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ABSTRACT

In this dissertation, we study algebraic relations among periods, quasi-periods, logarithms and
quasi-logarithms of Drinfeld modules. This work is motivated by the Tannakian theory for ¢-
motives especially the function field analogue, proved by Papanikolas, of Grothendieck’s conjec-
ture for periods of abelian varieties. Papanikolas’ theorem shows that the dimension of the Galois
group associated to a t-motive is equal to the transcendence degree of the entries of the period
matrix of the ¢t-motive. In recent work, Papanikolas and the author proved that the period matrix of
the prolongation ¢-motives, introduced by Maurischat, of Z-motives associated to t-modules entail
hyperderivatives of periods and quasi-periods. Computing the Galois group of these prolongations,
we prove that the algebraic relations among the hyperderivatives of periods and quasi-periods of a
Drinfeld module are the ones induced by the endomorphisms of the Drinfeld module. Furthermore,
we construct a new t-motive using these prolongations and compute its Galois group, using which
we investigate hyperderivatives of Drinfeld logarithms and quasi-logarithms, and prove transcen-

dence results about them.
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NOMENCLATURE

finite field with ¢ = p™ elements.

IF,[6], the polynomial ring in 6 over F,.

IF,(8), the fraction field of A.

F,((1/0)), the completion of & with respect to |- |__.

the completion of an algebraic closure of k.

the algebraic closure of £ inside K.

IF,[t], the polynomial ring in ¢ over F, ¢ independent from 6.
IF,(¢), the fraction field of A.

70 ant” € K[t] | limpoo | an |, = 0}, the Tate algebra
of the closed unit disk of K.

the fraction field of T.

a separable algebraic closure of a field F'.

for the field F’, the F'-group scheme of invertible r x r

matrices.
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1. INTRODUCTION

1.1 Introduction

Drinfeld modules were introduced as “elliptic modules" by Drinfeld, as a function field ana-
logue of elliptic curves [18]. Later, Anderson defined higher dimensional generalizations of Drin-
feld modules, called ¢-modules [1]. Yu proved several transcendence results concerning periods
and logarithms of Drinfeld modules [41], [42], and proved the Sub-t-module theorem [44], a re-
markable result regarding linear independence among logarithms of Anderson ¢-modules. Brow-
nawell [4], and Brownawell and Papanikolas [6] proved linear independence results concerning
logarithms and quasi-logarithms of certain ¢-modules. Thiery [39] proved algebraic independence
results among periods and quasi-periods of rank 2 Drinfeld modules with complex multiplication.
Concerning hyperderivatives, algebraic independence results among hyperderivatives of the period
of the Carlitz module (rank 1 Drinfeld module) were proved by Denis [15], [16], [17] and Mau-
rischat [28]. Further work in this direction was also done in unpublished work by Brownawell
and van der Poorten. Utilizing Yu’s sub-t-module theorem, Brownawell and Denis proved lin-
ear independence of hyperderivatives of logarithms and quasi-logarithms of Drinfeld modules [3],
[5]. Shortly after this, Brownawell proved linear independence results among hyperderivatives of
several logarithms and quasi-logarithms of Drinfeld modules [4].

In this dissertation, we prove all algebraic independence results among hyperderivatives of
periods, quasi-periods, logarithms and quasi-logarithms of Drinfeld modules. To prove our results,
we employ Papanikolas’ theorem [34, Thm. 1.1.7] on the transcendence degree of the period matrix
of a t-motive and the dimension of its Galois group. Using this result, Chang and Papanikolas have
subsequently proved algebraic independence results among periods, quasi-periods, logarithms and

quasi-logarithms of Drinfeld modules [11], [12].



1.2 Hyperderivatives of periods and logarithms

Let [F, be a finite field, where ¢ is a positive power of a prime number p. Letting ¢ be an
indeterminate, we set A := F [0], k := F,(0) and k., := F,((1/6)), the completion of & at its
infinite place. We further set K to be the completion of an algebraic closure of k., and let k& and
kP be the algebraic closure and the separable closure respectively of £ inside K. For a variable ¢
independent from 6, we further define A := F,[t] and k := F,(¢).

For n € Z, we define the n-fold Frobenius twist 7" : K((¢)) — K((¢)) by setting for f =
> a;it',

f) = f" = Za . (1.1)

For a field K C K, we define the twisted power series ring K [7] such that 7f = fir forall f € K.
Then, we define the twisted polynomial ring K [7] as the subring of K[7], where K|[r] is viewed
as a subalgebra of the [F;-linear endomorphisms of the additive group of K.

For a field & C K C K, a Drinfeld A-module of rank r defined over K is an [F -algebra
homomorphism

p:A— K7

uniquely determined by p; = 6 4+ k17 + - -+ + K, 7" such that k. # 0. The exponential function
associated to p is given by Exp,(2) = 2 + >, ap2?" € K[z] and it satisfies the functional
equation Exp,(0z) = p;(Exp,(2)). The period lattice of p is the kernel A, of Exp,, which is
a free and finitely generated discrete A-submodule of rank r inside K (see §3.1 for details about
general Anderson ¢t-modules).

The de Rham cohomology theory for Drinfeld modules was developed by Anderson, Deligne,
Gekeler and Yu [20], [42]. A p-biderivation is an F-linear map ¢ : A — K][7|7 satisfying

Oap = a(@)db + 5apb VCL, beA.

Let u € K[7]. Then, the p-biderivation 6 defined by 65" = up, — a(6)u, Va € A is called



an inner biderivation. If u € K[7]7, then §® is said to be strictly inner. The set of p-biderivations
Der(p) forms a K-vector space. The set of inner biderivations Der;,(p) and the set of strictly inner
biderivations Derg;(p) are also K-vector subspaces. We define the de Rham module for p to be
Hpg(p) := Der(p)/ Dergi(p).
For each 6 € Der(p) there is a unique F-linear and entire power series Fs(2) = > .-, ¢z €
K[z] such that
Fs(a(0)z) = a(0)Fs(z) + 6, Exp,(2), Vae€ A. (1.2)

We call F; the quasi-periodic function associated to . For A € A,, the value F5(\) is called a
quasi-period of p. For u € K satisfying Exp,(u) € K the value Fs(u), which is a coordinate of
logarithms on quasi-periodic extensions, is called a quasi-logarithm of p (see [6], [32]).

Since every p-biderivation d is uniquely determined by the image d;, a K-basis of Hjy(p)
is represented by {4y, ...,d,}, where ¢; is the inner biderivation such that (6,); = p; — 6, and
6i(t) = 7~  fori = 2,... 7. We see that F5u)(2) = Expy(z) — 2, and so Fsu)(A) = — A for all

A € A,. Thus, if we take {\1,..., A, } to be an A-basis of A, and we set F.i-1(2) := Fj,(z) for

1 =2,...,r, then we define the period matrix of p to be
A Er(N) oo Faei(\)
A Fr(Xa) ... Fpaa(A
P,=|" () ) | (1.3)
A Fr(N) o0 Faaa(A)

Using Papanikolas’ result [34, Thm. 1.1.7], Chang and Papanikolas proved algebraic indepen-
dence of periods and quasi-periods of Drinfeld modules. We define End(p) := {x € K | zA, C
A,} and let K, be its fraction field.

Theorem 1 (Chang-Papanikolas [12, Thm. 1.2.2]). Let p be a Drinfeld A-module of rank r defined
over k. Then

tr.degz k (P,) = r?/s,



where s = [K, : k].

The first goal of the dissertation is to extend this result to algebraic independence of hyper-
derivatives of periods and quasi-periods of Drinfeld modules. The hyperderivative (95 ck — kis
defined by 8} (6™) := (") 6™ where j > 1 and (T) is the binomial coefficient, and it satisfies the

product rule 9} (ab) = 03 (a)022 (b) for all a,b € k. Moreover, &9 extends uniquely to

i1+i2=j
k5P and k5P (see §2.4 for a detailed review of hyperderivatives).

If the Drinfeld A-module p is defined over £°P, then Denis [16, p. 6] showed that the periods
and quasi-periods of p have coordinates in k3P (see also [32, Lem. 4.1.19]). Therefore, for n > 0

we can consider Jj(P,), where we take hyperderivatives entrywise. Our first main result is as

follows (restated as Theorem 12):

Theorem 2. Let p be a Drinfeld A-module of rank r defined over k*® and suppose that K, is

separable over k. If s = [K, : k], then for n > 1, we have

tr.degp k (P, 05(P,),...,04(P,)) = (n+ 1) -1%/s.

By constructing a suitable ¢-motive and calculating the dimension of its Galois group, Chang
and Papanikolas proved the algebraic independence among logarithms and quasi-logarithms of

Drinfeld modules.

Theorem 3 (Chang-Papanikolas [12, Thm. 5.1.5]). Let p be a Drinfeld A-module defined over
k. Let uy,...,u, € K with Exp,(u;) = o; € k for each i = 1,...,w and suppose that

dimg, SpanKp(/\l, e Ay ULy e Uy) = 1/8 4 w. Then,

r—1 w r

tr. deng( U U U{/\j, Fri(N\j), U, FT(um)}) =7r?/s + rw.

i=1 m=1j=1

Denis [16, p. 6] showed that, for a Drinfeld A-module p defined over kP and p-biderivation §
defined over £*°P, if u € K such that Exp,(u) € k*P, thenu € k3P and Fi(u) € k5P, (see also [32,

Lem. 4.1.19]). Therefore, for n > 0 we can consider Jj (u) and 9y (Fs(u)). Building on Theorem 2

4



and utilizing Theorem 3, we create suitable ¢-motives and prove algebraic independence results
among hyperderivatives of logarithms and quasi-logarithms of Drinfeld modules. Our second main

result is as follows (restated as Theorem 14):

Theorem 4. Let p be a Drinfeld A-module defined over k*P. Suppose that K, is separable over
k. Let uy,...,u, € Kwith Exp,(u;) = o; € k*P for each i = 1....,w and suppose that

dimg, SpanKp(Al, e Apy ULy Uy) = 1/S 4+ w. Then,

n r—1 w r

et F( U U U U080, 354,350 050} ) = (05 1)+ (2 + 7,

s=0 i=1 m=1 j=1

Returning to an arbitrary basis {0y, . .., d,} of Hhy (p) defined over £°°P, we further deduce the

following corollary.

Corollary 1. Let p be a Drinfeld A-module defined over k*P. Suppose that K, is separable over
k. Letuy, ..., u, € Kwith Exp,(u;) = o; € K*P for eachi = 1,...,w. Let 0y, ..., 0, be a basis
of Hhr(p) defined over k5°. If uy, ..., u, are linearly independent over K,, then for n > 1 the

(n + 1)rw quantities

{U U (83(F5j(u1))7 ag(F5j <u2))7 s 78;(F5j (uw)))}

5=0j=1
are algebraically independent over k.

1.3 Structure of the dissertation

Since, to prove our main theorems, the key result we use is Papanikolas’ theorem [34, Thm.
1.1.7] which shows that the dimension of the Galois group associated to a ¢-motive is equal to
the transcendence degree of the entries of the period matrix of the ¢-motive, in §2.2 and §2.3 we
give necessary background concerning ¢-motives and ¢-motivic Galois groups. Next, we give a
brief review of hyperderivatives and then present a summary of prolongations of dual ¢-motives as

introduced by Maurischat [28].



It proved to be the case that prolongations provide the necessary framework for the study of
hyperderivatives of periods and logarithms of Anderson ¢-modules. The author and Papanikolas
[32] showed that using prolongations of ¢-motives, one can recover hyperderivatives of entries
of the period matrix of the ¢-motive (see Theorem 7), and so to prove Theorem 2, for n > 1 we
calculate the Galois group I'p,, 5,, where P,, M, is the n-prolongation of the ¢-motive M, associated
to the Drinfeld A-module p.

For a Drinfeld A-module p defined over K, where k C K C k with [K : k] < oo, there is
a representation ¢, : Gal(K*?/K) — GL,(FF,[t]) coming from the Galois action on the ¢-power
torsion points p[t™] := {z € K | pym(x) = 0}. In §4, using Anderson generating functions and ¢,
we determine the Galois representation on the t-adic Tate module of the n-th prolongation Ander-
son t-module P, p associated to the Drinfeld A-module p (Lemma 2), and prove that the image of
this Galois representation is naturally contained in the k;-valued points of I'p, 5s, (Theorem 8).

The main difficulty in proving Theorem 2 is that unlike the Drinfeld module case (see [12,
§3]) where Pink’s theorem [36, Thm. 0.2] on the openness of the Zariski closure of the image of
the Galois representation was used to calculate the Galois group 'y, the Zariski closure of the
image in our case need not be open. However, by building on information from the n = 0 case,
employing differential algebraic geometry (Theorem 10) and closely examining the elements of
I'p,, 11, (Theorem 9), we are able to compute I'p, 57, explicitly and prove Theorem 2.

In §5, for uy,...,u, € K satisfying Exp,(u;) € k*P we build on results of §4 and uti-
lize the ideas of [12, §4 and §5] to construct new ¢-motives Y7 ,, ..., Y, ,. These t-motives are
constructed using the prolongation ¢-motive P, M, such that the entries of the period matrix of
B Von comprise ", Ur—; U _ {05 (wm), 95(Fyi(uy))}. We utilize properties of prolonga-
tions and hyperderivatives to prove that there is a surjective map from the Galois group of Y, ,, to
the Galois group of Y,,, , for ¢ < nandm =1, ..., w (Lemma 5). Adapting the ideas of the proof

of [12, Thm. 5.1.5] and using Lemma 5, we prove Theorem 4.



2. PRELIMINARIES

2.1 Notation

For n € 7Z, recall the n-fold Frobenius twist 7" from (1.1). In some cases, we will write ¢ for
7~1. For amatrix M = (m;;) with entries in K((2)), we define M ™ by setting M) = (mz(y)) Let

k(t)[o, 07| be the Laurent polynomial ring over k(#) in o subject to the relation
of = fVa, VY fek().

For a field K’ C K, recall the twisted power series ring K [7] and the twisted polynomial ring
K|[r] givenby 7f = fM7 forall f € K. Similarly, we define K [¢] and K [¢] when K is a perfect
field. For b =Y ¢;7° € K[r], we define b* := > b"o? € K[o]. If B = (b;;) € Matexa(K[7]) =
Matcyxq(K)[7], then B* := (b};). Thus, if B € Mat.xq(K[7]) and C' € Maty;(K[7]), then
(BC)* = C*B*. Moreover, if B = 3y + 17 + - - - + B,7, then we set dB := 3.

2.2 Dual t-motives and ¢-motives

The reader is directed to [34] for details. A pre-t-motive M is a left k(t)[o, 0~']-module that is

finite dimensional over E(t). We denote by P the category of pre-t-motives whose morphisms are

the left k(t)[o, 0~!]-module homomorphisms. Let m € Mat,; (M) be so that its entries consist

of a k(t)-basis of M. Then, there is a matrix ® € GL,(k(t)) such that
om = dm,

where the action of o on m is entry-wise. We say that M is rigid analytically trivial if there exists
amatrix ¥ € GL, (L) such that
¢ = oU.



The matrix W is called a rigid analytic trivialization for ®. Set M := L Q) M, where we give

MT aleft k(t)[o, o~ ']-module by letting o act diagonally:
o(fem):=fYeom, Vfeckt),meM.

If we let

MP = (MY = {pe M op = p},

then M P is a finite dimensional vector space over k, and M ~ M?P is a covariant functor from
P to the category of k-vector spaces. The natural map L @,y M” — MT is an isomorphism
if and only if M is rigid analytically trivial (see [34, §3.3]). If U is a rigid analytic trivialization
of @, then the entries of U~ 'm form a k-basis for M? (see [34, Thm. 3.3.9(b)]). Then, by [34,
Thm. 3.3.15], the category of rigid analytically trivial pre-t-motives R forms a neutral Tannakian
category over k with fiber functor M — M?B. Its trivial object is denoted by 1.

We now consider A-finite dual ¢-motives, which were first introduced in [2] (see also [24],
[32]). A dual t-motive M is a left k[t, o]-module that is free and finitely generated as a left k[o]-
module and such that (t — 0)*’ M C o M for s € N sufficiently large. If, in addition, M is free and
finitely generated as a left k[t]-module, then M is said to be A-finite. Thus, if m € Mat,; (M)
is a k[t]-basis for M, then there is a matrix ® € Mat,.(k[t]) such that o(m) = ®m with det & =
c(t — 6)* for some ¢ € k,s > 0. We say that M is rigid analytically trivial if there exists a
matrix ¥ € GL,(T) so that U1 = ®¥. In [2], the term “dual t-motives" is used for A-finite dual
t-motives. We will consider both dual ¢-motives and A -finite dual ¢t-motives [24].

Given an A-finite dual ¢-motive M,

is a pre-t-motive where o(f ® m) := f(-Y ® om. Then, M + M is a functor from the category

of A-finite dual ¢-motives to the category of pre-t-motives.



