
NAME-CENTRIC PREFETCHING IN NAMED-DATA NETWORKING

A Thesis

by

MOHD FAISAL KHAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, I-Hong Hou
Committee Members, Srinivas Shakkottai

Zixiang Xiong
Riccardo Bettati

Head of Department, Miroslav Begovic

August 2020

Major Subject: Computer Engineering

Copyright 2020 Mohd Faisal Khan

ABSTRACT

This thesis presents Name-Centric Prefetching (NCP) that prefetches data before users request

for them to improve user experience. NCP seeks to identify user request patterns solely based on

names in prior interests, and without any other knowledge about user applications. As such, NCP

can be easily implemented without any modifications for applications. A prototype of NCP has

been built within Named-Data Networking (NDN). The implementation includes multiple modules

that make it easy to implement and test new prefetching algorithms and to manage the computa-

tion, storage, and bandwidth overheads. The utility of NCP is evaluated under two scenarios, one

derived from a real-world trace from a Google cluster and the other constructed by mimicking the

behaviors of a variety of applications, and three different prefetching algorithms. Testbed emula-

tion results demonstrate that NCP is able to significantly reduce end-to-end latency experienced by

users while incurring little additional network traffic.

ii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor I-Hong Hou, Profes-

sor Srinivas Shakkottai, Professor Zixiang Xiong of the Department of Electrical and Computer

Engineering and Professor Riccardo Bettati of the Department of Computer Science.

The analysis depicted in Chapter V, VI were conducted in part by Siqi Fan of the Department

of Electrical and Computer Engineering.

All other work conducted for the thesis was completed by the student independently.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

CONTRIBUTORS AND FUNDING SOURCES . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES. vii

1. INTRODUCTION. 1

1.1 Introduction . 1

2. NAME CENTRIC INTEREST PREDICTION . 3

2.1 Basics of Named-Data Networking . 3
2.2 Case Studies of Interest Patterns . 4
2.3 Prediction Rule . 6

3. NCP PRELIMINARIES . 8

3.1 Pattern . 8
3.2 Interest Capture Table . 8
3.3 Future Interest Table . 9

4. IMPLEMENTATION AND ALGORITHMS. 10

4.1 Software Architecture . 10
4.2 Interest Capture Module (ICM) . 11
4.3 Token System Module (TSM) . 11
4.4 FIT Management Module . 12
4.5 Prefetching Module (PM) . 12

5. EMULATION . 14

5.1 Testbed Description . 14
5.2 Interests Generation. 14

5.2.1 Scenario of Google Trace . 15
5.2.2 Scenario with Multiple Applications . 15

iv

6. EMULATION ENVIRONMENTS AND PERFORMANCE METRICS . 17

6.1 Emulation Results. 18

7. RELATED WORK . 22

8. CONCLUSION. 24

REFERENCES . 25

v

LIST OF FIGURES

FIGURE Page

2.1 The procedure of data retrieval in NDN.. 3

2.2 The interest patterns of four different applications. 5

2.3 Pattern Identification . 7

4.1 NCP Implementation on top of NFD . 11

5.1 Emulation Environment . 14

6.1 Emulation results for the Google trace scenario. 19

6.2 Emulation results for the scenario with multiple applications . 20

vi

LIST OF TABLES

TABLE Page

3.1 Future Interest Table (FIT) . 9

6.1 Emulation Environment . 17

vii

1. INTRODUCTION

1.1 Introduction

Traditional TCP/IP network architecture adopts a host-centric approach that decouples network

connections and the applications. As a result, the network is unaware of the information flowing

through it. In contrast, Information-Centric Network (ICN) seeks to break the boundary between

network and information. In Named-Data Networking (NDN) [1], a leading proposal for ICN

architecture, every piece of information is treated as a named object, and the network forwards and

requests for packets based on their associated names, rather than the end-hosts. Thus, in NDN,

named contents become the first citizen. This architecture has inspired many studies on name-

based protocols for routing and caching [2, 3, 4, 5, 6, 7, 8, 9].

Prefetching is the network operation that fetches data before the applications request for them.

When prefetching is successful, it can significantly reduce the end-to-end latency experienced by

the applications, and hence improve quality of experience (QoE). Prefetching inevitable requires

the prediction for future application requests. Most current studies on prefetching either require

that applications request data in a deterministic manners, such as variants to the Pub-Sub and Sync

protocols [10, 11, 12, 13], or assume a prediction oracle that knows the probability distribution of

future requests [14, 15, 16, 17]. Thus, these studies are application-specific, and it may be difficult

to generalize them for applications whose request patterns are not well-defined or difficult to learn.

In this thesis, we explore name-based protocols for prefetching. We observe that many appli-

cations request data in correlated, though not necessarily deterministic, patterns. Such patterns can

be observed by the names in interests that the applications generate. Motivated by this observation,

we propose a Name-Centric Prefetching (NCP) protocol. The core of NCP is a name-centric pre-

diction rule. This rule seeks to identify patterns solely based on previously received interests, and

use these patterns to predict future ones. It can be implemented easily without any knowledge of

the applications. In addition, NCP is fully compatible with NDN, and it includes multiple modules

1

that ensure it can be easily extended to support new prefetching algorithms with limited overheads

on computation, storage, and bandwidth usage.

To demonstrate the usefulness of NCP, we implement a NDN prototype with NCP support.

In the absence of traces of comprehensive NDN applications, we construct two scenarios, one is

derived from an actual trace from a Google cluster, and the other is synthesized by considering the

behaviors of a variety of applications. We also implement and evaluate three different prefetching

algorithms. Testbed emulation results demonstrate that, in both scenarios, NCP can significantly

reduce end-to-end latency by prefetching the correct data in advance. Moreover, NCP incurs little

bandwidth overhead, as its false alarm rate is very low.

