1 km buffer to ensure that the maximum extents of the reservoirs were 

covered. It should be noted that we manually corrected some polygons that were 
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found to have large discrepancies from Google maps. These alterations are 

reported in the bathymetry dataset. 

(3) Extraction of the elevation values within the reservoir masks: During this process, 

only the elevations indicated to be of ‘good quality’ (i.e., with elev_use_flg values 

of 0) were kept. The raw elevation values were then converted to orthometric 

heights using the Earth Gravitational Model 2008 (EGM08). This step was 

repeated for each ICESat overpass from 2003 to 2009.  

3.2.1.2. Radar altimetry datasets 

Compared to lidar altimeters, radar altimeters use a longer wavelength (i.e., radio 

waves) to measure the range, which can operate in all weather conditions, both day and 

night. In this study, the radar altimetry data were adopted from two datasets: G-REALM 

(Birkett et al. 2011) and Hydroweb (Crétaux et al. 2011).  

G-REALM is operated by the U.S. Department of Agriculture (USDA), in 

cooperation with NASA and the University of Maryland. The dataset contains the water 

level variation information for 291 (as of June 2019) large global lakes and reservoirs (all 

with areas greater than 100 km2). It provides near real-time inland water elevation data 

from the Jason-3 altimetry mission, along with archived data collected since 1992 from 

the Jason-2/OSTM, Jason-1, Topex/Poseidon, and ENVISAT missions. Depending upon 

the sensors, the temporal resolutions of these elevation data vary from 10 days to 35 days 

(Birkett et al. 2011). In this study, we selected the 10-day product because it provides 

temporally sufficient data and covers more reservoirs. The raw data were converted to 

orthometric heights with reference to the EGM08 datum using the associated converting 
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factors. The monthly elevation value was generated by averaging the observations within 

each month.   

The Hydroweb dataset was developed by and is maintained by the 

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS). At the time 

of this research, Hydroweb contained time series of water level observations for 155 lakes 

and reservoirs, as well as for 2810 rivers using ‘virtual stations’ at a global scale. The 

water surface elevations, which reference the EGM08 datum, are based on the merged 

Topex/Poseidon, Jason-1, Jason-2, Jason-3, ENVISAT, and GFO measurements (Crétaux 

et al. 2011). The elevation observations within each month were averaged to generate the 

overall monthly values.  

3.2.2. Surface area datasets 

Two area datasets were used in this study according to the altimetry data source. 

The first is the SWO image from the GSW by Pekel et al. (2016). Based on the three 

million Landsat images acquired from 1984 to 2015, GSW quantifies the Earth’s surface 

water’s temporal distributions and variations at a 30 m spatial resolution. The SWO image 

was calculated as the ratio of the times detected as water vs. the total observation times 

from 1984 to 2015, which represents the frequency that each pixel was classified as water. 

The SWO is essentially a remotely sensed contour image of a reservoir without the actual 

elevation assigned to each contour. As ICESat/GLAS can delineate the topography above 

the water with a high spatial resolution but a low temporal resolution, overlaying all of the 

ICESat tracks onto the SWO image allows us to take full advantage of the multiple 

elevation values from each ICESat track. Even though the temporal resolution of Landsat 
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is relatively low, SWO can capture a large dynamic range of reservoirs due to their 

interannual and seasonal variations. Using an approach similar to Li et al. (2019b), the 

SWO contour image was combined with GLAS water elevation values to generate the 

bathymetry for each of the reservoirs with ICESat overpasses (see Section 3.3.1.1 for 

details).  

The second area dataset contains the time series values from the Global Reservoir 

Surface Area Dataset (GRSAD) by Zhao and Gao (2018). Built upon the GSW monthly 

water classifications, GRSAD uses an enhancement algorithm to correct the 

underestimated reservoir area values in GSW due to contamination from clouds, cloud 

shadows, and Landsat-7’s Scan Line Corrector (SLC) failure. The radar altimetry data can 

only provide one average elevation value for the entire reservoir at the observation time. 

However, radar altimeters have relatively higher temporal resolutions over longer periods, 

which can provide sufficient elevation observations to be paired with area values from the 

GRSAD time series. For a reservoir with water levels from radar altimeters (reported by 

G-REALM or Hydroweb), the Area-Elevation (A-E) relationship was first generated by 

pairing an elevation observation with its corresponding water area (see Section 3.3.1.2 for 

details).    

3.3. Methodology 

3.3.1. Bathymetry generation approach 

Figure 3.1 shows the flow chart of the reservoir bathymetry approach. During this 

process, the A-E relationship was the key factor determining the accuracy of the 

bathymetry product. For reservoirs with ICESat/GLAS overpasses, their elevations were 
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paired with SWO contour areas to generate a set of A-E relationships. For reservoirs whose 

elevations were from the G-REALM and Hydroweb radar altimetry datasets, the monthly 

mean water levels were associated with the monthly surface area values from GRSAD to 

establish A-E relationships. Then, the A-E relationships were incorporated into the 

corresponding SWO images to generate dynamic bathymetry data, which represents the 

extent between the largest and smallest area from 1984 to 2015. Finally, as a last resort, 

bathymetry projection was carried out when the dynamic part (described above) did not 

cover the full bathymetry as compared with reservoir capacity (section 3.3.1.3). 

 
Figure 3.1 Flowchart of the bathymetry estimation algorithm. 

 

3.3.1.1. A-E relationships with elevations from the ICESat database 

Because the ICESat data are only available for about 7 years, with a repeat time of 

91 days, it is difficult to collect sufficient ‘couplings’ of water elevations and surface areas 
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to build A-E relationships. To overcome this limitation, an algorithm similar to the one 

developed by Li et al. (2019b) was adopted. This algorithm can maximize the use of 

ICESat data by taking advantage of the SWO generated from the 32-year span of Landsat 

images. For each reservoir, the ICESat elevation samples within the masked area were 

first projected onto the SWO image. This allowed each sample to correspond to a specific 

SWO percentile value. The elevation values that were collected over the water surface 

during an ICESat pass were excluded because they could not reflect the real bathymetry. 

If one overpass contained less than five valid consecutive elevation values across the SWO 

of a reservoir, the data collected from this entire overpass would be eliminated. Each 

elevation value was paired with the area value enclosed by its corresponding percentile 

(i.e., the contour). Then, the A-E relationship for each reservoir was established through 

linear regression. By assuming a linear A-E relationship, the reservoir cross-section was a 

second-order polynomial, which is more realistic than a linear cross-section (Gao et al. 

2016). It is worth noting that a non-linear relationship may perform better for some 

reservoirs, but linear relationships were found to perform well for most of the reservoirs 

(Busker et al. 2019; Gao et al. 2016; Zhang et al. 2014). 

Here, Lake Mead is selected as an example to illustrate the process of deriving the 

A-E relationship. During the lifetime of ICESat, there were 40 tracks that overpassed Lake 

Mead, and these were projected onto the SWO image (Figure 3.2). Each elevation sample 

corresponds to a specific occurrence percentile value, each of which can be regarded as a 

contour. Only the samples on the terrain slopes were used, which can better represent the 

contour gradients of the lake. Figure 3.3a shows the elevation profile for one track over 
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Lake Mead on Oct 21, 2003 (from which, only the samples in solid were selected). The 

elevations from the selected samples, along with those from other tracks, were combined 

with their associated contour areas to derive the A-E relationship. Figure 3.3b suggests 

that the area and elevation values (which range from 346.73 m to 369.20 m) are highly 

correlated in Lake Mead, with an R2 value of 0.99.  

 
Figure 3.2 The ICESat tracks over Lake Mead from 2003 to 2010, with the Surface Water 

Occurrence (SWO) image as the base map. 
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Figure 3.3 (a) The elevation profile of one ICESat track over Lake Mead on Oct 21, 2003, 

with the samples shown as solid dots being used to establish the Area-Elevation (A-E) 

relationship (the ‘S’ and ‘E’ represent the start and end of the transect, respectively, with 

the locations shown in Figure 3.2); and (b) the A-E relationships derived from the ICESat 

and Hydroweb datasets in black and red, respectively.   

 

3.3.1.2. A-E relationships with elevations from radar altimetry datasets 

For the A-E relationships derived from the radar altimetry datasets, the algorithm 

developed by Gao et al. (2012) was adopted. As described in section 3.2.1.2, the G-

REALM and Hydroweb datasets provide the monthly mean surface elevation values over 

each reservoir, which can be paired with the monthly mean area values obtained from 

GRSAD to establish A-E relationships. Attributed to the longer data record and the more 

frequent revisit period of radar altimetry compared to ICESat, there were plenty of radar 

elevation values over various reservoirs to choose from. Therefore, only the monthly area 

values with cloud contaminations less than 5% were selected for the generation of the A-

E relationship for each reservoir. 

For comparison purposes, we also used Lake Mead to show the radar altimetry-

based A-E relationship. Monthly surface water elevation data from 2000 to 2014 were 
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adopted from Hydroweb, while the associated monthly water surface areas were obtained 

from GRSAD. The R2 of the A-E relationship based on Hydroweb is 0.97, with elevations 

ranging from 332.06 m to 365.03 m (Figure 3.3b). This is a larger range (32.97 m) than 

that from ICESat (22.47 m) because of the longer period of observations (2000–2014).  

3.3.1.3. Bathymetry generation 

When the elevation data for a given reservoir were available from more than one 

data source (ICESat, G-REALM, and Hydroweb), the A-E relationships were evaluated 

in terms of their R2 values and the elevation range needed to select the one with the best 

performance. The R2 of the A-E relationship was set as the first criteria. If the R2 values 

were close (within 0.05), the A-E relationship with the larger elevation range was selected. 

To ensure the quality of the bathymetry product, we only selected reservoirs with an R2 

value greater than 0.5.  

The SWO image for each reservoir was extracted using the mask described in 

Section 3.2.1.1. The sets of pixels in the SWO image with the same percentile values were 

treated as a contour line. The elevation at each percentile contour was decided by applying 

the A-E relationship to the area enclosed within that contour. Because the SWO image is 

based on 32 years of Landsat observations, it represents a large range of reservoir 

area/storage variation. If the range of an A-E relationship could not cover the full range of 

the SWO due to a shorter period of altimetry data, an extrapolation of the A-E relationship 

was conducted to represent the full range of dynamic bathymetry values.  

Even though the SWO can capture a large dynamic range of the reservoir’s area 

variations, the remotely sensed dynamic bathymetry results may not represent the full 
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bathymetry for some reservoirs. Therefore, to solve this problem, we used an extrapolation 

method to obtain the full bathymetry values. For those reservoirs, we first estimated the 

total storage that the dynamic bathymetry represented. The cumulative storage associated 

with the bathymetry (Vn) was calculated using equation (3.1) after Li et al. (2019b):  

𝑉𝑛  =  ∑
(ℎ𝑖+1 −  ℎ𝑖)(𝐴𝑖+1 +  𝐴𝑖)

2

𝑛−1

𝑖=1

                                      (3.1)  

where n is the number of contours below the elevation at capacity (hc), Ai is the surface 

area enclosed by the ith contour, and hi is the elevation of the ith contour. The cumulative 

storage was calculated by integrating the storage values associated with all of the layers, 

starting from the top-most layer, which corresponds to the elevation at capacity. If only 

the area or elevation at capacity was available, the A-E relationship was used to calculate 

the other value. It should be noted that we did not extrapolate the bathymetry values 

between the SWO extent and the capacity area in cases where the SWO did not cover the 

full amplitude. If the cumulative storage derived from the dynamic bathymetry was 

smaller than the reservoir capacity, the algorithm of Tseng et al. (2016) was adopted to 

project bathymetric values by extrapolating the elevations using the slope derived from 

the remotely sensed dynamic bathymetry. The prediction process was then terminated 

when the accumulative storage reached the capacity, a modification of the Tseng et al. 

(2016) algorithm that was introduced by Li et al. (2019b). The values at capacity were 

collected from a combination of the Global Reservoir and Dam (GRanD) database (Lehner 

et al. 2011a, b) and other sources (e.g., water management agencies, web sources like 

Wikipedia, and the literature). In the few cases when the capacity value from GRanD for 
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a given reservoir did not match that from the other sources, the value from the most reliable 

source was selected. 

3.3.2. Validation scheme 

3.3.2.1. Validation of remotely sensed dynamic bathymetry 

The bathymetry results were validated in two ways: (1) comparing the A-E 

relationships and E-V relationships to those derived from in situ observations and (2) 

comparing elevation values from arbitrarily selected transects and SWO zones with their 

counterparts from the surveyed bathymetry.  

The A-E and E-V relationships, which together play a significant role in 

representing the overall physical characteristics of the reservoirs, are important byproducts 

of this study. More importantly, the accuracy of the A-E relationship determines the 

overall quality of the resulting bathymetry. Here, validations against the A-E and E-V 

relationships were first carried out over six U.S. reservoirs (Mead, Fort Peck, Oahe, 

Success, Sakakawea, and Powell) and ten Indian reservoirs (Hirakud, Jayakwadi, 

Malaprabha, Matatila, Sriram Sagar, Srisailam, Tawa, Tungabhadra, Gandhi Sagar, and 

Indravati). The in situ elevation and storage values were provided by the U.S. Bureau of 

Recreation (USBR, https://www.usbr.gov/lc/region/g4000/hourly/mead-elv.html), the 

U.S. Army Corps of Engineers (USACE, http://www.nwd-

mr.usace.army.mil/rcc/projdata/projdata.html), the California Data Exchange Center 

(CDEC, http://cdec.water.ca.gov/), and the Indian Central Water Commission (CWC, 

http://cwc.gov.in/). The observed E-V relationships (equation (3.2)) can be directly 

established from in situ data. By taking the derivative of the water volume against the 

https://www.usbr.gov/lc/region/g4000/hourly/mead-elv.html
http://www.nwd-mr.usace.army.mil/rcc/projdata/projdata.html
http://www.nwd-mr.usace.army.mil/rcc/projdata/projdata.html
http://cdec.water.ca.gov/
http://cwc.gov.in/
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water level (equation (3.3)), the water surface area for each incremental elevation can be 

calculated.  

𝑉 =  𝑓(𝐸)                                                                     (3.2) 

𝐴 =  
𝑑𝑉

𝑑𝐸
=  𝑓′(𝐸)                                                            (3.3) 

The RMSE (equation (3.4)) was used as the error metric to evaluate the A-E and 

E-V relationships:  

𝑅MSE =  √
∑ (𝑥̂𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
                                                             (3.4) 

where n is the number of contours of the remotely sensed bathymetry, 𝑥̂𝑖 is the elevation 

(or storage) associated with the ith contour, and 𝑥𝑖  is the corresponding elevation (or 

storage) value derived from the observed A-E (or E-V) relationship.  

Meanwhile, the normalized RMSE (NRMSE) (equation (3.5)) was also adopted to 

assess the E-V relationship: 

NRMSE =  
𝑅𝑀𝑆𝐸

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
× 100%                                                      (3.5) 

where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the maximum and minimum in situ storage values. 

For most of the reservoirs, especially for those located in remote regions, 

bathymetry information is very scarce. Bathymetry surveys are only conducted for a small 

number of lakes and reservoirs by organizations such as the USBR and the U.S. Geological 

Survey (USGS). In this study, survey bathymetry data for four U.S. reservoirs (Lake 

Mead, Lake Roosevelt, Cascade Reservoir, and Clear Lake), provided by the USBR 

(https://www.usbr.gov/tsc/techreferences/reservoir.html) and the USGS 

https://www.usbr.gov/tsc/techreferences/reservoir.html
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(https://pubs.usgs.gov/of/2003/of03-320/index.htm) (Twichell et al. 2003), were used to 

directly validate the bathymetry results. The survey data for these lakes were collected in 

different ways, which are summarized in Table 3.2. Although the lidar survey cannot 

provide the bathymetry information for the entire reservoir due to its weak water 

penetration capacity, its range is sufficient to evaluate the dynamic bathymetry and is a 

better choice than the low-resolution sediment survey data. For each of these four 

reservoirs, four transects across the shoreline were used to compare the elevations from 

the remotely sensed bathymetry with their counterpart values from the surveyed 

bathymetry. Meanwhile, in order to assess the overall performance of the remotely sensed 

bathymetry, the SWO image of each reservoir was divided into 10 zones with a 10% 

increment. Then, the elevation statistics for each zone were compared between the 

remotely sensed bathymetry and the survey data. 