The category A’ of A-finite dual t-motives up to isogeny, is the category whose objects are
generated by A-finite dual ¢£-motives and morphisms are defined as follows: for A-finite dual
t-motives M and N, Homyr (M, N) := Homg;, ;(M,N) ®a k. We further define the full
subcategory AR of rigid analytically trivial A-finite dual ¢-motives up to isogeny by restriction.
Then, the functor M +— M : AR! — R is fully faithful (see [34, Thm. 3.4.9]) and we define
T, the category of t-motives, to be the strictly full Tannakian subcategory of R generated by the
essential image of this functor.

For a t-motive M, we let Ty, be the strictly full Tannakian subcategory of 7 generated by
M. As Ty is a neutral Tannakian category over k, there is an affine group scheme I';; over k, a
subgroup of GL, /k, so that 7;, is equivalent to the category of finite dimensional representations

of I'y; over k, i.e., Ty = Rep(['y, k) (see [34, §3.5]).
2.3 The difference Galois group

For this section, the reader is directed to [34] for details. A triple of fields F* C K C L along
with an automorphism o : L — L is said to be o-admissible if o restricts to automorphisms of /'
and K; F' = F? = K? = L7; and L is a separable extension of K. For a fixed o-admissible triple

of fields (F, K, L), we fix ® € GL,(K) and suppose that ¥ € GL, (L) satisfies
o () = OV,

We define a K-algebra homomorphism v : K[X,1/det X] — L by setting v(X;;) := ¥,;, where

X = (X;;) is an r x r matrix of independent variables. We let
p:=kerv, Y :=Imv=K[V, 1/detV]C L.

Setting Zy = Spec X, we see that Zy is the smallest closed subscheme of GL,/x such that
Ve Zy(L).
Set \Ifl, \:[12 € GLT(L XK L) to be such that (\Ill)lj = \IJU ® 1 and (\Ijg)” =1® \Ijij, and let



U = U7, € GL,(L ®x L). We define an F-algebra homomorphism z : F[X,1/det X] —

L XK L by setting M(le) = \AI}U We let
q:=kery, A:=Imuypu.

Setting I'y = Spec A, we see that I'y is the smallest closed subscheme of GL, /x such that
U ely(L®gL).

Now suppose that M is a t-motive and let ® € GL, (k(t)) represent multiplication by ¢ on M.
Let U € GL,(L) satisfy ¥(-1) = ®W¥. Using the o-admissible triple (F, K, L) = (k, k(t), L), the

following properties hold.

Theorem 5 (Papanikolas [34, §4]1). Let M be a t-motive, and let & € GL,(k(t)) represent multi-
plication by o on M. Let V € GL,(IL) satisfy ¥(-1) = &,

(a) 'y is a closed k-subgroup scheme of GL, .

(b) The closed k(t)-subscheme Zy is stable under right-multiplication by k(t) xy I'y and is a

k(t) xi Dy-torsor over k(t). In particular, T'y (L) = U~ Zy(L).

(c¢) Zy is absolutely irreducible and smooth over m

(d) The k-scheme Ty is absolutely irreducible and smooth over k.
(e) dimI'y = tr. degg(t) Ay, where Ay is the fraction field of Y.
(f) 'y = I'y; over k.

Furthermore, the main theorem of [34] is as follows.

Theorem 6 (Papanikolas [34, Thm. 1.1.7]). Let M be a t-motive, and let 'y, be its Galois group.
Suppose that ® € GL,(k(t)) N Mat, (k[t]) represents multiplication by o on M and that det ® =
c(t—0)%,c € k. Let U be a rigid analytic trivialization of ® in GL,(T). Then, tr. degg k(¥|,—g) =

dim I'y,.

10



2.4 Hyperderivatives and Hyperdifferential operators

In this section, we review results concerning hyperderivatives and hyperdifferential operators.
The reader is directed to [3], [26] and [32] for more details and proofs. For m, j > 0, let (") € N
be the binomial coefficient. Then, for F' a field where 8 is transcendental over F', the F'-linear
map &) : F[f] — F[6] defined by setting 9(#™) = (Tj”) 6™~7 is called the j-th hyperdifferential
operator with respect to 6. For each f € F[0], we call 8} (f) the j-th hyperderivative of f. The
definition of &) extends naturally to 3] : F[0] — F[0]. The hyperdifferential operators satisfy
various identities including the product rule 9}(fg) = 5:0 9(£)9 " (g) and the composition
rule 95(05()) = (59) 3 (f).

The product rule extends 85 to the Laurent series field F'((¢)) where as usual for m > 0, we
have (") = (=1)/("™*/7"). Similarly, for a place v of F(¢) there is a unique extension )

F(6)3" — F(0):P. The formulas that we will use are summarized in the following proposition.

Proposition 1 (see Brownawell [3, §7], Jeong [26, §2], [32, Lem. 2.4.3]). Let I be a field of
characteristic p > 0, and let v be a place of F(0). The hyperdifferential operators with respect to

0, 0) : F(0)*P — F(0)P, j > 0, satisfy the following.

(a) For fi,..., fs € F(0)3 and j > 0,

R(fif) =D O (fr) 05 (fo)
el

(b) For f € F(0):*, n >0, and j > 1,

11



(c) For f € F(0)3P and j > 1,

For f € F(6)5* and n > 1, we define the d-matrix with respect to 0, dg ,[f] € Mat,,(F(0)P)

to be the upper-triangular n X n matrix

foogf) o o TS
£ 0(f)
donlf] == : . (2.1)
0 (f)
f

Using the product rule, it is straightforward to see that dy,[g] - dg.n[f] = donlgf]. For a ma-
trix B := (b;;) € Mat.yxq(F(6)5?), we also define the d-matrix with respect to 6, dy,[B] €
Mat,exna(F(0)5P) in (2.1), where for ¢ > 0 we let 95(B) = (95(bi;)) € Matexa(F(0)5P).

We further define partial hyperderivatives for n independent variables 61,6, ..., 6, to be the

F-linear maps
83, : F(01,05,...,0,) = F(01,05,...,6,), j>0, {=1...,n

such that for m € Z and u,v = 1,...,n,u # v, we have J;_(07") = ()67 and 9 (0m) = 0.
Thus, we have that 9y, o 0y, = 0y, 0 Op,. We can define the d-matrix with respect to each indepen-
dent variable. In this dissertation, we make use of partial hyperderivatives for two variables. For

our convenience, we let the two independent variables be ¢ and 6.
2.5 Prolongation of dual Z-motives

We review the construction of new dual ¢-motives and ¢-modules from old ones, called prolon-

gations, as introduced by Maurischat [28]. For a left k[t, 0]-module M and n > 0, we define the
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n-th prolongation of M to be the left k[t]-module P, M generated by symbols D;m, for m € M

and ¢ = 0, ..., n subject to the relations
(a) Dz<m1 —+ m2> = Diml —+ Dimz,

(b) Di(a-m)= > 0/*(a)- Diym,

1=11+12

where m, m1, my € M and a € k[t]. The o action on P,, M given by

o(a-Dym) = a'™Y - Dy(om)

where a € E[t], m € M, is well defined and thus, the n-th prolongation P, M of M is also a left
k[t, o]-module.

Via Dym +— m, we see that Py M is naturally isomorphic to M and for 0 < ¢ < n, the /-th
prolongation P, M is a k[t, o]-submodule of P, M. Thus, we obtain a short exact sequence of

k[t, o]-modules

0—PM->PMEP, , \M—0 (2.2)

where pr(D;m) := D;_y_ym fori > ¢ and pr(D;m) := 0 fori < ¢ and m € M.
If M is an A-finite dual ¢-motive, then P,, M is an A-finite dual ¢-motive (see [28, Thm. 3.4]).

Thus, if m = [my, ..., m,]T is a k[t]-basis of M, then a k[t]-basis of P,, M is given by

D,m = (D,m",D,_ym",.......,Dom")" € Mat,(,s1)x1(k[t]), (2.3)

where Dy;m = (Dymy, ..., Dym,)T € Mat,.(k[t]) for each i (see [28, Prop. 4.2]). Also, if

® € GL,(k[t]) represents multiplication by ¢ on m, then

o(D,m) = d; ,11[®] - D,m. (2.4)

If M is rigid analytically trivial with U € GL,(T) so that ¥(-) = &, then since twisting
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commutes differentiation with respect to ¢, we have

(1 [O) Y = dpsa [WV] = dy 1 [PV] = i1 [ @]y 1 [V] (2.5)

Therefore, P, M is rigid analytically trivial. See [28, §3] for detailed proofs.
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3. RIGID ANALYTIC TRIVIALIZATIONS, PROLONGATIONS AND
HYPERDERIVATIVES

3.1 Anderson ¢-modules and associated dual ¢-motives

For a field K C K, an Anderson t-module defined over K is an [F;-algebra homomorphism
¢ : A — Maty(K][r])

such that ¢, = By + By7 + --- + By7’, where B; € Maty(K) and d¢, = By = 01, + N with I,
the d x d identity matrix and NN, a nilpotent matrix. Then, ¢ defines an A-module structure on K¢
via

a-T=ads(x), YacA, xcK

We say that d is the dimension of ¢. There exists a unique power series Exp,(2) = Yoo Oz €

K[z, . .. ,zd]]d, z = [21,...,24]" sothat Cy = I, and satisfies

Exp(d¢,.z) = ¢a(Exp(2))

for all @ € A. Moreover, Exp¢(z) defines an entire function Exp, : K? — K2 If Exp, is
surjective, then we say that ¢ is uniformizable. The kernel A, C K? of Exp, is a free and finitely
generated discrete A-submodule and it is called the period lattice of ¢. If ¢ is uniformizable, then
we have an isomorphism K¢/A, 2 (K%, ¢), where (K¢, ¢) denotes K? together with the A-module
structure defined as above coming from ¢. If ¢, = By € Maty(K), then ¢ is said to be a trivial
Anderson ¢t-module.

We define the dual ¢-motive M, associated to the t-module ¢ in the following way. We let

My = Mat,q(k[o]). To give M, the k[t, o]-module structure, we set

a-m=m¢,, meMgyacA, (3.1
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where ¢ is defined asin §2.1. Then, asin [7, §4.4], [24] and [32, §2.3], M, defines a dual ¢-motive
and (3.1) gives a unique correspondence between a t-module and its associated dual ¢-motive. The
reader is directed to [24], [32] for more information on dual ¢-motives associated to t-modules.

A non-trivial Anderson ¢-module of dimension 1 is called a Drinfeld A-module. We now fix a

Drinfeld A-module p : A — k*P[7] such that

pr=0+mT+ -+ KT,

where k, # 0. We call r the rank of p. Drinfeld modules are uniformizable and the rank of the
period lattice A, of p as an A-module is r. As defined above for ¢-modules, we define M, :=
klo]. Then {my,my,...,m,} = {1,0,...,0" "'} forms a k[t]-basis for M, (see [12, §3.3], [32,

Example 3.5.13]) and with respect to this basis, multiplication by o on M, is

0 1 0
O, = ' ' ' ' . (3.2)
0 0 o 1
t—0)/cl =&V kT T

Recall from §2.2 that if M, is free and finitely generated as a left k[t]-module, then M, is said to
be A-finite. Thus, M,, is an A-finite dual t-motive. We let M,, := k(t) @z, M, be the pre-t-motive
associated to M.

Since we can associate an A-finite dual ¢-motive to a Drinfeld A-module, by §2.5 we can
define an Anderson ¢-module P, p for n > 0 which has as an associated A-finite dual ¢-motive
the n-th prolongation P,, M, of M, (see for details, [28, §5]). The n-th prolongation t-module

P.p: A — Mat, 1 (k*P[7]) of the Drinfeld A-module p is of dimension n + 1 and is defined by

(Pnp)e = d(Pnp)e + diag(ky)7 + - - - + diag(k,)7"
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where

d(Ppp)e=10 . " : (3.3)

0O ... 0 —-1490

and diag(k;) is the diagonal matrix with diagonal entries all equal to x; for each i. We also let
P,M, = E(t) Q%14 P,,M,, be the pre-t-motive associated to P, M .. By [32, §5], we have that for

z=[z20,...,2,)" € K",

Expp, ,(2) = [Exp,(20), - - - ,Expp(zn)]T. (3.4)

Set for z € K, (2); :=[0,...,0,2,0,...,0]T € K*"!, where 2 is in the j-th entry and all other
entries are 0. Thus, if {\;,..., A} is an A-basis of A,, then {()\;); |7 =1,...,7and 1 < j <
n + 1} forms an A-basis of Ap, ,, the period lattice of P, p.

For Drinfeld A-modules p and p’ defined over K C K, a morphism b : p — p’ is a twisted
polynomial b € K[7] such that

bpa =p,b VaeA.

We say that b is defined over L C K if b € L[r]. Letb : p — p be a morphism defined over L C k.
Then, b induces a morphism B : M, — M of A-finite dual ¢-motives in the following way. If

b= ¢7 € L[r], then recall from §2.1 that b* = 3" ¢\"”o%. Asin [11, Lem. 2.4.2], B is the

i

k|[o]-linear map such that B(1) = b*. The map
End(p) — {ceK|cA, CA,}: chi — Co

is an isomorphism. Throughout this dissertation, we identify End(p) with the image of this map

and let K, denote its fraction field. The following result is due to Anderson.

17



Proposition 2 (See Chang-Papanikolas [12, Prop. 3.3.2, Cor. 3.3.3]). The functor p — M, from
the category of Drinfeld A-modules defined over K C k to the category of A-finite dual t-motives
is fully faithful. Moreover, for any Drinfeld A-module p defined over K C k,

End(p) = Endg, j(M,), K, = Endr(M,),

and M, is a simple left k(t)[o, o~ ]-module.

3.2 Rigid analytic trivializations of Drinfeld modules, and prolongations

We continue with our choice of Drinfeld A-module p of rank r defined over £°°P. By construct-
ing the rigid analytic trivialization ¥,, we show that its associated A-finite dual ¢-motive M, is
rigid analytically trivial, and then extend to the prolongation ¢-modules P,,p. The details regarding
Drinfeld modules can be found in [12, §3.4] and [32, §4.4] (see [32, Prop 4.4.11]). For u € K, we

define the Anderson generating function

00 u [e’¢) oal-uqi
fult) =) Exp, <W>tm => i €T (3.5)
m=0

=0

where Exp,(z) = Yoo ;27 with ap = 1. The last equality is due to Pellarin [35, §4]. Since

pe(Exp,(u/6"*1)) = Exp,(u/0™), we have

Rif () 4+ R SOV @) + R fO(8) = (8 — 0) fu(t) + Exp, (w), (3.6)

and so

pifS(0) 4+ Kot fUTVO0) + K f0(0) = —u+ Exp,(u). (3.7)

18



For {\1,..., A\, } an A-basis of A,, we set f;(t) := f,(t) for each i. Define the matrix

fi Y ey
) (r—1)
f
r— |77 2 . (3.8)
foo 0 Y

Foreach1 <i <rand1 < j <r — 1, it follows from [20, p.194], [32, §4.4] and [38, §6.4] that

the quasi-period F;();) of \; associated to the biderivation d; : ¢ — 77 is

00 )\Z qj n .
Fr(\) =) Exp, (W) 0" = FO(t) |1 - (3.9)
m=0

Moreover, by [12, Lem. 3.4.4] (see also [32, Lem. 4.3.9]), it follows that det T # 0. As in [12,

§3.4], if we let

K1 /{(2_1) /{7(:7?2) n&‘r“)

Ko “:(3_1) KT

V= ,

Rr—1 lig_l)

K
and set

U, =V W) (3.10)

then U(—1) = ®,V,. Thus, the pre-t-motive M, = k(t) ®g M, s rigid analytically trivial and is
in 7, the category of ¢-motives.

By (2.5), the n-th prolongation ¢-motive P, M, = k(t) Oy P, M, is rigid analytically trivial
and Up, , = d;,4+1[V,]. Thus,

Up,, = dppi1[V] i [T
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3.3 Hyperderivatives of periods and logarithms, and prolongations

For this section also, we continue with our choice of Drinfeld A-module p of rank r defined
over k*P. In [32], Papanikolas and the author studied extensively the periods, quasi-periods, log-
arithms and quasi-logarithms of prolongations of abelian and A-finite Anderson ¢-modules. For
§ € Der(¢) such that 6, = Y, _, bp7" € K[|, we set &;(fu(t)) = >} _; by £ (t). The statement

of the result from [32] for Drinfeld A-modules is as follows.

