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ABSTRACT

Systems biology research employs a quantitative model to interpret experimental measure-

ments and make new predictions of the system to be tested in the new sets of experiments. There-

fore, the construction of an accurate model is a key step in the overall systems biology study. Usu-

ally, a model developed in the past concerns mostly about the dynamics of cells at the population-

level instead of those of individual cells in the population. However, with the recent advances in

single-cell experimental techniques, it has been revealed that individual cells in a genetically ho-

mogeneous cell population behave heterogeneously in response to an external stimulus. This new

discovery requires a different modeling approach to represent and analyze the heterogeneous cell

population dynamics.

In this study, a systematic modeling framework is proposed to develop a mathematical model

for an intracellular signaling pathway in a heterogeneous cell population. To this end, two sources

of the cellular heterogeneity are required to be incorporated: cell-to-cell differences and reaction

stochasticity. Specifically, the former and latter sources are taken into account by an individual-

based population model (IBPM) and kinetic Monte Carlo (kMC) model, respectively.

First, this study proposes a systematic approach to construct an IBPM to incorporate the cell-to-

cell differences. In an IPBM, the dynamics of an intracellular signaling pathway in the population

are represented by a set of ordinary differential equations (ODEs), but the model parameters will

follow multivariate probability density functions (PDFs) to take into account the cell-to-cell differ-

ences among the individual cells. Therefore, the construction of an IBPM requires its ODE model

to be developed first. To this end, an integrative approach, which consists of first-principles mod-

eling, identifiability analysis, parameter estimation, and model refinement, is employed to develop

and calibrate the ODE model systematically. At the same time, two new methods for developing

a semi-mechanistic model have been proposed in order to speed up the overall ODE model devel-

opment process even when underlying mechanisms are partially known. Both methods improve

the prediction accuracy by coupling the first-principle model with the data-driven model inferred

ii



from experimental measurements by rendering model parameters time-varying in the first method

and by adding additional correction terms to model states’ trajectories in the second method. Once

a deterministic ODE model is developed, model parameters’ PDFs need to be estimated. In this

regard, a numerical scheme is proposed to efficiently estimate the parameters’ PDFs. Specifically,

the proposed scheme consists of dimension reduction and surrogate modeling to efficiently identify

the parameters’ PDFs from the available single-cell measurements.

Second, an on-lattice kMC model is developed for incorporating reaction stochasticity, which

is the second source of the cellular heterogeneity, as well as the temporal evolution of the mem-

brane configuration. By modeling the multivalent binding kinetics between bacterial toxin and

ganglioside expressed on cell membranes as a case system, the accuracy of the kMC model is

validated, and how it is different from its corresponding deterministic model is examined.

In summary, this study has proposed a systematic modeling approach to construct a mathe-

matical model for an intracellular signaling pathway by addressing their parameter and structural

uncertainty to simulate the cell-to-cell heterogeneity. To validate the proposed methodologies, the

NFκB signaling pathway and binding kinetics between ganglioside and bacterial toxins such as

cholera toxin are modeled and calibrated as case studies.
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1. INTRODUCTION

1.1 Background

The central aim for biological research is to gain the quantitative understanding of cellular

biochemical processes such as intracellular signaling and metabolic pathways [12]. Due to the

intrinsic complexity of an intracellular process, a systems biology approach, which integrates ex-

perimental measurements and mathematical modeling, has become indispensable to gain a system-

level understanding of the dynamics [13]. Consequently, one of the main tasks in a systems biology

study is to develop a mechanistic model that can explain the experimental observations made in the

past, provide new hypothesis about the system, and design future experiments to test the hypothesis

and to improve the developed mechanistic model.

Since many commonly used experimental techniques such as Western blot measure cellular

response at the population-level, most of the systems biology models developed in the past are

deterministic and thus describe the population-average dynamics of cells. However, advances

in the single-cell measurement techniques have provided new perspectives that are not available

from the population-level measurements [14]. Most notably, individual cells even in a genetically

homogeneous cell population exhibit substantial cell-to-cell variability [15]. Even though the exact

causes of the cellular variability await further studies [15], its implications and importance in

medicine as well as biomanufacturing processes are evident; specifically, the cell-to-cell variability

has been implicated in the reduced yield and instability of bioreactors [16, 17] as well as the

development of drug resistance during the cancer therapy [18, 19].