The rest of the thesis is organized as follows: Section-2 discusses the patterns exhibited by

a variety of applications, and use them to establish the name-centric prediction rule. Section-3

introduces several fundamental concepts that are central to the design and implementation of NCP.

Section-4 discusses the software architecture of NCP, its implementation, and several algorithms of

NCP. Section-5,6 describes the emulation scenarios, and presents the emulation results. Section-7

summarizes some related work. Finally, Section-8 concludes the thesis.

2

2. NAME CENTRIC INTEREST PREDICTION

The core of NCP is a name-centric interest prediction rule that uses the names of recently

received interests to predict future ones. In this section, we first provide a brief overview of NDN.

We will provide several case studies of interest patterns by various applications that motivate our

design. Finally, we introduce our name-centric interest prediction rule.

(a) The router does not have the requested data. (b) The Router has the requested data.

Figure 2.1: The procedure of data retrieval in NDN.

2.1 Basics of Named-Data Networking

The basic idea of NDN is to communicate via named packets. In NDN, each piece of data is

assigned a semantically meaningful name. This name identifies the data itself and is independent

of the data container, its location, or the underlying network connectivity. To communicate, data

applications (consumers) express requests, called interests, which carry the names of desired data

generated by data source (producers). Each piece of data has a unique name.

A NDN router has the capability to store recently received data, along with their names, in its

own Content Store (CS). When a consumer requests for a piece of data, it first sends an interest to

the NDN router. If the NDN router has the data in its CS, it can reply with the data immediately.

Otherwise, the NDN router forwards the interest to the backbone network, and waits for the data

to arrive. When the requested data arrives, it forwards the data to the client, and may store the data

3

in its own Content Store.

Fig. 2.1 illustrates the procedure to obtain data in NDN, both when the data is cached by the

router and when it is not. Obviously, the latency is much smaller when the NDN router already

has the requested data. Thus, if the router is capable of predicting and prefetching future interests

in advance, then the consumers will experience much less latency, which, in turn, can significantly

improve user experience.

2.2 Case Studies of Interest Patterns

NDN uses hierarchical naming to identify the content. In many applications, the names of the

interests, though being unique, follow some sequential patterns. We provide several examples that

show these patterns in their interest names.

In Virtual Reality (VR) gaming, the game requests the panoramic frame according to the lo-

cation of the player in the virtual world. The name of the interest contains information about the

player’s current location. An example of interest of VR gaming type could be

<Name of Game>/x_<pos.x>_y_<pos.y>,

where (pos.x, pos.y) is the players location in the virtual world. Now, consider that the

player moves in a certain direction, say, east. Then, every time the player moves and requests

for a new panoramic image, pos.x reduces by one and pos.y remains unchanged. Fig. 2.2(a)

shows an example of the sequence of interests from the player. After observing the four interests

shown in Fig. 2.2(a), one can reasonably predict that the next interest from the player is likely

to be Game/x_16_y_20. Another example is GPS navigation, where the application requests

map data for its surroundings periodically. Each interest contains the current location of the user,

which, as is the case of URL naming convention of Google Map, is typically specified by the lat-

itude and longitude values of the user. An example of an interest name for such an application is

<Map name>/lat_<pos.lat>/lon_<pos.lon>,

where pos.lat and pos.lon are the latitude and longitude of the user’s current location. Con-

sider a driver that uses cruise control on a highway, then the amount of change in (pos.lat,

pos.lon) between consecutive interests remains the same. Fig. 2.2(b) shows one such example.

4

Game/x_20_y_20

Game/x_19_y_20

. . .

Game/x_18_y_20

Game/x_17_y_20

(a) VR game interest pattern

GPS/lat_30.500/lon_96.720

GPS/lat_30.450/lon_96.800

GPS/lat_30.400/lon_96.880

. . .
(b) GPS interest naming pattern

Video_Title/v_1/seg_1

Video_Title/v_1/seg_2

. . .

Video_Title/v_1/seg_3

(c) On-demand video streaming interest pattern

Comic/page_1

. . .

Comic/page_2

Comic/page_3

Comic/page_4

Comic/page_5

(d) Comic book interest pattern

Figure 2.2: The interest patterns of four different applications.

Based on the three interests shown, it appears that the next interest is likely to be

GPS/lat_30.350/lon_96.960.

We can only consider on-demand video streaming services. Suppose the streaming services

uses Dynamic Adaptive Streaming over HTTP (DASH) protocol. DASH works by breaking video

contents into small segments and transferring the segments to the application. Each segment is

stored as a separate file, and DASH uses the GET command in HTTP to fetch segments. These

segments are then combined and played by the application. A typical naming convention of DASH

is

<Video_Title>/v_<ver_num>/seg_<seg_num>.

The segments are numbered sequentially. As the video progresses, the segment number increases,

resulting a clearly identifiable pattern as shown in Fig. 2.2(c).

Finally, we can consider the application of online comic books. The content can be identified

by the name of the page. A user reads a comic book page by page. Each page is a named data with

5

name, <Book Title>/page_<page number>. The reader sends a new interest whenever

it turns a page. Based on the series of interest shown in Fig. 2.2(d), one can predict that the next

requested page is Comic/page_6.

From the case study of these four vastly different applications, we observe that many applica-

tions exhibit clear patterns in their interests. We therefore seek to identify and exploit such patterns

to design a rule for predicting future interests.