Theorem 7 (Namoijam-Papanikolas [32]). Fix n > 0. Let p be a Drinfeld A-module defined over
ksP. If {61, ...,0,} is a basis of Hpg (p) defined over k5 and {\1, ..., \.} is an A-basis of the

period lattice A\, then we have

spang (U U300} ) = Spang (ds 0,/ )

s=0i=1j=1

Moreover, if u € K such that Expp(u) € k5P then

Spang; (U U{<6i>t<fu<t>>7af((éi)xfu(t)))}ue> = Spang (U U{aswai(u))}) (3.11)

s=11i=1 s=01i=1

Thus, by Theorem 6, computing the dimension of the Galois group I'p 57, for n > 1 will
enable us to prove algebraic independence results concerning hyperderivatives of periods and
quasi-periods of abelian and A-finite Anderson ¢-modules. Moreover, by (3.11), if we are able
to create appropriate ¢t-motives and determine the dimension of its associated Galois group, then
we can prove algebraic independence results concerning hyperderivatives of logarithms and quasi-

logarithms of Abelian and A-finite Anderson ¢-modules.
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4. HYPERDERIVATIVES OF PERIODS AND QUASI-PERIODS

In this chapter, we prove Theorem 2. To prove this theorem, we first show in Theorem 10 that
dimT'p,p;, > (n 4 1) - 7?/s, and in Theorem 11 that dimI'p, 5;, < (n + 1) - r?/s. Moreover, in

Corollary 3 we explicitly compute I'p,, 57, forall n > 1.
4.1 The t-adic Tate module, Anderson generation functions and prolongations

For parts of this section, we adapt the methods in [12, §3.4]. Let ¢ be a uniformizable, A-
finite Anderson ¢-module of rank r. Then, for any a € A, the torsion A-module ¢[a] := {x €

K? | ¢po(x) = 0} is isomorphic to (A/(a))@r. We define the t-adic Tate module
—

Ty(6) = lim ¢[t™] = AP

Now, we fix a Drinfeld A-module p of rank . If p is defined over K such that k C K C k and
[K : k] < oo, then every element of p[t™] is separable over K. Thus, the absolute Galois group

Gal(K®?/K) of the separable closure of K inside k acts on T}(p), defining a representation
@i+ Gal(K*P/K) — Aut(Ti(p)) = GL,.(Ay).

We fix an A-basis {1, ..., A} of A, and define

A m
£i7m = Epr (9m+1> € p[t +1]’

for 1 < i < randm > 0. We define {xy,...,2,} to be the A;-basis of T;(p), where we set

zi = (&.0,&1,&2, .. .). Then, for € € Gal(K*?/K), there exists g. € GL,(IF,[t]) such that

pr(e)x = gex, 4.1)

where x = [z1,...,z,]".
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For the remainder of this section, we fix n > 0. Recall from §3.1 that for z € K, (z);, =
0,...,0,2,0,...,0]T € K™, and {(\;); | i = 1,...,rand 1 < j < n+ 1} is an A-basis of
Ap, ,. We define

Xigm = Expp,, (d(Pap)e) ™V (N);).

Similar to the case of the Drinfeld A-module p, we define {y; ; | 1 <i <7, 1<j<n+1}tobe
the A;-basis of T} (P,,p), where for each i, j, we set y; ; := (Xi,j,07 Xij1> Xij,2y - - )

Foreach: =1,...,r, by (3.5) the Anderson generating function of p with respect to J\; is

- AT/ m S m Se
ROE <9m+1)t =S gt™ € K],

The Galois group Gal(K®P/K) acts on K*P[t] by acting on each coefficient. The following
lemma shows that the induced Galois action on f;(¢) and its Frobenius twists as elements of /P [¢]

are compatible with its action on them as elements of T}(p). Set f = [f1,..., f,]T.

Lemma 1 (Chang, Papanikolas [12, Lem. 3.3.2, Cor. 3.2.4]). For any ¢ € Gal(K*?/K), we have

e(f) = gf, where e(f) = [e(f1), ..., e(f)]T. Moreover, for 1 < j < r—1, we have ¢(fV)) = g £0).

We want to extend Anderson generating functions to Anderson generating functions of the
prolongation ¢-module P, p. Anderson generating functions of general Anderson ¢-modules have
been extensively studied in [21], [27], [32]. Foreachi=1,...,rand j = 1,...,n 4+ 1, we define

the Anderson generating function of P,,p with respect to (};); to be

Gig(t) ==Y Expp,, ([d(Pup)s) "N ™ =Y Xijmt™ € K*P[]" .
m=0

m=0

Observe that in (3.3), the subdiagonal entries of d(P,,p); are —9; (). Also, 0 = (—1)°95(0) for
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¢ > 2 and so by the product rule of hyperderivatives, for h € Z we have

9h
0" 0
026" —ak(e") on
(A(Pup))" = 7 o
(—D)map(ehy ... ... 2(Oh) —Ok(oh) o

From this it follows that for m > 0
n+1—j
(A(Pup))” ") = D (FD DGO )N) o

c=0

and since (—1)°95(6~(m+V) = (") §=(mH1+9) for ¢ > 1, using (3.4), we have

c

" it \i " e
Xijm = Z c Exp, g ) ) = Z . (& mtc) jes (4.2)
jte

c=0 c=0
and
oo n+l—j m+ c n+l1—j 00 m
0= 3 3 (" Yt = 3 (3 (7))
m=0 c=0 c=0 “m=c Jjte
Thus,
n+1—j
Gis(t) = Y (F(f);e (4.3)
c=0

Similar to the case of Drinfeld modules (see Lemma 1), the following lemma and corollary

show that the induced Galois action on G, ;(t) and its Frobenius twists as elements of K>P[¢]"""

are compatible with its action on them as elements of 73(P,,p). Set

r(n+1
Yy = [?/1,17 . 7y7’717 ey 7y1,n+17 N ,yr,n_H]T - (E(Pnp)) ( )
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Lemma 2. For each ¢ € Gal(K*?/K), let g. € GL,(IF,[t]) be defined as in (4.1). Let G :=

[Giase 3Gt Gty Grnt] T € Matr(n+1)x1(Ksep[[t]}n+l). Then,

(a)

(y) = din1lge(y),

(b)
E(Q) - dt,n—‘rl [ge]ga

where E(g) = [E(ng), c ,E(gnl), ey ey e(QLnH), ce ,e(gﬁnﬂ)]T.

Remark 1. For the case of the prolongations of the Carlitz module, this was proved by Maurischat

(see [29]).

Proof of Lemma 2. For parts of the proof, we apply methods similar to the ones used in the proof
of [12, Lem. 3.2.2]. Fora = Y ;2 a,it’ € TF,[t], it is easy to see that for each i, j, we have

a-yY;j = (a “Xi,j,00 A Xi5,1,Q X452y - ), where for each m >0,

a- Xijm = OmXij0+ Gm-1Xiji1+ -+ aoXijm € (Pnp) [tm+1]a 4.4)

and

a-&m = amio+ am_1&i1 + -+ agim € p[t"]. 4.5)

Forl < u < r,leth = [hy1,...,hu,] € Matyy,(F,[t]) be the u-th row of g. and let h,; =

815 (huuz‘) § ( ) /y,ﬁl N (4 6)
C ! )

Define 0f(h) = [0f(hy1),--.,0f(hy,)]. By definition, d;,1[g.] is a block upper triangular
r(n + 1) x r(n + 1) matrix with (n + 1)? blocks of size r x r. Therefore, for 0 < v < n the

(vr 4 u)-th row of d;;41[ge] is [0,...,0,h, 0} (R), ..., 07T 7" (h)] € Matyxn(r11)(Fy[t]). Thus,
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the (vr +u)-th entry of dy 1 1[gc](y) is S0 ™ S0, 95 (hus) - Yiwre and we see that its (m +1)-th

entry is the following:

n+l—v r n+l—v r m+c w
Z Z af(hu,z> *Xivm — Z Z Z (C>7i,in,’U+c,m+cw

c=0 =1 c=0 =1 w=0

n+l—v r m+cn—(v+c)

= > 2. Z ( ) <m e ; o k) Viw (&ismete—w-k)v+etks

c=0 =1 w=0 =

where we obtain the first equality by using (4.5) and (4.6), and the second equality by using (4.2).
Setting v := ¢ + k and changing the order of summations (we also use the fact that for j > m, we

have (’;‘) = (), we obtain

n+l—-v r n+l—-v r mta o _
DD ILTURENEED D5 95 35 9l (RN () URCHESSRRT)
c=0 i=1

a=0 i=1 w=0 k=0

We now consider the calculation of ¢(y). For 1 <« < rand 0 < v < n, the (vr + u)-th entry of

€(y) is €(yu,» ). By using (4.2), the (m + 1)-th entry of €(y,,,,) form > 0is

€(Xuom) = ni_ (m N a) (e(umta))yya:

a=0 @
Since h is the u-th row of g., we see from (4.1) and (4.5) that

n+l—v r m+ta

Xuvm - Z Z Z (m+a) 71w€zm+oc w)v+a (48)

a=0 i=1 w=0

Using Chu-Vandermonde summation > ;_o (_.*,) (""27) = (™1%), it follows that the right hand
sides of (4.7) and (4.8) are the same and thus, we have that €(y,,) = Z"H S O (M)  Yi
This proves part (a).

For part (b), we have from Lemma 1 that

E(fU(t)) = [hu,la cee 7hu,r]f-
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Since e commutes with taking hyperderivatives with respect to ¢, for ¢ < n we have

(0 (fu) = O ([P, - - s huy]E),

and so by (4.3) we obtain €(G,,) = >t (05 ([huts - - - hu,T]f))erc. Therefore, by part (a), it
follows that via multiplication of power series in K5P[t]""", €(G,.,) is the same as the (vr + u)-th

entry of dy ,,[g]G. O

Corollary 2. For 1 < i,j < r, define Y € Mat,(K*P[t]) so that T;; := f(j_l)(t) as in (3.8).

(]

Then, for any € € Gal(K*?/K) and g. € GL,(F[t]) as in (4.1), we have

€ (dt,nJrl [T] (1)) = dt,nJrl [ge]dt,n+1 {T] M .

Proof. Since the j-th column of Y™ is f/), by Lemma 1 we have that ¢(T®")) = ¢, Y™ Since for

eachi, 7 and 0 < ¢ < n, we have e((‘?tc(fl-(j)))) = 0¢(e(f;)V)), it follows from Lemma 2 that

e(dt,n-l-l[T(l)]) = dt,n+1[geT(1)] = dt,n+1[ge]dt,n+l[T(1)] = dtm—i—l[ge]dt,n—i-l[r](l)-

The last equality follows from the observation that J¢(-) commutes with twisting. [

We now consider the ¢-motivic Galois group I'y,,  and its principal homogeneous space Zy,,

as in §2.3.

Theorem 8. Let p be a Drinfeld A-module defined over K such thatk C K C kand [K : k] < o,
and let P, p be its n-th prolongation t-module. Suppose that End(p) C K|1| and Zy, is defined

over K (t). Then, the assignment € — dy ,,11|g.| induces a group homomorphism
Bn : Gal(K*P/K) — Dy, (Fq((1)).

Proof. The proof uses the ideas of the proof of [12, Thm. 3.5.1]. Since ¢, is a group homomor-

phism and d; ,, 1[-] respects multiplication, it suffices to show that d; ,,1[gc] is in 'y, (Fy((2)))-
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Let e € Gal(K*?/K), and let g. € GL,(F,[t]) be defined as in (4.1). By (2.5) and (3.10), the
rigid analytic trivialization of ®p, , is Up, , = d;,,11[V,]. Since Gal(K*?/K) = Aut(K/K) and

entries of V' are purely inseparable over K, we see that (V) = V. By Corollary 2,

e(dins1[¥,]) = dinra[e(VHO) ™ = dpnia [V 9 XYD) Y = dinsa [Vl denga[o ] (49)

Let S C K(t)[X,1/det X] denote a finite set of generators of the defining ideal of Zy,, . Then,

forany h € S, we have h(d;,,+1[V,]) = 0. Since € fixes the coefficients of h, we have

0 = e(h(dens1[,]) = h(dens1[Voldenialgc])-

Therefore, dini1[¥,|dini1l9:"] € Zup, ,(K(t)). By Theorem 5, we see that dyni1[g.'] =

dt,nJrl[gE}_l S FPnPan((t)))' .
4.2 Elements of I'p, 5/,

We continue with a Drinfeld A-module p defined over £ and the ¢-motive )M, associated
to p (see §3.1). In this section, for n > 1 we determine what the elements of I'p 1, the Galois
group associated to the n-th prolongation ¢-motive P,, M, look like. We let Endy(P,,/,) denote
the ring of endomorphisms of P,,M, and set K, := Ends(M,). Recall from (2.3) that if m €
Mat, 1 (M,) is a k(t)-basis of M,, then D,,m is a k(t)-basis of P,,M,. Given h € End (P, M,),
let H € Mat,,,11)(k(t)) be such that h(D,,m) = HD,;m. Since ho = chand ®p,, = d; n11[P,],

we have
i1 [P H = HOVdy 04[],

From this, we see that o fixes d; ;,1[V,] " "Hd; n+1[¥,], and therefore dy ,,+1[¥,] 'Hd; ,,11[V,] €

Mat, 41y (k). We have thus defined the following injective map:

Endr(P,M,) — End((P,M,)”) = Mat,(,1(k),
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hi— hP = d; 1 [V, Hdy i1 [9,). (4.10)

Since the tautological representation @, : I'p,n, — GL((P,M,)?) is functorial in (P,M,)"
(see [34, §3.5.2]), for any k-algebra R and 1 € I'p, Mp(R)’ it follows that we have the following

commutative diagram:
R @ (PoM,)2 ==Y R @y (PM,)P
l@hB l@hB (4.11)
R @1 (PoM,)2 Y4 R @y (P, M,)5.

Proposition 3. Given f € K, let F € Mat,(k(t)) satisfy f(m) = Fm. Also, forn > 1 let

h € Endr(P,M,) be such that h(D,m) = HD, m, where H = (H;;) € Mat,(,+1)(k(t)) and

each H;; is anr x r block for 1 <i,57 <n+ 1.

(a) If K, is separable over k, then for n > 1 there exists g € End (P, M,) such that (D, m) =
dt,n+1 [F] Dnm

(b) For 0 < j <n — 1, the matrix H; := (H,,) € Mat,j41)(k(t)), j+1<u<n+1,1<
v < j + 1 formed by the lower left r(j + 1) X r(j + 1) square of H represents an element of
Endr(P;M,).

Proof. For part (a), since K, is separable over k (by hypothesis and Lemma 2), we can take
hyperderivatives of entries of F. Since fo = o f, we have & ,F = F(‘I)CIDP. Since multiplication
by o on P, M, is represented by ®p,, = d; ,41[P,], the proof of (a) follows from the observation

that

i1 [P dy 1 [F] = dii1[F]dy i [@,)].

For part (b), using d; ,11[®,|H = H(_l)dmﬂ [®,] and the definition of d-matrices, we see that for
0<j7<n—1,

dt7j+1 [(I)p]Hj = Hg‘_l)dt,ﬁrl [(I)p] )

and the result follows. ]
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Theorem 9. For each n > 1 and any k-algebra R, an element of I'p, 1, (R) is of the form

Ao Ay Ay .. A, A,
Ao A1 An,1
Ag

Ay

Ag

where for each 0 < © < n, A; is an r X r block. Furthermore, for 0 < j < n — 1, the matrix
formed by the upper left v(j + 1) x r(j + 1) square is an element of I'p, 51, (R). In particular, the
matrix (Ag) € Iy, (R).

Proof. Since the prolongation of an A-finite dual ¢-motive is also an A-finite dual ¢-motive, by

(2.2), foranyn > 1 and 0 < 7 < n — 1 we obtain a short exact sequence of t-motives

0—P;M, 5 P,M, > P, ; 1M, —0, (4.12)

where pr(D;m) := D,;_;_ym for ¢ > j and pr(D;m) := 0 fori < j and m € M, and ¢ is the
inclusion map. Note that Py M, = M, via Dym +— m for all m € M,

For any k-algebra R, we recall the action of I'p,, 5, (R) on R ®x (P, M, )P from [34, §4.5]. Re-
call that ¥p_, = dy,41[¥,]. The entries of w,, := d;,+1[¥,] "' D,;m form a k-basis of (P, M,)?
(see [34, Prop. 3.3.9]) and similarly for 0 < j < n — 1, we have that the entries of u; :=
di,j+1[¥,] "D m form a k-basis of (P;M,)". For any y € I'p, 5, (R) and any a), € Mat;,(R),

0 < h < n, the action of z on (ag, ..., a,) - u, € R @k (P,M,)? is

(ag, .- an)  denia[V,) " Dom = (ag, ... a,) - dyna [V, Dom (4.13)

Note that d; ,,+1[¥,| "D, m = Dn(‘I’p_lm)-
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We first restrict the action of u to R ®y (P;M,)” via the map ¢ in (4.12). So, we take
ags -+, an—j—1 = 0and set u=* := (Byy,), 1 < i,w < n+ 1 where each B, is an r x r block. By

v in (4.12), we see that p leaves (P;M,)? invariant and thus the blocks

Bn—j—i—v,l = Bn—j+v,2 == Bn—j-i—v,n—j =0, forv= L...,g+ 1L

Moreover, since the non-zero a;’s were chosen arbitrarily, we see that the matrix formed by the
lower right r(j 4 1) x r(j + 1) square is an element of I'p 5/, (R). Varying j from 0 to n — 1,
we see that ;! is a block upper triangular matrix and that the matrices formed by the lower right
7(j +1) x r(j + 1) square is an element of I'p, 57, (R) for each j € {0,...,n — 1}.