Table 3.2 Summary of the survey methods used to collect the in situ data for the four 

validated reservoirs 

Reservoir name Survey methods 

Lake Mead  lidar survey, sedimentation survey 

Lake Roosevelt lidar survey, aerial photogrammetry, hydrographic survey 

Cascade Reservoir sedimentation survey, aerial photogrammetry 

Clear Lake aerial photogrammetry, hydrographic survey 

 

3.3.2.2. Validation of the projected bathymetry 

  Since sedimentation survey is the single approach used to measure the full 

bathymetry (i.e., all the way to reservoir bottom), it is the only data source that the 

projected part of the bathymetry can be validated against. However, relatively costly 

sedimentation surveys are extremely limited. Therefore, we were only able to evaluate the 

performance of the projected bathymetry over Lake Mead and the Cascade Reservoir. 

https://pubs.usgs.gov/of/2003/of03-320/index.htm
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Similar to the validation of the remotely sensed bathymetry, the projected bathymetry was 

also validated against the survey values along arbitrarily selected transects. Moreover, the 

projected bathymetry of Lake Mead was also validated using A-E and E-V relationships.  

3.4. Results 

3.4.1. Overview of the global reservoir bathymetry dataset 

In this study, we generated bathymetry for 347 global reservoirs (274 from ICESat, 

42 from G-REALM, 31 from Hydroweb), with a total volume of 3123 km3, representing 

50% of the total global reservoir capacity according to the GRanD database. The locations 

of these 347 reservoirs are shown in Figure 3.4. Their attributes in each geographical 

region and in selected countries (with the greatest number of reservoirs) are summarized 

in Table 3.3. These attributes of the area, shoreline length, and storage are adopted from 

the HydroLAKES database. 

 
Figure 3.4 Locations of the 347 reservoirs with the bathymetry generated from this study. 
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Table 3.3 Distribution and attributes of the global reservoir bathymetry dataset 

 

Number of 

reservoirs 

Average  

R2 of A-E 

Area  

(km2) 

Shoreline 

length (km) 

Storage  

(km3) 

World 347 0.89 166487 177666 3123 

Continent 

Africa  35 0.92 25170 26419 662 

Asia 105 0.91 24450 23567 603 

Europe 52 0.84 59725 31192 603 

North America 102 0.90 33556 58631 663 

Oceania 16 0.91 2079 2743 50 

South America 37 0.86 21506 35113 542 

Countries with most reservoirs     

U.S. 58 0.91 9720 12693 221 

India 45 0.93 6065 8022 121 

Canada 31 0.85 22259 42985 393 

China 27 0.91 3661 5368 113 

Brazil 24 0.85 13476 26072 334 

Russia 22 0.78 58070 28613 586 

Australia 15 0.94 1931 2632 48 

 

For each continent (except Antarctica), we selected one representative reservoir to 

show the dynamic bathymetry result (Figure 3.5). Because Guri (Figure 3.5f) is relatively 

large, only partial results are provided in order to show more detail. Overall, the remotely 

sensed bathymetry results show clear patterns and gradients. Detailed topography can be 

nicely captured, especially around the areas where the floodplains are very dynamic 

(Figure 3.5a, 3.5c, and 3.5f). The remotely sensed dynamic area, dynamic area fraction, 

dynamic storage, and dynamic storage fraction values of these reservoirs were also 

calculated. The dynamic area is the area difference between the maximum water area and 

the permanent water area (i.e., the area enclosed by the most inner percentile of the SWO 

image). The dynamic area fraction is the ratio of the dynamic area over the maximum 

water extent from the SWO image, which represents the magnitude of area variation from 
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1984 to 2015. The dynamic storage and storage fraction are defined in relation to those 

area terms.  

 

Figure 3.5 Remotely sensed bathymetry values for reservoirs (a) Tungabhadra, (b) Lago 

Toronto, (c) Fairbairn, (d) Rosarito, (e) Shiroro, and (f) Guri. For Guri, only partial 

bathymetry is displayed here due to the reservoir’s large size. 
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In addition, the remotely sensed bathymetry maps for sixteen reservoirs, for which 

the A-E and E-V relationships are also validated in Section 3.4.2.1, are shown in Figures 

S1 to S16 in Appendix A, and their attributes are summarized in Table S1 in Appendix A. 

Among these reservoirs, the remotely sensed results captured the largest dynamic area at 

Srisailam (96.81%) and the smallest at Sakakawea (35.38%). Moreover, the dynamic 

bathymetry of these sixteen reservoirs represents over half of the storage at capacity, with 

the largest at Success (100%) and the smallest at Oahe (57.70%). Therefore, most of these 

reservoirs have had relatively large dynamics over the last three decades. It is worth noting 

that our method (ICESat + SWO) can detect relatively small reservoirs (with areas less 

than 50 km2 by Lehner and Döll (2004)) due to the high spatial resolution and vertical 

accuracy of ICESat. In this dataset, the smallest reservoir detected by ICESat is Mehgaon 

Tola Tank (India), which has an average area of 1.47 km2. Clear patterns can be observed 

from the bathymetry map (Figure S17 in Appendix A). 

3.4.2. Bathymetry validation  

First, the A-E relationships and the E-V relationships derived from observations 

were used to validate their counterparts generated from this study. This is because the A-

E relationships and E-V relationships are the most important byproducts of this dataset 

and are good indicators of the quality of the 3-D bathymetry results (section 3.4.2.1). Then, 

the survey data were used to validate the remotely sensed portion of bathymetry over four 

U.S. reservoirs (section 3.4.2.2). Last, the sediment survey data were used to evaluate the 

performance of the projected portion of bathymetry over Lake Mead and the Cascade 

Reservoir (section 3.4.2.3).  
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3.4.2.1. Validation of the remotely sensed A-E and E-V relationships 

The A-E relationships derived from remote sensing data and in situ observations 

are summarized in Table 3.4 and plotted in Figure 3.6. It is evident that these two kinds of 

A-E relationships are in good agreement, with RMSE values of elevation ranging from 

0.10 m to 1.99 m. Since the ICESat and Hydroweb datasets are both available for Lake 

Mead, we validated the A-E relationships derived from each for comparison. The A-E 

relationships from ICESat and Hydroweb both agree well with the in situ results (Figure 

3.6a), but the relationship from ICESat performed better than that from Hydroweb. 

Moreover, it is worth noting that R2 values alone cannot fully represent the quality of the 

A-E relationship in some cases. For example, the R2 value for the Hirakud reservoir (0.68) 

is relatively low, but its A-E shows good consistency with the in situ measured values. 

The remotely sensed A-E relationships of Fort Peck (Figure 3.6b), Matatila (Figure 3.6k), 

Sriram Sagar (Figure 3.6l), and Tawa (Figure 3.6n) have clear shifts compared to their in 

situ counterparts. These shifts can be attributed to three sources of biases. The first is the 

bias associated with the misspecification of the static water extents by HydroLAKES over 

some reservoirs. The second source is related to the uncertainties from both satellite and 

in situ measurements. Last, the remotely sensed and in situ elevations might have used 

different geoids, which could also lead to a bias. These shifts can explain the relatively 

high RMSE values seen when the A-E relationships were validated. However, the slopes 

of the remotely sensed A-E relationships are in good agreement with the in situ values, 

indicating that they can characterize the elevation gradients well. Overall, the A-E 
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relationships derived in this study are reliable and lay the foundation for the generation of 

bathymetry.  

Table 3.4 The A-E relationships derived from remote sensing data and in situ 

observations. 
Reservoir  

name 
Country 

Elevation 

dataset 

A-E relationship 

(remotely sensed) 

A-E relationship 

(in situ) 

RMSE 

(m) 

Mead U.S. ICESat 
y = 0.1362x + 288.76, 

R2=0.99 

y = 0.1369x + 287.26, 

R2=1.00 
1.27 

Mead U.S. Hydroweb 
y = 0.1482x + 283.14, 

R2=0.97 

y = 0.1369x + 287.26, 

R2=1.00 
1.46 

Fort Peck U.S. ICESat 
y = 0.0438x + 643.32, 

R2=0.97 

y = 0.0443x + 644.65, 

R2=0.99 
1.85 

Oahe U.S. ICESat 
y = 0.0217x + 462.73, 

R2=0.87 

y = 0.0209x + 463.74, 

R2=1.00 
0.80 

Success U.S. ICESat 
y = 3.8029x + 172.98, 

R2=0.99 

y = 3.8258x + 172.98, 

R2=1.00 
0.06 

Sakakawea U.S. G-REALM 
y = 0.0247x + 528.65, 

R2=0.89 

y = 0.0220x + 532.57, 

R2=1.00 
0.89 

Powell U.S. G-REALM 
y = 0.1357x + 1045.1, 

R2=0.97 

y = 0.1317x + 1046.2, 

R2=1.00 
1.99 

Gandhi Sagar India ICESat 
y = 0.0337x + 379.03, 

R2=0.95 

y = 0.0339x + 379.30, 

R2=1.00 
0.69 

Hirakud India ICESat 
y = 0.0220x + 177.26, 

R2=0.68 

y = 0.0221x + 177.54, 

R2=1.00 
0.69 

Jayakwadi India ICESat 
y = 0.0320x + 451.67, 

R2=0.77 

y = 0.0314x + 451.72, 

R2=1.00 
0.80 

Malaprabha India ICESat 
y = 0.1281x + 618.72, 

R2=0.93 

y = 0.1298x + 618.29, 

R2=1.00 
0.76 

Matatila India ICESat 
y = 0.1003x + 297.22, 

R2=0.94 

y = 0.0982x + 297.05, 

R2=1.00 
0.47 

Sriram Sagar India ICESat 
y = 0.0400x + 319.95, 

R2=0.98 

y = 0.0419x + 318.54, 

R2=1.00 
1.17 

Srisailam India ICESat 
y = 0.0308x + 253.30, 

R2=1.00 

y = 0.0308x + 253.38, 

R2=1.00 
0.10 

Tawa India ICESat 
y = 0.1110x + 336.49, 

R2=0.89 

y = 0.1140x + 335.17, 

R2=1.00 
1.45 

Tungabhadra India ICESat 
y = 0.0412x + 483.34, 

R2=0.98 

y = 0.0410x + 483.40, 

R2=1.00 
0.41 

Indravati India G-REALM 
y = 0.3347x + 604.63, 

R2=0.94 

y = 0.3418x + 604.43, 

R2=1.00 
1.20 
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Figure 3.6 Comparisons of the Area-Elevation (A-E) relationships derived from remote 

sensing data and in situ observations over (a) Mead, (b) Fort Peck, (c) Oahe, (d) Success, 

(e) Sakakawea, (f) Powell, (g) Gandhi Sagar, (h) Hirakud, (i) Jayakwadi, (j) Malaprabha, 

(k) Matatila, (l) Sriram Sagar, (m) Srisailam, (n) Tawa, (o) Tungabhadra, and (p) Indravati 

Reservoirs. 

 

Figure 3.7 indicates that the E-V relationships derived from the remote sensing 

data are in good agreement with those based on in situ observations. The error statistics 

show that all of the R2 values are greater than 0.99, the RMSE values of storage are from 

0.0029 km3 to 0.35 km3, and the NRMSE values are from 0.56% to 4.40%. In some cases, 

especially for some of the relatively smaller reservoirs in terms of capacity, the estimated 

storage may have a relatively large bias when the elevation level reaches the reservoir 
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bottom (e.g., Sriram Sagar and Tawa). It should be noted that even though the remotely 

sensed A-E relationship for Lake Success agrees with the in situ value (Figure 3.6d), the 

E-V relationship shows a relatively large bias (Figure 3.7d), with an NRMSE of 4.40%. 

This is because Lake Success is a small reservoir with a maximum area of 7.92 km2 and a 

storage capacity of 0.10 km3. Therefore, the estimations of storage are more sensitive to 

elevation and area measurements, and even a small RMSE value of storage (0.0029 km3) 

would result in a relatively large NRMSE value (4.40%).  

 
Figure 3.7 The validation of the remotely sensed Elevation-Volume (E-V) relationships 

over (a) Mead, (b) Fort Peck, (c) Oahe, (d) Success, (e) Sakakawea, (f) Powell, (g) Gandhi 

Sagar, (h) Hirakud, (i) Jayakwadi, (j) Malaprabha, (k) Matatila, (l) Sriram Sagar, (m) 

Srisailam, (n) Tawa, (o) Tungabhadra, and (p) Indravati Reservoirs. 
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3.4.2.2. Validation of the remotely sensed bathymetry results against survey data 

The survey data for Lake Mead, Lake Roosevelt, Cascade Reservoir, and Clear 

Lake Reservoir were used to directly validate the bathymetry values. The remotely sensed 

bathymetry maps and the locations of the validation transects for these reservoirs are 

shown in Figure 3.8 and Figures S18 to S20 in Appendix A. The characteristics of the 

remotely sensed bathymetry for these four reservoirs are summarized in Table 3.5. For 

Lake Mead, the bathymetry results based on ICESat and Hydroweb elevations were also 

compared. The elevation range of the remotely sensed dynamic bathymetry of these four 

reservoirs varies from 5.54 m to 41.94 m. Among these reservoirs, the remotely sensed 

results captured the largest dynamic area fraction at Lake Mead (48.48%) and smallest at 

the Cascade Reservoir (26.65%). Most importantly, the dynamic bathymetry associated 

with the dynamic area of these four reservoirs represents more than half of the storage at 

capacity, with the largest value at the Clear Lake Reservoir (94.27%) and the smallest at 

the Cascade Reservoir (57.10%). The small dynamic storage range of the Cascade 

Reservoir is attributed to the fact that the reservoir has relatively small seasonal and 

interannual variations. It is worth noting that the dynamic bathymetry of the Clear Lake 

Reservoir can almost represent the full bathymetry. The average depth at maximum 

capacity of the Clear Lake Reservoir is about 6.10 m  

(https://www.usbr.gov/projects/index.php?id=27, accessed 22 January 2020), which is 

close to the elevation range of the remotely sensed bathymetry (7.62 m).  

 

 

https://www.usbr.gov/projects/index.php?id=27
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Table 3.5 Summary of the remotely sensed bathymetry over the four validated reservoirs 

Reservoir name Lake Mead 
Lake 

Roosevelt 

Cascade 

Reservoir 

Clear Lake 

Reservoir 

Elevation dataset  ICESat Hydroweb G-REALM G-REALM ICESat 

R2 of A-E 0.99 0.97 0.69 0.94 0.97 

Minimum elevation (m) 329.71 327.70 370.60 1466.82 1357.84 

Maximum elevation (m) 368.25 369.64 392.95 1471.14 1365.46 

Elevation range (m) 38.54 41.94 22.35 5.54 7.62 

Total area (km2) 583.64 583.64 292.53 99.11 98.45 

Dynamic area (km2) 282.97 282.97 78.18 26.41 38.17 

Dynamic area fraction 48.48% 48.48% 26.73% 26.65% 38.77%  

Storage capacity (km3) 34.07 34.07 6.60 0.80 0.65 

Dynamic storage (km3) 21.36 23.24 5.67 0.46 0.61 

Dynamic storage fraction 62.69% 68.22% 85.86% 57.10% 94.27% 

 

First, the resulting bathymetry of Lake Mead is visually inspected. As the results 

derived from ICESat and Hydroweb radar altimetry have the same spatial patterns, only 

the ICESat-based bathymetry was examined (Figure 3.8). The lidar survey for Lake Mead 

was conducted by USBR in 2009 and covered 445.48 km2 of the emergent shoreline areas. 