2.3 Prediction Rule

We now propose a name-centric prediction rule based on the observations in the previous sec-

tion. We decompose each interest into an array of string components (str_comp) and an array of

numerical components (num_comp). For example, the first interest in Fig. 2.2(a) can be decom-

posed into str_comp = [“Game/x_”, “_y_”] and num_comp = [20, 20]. After the

decomposition, we note that all four interests in Fig. 2.2(a) have the same str_comp. Moreover,

the difference of num_comp between consecutive interests is always [-1, 0]. We thus propose a

name-centric prediction rule as shown below:

Name-Centric Prediction Rule:

IF there exists three received interests, A, B and C, such that

1. A.str_comp = B.str_comp = C.str_comp,

AND

2. C.num_comp - B.num_comp = B.num_comp - A.num_comp =: ∆,

THEN predict interest D with

D.str_comp = C.str_comp

AND

D.num_comp = C.num_comp + ∆

In Fig. 2.3, we show that the first three interests in Fig. 2.2(a) can be used to correctly predict

the fourth interest by the proposed name-centric prediction rule. It is straightforward to verify that

this rule also works for the other three discussed applications.

6

Game/x_20_y_20 Game/x_ 20 _y_ 20

PATTERN

Game/x_19_y_20

Game/x_18_y_20

Game/x_ 19 _y_ 20

Game/x_ 18 _y_ 20

Game/x_ 17 _y_ 20 Game/x_17_y_20

Predicted Next Interest

-1 0

-1 0

-1 0

str_comp
num_comp

Figure 2.3: Pattern Identification

The proposed name-centric prediction rule has several important features that distinguish it

from other existing work on prediction and prefetching:

• Application-oblivious: The name-centric prediction rule does not need any knowledge about

the application, nor does it require any modifications from application developers. The pre-

diction rule passively observes incoming interests to make predictions.

• Low complexity: The name-centric prediction rule is very simple and can be easily carried

out with low complexity. Suppose a router stores N prior interests. Upon the arrival of a

new interest, the router needs to check whether there are two prior interests that, along with

the arriving new interest, satisfy the name-centric prediction rule. A brute-force search only

requires O(N2) complexity. The complexity can be further reduced with the help of hash

table.

• Compatible with fast-changing patterns: The name-centric prediction rule only requires

three prior interests to make a prediction. This feature is important for many interactive

applications whose interest patterns can change frequently. For example, the interest pattern

of VR gaming changes whenever the player makes a turn, and the interest pattern of GPS

navigation changes whenever the driver changes its speed.

7

3. NCP PRELIMINARIES

Using the name-centric prediction rule, NCP seeks to identify opportunities to prefetch data.

As a router needs to serve multiple consumers with very different behaviors simultaneously, there

are multiple practical challenges that need to be addressed to develop a fully NDN-compatible

protocol that can potentially support a variety of prefetching algorithms with low overheads in

terms of computation, memory, and bandwidth. In this section, we introduce some fundamental

concepts that are useful for the design and implementation of NCP.

3.1 Pattern

Formally, when there is a sequence of interests where consecutive interests satisfy the name-

centric prediction rule, then we say that this sequence of interests form a pattern. The length of

a pattern is the number of received interests in this sequence. For example, the interests shown

in Fig. 2.2(a) form a pattern of length four. Intuitively, a long pattern suggests that the consumer

indeed generates interests according to the identified pattern, and thus the prediction is likely to be

correct.

We also note that different applications generate interests at different rate. The knowledge

about interest rate can be useful for the prefetching algorithm to estimate when the predicted inter-

est is supposed to arrive. To capture this information, we assign a sequence number to each interest

arrived at the router. We define the gap of a pattern as the difference in the sequence numbers of

the last two interests in the pattern. A pattern with large gap generates interests at a low rate.

3.2 Interest Capture Table

In order to perform the name-centric prediction rule, the router needs to store some previously

received interests. We create an Interest Capture Table (ICT) to store recent interests. Similar

to the Pending Interest Table (PIT) in NDN, ICT only stores the names of interests, but not their

corresponding data. Thus, the size of an entry in ICT is small. On the other hand, unlike PIT,

an entry in ICT may not be deleted even when the corresponding data packet arrives. To avoid

8

Table 3.1: Future Interest Table (FIT)

Prediction Str_comp Num_comp Delta
Game/x_16_y_20 "Game/x", "_y_" 16, 20 -1,0

GPS/lat_30.350/lon_96.960 "GPS/lat_", ".", "/lon_", "." 30, 350, 96, 960 0, -50, 0, 80
Video_Title/v_1/seg_4 "Video_Title/v_", "/seg_" 1, 4 0,1

Comic/page_6 "Comic/page_" 6 1

excessive usage of memory, the router may impose a limit on the size of ICT.

3.3 Future Interest Table

A Future Interest Table (FIT) is the table that keeps track of all patterns and their predictions.

Each FIT entry contains the predicted interest of the pattern, the difference in the num_comp, the

gap and the length of the pattern, the sequence number of the last received interest, and whether

the predicted interest has already been prefetched. The router may impose a limit on the size of

FIT.

Suppose a router receives all the interests shown in Fig. 2.2, then its FIT would be similar to

Table 3.1. The entries for Gap, length, sequence number and prediction status are not shown but

form a part of FIT for each entry. Using the num_comp and the delta, we can generate the next

predicted interest. A prefetching algorithm then determines which predicted interest in FIT should

be prefetched.

9

4. IMPLEMENTATION AND ALGORITHMS

NDN protocol is implemented using Named Data Networking Forwarder Daemon (NFD). To

demonstrate that NCP is fully NDN-compatible, we have implemented NCP within NFD version

0.6.3[18], [19]. For implementing the application, we are using the ndn-cxx C++ library [20], [21].

In this section, we provide a detailed discussion on the design and implementation of NCP.