We return to arbitrary a;, € Mat; ., (R). We restrict the action of ;2 to R ®y (Pn_j_lMp)B via
the map pr in (4.12). Through pr, we see that p leaves (P,,_;_1M,)® invariant and so the matrix
formed by the upper left r(n — j) X r(n — j) square of 1 is an element of I'p,_,_, 57, (R). Varying
j from 0 to n — 1, we see that the matrices formed by the upper left r(j + 1) x r(j + 1) square of
p is an element of I'p 7, (R) for each j € {0,...,n —1}.

Now, we let & € End(P,M,) be such that for H € Mat,(,1)(k(t)) we have h(D,m) =
HD, m. Let H := (H,,), where each (H;,,) is an 7 x 7 block. For 0 < j < n — 1, let H; :=
(Huo) € Mat,(j+1)(k(1)), j+1 <u <n+1,1 <v < j+1 be the matrix formed by the lower left
r(j41)xr(j+1) square of H. Using the definition of d-matrices, we see that the matrix formed by
the lower left r(j+1) xr(j+1) square of dy 1 [V ,] ' Hdy 1 [V, i8 dy j1[V,] 7 Hy dy j41[¥,)]. By
Proposition 3 (b), we have that d; j,1[V,]"'H; d; j+1[V,] is an element in the image of the natural
embedding (4.10) for the j-th prolongation. Thus, by using the commutative diagram (4.11) for
the n-th and the (n — 1)-th prolongations, we see that since p is upper triangular, the matrices
formed by the lower right rn X rn square and the upper left rn x rn square of p are equal. Now,

comparing each  x r block in this equality, we get the required result. [
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4.3 Lower bound on Dimension of I'p, 5/,

For this section, the reader is directed to Appendix A for details about differential algebra and
differential algebraic geometry in characteristic p > 0. By the properties of hyperderivatives (see
§2.4), for a field F' of characteristic p > 0 with ¢ transcendental over F', we see that (F'(t), 0;),
(F'((t)), 0¢) and (F'(t)*P, 0;), where 0, represents hyperderivative with respect to ¢, are 0;-fields.

By Theorem 9, we make the choice to let the coordinates of I'p, 57, be

Xo X7 ... ... X,
X,
X = X, . i (4.14)
X,
Xo

where X}, := (X)), an r x r matrix for h = 0,1,...,n. We set &/ (X;,) := (0} ((X3),;)) and

VeC(Xh) = [(Xh>1’1, ce (Xh)r,la (Xh)LQ, ceey (Xh),«,g, ey (Xh)l,m ce (Xh>r77.]T,

which consists of all entries of X, lined up in a column vector.

Let 0 < ¢ < n. Define F,((¢)){Xo, ..., X;} to be the d;-polynomial ring, as in Appendix A.2,
over [F,((¢)) with entries of each X, for h = 0,...,7 as J;-indeterminates. Also, define the ;-
polynomial ring F,((¢)){Xo, ..., X;,1/det Xo} with 0;-indeterminates comprising of 1/ det X
and entries of each X, for h = 0,...,i. Moreover, define F,((?))[Xo,...,X;] to be the poly-
nomial ring over F ((¢)) with entries of each X, for h = 0,...,7 as indeterminates, and define
F,(t)[Xo,...,X;,1/det X] to be the polynomial ring with 1/ det X, and entries of each X, for

h =0,...,17 as indeterminates.

Theorem 10. Fixn > 1. Let p be a Drinfeld A-module of rank r defined over kP and P, p be its
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associated n-th prolongation t-module. Suppose that K, : k| = s. Then,

7“2
dimenMp Z (’I’L + 1)—
S

Proof. From Theorem 8, we see that the Zariski closure Im ﬁnz of Im f3,, is an algebraic sub-
group of I'p, a7, /F4((t)). Therefore, our task is to prove that Im BnZ is defined over k and that

dim(Im BnZ /k) = (n + 1)r?/s. For any k-algebra R, we define the algebraic group over k,
Centar, k(K,)(R) := {7 € GL,(R) | v¢ = g7 forall g € R ®x K, C Mat,(R)}.

By [36, Thm. 0.2] and [12, Thm. 3.5.4], we see that I'y;, = Centqr, k(K,) = Im ﬁOZ with
dimension r?/s. Since the defining polynomials of Centyay, (k) (K,) = Lie 'y, are homogeneous

degree one polynomials, let its defining equations be as follows:

DD b)i(Xo)iy =0, (bu)y €ku=1,...1*=1?/s, (4.15)

i=1 j=1

which can be written as

B - vec(X,) =0, (4.16)

where we set B to be the (r? — r?/s) x r? matrix with (b, );; as the u x ((j — 1)r + 7)-th entry.
We see that rank B = 72 — dim I'y;, = r* — r?/s. Therefore, the defining ideal of T'y;, is the ideal

generated by the entries of B - vec(X) in k[Xy, 1/ det X,], the coordinate ring of GL, /k.

Let Im ,6’08 be the [F,((t))-0;-closure of Im £, in GL,(F, ((t))a), where I, ((¢))  is the 0,-closure

of IF,((t)) inside the algebraic closure F,((¢)) (see Appendix A.2). Then
~ 0
J(ImfBy) = I(Im Gy ) = D(B - vec(Xy)),

where J(Im ;) and J(Im Boa) are the defining I, ((¢))-0;-ideal of Im 3, and Im ﬁoa respectively in

F,(t){Xo,1/det Xy}, and D (B - vec(Xj)) is the 9;-ideal in IF,,((¢)){ X, 1/ det X, } generated by
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the linear homogeneous polynomials given by the entries of B - vec(Xj).
Let T be the radical 0;-ideal inside F,((¢)){Xo,...,Xn,1/det Xy} generated the entries of
B - vec(Xy), vec(9} (Xy) — (X1)), vec(9?(Xy) — (X3)), ..., vec(d(Xo) — (X)), which are

linear homogeneous J;-polynomials, that is,

T := R(B - vec(Xy), vec(d} (Xo) — (X1)), vec(97(Xo) — (X2)), . .., vec(d]"(Xo) — (X,,))).

We set 3(7") to be zero set of 7" in GLT(HH)(IFq((t))a) and Im Bna to be the I, ((¢))-0;-closure of
Im 3,,. We see from Theorem 8 and (4.16) that Im @La C 3(T'). Moreover, Proposition 11 implies

that

T =D(B - vec(Xy), vec(d;} (Xo) — (X1)), vec(9?(Xo) — (X3)), ..., vec(0"(Xo) — (X)),
4.17)
the 0;-ideal generated by the set of linear homogeneous 0,-polynomials given by the entries of
B - vec(Xy), vec(9} (Xo) — (X1)), vec(9(Xo) — (X3)), . .., vec(d]'(Xo) — (X,,)).

We claim that ma = 3(T). It suffices to show that 3(@8) C T To do this, we define a
monomial order on F,((¢)){Xo, ..., X, } and use the division algorithm [25, Prop. 1.9]. We denote
by Z(;g) the set of all sequences (ay, as, ag, .. .. .. ) of non-negative integers such that a; = 0 for all
but finitely many ¢ > 1. Note that any monomial in F,((¢)){Xo, . . ., X,,} can be described uniquely
as XP = J[0/(Xp)i ) 0w for some b = (bgg,boyi...,b1o,bit,--oseesbug,but,...) €
Z(fg), where for h = 0,...n and { € Zsq, we have each b, = vec(((bns)i;))" such that

((bpe)ij) is an r x r matrix and (b ¢); ; = O for all but a finite number of h, ¢, i, j. We define a

monomial order on F,(¢)){Xo, ..., X,} as in [25, Def. 1.1] in the following way:
e weset OF((Xp)11) < - <O ((Xp)r1) <o <OH((Xn)1s), - < OH((Xn)rs)s
* we set ate((Xh)ihjl) < af+1((Xh)i2712)?

o we set 0 ((Xn)i 1) < 0 (Xnt1)ino)s
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* we take the pure lexicographic order defined such that XP < X¢ if the left-most nonzero

component of b — c is negative,

where b, ¢ € Z53), 0,01, 6y € Zso, i, j, 1,2, 1, jo € {0,...,7} and h = 0,.. ., n.
Now, let F' € J(Imﬁna) C F,(t){Xo,...,X;,,1/det Xo}. Note that for h = 1,...,n, we
have 0(97((Xo)i;)) < Of((X1):,) and so the leading monomial of each 9; (! ((Xo): ;) — (Xn)i ;)

is 9/ ((X1):;)- Then, by using the division algorithm [25, Prop. 1.9] we see that

n Mhij r

F=>"3" 0 (0M(X0)iy) — (Xn)iy) - fnig + H. (4.18)

h=1 ¢=0 ij=1

where 1, ; ; is the largest number such that 9,""*? ((X},); ;) occurs as a variable in F, each fj,;; €
F,(t){Xo,...,X,,1/det X}, and the remainder H = H(X,) is an element of the J;-polynomial
ring F((¢)){Xo, 1/ det X, }. Note that for g, Im 3,, and Im £, as in Theorem 8, there is a surjective
map

Im 3, = Im f

given by

dt,n-i-l[ge} > Ge-

Moreover F(dyn+1(g.]) = 0. Since 375, 3775 32052 0y (07 (Xo)iy) — (Xn)ig) - fuig € T
and ma C 3(T), we obtain from (4.18) that H(g.) = 0. Thus, H(Xj) is an element of
J(Im By) = D(B - vec(Xy)), the d;-ideal in the J;-polynomial ring F,((¢)){Xo, 1/ det X }. Thus,
F € T. This proves our claim. Therefore, Tm 3, = 3(T).

We are now ready to compute mz. Based on Lemma 7, we can find the defining equations
of Tm B, if we find

T:=TnN Fq((t))[Xg,Xl, ce 7Xn7 1/detX0]
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By (4.17), an element of 7" is of the form

7‘27712/ n Mhij r
a:= Y ¢ 0 (By-vec(Xo) + > > > (wne)iy- 0 (07((Xo)ig) — (Xn)ij) , (4.19)
u=1 h=1 (=0 ij=1

where B, is the u-th row of B, (wpy)i;,cu € (Fy((t)),0:) and my,;; € Zso for h = 1,...,n,
i,j=1,...r,u=1,....,7r" —r?/s. Suppose a € T C F,((¢)[Xo,...,Xn,1/det Xo]. Then,
since forany h = 1,...,n and for 1 <, j < r, the coordinate 9} ((X});;) appears only once in a,
we see that each my,; ; = 0. Note that by the product rule of hyperderivatives, we have 9;" (B,

vec(Xg)) = S0, 97 "(B,) - vec(d!(X,))). From (4.15), we see that B, = (vec((by)i )"
where ((b,); ;) is the r x r matrix with (b,); ; in the (4, j)-th entry. Since each m;; ; = 0 we see

that for a to be in T, we need

r2—r?/s
D7 e (1)) (X)) + (wno)iy - 94 (X)) =0,
u=1
that is, (wpn0)i; = — 222:_17"2/8 cu - 07" ((by); ;). Moreover, since each 97'((Xy);;) appears only

once in the second sum of a, we need each v, < n. Combining all the results above we obtain
a=— Zi—lﬂ/s e (07 (B,) - vec(Xy)) such that each ¢, € F,((¢)). Varying u from 1

to r* — r?/s, varying each v, from 0 to n and varying ¢, over all elements of F,((¢)), we see that

the ideal T = T NF,((¢)[Xo, X1, .., X, 1/ det Xo] is the same as the ideal generated by

{Z@" "(B,) - vec(X,), uzl,...,r2—r2/s},

which can be written as

Xn
Xn—l
dt,n-{—l [B] -vec s
Xo
where we define vec([X,,,...,Xo|") := [(vecX,,)T,..., (vecX,)T|T. Since, by its definition,
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din+1/B] is a block upper triangular matrix with all diagonal blocks equal to B, we have that
rankd;,,,1[B] > (n+ 1) -rankB = (n + 1) - (r* — r?/s). Also, since d; ,41[B]isan (n + 1) -
(r* —r?/s) x (n + 1) - r* matrix, we have that rankd,;,,.1[B] < (n + 1) - (r* — r?/s) and so

rankd; . 1[B] = (n + 1) - (r* — r?/s). Since rank d ,, 1 [B] is full, we see that

dt7n+1[B] - 'vec =0 (420)

) ) —7 . )
are the defining equations of Im 3,,~. Since each (b,);; is an element of k, we see that each entry

of d; ,+1[B] is an element of k and so, Im ﬁnz is defined over k. Moreover,

dimlmﬁnz = (n+1)-7* —rankd;, 1[B] = (n+1)-7* = (n+ 1)- (r*— 1?/s) = (n+1)-1%/s,
(4.21)
which gives the desired result. ]

4.4 Upper bound on Dimension of I'p 1,

Recall from Theorem 9 that for any k-algebra R and n > 1, an element of I'p, 57, (R) is of the

form
Y A1 e An,1 An
Y Al R R An—l
5= o ' ' , (4.22)
Ay
Y

where for each 1 < < n, A; and y are r X r blocks, and for 0 < j < n — 1 the matrix formed by

the upper left 7(j + 1) x r(j + 1) square is an element of I'p 5/, (R) and v € I'j, (R).
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Since P,,_1M, is a sub-t-motive of P,,M,, we have a short exact sequence of affine group
schemes over k,

1— Qn — FPnMp ﬁ) FPn—lMp — 1, (423)

where iV : I'p. m,(R) = T'p,_,n,(R) maps p to the matrix formed by the upper left rn x rn

square. An element of (),,(R) is of the form

Id, 0 ... 0 v
Id, 0 ... 0
V= ot € GLpe(R).
0
Id,

By using the commutative diagram (4.11) and Proposition 3(a), one checks directly that

v € Centya, /x(K,)(R), (4.24)

where K, := End(M,) and we set

Centaat, /x(K,)(R) := {7y € Mat,(R) | vg = g7 forallg € R ®x K, C Mat,(R)}.

Moreover, it can easily be checked that

Id, 0 ... 0 ~vy'!
Id. 0 ... 0
popt = : : (4.25)
0
Id,

Similar to (4.23), since M, is a sub-t-motive of P, M, there is a surjective map of affine group
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schemes over k,

T FPnMp — FMP’

where ®) I'p,a,(R) = T'ar, (R) is the map given by p — . Thus, via conjugation there is a

left action of I'y;, on Q,, given by (4.25).

Theorem 11. Let p be a Drinfeld A-module of rank r defined over k*%® and for n > 1, let P, p be
its associated n-th prolongation t-module. Let M, and P, M, be the t-motives corresponding to p

and P, p respectively. If Q,, in (4.23) is k-smooth, then diimI'p ., < (n+1) - 7% /s.

Proof. By (4.24), for any k-algebra R we have the following well-defined map:
a,(IR) : Qn(R) = Centyas, /x(K,)(R). (4.26)

Since by hypothesis @, is k-smooth, regarding Centyrat, /x(K,) as an additive group scheme of
dimension r%/s over k, we see that the map a,, : @, — Centypag, /k(Kp) defined above is a
morphism of group schemes over k. Moreover, by (4.24), «, is a monomorphism and so dim (),, <
dim Centygat, /1 (K)).

Now, by (4.23) our task is to prove that dim Q,, + dimT'p,_ 3, < (n + 1) - 7*/s, which
we show by induction. For the base case n = 1, since dim Centyt, x(K,) = r?/s (by [19,
Thm. 3.15(3)]) and dimT'y;, = r?/s (by [12, Thm. 3.5.4]) we see that dim @ + dim T, <
dim Centygt, x(K,) + dimT'y, = 2 - r?/s. Suppose we have shown that dimT'p, 5, <
n - r?/s. Similar to the base case, we obtain dim Q,, + dimT'p,_, v, < dim Centyga, /x(K,) +

dimDp, ,n, = (n+1)-7%/s. O

Corollary 3. Let p be a Drinfeld A-module of rank r defined over k*? and for n > 1, let P,,p be
its associated n-th prolongation t-module. Let M, and P, M, be the t-motives corresponding to p
and P, p respectively. Let Im 5nZ be the Zariski closure of Im (3,,, where (3, is as in Theorem 8. If

Qn in (4.23) is k-smooth, then diimI'p y;, = (n+ 1) - 1*/s and

Im 6nz/k = FPn]V[p-
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Proof. We obtain dimT'p 5, = (n + 1) - 7*/s by combining Theorem 10 and Theorem 11. By
(4.21) we see that dim Im ﬁnz = dim I'p,, a,. Since the defining polynomials of Im BnZ are degree

one polynomials, it is connected and so Im BnZ /k=Tp, M, O
Lemma 3. If K, is separable over k, then for n > 1, ), in (4.23) is smooth over k.

