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 ABSTRACT 

 

Texas has a spatial rainfall pattern with a decreasing gradient from east to west 

that greatly influences land use, vegetation, and river flow. From a hydrometeorological 

perspective, this variation leads to unfavorable conditions for agricultural production and 

water management. To minimize the risk due to extreme precipitation, Probable 

Maximum Precipitation (PMP) is used for designing major hydraulic structures, such as 

dams and reservoirs, nuclear power plants, and flood protection works. It is also used for 

rehabilitating old existing dams. However, the estimation of PMP is associated with 

uncertainties that have received significant attention in recent years, because 

meteorological extremes are projected to become more frequent, severe, and uncertain 

owing to climate change. The global-scale climatic cycles and atmospheric circulation 

reveal the controlling mechanisms of precipitation regimes. The main objective is to 

investigate into precipitation extremes and characteristics under the effect of climatic 

cycles and atmospheric phenomenon. The dissertation is organized into five chapters. The 

first chapter addresses the objectives and organization of the dissertation. The second 

chapter quantifies the uncertainty associated with PMP estimation and emphasizes the 

necessity of including the effect of climate change on PMP. The third chapter examines 

the impact of major Atlantic and Pacific Ocean based climatic cycles, including Atlantic 

Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), Pacific Decadal 

Oscillation (PDO), Pacific North American Pattern (PNA), and Southern Oscillation 

Index (SOI), on extreme precipitation in various climate zones in Texas. The fourth 
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chapter investigates into the effect of climatic cycles and Rossby Wave on extreme 

precipitation. The relationship between Rossby Wave frequency and precipitation 

characteristics is investigated. The fifth chapter evaluates future precipitation extremes 

and PMP using Coupled Model Intercomparison Project Phase 5 (CMIP5) using both 

historical observations and future CMIP5 projections. It is concluded that extreme 

precipitation showed non-stationarity which affected the PMP shift during the historical 

period, and the global scale climatic indicators (AMO, NAO, PDO, PNA, SOI, and ESPI) 

can provide regional response to meteorological extreme events. These findings can help 

raise the community’s attention to research needs for broader insights into understanding 

extreme meteorological events. 
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MTH Method 

NAO North Atlantic oscillation 

NCDC National Climatic Data Center 

NEXRAD Next Generation Weather Radar 

NOAA National Oceanic and Atmospheric Administration 
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NST Non-stationarity 

NWS National Weather Service 

PDO Pacific Decadal Oscillation 
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PNA Pacific North American Index 
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RCM Regional Climate Model 

RCP Representative Concentration Pathway 

RW Rossby Wave 

S Site-specific 
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CHAPTER I  

INTRODUCTION  

1.1 Introduction 

Due to the physical complexity of formation of Probable Maximum Precipitation 

(PMP) and limited availability of data, only approximations are available for the upper 

limits of storms (WMO, 2009). There is no true value of PMP, and the estimation of PMP 

is theoretical with its own scientific reasoning. PMP was formerly defined as Maximum 

Possible Precipitation (MPP) which could not be exceeded theoretically. Since MPP has 

been surpassed by actual precipitation events, its name has been changed to PMP due to 

the complexity of estimation of extreme precipitation (Benson, 1973). The World 

Meteorological Organization (WMO, 2009) stated “It should be noted that due to the 

physical complexity of the phenomena and limitations in data and the meteorological and 

hydrological scenarios, the approximation is only available currently for the upper limits 

of storms and their associated floods.” Thus, there is no upper boundary of PMP estimation 

(Papalexiou and Koutsoyiannis, 2006).  

There are uncertainties involved in the PMP estimation regardless of the method 

used to calculate it (Salas et al., 2014; Singh, 2016; Zhang et al., 2019). The uncertainty 

of PMP estimation depends on how to define a storm center from a local storm event and 

there are variables that influence the PMP values, including the overall weather condition, 

variation of atmospheric moisture, and storm path (Micovic et al., 2015). The situation 

under extreme events may worsen in the future, because an increase in heavy precipitation 

has been reported in many regions, including the U.S., through the first part of the 21st 
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century (Field et al., 2012; Seneviratne et al., 2012). Further, extreme precipitation shows 

a statistically significant increasing trend in North America (Guilbert et al., 2015; Kunkel 

et al., 2013; Roque-Malo and Kumar, 2017). This study emphasizes that the PMP values 

previously reported need updating, considering climate change and non-stationarity 

during the historical period, because maximum precipitation shows non-stationarity 

during the historical period in Texas.   

In Texas, tropical cyclones occur along the Texas Gulf coast (NWS, 2017). About 

40 tropical cyclones happened during the past 70 years (1950-Current), mostly during June 

through September. However, extreme precipitation may occur in different months or 

seasons. The extratropical cyclones are rare events in Texas, such as winter storms or 

blizzards (Schmaltz, 2003) which happen only in the Texas Panhandle area. The global 

scale climatic cycles are the key mechanisms of precipitation regimes, such as the intensity 

of precipitation and 24-hour extreme events (Gerlitz et al., 2016; Jones and Carvalho, 

2014; Marani and Zanetti, 2015). Several studies have investigated the relationship 

between climatic cycles and precipitation which helps understand the changing regional 

hydro-climatic regimes (Chan and Zhou, 2005; Renard and Lall, 2014). Thus, the effect 

of major Atlantic and Pacific Ocean based climatic cycles on extreme precipitation was 

investigated for Texas, considering El-Niño and La-Niña in different climate zones. In 

addition, the frequency of Rossby Wave and its joint effect with climatic cycles on extreme 

precipitation were investigated. Because Rossby Wave has recently been highlighted in 

the field of climate and atmospheric interaction. Rossby Wave is a type of inertial wave 
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naturally occurring in rotating fluids (NOAA, 2020) and is defined by the high potential 

vorticity that can serve as a carrier of air mass exchange.  

The statistically downscaled climate projections from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (Maurer, 2007; Reclamation et al., 2013) was 

adopted for future climate scenarios. Using statistical (Hershfield and site-specific) 

method, future PMP was estimated and compared to historical PMPs. The results showed 

that 16 CMIP5 models had a chance to exceed historical PMPs under two greenhouse gas 

concentration scenarios (RCP 2.6 and RCP 8.5). 

 

1.2 Objectives 

This dissertation investigates the relationship between extreme precipitation and 

climatic cycles under climate change in Texas. Extreme precipitation, including probable 

maximum precipitation, has long been discussed. However, there was no universal 

definition of probable maximum precipitation, thus we intend to address different sources 

of uncertainty in the estimation of probable maximum precipitation. The primary objective 

is to improve the understanding of precipitation extremes and characteristics under the 

effect of climatic cycles and atmospheric phenomenon. Here, we formulate the specific 

research objectives as: 

 

• Quantify the uncertainty associated with PMP estimation and emphasize the 

necessity of including the effect of climate change induced non-stationarity on 

PMP;  
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• Estimate the contribution of each of the uncertainty sources (methodology, 

topography, and non-stationarity) to PMP estimation;  

• Examine the relationships between global scale climatic indicators and regional 

precipitation extremes; 

• Assess the El-Niño and La-Niña effect on the annual cycle of monthly precipitation 

under different climate zones and explain what causes the difference between the 

two phases;   

• Investigate into the impact of major Atlantic and Pacific Ocean based climatic 

cycles on extreme precipitation with Rossby Wave breaking;  

• Calculate the number of events and how extreme precipitation are affected under 

the joint events of climatic cycles and Rossby Wave;  

• Examine precipitation characteristics (number of rain days, duration, depth, and 

intensity of precipitation events) under different zones of RW frequency; and  

• Estimate extreme precipitation and PMP under future climate conditions in Texas  

 

1.3 Organization of the dissertation 

This dissertation presents the study in five chapters following the above-stated 

objectives. The first chapter assesses the uncertainty and non-stationarity in probable 

maximum precipitation. The second chapter examines the relationship between extreme 

precipitation and climatic cycles including El-Niño and La-Niña. The third chapter 

explores the effect of climatic cycles and Rossby Wave on extreme precipitation. The 

fourth chapter estimates future precipitation extremes and PMP using climate model 
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projections. Finally, the fifth chapter recaps and discusses the future direction of the study 

which contributes to water resources management and understanding the meteorological 

extreme events in Texas.  
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CHAPTER II  

ANALYSIS OF UNCERTAINTY AND NON-STATIONARITY IN PROBABLE 

MAXIMUM PRECIPITATION IN BRAZOS RIVER BASIN 

 

2.1 Synopsis 

Probable Maximum Precipitation (PMP) is used for designing major hydraulic 

structures, such as dams and reservoirs, nuclear power plants, and flood protection works. 

However, the estimated PMP values are associated with uncertainties that have received 

significant attention in recent years, partly because hydrologic extremes are projected to 

become more frequent, severe, and uncertain with non-stationarity and natural climate 

variability. This study compared four methods of estimating PMP, ranging from 

hydrometeorological to statistical, including up-to-date grid based and site-specific in the 

Brazos River basin (BRB). BRB is the largest river basin in Texas and it contains a range 

of climates from subtropical arid to subtropical humid. The objective of this study was to 

quantify the uncertainty associated with PMP estimation in terms of the change in the 

PMP value and emphasize the necessity of including the effect of non-stationarity on PMP. 

The uncertainty analysis incorporates the effect of three sources of error: (1) PMP 

estimation method, (2) topography, and (3) non-stationarity. The contribution of each of 

the uncertainty sources to the 24-hour PMP estimation was quantified and found to be as 

53.5% (selection of method), 31.4% (effect of non-stationarity), and 15.1% (effect of 

topography). The uncertainty of PMP estimation was more sensitive to the existing 

observation statistics and the selection of method than to the differences between climate 
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zones. Results showed an overall significant increase in 24-hour record precipitation 

(+19.5 mm) and PMP (+22.3 mm) in BRB between two historical periods 1940-1976 and 

1977-2013. Thus, it is concluded that extreme precipitation in BRB showed non-

stationarity which affected PMP shift during the historical period. 

 

2.2 Introduction 

Probable Maximum Precipitation (PMP) is theoretically the maximum possible 

precipitation for a given duration under likely meteorological conditions. In other words, 

there must be a physical upper limit in the storm that atmospheric circulation could 

produce at a given place for a given time interval. The referred definition of PMP from 

WMO highlights the PMP as a physical upper limit, and it is generally regarded as a 

quantity that cannot be surpassed (WMO, 2009). There are two fundamental approaches 

to PMP estimation: hydrometeorological and statistical. Under the hydrometeorological 

approach, one of the earliest methods of PMP estimation defines the physical state of the 

atmosphere considering moisture maximization and transposition (Paulhus and Gilman, 

1953). It is, however, difficult to find a physical justification for the upper boundaries of 

any meteorological factor used in storm maximization, because maximum precipitation is 

often unexpectedly exceeded and very high (Yevjevich, 1968). If there is a physical 

boundary to the possible maximum precipitation amount, this boundary is likely to be 

much greater than the maximum precipitation computed by any maximization method 

(Sicular, 1969). Schreiner and Riedel (1978) estimated the PMP values in the east Rocky 

Mountain area of the United States by analyzing 55 historical (1878-1972) extreme storm 
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events. The National Weather Service (NWS) has prepared Hydrometeorological Reports 

(HMR) that describe the procedures for estimating the PMP values for the United States 

since the 1940s. The main assumption of HRM is that there is the optimum combination 

of available moisture in the atmosphere and the efficiency of causative mechanisms in the 

storm that will produce maximum precipitation. In practice, PMP estimates are location-

dependent and sensitive to the available dataset (Papalexiou and Koutsoyiannis, 2006).  

Under the statistical approach, the Hershfield method is perhaps the most popular 

method which gives a single value of PMP (Hershfield, 1961a; Hershfield, 1965). The 

benefit of using the Hershfield method is its application with limited hydrometeorological 

data. This method takes into account the uncertainty in the PMP estimation arising from 

the uncertainty of sample mean and sample standard deviation. The uncertainty can be 

quantified in the determination of frequency factor, mean, standard deviation of extreme 

precipitation values, and the selection of frequency distribution (Salas et al., 2014).  

PMP values are generally presented as deterministic values, however, there is 

uncertainty in these values due to several factors (Micovic et al., 2015), such as the amount 

of available data, data quality, and the depth of analysis. The U.S. National Research 

Council also considers two types of uncertainties that are summarized as follows (Council, 

2000): (1) Natural uncertainty represents the inherent variability of the physical system; it 

cannot be reduced. (2) Knowledge uncertainty is due to the lack of understanding of the 

system and insufficient data. It is difficult to specify an upper bound with zero risk, 

because there have been instances where storms in the U.S. have exceeded the PMP 

estimates (Dooge, 1986). Schreiner and Riedel (1978) concluded that the PMP estimates 
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were too low east of 105th meridian where 18 storms out of 75 exceeded 70% of the PMPs. 

The estimated PMP was much higher than the longest return period (e.g. 100-year) 

precipitation amounts for the same duration (Kunkel et al., 2013; Schreiner and Riedel, 

1978). Klemes (1993) argued that it is possible that in any given year, the maximum one-

day rainfall may arise from any combination of the convergence and orographic 

components (Klemes et al., 1992). 

Even though climate change has been receiving much attention since the early 

1960s (Yevjevich, 1968), there does not seem to be as much attention to the assessment 

of PMP under changing climate (Beauchamp et al., 2013). The World Meteorological 

Organization (WMO) report of 2009 mentioned “PMP and climate change” which 

indicates that climate change could lead to an increase of PMP (WMO, 2009). Globally, 

increases in heavy precipitation have been reported in many regions, including U.S. 

through the first part of the 21st century (Field et al., 2012; Seneviratne et al., 2012). 

Further, extreme precipitation events show statistically significant trends in North 

America (Guilbert et al., 2015; Kunkel et al., 2013; Rajah et al., 2014; Roque-Malo and 

Kumar, 2017). It is generally agreed that climate change does have an impact on severe 

precipitation extremes and its effect should therefore be considered (Simonović, 2012). 

Kunkel et al. (2013) examined potential climate change effects on PMP along with a 

significant future increase in mean and maximum precipitation. With climate change, 

hydrologic extremes are projected to become more frequent, more severe, and more 

uncertain (Goodess, 2013; Trenberth et al., 2015). Globally PMP values would increase 

in the future due to large atmospheric moisture content and moisture transport into storms. 
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Due to the increase in the intensity of heavy to extreme precipitation events, the increase 

in total precipitation has been observed (Karl et al., 1995).  

National Centers for Environmental Information in National Oceanic and 

Atmospheric Administration (NOAA) reported that there was an increasing trend in 

precipitation and temperature in most of the basins in Texas (NOAA, 2018). Jakob et al. 

(2008) showed a strong influence of climate change on moisture maximization and its role 

in the estimation of PMPs. Kunkel et al. (2013) suggested that projected changes in 

maximum precipitable water over North America would contribute to an increase in 

PMPs. Using regional climate models (RCMs) and global climate models (GCMs), Lee et 

al. (2016), Rousseau et al. (2014), Stratz and Hossain (2014), and Wehner (2013) assessed 

the impact of climate change. Mailhot et al. (2012) and Monette et al. (2012) reported for 

Quebec, Canada, that climate change would likely modify the amount, seasonality, and 

distribution of precipitation events. A study of extreme rainfall in Houston, Texas, by van 

Oldenborgh et al. (2017) concluded that global warming caused nearly 15% more intense 

precipitation, or equivalently made extreme events about three times more likely due to 

the increasing moisture content and stronger winds or updrafts driven by the heat of 

moisture condensation. 