4.1 Software Architecture

Fig. 4.1 shows the overall software architecture of our NCP implementation. The left part

of the figure is a flow chart of the original NFD. In the original NFD, when an interest i arrives,

NFD first updates its Pending Interest Table (PIT). Then, NFD checks whether the requested data

already exists in its own Content Store (CS). If the requested data already exists, NFD can reply

with the data directly. Otherwise, NFD uses its Forwarding Information Base (FIB) to determine

which router to forward i to.

In our implementation, after updating PIT, NFD sends a copy of the interest to NCP through

a function call. NCP then determines whether, and what, to prefetch. If NCP decides to prefetch

a piece of data, it creates a predicted interest ip, and then uses FIB to forward ip. When the

prefetched data arrives, NFD stores the data in its CS. We do not create a separate memory for

storing prefetched data, nor do we modify how NFD manages its CS. This makes the implementa-

tion simpler and reduces NCP’s memory usage. The right part of Fig. 4.1 shows the flow chart of

NCP, which involves four different modules. We discuss the purpose and implementation of these

four modules below. For each module, we also introduce algorithms for each module. Since the

purpose of this work is to demonstrate the design and usefulness of NCP, we do not seek to opti-

mize these algorithms. It should be noted that the performance of NCP may be further improved

with more intelligent algorithms.

10

.

Pending Interest Table (PIT)

Interest (i)

Content Store (CS)

Forwarding Informa�on Base (FIB)

Predicted
Interest (ip)

Name Centric Prefetching (NCP)

Interest Capture Module (ICM)
Maintains Interest Capture

Table (ICT) containing names of
previous interest received.

Token System Module (TSM)
Contains algorithm for token

genera�on. Prefetching can be
done only if a token is present.

Maximum token quan�ty is fixed.

FIT Management Module
Implements the pa�ern

iden�fica�on rule. Holds and
updates Future Interest Table

(FIT). FIT contains the pa�erns
that can be prefetched.

Prefetching Module (PM)
Contains the prefetching

strategy to be used.
Generates interest with

predicted names. Consumes
token for prefetching.

i ip

Figure 4.1: NCP Implementation on top of NFD

4.2 Interest Capture Module (ICM)

The purpose of the Interest Capture Module (ICM) is to manage the Interest Capture Table

(ICT). When an interest arrives, ICM inserts its name to ICT. If the size of ICT exceeds its limit,

we use a simple first-in-first-out algorithm that removes the oldest entry.

4.3 Token System Module (TSM)

An important constraint of NCP is the need to manage its bandwidth overhead. In the extreme

case, one can consider an implementation where NCP prefetches a new interest whenever the

name-centric prediction rule predicts one. Such an implementation is likely to result in an excessive

amount of bandwidth usage, and many prefetched data may never be requested by consumers.

The purpose of the Token System Module (TSM) is to manage the bandwidth usage of NCP.

TSM manages the number of tokens. NCP can only prefetch when there is an available token, and

each prefetch uses one token.

Our algorithm for TSM is motivated by the leaky bucket model in network calculus. Specif-

ically, TSM generates one new token for every M incoming interests. Moreover, the number of

available tokens is upper-limited by B. This guarantees that the traffic generated by NCP is no

11

more than 1
M

of the traffic generated directly by consumers. The upper-limit B further limits the

burstiness of prefetching traffic. The values of M and B can be chosen by the router.

4.4 FIT Management Module

This module manages the Future Interest Table (FIT). When a new interest arrives, this module

first checks whether the name of the interest matches the Prediction field in any entry. A match

indicates that the prediction by the corresponding pattern is correct, and the pattern should be

updated. For example, suppose the current FIT is shown in Table 3.1, and an interest with name

Game/x_16_y_20 arrives. This interest is a match for the first entry in the FIT. The entry should

then be updated to have Prediction = Game/x_15_y_20 and Length = 5. Other fields of this entry

should also be updated as appropriate.

On the other hand, if no match is found in the FIT, this module will search in the ICT and see if

it can find two prior interests that, along with the new interest, satisfy the name-centric prediction

rule. A new pattern can then be formed and added to the FIT.

When the size of the FIT exceeds its limit, this module needs to remove one entry from the

FIT. We use a simple algorithm that is similar to the Least-Recently-Used (LRU) algorithm. The

algorithm removes the entry with the smallest Seq field, that is, the entry that has not seen a

matched interest for the longest time.

4.5 Prefetching Module (PM)

The Prefetching Module (PM) is the place to implement prefetching algorithms. When there

is an available token, the PM may select an entry in the PIT and prefetch the corresponding name.

When an entry is chosen, the Prefetch field is updated to TRUE, and the number of tokens re-

duces by 1. PM then creates a predicted interest ip and uses the FIB to forward ip. To evaluate

performance, this module also generates a log of all prefetches.

In our implementation, we consider three simple prefetching algorithms as listed below:

• Prefetch Current: When an incoming interest causes an update in the FIT, this algorithm

will prefetch the updated entry as long as there is an available token.

12

• Prefetch Random: When there is an available token, this algorithm randomly selects an entry

in the FIT with Prefetch = FALSE and prefetches this entry.

• Prefetch Longest Unexpired Pattern: When there is an available token, this algorithm finds

all entries in the FIT with Prefetch = FALSE and Seq + Gap is larger than the sequence

number of the incoming interest. Among these entries, this algorithm selects the entry with

the largest Length and prefetches it. The intuition of this algorithm is two-fold: First, Seq +

Gap is the estimated time that the next interest from this pattern should arrive. Thus, if the

sequence number of the incoming interest is larger than Seq + Gap, then we consider this

pattern to be expired and should not prefetch for it. Second, among all unexpired patterns,

we choose the longest one because we consider the prediction to be more reliable when the

length is larger.