This survey contains detailed contour values (Figure 3.8f) from 334.06 m (1096 feet) to 

374.90 m (1230 feet) at a 0.61 m (2 feet) interval. Overall, the elevation patterns are very 

similar to those of the contour map collected by the lidar survey (i.e., Figure 3.8a vs. Figure 

3.8f and Figure 3.8 (b–e) vs. Figure 3.8 (g–j)). For the western region (Figure 3.8b), the 

bathymetry has steep gradients across the shorelines, and the shapes of the islands within 

this area are clearly captured. For the northern region (Figure 3.8c), the gradients are 

relatively gradual, indicating that this portion is relatively flat compared to the west. As 

shown in Figure 3.8e, the topography surrounding the Colorado River can be distinctly 

captured, whereas the river bottom measured by lidar appeared to be flat (Figure 3.8j). 

This disagreement led to three outliers in the corresponding scatter plot of Transect 4 
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(Figure 3.9a), which contributed to the relatively low R2 value for this transect. Overall, 

the remotely sensed bathymetry values have relatively high reliability and accuracy.  

 
Figure 3.8 The bathymetry of Lake Mead using the Area-Elevation (A-E) relationship 

derived from the ICESat database (a–e): (a) Overall bathymetry; (b-e) close up views of 

the four sub-regions in (a); and lidar survey contour maps (f–j): (f) Overall bathymetry; 

(g–j) close up views of the four sub-regions in (f). 

 

Visual inspection was found to be unsuitable for the other three reservoirs. For 

Lake Cascade and Clear Lake, the surveyed data are disconnected points, which makes it 

difficult to discern patterns. Although the surveyed bathymetry of Lake Roosevelt is a 



 

67 

 

continuous image, this reservoir is very sinuous and narrow, making it difficult to make 

visual comparisons. 

The validations against the surveyed data were carried out at two spatial scales: 

the individual transects and the remotely sensed bathymetry over the entire reservoir.  

At an individual transect level, the elevation values from this study are in good 

agreement with the surveyed data (Figure 3.9). Clearly, the remotely sensed bathymetry 

can capture the elevation gradients of the reservoirs. With regard to the scatter plots, most 

samples are centered along the 1:1 line, except for the Clear Lake Reservoir, which 

features an overall underestimation of the elevation values. This nearly constant 

underestimation was due to the bias of the vertical datum. When the USBR conducted the 

hydrographic survey over the Clear Lake Reservoir in 2007, they used their own project’s 

datum, while the bathymetry generated in this study references the EGM08 datum. 

Nonetheless, the variations in the remotely sensed results are consistent with those of the 

surveyed data. It should be noted that this constant discrepancy does not influence the 

volume estimation because we used the elevation difference when calculating the storage 

values with equation (3.1). For Lake Mead, even though the A-E relationship derived from 

ICESat seems to be more accurate than that from Hydroweb, the ICESat-based bathymetry 

does not necessarily perform better for the entire reservoir. Indeed, for elevations less than 

352.55 m, the Hydroweb-based bathymetry values are closer to the survey elevations. For 

elevations greater than 352.55 m, the ICESat-based bathymetry performs better. This 

explains why the Hydroweb-based bathymetry values have smaller errors in some regions 

(e.g., transect 2 with an RMSE of 1.33 m for Hydroweb vs. 1.78 m for ICESat). 
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Figure 3.9 Scatter plots and elevation profiles of the validation transects over: (a) Lake 

Mead, (b) Lake Roosevelt, (c) Cascade Reservoir, and (d) Clear Lake Reservoir. 
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Figure 3.9 Continued. 

 

The statistics of the validation results over the selected transects are summarized 

in Table S2 in Appendix A. The elevation values from the remotely sensed bathymetry 

agree well with those from the survey data for all four of these reservoirs, with R2 values 

from 0.82 to 0.99 and RMSE values from 0.13 m to 2.31 m. Even though the R2 value of 

the A-E relationship for Lake Roosevelt is only 0.69, the resulting bathymetry is 

satisfactory (with R2 values from 0.87 to 0.96, and RMSE values from 1.43 m to 2.23 m).  
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To evaluate the results over the entire reservoir, we also compared the statistics of 

the satellite-derived bathymetry and ground surveys within each 10% SWO percentile 

zone (Figure 3.10). For Lake Mead, the remotely sensed bathymetry from both radar and 

ICESat altimetry performed the best within the 51%–90% zones. It slightly overestimated 

the elevations for the 1%–50% zone and underestimated them for the innermost zone 

(91%–100%). Between the two datasets, ICESat-based bathymetry performed better than 

the radar-based bathymetry from Hydroweb. This is because ICESat was capable of 

measuring the topography along the ground track with its 70 m resolution footprint, while 

the radar altimeter can only provide one averaged elevation value per observation time for 

the entire reservoir due to its larger footprint. Moreover, ICESat-derived elevations have 

been found to be more accurate than those from radar altimeters due to ICESat’s high 

vertical accuracy (Brenner et al. 2007). 

For Lake Roosevelt, the remotely sensed bathymetry overestimated over the entire 

reservoir, except in the 91%–100% zone. For the Cascade Reservoir, the bathymetry 

overestimation dominated, with the discrepancy decreasing from the outer zone to the 

inner zone (with the exception of the 81%–100% zones). For the Clear Lake Reservoir, 

the satellite results are underestimated across all zones, especially in the 71%–100% range 

(by 4.26 m). Overall, the remotely sensed bathymetry values are in good agreement with 

the survey data, with the largest biases usually found in the shoreline and central regions.  
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Figure 3.10 Comparisons of the statistical results of the elevations within each percentile 

zone over the entire reservoir for (a) Lake Mead (ICESat), (b) Lake Mead (Hydroweb), 

(c) Lake Roosevelt, (d) the Cascade Reservoir, and (e) the Clear Lake Reservoir. 
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3.4.2.3. Evaluation of the projected bathymetry 

In this study, we selected Lake Mead and the Cascade Reservoir to evaluate the 

performance of the projected portion of the bathymetry. Lake Roosevelt and the Clear 

Lake Reservoir were not used to assess the projection because their remotely sensed 

portion already represents nearly full bathymetry in terms of storage (Table 3.5). Figure 

3.11a shows the full bathymetry of Lake Mead, including the remotely sensed part (329.71 

m to 368.25 m) and the projected part (263.00 m to 329.70 m). The projected portions in 

Figure 3.11d and Figure 3.11e have more realistic patterns, as the abrupt changes in Figure 

3.11b and Figure 3.11c are not very natural. The full bathymetry of Cascade Reservoir is 

shown in Figure S21 in Appendix A, with a remotely sensed portion (1466.82 m to 

1471.14 m) and a projected portion (1461.00 m to 1466.81 m). It is worth noting that the 

bottom elevations estimated in this study (263.00 m for Lake Mead and 1461.00 for 

Cascade Reservoir) are close to the measured values from the sedimentation surveys 

(272.80 m for Lake Mead and 1459.23 m for Cascade Reservoir). The projected 

bathymetry results show good overall patterns, but the changes in elevation are not 

consistent with the surrounding areas in some cases. This is because the algorithm by 

Tseng et al. (2016) assumed that the slope does not change once determined.  

Similarly, we selected four transects evenly distributed over both Lake Mead 

(Figure 3.11) and the Cascade Reservoir (Figure S21 in Appendix A) to compare the 

elevation values of the projected bathymetry with their counterparts from the 

sedimentation survey data. It should be noted that, in both cases, these four transects only 

cover the projected bathymetry area. For Lake Mead, the scatter plots and elevation 
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profiles of these four transects are shown in Figure 3.12. The projected bathymetry for 

transect 1P matches the survey data well because the slopes are relatively constant in this 

area. For transect 4P, the results are acceptable except for locations near the end of the 

transect. However, for transects 2P and 3P, the projected bathymetry largely missed the 

slopes from the survey, especially for the area relatively far away from the shore. 

According to Figure 3.12, the topography at transect 2P is relatively flat, and the elevation 

values at transect 3P have relatively large fluctuations. It was found that there exists an 

abrupt jump at transect 2P—from 295 m to 263 m. This is because the slopes used for 

extrapolation varied with region, and the elevation did not reach to 263 m when the 

extrapolation was terminated. However, for other transects the elevation variations are 

continuous. Even though transect 3P has a relatively large bias (RMSE = 18.87 m), it 

reached the lowest elevation simultaneously with the surveyed bathymetry. Results for the 

Cascade Reservoir are shown in Figure S22 in Appendix A. Among these four transects, 

transects 1P and 4P are in relatively good agreement with the survey data, while transects 

2P and 3P have large vertical errors. Because the method by Tseng et al. (2016) assumes 

a constant slope, the extrapolated elevations cannot capture the underwater topography 

when it is either flat or has a great variation (e.g., bulge and cavity). Thus, the projected 

bathymetry values should be used with caution.  
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Figure 3.11 (a) Full bathymetry of Lake Mead (remotely sensed bathymetry plus 

projected bathymetry) and close up views of the four sub-regions: (b) the west, (c) the 

north, (d) the south, and (e) the east. The transects 1P, 2P, 3P, and 4P only cover the 

projected bathymetry values. 
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Figure 3.12 Scatter plots and elevation profiles for transects 1P, 2P, 3P, and 4P over Lake 

Mead. 

 

Moreover, the A-E and E-V relationships from the projected portion of Lake Mead 

were also compared with those from the sedimentation survey (Figure 3.13). The 

underwater elevations and their associated areas and volumes were obtained from the 

look-up tables provided by the USBR (2011). Though the A-E and E-V relationships from 

the projected bathymetry have good correlations with the survey (with R2 values of 0.99 

and 1.00), they have relatively large vertical discrepancies (with an RMSE of elevation 

6.49 m, and an NRMSE of storage 17.92%). Moreover, by comparing the accumulative 

storage of the bathymetry with the capacity, the bottom elevation of the live storage (i.e., 

dead storage elevation) was detected at 263.00 m but was 272.80 m (with an absolute bias 

of 9.80 m) according to the sedimentation survey (USBR 2011). In general, considering 

the limitations and uncertainties of the extrapolation method, the performance of the 

projected bathymetry is acceptable. 
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Figure 3.13 Comparison of (a) the Area-Elevation (A-E) relationship and (b) the 

Elevation-Volume (E-V) relationship between the projected bathymetry and the 

sedimentation survey over Lake Mead. 

 

3.5. Discussion 

3.5.1. Accuracies and sources of uncertainty 

The reliability and accuracy of the remotely sensed bathymetry values depend on 

the quality of the SWO image and the A-E relationships. The SWO image provides the 

base map of a reservoir showing the initial spatial patterns. The bathymetry values were 

determined by applying the A-E relationship to the area associated with each SWO 

contour.  

The SWO dataset was a byproduct of the state-of-the-art GSW (Pekel et al. 2016), 

which used an expert system classifier to generate the monthly surface water maps from 

Landsat images from 1984 to 2015. To our knowledge, the GSW is the most reliable high-

resolution inland water product, given its extremely low omission and commission errors 

(less than 5% and 1%, respectively). Although Zhao and Gao (2018) reclassified the 

contaminated pixels (i.e., ‘no data’) to ‘water’ or ‘not water’ in the monthly GSW maps, 
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the GSW still has some limitations that need to be addressed. For the reservoirs located in 

the tropics, the number of clear satellite views is relatively small, as cloud cover is 

persistent during the monsoon season. As a result, the large reservoir area variations due 

to monsoon rainfall cannot be captured. In addition, the vegetation canopy is another issue 

for determining the exact water extent. These errors could have affected the accuracy of 

SWO in Pekel et al. (2016). However, because SWO is based on 32 years of Landsat 

classifications, with an average of 537 views globally, these effects on the contour patterns 

can be considered minor. 

Depending on the availability of the altimetry data, two different methods were 

adopted to generate the A-E relationships. Validations against in situ observations 

demonstrated the reliability of these derived A-E relationships. As the radar altimetry data 

(G-REALM and Hydroweb) were aggregated to a monthly time step to coincide with that 

of the GRSAD dataset, some of the errors may be attributed to the fact that the collection 

times of Landsat and radar altimetry do not exactly match within a given month. However, 

it is difficult to quantify this kind of uncertainty due to the different temporal resolutions 

of the various satellites involved. Whereas for the A-E relationships derived from ICESat, 

the advantage of long-term Landsat observations (1984–2015) was fully leveraged by 

projecting the ICESat tracks onto the SWO image. The high spatial resolution and 

accuracy of the ICESat data allow for the coverage of more reservoirs and result in high-

quality A-E relationships. To guarantee the quality of the bathymetry products, we only 

mapped the reservoirs with R2 values of A-E relationships greater than 0.5. 
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Compared to the remotely sensed portion, the projected portion of the bathymetry 

has relatively large uncertainties and errors. The performance of the extrapolation method 

heavily relies on the assumption that the shoreline slope can represent the underwater 

slope. However, this assumption is not applicable for some parts of a reservoir. 

Comprehensive evaluations of these extrapolation methods have been presented in Tseng 

et al. (2016) and Getirana et al. (2018). It should be noted that a 5x5 window was used to 

compute the average slope for extrapolation; thus, the extrapolation cannot be applied to 

the reservoirs that do not have sufficient dynamic area to derive the slope. Moreover, 

additional uncertainty can be introduced due to the inaccurate capacity values that were 

obtained using different methods and instruments, some of which may not be reliable. In 

addition, the bottom part of the reservoir bathymetry is often affected by sedimentation, 

which is very difficult to quantify (Schleiss et al. 2016). 

3.5.2. Advantages and limitations 

Airborne lidar survey has been an important tool for mapping bathymetry since the 

early 1970s (Muirhead and Cracknell 1986). This approach is relatively accurate but 

limited by water clarity and depth. Typically, a bathymetric lidar instrument can only 

collect data within three times the Secchi depth at the site (Irish and Lillycrop 1999). While 

a sedimentation survey can take measurements all the way to the bottom, it cannot access 

the shoreline area. Therefore, the common practice is to combine lidar survey data and 

sedimentation survey data to generate integrated bathymetry for lakes and reservoirs. 

However, this kind of bathymetry is very expensive, especially for lakes with relatively 

large areas. The high costs and the lack of data sharing are the main reasons that 
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bathymetry information is still relatively unused from a global perspective. Under this 

condition, our approach solely based on freely available satellite data has a unique 

advantage. Remotely sensed bathymetry can satisfy the needs of most applications since 

dynamic variations are generated from a long period from 1984 to 2015. Moreover, for 

reservoirs that have experienced dramatic changes in the last three decades (e.g., 

Tungabhadra and Gandhi Sagar), nearly full bathymetry can be achieved through remote 

sensing. Even though the projected bathymetry values have relatively large uncertainties 

and errors, the algorithm of Tsing et al. (2016) adopted in this study still outperformed 

other alternative approaches (Getirana et al. 2018).  

Even though some small reservoirs (e.g., Lake Success and Mehgaon Tola Tank) 

are included in this bathymetry dataset, the majority of these small reservoirs cannot be 

represented due to the limitations of altimetry data. Small water bodies cannot be detected 

by radar altimeters due to their low spatial resolutions. Although ICESat can capture much 

smaller lakes, its technical issues after launch significantly reduced its observation 

capabilities. However, the A-E relationships of the reservoirs from other studies can be 

adopted to extend the coverage of the bathymetry dataset. For example, Busker et al. 