As the available data and our understanding increase, it may be appropriate to 

refine and adjust PMP estimates with regional or site-specific studies (FEMA, 2004; 

Zhang et al., 2019). Unlike PMP reports (HMR) which cover multiple states, site-specific 

PMP estimation considers regional climate conditions within the basin or state. As a 

continuing effort, Texas Commission on Environmental Quality (TCEQ) prepared a grid-
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based PMP report for Texas (TCEQ, 2016). This report provided spatial patterns of PMP 

and compared the results with HMR-51 PMPs. It was found that the overall PMP 

percentage change from HMR-51 was an 11% reduction in Texas and the maximum 

reduction (40%) was captured in the northwestern part of Texas, upstream of Brazos and 

Colorado River basins with relatively drier conditions. Therefore, the PMP values reported 

in HMR-51 need updating, considering climate change and non-stationarity during the 

historical period.  

This study also notes that maximum precipitation exhibits non-stationarity during 

the historical period and compares PMP values using four different methods: (1) 

Hydrometeorological Reports (HMR), (2) TCEQ Grid PMP report that adopted 

hydrometeorological method, (3) Hershfield, and (4) Site-specific methods that followed 

the statistical method. In this study, methods (3) and (4) were implemented, because they 

are relatively simple and computationally inexpensive for developing a site-specific 

enveloping curve (Zhang et al., 2019). When the site-specific PMP method was used in 

this study, the PMP estimates were lower than those in HMR-51 Report, which is likely 

to be economically beneficial in the design of hydraulic structures. This finding is 

consistent with the recent grid PMP report from Texas Commission on Environmental 

Quality (TCEQ, 2016). Then, PMP values were compared to show their uncertainties 

across BRB due to the selection of the method, the effect of topography, and the effect of 

non-stationarity (historically-based). The contribution of each of the sources of 

uncertainty to the PMP estimation is quantified. Since the PMP estimates involve many 
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sources of uncertainties, it is suggested to use the ensembles of PMP values rather than 

using a single method. 

 

2.3 Study area 

The Brazos River basin (BRB) is the second largest river basin (119,174 km2) by 

area within Texas (U.S. Geological Survey, 2008). It is the state's third longest river (1,352 

km) and has the largest average annual flow volume (237.5 m3/s) in Texas (Hendrickson 

Jr, 2002). BRB consists of five Hydrologic Unit Codes (HUCs) and is covered by seven 

climate zones. The annual mean precipitation varies greatly for different climatological 

zones from subtropical arid to subtropical humid (Larkin and Bomar, 1983; Narasimhan 

et al., 2008). The annual mean precipitation ranges from 254 to 381 millimeters in the 

northern part and from 1143 to 1194 millimeters in the southern part of BRB (PRISM 

Climate Group, 2011). There are two precipitation peaks in May and September (Lee et 

al., 2017). The average annual temperature ranges from 15.0 oC in the upper basin to 21.1 

oC in the lower basin (TBRA, 2018). This diverse climate range manifests itself in large 

spatial and temporal variations in precipitation and temperature. In 1899, the Brazos River 

basin had a flood that caused over 9 million dollars of property damage and 284 casualties 

(Life on the Brazos River, 2013; Roth, 2010). Recently, the area near Houston (Brays 

Bayou in Harris County) received about 278.4 mm of precipitation during a 12-hour period 

on May 26, 2015, causing damages to 1,185 residential properties (Bass et al., 2016). 

During August 25–30, 2017, Hurricane Harvey struck Texas (particularly Houston) and 

generated extreme precipitation causing extensive flooding. The return period of the 
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highest observed three-day precipitation amount (1043.4 mm at Baytown) was more than 

9000 years (van Oldenborgh et al., 2017). National Centers for Environmental information 

of National Oceanic and Atmospheric Administration (NOAA) reported that there was an 

increasing trend in precipitation and temperature in most of the basins in Texas (NOAA, 

2018). 

 

2.4 Data 

A total of 46 gauge stations which have more than 30 years of data were selected 

(Figure II-1). Hourly precipitation data (https://www.ncdc.noaa.gov/cdo-web/) were 

obtained from NOAA National Climatic Data Center (NCDC) to estimate PMP. The 

maximum precipitation during certain durations was obtained from each year using sliding 

maxima (van Montfort, 1990). Because rainfall is a continuous variable and fixed time 

interval approach may have potential source of underestimation (Papalexiou et al., 2016). 

The fixed series are not appropriate for the estimation of rainfall maxima (Hershfield, 

1961b). From 1-hour duration precipitation, the maximum precipitation depth on sliding 

intervals (6- and 24-hour) within a year in a continuous time domain was determined (van 

Montfort, 1997). Each station had the maximum precipitation values from each duration 

in every year. 
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Figure II-1 46 rainfall gauge stations and 7 climate zones in BRB 

 

 

 

 

 

 

 

 



 

15 

 

2.5 Methods of PMP estimation 

The most common methods to estimate PMP are hydrometeorological and 

statistical (Beauchamp et al., 2013; Casas et al., 2011). In this study, the PMP products 

from two hydrometeorological (e.g. storm maximization) methods, HMR-51 (Schreiner 

and Riedel, 1978) and Texas Commission on Environmental Quality (TCEQ, 2016) were 

adopted for comparison. Then, we calculated PMP from two statistical methods 

(Hershfield and site-specific methods). A short discussion of these methods is given 

below. 

 

2.5.1 Hydrometeorological method (HMR-51)  

HMR-51 adopted the hydrometeorological PMP estimation which refers to the 

process of increasing storm rainfall depth for the storm location and season for higher 

atmospheric moisture than the actual storm (Schreiner and Riedel, 1978). The precipitable 

water at the target site is maximized and the PMP estimation is based on following 

equation: 

𝑃𝑀𝑃 = $%&'
$(

× 𝑃*          (1) 

where 𝑃* = the observed precipitation depth, 𝑊,  = the precipitable water in the air column, 

and 𝑊-*.  = the maximized precipitable water. Moisture maximization involves 

maximizing the meteorological conditions (e.g. precipitable water and moisture content) 

that control the occurrence of convective precipitation (Chavan and Srinivas, 2015). The 

transposition adjustment is applied to relocate the precipitation values with the ratio of the 

precipitable water for maximum 12-hr persisting dew point for the transposed location 
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where the actual storm takes place (Schreiner and Riedel, 1978). This method assumes 

that a region has homogeneous meteorology and topography (Salas et al., 2014). The main 

assumption in the estimation of PMP was that the optimum combination of available 

moisture in the atmosphere and the efficiency of the convective mechanism in the storm 

that would lead to maximum precipitation events (Singh, 2016). The elements of PMP 

estimation comprised depth-area-duration analysis of massive storms, storm transposition, 

storm maximization, and envelopment (Salas et al., 2014). The methods using storm 

models relied on dew points, storm depth, and inflow and outflow fluxes of storm types 

(Collier and Hardaker, 1996). A study by Douglas and Barros (2003) argued that the PMP 

estimation was constrained by the length of record and the spatial resolution of rainfall 

gauge stations in the eastern United States. 

 

2.5.2 Grid-based hydrometeorological method (TCEQ PMPs) 

The recent grid-based PMP also adopted the hydrometeorological PMP estimation 

method. In the grid-based method, the National Weather Service (NWS) Next Generation 

Weather Radar (NEXRAD) data were used for storm analysis (TCEQ, 2016). Unlike 

HMR-51 PMPs, the geographic transposition factor was considered to define the 

geographical effect (elevation, terrain, and moisture source) on rainfall. TCEQ provides a 

tool to calculate the gridded PMP values for an area of interest using Geographical 

Information System (GIS) within Texas. This product provided the gridded PMP values 

for the project domain at a spatial resolution of 0.025 decimal degrees by 0.025 decimal 

degrees (approximately 6.5-square kilometers, on average).  
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The approach based on identifying major storms that occurred within the region 

considered transpositionable to any location within the domain. Each of the main storm 

types (local storms, tropical storms, and general storms) with extreme rainfall was 

investigated. The moisture content of each storm was maximized to produce extreme-case 

rainfall estimation at the location where storm occurred. Storms were then transposed to 

each grid cell with regions of similar meteorological conditions and topography. The 

adjustment factors were applied to each storm to represent the amount of rainfall that storm 

would have generated at the new location versus the original location. These adjustments 

consisted of the in-place maximization factor, the moisture transposition factor, and the 

geographical factor  (TCEQ, 2016). 

 

2.5.3 Hershfield method 

The Hershfield statistical method (Hershfield, 1961a; Hershfield, 1965) is widely 

used in practice as an alternative to the physical method, especially when 

hydrometeorological data (such as humidity and dew point temperature) are not 

sufficiently available. The Hershfield equation can be expressed as   

𝑃𝑀𝑃 = 𝑋01111 + 𝐾 ∙ 𝑆0         (2) 

where 𝑋01111 = the mean of annual maximum precipitation series, 𝑆0 = the standard deviation 

of annual maximum precipitation series, 𝐾 = the frequency factor, and 𝑛 = the sample 

size. The mean and standard deviation of annual maximum precipitation were calculated 

from the annual maximum time series for different durations (1-, 6-, and 24-hour) from 

each station. The frequency factor is selected from the Hershfield enveloping curve for 
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each station. The frequency factor was established from a large number of historical 

annual maximum precipitation data (2645 stations), about 90% of which were from the 

United States and the remaining 10% were from other parts of the world. A total of about 

95,000 station-year data were used for the estimation of PMP. Further adjustment is made, 

based on the length of record, observation time intervals, and depth-area-duration 

relationship (Salas et al., 2014; WMO, 2009; Zhang et al., 2019). The adjustment is simply 

multiplying the fraction with respect to the given adjustment graph from Hershfield 

(1961a) based on the length of record. The Hershfield method is based on an equation 

similar to that of Chow (1951) where a quantile of the underlying distribution is expressed 

as a function of sample mean, sample standard deviation, and a frequency factor K (Chow 

et al., 1988) which is related to the skewness of data. In the Hershfield method, K was 

calculated using a large number of historical data of annual maxima which were not 

publicly provided. Then, the upper bound of K was determined from the frequency factor 

curve, which was always bigger than the actual K values from historical data (Salas et al., 

2014). 

 

2.5.4 Site-specific method 

The site-specific method is restrictive to a certain watershed and generally 

provides smaller values than the PMP values generalized for a large area (e.g. HMR). This 

is because of a smaller number of rainfall events, which produce smaller PMP values. For 

example, the site-specific 24-hour PMP for the Cherry Creek Dam watershed (999.74 km2) 

in Colorado, estimated by the U.S. National Weather Service, was approximately 25% 
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less than the HMR-52 value (Tomlinson et al., 2003). HMR-52 (Hansen et al., 1982) is 

the follow-up report of HMR-51 with the application of derived PMP estimates to serve 

as a guidance in the use of PMP. It is noted that HMR-52 relies on extreme rainfall events 

that cover two-third of the country in the east. The disagreement between HMR and site-

specific method depends on the location. Formerly, the Hershfield method enclosed a 

broad range of frequency factors by a frequency factor curve (FFC) under different mean 

annual maximum precipitation (MAMP) values from extensive regions. However, this 

method did not consider variations in topography and climate of the region, which could 

lead to unreliable frequency factor obtained from the Hershfield FFC. The construction of 

a site-specific FFC is therefore necessary to obtain reliable PMP values. 

Site-specific analysis is normally more accurate for PMP estimation based on the 

available data (Micovic et al., 2015). Since Hershfield method only provides a graphical 

solution from Hershfield curve (frequency factor curve), the actual values of annual 

maximum precipitation and the standard deviation of annual maximum precipitation (e.g. 

about 95,000 station-year data) were not given. Only the final frequency factor curve was 

provided. Therefore, this study developed the frequency factors from precipitation 

observations within the basin (site-specific) using the Hershfield frequency factor given 

by equation (3) 

The site-specific frequency factor (𝐾8) was calculated for each station for different 

durations as: 

𝐾8 =
:%;:<=>1111111

?<=>
           (3) 
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where 𝑋-	= the largest annual maximum precipitation value of a given duration, 𝑋0;A111111 = 

the mean excluding the highest value from the series, and 𝑆0;A = the standard deviation 

excluding the highest value from the series. Once site-specific frequency factors are 

obtained corresponding to different durations, a site-specific enveloping curve is plotted 

using the Jennings relation (Jennings, 1950). The new 𝐾8 value is then selected from the 

enveloping curve for each station. In other words, each station with a corresponding 

MAMP is assumed to have the extreme possibility of 𝐾8	followed by the Hershfield 

method (Hershfield, 1965). The site-specific method follows the frequency factor (K) in 

the Hershfield method, but the site-specific frequency factor (Ks) is derived from 

observations in Brazos River basin.  

 The FFC was plotted by connecting a few upper points in the two-dimensional plot 

through a free hand sketch (Rakhecha et al., 1992) or a function. We used a function to 

build the enveloping curve in this study. For example, Rakhecha and Soman (1994) 

developed FFC for 417 stations in North Indian Region and Indian Peninsula using an 

empirical equation. The same method was adopted for 145 stations in Catalonia region in 

Spain (Casas et al., 2008; Casas et al., 2011). A typical form of equation for the fitted 

curve was 

𝐹𝐹𝐶 = 𝐴 × 𝑒𝑥𝑝(𝐵 × 𝑀𝐴𝑀𝑃)         (4) 

where A and B denote the parameters of the enveloping curve which were estimated by 

regression fitting. A equals 20 which followed the beginning point of the Hershfield 

enveloping curve (Hershfield, 1961a; Zhang et al., 2019). FFC is the fitted curve from the 

scatters of 𝐾8 values (Figure II-2). This study assumed that this maximum threshold can 
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be applied to the FFC estimation for the consistency of application, because Hershfield 

found the frequency factor to be the upper limit of 20 in his analysis considering 95,000 

station-years of annual maximum rainfall data from 2645 stations. It was also assumed 

that the enveloping curve decayed exponentially (Chavan and Srinivas, 2017). The 

constructed curve was shifted upward to enclose all the points on the upper boundary 

(Casas et al., 2008). To enclose all the points, +0.001 is added to the B value obtained 

from the regression fitting. In this study, the observation based enveloping curve was 

calculated for 1-, 6-, and 24-hour durations based on the available durations of Hershfield 

enveloping curve for comparison purposes. The value of parameter B from site specific 

enveloping curve equation is -0.01707 (1-hour), -0.01441 (6-hour), and -0.00891 (24-

hour).  
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Figure II-2 Site-specific envelop curve for BRB 
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2.6 Historical precipitation extremes in BRB 

It is necessary to investigate how often and how much extreme precipitation events 

occurred during the historical period for understanding the area of BRB. The recent TCEQ 

report provides a list of extreme storm events over Texas, which potentially affect the 

PMP values. The list contains all the storms analyzed by Storm Precipitation Analysis 

System (SPAS) from Applied Weather Associates (Iizumi et al., 2013).  

There were six extreme storm events captured in BRB during the historical period: 

(1) On June 27th to 30th 1899, torrential rain fell at city of Hearne in Robertson County 

within BRB. The maximum rainfall was 876.3 mm during the storm event which resulted 

in ten million dollars of damage and 24 deaths (Life on the Brazos River, 2013; Roth, 

2010). (2) On September 9th to 10th 1921, 812 mm of rainfall fell in 12 hours in the north 

of Thrall, Texas. The river overflowed its bank at least 2.1 m higher than ever before. The 

combination of unstable moist air mass and rapidly increasing wind velocity brought about 

19 million dollars’ worth of property damage (Lott, 1953). (3) The maximum recorded 

rainfall of 519 mm occurred during 48 hours on November 24th to 25th 1940 at Hempstead, 

Texas (Breeding, 1948). (4) On August 4th 1978, a total of 737 mm of rainfall was recorded 

during 24 hours at Albany in Shackelford County (Schroeder et al., 1979). About 1.8 m of 

water inundated the town of Albany and flood waters overtopped the spillway. The 

property damage was estimated at 110 million dollars and 33 people perished (Schroeder, 

1987). (5) During October 11th to 13th in 1981 at Clyde, Texas, a storm produced rainfall 

of more than 508 mm. The rainfall caused the water level to rise by 4 m and the storage in 

Hubbard Creek Reservoir increased nearly twice (Wells et al., 1984). (6) The combination 
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of thunderstorm and heavy rain over already saturated lands in Tahoka caused 231 mm of 

rainfall during a 24-hour period on May 5th 2015 (Service, 2015).  