Remark 2. This lemma is the reason for the separability hypothesis in Theorem 2 and one of the
reasons for the separability hypothesis in Theorem 4. However, suppose to the contrary that K, is
not separable over k£ but the hyperdifferential operator 85 can be extended to K,. In this case, if

(2, s k-smooth, then Theorem 2 holds for the Drinfeld A-module p defined over k5.

Proof of Lemma 3. We adapt the ideas of the proof of [11, Prop. 4.1.2] and the proof of a lemma
from a preliminary version of [12] (Lemma 5.1.3: arXiv:1005.5120v1). To prove this, by [37,
Cor. 12.1.3] it suffices to show that the induced tangent map dr,, at the identity is surjective onto
Lie I'p,_,n,. Since K, is separable over k (by hypothesis and Proposition 2), we see from [12,
Cor. 3.5.6] and [40, p.61 Problem 14] that through conjugation by some A € GL,.(k*P), we have

an isomorphism

Tag, ¥k K, = [[(GLys /K,):,

i=1
where
GLT/S

[(GL, . /K,); == :
i=1
GLr/s

and (GL,/; /K,); is the canonical embedding of GL,/, /K, into the i-th diagonal block matrix of

GL, /K,. Making a change of basis, we obtain
Tar, <k k = [[(GLyys /K)s.
=1

For n > 1, it follows that via conjugation by d,11[A] € GL341)(k*P) on I'p, 5s,, We obtain



Tp,m ,» an algebraic subgroup of GL;,41), / k, such that there is an isomorphism
a FPnMp Xk E i) FP'!LMp' (427)

Moreover, the projection 7, : fpn M, — Fpn71 M, induced by 7, is surjective. Thus, we are
reduced to proving that the induced tangent map d7,, : LieI'p, M, — Lie Tp, | M, 1S surjective.

Similar to the coordinates of I'p, s, in (4.14), we make the choice to let the coordinates of

fpnMp be
Yo Y7 ... ... Y,
Yo
Y = Y, . |,
Y,
Yo
where Y}, := ((Y)i;), an r x r matrix for » = 0,1,...,n. Recall X, the coordinates of I'p, 5/,

from (4.14). Then by construction we have X = d; ,11[A]Yd;,11[A]™" and so for each w =

0,...,n, we obtain

Xo= 30 S OTMA) - Yo, - (M)

witw2=w h=0
w1,w2>0

where the hyperderivatives are taken entrywise. Then, we have

vee(Xy) = > > (I0FA) ] @ o " (A)) - vee(Y,)

wi1twa=w h=0
wi,w2>0

= Y (AT ®A) vee(Y.,),

w1 +we2=w
wi,w2>0

where we obtain the first equality by using properties of the Kronecker product and the second
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equality by further applying the product rule for hyperderivatives. This implies

Xn Y,
Xn—l _INT Yn—l
vec =din1[(A7) ®A] - vec (4.28)
Xo Yo

where we set

vec([Xy, ..., Xo|T) == [(vecX,)T, ..., (vecX,)"|",

and we define vec([Y,, ..., Yo|") similarly. Recall mz from Theorem 3. Note that by The-
orem 8, we have mz C I'p,m,. Fori =0,...,n,let k[Yy,...,Y;,1/det Y] be the poly-
nomial ring over k with 1/det Y, and the entries of each Y, for h = 0,...,i as indetermi-
nates. Then, by (4.20), (4.27) and (4.28), the defining ideal of a(mz Xk E) is the ideal in
k[Yy,...,Y,,1/det Y, generated by the entries of

dina[B- (A7) @A) -vec| |, (4.29)

Yo

First suppose n = 1. We consider the following short exact sequence of linear algebraic groups

1— @1 — FPIJ\/IP 1} H(GLr/s /E)Z — 1.

i=1

Our task is to prove that the induced tangent map at the identity d7r; is surjective. It is clear by
observing [];_, (GL,/s(k)); that for Yo := ((Yp),;), the defining ideal of [[;_,(GL,/s(k)); is the
ideal in k[Y, 1/ det Y] generated by

{(Y0)ij | (4,)) # (ur/s+vi,ur/s+wve),u=0,...,s —landvy,vo =1,...,7/s}. (4.30)
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Moreover, by (4.16) and (4.28), the defining ideal of []’_, (GL,/, (k)); is also generated by the
entries of

B-((AHT®A)) - vec(Yy). (4.31)

By (4.30) and (4.31), we see that the entries of B - ((A™1)T @ A) that give relations among

{(Y0)ij | (4,4) = (ur/s+vi,ur/s+v2),u=0,...,s —landvy,vo =1,...,7/s}

are all zero. Therefore, the hyperderivatives of these entries are also all zero. Using this and using

(4.30), for v € [T;_,(GL,/s(k)); we see that

9 B- (AT ®A)) v =0. (4.32)

By using (4.31) and (4.32), we have

0
dia[B- (A™HT ® A)] - vec =0
Y0
and so by (4.29) for n = 1, we see that
Y | 0 — —
Yo = € I'pyn, (k)
0 [

is a pre-image of -, under the map 7;. Let @1,1 be the Zariski closure of the subgroup inside
T'p, a1, generated by all 7, with 5o running over all elements of [;_, (GL,s(k));. Then, @, =
[T;_.(GL,/s(k));. Since Lie(-) is a left exact functor, when we restrict d7r; to Lie(Q ;), we obtain

a surjection onto [[°_, (Mat, ,(k);). Thus, d7; is surjective and so () is smooth over k.

Now let n = 2. We consider the following short exact sequence of linear algebraic groups

— — Ty =
1— Q2 —>Pp2Mp — Flep — 1.
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Since (); is smooth over k, by Theorem 3 and (4.29) the defining ideal of fpl M, 1s the ideal in

k[Yy, Y, 1/ det Y] generated by the entries of
dia[B- (AT @ A)] - vec (1) (4.33)

Recall that Y, = ((Y5);;) and Y1 = ((Y1);;). Since the defining ideal of [[;_,(GL,/s(k)); is
the ideal in k[Y, 1/ det Y,] generated by the entries of (4.31), we see that the defining ideal of
[T;_,(Mat, /s(k)); is the ideal in k[Y] generated by the entries of

(B (ATHT®A)) - vec(Yy). (4.34)

Therefore, using (4.32) we see that for all 7 € [[(GL,/s /k); and 1 € [[(Mat, s /k);, we have
i=1 i=1

8
dia[B- (AT @ A)] - vec "l =o.
Yo
Thus, by (4.33) we have
— Yo | M i — u —
I'piv, = RS H(GLr/s /K)i, 11 € H(Matr/s /K); ¢ - (4.35)
0 |7 i=1 i=1

By (4.35), the defining ideal of I'p, 5, is the ideal in k[Y(, Y1, 1/ det Y| generated by
{(Yb)i,j7 (K)iJ | (Z7j) 7& (U’T/S + Ul,UT/S + U?)vu =0,...,s—landvy, v =1,... ,T/S} :
(4.36)

By (4.33) and (4.36), we see that the entries of d;»[B - ((A™')T @ A)] that give relations among

{(}/O)i,ja(}/l)i,j | (17]) = (UT/S+01,UT/S+U2)7U = 07"'78_ 1andv1,vg = 1,...,7”/8}
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are all zero. Therefore, the hyperderivatives of these entries are also all zero. Using this and (4.36),

we see that for any 7o, = (5 25 ) € Ip,a, (K),
O (B-(ATHT®A)) =0 9 (B-(A™) @A) -n=0,

and so by (4.29) for n = 2, we see that

Yo |7 | 0
Y1 = 0 |v%|m € fPsz (E)
00|

is a pre-image of 7, under the map 7,. Let @271 be the Zariski closure of the subgroup inside
Tp, m, generated by all 7, with ~; and 7, respectively running over all elements of [ [}_, (GL, (k));
and [];_, (Mat,,(k));, that is, 7, running over all elements of I'p, ;, (k). Then, Q,; = T'p, .
Since Lie(+) is a left exact functor, when we restrict d7r; to Lie(Q, ), we obtain a surjection onto
Lie fpl M,

For the general n case, after having proven that (J,,_; is smooth over k, it follows by Theorem 3

and by applying the same methods used to determine (4.35) that

( 3\
Yo | V|- | Yn—1 s s
o Yo Yo € H(GLT‘/S /E)u% € H(Matr/s /E)za
e, _1m, = : i=1 i=1 . (4.37)
Sl m Vi=1,....n—1
\ ")/O Vs

Similar to @171 and @271, we construct the Zariski closure of the subgroup inside I'p, M,

n,l»
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generated by

Yo Y| |[Yn1| O
’7 . . /yn_ s . S .
° ! Yo € H(GL’I‘/S /k)w Vi S H(Matr/s /k)m -
S : : i=1 i=1 CIp,m,
- Vi=1,...,n—1
L Yo
(4.38)

Then, @n,l =~ Tp, , M,- Since Lie(-) is a left exact functor, restricting d7r,, to Lie @n,l gives a
surjection onto LieI'p, | - The details are similar to the n = 2 case and so, we leave the task of

constructing @n,l to the reader. [

4.5 Algebraic Independence of periods and quasi-periods

The following result proves Theorem 2.
Theorem 12. Fixn > 1. Let p be a Drinfeld A-module of rank r defined over kP and P, p be its
associated n-th prolongation t-module. Suppose that K , is separable over k. Let M, and P,,M, be

the t-motives corresponding to p and P, p respectively. Then, tr. degz k(VUp, ,(0)) = (n+1)-1%/s,

where s = [K, : k]. In particular,
_ n r—1 r
tr. deg k( U U UM Ea(0), 05(00), ag(FTi(Aj))}> = (n+1)-r¥s.

s=11i=1j=1

Proof. By Theorem 7, we have

e, (0) =B U U Uy P4 0900, 3570} ). 4.39)

s=11i=1j=1

Moreover, by Theorem 6 we have

dim 'p, a7, = tr. degy k(¥p, ,(0)).
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Then, the result follows from Corollary 3 and Lemma 3.
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5. HYPERDERIVATIVES OF LOGARITHMS AND QUASI-LOGARITHMS

In this chapter, we fix a Drinfeld A-module p of rank r defined over £*® and an A-basis
{M,..., A} of A, as in §3.1. We let M, be the ¢-motive associated to p along with a fixed
k(t)-basis m € Mat,;(M,), multiplication by o given by ®, as in (3.2), and rigid analytic
trivialization ¥, as in (3.10). Also for eachn > 1, let P,, M, be the {-motive corresponding to the n-
th prolongation P,,p of p as in §3.1. Note that the O-th prolongation ¢-motive Py M, is simply M, via
the map Dym — m for all m € M,. Then, a k(t)-basis of P, M, is D,m € Mat (4 1),x1(PnM,)
(see (2.3)) such that multiplication by o is given by ®p,, = di,11[®,] (see (2.4)) with rigid
analytic trivialization Wp , = d;,,41[¥,] (see (2.5)). We also set K, := Endy(1,) as in (4.24)
and let K, denote the field of fractions of End(p).

In what follows, we adapt the methods of Chang and Papanikolas (see [12, §5]).
5.1 t-motives and quasi-logarithms

Given u € K such that Exp (u) = a € k*P, we set f,(t) to be the Anderson generat-
ing function of p with respect to u as in (3.5). Then, for n > 1 we see that by (4.3) the An-
derson generating function of P,p with respect to w,, = [u,0,...,0]T € K" is G,,(t) =

[fu(®), 0L (fu(t)), ..., 0" (fu(t))]". Moreover, by (3.4) we obtain

Expp, ,(u,) = [Exp,(u),0... 0" = [@,0...,0]" € (ksP)" T

We define
.
~(t—0)fu(t) — a
—(rs VRO o m VATV + e VAT (1)
Sa = | (k2D @) 4+ 2@ 1 k25D ) | € Maty g, (T),

— D (1)
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as in [12, §4.2] and let h,,, := (,0,...,0) € Mat;(y41)-(k*P). Then, we define the pre-t-
motive Y, ,, of dimension (n -+ 1)r + 1 over k(#) such that multiplication by ¢ is given by ®,,,, :=
<<flz": ?) If we set 8o = (Say0;(Sa),--.,0/(Sa)), then we obtain the difference equation
gé}})@pnp = 8an + hy,, andsowe set Uy, ,, := <gfﬁ§§ , ?) to obtain \I/&Tnl) =&, , U, Thus,

Y, » 1s rigid analytically trivial.

Proposition 4. Let u € K such that Exp,(u) = « € k*P. The rigid analytically trivial pre-t-

motive Y, ,, is a t-motive.

Proof. To prove that Y, ,, is a t-motive, we follow the arguments of the proof of [34, Prop. 6.1.3].
Let M, and M, be A-finite dual ¢-motives such that multiplication by ¢ on k[t]-bases are repre-
sented by ®; amd ®, respectively. Then, multiplication by ¢ on a suitable k[¢]-basis of the tensor
product M, &g, M is represented by the Kronecker product ®; @ @, (see [34, §3.2.5]). Let C be
the A-finite dual ¢-motive associated to the Carlitz module € (rank 1 Drinfeld A-module) uniquely
determined by €; = 6 + 7 (see [34, §3.4.3]. Let C' := E(t) gah C be the pre-t-motive associated
to C.

We claim that the pre-t-motive C' ®y,;y Yo 5 is in the essential image of the functor M +— M :
AR! — R of [34, Thm. 3.4.9] (see §2.2). By the definition of the category 7T in [34, §3.4.10] (see
§2.2), it follows that Y, ,, is a ¢-motive.

Let NV := Matlx(nH)TH(E[t]) and let e := [ey, ... ,e(nH)TH]T be its standard k[t]-basis. We

give \ aleft k[t, 0]-module structure by setting
oe = (t—0)P, e.
We obtain the following short exact sequence of k[t, o]-modules:

0 — C ®gy PuM, = N = C — 0. (5.1)

Since C and C @z P, M, are finitely generated left k[o]-modules, it follows from [2, Prop. 4.3.2]
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that AV is free and finitely generated as a left k[o]-module. Since C Qg PnM, is an A-finite
dual t-motive, we have (t — 0)"(C @z P M,) C 0(C @5y PrM,) for u € N sufficiently large.
Moreover, (t — §)C = oC and so, by (5.1) we obtain (t — 0)°N' C oN for v € N sufficiently
large. Thus, by [34, §3.4.1] (see §2.2) we see that AV is an A-finite dual ¢-motive. This proves our

claim. [
5.2 Non-triviality in Ext>-(1, P, M)

We continue with the ¢-motive Y, ,, from the previous section. Recall the trivial object 1 of R
(see §2.2). Note that Y, ,, represents a class in Ext7-(1, P, M,). Suppose ¢ € Endy(M,) and let

E € Mat, (k(t)) such that e(m) = Em. If we set

0. 0E
E=| O | € Mat(1) (k(2)), (5.2)

2
then one checks easily that E represents an element e of Ends(P,M,). For classes Y; and Y5
in Ext}-(1,P,M,), if multiplication by o on suitable k(t)-bases are represented by (“F» {) and
( @5;” (1) ) respectively, then their Baer sum in Ext}r(l, P,,M,) is achieved by the matrix ( V(I;i"‘g (1) ) .

Moreover, we see that multiplication by o on a k(t)-basis of the pushout e, Y] is represented by
(33

viE 1 )°
Theorem 13. Suppose uy, ..., u, € K such that Expp(ui) = oy € K*P for eachi. Forn > 1,
we let Y, = Y, , be as above. Suppose that dimg, SpanKp()\l, e A ULy Uy) = T/S A+
w. Then, for ey,...,e, € K, not all zero, S = e Y1, + - + €Yy, is non-trivial in

Ext-(1,P,M,), where each e; € End1(P,M,) corresponds to e; as in (5.2).

Proof. We adapt the ideas of the proof of [12, Thm. 4.2.2]. For each ¢, we let h; ,, := h,, ,, and
in = 8a;n- Fix E; € Mat, (k(t)) so that e;(m) = E;m for eachi. Then e;(D,m) = E;- D,ym,
where E; is as in (5.2). By choosing an appropriate k(t)-basis s for S, multiplication by o on s is

represented by

0

o —
dg = <Z;U:1P}71ani 1) € GL(n—}—l)’r’-‘rl(k(t))’
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and a corresponding rigid analytic trivialization is represented by

o 0
Vg = (Z?’:lgfnnEpi‘PPnp 1) S GL(n+1)r+1(L).