(2019) evaluated the volume variations for 137 lakes and reservoirs at a global scale. This 

study included 66 reservoirs, 36 of which overlapped with our dataset and had similar data 

quality. For the other 30 reservoirs in Busker et al. (2019), 21 of them have R2 values of 

their A-E relationships greater than 0.5. Figure S23 in Appendix A compares the Area-

Volume relationships derived from the bathymetry (this study) with those of Yigzaw et al. 

(2018). Since our results are based on multi-satellite observations instead of hypothetical 
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bathymetries, they have better overall performance. Thus, the AVE curves derived in this 

study, representing more than half of the global storage capacity, can be used to 

supplement the dataset of Yigzaw et al. (2018).   

Nonetheless, this dataset has a few limitations that are worth noting. First, for 

applications that need accurate bathymetry maps (e.g., navigation), the projected 

bathymetry should be used with caution. Second, results for regulated natural lakes located 

in high-latitude areas have relatively low quality because they are occasionally covered 

with ice, which leads to low-quality area estimates. Third, the algorithm did not consider 

the effects of sedimentation on bathymetry, which could be significant for reservoirs 

whose dynamic storage fraction is small.   

3.5.3. Potential contributions 

The dataset from this study can benefit multiple applications across multiple 

disciplines. First, the high-quality A-E and E-V relationships can better represent the 

reservoirs in global hydrological models and Earth System Models (Yigzaw et al. 2018). 

Second, these A-E and E-V relationships can be combined with area estimations from 

satellite imagery or satellite altimetry data to generate long-term reservoir storage records. 

The capability to monitor global reservoir storage variations from space has been limited 

by the availability of radar and lidar altimetry data (Busker et al. 2019; Crétaux et al. 2011; 

Gao et al. 2012; Yao et al. 2019; Zhang et al. 2014). By introducing ICESat as an 

additional elevation data source for generating A-E relationships, many more reservoirs 

can be monitored. By applying these A-E relationships to satellite observations with high 

temporal resolutions, such as those from the Visible Infrared Imaging Radiometer Suite 
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(VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), reservoir 

storage variations can be estimated in near real-time. Third, the bathymetry maps can be 

embedded into the SRTM DEM dataset to replace the constant values in water covered 

areas, which only represent the water elevations during the acquisition time in 2000 (Li et 

al. 2019b). The DEM with the reservoir bathymetry represented can better support 

hydrology and hydraulic modeling, especially with regard to flood inundation. 

This algorithm is also applicable to large natural lakes whose elevations are 

available from the G-REALM, Hydroweb, and ICESat datasets. More importantly, this 

approach can be easily applied to data collected by the newly launched ICESat-2 

(September 2018). The Advanced Topographic Laser Altimeter System (ATLAS) 

onboard ICESat-2 is capable of capturing numerous small lakes and reservoirs, attributed 

to its improved along-track sampling interval (0.7 m), footprint diameter (17 m), and 

horizontal track spacing (as narrow as 2 km or less) (Markus et al. 2017). Thus, it is 

anticipated that the bathymetry dataset can be extended via the addition of thousands of 

relatively small reservoirs and lakes (Li et al. 2019b). In addition, the Surface Water and 

Ocean Topography (SWOT) mission (planned for launch in 2022), which can detect water 

bodies with areas greater than 250 m by 250 m (Biancamaria et al. 2016), will provide full 

global capabilities for bathymetry mapping. To date, small inland water bodies are 

normally ignored in almost all global processes and cycles (Downing 2010; Downing et 

al. 2006; Lehner and Döll 2004), even though they play important roles in various 

processes, such as climate regulation, carbon cycle, and biodiversity conservation 

(Downing 2010; Smith et al. 2005; Tranvik et al. 2009).  
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3.6. Conclusions 

In this study, an approach was presented to generate reservoir bathymetry by 

combining satellite altimetry and imagery data. We utilized multiple satellite altimetry 

datasets (ICESat, G-REALM, and Hydroweb) in combination with Landsat-based surface 

water datasets, such as SWO from GSW and monthly water area from GRSAD, to develop 

a consistent high-resolution 3-D bathymetry dataset for global reservoirs. Meanwhile, for 

the central part of each reservoir that could not be captured by Landsat, an extrapolation 

method was adopted to help achieve full bathymetry. The resulting dataset includes 347 

reservoirs with a total capacity of 3123 km3, representing 50% of the global reservoir 

capacity. Validation against the surveyed bathymetry over four reservoirs indicates the 

relatively high accuracy and reliability of the remotely sensed bathymetry values, with R2 

values ranging from 0.82 to 0.99 and RMSE values from 0.19 m to 1.65 m. An indirect 

validation, which compared the remotely sensed A-E and E-V relationships with those 

derived from in situ data for 16 reservoirs, also suggests good agreement. These 

relationships could be used to monitor the storage variations of global reservoirs, either 

from satellite altimetry or imagery data. Compared to remotely sensed bathymetry, 

projected bathymetry has relatively large uncertainties and errors; thus, it should be used 

with caution, especially for navigation. In addition to reservoirs, the bathymetry values for 

hundreds of global natural lakes can be obtained using this method. More importantly, this 

approach can be easily applied to the extensive data provided by ICESat-2, which will 

cover thousands of small lakes and reservoirs thanks to its high spatial resolution and 

dense ground tracks. This dataset fills a knowledge gap with regard to comprehensive 
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bathymetry information across spatial scales and provides important data for future studies 

involving many aspects of hydrological processes, biogeochemical cycles, and water 

resources management.  
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4. TRACKING THE STORAGE VARIATIONS OF GLOBAL RESERVOIRS FROM 

SPACE 

 

4.1. Introduction 

According to the United Nations World Water Development Report (WWAP 

2019), over 2 billion people are experiencing high water stress, and about 4 billion people 

are suffering severe water scarcity for more than one month each year. Due to increasing 

demand in the industrial and domestic divisions, it is expected that global water demand 

will continue raising at a nearly constant rate until 2050, contributing to a 20%–30% 

growth compared to the current water use. Moreover, the changing climate may even 

intensify this water stress and scarcity. Under this circumstance, reservoirs play an 

increasingly significant role in water management (e.g., irrigation, hydropower 

generation, water supply, and flood protection) (Biemans et al. 2011; Cooke et al. 2016; 

Grigg 1996; Plate 2002; Veldkamp et al. 2017; Votruba and Broža 1989). It was reported 

that about 30–40% of the global irrigated land relied on reservoirs, and approximately 

12% of the global large reservoirs are designed for water supply purposes (WCD 2000). 

According to the Renewables 2019 Global Status Report (Murdock et al. 2019), 

hydropower accounted for 60.3% of the renewable electricity production in 2018. 

Researchers also suggested that the water retained by global reservoirs has long term 

impacts on global and regional water cycles (Yigzaw et al. 2018; Zhou et al. 2016). 

However, because gauge observations for reservoir storage are typically not shared and 

reservoir operation rules are not publicly available, a historical long-term record of 
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reservoir storage will both improve our understanding about the roles of reservoirs in 

altering the hydrological cycle and help to calibrate/validate reservoir operation rules in 

the hydrological models.  

Satellite remote sensing provides an unprecedented alternative for monitoring 

reservoirs. Since the 1990s, satellite radar altimeters have been utilized to measure the 

water level for large lakes and reservoirs (Birkett 1995). To date, several databases have 

been developed to monitor the water level of inland waters at a global scale, for example, 

the Global Reservoir and Lake Monitor (G-REALM) (Birkett et al. 2011), the Hydroweb 

database (Crétaux et al. 2011), and the Database for Hydrological Time Series of Inland 

Waters (DAHITI) (Schwatke et al. 2015). Meanwhile, the global surface water area 

variations of lakes and reservoirs have been assessed from various satellite missions such 

as Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) (Donchyts et 

al. 2016; Khandelwal et al. 2017; Pekel et al. 2016; Yao et al. 2019; Zhao and Gao 2018). 

Recently, several studies have focused on generating consistent satellite-based reservoir 

storage estimations using elevation and area data collected from multiple missions. 

(Busker et al. 2019; Crétaux et al. 2011; Gao et al. 2012; Li et al. 2019a; Song et al. 2013; 

Yao et al. 2018; Zhang et al. 2014). For example, Gao et al. (2012) monitored storage 

values for 34 global reservoirs from 1992 to 2010 by combining water surface areas from 

MODIS with water elevations from satellite radar altimetry which represented 15% of the 

total global reservoir capacity. The Hydroweb database (http://hydroweb.theia-land.fr/) 

estimates the storage changes for about 60 large lakes and reservoirs since 1992, using 

multi-source satellite imagery (e.g., Modis, Landsat) and radar altimetry data (Crétaux et 

http://hydroweb.theia-land.fr/
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al. 2011). More recently, Busker et al. (2019) analyzed the volume variations between 

1984 and 2015 for 137 lakes and reservoirs at a global scale by combining water area 

values from the JRC Global Surface Water (GSW) dataset (Pekel et al. 2016) and elevation 

values from the DAHITI. However, these studies are limited to the spatial distribution and 

the number of reservoirs, which cannot fully represent the global storage variations.   

Meanwhile, global reservoir information has been incorporated into some 

databases, such as the Global Lakes and Wetlands Database (GLWD) (Lehner and Döll 

2004), the Global Reservoir and Dam database (GRanD) (Lehner et al. 2011a, b), and the 

HydroLAKES database (Messager et al. 2016).  While these databases provide attribute 

information and digital maps for global reservoirs, they only offer static values (e.g., area, 

elevation, shoreline length, and storage).  More recently, Yigzaw et al. (2018) selected 

five hypothesized reservoir geometric shapes to develop a global storage-area-depth data 

set for over 6,800 reservoirs, but storage variation data of these global reservoirs are still 

not available. 

With the ongoing climate change and the escalating water crisis, the response of 

reservoirs is still unclear across spatial scales. Previous studies mainly have used reservoir 

capacity values—but not the storage variations—to estimate the global reservoir water 

impoundments (Chao et al. 2008; Lettenmaier and Milly 2009). For example, Chao et al. 

(2008) reported that the cumulative impounded water by global reservoirs increased from 

under 1000 km3 in 1950 to about 10,800 km3 in 2007, reducing the magnitude of global 

sea level rise by 30 mm. Meanwhile, our knowledge of storage variations at the basin scale 

is still lacking. To our knowledge, Zhou et al. (2016) is the only study that focused on 
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analyzing global reservoir storage variations at the basin scale (32 global river basins), 

with the 166 largest reservoirs simulated using the Variable Infiltration Capacity (VIC) 

model from 1948 to 2010. However, the modeled storage values have large uncertainties 

and errors because it is challenging to accurately represent the reservoir operating rules in 

the models. In addition, they scaled the simulated reservoir storage values to the basin 

scale, which can introduce extra uncertainties. Moreover, the construction of reservoirs 

slowed down during the late 20th century (Lettenmaier and Milly 2009), with most new 

reservoirs in the developing countries of Asia, South America, and Africa (Zarfl et al. 

2015). Given this change, it is important to evaluate the performance and effects of the 

newly built reservoirs, which can provide valuable information for future planning and 

reservoir management.  

Therefore, long-term storage records for global reservoirs are critically needed for 

water management applications across scales. In this study, we used multi-source remote 

sensing data—in combination with an approved area-depth-storage database—to estimate 

the monthly storage variations for global 7245 reservoirs. Validation against the in situ 

data for 277 reservoirs indicates that the estimated storages have an overall good accuracy. 

Based on the individual storage records, we evaluated the storage variations and their 

responses to climate variability—using the El Niño-Southern Oscillation (ENSO) as an 

indicator—at the global, continental, and river basin scales. Furthermore, the impacts of 

newly constructed reservoirs in the 21st century were also assessed. Lastly, we analyzed 

the storage variations for reservoirs with different functions.  
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4.2. Data and Methods 

4.2.1. Data 

4.2.1.1. Global Reservoir and Dam Database (GRanD) 

GRanD (Lehner et al. 2011a, b) describes geospatially referenced dams and their 

associated reservoirs, most of which have a storage capacity of more than 0.1 km3. It also 

provides multiple attributes, such as dam height and length, reservoir area, and storage. 

GRanD v1.1 contains 6,862 records with a cumulative reservoir storage capacity of 6,197 

km3. The recently updated GRanD v1.3 extends the database by 458 dams (7320 in total), 

which increases the total capacity to 6811 km3. In addition, it integrates some changes and 

corrections to the attribute information and updates many reservoir polygons of the 

previous versions. It should be noted that 70 dams do not have an associated reservoir so 

that the GRanD v1.3 contains 7250 reservoir polygons.  

4.2.1.2. Global Reservoir Surface Area Dataset (GRSAD) 

Based on Landsat imageries acquired from 1984 to 2015, GSW dataset provides 

Earth’s surface water maps at a 30 m high resolution (Pekel et al. 2016). However, the 

water area may be underestimated because of the effects of clouds contamination and 

Landsat-7’s Scan Line Corrector (SLC) failure. GRSAD (Zhao and Gao 2018) corrected 

the underestimations and estimated the monthly water area for each reservoir included in 

GRanD v1.1. Recently, with GRanD updated to version 1.3 and GSW dataset extended to 

the year of 2018, GRSAD was also updated accordingly to a new version which provides 

surface water areas for 7245 reservoirs from 1984 to 2018. It should be noted that five 

very small reservoirs (with area values less than 1 km2) were not included in GRSAD 
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because they have dried up and their surface water areas were not available from GSW 

dataset. The estimated areas were applied to the Area-Storage (A-V) relationships to 

generate the storage time series. Although Landsat observations for areas such as the 

United States and Australia are sufficient for seasonal and interannual evaluations from 

the early 1980s onward, the temporal coverage for other regions is relatively low before 

the launch of Landsat-7 in 1999 (Arvidson et al. 2001; Pickens et al. 2020; Wulder et al. 

2016). Therefore, the seasonal and interannual variations of reservoir storage were 

analyzed starting from 1999 in this study.  

4.2.1.3. Global Reservoir Bathymetry Dataset (GRBD) 

GRBD (Li et al. 2020) includes high-resolution bathymetric maps for 347 global 

reservoirs, which were generated from multi-source satellite datasets. To generate the 

bathymetry, the Surface Water Occurrence (SWO) image provided by GSW was used as 

the base map. Two methods were adopted to generate the A-E relationships according to 

the altimetry data source—lidar altimetry data (i.e., Ice, Cloud, and land Elevation 

Satellite (ICESat)) and radar altimetry datasets (i.e., G-REALM and Hydroweb datasets). 

Then, the A-E relationship was in turn applied to the SWO image to obtain the bathymetry 

values. From the 3-D bathymetric maps, the Area-Volume-Elevation (AVE) relationships 

can be derived, which have been validated to have high accuracy and reliability (Li et al. 

2020).  

4.2.2. Methods 

In this study, the monthly storage time series from 1999 to 2018 was generated by 

applying GRSAD area estimations to the A-V relationships for 7245 reservoirs (from 
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GRanD v 1.3).  The A-V relationships were adopted from two sources: the global 

bathymetry dataset (for 347 reservoirs) by Li et al. (2020), and the modified simulation 

method of Yigzaw et al. (2018) (for the remaining 6898 reservoirs). 

4.2.2.1. Storage estimation using the A-V relationships from the reservoir 

bathymetry dataset 

From the 3-D reservoir bathymetry information, the storage at a given area value 

(𝐴) can be obtained by integration. First, the corresponding elevation can be calculated 

from the A-E relationship, which is regarded as the baseline contour. Then, the storage 

between the baseline and elevation at capacity can be obtained, which is subtracted from 

the storage capacity to calculate the storage value (𝑉) corresponding to 𝐴 (equation (4.1)).   