Figure II-3 shows the historical annual maximum precipitation (AMP) over 46 

stations in BRB for 1-, 6-, and 24-hour durations (1940-2013). Each box plot represents 

the maximum, mean, median, and minimum values of annual maximum precipitation from 

46 stations. Since BRB has a large spatial variation of both precipitation and temperature, 

there are large differences among AMPs in a certain year. For example, the mean 1-hour 

AMP in 1992 from all stations was only 25 mm, however, the maximum 1-hour 

precipitation was 274.3 mm at Granger Dam in the same year which was nearly 10 times 

higher than the mean value. In 1994, the maximum 24-hour precipitation was captured as 

388.6 mm at the Washington state park. Historically this was the first maximum 24-hour 

value above 300 mm from 1940 to 2013 amongst 46 stations. If we used the maximum 

precipitation values before 1993 to estimate the probable maximum precipitation without 

considering maximum record in 1994, the PMP values would likely be underestimated for 

the later period (after 1994). Therefore, including all observations within the catchment is 

essential to estimate the PMP accurately and reliably.  

The standard deviation of AMP over 46 stations for each year was calculated for 

1-, 6-, and 24-hour durations (Figure II-4). The average value of standard deviation for 

24-hour (34.89 mm) was larger than the average value of standard deviation for 1-hour 

(20.37 mm). The linear trend of standard deviation of 6-hour and 24-hour AMP increased, 

while the 1-hour standard deviation of AMP decreased. Both trends were statistically 

significant at alpha of 0.05 level (1-hour, decreasing) and alpha of 0.1 level (6-hour and 



 

25 

 

24-hour, increasing) from Mann-Kendall test (Hamed and Rao, 1998). In recent years, the 

difference between 24-hour and 1-hour standard deviations has been increasing. The 

maximum standard deviation was captured in the same year as the maximum precipitation 

occurred (1-hour in 1992, 6-hour in 1992, and 24-hour in 1994) in. This is because the 

mean and standard deviation of AMP had a linear relationship during this period in BRB 

(Figure II-5). The average of AMP over 46 stations for each year was calculated for 1-, 6-

, and 24-hour durations. 24-hour statistics had a stronger correlation than 1-hour and 6-

hour statistics between the mean and the standard deviation of AMP. The slope of the 

linearly fitted line was the largest for 1-hour duration but it decreased as duration 

increased.  

The role of maximum value in the annual maximum precipitation series was 

estimated using the coefficient of variation (Table II-1). The mean and standard deviation 

of AMP with and without the maximum value were calculated separately. The coefficient 

of variation (CV) after removing the maximum decreased (0.48 to 0.42 for 1-hour, 0.42 to 

0.37 for 6-hour, and 0.42 to 0.8 for 24-hour) on average of 46 stations. Each station had a 

variation of CV values. Among durations, the maximum difference between CV with and 

without maximum values was 0.51 for 1-hour at Granger Dam. This station received an 

exceptional 1-hour maximum precipitation of 274.3 mm in 1992. The relationship 

between the mean annual maximum precipitation (MAMP) and PMP using the site-

specific method was investigated (Figure II-6). The range of correlation was 0.40 to 0.57 

between MAMP and PMP. Even though the values of PMP were correlated to MAMP, 
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PMP was not entirely dependent on MAMP, because PMP estimation also accounts for 

the standard deviation of AMP and frequency factors.  

 

Figure II-3 Box plot of AMP 46 stations range for each year 
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Figure II-4 Standard deviation of AMP in BRB 
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Figure II-5 Relationship between statistics in AMP 
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Table II-1 Mean, standard deviation, and coefficient of variation of AMP 

 1-hour 6-hour 24-hour 

Mean of AMP 41.81 mm 66.52 mm 84.85 mm 

Standard 

deviation of AMP 
20.23 mm 27.82 mm 35.78 mm 

Coefficient of 

variation (CV) 
0.48 0.42 0.42 

 
1-hour (without 

maximum value) 

6-hour (without 

maximum value) 

24-hour (without 

maximum value) 

Mean of AMP 40.27 mm 64.60 mm 82.42 mm 

Standard 

deviation of AMP 
16.72 mm 24.13 mm 31.17 mm 

Coefficient of 

variation (CV) 
0.42 0.37 0.38 
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Figure II-6 Relationship between MAMP and PMP 
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2.7 Uncertainty analysis 

2.7.1 Selection of methods 

To compare different PMP values from different methods, the values should be for 

the same area, because PMP values are dependent on the given storm area by definition 

(Hansen et al., 1982; WMO, 1986). Since HMR-51 provided PMP values under certain 

areas, the four methods for PMPs were compared for the same area of 5,000 mi2 as an 

example for 1-, 6-, and 24-hour durations; (1) HMR-51 and (2) TCEQ Grid PMP report 

as the hydrometeorological method, and (3) Hershfield method and (4) Site-specific 

statistical method. Beforehand, the Depth-Area-Duration curve for BRB was plotted, 

based on the records of HMR-51 storms on an area to compare PMPs accordingly (Figure 

II-7). This DAD curve was generated from HMR-51 report that provided the precipitation 

depths based on each duration (1-hour, 6-hour, 24-hour, etc.) and area (10 mi2, 200 mi2, 

1000 mi2, 5000 mi2, etc.) of precipitation events. There were four points of reading for 

each duration and a fitted function was developed to find a relationship between area and 

depths of precipitation events. The purpose of this plot was to show how to manage PMP 

values under different areas. For example, we used this Depth-Area-Duration curve to 

handle Hershfield and Site-specific PMP estimations by multiplying the ratio of DAD 

curve, because Hershfield and site-specific PMP are point measurement values which need 

to be adjusted with respect to the area (WMO, 2009). Other than different methods, 

another possible source of uncertainty is the type of output. For example, HMR-51 is an 

isoheytal (a line drawn on a map connecting points having equal values) and TCEQ PMP 

is the grid type of values at the resolution of 0.025 degree (approximately 2.78 km), while 
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Hershfield and site specific methods have point outputs. For the consistency of 

comparison, 46 station (point) values and nearest values from the isoheytal map and grids 

were selected. Specifically, the PMP from gauge observations (Hershfield and site-

specific) were point measurements, HMR-51 PMP values were given in a line drawn on a 

map, and the grid PMP was calculated at a resolution of 0.025 decimal degree. There were 

no conflicting rainfall gauge stations which fell into same grid of PMP.  

Each marker for a duration denotes the mean value of 46 stations and each bar 

denotes the ensemble mean of 4 different PMP values accordingly for an area of 5000 mi2 

(Figure II-8). In overall PMP ensembles, HMR-51 values were nearly capped as the upper 

limit of PMP for all durations. Also, the HMR values were found to be overestimated in 

other regions, for example, by studies in Michigan-Wisconsin (Tomlinson, 1993) and 

Nebraska (Tomlinson et al., 2008). This was because the HMR values did not represent a 

specific location well and provided generalized rainfall values that were not basin-specific 

and tended to represent the largest PMP values for broad regions. The possible reasons for 

disagreement between HMR-51 and TCEQ Grid PMPs were the inclusion of new storm 

observations, improved analysis procedures (radar precipitation with higher temporal and 

spatial resolutions), and the use of GIS software (Tomlinson and Kappel, 2009) in the 

TCEQ Grid method.  

After HMR-51, the Hershfield values were overall the second largest group among 

PMP values. The difference between the two statistical methods (Hershfield and site-

specific) values increased as the duration increased. Due to the significant disagreement 

between PMP estimations, there was considerable uncertainty in the selection of a PMP 
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estimation method. It may therefore be more informative to provide the ensembles of four 

different PMP methods with their uncertainty range than using a single method of PMP. 

Using the ensembles of PMP for each duration, the design criterion was calculated for 

each level of hazard. As FEMA (2012) suggested, different levels of hazards (low, 

significant, high, and severe; 25%, 50%, 75%, and 100% of PMP) were computed for 

guiding decision making in dam design (Table II-2). Each hazard level denotes the 

percentile value (e.g. 100% refers to the maximum value from the ensemble) from four 

different PMPs at each duration, because many regulatory agencies do not just use the 

maximum PMP for design in the U.S., for example, 50 to 75% of PMP is used in Missouri, 

45 to 90% of PMP in Colorado, and 40% of PMP in Kansas. 
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Figure II-7 Depth-Area-Duration curve for BRB 
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Figure II-8 Effect of PMP method selection in BRB  
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Table II-2 Design criteria from PMP ensembles in BRB 

Criteria 
PMP (mm) 

1-HR 6-HR 24-HR 

Severe Hazard  

(100% of PMP) 
161.62 239.25 437.21 

High Hazards  

(75% of PMP) 
156.54 225.80 427.82 

Significant Hazards  

(50% of PMP) 
127.61 201.86 377.62 

Low Hazards  

(25% of PMP) 
98.67 177.93 327.42 
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2.7.2 Effect of topography 

Many studies have suggested that the most appropriate values of frequency factor 

should be according to the climatic region of the study area (Casas et al., 2008; Dhar et 

al., 1981; Mejia and Villegas, 1979). Therefore, this study compared PMP values for 

different climatic zones using the site-specific method. The effect of topography at a 

particular location may vary, depending on the type of storm (TCEQ, 2016). In this study, 

the uncertainty due to the effect of topography was defined as the coefficient of variation 

of PMP values within climate zones. Because Texas, including BRB, has a spatial pattern 

with a decreasing precipitation gradient from east to west, that greatly influences land use 

and river flow (Rajsekhar et al., 2013).  

Due to a decrease in moisture content from east to west by onshore flow and 

intermittent seasonal intrusions of continental air (Larkin and Bomar, 1983), a large 

precipitation gradient was captured under different climate zones in Texas. The National 

Climatic Data Center divides Texas into 10 climate divisions (TWDB, 2012). Each 

division represents regions with similar characteristics, such as vegetation, temperature, 

humidity, rainfall, and seasonal weather changes. They are commonly used to assess 

climate characteristics across Texas. There are seven climate zones from the upstream to 

the downstream of BRB. Since some climate zones only cover a small number of rain 

gauge stations, we re-grouped them into four zones according to their geographical 

position for the sake of convenience. The four zones consist of Zone 1 (High Plains), Zone 

2 (Low Rolling Plains), Zone 3 (North Central and Edwards Plateau), and Zone 4 (East 

Texas, South Central, and Upper coast).  
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Each bar for a duration denotes the mean value of PMP within the same zone 

(Figure II-9a). Zone 2 had the largest PMP values among different zones, while Zone 1 

had the smallest PMP in the group. Even though Zone 1 and Zone 2 were next to each 

other, their mean PMPs for each duration were considerably different. For example, the 

mean of 1-hour PMP in Zone 1 was 126.28 mm and the mean of the same duration PMP 

in Zone 2 was 144.33 mm which was 14% greater than in Zone 1. Also, the mean of 24-

hour PMP in Zone 1 was 239.19 mm and the mean of the same duration PMP in Zone 2 

was 284.04 mm which was 19% greater than in Zone 1. The PMP values varied in different 

climate zones without a certain pattern along the zones (e.g. upstream and downstream). 

The spatial distribution of precipitation in Texas, including BRB, resulted in the PMP 

gradients along with different climate zones.  

The variability of PMPs under different zones were shown in each bar for a 

duration as the standard deviation of PMP within the same zone (Figure II-9b). The pattern 

of PMP variability was irregular for the results under different zones and durations. The 

maximum standard deviation was captured in Zone 1 for 24-hour PMP, while the 

minimum standard deviation was also obtained in the same zone for 1-hour PMP. In Zone 

1 and Zone 4, the standard deviation increased as PMP duration increased, however, this 

relationship reversed in Zone 2. Even though there was no specific trend of its variability 

in different climate zones, there existed a topographical discrepancy. For all durations, the 

downstream of BRB tended to have large mean and standard deviation values. Because 

this region is relatively wetter than the upstream and receives more rainfall events, the 

downstream is also close to the Gulf of Mexico which frequently experiences floods. For 
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example, an average of four to five days of flooding has occurred each year in Harris 

county from 1996 to 2015 (NOAA, 2017). 

 

 

 

Figure II-9 Effect of topography on PMP estimation 
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2.7.3 Effect of non-stationarity (historical period)  

The effect of non-stationarity was examined during the historical period, because 

the variability of annual maximum precipitation over time was observed (historical 

precipitation extremes in BRB). To examine any systematic change in the magnitude of 

precipitation, the record precipitation which can be the value from any station with the 

largest magnitude among stations every year in BRB was calculated. Each point denoted 

record precipitation in each year. There were 74 years of data length (1940-2013). First 

37 years (P1: 1940-1976) and next 37 years (P2: 1977-2013) were separated to compare 

the mean of record precipitation between periods of the same data length. Figure II-10a 

showed that the mean of first period (P1) was 169.5 mm and the mean of next period (P2) 

was 189.0 mm. There was 19.5 mm of difference between two period mean values. To 

test whether these two mean values were statistically different, a two sample t-test 

(Snedecor and Cochran, 1989) was implemented with the null hypothesis that the 

population mean values were equal for the two samples. Then we rejected the null 

hypothesis and concluded that the two population means were different at the 0.10 

significance level. In addition, the rank of each record precipitation value was calculated 

and took the average rank in each period (e.g. Rank 1 was the largest and Rank 74 was the 

smallest value). From figure II-10b, the average rank of the first period (P1) was 41.0 and 

of the next period (P2) was 33.8. The averaged rank also showed that the later period (P2) 

had a larger record of precipitation than the first 37 years (P1). Thus, there existed a 

systematic transition between two periods during the historical period in BRB. This may 

lead to a potential increase of PMP values in the future if non-stationarity persisted similar 
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to the historical period. Therefore, we examined the change of PMP (24-hour) between 

periods using the site-specific method. 

There were 46-station precipitation data sets used in BRB. However, 6 stations did 

not have enough data during P1 for which we were unable to calculate PMP using the 

statistical method. Thus, 40 stations which had data for both periods were used in this 

PMP value comparison between P1 and P2. Statistics (mean and standard deviation) were 

calculated separately and PMPs were computed based on these two periods’ statistics. 

Each station had a different trend of PMP change between the two periods (Figure II-11). 

For example, the largest increase of 396.6 mm (+121.1%) was captured at ‘Stamford 2’ 

station and the largest decrease of 225.0 mm (-58.1%) was observed at ‘Indian Gap.’ It 

was observed that the mean (+1.06 mm) and the standard deviation (+3.61 mm) of AMP 

in BRB increased from P1 to P2. The overall PMP increased from 390.4 mm to 412.7 mm 

(+22.31 mm) on average in BRB.  
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Figure II-10 Non-stationarity of record precipitation 
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Figure II-11 Effect of climate change on PMP estimation 
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2.7.4 Relative contributions of sources of uncertainty 

The uncertainty from each source was compared in terms of the PMP value change 

(∆) for 1-, 6-, and 24-hour durations. The PMP value in this figure is the mean of all 

locations in BRB. For consistency of comparison, the site-specific method was set as the 

baseline and the maximum difference from each source of uncertainty was then estimated.  