13

5. EMULATION

5.1 Testbed Description

We have implemented NCP in our NDN testbed, which consists of multiple machines running

NFD, and have conducted some preliminary experiments. However, we later lost access to our

testbed when our lab was closed due to COVID-19. Instead, we replicate the system in our per-

sonal computer. In order to create a networked environment within just one machine, we set up

two virtual machines in our personal computer. One virtual machine contains a NFD with NCP

implementation, and a consumer program that sends interest packets to the NFD. The other virtual

machine contains a producer program running on top of a NFD without NCP implementation. The

two virtual machines are connected through a UDP socket using VM VirtualBox Router. Fig. 5.1

illustrates the emulation environment.

.

Consumer Producer

NFD with NCP NFD

UDP Connec�on

VM1
VM VirtualBox

VM2
Ubuntu for Desktop

Host OS

Figure 5.1: Emulation Environment

5.2 Interests Generation

Obviously, the performance of NCP is significantly impacted by the actual arrival patterns of

interests. In order to evaluate NCP in a realistic setting, we construct two scenarios. The first

14

scenario is derived from an actual trace of request arrivals at a Google cluster. The second scenario

is created based on observations of several different applications.

5.2.1 Scenario of Google Trace

We use a real Google Cluster Trace data set from a Google research blog [22]. This data set

records a huge number of requests for different services in a Google cluster. The record includes

more than three million requests for 9,218 unique services in a seven-hour span. In this section,

we run our simulation for first 30,000 requests.

In the trace file, each request is identified by a ParentID that indicates the service for the

request. We note that just because several requests are for the same service does not mean that these

requests form a pattern. To capture this behavior, we create a name for each request in the format

of <ParentID>_<Req_Seq>. The value of Req_Seq is chosen as follows: When a request

arrives, we look for the previous request for the same service. The Req_Seq of this new request

is the Req_Seq of the previous request plus ⌈the number of other requests between them/20⌉.

Under our approach, a sequence of requests for the same service will form a pattern if they are

evenly spaced. Intuitively, a consumer that generates interests periodically is much more likely to

exhibit a pattern than one that generates interests at varying rate. Our approach therefore captures

this intuition.

5.2.2 Scenario with Multiple Applications

This scenario considers a system with multiple heterogeneous applications. We discuss our

model for these applications below:

• GPS Navigation: This application considers a vehicle requesting map data for its surround-

ings. The application generates one interest packet every 100 milliseconds, and the name

in each interest packet contains a number indicating the vehicle’s current location. When a

vehicle maintains its speed, the difference of locations between interest packets is the same.

A vehicle may change its speed based on some random process. When a vehicle is using

cruise control, we assume that, on average, it will change its speed once every 100 seconds.

15

When a vehicle is not using cruise control, we assume that, on average, it will change its

speed once every second.

• VR Gaming: This application considers a player of a VR game that requests panoramic

images periodically based on its current location in the VR world. The application generates

one interest packet every 25 milliseconds, which corresponds to a frame rate of 40 frame-

per-second. The name in each interest packet contains a number indicating the player’s

location. The difference of locations between interest packets remain the same when the

player moves in the same direction. We consider two types of VR games, intensive games

and leisure games. On average, players in intensive games change their movements once

every 250 milliseconds, and players in leisure games change their movements once every 5

seconds.

• Video Streaming: At 40 frame-per-second, a video streaming application generates one in-

terest packet every 25 milliseconds. The name in each interest packet contains a segment

number. The segment number increases by 1 in every new interest packet.

• Random: This simulates applications that do not exhibit clear patterns. The name in each

interest packet contains the name of the applications, the name of user, and a sequence

number. In every new interest packet, the sequence number increases by a random integer

uniformly in [1, 10]. Thus, it is possible for interest packets from this application to form

a pattern according to our prediction rule. However, the prediction is likely to be wrong.

These applications generate one interest packet every 10 milliseconds.

We construct a scenario with five vehicles using cruise control, five vehicles not using cruise

control, two intensive VR players, two leisure VR players, one video stream, and two random

applications. In total, these consumers generate 500 interests per second, out of them 200 interests

per second are generated by the two random applications. We create a one-minute-long trace of

interest packets based on this setting.

16

6. EMULATION ENVIRONMENTS AND PERFORMANCE METRICS

Table 6.1 summarizes the parameters we use in emulations. For each scenario, we evaluate all

three prefetching algorithms discussed in Section 4.5. The Token System Module generates one

token for every M incoming interest. The value of M varies from 1 to 10.

Table 6.1: Emulation Environment

Configuration Parameter Value
Number of Interest 30000

CS Size 200
ICT Size 300
FIT size 20

Max Token at a time 10

When a consumer generates an interest, and the interest is already available in the Content

Store due to an earlier prefetch, then we say that the corresponding prefetch is a hit. If a prefetch

does not result in a hit, then we say that the prefetch is a false alarm. A prefetch can be a false

alarm either because the consumer never generates the predicted interest, or because NFD deletes

the prefetched data before the consumer generates the predicted interest.

For each emulation, we evaluate the following three performance metrics:

HitPercentage =
Number_of_Hits

Total_Number_of_Prefetches
∗ 100

HitRate =
Number_of_Hits

Total_Number_of_Interests

17

FalseAlarmRate =
Number_of_False_Alarms

Total_Number_of_Interests

When there is a hit, the consumer can obtain its data with a much smaller latency. Thus,

HitRate represents the portion of interests that NCP is able to serve with low latency. In addition

to latency, we also evaluate the actual bandwidth usage by NCP. We note that a hit does not result

in any additional bandwidth usage. Without NCP, the piece of data is still going to be fetched.