𝑉 = 𝑉𝑐 −  ∑
(ℎ𝑖+1 −  ℎ𝑖)(𝐴𝑖+1 +  𝐴𝑖)

2

𝑛−1

𝑖=1

                                   (4.1)  

where 𝑛 is the number of contours between the elevation at capacity and the elevation 

associated with the observed area (i.e., the number of contours between ℎ𝑐 and ℎ) for a 

given month; 𝐴𝑖 is the surface area enclosed by the ith contour; and ℎ𝑖 is the elevation of 

the ith contour.  

4.2.2.2. Storage estimation from simulated A-V relationships 

In this study, we modified the simulation method developed by Yigzaw et al. 

(2018) in the following ways: First, we improved the representation of reservoir area at 

capacity. Yigzaw et al. (2018) assumed that the polygon area represented the area that 

reached the storage capacity. However, the reservoir polygons were mostly generated 

from the static Shuttle Radar Topography Mission (SRTM) DEM, which may have 
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occurred in a low fill or dry season for a given reservoir. To minimize this kind of 

uncertainty, we calculated the 95th percentile area value for each reservoir from the 

GRSAD dataset, and compared it with the areas provided in GRanD. The larger one was 

selected to represent the area at capacity. Second, Yigzaw et al. (2018) simulated the 

surface shapes of reservoirs. However, it is difficult to simulate the surface shapes due to 

their complexity. Therefore, we combined the dam profile and bottom shapes to represent 

the surface area. Specifically, we selected three possible bottom shapes (i.e., parabolic, 

linear, and square root), in combination with four dam profile shapes (i.e., prism, bowl, 

wedge, and concave wedge), to obtain twelve reservoir geometries. This provides more 

options than the method by Yigzaw et al. (2018), which selected five geometries with a 

parabolic bottom. The schematic of a reservoir geometry with a parabolic bottom and a 

prism profile is shown in Figure 4.1a, and the selected bottom and profile shapes are 

demonstrated in Figure 4.1b.  

The storage estimation using simulated reservoir geometry is summarized in the 

following steps:  

Step 1. Determining the optimal reservoir geometry 

For each reservoir, the total storage was calculated for all of the twelve possible 

geometries (Figure 4.1b) by integrating the area with respect to depth. The geometry with 

the estimated total storage closest to the reported capacity value in GRanD was selected 

as the optimal geometry.  

In Figure 4.1a, the reservoir geometry with a parabolic bottom and a prism profile 

is selected to demonstrate the simulation process. As shown in Figure 4.1c, 𝐴0 represents 
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the area at capacity that is associated with a depth of 𝐷0, which was derived from the dam 

height 𝐻 (𝐷0 = 0.95 𝐻). It should be noted that for reservoirs with no available dam 

heights, 𝐷0 was substituted by the average depth, which was calculated using the storage 

and area values at capacity. Then, we defined a random layer with an area of 𝐴𝑖, which is 

𝑧 meters below the top layer. Based on the profile and bottom shapes, 𝐴𝑖 can be expressed 

as a function of 𝑧 (equation (4.2)).    

𝐴𝑖 = 𝐴0√1 −
𝑧

𝐷0
                                                           (4.2) 

The estimated total storage (𝑉0) was calculated by integrating the area (𝐴𝑖) with 

respect to the depth using equation (4.3).  

𝑉0 =  ∫ 𝐴0√1 −
𝑧

𝐷0

𝐷

0

  𝑑𝑧 =  
2

3
 𝐴0𝐷0                                      (4.3) 

Similarly, the estimated total storage (𝑉0) values for the other geometries were 

obtained using the equations in Table 4.1. Then, the reported storage capacity value (𝑉𝑐) 

was compared with the estimated total storages, and the geometry with the closest 

estimated value was selected. It should be noted that some geometries have the same 

estimated storage values, such as a prism profile with a linear bottom and a bowl profile 

with a parabolic bottom (Table 4.1). In this case, either one was selected, but the storage 

calculation (Step 2) was not affected by the selection of geometry.     

Step 2. Generate the storage time series from the area values 

For a given area value (𝐴) from GRSAD, equations (4.2) and (4.3) were combined 

to calculate its corresponding storage value (𝑉) from equation (4.4).  
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𝑉 =
2

3
𝐴𝐷 =  

2

3
 𝐴 (𝐷0 − 𝑧′) =

2

3
𝐴𝐷0(

𝐴

𝐴0
)2                                     (4.4) 

where 𝐷 is the depth associated with the layer of 𝐴; and 𝑧′ = 𝐷0 − 𝐷, which is the vertical 

distance between the layers 𝐴  and 𝐴0 . The storage time series was then obtained by 

applying the area values to equation (4.4). The storage equations for other geometries are 

summarized in Table 4.1. 
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Figure 4.1 (a) A schematic of a reservoir geometry with a parabolic bottom and a prism 

profile, (b) all of the selected bottom and profile shapes, and (c) the parameters that 

correspond to the geometry in (a).   
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Table 4.1 Summary of simulated area and storage equations for each of the geometry 

combinations 

 Parabolic  Linear Square root  

Prism 

𝐴𝑖 = 𝐴0√1 −
𝑧

𝐷0
   

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

 
2

3
 𝐴0𝐷0 

𝑉 =
2

3
𝐴𝐷 =

2

3
𝐴𝐷0(

𝐴

𝐴0
)2     

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
) 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
1

2
  𝐴0 𝐷0 

𝑉 =
1

2
𝐴𝐷 =

1

2
𝐴𝐷0

𝐴

𝐴0
 

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
)2 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
1

3
  𝐴0 𝐷0 

𝑉 =
1

3
𝐴𝐷 =

1

3
𝐴𝐷0(

𝐴

𝐴0
)

1
2 

Bowl 

𝐴𝑖 =  𝐴0 √1 −
𝑧

𝐷0
 √1 −

𝑧

𝐷0
 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
1

2
  𝐴0 𝐷0 

𝑉 =
1

2
𝐴𝐷 =

1

2
𝐴𝐷0

𝐴

𝐴0
 

𝐴𝑖 =  𝐴0(1 −
𝑧

𝐷0
) √1 −

𝑧

𝐷0
  

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
2

5
  𝐴0 𝐷0 

𝑉 =
2

5
𝐴𝐷 =

2

5
𝐴𝐷0(

𝐴

𝐴0
)

2
3 

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
)2 √1 −

𝑧

𝐷0
  

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
2

7
  𝐴0 𝐷0 

𝑉 =
2

7
𝐴𝐷 =

2

7
𝐴𝐷0(

𝐴

𝐴0
)

2
5 

Wedge 

𝐴𝑖 =  𝐴0 √1 −
𝑧

𝐷0
 (1 −

𝑧

𝐷0
) 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
2

5
  𝐴0 𝐷0 

𝑉 =
2

5
𝐴𝐷 =

2

5
𝐴𝐷0(

𝐴

𝐴0
)

2
3 

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
)(1 −

𝑧

𝐷0
) 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
1

3
  𝐴0 𝐷0 

𝑉 =
1

3
𝐴𝐷 =

1

3
𝐴𝐷0(

𝐴

𝐴0
)

1
2 

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
)2(1 −

𝑧

𝐷0
) 

𝑉0 =  ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

 
1

4
  𝐴0 𝐷0 

𝑉 =
1

4
𝐴𝐷 =

1

4
𝐴𝐷0(

𝐴

𝐴0
)

1
3 

Concave 

wedge 

𝐴𝑖 =  𝐴0 √1 −
𝑧

𝐷0
 (1 −

𝑧

𝐷0
)2 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
2

7
  𝐴0 𝐷0 

𝑉 =
2

7
𝐴𝐷 =

2

7
𝐴𝐷0(

𝐴

𝐴0
)

2
5 

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
) (1 −

𝑧

𝐷0
)2 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
1

4
  𝐴0 𝐷0 

𝑉 =
1

4
𝐴𝐷 =

1

4
𝐴𝐷0(

𝐴

𝐴0
)

1
3 

𝐴𝑖 =  𝐴0 (1 −
𝑧

𝐷0
)2 (1 −

𝑧

𝐷0
)2 

𝑉0 = ∫ 𝐴𝑖  𝑑𝑧 =
𝐷0

0

  
1

5
  𝐴0 𝐷0 

𝑉 =
1

5
𝐴𝐷 =

1

5
𝐴𝐷0(

𝐴

𝐴0
)

1
4 

 

4.2.2.3. Error metrics 

The coefficients of determination (R2), the mean bias errors (MBE), and the 

normalized root-mean-square errors (NRMSE) were used as the error metrics to evaluate 

the storage estimations. The MBE and NRMSE are defined in equations (4.5) and (4.6), 

respectively.  

MBE =  
∑ (𝑉̂𝑖 −  𝑉𝑖)

𝑛
𝑖=1

𝑛
                                               (4.5) 
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NRMSE =  
√∑ (𝑉̂𝑖 −  𝑉𝑖)2𝑛

𝑖=1
𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
× 100%                                     (4.6) 

where 𝑉̂𝑖  and 𝑉𝑖 represent the estimated and in situ storage values on a monthly basis, n is 

the number of pairs, and  𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the maximum and minimum in situ storage 

values. 

4.3. Results 

4.3.1. Evaluation of storage estimations 

In this study, we selected 49 reservoirs (United States: 22, Australia: 5, and India: 

22) to validate the storage results using the A-V relationships from the bathymetry dataset, 

and to compare the performance from the two storage estimation methods. A total of 228 

reservoirs from the United States and Australia were further used to evaluate the 

performance of the simulation method. The in situ data were acquired from the United 

States Geological Survey (USGS), the United States Bureau of Recreation (USBR), the 

United States Army Corps of Engineers (USACE), the California Data Exchange Center 

(CDEC),  the Australia Bureau of Meteorology (BOM), and the India Water Resources 

Information System (WRIS). Because the in situ storages for reservoirs in the United 

States and Australia were from 1984 to 2015 and the Landsat observations for those 

reservoirs were available over this period, all these in situ values were used for validation. 

On the other hand, the gauge observations from India were generally from 2000 to 2018 

(except some built after 2000).  The validation results are shown separately according to 

the period of the in situ data. Figure 4.2 shows the comparison of the estimated storages 

(from the two methods) with the in situ values for the reservoirs in the United States and 



 

97 

 

Australia, and the corresponding statistics are summarized in Table 4.2. Figure 4.3 and 

Table 4.3 indicate the validation results for the reservoirs in India.  

According to Figure 4.2, the estimated storage values are in overall good 

agreement with the observations. For the storage estimations using the bathymetry-based 

A-V relationships, the R2, MBE, and NRMSE values range from 0.41 to 0.99, -1.32 km3 

to 0.63 km3, and 4.40% to 25.90%, respectively. The results based on the simulation 

method have R2, MBE, and NRMSE values range from 0.41 to 0.99, -1.84 km3 to 1.40 

km3, and 6.26% to 58.65%, respectively. It should be noted that the storage estimates from 

the simulation method have a relatively large bias in some cases (such as with the Clear 

Lake Reservoir and the Navajo Reservoir). By comparison, the bathymetry-based method 

has a more reliable performance. Although only 347 reservoirs have bathymetry data, they 

represent a total capacity of 3217 km3—accounting for 46.87% of total global capacity 

(according to GRanD v1.3), which can help reduce the overall uncertainty. 
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Figure 4.2 Comparison of storage estimations against in situ values for reservoirs in the 

United States and Australia. 

 

 

 

 

 

 

 



 

99 

 

Table 4.2 Validation results over the reservoirs in the United States and Australia. 
GRanD 

ID 

Reservoir  

name 
Ctry 

aCap. 

(km3) 

R2 MBE (km3) NRMSE 
bBathy. cSIM. Bathy. SIM. Bathy. SIM. 

119 Clear Lake  U.S. 0.56 0.93 0.90 -0.0052 -0.073 9.17% 23.42% 

131 Clair Engle  U.S. 3.02 0.89 0.88 -0.087 -0.27 10.48% 15.52% 

138 Almanor U.S. 1.61 0.61 0.61 0.046 0.18 16.10% 32.44% 

231 Nacimiento U.S. 0.47 0.89 0.87 0.0070 -0.015 9.34% 11.23% 

307 Fort Peck U.S. 22.77 0.96 0.96 0.63 -0.68 6.27% 8.67% 

597 Powell U.S. 30.00 0.98 0.98 0.53 -1.60 4.74% 10.86% 

601 Navajo  U.S. 2.11 0.94 0.95 0.097 -0.68 13.25% 58.65% 

605 Kaweah U.S. 0.23 0.73 0.71 0.0063 0.0034 13.25% 13.60% 

609 Success  U.S. 0.10 0.82 0.80 0.0036 -0.0020 9.72% 10.76% 

610 Mead U.S. 34.07 0.99 0.99 0.094 1.40 4.40% 8.34% 

640 Horseshoe  U.S. 0.13 0.73 0.68 0.014 -0.0002 17.74% 17.79% 

656 San Carlos  U.S. 1.12 0.90 0.90 0.067 0.24 13.86% 22.23% 

669 Morena  U.S. 0.062 0.98 0.97 -0.0012 -0.0011 6.54% 6.26% 

753 Sakakawea U.S. 29.38 0.90 0.89 -1.32 -1.05 11.43% 11.33% 

870 Oahe U.S. 28.35 0.92 0.92 -0.86 -1.84 9.87% 14.09% 

1230 Cedar Creek  U.S. 0.80 0.44 0.44 -0.062 -0.022 25.90% 18.77% 

1263 Twin Buttes  U.S. 0.23 0.91 0.93 0.0069 0.0019 10.36% 7.66% 

1269 Toledo Bend  U.S. 5.52 0.41 0.41 0.0049 -0.023 15.94% 15.83% 

1275 Sam Rayburn  U.S. 3.55 0.65 0.65 -0.026 -0.17 10.75% 12.79% 

1277 
Stillhouse 

Hollow  
U.S. 0.28 0.57 0.53 -0.011 -0.036 8.21% 10.09% 

1296 Somerville  U.S. 0.62 0.61 0.57 0.029 -0.046 8.79% 12.17% 

1317 Corpus Christi U.S. 0.32 0.81 0.79 0.0041 0.066 12.55% 26.22% 

6628 Hume  AU. 3.04 0.93 0.92 -0.063 0.079 8.87% 10.44% 

6637 Dartmouth AU. 3.86 0.93 0.93 0.18 -0.14 9.71% 9.34% 

6647 Cairn Curran  AU. 0.15 0.95 0.94 0.0042 -0.003 10.74% 8.66% 

6653 Eildon AU. 3.39 0.92 0.93 0.075 0.17 9.27% 9.98% 

6733 Copeton AU. 1.36 0.94 0.94 -0.038 0.056 9.75% 8.22% 

Average 0.82 0.81 -0.025 -0.17 11.00% 15.38% 

aCap. represents the reservoir storage capacity value, bBathy. represents the results from the bathymetry-

based method, and cSIM. represents the results from the simulation method. 

 

Similarly, the validations over the Indian reservoirs also show encouraging results. 

For the storage estimations from the bathymetry, the R2, MBE, and NRMSE range from 

0.67 to 0.95, -0.16 km3 to 0.51 km3, and 6.96% to 30.80%, respectively. While for the 

simulation method, the R2, MBE, and NRMSE range from 0.67 to 0.95, -0.11 km3 to 4.92 
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km3, and 9.00% to 127.73%, respectively. It is obvious that the simulation method has a 

large bias in some reservoirs, for example, the Rana Pratap Sagar, Yeleru, and Nagarjuna 

Sagar, with NRMSE values of 127.73%, 87.14%, and 73.09%, respectively. However, the 

simulated storage values for these reservoirs have good correlations with the in situ data, 

with R2 values of 0.80, 0.89, and 0.81, respectively. Moreover, the simulation method has 

an overall overestimation with positive MBE values for all the reservoirs except Tawa.  