In ‘selection of method,’ the difference between the maximum and minimum PMP values 

from different methods was calculated (MTH). In ‘effect of topography,’ the difference 

between zone 1 and zone 4 of PMP mean values was computed (TPO). In ‘effect of non-

stationarity,’ PMP was calculated using the mean and standard deviation of AMP from 

Period 1 (1940-1976) and Period 2 (1977-2013) to see how much PMP will be potentially 

altered (NST). However, the change of PMP increased at 25 stations and the rest of them 

decreased from Period 1 to Period 2. To avoid canceling each other out and see how much 

they shifted, we calculated the absolute difference of PMP values between two periods 

and used the average of all stations from BRB. The total uncertainty was defined as the 

sum of uncertainties from the three sources (∆ = MTH + TPO + NST) where the site-

specific method was set as a baseline. In other words, how much PMP estimated from the 

site-specific method was changed from three different uncertainty sources. Their 

percentage contributions were compared among the four sources of uncertainty within the 

total uncertainty (Figure II-12).  

It was found that ‘selection of method’ showed a remarkable contribution to the 

uncertainty of PMP estimation. The second largest uncertainty contribution to PMP 

estimation was by ‘effect of non-stationarity.’ This implied that it was a more secure way 
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to adopt multiple PMP methods and to use up-to-date observations, because the 

uncertainty from these two sources considerably affected the estimation of PMP values. 

The least contribution (8.0% to 15.1%) was found from ‘effect of topography.’ There 

existed a discrepancy of PMP under different zones, however, the effect of climate zone 

within the same basin did not considerably affect the PMP estimation. Therefore, the 

uncertainty of PMP estimation was more sensitive to the existing observation statistics 

(mean and standard deviation) and the selection of method rather than the PMP estimation 

from different climate zones.  
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Figure II-12 Relative contributions of different sources of uncertainty 
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2.8 Conclusion 

The estimation of PMP is a key consideration for dam safety. However, PMP 

calculation involves multiple sources of uncertainties, including climatic variables, non-

stationarity, topography, and method of computation. Due to the inherent lack of 

precipitation data in the historical record and PMP calculation methods (HMR-51 and 

Hershfield), uncertainty exists in the estimation of PMP. To overcome the lack of available 

data, a simple statistical method (site-specific) which is computationally less expensive 

can produce a reliable and reasonable range of PMP values. The PMP estimate can be 

lower than HMR-51 Report when the proposed site-specific PMP method is used, which 

is likely to be economically beneficial for the design of hydraulic structures. Since PMP 

is the theoretical value and there is no true value for PMP, the uncertainty of PMP 

estimation from different methods is not negligible. We suggest to use the ensemble of 

PMP values (such as percentile of PMP) rather than using a single method. Under different 

climate zones, the pattern of PMP variability was irregular for the results and there existed 

a topographical discrepancy.  

‘Selection of method’ is manageable (predictable) and ‘effect of topography’ does 

not change over time. Unlike the other two uncertainty sources, ‘effect of non-stationarity’ 

is not controllable. The contribution of each of the uncertainty sources to PMP estimation 

was found as 53.5% (selection of method), 31.4% (effect of non-stationarity), and 15.1% 

(effect of topography) in 24-hour PMP. The uncertainty of PMP estimation was more 

sensitive to the existing observation statistics and the selection of method rather than the 

PMP estimation from different climate zones within the same basin. Results showed that 
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extreme precipitation in Brazos River basin showed non-stationarity which affected PMP 

shift during the historical period. This implies that there is a potential increase of PMP 

values in the future if non-stationarity of extreme precipitation persists similar to the 

historical period. 

We can only estimate PMP using historical observations and it is still challenging 

to predict future PMP using future scenarios. PMP estimation, including the most recent 

precipitation records, can help reduce the uncertainty from climate change and non-

stationarity, while HMR-51 and Hershfield used outdated data which can cause misleading 

information for the current and future hydrometeorological conditions in designing flood–

related projects. Unless the recent precipitation data are used in PMP estimation, it is likely 

to obtain misleading PMP information. By overlooking the impact of climate change and 

non-stationarity, the reliable estimation of PMP and the longer lifetime of dams cannot be 

ensured. Another limitation of this study is that our findings are site-specific results and 

may not be transferrable to other locations. However, Hershfield (global coverage) and 

site-specific (basin scale) methods still showed a disagreement in the estimated PMP. 

Even though our results are limited to site-specific, PMP estimation using adequate data 

for certain areas is required.  
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CHAPTER III  

RELATIONSHIP BETWEEN EXTREME PRECIPITATION AND CLIMATIC 

CYCLES IN TEXAS 

 

3.1 Synopsis 

Texas has a spatial rainfall pattern with a decreasing gradient from east to west 

that greatly influences land use, vegetation, and river flow. This variation leads to major 

floods that cause huge losses of life and agricultural property. To minimize risk of failure, 

dams, reservoirs, nuclear power plants, and flood protection works are designed using 

Probable Maximum Precipitation (PMP) which is also used for rehabilitating old existing 

dams. PMP estimation has received significant attention recently, because meteorological 

extremes are projected to become more frequent, severe, and uncertain with climate 

change, and their controlling mechanisms seem to be global-scale climatic cycles. This 

study examines how global scale climatic indicators and regional precipitation extremes 

are related. First, statistically estimated PMPs (Hershfield and site-specific) 100-year 

precipitation obtained from distribution fitting are compared. Second, the impact of 

climatic cycles, including Atlantic Multidecadal Oscillation (AMO), North Atlantic 

Oscillation (NAO), Pacific Decadal Oscillation (PDO), Pacific North American Pattern 

(PNA), and Southern Oscillation Index (SOI), on extreme precipitation is investigated. 

Third, the effect of El-Niño and La-Niña on extreme precipitation is analyzed using El-

Niño–Southern Oscillation Precipitation Index (ESPI). Finally, relations between 

geographical characteristics and precipitation extremes are quantified. Results show that 
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the annual cycle of monthly extreme precipitation is affected by warm and cold phases of 

climatic cycles. El-Niño years receive 16% more precipitation (72-hour) than do La-Niña 

years. At farther distance from the coastline, there is less precipitation and less variability 

in extremes. These findings help gain broader insights for understanding extreme 

meteorological events. 

 

3.2 Introduction 

Extreme precipitation events lead to disastrous floods which cause huge damages 

to infrastructure, livestock and agricultural systems, and disrupt the society (Durodola, 

2019; Mishra and Singh, 2010; Papalexiou and Montanari, 2019). For example, storm 

water inundates urban areas, erodes soil, and carries wastes, such as chemicals and 

nutrients, into receiving water bodies (Mishra and Singh, 2010; Parker et al., 2010; 

Rosenzweig et al., 2002). To minimize the risk of failure due to extreme precipitation, 

major hydraulic structures, such as dams and reservoirs, nuclear power plants, and flood 

protection works, are designed, and old existing dams are rehabilitated, using Probable 

Maximum Precipitation (PMP). PMP is theoretically the maximum possible precipitation 

for a given duration under likely meteorological conditions. There did not seem to have 

been much attention paid to the assessment of PMP under changing climate (Beauchamp 

et al., 2013) until the World Meteorological Organization (WMO) report mentioned “PMP 

and climate change” which indicates that climate change could lead to an increase of PMP 

(WMO, 2009). It is generally accepted that climate change does have an impact on severe 

precipitation extremes and its effect should therefore be considered (Simonović, 2012). 
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Kunkel et al. (2013) examined the effect of potential climate change on PMP along with 

a significant future increase in mean and maximum precipitation. PMP values would 

increase in the future due to large atmospheric moisture content and moisture transport 

into storms. 

 In Texas, there have been severe extreme events in recent years, including 

hurricanes Bill, Cindy, Harvey, and Imelda. These events commonly passed through the 

southeastern part of Texas close to the coast. Precipitation of about 330 mm in 24 hours 

in 2015 (Bill), 474 mm in 5 days in 2017 (Cindy), and exceptionally within the same year, 

1539 mm in 4 days in Houston area (Harvey) was observed. Hurricane Harvey was the 

severest extreme event in Texas. During August 25–30, 2017, hurricane Harvey struck 

Texas (particularly Houston) and generated extreme precipitation causing extensive 

flooding. The return period of the highest observed three-day precipitation amount 

(1043.4 mm at Baytown) was more than 9000 years (van Oldenborgh et al., 2017). The 

tropical storm originating from the western Caribbean and the southern Gulf of Mexico 

passed through South Texas in June 18-21, 2018. The record rainfall of 508 mm during 

72 hours was measured at the Corpus Christi (NWS, 2018). The tropical storm Imelda 

with wind speed of 64 km/h caused catastrophic flooding in southeast Texas in September 

17-19, 2019. A total amount of 1,102 mm was recorded in Jefferson County with five 

casualties (NCEI, 2019; Stanglin, 2019; Zelinsky, 2019). In terms of damage, floods 

caused an average of 82 deaths and $7.9 billion in property damage annually across the 

U.S. between 1985 and 2014 (Downton et al., 2005). Texas has the highest incidence of 

flood-related fatalities among all 50 states (Sharif et al., 2010) and is the only state that 
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has reported flood-related fatalities in every single year between 1959 and 2008 (Sharif et 

al., 2014). 

National Centers for Environmental Information of National Oceanic and 

Atmospheric Administration (NOAA) reported that there was an increasing trend in 

precipitation and temperature in most of the basins in Texas (NOAA, 2018). It is found 

that more rapid intensification of extreme precipitation is captured in the tropics and 

subtropics mainly due to the effect of atmospheric circulation changes (Norris et al., 2019). 

Climate change (Pendergrass, 2018; Risser and Wehner, 2017; van Oldenborgh et al., 

2017; Wang et al., 2018) and climatic cycles (Bhatia et al., 2019; Schlef et al., 2019) play 

a major role in increasing the intensity of precipitation. Recent climate modeling studies 

suggest that extreme precipitation events will be intensified during the 21st century at 

continental to global scales (Fischer and Knutti, 2016; Li et al., 2019; Pendergrass, 2018). 

Furthermore, extreme precipitation results from various pressure and sea surface 

temperature anomalies at annual to multi-decadal cycles (Hu et al., 2011; Quadrelli and 

Wallace, 2004; Renard and Lall, 2014) that are characterized by certain atmospheric or 

oceanic patterns of global scale climatic cycles (Guirguis et al., 2015; Tian et al., 2017; 

Trenberth et al., 2006). An increasing number of studies have investigated the variations 

in climatic cycles and related impacts on meteorological extremes in South America 

(Folland et al., 2001; Hill et al., 2011; Silva and Ambrizzi, 2006)  and North America 

(Bhatia et al., 2019; Enfield et al., 2001; Hu and Feng, 2012). Kripalani and Kulkarni 

(2001) found that the climatic cycles were the leading drivers of precipitation extremes 

and their spatial and temporal variability. The climatic cycles have two different phases 
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(warm and cold) and their differences are known to remarkably affect the regional 

hydrologic cycle (Brugnara and Maugeri, 2019; López-Moreno et al., 2011; Mo, 2010; 

Tatli and Menteş, 2019). However, the effect due to different phases of climatic cycles on 

meteorological regimes has not been well documented for Texas.  

  The climatic cycles related to Atlantic and Pacific Oceans that are important for 

Texas are: Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), 

Pacific Decadal Oscillation (PDO), Pacific North American Pattern (PNA), and Southern 

Oscillation Index (SOI).  

AMO is the multi–decadal scale oceanic temperature phenomenon (Kerr, 2000) 

which represents multi–decadal scale Sea Surface Temperature (SST) fluctuations in the 

Atlantic Ocean in mid– to high–latitude zones (Curtis, 2008). Texas is found to be strongly 

connected with AMO (Nogueira and Keim, 2010) and the weather stations with higher 

total precipitation or greater positive total precipitation anomaly are likely to receive 

extreme precipitation in the cold phase of AMO in the humid sub-tropical climate region 

(Bhatia et al., 2019). 

NAO is a sub–annual to decadal scale low–frequency fluctuation in the strength of 

surface westerly climate across the northern hemisphere extratropical atmosphere on the 

large–scale movement of atmospheric mass (Greatbatch, 2000). It is based on the 

anomalies in sea level pressure between Icelandic low–pressure zone and subtropic 

atmospheric high–pressure system centered over the Azores (Ottersen et al., 2001). This 

climatic phenomenon results in negative precipitation anomalies in Texas (Parazoo et al., 

2015). The cold and warm desert/semi-arid climate regions of Texas have been found to 



 

54 

 

be influenced by NAO (Bhatia et al., 2019) mainly due to the average temperature and 

temperature anomalies in the months of extremes. 

PDO is the Pacific decadal variability in Northern Hemisphere climate, with 

temperature anomalies in the central North Pacific zone surrounded by anomalies of 

opposite sign in the Alaska gyre, off the coast of California, and toward the Tropics 

(Schneider and Cornuelle, 2005). In the critical summer season in Texas, PDO is closely 

correlated to streamflow of the Guadalupe and San Antonio River basins (Joseph et al., 

2013).  

PNA defines the anomalies of sea surface temperature and precipitation in the 

mid– to upper–tropospheric geopotential height fields over the North Pacific Ocean 

(Wallace and Gutzler, 1981). Cavazos (1999) found that a reverse PNA pattern was 

associated with summer precipitation events, and a positive connection between the PNA 

pattern and winter precipitation in northeastern Mexico and southeastern Texas.  

SOI is the atmospheric component and is commonly considered as the key 

indicator of El-Niño–Southern Oscillation (Chiew and McMahon, 2002). It is computed 

by the normalized difference of the standardized sea level pressures between the eastern 

Pacific (Tahiti) and the western Pacific (Darwin) (Yan et al., 2011). There is a dry 

condition during high SOI years within the Gulf and Mexican region (Ropelewski and 

Halpert, 1989). Richman et al. (1991) found that the relation between low SOI values and 

positive Texas precipitation anomalies was confined to the eastern part of the state. 

An index for the El Nino-Southern Oscillation (Benson) based on precipitation 

from Global Precipitation Climatology Project (GPCP) called the El-Niño–Southern 
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Oscillation Precipitation Index (ESPI) is introduced (Curtis and Adler, 2000). The ESPI 

is based on rainfall anomalies between the eastern tropical Pacific and the maritime 

continent. It is normalized to have zero mean and unit standard deviation and is used partly 

for feedback to El-Niño warming in the eastern Pacific, because large shifts in tropical 

convection change with exceptional latent heat release and large-scale atmospheric 

circulations affect global precipitation patterns (Curtis and Adler, 2003). 

These indices have warm (positive) and cold (negative) phases. The warm phase 

of AMO has resulted in an increase in the number of active hurricane seasons (Goldenberg 

et al., 2001), leading to an overall enhancement of moisture transport and extreme 

precipitation events in the southeast U.S. (Li et al., 2011). During the cold phase of AMO, 

the monsoon rainfall of the southern U.S. is confined due to the recurrent northwesterly 

wind anomalies in the North American monsoon region (Hu and Feng, 2008). The warm 

phase of NAO is characterized by stronger Atlantic jet stream and northward shift of the 

storm track, resulting in tropical cyclones for the southeastern U.S. (Bell and Visbeck, 

2009; Hurrell et al., 2003), while the southeastern U.S. is likely to experience colder and 

drier winter season in the cold phase of NAO due to the weakening of the aforementioned 

pressure centers and decrement in the pressure gradient across the North Atlantic. The 

winter precipitation phase in Texas is observed to be drier in  the cold PDO and wetter in 

the warm PDO (Goodrich and Walker, 2011). The warm phase of PNA in winters is found 

to be wetter in the Southeastern U.S. (Leathers et al., 1991), and Henderson and Robinson 

(1994) found more precipitation in summertime than in wintertime in the cold phase of 

PNA. The warm phase (El-Niño) of SOI is characterized in the tropical Pacific Ocean 
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basin by anomalously warm waters, weak trade winds, low pressure, and heavy rains in 

the east, while high pressure and dry conditions are captured in the west (Curtis and Adler, 

2000). The opposite sign refers to the cold phase (La-Niña). 