Suppose on the contrary that S is trivial in Ext’-(1, P,,M,). Then, there exists a k(t)-basis s’ of S
such that os’ = (®p,, @ (1))s’, where ®p,, @ (1) is the block diagonal matrix with ®p_, and 1 in
the diagonal blocks and all other entries are zero. If we let v = <Ijé’f.j)f ?) € GL(ny1)r11(k(1)),

where 7; := (V1, - - -, Vi) for each i be the matrix such that s’ := s, then we obtain
1 s = (P, @ (1) (5.3)

Note from [34, Proof of Prop. 3.4.5] that all denominators of entries of ~ are in F,[t] and so in
particular, each ,; is regular at t = 6,609,609 ... . Using ®p_ , = dy,1[®,], the ((n + 1)r +

1,(n—j)-r+1)-thentry of (5.3) foreach j =1,...,nis

3
4

T O (= 0)/87) = s,
0

i

and the ((n + 1)r + 1,nr + 1)-th entry is

w

D0 (L= 0)/50) + 3 (B =
=0

i=1

For each j = 0,1,...,n, applying (—1)79/(-) to each ((n + 1)r + 1,(n — j) - 7 4 1)-th entry
and then adding them, we obtain (by applying the product rule of hyperderivatives and using the

property 80 (f(t)) = ("1*)oyH(f (1))

n w n

D 0 () TV (= 0)/RET) + > i B = ) (=10 (Y- (5.4

§=0 i=1 j=0
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Specializing both sides of this equation at ¢ = 6, we obtain

n w

D (=10 (1g)(0) = D cu(E)n(6). (5.5)
=0 i=1
Moreover, (5.3) implies that (yW¥g)"Y = (®p_, ® (1))(y¥s) and so by [34, §4.1.6], for some
0= <Id‘”+5”’" (1)) € GL(ut1)r41(k) where 6; := (d;1, ..., ;) for each 4, we have

00...0n

Since Up, , = d;,+1[V,], by applying to (5.6) the same methods applied on (5.3) to obtain (5.4),

it follows that

n w

STV () + Y s =Y (—1)70 (8,-)V, Y, (5.7)
=0 i=1 =0

where for each i and j, we set 9/ (v;) := (97 (7i1), - - ., 0 (7ir)). Since for each i the first entry of
si(0) is u; — «, using [12, Prop. 4.1.1(b)] and specializing both sides of (5.7) at t = 6, we see that
D (10 (i) (0) + > (i — @) (B (0) = =Y > (=10 (Snejum) (0) A,
J=0 i=1 m=1 j=0
and so from (5.5) we have
DY (1 G ) (@) Am + Y (E)1a(0)u; = 0.

m=1 j=0 i=1

Since ey, ..., e, are not all zero, F; is nonzero for some ¢. Moreover, by Proposition 2 we see that
K, = K, and so E; is invertible. By [12, Prop. 4.1.1(b),(c)] we get (E;)11(¢) € K and thus we
get a contradiction. O

5.3 Construction of the ¢-motives Y and N

In this section, we construct a t-motive that is suitable for the investigation of the hyperderiva-

tives of logarithms and quasi-logarithms of the Drinfeld A-module p, and the study of its Galois
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group. Suppose that we have uy,...,u, € K with Exp,(u;) = a; € k*P for each i. We let
h,, == hy, n, 80, = 8asm, Yin = Yoym, Pin = Po,n and ¥, ,, := ¥, ,, for each n > 1. The
matrix V,, := @V, , gives the rigid analytic trivialization for Y;, := ©;2,Y; ,,.

Define the t-motive N,, such that multiplication by ¢ on a k(t)-basis is given by ®y, €

GL(n41)rw1 (k(t)) along with rigid analytic trivialization W, € GL(n+1)rw+1(T) such that

®Pnp \IIPnP

Dy, = ' . and Ty =

hal e haw 1 ga, \ijnp oo Baw \I/Pnp 1

Similar to the n = 0 case (see [12, §5.1]), N, is an extension of 1 by (P, M,)" which is a
pullback of the surjective map Y,, — 1" and the diagonal map 1 — 1“. Thus, the two ¢-motives
Y,, and N,, generate the same Tannakian subcategory of 7 and hence the Galois groups 'y, and

'y, are isomorphic. For any k-algebra R, an element of I'y, (R) is of the form

i
V= ,
1
Vi ... Vy 1
where 1 € I'p, a7, (R) and for each 4, we have v; = (v;1,...,Viny1) such that v;, € GL(R) =

Mat; ,(R), foreach h = 0, ..., n. Since (P, M,)" is a sub-t-motive of N,,, we have the following

short exact sequence of affine group schemes over k,
1—- X, =Ty, = Tp,u, = 1, (5.8)

where (% In,(R) = I'p, g, (R) is the map v — p (cf. [12, p.138]). It can be checked directly
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that via conjugation, (5.8) gives an action of any y € I'p, 57,(R) on

Id(n+1)7‘
v = € X,(R)
Id(n+1)r
up c. Uy 1
given by
Id(n+1)7'
vvy = - . (5.9
Id(n+1)r
wp b w1

Lemma 4. Letn > 1. If K, is separable over k, then X,, in (5.8) is k-smooth.

Remark 3. Similar to what was said in Remark 2, Lemma 3 and this lemma are the reasons for the
separability hypothesis in Theorem 4. However, suppose to the contrary that K, is not separable
over k but the hyperdifferential operator 85 can be extended to K,. In this case, if for n > 1 each

@, and X, are k-smooth, then Theorem 4 holds for the Drinfeld A-module p defined over k5P,

Proof of Lemma 4. Similar to Lemma 3, we adapt the ideas of the proof of [11, Prop. 4.1.2] and
the proof of a lemma from a preliminary version of [12] (Lemma 5.1.3: arXiv:1005.5120v1). To
prove this, by [37, Cor. 12.1.3] it suffices to show that for n > 1, the induced tangent map dm,
at the identity is surjective onto Lie'p, 57, We prove this for w = 1. The argument used in this
case can be applied in a straightforward manner to prove the arbitrary w case, which we leave to
the reader. First suppose n = 1. Let I'p, m, and A be as in Lemma 3, that is, conjugation by

di2[A] € GLor(K*P) on I'p, 5/, gives (see (4.35))

Yo | M1

Tpou, = RS H(GLr/s /K)i, 11 € H(Matr/s /K)i ¢ (5.10)

0| i=1 i=1
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Let (@1 1d;2[A])®(1) € GLoy41(k*P) be the block diagonal matrix such that d; 5 [A] is in the first
w diagonal blocks and 1 in the last diagonal and all other entries are zero. Then, via conjugation
by (®%,d;2[A]) @ (1) on Ty, we obtain I'y, such that we have an isomorphism 'y, x) k = Ty,.
Moreover, FNl is an algebraic subgroup of GLo,,11 /E such that 7y : le — Fpl M, induced by
7, is surjective. Thus, we are reduced to proving that the induced tangent map d7, : Lie 'y, —

LieD'p, M, 1s surjective. Let w = 1 and consider the short exact sequence of linear algebraic groups
1—)71 —)FNl ifleP—)L (511)

From 7;, we see that X is contained in the 2r-dimensional additive group

( 3\
Idr/s
G = ' v, €GN
Idr/s
L Vi e Vg 1 J
where we call vy, . . ., vo, the coordinates of G. We see that via conjugation, X (k) has a'p, 57, (k)-

module structure coming from (5.20) (see (5.9)). Using (5.10) and this module structure, one
checks easily that there is a natural decomposition X, (k) = [[* W; such that each W; is either

ZEro or Er/s. Fix any 1 <17 < s. For any v; € GLT/S(E), we let

Idr/s 0
Yi 0
‘14, "o -
/Y’L' - Idr/s - FNl (k)
Yi
Idr/s
up ... W ... Us Ugtl ... Ughg ... Ug 1

be an arbitrary element, which by (5.10) and (5.11) is a pre-image of the matrix formed by the
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upper left 2 x 2r square of 7; under the map 7;. For each j # ¢ with 1 < j < s, we claim that
ifu; #0and usy; # 0, then W; = Wy, = kK’*. To prove this claim, assuming that u; # 0 and
uy; # 0 we pick §; € GL,5(k) so that u;6; —u; # 0 and u,;;6; —us; # 0, and let J; € Ty, (k)

be such that
Id, /, 0

T1(0;) = s T, ° | €Tp (k).

Id,

Then one checks directly that 3;171-5]-7; ! is an element of X (k) and its v; and v, ; coordinate

vectors respectively are u;0; — u; and ug,;0; — U, and so it follows that W; = W, = K’

Therefore, multiplying 7, by a suitable element of X, (k) we get an element of the form

Idr/s 0
Vi 0
/ " 1d, C 0 _
i
Idr/s
0 IPP VA 0 0 FET § P 0 1

For any b; € Mat, ;(k), by using a similar method as above where we take an element of the form

d;, we obtain an element of the form

Id, /s 0
Id,,/s b’L
-, " 1d, "o o
bi — Id'r/s E FNl (k),
Id, /s
14,
0o ... w; .. 0 0 ... Wsipi .. 0 1

55



which is a pre-image of the matrix formed by the upper left 2r x 2r square of B; under the map
71. Let X ; be the Zariski closure inside Ty, of the subgroup generated by all 7, with +; running

over all elements of GL, (k) and b} with b, running over all elements of Mat, (k). Let

Yo M

(Flep/E)i = : % € (GLy /s /E>i; 71 € (Mat, /s /E)z )

0 7

where we set (GL,/, /k); and (Mat,. /s /k); to be the canonical embeddings of GL, /s /k and
Mat, /, /k into the i-th diagonal block matrix of GL, /k and Mat, /k respectively. Note that
dim X ; < 2r?/s% + 2r/s. First suppose that dim X ; = 2r?/s* + 2r/s. Then, we could simply
take 7, and B; so that u;, usy1, w; and w,; are zero. Taking the Zariski closure 71,0,1' inside le

of the subgroup generated by all such 7; and b; with ~; running over all elements of GL, /;(k) and

b} with b, running over all elements of Mat, /(k), we obtain

— V; 0 — —
X104 = sy € (Ppyag, (k)i g (5.12)
0 1

Restricting d7; to Lie X g ;, we obtain a surjection onto Lie(I'p, M,/ k);. Aswevaryall 1 <i < s,
the surjection of d7; follows.

Next, suppose that dim X ; < 2r?/s* + 2r/s. Then, via 7; we have a short exact sequence,
1 - Ql,z‘ — yl,i 2 (flep/E)i — 1,

where ()1, is contained in an additive subgroup of G’ whose v; coordinate vector is zero for all
Jj#i,s+iand dim @y ; < 2r/s.

We first show that dim );; = 0. We follow the argument of the proof of [11, Lem. 4.1.1].
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Suppose dim Q)1 ; = m, where 1 < m < 2r/s. Note that (); ; is a vector group. We claim that

( /1d,;. 0 \
" 1d,,, "o
_ _ Vi, Vsi; € GZ/S, and
"1d,,, "o
Q1 C Id,/s Yif v = (Via, ..., Vigys), then

. ,

Id, /s Vi, = O0forsomeuw € 91,..., -

s

' 1d,,,

\ 0 Vi 0 0 oo Vspigo . 0 1 )

Ifv,; # 0forall j € {1,...,7/s}, then there exists k-linearly independent elements /iy, . . . , jiy, €
Q1.(k) such that all the entries of g, in the v; coordinate vector are non-zero. For a € k such that

a # 0,1, pick n € X (k) such that

1d,./, 0

_ 1, ), ) =
T1i(n) = a7 € (I'pya, (k)):,

where

1
Then, one checks directly that =1 u17, 11, o, - - . , fim are k-linearly independent in Q; ;(k), which
contradicts dim )1 ; = m. This proves our claim. Thus, v;, = 0 for some v € {1,...,7/s}.
Now, since m # 0, at least one of v, ;, j € {1,...,r/s} is non-zero, say v;,. Let P, , be the

permutation matrix obtained by switching the ((¢ — 1)r/s+ w)-th column and the ((i — 1)r/s +v)-
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column of the r x 7 identity matrix. Pick v € X ;(k) such that

P, L
() = € (I'pyn, (k)i
P,

Then, since 7_1Q1,i7 C @Q1,, we get a contradiction to v; ,, = 0. Therefore, dim ), ; = 0.
Now, we claim that d7; ; : Lie X1, — Lie(I'p, s, /k); is surjective. As we vary all 1 < i < s,
the surjection of d7; follows. To prove that d7 ; is surjective, we follow the argument of the proof

of [11, Prop. 4.1.2]. We let the coordinates of 71,2- be as follows:

Zy Z 0
7, :— Z, 0], (5.13)
Wy Wi 1
where
Id, /s 0
Zy = (Zo) . 21 = (Z1) )
Id, s 0

such that (Z,) and (Z;) are the coordinates of GL, /s and Mat, , respectively, and for each h =
0,1, we define (Z,) to be the r/s x r/s block ((Z)ap) for 1 < a,b < r/s. Moreover,
Wi, = (0,...,0,(W,),0,...0), where we set (W},) := (Why1,..., Wy,/s) for each h = 0, 1. For

1 <wu,v < r/s, we define the following one-dimensional subgroups of fpl M,

Buv 0 Idr Cuv
T := , Upw = , (5.14)
0 B, 0 Id,
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where we set

Idr/s

Idr/s

such that

and

\

0

J

(5.15)
0
\
0
, (5.16)
0
1
/
(5.17)

where * in B, and C,,, are in the (u, v)-coordinates. Note that the Lie algebras of the 2 - r?/s* al-

gebraic groups T}, and U,, span Lie(I'p, M,/ k);. We construct one dimension algebraic subgroups

T!, and U! of X, so that T" = T,, and U, = U,,. Then, since Lie(-) is a left exact functor,

it follows that Lie T, = LieT,, and Lie U], = LieU,,, and so d7 ; is surjective. Since ()1 ; is

a zero dimensional vector group, 7 ; is injective on points and so it follows by checking directly

that

* for w # v, all W, ,, and W7 ,, coordinates of ﬁff (T,y) are zero;

e all (Wj) coordinates of ﬁiil(qu) are zero, and for w # v, all Wi ,, coordinates of ﬁiil(Uw)
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are zZero.

To construct T7,, we let a, € K\ EX and pick element 7, , € X ;(k) so that

1

Toi(10) =  wherea, = [ Ta € (GL,/5(K)), (5.18)

0y ..
1

such that a, is in the (i - /s + v)-th diagonal entry of a,. For 1 < v < r/s, we let ¢, and ¢y,
respectively be the (2r + 1,(¢ — 1) - r/s + v)-th and the (2r + 1, (r + (i — 1) - r/s) + v)-th the
entry of 7;,. Let T/, be the Zariski closure of the subgroup of X, ; generated by 7, ,, for each

v =1,...,7/s. Then, one checks directly that the defining equations of the one dimensional sub-

group 7", of X ; can be written as follows:

(ay, — D)Wo — cou((Zo)ow —1) =0, V1 <wv <r?/s,
(Zouw =1 Y # v, 1<v< s,
(Z1)uw =0 V1<wu,v<r/s,

Whew =0 Yw#v; h=0,1, 1 <v<7r?/s,

Wow o — Wiy cop=0 V1 <v<r?/s.
\

Then, we see that 7}, = T,, via 71 ;. Similarly, we use the methods used for 7}, to construct U;,
such that U, = U,, forall v = 1,...,r/s. To construct 7, when u # v, we let b, , € T, (k)
be a k-rational basis for the one dimensional vector group T, and pick b, , € X1.i(k) so that

71i(bl,,,) = bu,. We define T}, to be the one dimensional vector group in X, ; via the conjugations

n e, form, €Tl v=1,...,1/s.

vV

Then, we obtain 7, = T, via 71 ;. Similarly, to construct U}, for u # v, we let d,,, € Uy, (k)

be a k-rational basis for the one dimensional vector group U, and pick dgw € 7171-@) so that
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71,i(dl, ,) = du,p. We define U}, to be the one dimensional vector group in X 1 ; via the conjugations

nv_ld;wm, forn, € T/

oM

v=1,...,1/s.