Because a deterministic model can only simulate the behavior of a "typical" cell in a cell pop-

ulation without considering the heterogeneity among individual cells, the deterministic modeling

approach may not be appropriate for modeling and analyzing the heterogeneous cell population. It

has been suggested that there are two different sources of such cellular heterogeneity: cell-to-cell

difference across the cell population, and reaction stochasticity. Here, the cell-to-cell difference
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refers to the fundamental differences between cells that contribute to the cell-to-cell variability.

This cellular difference can come from varying levels of gene expression and different cellular

micro-environment such as the gradients of morphogens in multicellular development [15, 20].

On the other hand, the reaction stochasticity refers to random fluctuations in reaction kinetics due

to low copy numbers of molecules involved in the reactions [15, 21, 22]. Therefore, alternative

modeling frameworks are needed to simulate cellular heterogeneity observed in experiments by

incorporating both sources of the cellular heterogeneity.

1.2 Literature Review

In order for accounting for the cell-to-cell difference, an individual-based population model

(IBPM) framework has been proposed to incorporate the cellular heterogeneity. In the IBPM

framework, a model expressed in a system of ordinary differential equations (ODEs) is used to

represent the dynamics of an intracellular process, and the cellular heterogeneity is represented by

the differences in parameter values used in simulating the ODE. Here, the model parameters are

assumed to follow a multivariate probability density function (PDF), which needs to be inferred

from experiments. And, the heterogeneous cellular responses can be predicted by solving the ODE

multiple times with different model parameters sampled from the PDFs of parameters.

In developing an IBPM, the first step in the IPBM model development process is the construc-

tion of an experimentally validated deterministic model. In developing a deterministic model, two

aspects need to be considered: model parameter uncertainty and model structural uncertainty. Un-

certainty in model parameters attributed to, among other factors, the limited breadth of data used

for training the model (e.g., models trained using one dataset with a single stimulus concentration),

which makes the models less robust under different conditions. Moreover, the identifiability issue

of model parameters [23], which arises due to the model structure as well as the limited availabil-

ity of experimental data [24], is not always addressed, which may lead to a suboptimal estimation

of model parameters. On the other hand, the model structural uncertainty refers to the fact that

underlying mechanisms of the system of interest are not fully known. Consequently, construct-

ing an accurate model for such a system can be quite challenging. For example, out of around
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100 different stimuli of the NFκB signaling pathway [25], only a handful, such as tumor necrosis

factor-α (TNFα) and lipopolysaccharide (LPS), and their reaction mechanisms are well character-

ized. Consequently, investigating and modeling a signaling pathway induced by a stimulus, which

has not been well studied, is non-trivial. Specifically, as the pathway is only partially known be-

forehand, a number of different model structures need to be formulated and discriminated, which

can become very challenging. In the literature, different approaches have been proposed and im-

plemented for solving this problem. First, extensive experiments are performed to characterize as

many reactions as possible between intracellular molecules, which in practice is nearly impossible

due to the large number of interactions to be studied. Second, the systems biology approach, which

iterates between modeling and experiments, can be implemented to improve the model gradually

[26, 27, 28]. However, as the initial model is likely to be erroneous, this approach may require a

large number of iterations between experiments and model refinement to reach a relatively satis-

fying model. Third, a number of different initial models, each of which corresponds to a different

hypothesis on the signaling pathway structure, are synthesized from the beginning, and the best

model structure is selected by solving an optimization problem against experimental observations

[29, 30, 31]. Although the optimization-based approach is promising, it has several numerical

and algorithmic challenges such as efficiently finding a global optimal solution for a large system

[29, 30, 31, 32, 33].