The objective of this study therefore is to examine how global scale climatic 

indicators and regional precipitation extremes are related in Texas. First, statistically 

estimated PMPs and 100-year return period precipitation obtained from frequency 

distribution fitting are compared. Second, the impact of major Atlantic and Pacific Ocean 

based climatic cycles, including AMO, NAO, PDO, PNA, and SOI, on extreme 

precipitation is investigated for entire Texas. Third, the effect of El-Niño and La-Niña on 

the annual cycle of monthly extreme precipitation and annual maximum precipitation in 

different climate zones is analyzed. Finally, the relations of geographical characteristics 

to climate indices, precipitation extremes, and El-Niño and La-Niña effect are 

quantitatively evaluated. 

 

3.3 Study area 

Texas, the largest state in the contiguous United States (CONUS), contains a wide 

range of climates from arid to sub-tropical humid (Larkin and Bomar, 1983). The varied 

geographical characteristics with forests in the east, coastal plains, and the elevated 

plateaus in the south, and basins in the north and west, result in a wide variety of weather 

throughout the year (Benke and Cushing, 1996). The varied climate in Texas demonstrates 

itself in terms of large spatial and temporal variations in precipitation and temperature. It 

is greatly affected by physical features, including two competing systems between frontal 
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passages from northwest and moist air moving from the Gulf of Mexico (Hao and Singh, 

2013; North and Schmandt, 1995). The annual mean precipitation in Southeast Texas is 

more than 1,400 mm, while Northwest Texas only receives about 400 mm (Lyons, 1990). 

There are two precipitation peaks in May and September (Lee et al., 2017) and most of 

the west Texas rivers flow only part of the year, while the east Texas rivers flow year-

round (Geology, 1996). The annual mean temperature varies greatly with latitude from 

north to south. According to Bomar (1995), the average annual temperature (1961-1990) 

in the northern portion of the Texas High Plains is 13.2 oC, while it is 23.3 oC in Southern 

Texas. Overall, Texas has a spatial pattern with a decreasing rainfall gradient from east to 

west and a temperature gradient from north to south that greatly influence land use, 

vegetation, and river flow (Rajsekhar et al., 2013). Due to these large spatial and temporal 

variations of rainfall and temperature, hydrologic extreme events (such as droughts and 

floods) have led to unfavorable conditions for agricultural production (Guerrero, 2012) 

and water management. This is a critical issue for Texas, which has the largest farm area 

and the highest livestock production among the 50 states (Gleaton and Anderson, 2005). 

A total of 528,000 km2 is occupied by farms and ranches which is about 76% of Texas 

surface area occupied by farms and ranches, and 22% of this area is crop land. For the 

crop land portion, about 57% is harvested, 10% is grassland, and 33% is either not 

harvested or fails to produce crops (National Agricultural Statistics Service, NASS, 2007). 

Figure III-1 shows locations of 217 rain gauge stations and climate zones used in this 

study. The climate zones divided by National Climatic Data Center (NCDC) is discussed 

in section 3.4.2. 
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Figure III-1 Rain gauge stations and climate zones in Texas 
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3.4 Data  

3.4.1 Precipitation 

Hourly precipitation data (https://www.ncdc.noaa.gov/cdo-web/) were obtained 

from NOAA National Climatic Data Center (NCDC) to estimate PMP. A total of 217 

gauge stations (Cooperative Observer Network; COOP) which have more than 30 years 

of data were selected (Figure III-1). From 1-hour duration precipitation data, 24-, 48-, and 

72-hour precipitation data were generated. The maximum precipitation during certain 

durations was obtained from each year using moving window sum (Annual Maximum 

Precipitation; AMP). A period of 64 years (1950–2013) was determined, based on the 

available data of the overlapping period for climatic cycles from 1950. In order to meet 

National Weather Service quality standard, the Weather Forecast Office has monitored, 

reviewed, and taken corrective action on any COOP observations that do not meet the 

highest standards of quality. Precipitation reports are verified and corrected for each day, 

including past days, based on comparison with nearby reports or radar estimation (NWSI, 

2017).  

 

3.4.2 NCDC climate divisions 

There are 344 climate divisions in the U.S. which are characterized on the basis of 

similar attributes of vegetation, rainfall, temperature, humidity, and seasonal weather 

changes from National Climatic Data Center (NCDC) (Karl and Koss, 1984; TWDB, 

2012). Originally, there are 10 climate divisions lying within the Texas boundary, as 

shown in Figure III-1. For the convenience of analysis and comparison, these are 
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regrouped into seven zones as follows; Zone 1 (High Plains and Low Rolling Plains), Zone 

2 (North Central), Zone 3 (East Texas), Zone 4 (Trans Pecos), Zone 5 (Edwards Plateau), 

Zone 6 (South Central and Upper Coast), and Zone 7 (South Texas and Lower Valley).  

 

3.4.3 Climatic cycles and ENSO precipitation index 

Monthly index of Atlantic Multidecadal Oscillation (AMO), North Atlantic 

Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Pacific North American 

Pattern (PNA) were obtained from the Earth System Research Laboratory database 

(https://www.esrl.noaa.gov/psd/data/climateindices/) and monthly index of Southern 

Oscillation Index (SOI) was downloaded from Australian Government’s Bureau of 

Meteorology database (http://www.bom.gov.au/climate/enso/). El Nino-Southern 

Oscillation Precipitation Index (ESPI) was obtained from Earth System Science 

Interdisciplinary Center (Essic) and Cooperative Institute Center and Cooperative Institute 

for Climate and Satellites (CICS) at University of Maryland, College Park 

(http://eagle1.umd.edu/GPCP_ICDR/espi.htm). Due to the availability of ESPI, this index 

was compared separately from other five climatic cycles. A brief summary of these 

climatic cycles is listed in Table III-1.  
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Table III-1 Climatic cycles and ENSO Precipitation Index 
 

Period Domain Variables 

AMO 1856-2016 North Atlantic  

Ocean 

Sea surface temperature  

Precipitation 

NAO 1950-present Iceland Low & 

Azores High   

Pressure 

PDO 1900-present Northern Pacific  

Ocean 

Sea surface temperature  

Sea level pressure 

PNA 1950-present N. Hemisphere  

mid-latitudes 

Sea surface temperature 

Precipitation 

SOI 1876-present East and West  

Tropical Pacific 

Sea surface pressure 

ESPI 1979-present Maritime Continent 

and Eastern tropical pacific 

Precipitation 
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3.5 Methods 

3.5.1 Site-specific method for Texas 

The site-specific method was adopted from Chapter 2.5.4. Only part of Texas 

(BRB) was considered in previous chapter. However, entire Texas precipitation 

observations were considered for PMP estimation. FFC is the fitted curve for 24-, 48-, 

and 72-hour durations from the scatters of 𝐾8 values (Figure III-2). The calculated B values 

from FFC equation (4) were -0.0036 (24-hour), -0.0031 (48-hour), and -0.0026 (72-hour).  

 

 

Figure III-2 Site-specific enveloping curve in Texas 
 

 



 

63 

 

3.5.2 Generalized Extreme Value (GEV) distribution 

To estimate the return period of annual maximum precipitation series, it is 

important to select an appropriate frequency distribution. The generalized extreme value 

(GEV) distribution is one of the frequently employed probability distributions for 

modeling extreme values, including discharge and rainfall data to estimate magnitudes of 

maximum values corresponding to various return periods (Fowler and Kilsby, 2003; Katz 

et al., 2002; Mishra and Singh, 2010; Nguyen et al., 2002; Pangaluru et al., 2018). The 

GEV distribution (Hosking et al., 1985; Jenkinson, 1955) was selected for this study, 

because it was previously documented (Asquith, 1998) as appropriate for 1-day and 

greater durations in Texas. The GEV distribution incorporates Gumbel or type I (κ = 0), 

Fréchet or type II (κ < 0), and the Weibull or type III (κ > 0) distributions (Stedinger, 1993) 

as special cases. The cumulative distribution function of the GEV distribution can be 

written as  

𝐹(𝑥) = exp M− O1 − 𝜅
(𝑥 − 𝜉)
𝛼

T
A/V

W 𝜅 ≠ 0 (5) 

𝐹(𝑥) = exp Z−exp O−
(𝑥 − 𝜉)
𝛼

T[ 𝜅 = 0 (6) 

where 𝜉 + 𝛼/𝜅 ≤ 𝑥 < ∞ for 𝜅 < 0,−∞ < 𝑥 < +∞ for 𝜅 = 0, and −∞ < 𝑥 ≤ 𝜉 + 𝛼/𝜅 

for 𝜅 > 0. Three parameters are 𝜉 = location, 𝛼	= scale, and 𝜅	= shape. Considering x1, x2, 

…, xn as the annual maxima of precipitation for given duration at each location, the method 

of maximum likelihood was adopted to estimate the parameters of the distribution selected 

to fit the data (Kotz and Nadarajah, 2000). If the set of {𝑥a} is independent and identically 
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distributed from the GEV distribution, the log-likelihood function (Hosking et al., 1985) 

for a sample of 𝑥0 can be expressed as  

ln[𝐿(	𝜉, 𝛼, 𝜅	|	𝑥)] = −𝑛 ln(𝛼) +jkl
1
𝜅 − 1m ln

(𝑦a) − (𝑦a)A/Vo
0

apA

 
(7) 

𝑦a = q1 − r
	𝜅
	𝛼s

(𝑥 − 𝜉)t (8) 

The maximum likelihood estimation of the three parameters can be obtained by 

taking the first derivatives of ln[𝐿(	𝜉, 𝛼, 𝜅	|	𝑥)]	with respect to each parameters and setting 

the derivatives zero as (Hosking, 1985): 

1
𝛼j

O
1 − 𝜅 − (𝑦a)A/V

𝑦a
T

u

apA

= 0 
 (9) 

−
𝑁
𝛼 +

1
𝛼j

O
1 − 𝜅 − (𝑦a)A/V

𝑦a
l
𝑥a − 𝜉
𝛼 mT

u

apA

= 0 
(10) 

−
1
𝜅wjZln(𝑦a)x1 − 𝜅 − (𝑦a)A/Vy +

1 − 𝜅 − (𝑦a)A/V

𝑦a
𝜅 l
𝑥a − 𝜉
𝛼 m[

u

apA

= 0 
(11) 

 

 

3.5.3 Goodness of fit test   

Three goodness of fit tests, including Chi-Square (C-S) test, Kolmogorov-Smirnov 

(K-S) test, and Anderson-Darling (A-D) test, were used. C-S test: The chi-square test is 

non-parametric and was used to determine whether a data sample came from a specified 

probability distribution, with parameters estimated from the data (Greenwood and Nikulin, 
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1996). The chi-square statistic (χ2) is based on the grouping of data into n number of bins 

of equal probability as 

𝜒w =j
(𝑂a − 𝐸a)w

𝐸a

0

apA

 
(15) 

where Oi is the observed frequency, and Ei is the expected frequency (Ei = F(xi) - F(xi-1)).  

K-S test: The maximum difference r𝐷 = 𝑚𝑎𝑥�𝐷±, 𝐷∓�s between the hypothesized 

distribution function and the empirical distribution (Conover, 1972) was computed. The 

test showed whether a sample came from the hypothesized distribution. Let	𝑍(a) =

𝐹(𝑥a, 𝜃), where 𝐹0(𝑥a) indicates the empirical cumulative distribution function, 𝑥a 

represents the order data, and 𝜃 is the parameter sets. Then, 

𝐷± = 𝑚𝑎𝑥a r
a

0;��
s , 𝐷∓ = 𝑚𝑎𝑥a r

;(a;A)
0

s     (16) 

A-D test: The weighted square difference between the hypothesized and empirical 

distributions was calculated (Anderson and Darling, 1954) and a weight function was the 

test statistic (𝐴): 

𝐴w = −𝑛 − A
0
∑ (2𝑖 − 1)0
apA �ln�𝐹(𝑥a)� + ln[1 − 𝐹(𝑥0;a�A)]�     (17) 

The hypothesis testing for the chi-square goodness of fit test is set as null hypothesis that 

the data are consistent with given (GEV) distribution. 189 stations (24-hour), and 194 

stations (48-hour), and 184 stations (72-hour) of total number of 217 stations indicated 

that the C-S goodness of fit test did not reject the null hypothesis at the 5% significant 

level. Likewise, 185 stations (24-hour), and 190 stations (48-hour), and 182 stations (72-
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hour) for K-S test and 190 stations (24-hour), and 189 stations (48-hour), and 181 stations 

(72-hour) for A-D test did not reject the null hypothesis at the 5% significant level.  

 

3.6 Results 

3.6.1 PMP estimation and 100-year return period precipitation 

PMP for 24-, 48-, 72-hour durations was calculated from the Hershfield and Site-

specific methods. Figure III-3 shows the PMP values from the two methods at 217 stations. 

When the PMP values and the duration of PMP increased, the difference between two 

methods also increased. The overall estimation from the Hershfield method was larger 

than the values from the site-specific method. Because the Hershfield method has more 

possibility of including extreme observations from a large number (from 2645 stations in 

the U.S.) of data than the site-specific method does (from 217 stations in Texas). However, 

the Hershfield method does not contain recent observations, while site-specific does until 

2013. Between the two methods, the difference was calculated as site-specific value minus 

Hershfield value in percentage. The site-specific PMP was 0.7% to 15.4% (24-hour), 5.1% 

to 22.2% (48-hour), and 6.3% to 27.8% (72-hour) lower than the Hershfield method 

(Figure III-3a, III-3b, and III-3c). Comparison of the values among the three durations 

shows that 24-hour had more linear relationship between two methods, while the non-

dimensional comparison shows that 72-hour duration had nearly perfect (slope of 0.99) 

linear relationship (Figure III-3d, III-3e, and III-3f). The advantage of non-dimensional 

comparison was that the systemic error due to different durations (or amounts of PMP) 

was removed that we could compare PMPs relatively. Even though two methods resulted 



 

67 

 

in different PMP values themselves, they were systematically linearly related during the 

historical period in Texas. For every duration, the most difference was captured at the 

boundary of the coastline at Port Arthur, and the least difference was captured inland at 

Sanderson.     

 To compare with PMP, the annual maximum precipitation (AMP) and annual total 

precipitation (ATP) were calculated at each station and the spatially averaged value 

indicated ‘mean of AMP and ATP.’ Likewise, the ‘standard deviation of AMP and ATP’ 

were the average value from all stations (Table III-2). As the duration increased, the 

difference between two methods also increased as 7.3% for 24-hour, 12.5% for 48-hour, 

and 15.7% for 72-hour. From the GEV distribution fitting, the 100-year return period of 

AMP was calculated. The spatially averaged values were compared to two PMP estimates. 

The ratio of PMP from the Hershfield to the 100-year precipitation was 3.5 to 3.7 and the 

ratio of PMP from site-specific to 100-year precipitation was 3.1 to 3.3 in Texas. This 

finding (ratio) using statistical methods is similar to the previous studies using 

hydrometeorological PMP estimation (TCEQ, 2016). The ratio of both PMP values to 

mean of ATP was found to be 0.9 to 1.3. Specifically, the calculated 24-hour PMP values 

from both methods were close to the annual total precipitation in Texas on average.  

 Figure III-4 shows the ratio of annual maximum precipitation (AMP) to annual 

total precipitation (ATP) over time. The spatially averaged values of AMP over ATP from 

1940 to 2013 were calculated for each year. For example, the value of 0.12 on the y-axis 

in 1950 means that annual maximum precipitation (24-hour) was 12% of annual total 

precipitation for 271 stations averaged. The largest ratio was captured in 1947 as 0.20 (for 
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24 hours), 0.24 (for 48 hours), and 0.26 (for 72 hours), while the least ratio was found in 

1992 as 0.10 (for 24 hours), 0.11 (for 48 hours), and 0.13 (for 72 hours). The most extreme 

case was in 1947, amounting to 26% (48 mm) of total precipitation (288 mm) within 72 

hours. Figure III-5 indicates what the return period of PMP value would be if the PMP 

really occurred. The PMP values and their return periods were calculated from the GEV 

distribution fitting. Since the National Research Council estimates the return period of 

PMP in the U.S. in the range of 105 to 109 years as the upper bound of extreme 

precipitation (NRC, 1994), the return periods of PMP from the two methods were counted 

as a histogram (Figure III-5). Most PMP values fell into the return period range of 105 and 

106 years. The return period of PMP was at least 1,000 years. Those longer durations of 

return period seemed much higher, however, a recent study by van Oldenborgh et al. 