Then, we obtain U, = U,, via 7. This proves our claim.
Now suppose n > 1. We follow the methods used for n = 1 to prove that the induced tangent
map dr,, at the identity is surjective onto LieI'p, s, Recall fpn m, and A from Lemma 3, where

conjugation by dy ,+1[A] on I'p 5, gives (see (4.37))

( )
Y Y1 - n
. ,.)/0 S - S - .
Tp, 1, = 70 € [[(GLyys /K)i, v; € [[(Mat, s /)i =1,....n
71 i=1 i=1
L Yo

Y
(5.19)
Let (@2 dini1[A]) @ (1) € GL(n41)rw+1(k*P) be the block diagonal matrix such that dy ,, 1 [A]
is in the first w diagonal blocks and 1 in the last diagonal and all other entries are zero. Then, via
conjugation by (®¥,d;,+1[A]) @ (1) on 'y, we obtain ['y, such that we have an isomorphism
I'n, X1 k 2 an. Moreover, an is an algebraic subgroup of GL 4 1)rw+1 / k such that 7 : FNn —
Tp, u, induced by 7, is surjective. Thus, we are reduced to proving that the induced tangent map
d7, : Liel'y, — LieTp, M, 1s surjective. Let w = 1 and consider the short exact sequence of
linear algebraic groups

1— Yn — FNn E} TPnMp — 1. (520)

Fix 1 <1 < s. We follow the methods used for the construction of 71,1' above to construct Ym,

the Zariski closure inside I'y, of the subgroup generated by suitably chosen elements of 'y, such
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that X, ; is contained in the nr?/s? + nr?/s dimensional group,

Mo |m |- | |0
Mo Mo € (GLr/s /E)w Uk € (Matr/s /E)wj = 17 e

Hn,z‘ = m :Sh:(0,...,0,8}1’@',0,...,0), Sh,iGGz/s

m | 0 foreach h =0,...,n

So|St|...|s,|1
Vs
(5.21)
Let
( )
Yol V1| | In
— — Yo Yo € (GLr/s /E)w Vi € (Matr/s /E>z7
(FPn]V[p/k>i = :
71 where j =1,....n
L Yo

Note that dim X,,; < dim H,,; = nr?/s? + nr/s. If diim X, ; = nr?/s* 4+ nr/s, similar to X o ;

as in (5.12) we simply construct

X0 = 205 € (Up,ag, (K))i g

and restrict d7,, to Lie X o, to obtain a surjection onto Lie(T'p, M, /k);. Aswe vary all 1 <i < s,
the surjection of d7,, follows.

Next, suppose dim Ym» < nr? / s+ nr /s. Then, via T,, we have a short exact sequence,
— Tni = —
L= Qni — Xni — (IUp,n,/k)i = 1.

The methods used above to prove dim();; = 0 can be applied in a straightforward manner to

prove dim (), ; = 0, which we leave to the reader. Similar to the coordinates Z; of 71’1- in (5.13),
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we let the coordinates of Ym be as follows:

2y Z ... Z, 0
2o
Zn = Zl )
Zy 0
Wo Wi ... W, 1
where
Id, s 0
ZO = (Zo) s Z] - (Z()) 5
1d, s 0

for each j = 1,...,n such that (Z) is as in (5.13) and (Z;) is the /s x r/s block ((Z;)as)
for1 < a,b < r/s. Moreover, W), := (0,...,0,(W,),0,...0), where we set (W},) :=

(Whi,...,Wh,s) foreach h = 0,...,n. Similar to (5.14), we construct one-dimensional sub-

groups of I'p, M,

( )
Id, O Cuv 0
( 3\
B.,., 0 . 0
. . X . . . 5 Cuv
TO,u,v = ) Ui,u,v = )
Buv . 0
\ Vs
Id,
\ Vs

such that B,, and C,, are as in (5.15), and C,, is in the i-th diagonal block of U;,, ,. Similar
to the n = 1 case, note that the Lie algebras of the n - 7?/s? algebraic groups Tp ., and U .,

span Lie(T'p, a7, /k);. We construct one dimension algebraic subgroups 73, , and U/, , of X,,; so

1,U,0
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that 73, , = Tou and Uj,,, = Ujue. Then, since Lie(-) is a left exact functor, it follows that

PRI}

LieT{ ., = LieTy ., and Lie U], = LieU, ,,, and so d,,; is surjective. Since (), ; is a zero

1,U,V

dimensional vector group, 7, ; is injective on points and so it follows by checking directly that
e forw #vand h =0,...,n,all W, coordinates of %;j(To,u,U) are zero;

« all (Wp) coordinates of 7, (U .,) are zero, and for w # v and j = 1,...,n, all W,

. —1
coordinates of 7, ; (U .,) are zero.

To construct T3, ., we let a, € k™ \F,” and pick elements ~, , € X,,;(k) so that

v,V

Ay
ﬁn,i (’Yn,v) - . )

ay

where a, is asin (5.18). For 1 <v <r/sand h =0,...,n, weletcy, be the (nr+1, hr+(i—1)-
7/s +v)-th the entry of 7, ,. Let Tg , ,, be the Zariski closure of the subgroup of X ,..; generated by
Yn,u- Then, one checks directly that the defining equations of the one dimensional subgroup 7§, ,

of Yn,i can be written as follows:

(

(@, — DWo — co0((Zo)ow —1) =0, V1 <v <r?/s,
(Z0)ww =1 Yw #v, 1 <v<1r?/s,
(Zj)up=0Vj=1,...,0, 1 <u,v<r/s,

Whw=0Vw#uv;, h=0,....0, 1<v<r?/s,

Whl,v *Chyw — Wh%y “Chip = 0 Vhl,hg - {0, .. ,f}, 1<v < TQ/S.

\

Then, we see that T() ,, , = T, , Via 7y, ;. Similarly, we use the methods used for 77, , to construct

Ul,,suchthat U/, = U,,, forallv =1,... ,r/s. To construct 15,40 @and U ., for u # v such

1,0,V 1,0,V

that T(g%v = Toue and U], , = U, .0, We use conjugation where the arguments are essentially

1,1,V

the same as the arguments used to construct 7/ and U}, in the n = 1 case, and so we omit the
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details. ]

5.4 Algebraic independence of logarithms and quasi-logarithms

In this section, we prove Theorem 4 (restated as Theorem 14) and Corollary 1. Recall the
short exact sequence (5.8). As was shown for the n = 0 case (Drinfeld module case) in [12,
§5.1], we will show that X, can be identified with a I'p, 5;,-submodule of ((P, )/ ,)E). Letn €
Mat (4 1)rw+1)x1(N) be the k(t)-basis of N,, such that on = @y, n. Recall that the entries of
T

\Ifjvin form a k-basis of N2, If we write n = [ny, ..., n,, y|" where each n; € Mat (41)rx1(Nn),

then [ny, ..., n,]" is a k(t)-basis of (P, M,)" and the entries of u := [Up ), ny, ..., Up' ) 1,,)"
form a k-basis of ((P,M,)”)". Given any k-algebra R, we recall the action of I'p, 5, (R) on
R @k ((P,M,)")™ from [34, §4.5] (see also (4.13)) as follows: for any ;1 € I'p, 5, (R) and any

vy, € Matix(ns1)r(R), 0 < h < n, the action of pon (vy,...,v,) - u € R®y ((P,M,)?)" is
(Vi, .y V) - u= (vip o v ) (5.22)

Thus, by (5.9) the action of I'p, 57, on ((P,M,)?)" is compatible with the action of I'p,, »;, on X,.
Then, when we regard ((P,M,)?)" as a vector group over k, by Lemma 4 we get the desired
result.

Since X, is a I'p,,y,-submodule of ((P,M,)")", by the equivalence of categories Tp,;, =
Rep(I'p, 1, k), there exists a sub-t-motive V,, of (P, M,)" such that

X, =V5. (5.23)

n

By (4.12), we see that forany n > 1 and 0 < 5 < n — 1 we obtain a short exact sequence of
t-motives

0— (P;M,)" 5 (P, M,)" 22 (P,_; 1 M,)" — 0. (5.24)

Lemma 5. Forn > 1, let V,, be as in (5.23). Then, for 0 < j < n — 1 there is a surjective map of

t-motives pr,, : V;, — V,,_;_1 via the map pr,, in (5.24).
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Proof. We prove the result for w = 1. The following argument for w = 1 can be applied in a
straightforward manner to prove the arbitrary w case, which we leave to the reader. Let w = 1.
For n > 1, recall from (2.3) that if m € Mat,,;(M,) is a k(t)-basis of M,, then D, m forms
a k(t)-basis of P, M,. Let [D,m",y|" be a k(t)-basis of N,,. Then, V' [D,mT,y|" forms a
IF,(t)-basis of N”. By construction, P; M, is a sub-t-motive of N,, for each j < n and we have a

short exact sequence of t-motives
0—P,M, 5 N, 2 N, ;1 —0, (5.25)

where pr(D,m) := Dj,_;_ym for h > j, pr(Dym) := 0for h < jand m € M,, and pr(z) =

forz €Y, /P, M - Therefore, as t-motives
Nn/PjM = n—j—1,

and so we have a surjective map of affine group schemes I'y, — 'y, _,_,. We now determine this
surjective map. For any k-algebra R, we recall the action of 'y, (R) on R ®y (N,,)? from [34,
§4.5] as follows: for any v, € 'y, (R), b € R and a;, € Mat;,.(R) where 0 < h < n, the action
of v, on (ag, ..., an,b) - V3! [D,mT,y]" € R @y (N,)? is

(ao,...,an,b) - VG [Dym", 4" = (ag,...,an,b) - v, " U [D,mT, y]" (5.26)

By the definition of Wy, , we see that W' [D,m",y|" = [D,(V,'m)", D, (—s,,m) +y]T. We
restrict the action of v, to R ®y (Nn,j,lMp)B via the map pr in (5.25). Note that an element

of I'y, (R) is of the form (% (), where s, € I'p, a1, (R) and w,, = (wp, ..., w,) such that each

Hn
wy, € GL(R) = Mat;x,(R). Through pr, we see that v,, leaves (N,_;_;)? invariant and so for
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vp = (4" 7) € I'n, (R), we obtain

where /1,,_;_1 is the matrix formed by the r(n— j) X r(n— j) upper-left square of 1, and w,,_; 1 =
(wo, . .., wn_j_1). Note that by Theorem 9, we have p, ;1 € I'p,_, 1, (R). Thus, the surjective
map 'y, — 'y, _,_, is given by

Up /> Un—j—1, (527)

(cf. [11, proof of Prop. 3.1.2]). Since X,, and X,,_;_; are k-smooth by Lemma 4, this map gives
a surjective map of group schemes X, — X,_; ;. By (5.23), this corresponds to a map of
representations of I'p, 57, over k, pre.vB s vB j—1 via the map pr2, where pr,, is as in (5.24).

By the equivalence of categories Tp, 57, = Rep(I'p, u,, k), we get the required conclusion. [

Theorem 14. Let p be a Drinfeld A-module defined over k*. Suppose that K, is separa-
ble over k. Let uy,...,u, € K with Exp,(u;) = «; € k*P for each i and suppose that
dimg, SpanKp(/\l7 e A UL, Uy) = 1/s +w. Forn > 1, let N,, and Uy, be defined as
in §5.3, and for each v = 1,...,w, letY,;, =Y, , be defined as in §5.2. Then, dimI'y, =
(n+1)-r(r/s +w). In particular,
n r—1 w r
tr. degkk:( U U UL8500). 05(Fre(7)), 95 (), 05 (F (um)}> = (n+1) (r¥s+rw).
5=0i=1 m=1 j=1
Proof. From the construction of Wy, , by Theorem 7 we have
n r—1 w r
. 6) = F( U U U U030, 3504, 3500). 05 (1) ).
s=0i=1m=1j=1

and by Theorem 6 and Theorem 12, we have

_ 2

dim Ty, = tr. degr E(T,(0)) < (n+ 1)— + (n + 1)rw. (5.28)
S
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Thus, we need to prove that dim X,, = (n + 1)rw, where X, is as in (5.8). By (5.23) it suffices
to show that V. = ((P,M,)*)”. To prove this, we adapt the arguments of the proof of [12,
Thm. 5.1.5] (see also [22, Lem. 1.2]).

Note from (5.24) that for n > 1 we have a short exact sequence of ¢-motives

Pr, w

0 — (PoM,)" = (P,M,)" —= (P,_1M,)" — 0.

By Lemma 5, there is a surjective map pr,,,, : V, — V,_; via pr, . Then ker(pr,,) is a
sub-¢-motive of M’

Suppose for now that V,,_; = (P,_1M,)". We claim that the extension N, /V,, is trivial in
Ext-(1,P,M,/V,). Since X, = VB, we see that 'y, acts on NZ/VEB through T'y, /X,, =
I'p,n, via (5.8). Since PrT,, ,, is surjective onto (P,,_1M,)", by (5.25) we see that NJ/VF =
N§ /(kerpr,, ,,)”. Recall that for any k-algebra R, an element of I'p 5, (R) is of the form (4.22)
such that v is an element of I'y;, (R). Then, (5.26) shows the action of I'p, 5;, on N /V,7 is the
same as the action of T'y;, on it. It follows that N /V.Z is an extension of k by ((P,M,)")?/V,?
in Rep(I'y;,, k). By [12, Cor. 3.5.7] and the equivalence of category Ta;, ~ Rep(I'y,, k), we get
the required conclusion of the claim.

Now, we prove the main result by induction. For the base case n = 1, suppose on the contrary
that V,? C ((P1M,)*)”. From [12, Thm. 5.1.5], we have M = V; and so, since M = (PoM,)"
we have ker(pr, ,,) & M. Since M’ is completely reducible in 7y, by [12, Cor. 3.3.3] and

ker(pr, ,,) is a sub-t-motive of M, there exists a non-trivial morphism ¢, € Homy (M}, M,) so

that ker(pr, ,,) C ker ¢;. Moreover, the morphism ¢, factors through the map M’ / ker(pr, ,,) —

l\

MY [ Xker(pty,,) —— M)/ (ker¢y) = M,

MY/ (ker ¢1):

Since ¢, € HomT(M;)”, M,), there exist e;; € K, not all zero such that ¢; (n1,...,n,) =

> ei1(n;). Suppose that E;; € Mat,(k(t)) satisfies e;1(m) = E;1ym. Recall from §2.5 that
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D,m forms a k(t)-basis of P;M,,. Set

0 B, _
Ei,l = € Math(k(t))
0

Then, by (5.2) there exists e;; € Endy((P1M)") such that
em(Dlm) = Ei,lDlm.

Let ¢y € Homy((P1M,)",P1M,) such that ¢ (D;ny,...,Djn,) = > e 1(D;n;) for each
J = 0,1. We see that ker ¢, /M = ker ¢, and P1 M /ker+)y = M}’ /ker ¢; = M,. Then the
pushout Y1, Ny := €1 1.Y11 + - - + €,,1.Yy1 is a quotient of V;/V;. By using the claim above, it
follows that )1, [V is trivial in ExtlT(l, P1M,). However by Theorem 13, this is a contradiction.

Now suppose that we have shown the result for n — 1, that is, V,,_; = (P,_1M,)". Suppose
that V.? ¢ ((P,M,)")". Then, ker(pt, ) & MY. Since M is completely reducible in Ty,
by [12, Cor. 3.3.3] and ker(Ppr,, ,,) is a sub-t-motive of M}, there exists a non-trivial morphism
¢n € Homy (M}’ M,) so that ker(pr,, ,,) C ker ¢,,. Moreover, the morphism ¢,, factors through
the map M’/ ker(pr,, ,,) — M’/ (ker ¢,,):

l\

M}/ ker(pr, ) —— M}/ (ker ¢,) = M,.

S w

Since ¢,, € HomT(M;”, M,), we can write ¢, (nq, ..., y) = Yy €in(n;) forsomeey ,,, ..., epn

€ K, not all zero. Suppose that e; ,(m) = E;,m where E;,, € Mat,.(k(t)). Recall from §2.5
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that D,,m forms a k(t)-basis of P,,M,. Set

E;, = ' .' _ € Mat 1) (k(1)).

Then, by (5.2) there exists e;,, € Endr((P,M)") such that
em(Dlm) = Ei’nDlm.

Let ¢,, € Homs((P,M,)",P,,M,) such that ¢;(Djny,...,Djn,) = > €;1(D;n;) for each
j = 0,...,n. Similar to the base case, we see that ker,/(P,_1M,)" = ker¢, and that
PnM;)”/ ker ¢, = M;”/ ker ¢ = M,. Then the pushout 9, N,, := €1 . Y1, + -+ €yn Yy isa
quotient of N,,/V,,. By using the claim above, it follows that v, N,, is trivial in ExtlT(l, P,M,).

But by Theorem 13, this is a contradiction. O]

Proof of Corollary 1. We adapt the ideas of the proof of [11, Thm. 4.3.3] and [12, Cor. 5.1.6]. We
define W := SpanKp()\l, ces A UL, .., Uy) and let {7y, ..., 7.} be a K,-basis of W. Clearly,
r/s < a < r/s+w. Since the quasi-periodic functions Fj are linear in ¢ and satisfy the difference

equation (1.2), we have
r—1 w T r «
k( U U U{Ajﬁ FTi<)‘j)7um7 FTl(um>}> = k( U U {ng(nm)} ) :
i=1 m=1j=1 j=1m=1
Moreover, for any 1,42 € {1,...,7}, 71,52 € {1,...,a}, s € {0,...,n} and vy, v, € K, by the
product rule of hyperderivatives we obtain

85 (viFy,, (nj,) + v2Fs, (njy)) = > (ag—h(vl)ag (Fs,, (n3,)) + 05" ()05 (F5,, () )

h=0
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Thus,

F(UU U U505 500 0500 355 )}

s=0 =1 m=1j= :E(O U O {ag(Faj(nm))})‘

s=0j=1m=1

Then, the result follows from Theorem 14.
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6. CONCLUSION

In this dissertation, we determined all algebraic independence results among hyperderivatives
of periods, quasi-periods, logarithms and quasi-logarithms of Drinfeld A-modules. A natural next
step would be to investigate the transcendence of the entries of the periods and logarithms of
a general uniformizable Anderson ¢-module. Let ¢ be a uniformizable Anderson ¢-module of
dimension d and rank r defined over k. Similar to the case of the Drinfeld module p above,
we define its dual ¢t-motive M, by setting M, = Matq(k[o]). If My is A-finite, then r =
ranky M, is the rank of M.