Once an accurate deterministic model is developed, the next step is to calibrate the IBPM

against available experimental measurements. Over the last few years, various model calibra-

tion methods for IBPMs have been proposed [34, 35, 36, 37, 38, 39, 40]. Koeppl et al. [41] and

Hasenauer et al. [10, 42] were among the first ones who proposed methods for estimating the pa-

rameter distributions; the former proposed a method combining a Bayesian inference with Markov

Chain Monte Carlo method while the later proposed density-matching schemes that parameterize

the parameter distributions for the computational efficiency. On the other hand, Stumpf and his

coworkers [38, 43] proposed an approximate Bayesian computation scheme for inferring the pa-

rameter distributions, which was subsequently used in different biological systems [44, 45, 46]. In
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many of these studies, PDFs of all the parameters were estimated simultaneously. Or, the PDFs of

only a subset of model parameters from the entire set was selected based on prior knowledge, and

only these were estimated. In either approach, the issue of identifiability, an important issue in the

calibration of a biological model, is not properly addressed [47, 48]. Here, the identifiability of an

IBPM studies the problem whether the PDFs of model parameters can be uniquely estimated from

measurement distributions [48, 49, 50]. For an IBPM, the non-identifiability of PDFs of some

model parameters arises due to limited quality and quantity of measurements as well as the model

structure. Consequently, the PDFs of only a small subset of model parameters are identifiable, and

these subsets may not necessarily overlap with the parameter subset selected based on the priori

knowledge on the system itself [34, 47, 48].

On the other hand, although the IPBM approach is able to capture the cell-to-cell variability

by estimating the PDFs of uncertain parameters, an IPBM has not captured the stochasticity in the

reaction kinetics caused by the low copy number of molecules involved. Specifically, in an IPBM

setting, once the initial conditions and parameters are sampled from their PDFs and assigned to a

cell, the dynamics of a biochemical process occurring within the cell are deterministic. However,

in practice, the trajectory is likely to be subject to stochastic fluctuations. Within an intracellu-

lar signaling pathway model, one important source of reaction stochasticity comes from binding

dynamics between biomolecules expressed on cell membranes and molecules diffusing from extra-

cellular matrix. One way to model such binding processes on cell membranes is the kinetic Monte

Carlo (kMC) framework. The kMC is a stochastic modeling approach to simulate detailed sur-

face reactions as well as the evolution of surface micro-configurations. Consequently, it has been

widely used to model the microscopic processes of a variety of applications such as protein crys-

tallization [51, 52, 53, 54, 55], thin film deposition [56, 57, 58, 59, 60], catalytic surface reactions

[61, 62, 63, 64, 65, 66, 67] and receptor-ligand interactions on a cell membrane [68, 69, 70, 71].

1.3 Research Objectives

Motivated by the above considerations, the followings are the objectives of this dissertations:

1. Implement a systematic approach that consists of first-principle model development, iden-
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tifiability analysis, parameter estimation, and model refinement to quantitatively calibrate a

model for an intracellular signaling pathway model without overfitting.

2. Develop a semi-mechanistic modeling approach to construct an accurate mathematical model

to describe a system that is only partially understood.

3. Develop a systematic approach to estimate the PDFs of model parameters for an IBPM from

the PDFs of measurements. This method will address the identifiability of the PDFs as well

as the computational efficiency.

4. Develop a kMC modeling framework to explicitly incorporate reaction stochasticity that are

present in an intracellular signaling pathway.

1.4 Dissertation Outline

Chapter 2 describes how a systematic approach can be implemented to develop a determinis-

tic model for an intracellular signaling pathway model can be developed. Under this approach,

a mathematical model is developed based on the prior knowledge, and in vitro measurements are

performed to quantitatively calibrate the developed model. Then, in order to avoid potential over-

fitting issues of the model calibration, a parameter selection and estimation scheme selects key

model parameters and estimates their values based on the experimental measurements. Unsatisfac-

tory results from the parameter estimation guides subsequent experiments and appropriate model

improvements, and the refined model is calibrated again through parameter estimation. The ef-

ficacy of such an approach is illustrated by the NFκB signaling pathway induced by LPS in the

presence of brefeldin A (BFA) as a case study.

In Chapter 3, we use the binding kinetics between cholera toxin subunit B (CTB) and GD1b

ganglioside on cell membranes as another case study to highlight how the systematic approach

described in Chapter 2 can be used to develop and quantitatively calibrate the biological model.