(2017) found that the return period of the largest observed 72-hour precipitation amount 

of Hurricane Harvey was greater than 9,000 years. Also Kao et al. (2019) highlighted that 

the 72-hour precipitation during Hurricane Harvey in the Houston area exceeded up to 25 

mm from its PMP values in HMR-51. 
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Figure III-3 Hershfield and site-specific PMP estimation in Texas 
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Table III-2 AMP, ATP, PMP, and 100-year precipitation in Texas 

 24-hour 48-hour 72-hour 

Mean of AMP 86.0 mm 97.4 mm 104.5 mm 

Standard deviation of AMP 38.2 mm 43.4 mm 46.4 mm 

Mean of ATP 693.14 mm 

Standard deviation of ATP 227.41 mm 

PMP Hershfield (H) 677.9 mm 819.6 mm 928.8 mm 

PMP Site-specific (S) 629.3 mm 725.8 mm 801.9 mm 

Difference = (S-H)/S -7.3% -12.5% -15.7% 

100-year precipitation 

(GEV distribution) 
189.2 mm 230.9 mm 251.2 mm 

Ratio of PMP Hershfield  

to 100-year  precipitation 
3.6 3.5 3.7 

Ratio of PMP Site-specific  

to 100-year precipitation 
3.3 3.1 3.2 

Ratio of PMP Hershfield  

to Mean of ATP 
1.0 1.2 1.3 

Ratio of PMP Site-specific  

to Mean of ATP 
0.9 1.0 1.2 
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Figure III-4 Ratio of annual maximum to annual total precipitation in Texas 
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Figure III-5 Return period of PMP values 
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3.6.2 Spatial distributions of PMP and extreme precipitation 

The map of AMP, standard deviation of AMP, ratio of AMP to ATP, record 

precipitation, PMP, 100-year precipitation at each station for 72-hour duration, and ATP, 

was constructed, as shown in Figure III-6. The mapped spatial distribution was driven 

from the point values using the inverse distance weighting method (Philip and Watson, 

1982; Watson, 1985) in ArcGIS interpolation mapping tool. ATP (Figure III-6a) and AMP 

for 72 hours (Figure III-6c) had similar spatial patterns that three climate zones (2, 3, and 

6) in the east received a large amount of precipitation, while zone 4 showed the driest 

condition for annual maximum and annual total precipitation. The 100-year return period 

of precipitation from the GEV distribution (Figure III-6b) showed a similar spatial pattern 

as ATP and AMP. Moreover, zone 7 (Southcentral and Lower Valley) had a large amount 

of 100-year precipitation. Even though zone 7 had a smaller amount of annual maximum 

and total precipitation, this zone had less frequent but more extreme precipitation, because 

the standard deviation of AMP (Figure III-6g) was found to be high in this zone. Likewise, 

the record precipitation (the observed amount with the largest value among AMPs within 

the period of 1940 to 2013 from each station) showed a similar pattern as the 100-year 

return period precipitation. In other words, zone 7 normally had small amounts of 

precipitation throughout the years, however, there was unpredictable extreme precipitation 

due to more variability.  

The spatial distributions of PMP estimated from the Hershfield and site-specific 

methods were nearly identical (Figure III-6e and III-6f). The range of PMP values was 

446 mm to 1739 mm for the Hershfield method and 419 mm to 1389 mm for the site-
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specific method. A large amount of PMP was found along the Gulf coast, including zones 

3, 6, and 7. The PMP values from zone 7 were not expected to be high, based on low AMP 

(Figure III-6c). Since PMP is a function of mean and standard deviation of AMP, the high 

standard deviation of AMP (Figure III-6g) caused the larger amount of PMP in zone 7. 

The ratio of annual maximum (72-hour) to annual total precipitation was calculated 

(Figure III-6h). The ratio of AMP to ATP in the wetter regions of east (as low as 6%) was 

likely to be less than in the west drier regions (as high as 18%). Since this ratio did not 

consider the temporal variation of extreme values, such as standard deviation of AMP, it 

could be hazardous to assess the extreme events solely by relying on the ratio of AMP to 

ATP. Likewise, the higher ratio did not guarantee the possibility of severe events. 

Therefore, the PMP estimation including both mean and standard deviation of AMP was 

a more secure way to evaluate extreme events. 
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Figure III-6 Spatial distribution of PMP and extreme precipitation statistics 
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3.6.3 Climatic cycles and extreme precipitation 

The maximum 72-hour precipitation records were obtained for each month and the 

average for all 217 stations from 1950 to 2013 (Figure III-7a) was obtained. The 12-month 

average of 72-hour precipitation was 38.3 mm and the total amount was 459.3 mm. There 

were two precipitation peaks in May (50.4 mm) and September (50.5 mm). The following 

months (June and October) also received large amounts of precipitation. Within those four 

months, about 42% of the total amount of precipitation was observed. The winter season 

(December, January, and February) received only 19% of the total amount of precipitation.  

To identify the impact of warm phase (positive index) and cold phase (negative 

index) on monthly extreme precipitation, indices and 72-hour precipitation of 

corresponding months were collected and the averaged values were plotted, as shown in 

Figure III-7b (AMO), III-7c (NAO), III-7d (PDO), III-7e (PNA), and III-7f (SOI). The bar 

charts in the figures are the absolute difference between precipitation records of the two 

phases (hereafter called ‘delta’). From June to October, delta was smaller than for other 

seasons for AMO and NAO. There was a sudden transition between May (maximum delta) 

and June (minimum delta) for AMO. The values of winter and spring (from December to 

May) delta were largely affected by the different phases of AMO. NAO had a similar 

pattern of the annual cycle of delta as AMO did except for January, because both climatic 

cycles had the same domain over Atlantic Ocean. Both PDO and PNA had the largest delta 

in October, and more precipitation was captured in the warm phase of PDO and cold phase 

of PNA in this month. There was a sudden transition from September to December for 

PDO. PNA had a similar pattern of the annual cycle of delta as PDO did. This was also 
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because both climatic cycles had the same domain over Pacific Ocean. SOI had a unique 

pattern in that the large delta was captured during precipitation peak months. For example, 

more precipitation was captured in June (due to the cold phase of SOI) and in September 

(due to the warm phase of SOI).  

The average of each month’s delta is shown in the top left corner of each figure in 

climatic cycles. In Texas, the Pacific group (PDO = 50 mm and PNA = 52 mm) was more 

sensitive to the effect of warm and cold phases of climatic cycle than the Atlantic group 

(AMO = 36 mm and NAO = 34 mm) was. Overall, August had the smallest delta for all 

five climatic cycles. The largest delta, on average, was observed for PNA, and NAO had 

the least delta. Therefore, the annual cycle of monthly extreme precipitation was notably 

altered in warm and cold phases of different climatic cycles.  
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Figure III-7 Annual cycle of monthly maximum precipitation (72-hour) and its 
relation to climatic cycles under different phases. 
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3.6.4 Effect of ENSO on extreme precipitation 

To investigate the El-Niño and La-Niña effect on the annual cycle of monthly 

extreme precipitation in Texas, ESPI was used for comparison between two phases (1979-

2013). Since ESPI calculation was based on precipitation anomalies, it was appropriate 

for this analysis to focus on extreme precipitation. Figure III-8a shows the effect of El-

Niño and La-Niña on monthly extreme 72-hour precipitation. The El-Niño months 

received 11% more precipitation than La-Niña months did. For example, the El-Niño 

months received 41.2 mm and the La-Niña months received 37.0 mm. However, the 

annual cycle of monthly maximum precipitation showed a significant variation between 

the two phases. The bar chart in the figures is the absolute difference between El-Niño and 

La-Niña. Their difference was large from October to December, however, the preceding 

two months (August and September) had nearly no difference (only up to 0.3 mm) between 

the two phases. Under the El-Niño condition, two peak months received more precipitation 

(15% more in May and 24% more in October) than under the La-Niña condition. 

ESPI was reclassified into four groups to separate the strong and mild signals of El-Niño 

and La-Niña. The index above 1 was strong El-Niño (SEL), between 0 and 1 was mild El-

Niño (MEL), between -1 and 0 was mild La-Niña (MLN), and below -1 was strong La-

Niña (SLN). The precipitation values of the corresponding months are plotted as shown 

in Figure III-8b. Notably, there was more precipitation during the cold season (December 

to March) in Texas under strong El-Niño. Because El-Niño is characterized by 

temperature anomaly (e.g. above-average sea surface temperature) along the equator in 

the Pacific Ocean. This phenomenon allows to shift the weather patterns over parts of the 
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world, including the U.S. During a typical El Niño, Texas experienced a wetter-than-

average weather pattern and a cooler-than-normal weather pattern due to the southern part 

of the jet stream moving over the state. The weather pattern in Texas had already persisted 

for several weeks and it's likely it will continue from January through the spring months. 

Historically, El-Niño weather pattern has been responsible for a very wet and stormy 

spring in 2015 (including record flooding in May) and a wet spring in 2016 (Ramon, 

2019). Likewise, there was less precipitation during the cold season under strong La-Niña 

in Texas. The maximum value (57.7 mm) was captured in May under mild El-Niño and 

the minimum values (22.4 mm) were observed in February under strong La-Niña. During 

peak months, Mild La-Niña brought less precipitation and its variation of annual cycle 

was less evident among four groups of El-Niño and La-Niña signals. 

The results from Figure III-8a were divided into seven groups to investigate the 

effect of El-Niño and La-Niña on the annual cycle of monthly extreme precipitation (72-

hour) in different climate zones (Figure III-9). Every zone had two precipitation peaks 

except for Zone 4 (the driest region of Texas). The delta in Zone 4 was found to be the 

smallest among zones. From June to October, the effect of El-Niño and La-Niña was less 

evident in Zone 1. The effect of El-Niño and La-Niña was noticeable during October 

through December in Zone 2. El-Niño brought more precipitation (+14.1%) than did La-

Niña in Zone 5. Their difference was larger, especially during peak months. There was a 

sudden transition of delta during two consecutive months (December and January) in Zone 

7. The zones along the coastline (Zones 3, 6, and 7) had similar patterns of the annual 

cycle. However, Zone 3 and Zone 6 received more precipitation than did Zone 7. Also, 
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delta was larger in Zone 3 and Zone 6. These zones are more sensitive to El-Niño and La-

Niña cycles and especially Zone 6 (where major cities of Texas are located) have suffered 

from floods every year since 1999 (Erdman, 2019).      

The El-Niño year and La-Niña year were defined from ESPI. Since this index is 

given as monthly time step, the average value of indices from each year denotes El-Niño 

year (positive) and La-Niña year (negative). The corresponding annual maximum 

precipitation (72-hour) was selected, respectively, as El-Niño year AMP (Figure III-10a) 

and La-Niña year AMP (Figure III-10b) for each station. The spatially averaged value of 

AMP was 91.9 mm during El-Niño years and was 79.5 mm during La-Niña years. Under 

both conditions, the eastern part of Texas received more precipitation than the western 

part. In El-Niño years, the maximum value was observed at the city of Victoria (182.35 

mm). In El-Niño years, the maximum values were observed at Port Arthur (186.22 mm). 

Both stations are close to the Gulf of Mexico and belong to climate zone 6. Figure III-10c 

shows the difference between El-Niño years and La-Niña years. Blue color indicates more 

El-Niño year precipitation and red color shows more La-Niña year precipitation. About 

67% of stations received more precipitation during El-Niño years. The difference between 

two conditions was more evident in the eastern part of Texas. The average difference 

between two conditions was 12.4 mm. El-Niño years were wetter than normal conditions 

and they typically kept Texas out of a drought, while El-Niño could help keep hurricanes 

development. 
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Figure III-8 Effect of El-Niño and La-Niña on the annual cycle of monthly extreme 
precipitation (72-hour). 
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Figure III-9 Effect of El-Niño and La-Niña on the annual cycle of monthly extreme 
precipitation (72-hour) in different climate zones. 
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Figure III-10 Effect of El-Niño and La-Niña on annual extreme precipitation (72-
hour) 
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3.6.5 Geographical characteristics of extreme precipitation 

The foregoing discussion showed that the effect of El-Niño and La-Niña on 

extreme precipitation in Texas was substantially related to the location of stations. 

Geographically, the southeastern part of Texas (close to the Gulf of Mexico) was more 

sensitive and responsive to El-Niño and La-Niña. To quantitatively estimate the 

relationship between extreme precipitation and distance from the coastline, the shortest 

length between gauge stations and the coastline was calculated using ArcGIS tool. Both 

El-Niño year (R2 = -0.46) and La-Niña year (R2 = -0.31) precipitations were negatively 

correlated to the distance from the coastline (Figure III-11a and III-11b). The difference 

between two conditions was more remarkable within the distance of 200 km from the 

coastline (Figure III-11c). In addition, PMP and 100-year precipitation (72-hour) had a 

higher correlation than did the El-Niño and La-Niña relationship. Not only the mean 

precipitation had an increasing precipitation gradient from west to east, but also the 

maximum precipitation had a distinct relationship with the distance from the coastline. 

The stronger correlation was observed for PMP (R2 = -0.75) than for 100-year return 

period precipitation (R2 = -0.68) in Texas (Figure III-11d and III-11e). In terms of annual 

precipitation variability, the standard deviation of AMP was also found to be smaller as 

the distance farther from the coastline (Figure III-11f). More precipitation brought more 

variability of annual maximum precipitation. The maximum standard deviation of annual 

maximum precipitation was captured at Alice Airport about 45.4 km from the coastline. 

At this station, the maximum value of 100-year precipitation (664.5 mm) was estimated 

among 217 stations. 
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Figure III-11 Geographical characteristics of extreme precipitation (72-hour) 
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3.7 Conclusion 

PMP was estimated by two statistical approaches (Hershfield method and site-

specific method) and was about 3.1 to 3.7 times larger than the 100-year return period 

AMP in Texas. It is handy to estimate PMP values roughly from 100-year return period 

AMP. The site-specific PMP was more conservative, about 7-15% lower than the 

Hershfield PMP. It is still being debated as to which method is more accurate or more 

reliable, but at least the site-specific method, including more recent observations, can be 

more reasonable than the method using outdated data. A recent study of Kao et al. (2019) 

suggested that the current PMP needs to be updated to protect communities and 

environment from possible risk of flooding. PMP is not an impractical number, because 

the value close to PMP actually occurred recently in Texas. It was shown that the 

estimation of PMP, including both mean and standard deviation of AMP, was a more 

secure way to evaluate extreme events than AMP and ATP themselves, as shown by the 

frequency distribution of extreme events.   

The warm and cold phases of climatic cycles affect the annual cycle of monthly 

extreme precipitation which maintains two precipitation peaks in May-June and 

September-October with different peak values. Using ESPI, El-Niño years receive about 

16% more precipitation (72-hour) annually than La-Niña years. In Zone 6 (Southcentral 

and Upper Coast) the El-Niño and La-Niña dominantly affect the annual cycle of monthly 

maximum precipitation (72-hour). In Texas, 145 out of 217 stations received more 

precipitation during El-Niño years from 1950 to 2013, because in El-Niño years Texas 

experiences a wetter than average weather pattern due to the southern branch of the jet 
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stream moving over the state which intensifies storms. There is a geographical relationship 

between climate indices and precipitation extremes (PMP and AMP). At farther distances 

from the coastline, less precipitation and less variable extremes are captured, and the 

correlation with distance is more evident in El-Niño years (R2 = -0.46) than in La-Niña 

years (R2 = -0.31). From a geographical aspect, Texas is influenced by several factors that 

can potentially contribute to extreme precipitation. The adjacency of the region to the Gulf 

of Mexico is the main reason of more extremes along with the coast line. The large amount 

of moisture moves directly into the inland areas and it is converted into rainfall on the 

ground. A driving factor is the eastern North Pacific Ocean provided mid-level moisture 

which can contribute to the tropical cyclones. The boundary between two different masses 

(fronts) can be a key mechanism of generating upward motion in the atmosphere with 

heavy rainfall and unstable atmosphere (TCEQ, 2016). 