 
Figure 4.3 Comparison of storage estimations against in situ values for reservoirs in India. 
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Table 4.3 Validation results over the reservoirs in India. 
GRanD 

ID 

Reservoir  

name 

aCap. 

(km3) 

R2 MBE NRMSE 
bBathy. cSIM. Bathy. SIM. Bathy. SIM. 

4735 Bhadar 0.19 0.78 0.78 0.0076 0.050 18.78% 33.63% 

4739 Ukai 6.62 0.86 0.86 0.51 1.91 13.60% 31.50% 

4773 Ghatprabha 1.39 0.67 0.68 0.31 0.042 30.80% 20.34% 

4795 Tehri 2.62 0.79 0.78 0.29 0.58 19.67% 29.29% 

4826 Matatila 0.71 0.68 0.67 0.030 0.18 17.39% 31.32% 

4836 Rana Pratap Sagar 1.44 0.80 0.80 0.058 1.74 13.32% 127.73% 

4843 Gandhi Sagar 6.83 0.92 0.91 0.35 0.94 10.74% 17.32% 

4859 Bansagar 5.17 0.95 0.95 -0.051 0.071 6.96% 12.10% 

4881 Bargi 3.18 0.85 0.84 -0.021 0.64 12.29% 25.25% 

4885 Tawa 1.94 0.82 0.82 -0.0074 -0.11 15.00% 16.51% 

4898 Hirakud 5.38 0.80 0.79 0.0037 1.76 15.82% 36.46% 

4938 Yeldari 0.82 0.90 0.88 0.078 0.20 13.57% 27.05% 

4942 Jayakwadi 2.17 0.87 0.87 -0.074 0.65 12.01% 31.85% 

4943 Indrawati 1.46 0.84 0.84 0.13 1.01 14.38% 70.76% 

4946 Sriram Sagar 2.30 0.73 0.71 0.31 0.23 22.36% 21.10% 

4978 Yeleru 0.51 0.90 0.89 -0.00046 0.35 10.38% 87.14% 

4985 Nagarjuna Sagar 6.84 0.82 0.81 0.13 4.92 12.58% 73.09% 

4992 Malaprabha 0.97 0.76 0.75 0.08 0.15 15.83% 20.53% 

4994 Tungabhadra 3.28 0.75 0.77 0.48 0.36 22.16% 19.86% 

4997 Somasila 1.99 0.82 0.80 0.12 0.022 13.64% 14.91% 

5000 Vani Vilasa Sagara 0.80 0.91 0.89 0.13 0.021 22.19% 9.00% 

5009 Krishna Raja Sagara 1.16 0.82 0.81 -0.16 0.13 20.13% 18.61% 

Average 0.82 0.81 0.12 0.72 16.07% 35.24% 

aCap. represents the reservoir storage capacity value, bBathy. represents the results from the bathymetry-

based method, and cSIM. represents the results from the simulation method. 

 

To further validate the simulation method, we selected 228 reservoirs from the 

United States and Australia to compare the simulated storages with the in situ values 

(Figure 4.4). The total simulated storages of these reservoirs agree well with the 

counterpart gauge observations from 1984 to 2015 (Figure 4.4a), with an R2 value of 0.96 

(Figure 4.4b). In addition, we compared the monthly mean value of each reservoir during 

this period, which shows a very good agreement (Figure 4.4c). Therefore, it can be 
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indicated that the simulated storage values are overall accurate and reliable, which laid a 

solid foundation for evaluating the variations across spatial scales.  

 
Figure 4.4 Comparison of the simulated storage values with the in situ observations from 

1984 to 2015 over 228 reservoirs in the United States and Australia: (a) the total monthly 

storage time series, (b) the corresponding scatter plots of the storage pairs in (a), and (c) 

comparison of monthly mean storages for these reservoirs. 

 

The above mentioned 277 reservoirs were used to evaluate the uncertainty of the 

storage dataset. For each month from 1984 to 2015, the total estimated storage of these 

277 reservoirs was compared with the total in situ storage to calculate the NRMSE (i.e., 

4.15%) to represent the overall uncertainty of the dataset. It should be noted that this 
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overall NRMSE value is smaller than the averaged NRMSE value (22.45%) of the 277 

individual reservoirs. This is due to the offset of overestimation and underestimation for 

these 277 validated reservoirs. Because this study focused on the evaluation of storage 

variations across large scales (basin, continental, and global), it is reasonable to use 4.15% 

to represent the uncertainty of the storage estimations.    

Because the simulation method relies on the inputs of dam height and the reservoir 

area and storage at capacity, the reliability of these attributes in GRanD determines the 

accuracy. The discrepancies of these inputs can explain the large bias observed in some 

reservoirs. However, for most of the reservoirs, the simulated storages agree well with the 

in situ observations. It is worth noting that these large biases have minor effects on the 

evaluation of change rate as the simulated storages have good correlations with the in situ 

values. For example, simulated storages resulted in a large error in Rana Pratap Sagar 

Reservoir with an NRMSE of 127.73%, but they correlated well with the in situ data with 

an R2 value of 0.80. The change rate derived from the simulated time series is 0.006 

km3/yr, which is consistent with the value calculated from the in situ data (0.005 km3/yr).  

Overall, the simulation method performed better in the United States and Australia 

(with an average NRMSE of 15.38%) than that in India (with an average NRMSE of 

35.24%). This is because the storage capacity values from GRanD are larger than those 

from India-WRIS (Figure S1a in Appendix B). According to the GRanD technical report, 

the storage capacity values in GRanD can be “maximum capacity”, “gross capacity”, 

“normal capacity”, “live capacity” or “minimum capacity”, and they are not distinguished 

in the dataset. While the capacity values provided by India-WRIS are “live capacity” and 
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the in situ observations are also live storages. The bias between the capacity values can 

explain the relatively large error of the simulation method. For example, the storage 

capacity value of Rana Pratap Sagar Reservoir from GRanD (2.90 km3) is twice as much 

as the capacity from India-WRIS (1.436 km3), which caused a large error (with an NRMSE 

of 127.73%). While for the reservoirs in the United States and Australia, the storage 

capacity values from GRanD have a good agreement with that from water management 

agencies (Figure S1b in Appendix B). Moreover, the comparison of storage capacity 

values also indicates that the attributes provided by GRanD are reliable.  

4.3.2. Storage variations across spatial scales 

The reservoir storage variations were first examined at the global and continental 

scales, with the time series and the associated statistics shown in Figure 4.5 and Table 4.4. 

In addition to the absolute storage, we also examined the reservoir normalized storage—

which is defined as the ratio of the actual storage over the storage capacity—to evaluate 

the relative storage variations. Similarly, the normalized storage at the global (or 

continental) scale is defined as the ratio of the total estimated storage to the corresponding 

total capacity. The mean values were generated from the monthly estimations from 1999 

to 2018, and the storage trends indicate the average annual change.  

The global storage time series shows a nearly continuous increase during the last 

two decades (Figure 4.5), with a mean value of 4351.98 ± 181.35 km3 (mean ± std) and a 

growth rate of 27.44 ± 0.96 km3/yr (Table 4.4). However, the normalized storage has a 

clear decreasing trend with a rate of -9.08 ± 0.57 10-4/yr. Asia holds the most number of 

reservoirs  (2352) and the highest storage capacity (2382.57 km3), which also experienced 
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the most rapid increase with a growth of 20.53 ± 0.73 km3/yr, accounting for 74.82% of 

the global trend.  In addition, Asia has a similar growth pattern as that of the entire globe 

(with an R2 value of 0.89). However, the normalized storage in Asia does not show a 

significant trend. Compared to Asia, North America contains a similar number of 

reservoirs (2284) but with less capacity (1602.57 km3) and a much slower expansion (3.07 

± 0.33 km3/yr). However, its normalized storage shows a significant increase (8.84 ± 2.18 

10-4/yr), which makes it the only continent with an increasing trend. Africa and South 

America have similar storage capacities, which account for 15.59% and 14.07% of the 

global capacity, respectively. Additionally, their variations show consistent trends with 

regard to increasing storage (1.06 ± 0.33 and 1.50 ± 0.48 km3/yr) but decreasing 

normalized storages (-11.02 ± 3.31 and -18.72 ± 5.08 10-4/yr). The storage in Europe is 

relatively stable, with a low change rate (0.51 ± 0.09 km3/yr). Although Oceania only 

accounts for 1.45% of global storage capacity, its storage has the largest interannual 

variation amongst all of the continents.  

 



 

106 

 

 
Figure 4.5 Monthly reservoir storage and normalized storage variations at the global and 

continental scales from 1999 to 2018.  The error bars represent the storage uncertainty in 

terms of NRMSE (4.15%). Shading illustrates the 95% confidence intervals for the best-

fit linear trends. 
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Table 4.4 Statistics of global and continental storage variations from 1999 to 2018 

 
Globe Asia 

North 

America 
Africa 

South 

America 
Europe Oceania 

# reservoirs 7245 2352 2284 752 341 1265 251 

Capacity (km3) 6653.37 2382.57 1602.57 1037.02 935.92 598.88 96.41 

Ave. capacity (km3) 0.92 1.01 0.70 1.38 2.74 0.47 0.38 

Mean storage (km3) 

4351.98 ± 

181.35 

1304.05 ± 

140.11 

1211.23 ± 

34.38 

737.96 ±  

29.73 

602.17 ±  

44.93 

437.24 ±  

8.62 

59.32 ±  

6.07 

Mean normalized 

storage 

0.695 ± 

0.014 

0.627 ± 

0.029 

0.761 ± 

0.020 

0.739 ± 

0.030 

0.667 ± 

0.047 

0.735 ± 

0.014 

0.616 ±  

0.063 

Storage trend 

(km3/yr) 

27.44 ± 

0.96 

p < 0.001 

20.53 ± 

0.73 

p < 0.001 

3.07 ± 

0.33 

p < 0.001 

1.06 ± 

0.33 

p < 0.001 

1.50 ± 

0.48 

p < 0.001 

0.51 ± 

0.09 

p < 0.001 

0.077 ± 

0.073 

p = 0.29 

Normalized storage 

trend (10-4/yr) 

-5.94 ± 

1.57 

p < 0.001 

-1.11 ± 

3.22 

p = 0.73 

8.84 ± 

2.18 

p < 0.001 

-11.02 ± 

3.31 

p < 0.001 

-18.72 ± 

5.08 

p < 0.001 

0.23 ± 

1.57 

p = 0.88 

3.11 ± 

7.08 

p = 0.66 

All uncertainties are standard deviations. Ave. capacity represents the averaged storage capacity. Mean 

storage and normalized storage were derived from the monthly observations from 1999 to 2018. 

 

The storage variations at the river basin scale are also evaluated (Figure 4.6). To 

reduce the uncertainties, only basins with more than five reservoirs were considered. 

Figure 4.6 shows the basins with significant trends (p < 0.01) of storage and normalized 

storage. According to Figure 4.6a, Asian basins have the most storage growth, while 

basins in southern Africa have suffered from storage losses. The highest increasing and 

decreasing rates are from the Yangtze (4.79 km3/yr) and Colorado (-1.10 km3/yr) river 

basins. Yangtze basin was reported to face the highest dam construction activity (e.g., 

Three Gorges Dam) in Asia (Zarfl et al. 2015). The rapid decrease in the Colorado basin 

can be explained by a historic, extended drought since 2000 (Udall and Overpeck 2017) 

and the increasing water use (Kuhn and Fleck 2019). According to Figure 4.6b, fewer 

basins in Asia show significant increases in normalized storage compared to that of 

storage, and the increasing rate is not very high. Moreover, it is observed that the majority 

of South America and Africa experienced decreasing normalized storages. 
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Figure 4.6 Significant treads (p < 0.01) of (a) storage and (b) normalized storage at the 

basin scale. To reduce uncertainty, only basins containing more than five reservoirs were 

considered. 

 

4.3.3. Effects of newly constructed reservoirs in the 21st century 

In this study, the effects of the reservoirs constructed after 1999 (hereafter referred 

to as “new reservoirs”) were evaluated by comparison with those constructed before 1999 

(hereafter referred to as “old reservoirs”). Figure 4.7 shows the storage and normalized 

storage time series for the old reservoirs at global and continental scales. At the global 
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scale, both the storage and normalized storage for the old reservoirs are relatively stable 

(i.e., without significant trends). This suggests that the increased storage and decreased 

normalized storage trends identified in Figure 4.5 are mainly attributed to the new 

reservoirs.  

 
Figure 4.7 Monthly reservoir storage and normalized storage variations for old reservoirs 

at the global and continental scales from 1999 to 2018. The error bar represents the storage 

uncertainty in terms of NRMSE (4.15%). Shading illustrates 95% confidence intervals for 

the best-fit linear trends. 

 

At the continental scale, by comparing the time series (Figure 4.5 vs Figure 4.7), 

Asia, Africa, and South America are found to be significantly influenced by new 
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reservoirs. Moreover, new reservoirs in these three continents account for the top three—

71.44%, 14.29%, and 7.32%, respectively, in terms of storage capacity (Table 4.5). 

Table 4.5 Statistics of old and new reservoirs at the global and continental scales 

 
Globe Asia 

North 

America 
Africa 

South 

America 
Europe Oceania 

Reservoirs constructed before 1999      

# reservoirs  6737 1990 2261 715 282 1240 249 

Capacity (km3) 5837.66  1799.83 1559.39 977.34 819.34 585.75 96.00 

Ave. capacity (km3) 0.87 0.90 0.69 1.37 2.91 0.47 0.39 

Mean storage (km3) 
4103.17 ± 

79.58 

1156.68 ± 

47.04 

1185.35 ± 

32.01 

723.90 ±  

28.72 

545.01 ±  

41.31 

433.07 ±  

7.90 

59.16 ±  

6.03 

Mean normalized 

storage 

0.703 ± 

0.014 

0.643 ± 

0.026 

0.760 ± 

0.021 

0.741 ± 

0.029 

0.665 ± 

0.050 

0.739 ± 

0.013 

0.616 ± 

0.063 

Storage trend 

(km3/yr) 

-0.44 ± 

0.89 

p = 0.62 

1.05 ± 

0.52 

p < 0.05 

1.44 ± 

0.35 

p < 0.001 

-0.98 ± 

0.32 

p < 0.005 

-2.16 ± 

0.44 

p < 0.001 

0.098 ± 

0.089 

p = 0.27 

0.052 ± 

0.072 

p = 0.47 

Normalized storage 

trend (10-4/yr) 

-0.66 ± 

1.53 

p = 0.67 

5.56 ± 

2.91 

p = 0.057 

9.02 ± 

2.23 

p < 0.001 

-9.43 ± 

3.24 

p < 0.005 

-24.41 ± 

5.44 

p < 0.001 

1.83 ± 

1.51 

p = 0.23 

2.18 ± 

7.05 

p = 0.76 

Reservoirs constructed after 1999       

# reservoirs 508 362 23 37 59 25 2 

Capacity (km3) 815.71 582.74 43.18 59.68 116.58 13.13 0.41 

Ave. capacity (km3) 1.61 1.61 1.88 1.61 1.98 0.53 0.21 

All uncertainties are standard deviations. Ave. capacity represents the averaged storage capacity. Mean 

storage and normalized storage were derived from the monthly observations from 1999 to 2018.  

 

Figure 4.8 compares the monthly normalized storage values of new and old 

reservoirs, along with the accumulative storage capacity for new reservoirs. It should be 

noted that the new reservoirs in GRanD v1.3 were primarily constructed between 1999 

and 2016. It is apparent that the normalized storage of new reservoirs is much lower (with 

larger seasonal variations) than that of old reservoirs. It is found that new reservoirs had a 

large variation of normalized storage from 1999 to 2003 because their accumulative 

capacity during that time was relatively small. Their normalized storage was relatively 

stable from 2004 and 2015, and it started to converge to that of the old reservoirs from 

2016, which is mainly attributed to the storage increase in Asia. Although the annual peak 

normalized storage of new reservoirs approached that of the old reservoirs from 2016 
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onward, the new reservoirs still show larger seasonal variations than the old ones. The 

larger variations are also mainly attributed to the new reservoirs in Asia.   