NCP only fetches the data earlier. In contrast, a false alarm represents a transmission that is not

actually needed. On average, NCP forwards (1 + FalseAlarmRate) interests for every incoming

interest. In comparison, NFD without NCP will forward one interest for every incoming interest.

6.1 Emulation Results

The emulation results for the two scenarios are shown in Figs. 6.1 and 6.2. When M = 1,

the Token System Module generates one token for every incoming interest. Thus, NCP always

has tokens for prefetch, and all three prefetching algorithms will prefetch every time the name-

centric prediction rule produces a prediction. We can then learn some basic properties about the

two scenarios by studying the case when M = 1. As can be seen in the figures, when M = 1,

the HitPercentage is larger than 90% for the scenario of Google trace, and is about 60% for

the scenario with multiple applications. This is because the second scenario includes two random

applications that generate a lot of false alarms. In this sense, the second scenario represents a more

challenging scenario for NCP. We also note that the first scenario is derived from a real-world trace

file. The fact that it has a high HitPercentage suggests that the name-centric prediction rule may

be very accurate in real world.

18

82

84

86

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9 10

H
IT

 P
ER

C
EN

TA
G

E

INTEREST PER TOKEN (M)

Prefetch Longest Unexpired Pa�ern

Prefetch Random

Prefetch Current

(a) Hit Percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10

H
IT

 R
A

TE

INTEREST PER TOKEN (M)

Prefetch Longest Unexpired Pa�ern

Prefetch Random

Prefetch Current

(b) Hit Rate

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5 6 7 8 9 10

FA
LS

E
A

LA
R

M
 R

A
TE

INTEREST PER TOKEN (M)

Prefetch Longest Unexpired Pa�ern

Prefetch Random

Prefetch Current

(c) False Alarm Rate

Figure 6.1: Emulation results for the Google trace scenario.

19

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

H
IT

 P
ER

C
EN

TA
G

E

INTEREST PER TOKEN (M)

Prefetch Longest Unexpired Pa�ern

Prefetch Random

Prefetch Current

(a) Hit Percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10

H
IT

 R
A

TE

INTEREST PER TOKEN (M)

Prefetch Longest Unexpired Pa�ern

Prefetch Random

Prefetch Current

(b) Hit Rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

FA
LS

E
A

LA
R

M
 R

A
TE

INTEREST PER TOKEN (M)

Prefetch Longest Unexpired Pa�ern

Prefetch Random

Prefetch Current

(c) False Alarm Rate

Figure 6.2: Emulation results for the scenario with multiple applications

From Figs. 6.1 and 6.2, we also observe that the Prefetch Longest Unexpired Pattern algorithm

performs very well. When M is at least 3, the HitPercentage of this algorithm is always higher

than 90%. Its FalseAlarmRate is always lower than 0.05, showing that it causes little bandwidth

20

overhead. Moreover, its HitRate is close to 1
M

, suggesting that it is able to considerably reduce

latency.

21

7. RELATED WORK

In all Information Centric Networking (ICN) architecture design [23],[24],[25],[1], the network

identifies content items using unique names in contrast to hosts and endpoints with IP address.

This opened up boundaries for in-network caching of named content. The availability of data

content locally at the Access Point (AP) greatly improve the performance (latency, throughput)

[26], [27], [28], [29]. An optimal cache policy can help in achieving this improvement. Psaras et

al. [30] uses a probabilistic approach for caching object at each node present in the path. Age-

Based Cooperation (ABC) [31] uses age as a component to evict cache entries. Similarly freshness

is used by Jost’e Quevedo et al. [32] to design a cache policy. WAVE [33] suggest routers to

dynamically adjust the cache window based on the content popularity. Progressive Caching [34]

uses content popularity to cache it closer to the edge node. Popularity based caching has been

extensively researched in literature [35], [36], [37].

Caching and prefetching are intertwined with each other. Prefetch operation can reduce the

latency by making future data available in the cache even before the user requests it. Mobility

scenario utilises prefetching extensively. Making data available in the cache in the next AP where

a user is going to move-to, can extensively improve the performance. Edge Buffer [38] predicts

client mobility and performs prefetching on the router to which the user is approaching. It also

uses popularity based caching policy. Markov model is also used to predict mobility [39], [40].

ICN-FOG [41] uses layering approach to prefetch the data on the designated router.

Prefetching if done for video application enhances the QoE of the user. Video files are trans-

ferred as chunks, making the future chunks available on the edge router can reduce latency ex-

perienced by the end user. DASH [42] protocol is the popular method used for video streaming.

The naming scheme in DASH can be used to predict future interest and perform prefetching [43],

[44]. ICN-PEP [45], [46] uses segments present as part of file name to perform prediction and

prefetching of content.

The prefetching strategies mentioned are strictly application specific. NCP overcomes this

22

limitation by its unique prediction scheme. NCP is also simplistic in implementation and doesn’t

require any modifications on the application side.

23

8. CONCLUSION

We have presented Name-Centric Prefetching (NCP), a protocol that aims to identify applica-

tion interest patterns solely based on previously received interests, and uses the identified patterns

to prefetch data. NCP is application-oblivious, and is able to identify and prefetch for applications

that generate correlated, but not perfectly deterministic, interest patterns. Moreover, NCP can be

directly implemented within Named-Data Networking (NDN), with multiple modules to ensure

flexibility and the ease to manage computation, storage, and bandwidth overheads. Testbed emu-

lation results suggest that NCP can be a promising approach to reduce user experienced latency.