Specifically, a first-principle model is developed based on previous experimental studies, and the

binding kinetics are experimentally measured to estimate values of the model parameters for the

first time.
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In Chapter 4, we use the LPS-induced NFκB signaling pathway model in the presence of BFA

as a case study to propose a new numerical scheme to develop a time-varying model to efficiently

construct a semi-mechanistic model when the system of interest is partially known. This approach

consists of global sensitivity analysis, in vitro experimental measurements, temporal clustering of

experimental measurements, and estimation of values of piecewise constant parameter values.

In Chapter 5, we propose a hybrid modeling approach that improves the prediction accuracy

of a first-principle model through estimating correction terms from in vitro experimental measure-

ments when the first-principle model is only partially accurate. Specifically, the proposed numeri-

cal scheme first identifies a subset of model states whose dynamics impact the measurements most

significantly, estimates the values of additional terms necessary for correcting dynamics of the

selected states, and develops an artificial neural network to compute correction terms for a given

condition so that the resulted hybrid model has an enhanced prediction capability.

In Chapter 6, we propose a new method to construct an IBPM when an accurate deterministic

ODE model is developed by any of the modeling methods present in Chapters 2-5. First, a subset of

parameters whose PDFs is identifiable are determined through sensitivity analysis, and only these

PDFs are estimated. Second, an artificial neural network model is developed to find an empirical

relation between these parameter and output PDFs to reduce computational costs of the parameter

identification. The proposed approach is validated by estimating the PDFs of parameters of a

TNFα signaling model.

In Chapter 7, we propose a kMC modeling framework that can take into account reaction

stochasticity, which is another source of the cellular heterogeneity. As a case study, the binding ki-

netics between CTB and ganglioside on cell membranes are modeled as a case study and compared

with their deterministic model to highlight merits of the kMC modeling approach.
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2. MATHEMATICAL MODELING AND PARAMETER ESTIMATION OF

INTRACELLULAR SIGNALING PATHWAY: APPLICATION TO LPS-INDUCED NFκB

ACTIVATION AND TNFα PRODUCTION IN MACROPHAGES *

2.1 Introduction

To integrate multiple signaling pathways, their canonical transcription factors and downstream

effector genes are required for cells to respond to various signals they encounter in their micro-

environment. Therefore, understanding how information is sensed and processed by cells and the

signaling pathways that are engaged by different stimuli can help elucidate cellular behaviors and

responses. Typically, cellular signal dynamics and the response to stimuli have been studied using

a combination of mathematical modeling and experimental analysis [72, 73]. A majority of these

studies has modeled cell signaling at the population level and used population-averaged measure-

ments such as Western blots to infer the dynamics of different proteins in the signaling pathway,

as well as the possible network structure of signaling pathways [72]. However, with recent ad-

vances in the ability to measure gene and protein expression at the single-cell level (reviewed

in [73, 74]), it has become possible to analyze signaling dynamics at the single-cell level. In con-

trast to the observations from population-average studies, the single-cell studies have demonstrated

that individual cells in a clonal population may respond differently to the same stimulus, and the

population level measurements could mask the temporal dynamics of individual cells [73]. This

variability in the responses of individual cells poses a challenge to their implementation in biology

and medicine [19]. Therefore, it is important to understand the stochasticity and heterogeneity in

the single-cell responses that might be missed in population-averaged measurements.

Advances in experimental tools for single-cell analysis have led to a significant increase in

single-cell studies [73, 74]. Despite these advancements, it is still difficult to study the single-

*Reprinted with the permission from “Mathematical Modeling and Parameter Estimation of Intracellular Signaling
Pathway: Application to LPS-induced NFκB Activation and TNFα Production in Macrophages," Lee et al., 2018,
Processes, 6, 21. Copyright 2018 by Dongheon Lee, Yufang Ding, Arul Jayaraman and Joseph S. Kwon distributed
under Creative Commons Attribution (CC BY) license.
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cell signaling dynamics due to complex interactions at multiple levels between different proteins

that are involved in signal transduction [72]. Computational modeling has been proposed as a

complementary approach to overcome some of these limitations and gain insights that cannot be

obtained solely through experiments [72, 73]. A viable and computationally efficient approach to

study the cell-to-cell variability is to use a deterministic model with parameters that have distribu-

tions [10, 37, 42, 73]. In this approach, the computational cost is generally reduced by simulating

the signaling dynamics through a deterministic modeling approach while the stochasticity is pre-

served by assigning a set of different parameter values for each simulation based on predetermined

parameter distributions.