The t-motive (in the sense of [1]) AV, of ¢ is defined by setting NV, = Mat;,4(k[7]). We let
t-m = me¢s, Vm € M and thus we give Ny a unique structure of a left k[t, 7]-module. Moreover,
for any m € N, we have that (¢ — 0)? - m € 7M. If in addition N is free and finitely generated
as a left k[t]-module, ¢ is called an abelian t-module.

Similar to the case of the Drinfeld modules, suppose that {\q, ..., A} forms an A-basis of the
period lattice A, and {8, ..., 8, } is a k-basis of Hsg (¢), the de Rham module of a uniformizable,
abelian, and A-finite ¢-module ¢. In [32], Papanikolas and the author investigated how to use
rigid analytic trivialization to study periods, quasi-periods, logarithms and quasi-logarithms of the

abelian Anderson ¢-module ¢. Using Yu’s sub-t-module theorem [44], the following result was

proved.

Proposition 5 (Namoijam-Papanikolas, [32]). Let ¢ : A — Maty(k[7]) be a uniformizable abelian
t-module defined over k, and assume further that ¢ is simple (¢ has no proper non-trivial sub-t-

modules). Then, dimg Spang (Fs,(X;) : 1 <i,j <) =1?/s, where s = [End(¢) : Al.

Even studying the Galois groups associated to simple, uniformizable, abelian, and A-finite
Anderson t-modules and strictly pure Anderson t-modules (see [24, § 5.2], [32]) to determine the
transcendence of their periods and quasi-periods would be interesting. The difficulty that arises in

the application of methods similar to the ones used in this dissertation or [12] to find the Galois

72



group of the ¢-motives associated to Anderson ¢t-modules of dimension greater that 1 is that the
Zariski closure of the image of a map similar to the one in Theorem 8 need not be open. Therefore,
we only get containment of this Zariski closure in our Galois group. We plan to investigate this in

future research.

Lemma 6 (Namoijam-Papanikolas, [32]). Suppose that ¢ : A — Mat,(kP[7]) is an abelian
t-module defined over k5 and that § is a ¢-biderivation also defined over k3. For any x € C%

such that Expy(x) € (kiP)%, we have x € (kiP)? and Fs(x) € kiP.

By this lemma, we can consider the hyperderivatives of the periods and logarithms of a uni-
formizable, abelian and A -finite Anderson t-module ¢ defined over k£°P. Moreover, we determined
that the evaluation of the rigid analytic trivialization matrix of the prolongations of ¢ yields all its
periods, quasi-periods, logarithms, quasi-logarithms, and their hyperderivatives. Therefore, we in-
tend to study prolongations of Anderson ¢-modules of dimension greater than 1 by adapting the
methods used in this dissertation.

Thakur [38] defined the multiple zeta values

1
CA(S) - Z a51 asr ’
1 ---0
deg(a1)>--->deg(ar)

where each a; € A, and s = (s1,...,s,) € N. Let Ly := 1 and for i« > 1 define L; :=

H;ZI(G — 07 ). Chang [8] introduced the Carlitz multiple polylogarithm (CMPL)

i

iy
Zq

. 2] ...
Lis(z1,...,2) = . 0o
Yy yT) 81 Sp 7

L. LY

i1>>0p>0 T U

where s = (s1,...,s,) € N. Chang showed that (4(s) can be expressed as a k-linear combination
of CMPL’s and further showed that each monomial of CMPL’s at algebraic points is transcendental

over k. The Carlitz multiple star polylogarithm (CMSPL) is defined as

i

q'1 qir
% . 1 T
Lii(z1,...,2) = E SN
i1>>3p>0 T

73



Chang and Mishiba [10] introduced CMSPL’s and used them to construct an Anderson ¢-module
such that multiple zeta values appear in some form as a certain coordinate of a logarithm at an
algebraic point. Chang, Green and Mishiba [9] gave explicit formula for the coordinates of this
logarithm and hyperderivatives of the CMSPL’s appear in some form.

Since we were successful in the investigation of hyperderivatives of periods and logarithms of
Drinfeld A-modules, we are hopeful that methods used in this dissertation can be adapted for the
study of transcendence of these CMPL’s and CMSPL’s, and their hyperderivatives. The k-linear

independence of the Carlitz zeta values (¢ (s) = > ,%n was established by Yu [43], [44], and

acA4
their algebraic relations over k were completely proved by Chang and Yu [13]. Transcendence and

algebraic relations among CMPL’s have been studied by Chang [8] and Mishiba ([31], [30]).
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APPENDIX A

DIFFERENTIAL ALGEBRAIC GEOMETRY

We present a few topics from differential algebraic geometry in positive characteristic [33]
(cf. [23] for characteristic zero). For the most part, we follow the terminology of [23]. Even
though the proofs of most of the results presented here are covered in [33], we present them here

nevertheless for completeness.
A.1 Differential algebra in positive characteristic

Let R be a commutative ring with unity of characteristic p > 0. A differential ring or O-ring is

a pair (R, 0), where O represents a sequence of additive maps ¢/ : R — R that satisfy
1. %a) = a,
2. ¥(a+b) =00 (a)+ & (b),
3. 0/(ab) = YL, 0'(a) ().
4. 0" (a) = (*17) 0" (a),

for all a,b € R and j,k > 0. If R is a field, then we say that (R, 0) is a differential field or a
O-field. When the context is clear, we shall write R instead of (R, ). Moreover, a 0-morphism
between two 0-rings R and S is a morphism of rings that commute with 0. For a O-ring R, if
we let 3 C R be an ideal, then J is called a d-ideal if 9(J) C J for all j > 1. If, in addition,
J is a radical (respectively prime) ideal of the J-ring R regarded as a ring, then we say that J is
a radical (respectively prime) O-ideal of the 0-ring R. For a set X C R, the intersection of all
O-ideals containing ¥ is a 0-ideal of R, which we denote by ©(X) and it is the smallest 0-ideal of
R containing 3. We see that D () is the ideal, generated {0’ (a) | j > 0,a € ¥}, of the J-ring R
regarded as a ring. We denote by (D (X)) or 53(X) the radical of ©(X) in the 0-ring R.
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Proposition 6 (Okugawa [33, p.45, Thm. 5]). Let R be a 0-ring of characteristic p > 0 and let
J C R be a 0-ideal of R. Then, the radical R(J) is a 0-ideal of R.

Proof. 1t suffices to prove that 9/ (R(J)) C R(TJ) for all j > 1. Let a € SR(J). Then a™ € T for

some n > 1. For a sufficiently large e > 1, we see that

for some m € N. Since 0 satisfies the same properties as hyperderivatives (see §2.4), by Proposi-

tion 1(b), for all 7 € N we see that

O (a"") = (& (a))".

Since J is a O-ideal of R, we have 9?°(a?") € J for all j > 1. Thus, (8/(a))” € J and so

9 (a) € R(T). O

Remark 4. The proof of Proposition 6 does not work in characteristic 0. See [23, Prop. 2.19] for

characteristic 0.

Theorem 15 (cf. [33, p.63 Thm. 1] and [23, Lem. 2.22]). Let R be a 0-ring of characteristic p > 0
and let J is a proper O-ideal of R. If S is a multiplicative subset of R such that S N'J = (), then

there exists a prime O-ideal p of R such that 3 C p but S Np = .

Proof. Consider the set of all 0-ideals of R that do not intersect .S but contain J, ordered by
inclusion. Clearly, this set is not empty since it contains J. By Zorn’s Lemma, this set has a
maximal element p. We claim that p is a prime ideal of R. Suppose there exist elements a,b € R
such that a ¢ p,b ¢ p and ab € p. By the maximal property of p, we see that D (p,a) N S # ()
and D(p,b) NS # . Let s; € D(p,a) N S and s, € D(p,b) N S. Then, s; - 55 € D(p,ab) C p,

which is a contradiction since S is a multiplicative set. [l
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A.2 Kolchin topology in positive characteristic
The 0-polynomial ring denoted by R{y1, ..., Yy, } in the O-variables (v, ..., ¥y, ) is the poly-
nomial ring over R in the variables 8’ (y;), j > 1,4 = 1,...,m made into a O-ring by setting
(@) &(a) := & (a)fora € R,

(®) 9 (y:) := ("1 (i) b > 1.

Here y1, . .., y,, are called O-indeterminates.
We can now define the Kolchin topology in positive characteristic. Let K be a O-field. A
O-extension field of K is a O-field L which is an extension field of the J-field K. Let K be an

algebraic closure of the field K and K*°P be the separable closure of K in K.

Proposition 7. There is a unique extension of & : K — K to &’ : K*® — K%, which satisfy all

the rules of 0.
Proof. The proof follows the same argument as that for hyperderivatives. See [14, Thm. 5]. [

Leta € K \ K*P. We say that 0 can be extended to a if O can be extended to some extension
field of K that contains a. The largest extension field K ? of K*P in K that has an extension of
9 is called the O-closure of K in K.

Let S C K{uyi,...,ymn} be aset of O-polynomials. The zero set of S is defined as
—0
3(9) ={(a1,...,am) € (K )" | f(a1,...,am) =0, Vf € S}

Proposition 8 (cf. [23, Prop. 3.2]). Fori > 0, let S,T,S; C K{y1,...,Ym}. We have the following
propetrties.

0

1. 3(0) = (K')™and 3(R) = 0.

2. S C T implies that 3(T) C 3(S).
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4. 3(US;) = 3(229(S:)) = N3(Sy).
5. 3(0(5)ND(T)) = 3(D(5)D(T)) = 3(5) U 3(T).

Proof. The proofs of the assertions follow the same line of argument as that for the Zariski topol-

ogy. O
Aset X C (l?a)m is said to be K-0-closed if there exists a subset S C K{y1,...,Yn} such
that X = 3(5). If we set

IX)={Pe K{y,....,um} | Plar,...,an) =0 Y(ay,...,an) € X},

then J(X) is a radical 0-ideal in R, and we call it the defining K -0-ideal of X.
If X is not K-O-closed, then its K -9-closure X is the smallest K -9-closed subset of (K 8)m

containing X, that is, 3(J(X)).

Proposition 9 (cf. [23, Prop. 3.8]). Let X1, Xo C (K)™. Then,
1. If X, C X, then 3(X») € 3(X)),
2. 3(X1 U X2) = 3(X) NI(Xa).

Proof. The proofs of the assertions follow the same line of argument as that for the Zariski topol-

ogy. O

Theorem 16 (Okugawa [33, p.71 Thm. 2]). Let p be a prime O-ideal of the polynomial ring

K{y1,...,ym}. There exists a zero £ € (I_(a)m of p such that

p={f€K{y,....yn} | f(£) =0}.

Proof. Let K{y1,...,yn}/p be the residue ring of K{yi,...,y,} mod p, and ¢ the canonical
O-morphism of K{y1,...,ym} onto K{y1,...,yn}/p. Since ¢ induces a d-isomorphism of K
onto p(K), we identify each a € K with ¢(a). Then the 0-field of quotients Q(K{y1, - .., Ym}/P)
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of K{y1,...,ym}/p is a O-extension of K. If we set £ = (&1, ...,&,) where each & := ¢ (y;),

then we get the desired result. [

Proposition 10 (Okugawa [33, p.72 Thm.4]). Let S C K{y1,...,ym} be a set of O-polynomials.
If3(S) =0, then R(S) = K{y1, .-, Ym}-

Proof. Assume that R(S) # K{y1,...,Ym}. By Theorem 15 there is a prime differential ideal p
such that 2R(S) C p. Then, the zero £ of p from Theorem 16 is such that £ € 3(.S), which is a

contradiction to the hypothesis. [
The differential algebraic geometry analogue of Hilbert’s Nullstellensatz is as follows.

Theorem 17 (Okugawa [33, p.72, Cor. to Thms. 3 and 4]). For the O-field K, let K{y, ..., ym } be

a O-polynomial ring and let S C K{y1,...,Ym}. Then

R(S) = I(3(9))-

roof. 1t 1s clear that cJ . erefore, 1t suifices to show that 1 eJ , then
Proof. Tt is clear that 93(S) C J(3(S)). Therefore, it suffi how that if g € J(3(S)), th

g € R(9). Let y,,+1 be a 0-indeterminate over K{y, ...,y }. Consider the set

S = {f 1= ymrrg | f €S} S K{y1,- s Y Ymia },

where g € J(3(5)). Since g vanishes at every zero of S, the set S’ has no zeros. Thus by

Proposition 10, the ideal D (.S”) of the O-ring K{y1, ..., Ym, Ym+1} contains 1 and so

1= Qs 09(L) + > Qu,0"(1 = ypms1g), (A.1)
L>els h>1
W

where each Q; ¢, Qu, € K{y1,. .., Ym:Yms1} and {;, £}, € Z>o. Note that the right hand side of

(A.1) has finitely many terms. Since O satisfies the same properties as hyperderivatives (see §2.4),
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by Proposition 1(c) we see that for u > 1
1 B
0" (—) = —, (A.2)
Y g’
for some B € K{yi,...,yn} and v € N. Substituting ¥,,.1 for 1/g, we have 1 — y,,.19 = 0 and
so by (A.2), we obtain

where each B;,, € K{y1,...,ym} and v;y, € N. Multiplying both sides by a sufficiently large

power w of g to clear denominators, we see that g € D (S) and so g € R(S5). O

Given a K-0-closed set X C ((K )™, 0), we consider the Zariski closure X7 C K" of X,

the closure of X as a subset of (K )™ equipped with the Zariski topology. Let S C Klyi, ..., Ym]

be a set of polynomials. The zero set of S is defined as
Z(8) :={(a1,...,am) € K" | f(ay,...,am) =0,Vf e S}.

Lemma 7 (cf. [23, Lem. 3.42]). Let X C (Ka)m be a K-0-closed set and let its defining K-0-
ideal be I(X) C K{y1,...,Ym}. Also, let K|yi,...,yn] be the polynomial ring in the variables

Y1, - - -, Ym over the field K. Then its Zariski closure is the set

X = Z(O(X) N Ky, Y],

where j(X) mK[ylvaym] g K[ybaym]

Proof. We follow the outline of the proof of [23, Lem. 3.42]. Since Z(3(X) N K[y1,...,Ym]) is

Zariski closed, it is straightforward to see that

XCX2CZOX)NKy, ... ym)).
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Conversely, if S C Klyi,...,Ym] € K{y1,...,Ym} is such that X C 3(S5), then by The-
orem 17 we have R(S) C J(X). This implies that S C R(S) N K[y1,...,ym] € I(X) N
Klyi, ..., Ym]. Thus, Z(IJ(X) N K[y1,...,ym]) € Z(S). Since S was chosen arbitrarily, we see
that Z(3(X) N K[y1, ..., ym]) S X - O

If f € K{y1,...,ym} is a linear combination over the J-field K of 1 and elements of the set
{0/(y;) | 7 > 0,i = 1,...,m}, then we say that f is a linear O-polynomial in K{yy,...,ym}.

Moreover if the coefficient of 1 is 0, then we say that f is a linear homogeneous 0-polynomial.

Proposition 11 (Okugawa [33, p.74 Thm. 5]). Let S C K{yi,...,ym} be a set of linear O-

polynomials, then

Proof. Tt suffices to show that ©(S) is a prime ideal of the 0-ring K{yi, ...,y } regarded as a
ring. By definition D(S) is generated, as an ideal of the ring K{y1,...,Ym}, by {0?(L;) | 3,5 >
0,L; € S}. Suppose that f, g ¢ D(S) such that fg € ©(5). Then,

fg="Y hiy0%(Ly),
L;eS
j>1

where /; € N, and h;s, € K{y1,...,Ym}, and all but finitely many h; ;; are zero. We see that fg
is a polynomial in a finite subset of the variables {0’ (y;) | j > 0,7 =1,...,m} over the 9-field K
regarded as a field. Let us denote this subset of variables by {x1, ..., z,} for some n > 1. Then,
L = ({0%(L;)}) is an ideal in K[zy,...,x,] such that f,g ¢ L and fg € L and so, L is not a
prime ideal. However, for a polynomial ring in finitely many indeterminates, ideals generated by

linear polynomials are prime ideals and thus, we obtain a contradiction. [

The reader is directed to [33] for a detailed account of different algebra in positive characteristic

and [23] for a detailed account of differential algebraic geometry in characteristic zero.
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