 
Figure 4.8 Comparison of the monthly normalized storage of new and old reservoirs, 

along with the accumulative storage capacity of new reservoirs. 

 

In general, reservoirs with larger seasonal dynamics of normalized storages are 

under more pressure. The standard deviation of the normalized storages, which is based 

on the 12 monthly values in each year, can be used to evaluate the reservoir operation 

efficiency. Figure 4.9 compares the annual mean normalized storages and the 

corresponding standard deviations for all of the reservoirs with those for only the old 

reservoirs. It is found that global reservoir efficiency was affected by the construction of 

new reservoirs during the period from 1999 to 2018.  
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Figure 4.9 Mean annual normalized storage and the corresponding standard deviation for 

(a) all reservoirs, and (b) old reservoirs. 

 

In addition, the effects of new reservoirs were evaluated at the continental scale. 

Europe and Oceania were not included because they had few new reservoirs, with 

relatively small capacity, and the trends of normalized storage were not significant. New 

reservoirs have the largest impacts on Asia. For the old reservoirs, the trend shows a 

significant increase as the p-value is 0.057 (very close to 0.05). However, the new 

reservoirs changed the direction of the trend to decreasing (though it is not significant, p 

= 0.73). While for North America, Africa, and South America, the trends of the normalized 

storage—both with and without the new reservoirs—are consistent. Therefore, hypothesis 
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tests were conducted to evaluate the trends by comparing the slopes and constant 

coefficients.  

First, we need to determine whether the trends of normalized storage depend on 

the condition of new reservoir construction. To perform a hypothesis test on the difference 

between regression coefficients, an interaction term needs to be included into the model. 

In this case, an interaction term for Time*Condition was included. Condition A represents 

all reservoirs, while condition B represents the old reservoirs only. Then, the regression 

model was fit with Time (a continuous independent variable), Condition (the main effect), 

and Time*Condition (the interaction effect). The results of this model are shown in Table 

S1a in Appendix B. The p-value for Time is 0.000, which indicates that the relationship 

between Time and Normalized storage is statistically significant (i.e., the trend of 

normalized storage is significant). The Condition term tests for the difference between the 

constants, and is an indicator of the main effect. The coefficient of this term indicates that 

the difference between the constants is -0.00135, with a p-value of 0.707. This indicates 

that we cannot conclude that the constants are different. The coefficient of the interaction 

term (Time*Condition) is 0.000018, which represents the difference between the 

coefficients of the slopes for Condition A and Condition B. The corresponding p-value is 

0.955, which indicates that this difference is not statistically significant (and we cannot 

reject the null hypothesis, i.e. that the difference is zero). In other words, it can be 

concluded that the Condition (i.e., the construction of new reservoirs) does not affect the 

relationship between the Time and Normalized storage. Therefore, the construction of new 

reservoirs in North America did not impact the trend of normalized storage. More details 
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about the hypothesis test used in this dissertation can be referred to at 

https://statisticsbyjim.com/regression/comparing-regression-lines/ 

Using the same approach, the hypothesis test results for Africa and South America 

are shown in Tables S1b and S1c in Appendix B. The conclusions for both of these 

continents are the same as that for North America. This suggests that the new reservoirs 

only impact the normalized storage of Asia, which contains more than 70% of new global 

reservoirs. Furthermore, the effects of new reservoirs on the global normalized storage are 

mainly attributed to Asia.  

4.3.4. Connections between ENSO and reservoir storage variations 

The El Nino Southern Oscillation (ENSO) is a recurring climate pattern that occurs 

at irregular intervals (2–7 years) in the central and eastern tropical Pacific Ocean. Previous 

studies have indicated that ENSO has a significant influence on terrestrial water storage 

(Ni et al. 2018; Phillips et al. 2012). In this study, the Multivariate ENSO Index Version 

2 (MEI.v2) provided by NOAA (https://psl.noaa.gov/enso/mei/) was used to evaluate the 

effects of ENSO on the reservoir storage variations. MEI.v2 combines five different 

variables—sea level pressure (SLP), sea surface temperature (SST), zonal and meridional 

components of the surface wind, and outgoing longwave radiation (OLR)—over the 

tropical Pacific region (30°S–30°N and 100°E–70°W) to assess the ENSO intensity. 

Figure 4.10 compares the monthly MEI.v2 and normalized storage anomaly of global 

reservoirs from 1999 to 2018. Overall, MEI.v2 has a significantly negative correlation 

with the normalized storage anomalies (R = 0.58, p < 0.001). This relationship is even 

more significant during strong ENSO years (R = 0.86, p < 0.001).  

https://statisticsbyjim.com/regression/comparing-regression-lines/
https://psl.noaa.gov/enso/mei/
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Figure 4.10 The link between the normalized storage anomaly of global reservoirs and 

Multivariate ENSO Index Version 2 (MEI.v2). 

 

Moreover, the influence of ENSO on the normalized storage was also evaluated at 

the basin scale. Figure 4.11 shows basins with significant correlations (p < 0.01) between 

the normalized storage anomaly and MEI.v2 for strong ENSO years. To reduce the 

uncertainty, only basins containing more than five reservoirs were considered. It is 

obvious that most basins in the tropical areas have a strong negative correlation with 

MEI.v2. This is because tropical areas experience a large seasonal precipitation 

fluctuation, and the longitudinal precipitation center migrates with the ENSO phase 

(Walker Circulation) (Phillips et al. 2012). Basins with significantly negative correlations 

also prevail in South America and Africa. However, the correlations are generally positive 

in the high-latitude regions. It is worth noting that MEI.v2 shows a significant increase 

during the last two decades (Figure S2 in Appendix B). Therefore, it can be concluded that 

ENSO may be the main factor leading to the decrease of normalized storage in South 

America and Africa.  

As shown in Figure 4.11, some coastal basins in North America are also 

susceptible to ENSO. In particular, there is a cluster of basins located along the Pacific 
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coast that are negatively correlated to MEI.v2 (while for most of the inland basins, the 

correlations are either positive or insignificant). The increase of the normalized storage in 

North America is mainly attributed to water storage growth that followed the region’s 

recovery from a series of extreme droughts (Wang et al. 2013), especially in central North 

America (Figure 4.6). This water storage increase (in North America) was also reported 

by Wang et al. (2013) using Gravity Recovery and Climate Experiment (GRACE) 

observations.  

 
Figure 4.11 Basins with significant correlations (p < 0.01) between MEI.v2 and the 

normalized storage anomaly during strong ENSO years. 

 

4.3.5. Reservoir storage variations under different functions 

Reservoirs are designed to fulfill single- or multiple-functions, which are directly 

related to operation rules and storage. In this study, we selected four main functions (i.e., 

hydropower, irrigation, water supply, and flood control) to evaluate their normalized 

storage variations and responses to climate variability. The function information was 

collected from GRanD, and a ‘main function’ was selected for each reservoir. Figure 4.12 
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summarizes the distribution of these four functions for both old and new reservoirs (in 

terms of number and capacity). It is evident that reservoirs with hydropower purposes are 

predominant, followed by those focused on irrigation. With regard to the old reservoirs 

(Figure 4.12a), 32% (1516) of them are mainly used for hydropower, accounting for 70% 

(3797.42 km3) of the total capacity. While for the new reservoirs (Figure 4.12b), the 

percentage devoted to hydropower in terms of number and capacity increased to 62% and 

86%, respectively, indicating that the reservoirs constructed in the 21st century are 

primarily for hydropower purposes.  

 
Figure 4.12 Summary of the main functions for global (a) old and (b) new reservoirs. The 

plots show the percentage of each function with regard to the total reservoir number or 

storage capacity. The corresponding absolute values of reservoir number and storage are 

labeled on the top of each column. 

 

The normalized storages for global reservoirs with different functions are shown 

in Figure 4.13. Among all of the reservoirs, those with hydropower as the main purpose 

have the highest normalized storage levels (mean value of 0.74), but also have the smallest 

variation (standard deviation of 0.015). This is because hydropower reservoirs need to 

maintain relatively high water levels to ensure that the generator operates efficiently. It is 

worth noting that the normalized storage shows a significant decreasing trend (p < 0.001), 
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which is highly related to ENSO with a correlation value of -0.85 (p < 0.001). For instance, 

the normalized storage dipped in 2015, which was the strongest El Niño year in the 21st 

century. The reservoirs used for water supply have the smallest average storage capacity—

0.16 km3 (vs 2.49 km3 for hydropower). However, the normalized storage for these 

reservoirs experienced the largest variation (with a standard deviation of 0.04, denoted by 

error bar in Figure 4.13b), along with a significant decrease (p < 0.001)—which suggests 

that they are suffering from increased pressure under the increasing municipal water 

demand. It is worth noting that the normalized storage has a sharp decrease in the first 

several years, followed by a slow decrease. The month of February 2002 was detected as 

the changing point using the Strucchange approach—which detects the structural changes 

in linear regression relationships (Zeileis et al. 2001). Therefore, we divided the period 

into two shorter ones: 1999–2001 and 2002–2018. The magnitude of decrease from 1999 

to 2001 was 11 times larger than that from 2002 to 2018. While for reservoirs with flood 

control functions, the normalized storage values also show a rapid decrease from 1999 to 

2001 (December 2001 was detected as the changing point). However, they bounced back 

with a significant increase from 2002 to 2018. The storage values of the irrigation 

reservoirs are relatively stable with no significant trends. They have shown uniform 

seasonal variations, which are consistent with crop phenology.  
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Figure 4.13 (a) Monthly normalized storage and linear trend (with the shaded areas 

representing the 95% confidence intervals) from 1999 to 2018 for global reservoirs with 

different functions. It should be noted that the time series of the water supply and flood 

control reservoirs was divided into two periods—1999–2001 and 2002–2018—using a 

change point approach. (b) Mean normalized storage by function (with error bars 

representing the standard deviations) from 1999 to 2018, along with the average capacity 

for each reservoir function. 

 

4.4. Discussion and Conclusions 

Despite the overall good accuracy of the storage dataset, uncertainties from two 

sources need to be discussed. The first is the uncertainty due to reservoir sedimentation, 

which can reduce the storage capacity. Reservoir sedimentation is affected by several 

major factors, such as geometry, streamflow, sediment load, particle size, deposit specific 

weight, reservoir size, and operation rules (Salas and Shin 1999; Schleiss et al. 2016; 

USBR 1987). It has been reported that the sedimentation rate varies with reservoir size, 

with larger reservoirs having smaller rates (Dendy et al. 1973; Rahmani et al. 2018; Wisser 

et al. 2013). Recently, Wisser et al. (2013) evaluated the storage capacity loss for global 

reservoirs in GRanD. It shows that the total storage capacity declined by 4.5% from 1990 

to 2010, at an annual rate of 0.23%. Moreover, Dendy et al. (1973) estimated the average 

annual loss rates for different size categories using the sedimentation data for 1105 

reservoirs. Based on this set of loss rates, we calculated the storage weighted annual 
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sedimentation rate for the 7245 reservoirs in our dataset to be 0.18%. These two small 

storage loss rates (i.e., 0.23% and 0.18%) indicate that the reservoir sedimentation does 

not have a significant influence on the evaluation of storage variations. Currently, a wide 

range of techniques (e.g., flushing and dredging) have been developed and implemented—

from the planning phase to the design, build, and operation phases—to control 

sedimentation and ensure the long-term sustainability of reservoirs (Garcia 2008; Kondolf 

et al. 2014; Morris 2014; Schleiss et al. 2016). It should be noted that a fraction of the 

reservoirs in our dataset (e.g., some in the U.S. and India) were evaluated in terms of live 

storage, which is more resistant to sedimentation. Therefore, we did not consider the 

effects of reservoir sedimentation on storage estimation in this study.  

The second source is related to the modified simulation method of Yigzaw et al. 

(2018). The performance of the mathematical approximations is not ideal sometimes 

because the reservoir geometry is very complicated. For example, the NRMSE values of 

storage estimations for Rana Pratap Sagar and Yeleru are 127.73% and 87.14%, 

respectively (Table 4.3). However, they have good consistency with the in situ 

observations, with respective R2 values of 0.80 and 0.89, indicating that they can 

successfully capture the pattern of storage variations. Therefore, the effect of this 

relatively large bias should not be significant because the analyses are focused on 

evaluating the trend of storage variations across large scales.  

ENSO is the largest driver of interannual water exchanges between land and ocean 

(Chandanpurkar et al. 2019). In general, El Niño is associated with a decrease in global 

terrestrial precipitation  (Dai and Wigley 2000) and terrestrial water storage (Phillips et al. 
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2012),  and the decrease is especially strong for tropical areas. This is consistent with the 

correlation between ENSO and reservoir storage. With the improved capability of ENSO 

forecasting (Ham et al. 2019), the reservoir storage values can then be projected, which 

will provide valuable information for water management.  

The storage variations show different patterns according to reservoir function. The 

reservoirs with hydropower as the primary function account for 72.21% of global total 

storage, followed by those focused on irrigation (18.64%). Therefore, the storage 

variations of hydropower and irrigation reservoirs are highly correlated with MEI, with 

correlation values of -0.85 and -0.56, respectively. This is consistent with the significant 

negative correlation between global reservoir storage and MEI (Figure 4.10). With regard 

to water supply and flood control reservoirs, their correlations with MEI are not very 

strong. It is worth noting that their storage values show a rapid decrease starting in 1999, 

which is mainly attributed to severe droughts in North America. For reservoirs with 

primary functions of water supply and flood control, those in North America account for 

53.93% and 56.39% in terms of storage. Since late 1999, the western U.S. has been 

suffering from a severe drought, which reached its peak in July 2002 when more than half 

of the contiguous U.S. was under moderate to severe drought conditions (Cook et al. 2007; 

Lawrimore and Stephens 2003; Svoboda et al. 2002). This severe drought also extended 

to large portions of the Canadian Prairie provinces and to the northern and western parts 

of Mexico (Hanesiak et al. 2011; Lawrimore et al. 2002). The water storage recovery from 

these extreme droughts (Wang et al. 2013), and the increased flood frequency and duration 

after the 2000s (Najibi and Devineni 2018), can explain the significant storage increase of 
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flood control reservoirs from 2002 to 2018. However, water supply reservoirs continue 

shrinking due to the steadily increasing water demand, although the rate is slower after 

2002.  

The storage dataset resulting from this study can benefit multiple applications. 

First, it provides critical information for management purposes, especially for reservoirs 

in transboundary river basins where gauge observations are not shared. Moreover, it can 

help to calibrate and validate the operation rules in the global hydrological models which 

have a reservoir module component, and can improve our understanding about the roles 

of reservoir storage in the hydrological cycle. Additionally, a drought index based on 

reservoir storage can be developed to evaluate hydrological droughts. Lastly, we can 

compare the reservoir storage values with GRACE observations to assess groundwater 

variations more accurately.    

In the future, ICESat-2 (launched in September 2018) and the Surface Water and 

Ocean Topography (SWOT) mission (planned for launch in 2022) will provide more data 

for bathymetry mapping (Li et al. 2020), which will improve the estimates of reservoir 

storage. Moreover, the satellite observations with high temporal resolution (e.g., MODIS 

and VIIRS) can be used to achieve near real-time (daily) monitoring.  

To conclude, the findings are summarized as follows: 

(1) The estimated storage values agree well with in situ observations. Overall, the 

storage estimations using the A-V relationships derived from bathymetry data are more 

accurate than those from the simulation method.  
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(2) Global reservoir storage has an overall increasing trend at a rate of 27.44 ± 0.96 

km3/yr, which is mainly attributed to the construction of new dams. On the other hand, the 

normalized storage shows a significant decrease because of the effects of new reservoirs. 