In order to construct such models, an experimentally validated deterministic model, which can

capture average signaling dynamics at the single-cell level, is required. Although various deter-

ministic models have been proposed for several well-studied signal transduction pathways [72, 75],

many demonstrate good qualitative, but not quantitative, agreement with the experimental data.

This has been attributed to, among other factors, the limited breadth of data used for training the

model (e.g, models trained using one dataset with a single stimulus concentration), which makes

the models unable to make robust predictions under different conditions. Moreover, the identifia-

bility issue of model parameters [30], which arises due to the model structure as well as the limited

availability of experimental data of intracellular proteins [23, 47], is not always addressed, which

may lead to a suboptimal estimation of model parameters [23, 76]. Additionally, many models

have been constructed and validated based on experimental data obtained from the population-

averaged measurements, which mask the signaling dynamics at the single-cell level [73, 77, 78].

Consequently, these models are inadequate to predict the average signaling dynamics of single

cells.

Motivated by the above considerations, we developed a deterministic model that can accurately

predict the average signaling dynamics of single cells. We chose LPS-induced nuclear factor κB

(NFκB) signaling in mouse macrophages for our model system as it is an extensively studied and

characterized signaling pathway [3, 75, 79]. In order to address the issues discussed above, both
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computational and experimental approaches have been implemented. First, a rigorous numerical

scheme is used to identify the most important parameters that are to be estimated in the parameter

estimation [80]. Specifically, the sensitivity analysis and the parameter selection method quantita-

tively assess the significance of each model parameter with respect to experimental measurements

under different LPS concentrations and select parameters whose values could be uniquely esti-

mated [23, 81]. Second, flow cytometry with intracellular staining is used to measure the average

single-cell dynamics of key molecules involved in the NFκB signaling pathway in response to

a broad range of LPS concentrations [82, 83]. In this study, the intracellular concentrations of

the inhibitor of κB-α (IκBα) and TNFα were measured. IκBα is an inhibitor of NFκB activ-

ity, and therefore, the IκBα dynamics are inversely correlated with the NFκB dynamics. At the

same time, the activated NFκB induces the transcription and translation of TNFα upon the stim-

ulation of LPS; hence, the TNFα can also be used to infer the dynamics of the NFκB signaling

pathway [79]. The obtained average single-cell kinetics is used to quantitatively calibrate and

validate the model. Third, the discrepancy between the experimental measurements and the model

predictions reveals important, yet unconsidered mechanisms, which is validated experimentally af-

terwards and leads to the model refinement. Through this integrated model development methodol-

ogy, predictions from the resultant model quantitatively agree with the experimental measurements.

Therefore, the proposed model represents a first step towards the construction of single-cell semi-

stochastic models to investigate the stochasticity of intracellular NFκB signaling in macrophages.

2.2 Material and Methods

2.2.1 Materials and Cell Culture

RAW264.7 cells were obtained from ATCC (Manassas, VA, USA). Dulbecco’s Modified Ea-

gle Medium (DMEM) and penicillin/streptomycin were obtained from Invitrogen (Carlsbad, CA,

USA). Bovine serum and fetal bovine serum (FBS) were obtained from Atlanta Biologicals (Flow-

ery Branch, GA, USA). Ultrapure LPS derived from S. minnesota was obtained from Invivogen
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Figure 2.1: Representative histograms of TNFα production. RAW 264.7 cells were stimulated
with different concentrations of LPS along with Golgiplug™, and the production of TNFα were
analyzed by flow cytometry.

(San Diego, CA, USA). RAW264.7 macrophages were cultured in DMEM supplemented with

10% FBS, penicillin (200 U/mL) and streptomycin (200 µg/mL) at 37 °C in a 5% CO2 environ-

ment.