The global scale climatic indicators (AMO, NAO, PDO, PNA, SOI, and ESPI) can 

provide regional response to meteorological extreme events. It is important to understand 

the change of climatic cycles, because the historical extreme events show various 

responses in different phases of climatic cycles and there is a particular geographical 

pattern of precipitation extremes under El-Niño and La-Niña. These findings can raise the 

community’s awareness for broader insights into understanding meteorological extreme 

events. 

 



 

89 

 

CHAPTER IV  

THE EFFECT OF ROSSBY WAVE BREAKING AND CLIMATIC CYCLES ON 

EXTREME PRECIPITATION IN TEXAS 

 

4.1 Synopsis 

Relationship between extreme precipitation and the climatic cycles has been 

investigated in a variety of region globally. However, the linkage between extreme 

precipitation and Rossby Wave breaking has not been documented, especially over Texas 

which experiences flooding every year. Rossby Wave (RW) breaking was defined as a 

detection of Potential Vorticity (PV) and was obtained from ERA-Interim products. This 

study focused on the following steps of analyses. First, how often and how severe Rossby 

Wave (RW) visited Texas were calculated. Second, the relationship between RW and 

extreme precipitation was investigated. Third, how El-Niño and La-Niña affected extreme 

precipitation while considering the RW occurrence. Fourth, the relationship between 

climatic cycles and extreme precipitation was identified. Fifth, the joint event of climatic 

cycles and RW on extreme precipitation was calculated in terms of the number of events 

and the precipitation depth. Finally, precipitation characteristics (number of rain days, 

duration, depth, and intensity of precipitation events) were grouped under different zones 

of RW frequency. It was found that the extreme precipitation was largely affect by ESPI 

and SOI which directly indicated the El-Niño and La-Niña effects among climatic cycles. 

Texas commonly received more precipitation under no Rossby Wave conditions. 

Precipitation characteristics commonly have eastern to western (large to small) pattern in 
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terms of magnitude. These findings can contribute to understanding the extreme 

precipitation event with the joint effect of climatic cycles and atmospheric phenomenon. 

 

4.2 Introduction 

Extreme precipitation leads to  a significant natural disaster from global to regional 

scale, for example, it causes flooding which threatens human life and agricultural 

productivity (Ashley and Ashley, 2008; Gochis et al., 2015; Špitalar et al., 2014; White et 

al., 2019). Floods are usually triggered by heavy rainfall during a short period of time 

(Dong et al., 2011). Flooding depends on a number of factors, such as the magnitude and 

intensity of rainfall, antecedent soil moisture conditions, topography of the affected 

landscape, soil type, and land use (Collier, 2007; Funk, 2006). Flooding has caused an 

average of 82 deaths and annually $7.9 billion loss in property damage in the U.S. between 

1985 and 2014 (Downton et al., 2005). Texas has the highest incidences of flood related 

fatalities among all 50 states (Sharif et al., 2010) and is also the only state that has reported 

flood-related fatalities in every single year during that same period (Lee et al., 2017; Sharif 

et al., 2014).  

Rapid intensification of extreme precipitation is captured in the tropics and 

subtropics due to the effect of atmospheric circulation changes (Norris et al., 2019). 

Climatic cycles (Bhatia et al., 2019; Schlef et al., 2019) constitutes a key role in increasing 

the intensity of precipitation. Extreme precipitation results from various pressure and sea 

surface temperature anomalies at annual to multi-decadal cycles (Hu et al., 2011; Quadrelli 

and Wallace, 2004; Renard and Lall, 2014) that are explained by atmospheric or oceanic 
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patterns of global scale climatic cycles (Guirguis et al., 2015; Tian et al., 2017; Trenberth 

et al., 2006). The global scale climatic cycles are the major mechanisms of precipitation 

regimes, such as the precipitation intensity and extreme events (Gerlitz et al., 2016; Jones 

and Carvalho, 2014; Marani and Zanetti, 2015). Recent studies have investigated the 

relationship between climatic cycles and precipitation which helps understand the 

changing regional hydro-climatic regimes (Bhatia et al., 2019; Bhatia et al., 2020; Renard 

and Lall, 2014). However, the effect due to different phases of climatic cycles on 

meteorological regimes has not been well documented for Texas.  

In addition to the relationship between climatic cycles and extreme precipitation, 

the study of extreme precipitation developed from a complex three-dimensional flow 

evolution that greatly affects surface sensible weather has recently been conducted such 

as Rossby Wave breaking (Hanley and Caballero, 2012; Moore et al., 2019; Sprenger et 

al., 2013). Heavy precipitation is likely to occur in the mixture of deep rising of warm 

moist air and poleward transport in airstreams within warm conveyor belts (Carlson, 1980; 

Harrold, 1973; Pfahl et al., 2014). Rossby Wave may occur when a wave strengthens and 

undergoes a nonlinear evolution with a rapid and irreversible deformation of potential 

vorticity (Holton, 1973; McIntyre and Palmer, 1983). High potential vorticity air can serve 

as channels for tropical to extratropical air mass exchange (Papin et al., 2017). The 

extratropical tropopause was characterized by bands of strong gradients of potential 

vorticity on isentropic surfaces (Hoskins et al., 1985). They concurred with jet stream and 

functioned as wave guides for Rossby Wave propagation (Schwierz et al., 2004). Rossby 

wave in the Earth's atmosphere was simple to monitor as large scale meanders of the jet 
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stream. When these deviations became greatly pronounced, the cold or warm air masses 

got detached, and became low-strength cyclones and anticyclones, respectively, and 

produced weather patterns at mid-latitudes (Kaspi and Schneider, 2011). Recent studies 

have investigated the linkage between extreme precipitation events and Rossby Wave 

breaking in the United States (Hu et al., 2017; Moore et al., 2019; Ryoo et al., 2013). 

In this study, the impact of major Atlantic and Pacific Ocean based climatic cycles, 

including Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), 

Pacific Decadal Oscillation (PDO), Pacific North American Pattern (PNA), Southern 

Oscillation Index (SOI), and El-Niño–Southern Oscillation Precipitation Index (ESPI) on 

extreme precipitation in Texas was linked with Rossby Wave breaking. Rossby Wave 

frequency in Texas was first calculated. The number of events and how extreme 

precipitation were affected under the joint events of climatic cycles and Rossby Wave was 

investigated. Precipitation characteristics (number of rain days, duration, depth, and 

intensity of precipitation events) were examined under different zones of RW frequency. 

 

4.3 Data 

4.3.1 Precipitation 

A total of 217 gauge stations which have more than 30 years of data were selected 

(Figure IV-1). Hourly precipitation data (https://www.ncdc.noaa.gov/cdo-web/) was 

imported from NCDC. The number of rain days and precipitation duration, depth, and 

intensity were selected for analysis of precipitation characteristics. The number of rain 

days was the temporal mean (1979-2013) of rain days per year at each station. Duration 
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(hour) was the temporal mean of maximum duration of precipitation events per year at 

each station. Depth (mm) was the temporal mean of maximum depth of precipitation 

events per year at each station. Intensity (mm/hour) was the temporal mean (1979-2013) 

of maximum intensity of precipitation events per year at each station. A period of 35 years 

(1979–2013) was determined, based on the available data of the overlapping period for 

climatic cycles and Rossby Wave data.  
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Figure IV-1 Rain gauge stations in Texas (1979-2013) 
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4.3.2 Rossby wave breaking 

Rossby Wave (RW) breaking was defined as a detection of Potential Vorticity 

(PV) and was constructed by the method of Wernli and Sprenger (2007). The occurrence 

of RW breaking was defined as high PV (> 2 Potential Vorticity Unit; 1PVU= 10-6 K·kg-

1m2s-1) at the field of the 300-, 315-, 320-, and 350-K isentropic surface. In this study, 320-

K level of vertical coordinate was selected based on the European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis pressure and isentropic level 

(https://rda.ucar.edu/datasets/ds627.1/docs/Pressure_and_isentropic_levels/). The level of 

320-K was about 8500 m height. The ECMWF interim reanalysis (ERA-Interim) provided 

the PV products to identify the RW at monthly scale (Dee et al., 2011). PV data was 

available at 0.125 degree resolution (finest gird) globally from 1979 to current. The range 

of PVU is between -8 and +8. Figure IV-2 shows the example of PVU in January 1979.  
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Figure IV-2 Potential vorticity in January 1979 
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4.4 Analysis 

4.4.1 Rossby Wave in Texas 

The percentage of areal extent of Rossby Wave (Figure IV-3a) and the intensity of 

RW (Figure IV-3b) over Texas were calculated at monthly time step. RW visited Texas 

every year, however, its coverage varied year to year. Before 1999, several years reached 

the full coverage of RW over Texas. After 2000, there was no month having a full 

coverage of RW. The largest annual coverage was found in 1992, and the least annual 

coverage was detected in 2006. The mean of annual coverage of RW was 38.4% from 

1979 to 2013. The intensity of RW was calculated based on the PVU values. More than 2 

PVU was considered as RW. The maximum annual intensity of 3.06 PVU was captured 

in 1992, however, the maximum monthly intensity was found in February 1998. The 

minimum annual intensity of 2.21 PVU was detected in 2006 and the minimum monthly 

intensity was found in May 1987. From 1979 to 2013, the mean of annual intensity of RW 

was 2.56 PVU.  

From the monthly time series of RW coverage and intensity, it was found that 

certain months did not have RW. The annual cycle of monthly coverage (Figure IV-4a) 

and intensity of RW (Figure IV-4b) was calculated during 35 years (1979-2013). There 

were variations in each year, but commonly there was no RW visiting in June, July, 

August, and September (summer season). March and October were barely covered by less 

intense Rossby Wave. Throughout the years (on average of 35 years), Rossby Wave had 

common annual cycle of its coverage and intensity. During the relatively cold and cool 
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seasons in Texas, Rossby Waves were captured dominantly. The maximum coverage and 

intensity of RW were found in February.    

The frequency of RW was calculated as the number of months with RW 

occurrence divided by total length of duration (Figure IV-5). Total length of duration was 

35 years times 12 months = 420 months. The frequency was calculated from each grid cell 

at 1/8th degree. The southern part of Texas, including gulf coast, rarely experienced Rossby 

Wave. The far northern part of Texas had Rossby Wave frequency up to 50% of total 

duration. This RW frequency map is further used in chapter 4.2.6 for the RW effect on 

precipitation characteristics. 
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Figure IV-3 Percentage and intensity of Rossby Wave coverage in Texas (1979-
2013) 
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Figure IV-4 Annual cycle of monthly coverage and intensity of Rossby Wave in 
Texas 
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Figure IV-5 Frequency of Rossby Waves in Texas (1979-2013) 
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4.4.2 Rossby wave and extreme precipitation 

The monthly coverage of RW and the 72-hour maximum precipitation (217-station 

average) in that month was calculated (Figure IV-6a) and its annual mean value was 

plotted (Figure IV-6b). Between RW coverage and maximum precipitation, there was no 

correlation found. The average of 72-hour maximum precipitation in no Rossby Wave 

months (42.68 mm) was larger than the amount in Rossby Wave months (33.27 mm). 

About 28.3% more precipitation received when there was no Rossby Wave. Rossby Wave 

generally brought drier condition than normal months without Rossby Wave. There was 

no trend found in the time series of monthly and annual mean of maximum precipitation 

with and without RW. 
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Figure IV-6 Time series of Rossby Wave coverage and precipitation 
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4.4.3 Rossby wave, El-Niño and La-Niña 

The El-Niño–Southern Oscillation Precipitation Index (ESPI) and Rossby Wave 

were compared over time in Texas. Since ESPI and RW are monthly indices and variables, 

each month was grouped as either El-Niño month or La-Niña month. On average (1979-

2013), all months’ average of RW coverage was 38.4 % and of RW intensity was 2.56 

PVU. El-Niño months had more intense and larger coverage of RW than in La-Niña 

months (Table IV-1). The total number of months of RW was 178 and no RW was 242. 

Historically, there was no RW in June, July, August, and September. Every year in January 

Texas was under RW. La-Niña dominantly occurred (246 months), while the number of 

El-Niño was 174 months. The number of months with La-Niña was larger every year 

(Table IV-2). During 420 months, 173 months (41.2%) were under El-Niño and 247 

months (58.8%) were under La-Niña condition. The average values of monthly maximum 

precipitation under El-Niño was 40.81 mm and under La-Niña was 37.2 mm. Texas 

received about 9.7% more precipitation between 1979 and 2013. Historically, La-Niña 

brought slightly drier condition than El-Niño condition. Each month was classified as four 

different cases as shown in table IV-3. Historically, ‘no Rossby Wave and La-Niña’ 

condition dominantly occurred. The wettest condition was ‘no Rossby Wave & El-Niño,’ 

whereas the driest condition was ‘Rossby Wave & La-Niña.’ From this table, Rossby 

Wave again brought drier condition than normal months without Rossby Wave. Figure 

IV-7 shows the monthly occurrence of the joints events (four cases in Table IV-3). June, 

July, August, and September were never Rossby Wave months during 35 years. November 

was the only month having four different cases. The most extreme case was defined as 
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‘above 90th percentile of 72-hour precipitation’ from the 217 station averaged monthly 

extreme time series (Table IV-4). The joint event of ‘no Rossby Wave & El-Niño’ was 

most frequent (21 months) and ‘Rossby Wave & El-Niño’ was least frequent (3 months). 

In terms of the magnitude of extreme events, ‘Rossby Wave & El-Niño’ months 

experienced large amounts of precipitation (86.31 mm). The relationship among Rossby 

Wave, El-Niño, and La-Niña apparently showed the different amounts and frequency of 

extreme precipitation. 

 

Table IV-1 Rossby wave, El-Niño and La-Niña 

 All months El-Niño months La-Niña months 

Coverage of RW 38.4 % 44.5 % 33.3 % 

Intensity of RW 2.56 2.64 2.45 

 

Table IV-2 Occurrence of Rossby wave, El-Niño and La-Niña 

Number of 

month 
J F M A M J J A S O N D Total 

RW 35 34 32 25 2 0 0 0 0 3 16 31 178 

NRW 0 1 3 10 33 35 35 35 35 32 19 4 242 

El-Niño 15 14 16 14 14 13 14 15 16 12 15 16 174 

La-Niña 20 21 19 21 21 22 21 20 19 23 20 19 246 



 

106 

 

Table IV-3 Joint events of Rossby Wave, El-Niño, and La-Niña on precipitation 

Case  

(1) (2) (3) (4) 

RW 

& 

El-Niño 

RW 

& 

La-Niña 

No RW 

& 

El-Niño 

No RW 

& 

La-Niña 

Number of 

months 
86 92 88 155 

Number of 

months (%) 
20.5 % 21.9 % 21.0 % 36.9 % 

Precipitation 35.39 mm 31.30 mm 46.10m 40.76 mm 

 

 

Table IV-4 Extreme combination of joint events on precipitation 

Case  

(1) (2) (3) (4) 

RW 

& 

El-Niño 

RW 

& 

La-Niña 

No RW 

& 

El-Niño 

No RW 

& 

La-Niña 

Number of 

months 
3 5 21 14 

Precipitation 86.31 mm 72.94 mm 71.78mm 75.68 mm 
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Figure IV-7 Number of monthly joint events (Rossby Wave, El-Niño, and La-Niña)  
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4.4.4 Climatic cycles and extreme precipitation 

The monthly 72-hour maximum precipitation under different climatic indices were 

calculated (Figure IV-8). Each bar indicates the mean of monthly maxima over time. The 

mean of monthly maximum precipitation was 38.72 mm and its bias was between -1.63 

mm and 2.11 mm. Extreme precipitation was largely affected by ESPI and SOI which 

directly indicated the El-Niño and La-Niña effects. ESPI (+) and SOI (-) indicated El-

Niño. ESPI (-) and SOI (+) indicated La-Niña. PNA had the least effect of monthly 

extreme precipitation in Texas, because its impact was limited in the western part of the 

U.S. 