It should be noted that this research work does not attempt to optimize its algorithms for man-

aging various modules and prefetching data. Rather, the thesis presents a platform that makes it

possible to implement and test new algorithms. Developing new algorithms that leverage patterns

identified by NCP to further improve performance can be an interesting future research direction.

24

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopoulos,

L. Wang, and B. Zhang, “Named data networking,” ACM SIGCOMM Computer Communi-

cation Review, vol. 44, no. 3, pp. 66–73, 2014.

[2] O. Hahm, E. Baccelli, T. C. Schmidt, M. Wählisch, C. Adjih, and L. Massoulié, “Low-

power internet of things with ndn & cooperative caching,” in Proceedings of the 4th ACM

Conference on Information-Centric Networking, pp. 98–108, 2017.

[3] I. Moiseenko and D. Oran, “Path switching in content centric and named data networks,”

in Proceedings of the 4th ACM Conference on Information-Centric Networking, pp. 66–76,

2017.

[4] J. Pfender, A. Valera, and W. K. Seah, “Performance comparison of caching strategies for

information-centric iot,” in Proceedings of the 5th ACM Conference on Information-Centric

Networking, pp. 43–53, 2018.

[5] J. A. Khan, C. Westphal, J. Garcia-Luna-Aceves, and Y. Ghamri-Doudane, “Nice: Network-

oriented information-centric centrality for efficiency in cache management,” in Proceedings

of the 5th ACM Conference on Information-Centric Networking, pp. 31–42, 2018.

[6] H. B. Abraham, J. Parwatikar, J. DeHart, A. Drescher, and P. Crowley, “Decoupling infor-

mation and connectivity via information-centric transport,” in Proceedings of the 5th ACM

Conference on Information-Centric Networking, pp. 54–66, 2018.

[7] O. Ascigil, S. Rene, I. Psaras, and G. Pavlou, “On-demand routing for scalable name-based

forwarding,” in Proceedings of the 5th ACM Conference on Information-Centric Networking,

pp. 67–76, 2018.

[8] A. Rodrigues, P. Steenkiste, and A. Aguiar, “Analysis and improvement of name-based packet

forwarding over flat id network architectures,” in Proceedings of the 5th ACM Conference on

25

Information-Centric Networking, pp. 148–158, 2018.

[9] E. Newberry and B. Zhang, “On the power of in-network caching in the hadoop distributed

file system,” in Proceedings of the 6th ACM Conference on Information-Centric Networking,

pp. 89–99, 2019.

[10] M. Zhang, V. Lehman, and L. Wang, “Scalable name-based data synchronization for named

data networking,” in IEEE INFOCOM 2017-IEEE Conference on Computer Communica-

tions, pp. 1–9, IEEE, 2017.

[11] W. Drira and F. Filali, “A pub/sub extension to ndn for efficient data collection and dissem-

ination in v2x networks,” in Proceeding of IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks 2014, pp. 1–7, IEEE, 2014.

[12] W. Shang, A. Gawande, M. Zhang, A. Afanasyev, J. Burke, L. Wang, and L. Zhang, “Publish-

subscribe communication in building management systems over named data networking,” in

2019 28th International Conference on Computer Communication and Networks (ICCCN),

pp. 1–10, IEEE, 2019.

[13] Z. Zhu and A. Afanasyev, “Let’s chronosync: Decentralized dataset state synchronization in

named data networking,” in 2013 21st IEEE International Conference on Network Protocols

(ICNP), pp. 1–10, IEEE, 2013.

[14] J. Tadrous, A. Eryilmaz, and H. El Gamal, “Proactive content download and user demand

shaping for data networks,” IEEE/ACM Transactions on Networking, vol. 23, no. 6, pp. 1917–

1930, 2014.

[15] J. Tadrous and A. Eryilmaz, “On optimal proactive caching for mobile networks with demand

uncertainties,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2715–2727, 2015.

[16] K. Chen and L. Huang, “Timely-throughput optimal scheduling with prediction,” IEEE/ACM

Transactions on Networking, vol. 26, no. 6, pp. 2457–2470, 2018.

26

[17] R. Liu, E. Yeh, and A. Eryilmaz, “Proactive caching for low access-delay services under

uncertain predictions,” Proceedings of the ACM on Measurement and Analysis of Computing

Systems, vol. 3, no. 1, pp. 1–46, 2019.

[18] [n.d.], “Named data networking.” http://named-data.net/.

[19] [n.d.], “Named data networking codebase.” https://github.com/named-data/.

[20] [n.d.], “Ndn-cxx library.” http://named-data.net/doc/ndn-cxx/current/.

[21] [n.d.], “Ndn-cxx codebase.” https://github.com/named-data/ndn-cxx.

[22] J. L. Hellerstein., “Google cluster data,” Google Research Blog., Jan. 2010.

[23] V. Dimitrov and V. Koptchev, “Psirp project–publish-subscribe internet routing paradigm:

new ideas for future internet,” in Proceedings of the 11th International Conference on Com-

puter Systems and Technologies and Workshop for PhD Students in Computing on Interna-

tional Conference on Computer Systems and Technologies, pp. 167–171, 2010.

[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Bray-

nard, “Networking named content,” in Proceedings of the 5th international conference on

Emerging networking experiments and technologies, pp. 1–12, 2009.

[25] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica,

“A data-oriented (and beyond) network architecture,” in Proceedings of the 2007 conference

on Applications, technologies, architectures, and protocols for computer communications,

pp. 181–192, 2007.

[26] A. Chandra, J. Weissman, and B. Heintz, “Decentralized edge clouds,” IEEE Internet Com-

puting, vol. 17, no. 5, pp. 70–73, 2013.