2.2.2 Flow Cytometry Analysis

The expression of TNFα and IκBα under different experimental conditions was determined

using flow cytometry. RAW264.7 cells were seeded into round-bottomed 96-well plate and stim-

ulated with different concentrations of LPS for the indicated time. Golgiplug™ (BD Biosciences,

San Jose, CA, USA) was added along with LPS for TNFα detection experiments to block secretion

of TNFα. Cells were then stained with Alexa Flour 700 fluorescence-tagged TNFα antibody (BD

Biosciences) and PE-conjugated IκBα antibody (Cell Signaling Technology, Danvers, MA, USA)

using the manufacturer’s suggested protocol. Stained cells were analyzed using a BD Fortessa flow

cytometer (BD Biosciences) The College of Medicine Cell Analysis Facility at the Texas A&M

Health Science Center. Ten thousands events per sample were acquired, and the data were analyzed
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Figure 2.2: Representative histograms of IκBα. RAW 264.7 cells were stimulated with different
concentrations of LPS along with Golgiplug™, and the intracellular IκBα levels were analyzed by
flow cytometry.

using FlowJo software (Tree Star, OR, USA). Cells were gated based on side scattered light (SSC)

and forward scattered light (FSC) values to eliminate cell debris, and TNFα- and IκBα-positive

cells were gated based on the antibody isotype (Figures 2.1-2.3). All experiments were repeated

using at least three different cultures.

2.2.3 Model Development

The schematic diagram of the NFκB signaling pathway is illustrated in Figure 2.4. The model

used in this study was adopted from Caldwell et al. [1], which takes the extracellular LPS con-

centration as an input to predict the kinetics of key biomolecules in the NFκB signaling pathway.

In this model, by forming a complex with Toll-like receptor 4 (TLR4), LPS activates IκB kinase

(IKK) through myeloid differentiation primary response 88 (MyD88)- or TIR (Toll/Interleukin-1

receptor)-domain-containing adaptor-inducing interferon-β (TRIF)-dependent activation of TNF

receptor-associated factor 6 (TRAF6). The activated IKK in turn promotes the translocation of

NFκB to the nucleus, where the nuclear NFκB induces the transcription of NFκB inhibitors (IκB-
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Figure 2.3: Representative histograms of IκBα. RAW 264.7 cells were stimulated with different
concentrations of LPS without the addition of Golgiplug™, and the intracellular IκBα levels were
analyzed by flow cytometry.

α, -β, -ε and A20), as well as TNFα. Once translated, these inhibitors inhibit the NFκB signaling

pathway. In contrast, the translated TNFα is secreted to the extracellular medium, and some of the

secreted TNFα proteins will bind with TNFα receptor (TNFR) on the cellular membrane to initiate

the TNFα-induced NFκB signaling pathway (see [1, 9, 84] for details of the model).

Additionally, nonlinear functions proposed by Junkin et al. [2] were added to describe how

the rates of TNFα production and secretion increase as the amount of activated TRIF complex

increases. This model incorporates the TLR4-mediated NFκB dynamics induced by LPS, as well

as the production of TNFα in macrophages (see [1, 9] for details). For the purpose of this study,

two modifications were made to the model presented by Caldwell et al. [1]. First, transcription

delays were ignored to facilitate the simplicity of subsequent calculations for sensitivity analy-

sis and parameter estimation. Second, a new role of A20 protein, which was introduced in the

previous model [1, 9] as an inhibitor of the TNFα-induced NFκB signaling [9, 85, 86], was in-

cluded in the modified model to downregulate the LPS-induced signaling through deubiquitinating
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of TRAF6 [87].
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Figure 2.4: Schematic diagram for the LPS-NFκB-TNFα signaling pathway. Due to space limita-
tion, TRIF-dependent regulation of TNFα production, IκBβ and IκBε-dependent NFκB deactiva-
tion and eIF2α-induced translation inhibition are not illustrated. Furthermore, some states related
to TNFα-induced activation of IKK kinase (IKKK) are not shown. Colored arrows indicate the
processes affected by the addition of Golgiplug™ (see the text for details).