 

 

Figure IV-8 Climatic cycles and extreme precipitation 
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4.4.5 Joint events of climatic cycles and Rossby Wave on extreme precipitation 

Under each climatic cycle, each month was classified in four different cases as (1) 

+ index & Rossby Wave, (2) + index & no Rossby Wave, (3) - index & Rossby Wave, 

and (4) – index & no Rossby Wave. The number of months and how extreme precipitation 

were affected under each case of joint events (Climatic Cycle and Rossby Wave).  

Under climatic cycles, the maximum number of joint events in each case were 

commonly under no Rossby Wave (Figure IV-9). Even though ‘no Rossby Wave months’ 

were limited to four months (June, July, August, and September), there were more joint 

events than in other 8 months. Among climatic cycles, La-Niña (negative ESPI) and no 

Rossby Wave had the maximum number of events (154 months out of 420 months, 36.7 

%). In terms of precipitation amount, Texas commonly received more precipitation under 

‘no Rossby Wave (NRW)’ under each climatic cycle (Figure IV-10). Rossby Wave 

brought drier condition in Texas. The wettest condition was ‘El-Niño (positive ESPI) and 

no Rossby Wave’. The maximum precipitation difference between RW and NRW was 

found in positive ESPI (10.71 mm). The minimum precipitation difference between RW 

and NRW was found in negative PDO (2.97 mm). Among climatic cycles, ESPI was the 

most sensitive to the existence of Rossby Wave on extreme precipitation. Therefore, the 

effect of El-Niño and La-Niña under Rossby Wave on extreme precipitation was evident 

in Texas during the historical period. 
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Figure IV-9 Number of joint events (Climatic Cycles and Rossby Wave) 
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Figure IV-10 Extreme precipitation in joint events (Climatic Cycles and Rossby 

Wave) 
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4.4.6 Rossby Wave and precipitation characteristics 

Precipitation characteristics in this analysis had four aspects, including of the 

number of rain days, duration, depth, and intensity of precipitation. The number of rain 

days was calculated for each station in every year. The duration, depth, and intensity were 

calculated from precipitation events which were independently selected from the time 

series of hourly precipitation in every year at each station. The Rossby Wave frequency 

map from figure IV-5 was used for developing the scatter plot of relationship between RW 

frequency and precipitation characteristics. Each station matched each the grid cell of 

frequency. In figure IV-11, the correlation between precipitations characteristics were not 

strong (R2 of -0.22 to -0.51). However, four characteristics had adverse relation to the 

frequency of RW. Among the four aspects, the Rossby Wave frequency and precipitation 

depth were moderately correlated (R2 = -0.51). There were five zones under different 

Rossby Wave frequency to see the relationship between Rossby Wave and precipitation 

characteristics (Figure IV-12). The four characteristics commonly have eastern to western 

(large to small) pattern in terms of their magnitude. We could find a pattern under different 

Rossby Wave frequency zones (Figure IV-13). Very North (High Frequency of Rossby 

Wave zone: ~0.5) had the least values of statistics of all characteristics. Very South (Low 

Frequency of Rossby Wave zone: ~0.1) had the largest values of all statistics. The average 

depth difference between RW frequency zone 1 and zone 2 was 34 mm (64.8 %). Not only 

correlation between RW frequency and precipitation depth but also the magnitude under 

different RW frequency zones was remarkable. The frequency of Rossby Wave evidently 

affects precipitation characteristics. 
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Figure IV-11 Rossby Wave frequency and precipitation characteristics in Texas 
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Figure IV-12 Spatial distribution of rain days, duration, depth, and intensity of 
precipitation 
 



 

115 

 

 

Figure IV-13 Precipitation characteristics under different Rossby Wave frequency 
zones.  
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4.5 Conclusion 

Rossby Wave (RW) breaking was defined as a detection of Potential Vorticity 

(PV) and PV was a variable that was explained by the absolute vorticity (circulation) and 

the thickness of a column of air. By using ERA-Interim PV products, we could calculate 

the areal extent and the intensity of Rossby Wave over Texas from 1979 and 2013. RW 

visited Texas every year, however its coverage varied year to year. The mean of annual 

coverage of RW was 38.4 % and the mean of annual intensity of RW was 2.56 PVU in 

Texas. From the monthly time series of RW coverage and intensity, it was found that June, 

July, August, and September did not have RW. There was a spatial pattern in frequency 

of RW in North (High Frequency: ~0.5) and South (Low Frequency: ~0.1). The average 

of 72-hour maximum precipitation in no Rossby Wave months (42.68 mm) was 28.3% 

larger than the amount in Rossby Wave months (33.27 mm). However, there was no trend 

found in the time series of monthly and annual mean of maximum precipitation with and 

without RW.  

ESPI and RW were monthly indices and variables, each month were grouped as 

either El-Niño months or La-Niña months. The El-Niño months had more intense (2.76 

PVU) and larger coverage (44.5 %) of RW than in La-Niña months (2.45 PVU, 33.3 %). 

Historically, no Rossby Wave and La-Niña condition frequently occurred (37 % of 

duration). Extreme precipitation was largely affected by ESPI and SOI which directly 

indicated the El-Niño and La-Niña effects among climatic cycles. Texas commonly 

received more precipitation under ‘no Rossby Wave (NRW)’ under each climatic cycle. 

The effect of El-Niño and La-Niña under Rossby Wave on extreme precipitation was 
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evident in Texas. Rossby Wave frequency and precipitation depth were moderately 

correlated (R2 = -0.51). Precipitation characteristics (number of rain days, duration, depth, 

and intensity of precipitation) commonly have eastern to western (large to small) pattern 

of its magnitude.  

The effect of Rossby Wave was more significant than the effect of El-Niño and 

La-Niña on extreme precipitation in Texas. Rossby Wave had month-to-month variation, 

while the El-Niño and La-Niña had multi year-to-year cycles. Figure IV-14 shows three 

stages of Rossby Wave and air mass development. Throughout the year, the Gulf coast 

was under no Rossby Wave with the warm mass of tropical air. It remained relatively 

humid in all stages which resulted in more precipitation along the Gulf coast. The stage 

(a) was winter to spring months (December-January-February-March) with the average 

RW coverage of 48.9 %. Due to the intrusion of cold polar air mass, Texas experienced 

dry and humid weather at the same time by location. The average 72-hour maximum 

precipitation was 28.9 mm with the driest condition among three stages. The stage (b) was 

transition months between seasons (April and November). Due to strong warm tropical air 

mass, the coverage of RW decreased on average by 20.6% in Texas. Only the panhandle 

area of Texas was under Rossby Wave with cold mass of polar air and dryness. The 

average 72-hour maximum precipitation was 36.6 mm which had more amount than stage 

(a). The stage (c) was summer season from May to October. During this time, Rossby 

Wave was barely captured with the average coverage of 1.7 % of Texas. The warm mass 

of tropical air dominantly developed with more humidity from the ocean. Therefore, the 

amount of average 72-hour precipitation was the largest (45.1 mm) among the stages. The 
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effect of Rossby Wave was evident in the monthly cycle of precipitation extremes. These 

findings will contribute to understanding the climatology of precipitation, in addition to 

the joint effect of climatic cycle and atmospheric phenomenon of Rossby Wave.  

 

 

 

 

 

 

 

 

Figure IV-14 Rossby Wave and air mass developing in Texas 
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CHAPTER V  

FUTURE PROBABLE MAXIMUM PRECIPITATION ESTIMATION USING 

CLIMATE PROJECTION SCENARIOS 

 

5.1 Future climate projections of extreme precipitation 

For future climate scenarios, the statistically downscaled climate projections from 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Maurer, 2007; 

Reclamation et al., 2013) was adopted. Bias-Correction and Spatial Disaggregation 

(BCSD) are implemented to generate the gridded CMIP5 data (Wood et al., 2004). Future 

projections are available under Representative Concentration Pathway (RCP) +2.6w/m2, 

+4.5w/m2 +6.0w/m2, and +8.5w/m2 scenarios. In this study, 16 CMIP5 models were 

selected to project future climate change based on the data availability and two extreme 

RCPs of 2.6 and 8.5 were selected (Table V-1). Annual maximum precipitation and record 

precipitation were calculated from 217 precipitation stations which had more than 30 year 

data in Texas. 

 Each station had 1 set of historical annual maximum precipitation (AMP) series 

(1940-2013) and 16 sets of future AMP series (2020-2099) for two RCPs. The temporal 

mean of AMP and maximum of AMP (record precipitation) were scatter plotted in figure 

V-1 and figure V-2. The mean of AMP during historical period was 101.65 mm, future 

RCP 2.6 was 87.27 mm, and RCP 8.5 was 88.14 mm. The maximum of AMP during 

historical period was 249.01 mm, future RCP 2.6 was 209.26 mm, and RCP 8.5 was 

219.50 mm.in Texas. Between historical and future periods, the drier condition was 
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projected in terms of CMIP5 ensemble means for both mean and maximum of AMP cases. 

RCP 8.5 scenarios had more precipitation than RCP 2.6 in the future. Even though there 

was more precipitation during the historical period, comparison of maxima (Figure V-2) 

indicated that there were a more chance of large maximum precipitation than in the 

historical period.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

121 

 

Table V-1 CMIP5 models 

Model Center 

bcc-csm1-1  Beijing Climate Center, China Meteorological Administration 

canesm2 Canadian Centre for Climate Modelling and Analysis 

ccsm4 National Center for Atmospheric Research 

csiro-mk3-6-0 

Commonwealth Scientific and Industrial Research 

Organization in collaboration with the Queensland Climate 

Change Centre of Excellence 

gfdl-cm3  

Geophysical Fluid Dynamics Laboratory gfdl-esm2g  

gfdl-esm2m  

ipsl-cm5a-lr  
Institute Pierre-Simon Laplace 

ipsl-cm5a-mr  

miroc5 Atmosphere and Ocean Research Institute, National Institute 

for Environmental Studies, and Japan Agency for Marine-

Earth Science and Technology 

miroc-esm  

miroc-esm-chem 

mpi-esm-lr 
Max Planck Institute for Meteorology 

mpi-esm-mr 

mri-cgcm3 Meteorological Research Institute 

noresm1-m  Norwegian Climate Centre 
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Figure V-1 Historical and future mean of AMP series (72-HR) 
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Figure V-2 Historical and future maximum of AMP series (72-HR) 
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5.2 Future PMP estimation 

Using Hershfield and site-specific method, future PMP was estimated using 

projected future precipitation values (Figure V-3). Because PMP estimation depends on 

the available observations, it was sensitive to maximum precipitation and the shape of 

frequency factor curve was very dependent on the existence of maxima. Bold lines were 

historical PMPs in red with Hershfield method and blue with site-specific method. 16 red 

lines were future PMP estimation using Hershfield and 16 blue lines were future PMP of 

site-specific method. There were several stations with large values of future PMP than in 

historical PMP.  

The number of stations (out of 217) more than historical PMP under two RCPs and 

two PMP estimation methods were calculated (Figure V-4). In RCP 2.6, the average 

number of stations more than historical PMP was 41 in Hershfield method and 48 in site-

specific method. However, site-specific method (49) had the number of stations more than 

historical PMP in RCP 8.5 than Hershfield method (47). In both RCPs, bcc-csm1-1 had 

the most extreme cases among 16 CMIP5 scenarios. 
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Figure V-3 PMP historical and future RCP 2.6 and RCP 8.5 
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Figure V-4 Comparison between historical and future PMPs 
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CHAPTER VI  

CONCLUSIONS 

 

6.1 Conclusion 

This dissertation explored the relationship between extreme precipitation and 

climatic cycles under climate change in Texas. The estimation of PMP is a key 

consideration for dam safety. However, There is no universal definition of PMP and its 

calculation involves multiple sources of uncertainties, including non-stationarity, 

topography, and method of computation. Among sources of uncertainties, the selection of 

method had the largest contribution. During the historical period, the non-stationarity of 

extreme precipitation was captured. This entailed that there was a likelihood of PMP 

increase in the future if non-stationarity of extreme precipitation continues similarly as the 

historical period. We emphasized that uncertainty analysis of PMP estimation was limited 

to site-specific PMP estimation so using adequate data for certain area was required. The 

warm and cold phases of climatic cycles affected the annual cycle of monthly extreme 

precipitation which maintained two precipitation peaks. The El-Niño years received about 

16% more precipitation annually than did the La-Niña years. El-Niño and La-Niña 

dominantly affected the annual cycle of monthly maximum precipitation in Southcentral 

and Upper Coast. In Texas, 67% stations received more precipitation during El-Niño years 

from 1950 to 2013 due to the southern branch of the jet stream moving over the state which 

intensifies storms. At farther distances from the coastline, less precipitation and less 

variable extreme precipitation was captured. The historical extreme events showed various 
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responses in different phases of climatic cycles. These findings could raise the 

community’s awareness for broader insights into understanding meteorological extreme 

events. Potential Vorticity was a measure of Rossby Wave and was widely used in recent 

studies. From the calculation of areal extent and intensity of Rossby Wave, RW visited 

Texas every year, however its coverage and intensity varied year to year. It was found that 

June, July, August, and September never had RW. There was 28.3% more precipitation in 

no Rossby Wave months than in Rossby Wave months. The El-Niño months had more 

intense and larger coverage of RW than has La-Niña months. The joint event of no Rossby 

Wave and La-Niña condition dominantly occurred. Precipitation characteristics (number 

of rain days, duration, depth, and intensity of precipitation) also showed a pattern under 

different RW frequency zones. These findings will contribute to understanding the 

climatology of precipitation, in addition to the joint effect of climatic cycle and 

atmospheric phenomenon of Rossby Wave. Through this study, we explored the broader 

insights of precipitation extremes by looking at different aspects of natural phenomenon 

such as climatic cycles and Rossby Wave in Texas. Global scale climatic indices and 

Rossby Wave could explain the regional behavior of extreme precipitation. Our findings 

will be possibly useful for water resources management and planning.  
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6.2 Recommendations 

We propose further research, and specifically, we suggest the following: 

• Extend the study domain to a continental and global scale, especially for 

uncertainty analysis of PMP estimation, because our findings were site specific 

and the sources of uncertainty contribution may not be same or similar to Brazos 

River basin in Texas. 

• Due to the availability of hourly precipitation which are available until 2013 with 

quality control, PMP estimation needs to be updated every couple of decades. 

Because 1970s reports still used for dam safety practice, we found PMP was 

sensitive to observations including extreme values. 

• This study was solely focused on hourly precipitation for climatology. Storm 

events are a complex phenomenon of climatology and atmospheric circulation. 

Thus, more variables, such as wind speed, sea surface temperature, and 

atmospheric pressure data, could lead to more robust results. 

• PMP is the key component for the estimation of probable maximum flood 

(PMF). Comprehensive analysis of PMP and PMF would be beneficial for storm 

water management. 

• Climatic cycles and Rossby Wave were jointly investigated in terms of 

precipitation characteristics. An independent analysis for the contribution of each 

phenomenon is recommended. 
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