[27] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi, “Packetcloud: an open platform for

elastic in-network services,” in Proceedings of the eighth ACM international workshop on

Mobility in the evolving internet architecture, pp. 17–22, 2013.

27

http://named-data.net/
https://github.com/named-data/
http://named-data.net/doc/ndn-cxx/current/
https://github.com/named-data/ndn-cxx

[28] S. K. Dandapat, S. Pradhan, N. Ganguly, and R. Roy Choudhury, “Sprinkler: distributed

content storage for just-in-time streaming,” in Proceeding of the 2013 workshop on Cellular

networks: operations, challenges, and future design, pp. 19–24, 2013.

[29] P. Deshpande, A. Kashyap, C. Sung, and S. R. Das, “Predictive methods for improved ve-

hicular wifi access,” in Proceedings of the 7th international conference on Mobile systems,

applications, and services, pp. 263–276, 2009.

[30] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching for information-

centric networks,” in Proceedings of the second edition of the ICN workshop on Information-

centric networking, pp. 55–60, 2012.

[31] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in information-centric net-

works,” in 2012 Proceedings IEEE INFOCOM Workshops, pp. 268–273, IEEE, 2012.

[32] J. Quevedo, D. Corujo, and R. Aguiar, “Consumer driven information freshness approach for

content centric networking,” in 2014 IEEE conference on computer communications work-

shops (INFOCOM WKSHPS), pp. 482–487, IEEE, 2014.

[33] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave: Popularity-based and

collaborative in-network caching for content-oriented networks,” in 2012 Proceedings IEEE

INFOCOM Workshops, pp. 316–321, IEEE, 2012.

[34] J. M. Wang and B. Bensaou, “Progressive caching in ccn,” in 2012 IEEE global communica-

tions conference (GLOBECOM), pp. 2727–2732, IEEE, 2012.

[35] J. Zhang, R. Izmailov, D. Reininger, and M. Ott, “Web caching framework: Analytical mod-

els and beyond,” in Proceedings 1999 IEEE Workshop on Internet Applications (Cat. No.

PR00197), pp. 132–141, IEEE, 1999.

[36] C. Bernardini, T. Silverston, and O. Festor, “Mpc: Popularity-based caching strategy for

content centric networks,” in 2013 IEEE international conference on communications (ICC),

pp. 3619–3623, IEEE, 2013.

28

[37] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, “Globally distributed

content delivery,” IEEE Internet Computing, vol. 6, no. 5, pp. 50–58, 2002.

[38] F. Zhang, C. Xu, Y. Zhang, K. Ramakrishnan, S. Mukherjee, R. Yates, and T. Nguyen, “Edge-

buffer: Caching and prefetching content at the edge in the mobilityfirst future internet archi-

tecture,” in 2015 IEEE 16th International Symposium on a World of wireless, mobile and

multimedia networks (WoWMoM), pp. 1–9, IEEE, 2015.

[39] N. Abani, T. Braun, and M. Gerla, “Proactive caching with mobility prediction under un-

certainty in information-centric networks,” in Proceedings of the 4th ACM Conference on

Information-Centric Networking, pp. 88–97, 2017.

[40] H. N. Arifin, L. V. Yovita, and N. R. Syambas, “Proactive caching of mobility prediction

prefetch and non-prefetch in icn,” in 2019 International Conference on Electrical Engineer-

ing and Informatics (ICEEI), pp. 418–422, IEEE, 2019.

[41] D. Nguyen, Z. Shen, J. Jin, and A. Tagami, “Icn-fog: An information-centric fog-to-fog archi-

tecture for data communications,” in GLOBECOM 2017-2017 IEEE Global Communications

Conference, pp. 1–6, IEEE, 2017.

[42] T. Stockhammer, “Dynamic adaptive streaming over http– standards and design principles,”

in Proceedings of the second annual ACM conference on Multimedia systems, pp. 133–144,

2011.

[43] Y.-T. Yu, F. Bronzino, R. Fan, C. Westphal, and M. Gerla, “Congestion-aware edge caching

for adaptive video streaming in information-centric networks,” in 2015 12th Annual IEEE

Consumer Communications and Networking Conference (CCNC), pp. 588–596, IEEE, 2015.

[44] T. Muto, K. Kanai, and J. Katto, “Implementation evaluation of proactive content caching

using dash-ndn-js,” in 2015 IEEE Wireless Communications and Networking Conference

(WCNC), pp. 2239–2244, IEEE, 2015.

29

[45] K. Ueda and A. Tagami, “Icn-pep: Icn performance enhancing proxy for the efficient global

content distribution,” in 2019 IEEE Global Communications Conference (GLOBECOM),

pp. 1–6, IEEE, 2019.

[46] K. Ueda and A. Tagami, “Icn performance enhancing proxies for the global content distribu-

tion,” in 2018 IEEE 26th International Conference on Network Protocols (ICNP), pp. 253–

254, IEEE, 2018.

30

	ABSTRACT
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	INTRODUCTION

	NAME CENTRIC INTEREST PREDICTION
	Basics of Named-Data Networking
	Case Studies of Interest Patterns
	Prediction Rule

	NCP PRELIMINARIES
	Pattern
	Interest Capture Table
	Future Interest Table

	IMPLEMENTATION AND ALGORITHMS
	Software Architecture
	Interest Capture Module (ICM)
	Token System Module (TSM)
	FIT Management Module
	Prefetching Module (PM)

	EMULATION
	Testbed Description
	Interests Generation
	Scenario of Google Trace
	Scenario with Multiple Applications

	EMULATION ENVIRONMENTS AND PERFORMANCE METRICS
	Emulation Results

	RELATED WORK
	CONCLUSION
	REFERENCES