(3) The storage growth is primarily contributed to by Asia (20.53 ± 0.73 km3/yr), 

which accounts for about 75% of the global increase. However, the addition of new 

reservoirs did not affect the normalized storages for other continents (where new 

reservoirs have a relatively small capacity). The increase of the normalized storage in 

North America is due to the water storage growth that occurred after recovery from a series 

of severe droughts, while the decrease in South America and Africa is highly correlated 

to ENSO.  

(4) The reservoirs with hydropower purposes have a relatively high storage level, 

and they are more sensitive to ENSO. Water supply reservoirs are experiencing a 

significant storage decrease, indicating the growing water crisis brought on by the steadily 

increasing municipal water demand.  



 

 

5. CONCLUSIONS 

 

Despite the importance of reservoirs to human society, our knowledge of reservoirs 

is still limited at the global scale. With the advancement of satellite remote sensing, 

monitoring reservoirs from the space is becoming increasingly practical. Knowledge of 

reservoir bathymetry is essential for many studies on terrestrial hydrological and 

biogeochemical processes. However, there are currently no cost-effective approaches to 

derive reservoir bathymetry at the global scale. Moreover, water retained by global 

reservoirs has long term impacts on global and regional water cycles. Therefore, this 

dissertation fills in a knowledge gap with regard to remotely sensed high-resolution 

bathymetry and long-term storage datasets for global reservoirs.  

Through the first study (Chapter 2), an algorithm was developed to generate 

reservoir bathymetries exclusively from lidar altimetry and satellite imagery data. By 

combining elevations collected by the airborne ICESat-2 prototype with water areas from 

long-term Landsat observations, a high-resolution 3D reservoir bathymetry map was 

derived for Lake Mead, representing the dynamic area over the last three decades. The 

bathymetry for the central reservoir area can be projected by extrapolation, and then 

integrated with the remotely sensed results to obtain the full bathymetry. Validations 

against lidar survey data from four transacts of remotely sensed bathymetry show R2 

values from 0.82 to 0.99 and RMSE values from 1.18 m to 2.36 m.  The predicted portions 

have relatively large errors and uncertainties (compared to the remotely sensed portions) 

because the extrapolated elevations cannot fully capture the underwater topography. 
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Built upon the bathymetry generation algorithm, the second study (Chapter 3) 

extended the domain to global reservoirs. We utilized multiple satellite altimetry datasets 

(ICESat, G-REALM, and Hydroweb) in combination with Landsat-based surface water 

datasets to develop the first consistent high-resolution 3-D bathymetry dataset for global 

reservoirs. This dataset includes 347 reservoirs with a total capacity of 3123 km3, 

representing 50% of the global reservoir capacity. Validation against the surveyed 

bathymetry over four reservoirs indicates a relatively high accuracy and reliability of the 

remotely sensed bathymetry, with R2 values ranging from 0.82 to 0.99 and RMSE values 

from 0.19 m to 1.65 m. An indirect validation—which compared the remotely sensed A-

E and E-V relationships with those derived from in situ data for 16 reservoirs—also 

suggests good agreement. These relationships could be used to monitor the storage 

variations of global reservoirs, either from satellite altimetry or imagery data. In addition 

to reservoirs, the bathymetry values for hundreds of global natural lakes could also be 

obtained using this method.  

In Chapter 4, a long-term storage dataset was developed by leveraging multi-

satellite observations for a total of 7245 global reservoirs. For each reservoir, the A-V 

relationship was either derived from the 3-D bathymetry using a remote sensing method 

or estimated through an improved simulation method. In general, the storage estimated 

from the bathymetry had a better performance compared to the storage estimated from the 

simulation method. Based on this dataset, the reservoir storage variations were assessed 

at global, continental, and basin scales. The results suggest that the global reservoir storage 

has an overall increasing trend at a rate of 27.44 ± 0.96 km3/yr, which is mainly attributed 
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to the construction of new dams. On the other hand, the normalized storage shows a 

significant decrease because of the effects of new reservoirs. The storage growth is 

primarily contributed to by Asia (20.53 ± 0.73 km3/yr), which accounts for about 75% of 

the global increase. It was also found that the increase of the normalized storage in North 

America is due to the water storage growth resulting from the recovery of several severe 

droughts, while the decrease in South America and Africa is highly correlated to ENSO. 

Moreover, the reservoirs with hydropower purposes have a relatively high normalized 

storage, and they are more sensitive to ENSO. The reservoirs focused on water supply are 

experiencing a significant decrease in their normalized storage, which corresponds to the 

growing water crisis under the steadily increasing municipal water demand. 
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER III 

 

1. Validation of the A-E and E-V relationships 

In Section 3.4.2.1, 16 reservoirs were selected to use for validation of the A-E and 

E-V relationships. Table S1 shows the summarization of remotely sensed bathymetry for 

these reservoirs. Figures S1 to S16 show the remotely sensed bathymetry maps over the 

Mead, Fort Peck, Oahe, Success, Sakakawea, Powell, Gandhi Sagar, Hirakud, Jayakwadi, 

Malaprabha, Matatila, Sriram Sagar, Srisailam, Tawa, Tungabhadra, and Indravati 

reservoirs, respectively. For Lake Mead, since results based on A-E relationships derived 

from ICESat and Hydroweb radar altimetry have the same spatial patterns, only the ICESat 

based bathymetry is shown. 

In this dataset, the smallest reservoir detected by ICESat is Mehgaon Tola Tank 

(India), which has an average area of 1.47 km2. Clear patterns can be observed from the 

bathymetry map (Figure S17). 
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Table S1 Summary of the remotely sensed bathymetry for the reservoirs used for 

validation 

Reservoir 

name 

Min 

elev.(m) 

Max 

elev.(m) 

Elev 

range 

(m) 

Total 

area 

(km2) 

Dynamic area 

(km2)/fraction 

(%) 

Storage 

capacity 

(km3) 

Dynamic 

storage (km3)/ 

fraction (%) 

Mead 

(ICESat) 
329.71 368.25 38.54 583.64 282.97/48.48% 34.07 21.36/62.69% 

Mead 

(Hydroweb) 
327.70 369.64 41.94 583.64 282.97/48.48% 34.07 23.24/68.22% 

Fort Peck 667.92 683.98 16.06 929.22 367.13/39.51% 22.77 16.91/74.2 

Oahe 478.88 491.69 12.81 1333.73 590.07/44.24% 28.35 16.36/57.70% 

Success 174.02 203.10 29.08 7.92 7.65/96.53% 0.10 0.10/100% 

Sakakawea 552.21 563.30 11.09 1404.34 449.21/31.99% 29.38 13.08/44.50% 

Powell 1078.28 1123.64 45.36 578.99 334.20/57.72% 30.00 18.68/62.27% 

Gandhi Sagar 380.97 399.10 18.13 596.08 538.61/90.36% 6.83 5.92/86.68% 

Hirakud 181.85 190.43 8.58 597.65 389.61/65.19% 4.82 3.84/79.58% 

Jayakwadi 454.25 462.70 8.45 344.51 264.00/76.63% 2.17 1.73/79.72% 

Malaprabha 621.48 632.93 11.45 110.89 89.35/80.57% 0.92 0.78/84.85% 

Matatila 299.70 308.25 8.55 109.94 85.24/77.53% 0.64 0.58/90.88% 

Sriram Sagar 320.44 332.82 12.38 321.40 309.21/96.21% 2.3 1.91/83.04% 

Srisailam 253.82 269.64 15.82 529.12 512.23/96.81% 6.12 4.32/70.68% 

Tawa 339.03 355.05 16.02 167.31 144.43/86.33% 1.94 1.55/79.65% 

Tungabhadra 483.82 497.87 14.05 352.59 340.95/96.70% 2.86 2.56/89.54% 

Indravati 630.52 642.03 11.51 111.74 34.38/30.77% 1.46 1.12/77.15% 
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Figure S1 Remotely sensed bathymetry over Lake Mead (ICESat based). 

 

 
Figure S2 Remotely sensed bathymetry over Lake Fort Peck. 
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Figure S3 Remotely sensed bathymetry over Lake Oahe. 
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Figure S4 Remotely sensed bathymetry over Lake Success. 



 

152 

 

 
Figure S5 Remotely sensed bathymetry over Lake Sakakawea. 

 

 
Figure S6 Remotely sensed bathymetry over Lake Powell. 



 

153 

 

 
Figure S7 Remotely sensed bathymetry over Gandhi Sagar Reservoir. 
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Figure S8 Remotely sensed bathymetry over Hirakud Reservoir. 
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Figure S9 Remotely sensed bathymetry over Jayakwadi Reservoir. 

 

 
Figure S10 Remotely sensed bathymetry over Malaprabha Reservoir. 
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Figure S11 Remotely sensed bathymetry over Matatila Reservoir. 
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Figure S12 Remotely sensed bathymetry over Sriram Sagar Reservoir. 

 

 
Figure S13 Remotely sensed bathymetry over Srisailam Reservoir. 
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Figure S14 Remotely sensed bathymetry over Tawa Reservoir. 

 

 
Figure S15 Remotely sensed bathymetry over Tungabhadra Reservoir. 
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Figure S16 Remotely sensed bathymetry over Indravati Reservoir. 
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Figure S17 Remotely sensed bathymetry over Mehgaon Tola Tank. 
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2. Validation against surveyed bathymetry values 

In Section 3.4.2.2, four reservoirs were selected to validate the remotely sensed 

bathymetry against surveyed bathymetry values. For each of these reservoirs, we selected 

four transects—evenly distributed over the reservoir area—which were used to compare 

the elevation values from the remotely sensed bathymetry with their counterparts from the 

surveyed bathymetry. The remotely sensed bathymetry maps and the locations of 

validation transects for Lake Roosevelt, Cascade Reservoir, and Clear Lake Reservoir are 

shown in Figures S18 to S20, respectively (those for Lake Mead are shown in Figure 3.8a–

e). Moreover, the statistics of the validation results over the selected transects are shown 

in Table S2.  
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Figure S18 Remotely sensed bathymetry over Lake Roosevelt and the locations of the 

validation transects.  
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Figure S19 Remotely sensed bathymetry over the Cascade Reservoir and the locations of 

the validation transects.  
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Figure S20 Remotely sensed bathymetry over Clear Lake Reservoir and the locations of 

the validation transects.  
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Table S2 Statistics of the validation results over the selected transects 

Reservoir

/Transect 

Elevation 

dataset 

Max 

(m) 

Min 

(m) 

Mean 

(m) 

SDa 

(m) Nb R2 

RMSE 

(m) 

Lake Mead (ICESat) 

1 
ICESat 367.38 335.47 350.21 10.16 

20 0.99 1.54 
Survey 368.81 334.67 351.02 10.77 

2 
ICESat 367.38 336.55 342.78 8.06 

75 0.98 1.78 
Survey 365.76 335.89 341.60 8.58 

3 
ICESat 367.87 336.55 352.74 9.12 

49 0.99 1.21 
Survey 369.42 334.67 353.17 9.48 

4 
ICESat 367.68 337.06 358.03 4.41 

86 0.82 1.97 
Survey 368.24 345.79 357.95 3.41 

Lake Mead (Hydroweb) 

1 
Hydroweb 368.68 333.97 350.01 11.06 

20 0.99 1.61 
Survey 368.81 334.67 351.02 10.77 

2 
Hydroweb 368.68 335.14 341.92 8.77 

75 0.98 1.33 
Survey 365.76 335.89 341.60 8.58 

3 
Hydroweb 369.22 335.14 352.75 9.92 

49 0.99 1.27 
Survey 369.42 334.67 353.17 9.48 

4 
Hydroweb 369.02 335.69 358.51 4.80 

86 0.82 2.31 
Survey 368.24 345.79 357.95 3.41 

Lake Roosevelt 

1 
G-REALM 392.30 374.27 385.74 3.73 

37 0.87 1.43 
Survey 392.83 373.93 386.27 3.31 

2 
G-REALM 392.80 374.27 384.09 4.63 

34 0.90 1.51 
Survey 392.48 377.88 384.14 3.87 

3 
G-REALM 390.95 375.96 383.07 4.81 

23 0.96 1.43 
Survey 391.30 374.28 384.02 5.30 

4 
G-REALM 392.34 377.29 384.10 3.33 

32 0.93 2.23 
Survey 392.58 372.77 382.20 4.04 

Cascade Reservoir 

1 
G-REALM 1470.52 1467.46 1469.88 0.77 

37 0.67 0.75 
Survey 1469.83 1467.63 1469.31 0.43 

2 
G-REALM 1470.00 1467.65 1469.00 0.55 

40 0.95 0.17 
Survey 1469.93 1467.61 1468.88 0.54 

3 
G-REALM 1469.97 1467.35 1468.65 0.63 

84 0.79 0.45 
Survey 1469.76 1465.97 1468.33 0.69 

4 
G-REALM 1468.52 1467.01 1467.80 0.42 

31 0.90 0.15 
Survey 1468.42 1467.34 1467.87 0.39 

Clear Lake Reservoir 

1 
ICESat 1365.23 1358.62 1361.94 1.35 

37 0.80 1.54 
Survey 1366.91 1361.68 1363.35 1.09 

2 
ICESat 1364.66 1358.62 1361.43 1.64 

39 0.86 1.58 
Survey 1366.05 1361.85 1362.84 1.19 

3 
ICESat 1365.46 1358.26 1362.45 2.14 

23 0.94 1.58 
Survey 1366.82 1361.48 1363.88 1.69 

4 
ICESat 1365.27 1358.77 1363.22 1.55 

39 0.89 1.33 
Survey 1366.70 1361.78 1464.43 1.26 

aSD represents standard deviation, and bN is the number of samples for each transect. 
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3. Evaluation of the projected bathymetry 

In Section 3.4.2.3, we used Lake Mead and Cascade Reservoir to evaluate the 

performance of the projected bathymetry. Figure S21 shows the full bathymetry of 

Cascade Reservoir—including the remotely sensed portion (1466.82 m – 1471.14 m) and 

the projected portion (1461.00 m – 1466.81 m)—along with the locations of the transects 

used to validate the projected bathymetry. Figure S22 shows the comparison between the 

elevations of the projected bathymetry and their counterpart values from the sedimentation 

survey data over the Cascade Reservoir. Additionally, we compared the Area-Volume 

relationship derived from this study with those of Yigzaw et al. (2018) in Figure S23. 
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Figure S21 Full bathymetry of Cascade Reservoir (remotely sensed bathymetry plus 

projected bathymetry) and the locations of the validation transects over the projected 

bathymetry.  
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Figure S22 Scatter plots and elevation profiles for transects 1P, 2P, 3P, and 4P over 

Cascade Reservoir. 
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Figure S23 Comparison of Area-Volume (A-V) relationships derived from bathymetry 

(this study) and Yigzaw et al. (2018) over the (a) Mead, (b) Fort Peck, (c) Oahe, (d) 

Success, (e) Sakakawea, (f) Powell, (g) Gandhi Sagar, (h) Hirakud, (i) Jayakwadi, (j) 

Malaprabha, (k) Matatila, (l) Sriram Sagar, (m) Srisailam, (n) Tawa, (o) Tungabhadra, and 

(p) Indravati reservoirs. 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER IV 

 

 
Figure S1 Comparison of storage capacity values from water management agencies and 

GRanD for reservoirs in (a) India, and (b) the United States and Australia. 
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Table S1 Hypothesis test results of regression models for (a) North America, (b) Africa, 

and (c) South America. 

 

 

 
Figure S2 Monthly MEI.v2 variations from 1999 to 2018 and the linear trend, with the 

shaded area representing the 95% confidence intervals. 