For this study, the TNFα production at the single-cell level was measured using flow cytom-

etry by adding Golgiplug™ since brefeldin A, the active agent of Golgiplug™, causes the Golgi

apparatus to merge with endoplasmic reticulum (ER) and inhibits protein export from the Golgi

complex [88, 89]. Hence, the addition of Golgiplug™ enabled us to measure average single-cell

production of TNFα. On the other hand, because Golgiplug™ interferes with the normal cellular

processes, it inevitably affects the NFκB signaling dynamics. Specifically, Golgiplug™ suppresses

the expression of receptors on the cellular membrane, which negatively regulates the LPS-mediated

NFκB signaling pathway in different ways. First, the addition of Golgiplug™ can block the translo-

cation of TLR4 and its accessory molecules from the Golgi complex, which leads to the termina-

tion of signaling as these receptors are not replenished after turnover [88, 90, 91, 92]. Similarly,

TNFR is also depleted from the cellular membrane due to Golgiplug™ [93, 94], which may inhibit
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subsequent TNFα autocrine and paracrine signaling [95, 96, 97]. Second, Golgiplug™ can hinder

the membrane expression of the cluster of differentiation 14 (CD14), which regulates the endocy-

tosis of LPS or the TLR4-LPS complex [98, 99, 100]. Therefore, the TRIF-dependent pathway,

which is initiated only after LPS or LPS-TLR4 is endocytosed into cytoplasm [37, 101], can also

be partially impaired. Lastly, the secretion of TNFα proteins translated in response to the NFκB

activation will also be inhibited, which helps measure the TNFα production at the single-cell level.

Consequently, the dynamic effects of Golgiplug™ were parameterized and included in the

model by the following equations:

G =
t

t+ τ

ksTNFR,m = ksTNFR(1−G)

ksTLR4,m = ksTLR4
(1−G)

kenLPS ,m = kenLPS(1−G)

kencp,m = kencp(1−G)

ksec,m = ksec(1−G)

(2.1)

where G is the normalized activity of Golgiplug™, t is the elapsed time from the addition of

Golgiplug™, τ is the characteristic time associated with Golgiplug™ activity, ksTNFR and ksTLR4
are

the constitutive synthesis rates of TNFR and TLR4, respectively, in the absence of Golgiplug™,

kenLPS and kencp are the endocytosis rates of LPS and the LPS-TLR4 complex, respectively, in the

absence of Golgiplug™, ksec is the TNFα secretion rate in the absence of Golgiplug™ and ksTNFR,m,

ksTLR4,m, kenLPS ,m, kencp,m and ksec,m are the corresponding rates in the presence of Golgiplug™.

After Golgiplug™ is added to the cells at t = 0, G slowly increases from zero to one, where G = 0

and G = 1 represent no inhibition and complete inhibition, respectively, of protein export from the

Golgi apparatus in the presence of Golgiplug™.

Since the signaling kinetics under the stimulation of LPS in the presence of Golgiplug™ were

measured experimentally, the dynamic model that consists of the model presented in [1] and Equa-
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tion 2.1 was used to simulate the dynamics of LPS-induced NFκB signaling in the presence of

Golgiplug™. In general, the dynamic model that simulates the signaling pathway can be repre-

sented by a set of nonlinear ODEs as follows:

dx
dt

= f (x,θ;u)

y = g (x,θ;u)

(2.2)

where x represents the concentration of the biomolecules involved in the signaling pathway (i.e., a vector 

of states), θ is a vector of model parameters that describe the biochemical reaction rates in the pro-cess, 

u is the concentration of LPS added to the cells (i.e., the process input), and y is the model output (i.e., 

the experimental measurements predicted by the model). When Golgiplug™ is added, Equation 2.1 is 

included in Equation 2.2, and the overall model consists of 49 states and 146 parameters.

2.2.4 Parameter Estimation

Since we added the Golgiplug™ module to the model developed by Caldwell et al. [1], the 

integrated dynamic model (the model presented in [1] and Equation 2.1) was quantitatively cali-

brated by estimating its parameters using experimental measurements in response to different LPS 

concentrations in the presence of Golgiplug™.

The model parameter values were estimated by minimizing the difference between the ex-

perimental measurements and the model predictions of the protein concentration. In this work, we used 

flow cytometry to measure two key molecules in the LPS-induced NFκB signaling path-way: TNFα 

and IκBα. Since flow cytometry does not provide direct measurements of protein concentration, the 

mean fluorescence intensity (MFI), which is a measure of the number of copies

of the target molecule per cell, was used to infer the protein concentration by assuming a linear 

relationship between MFI and protein concentration. The experimental data and model prediction were 

compared based on fold changes of MFI, which are defined as follows:
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yIκBα(t) =
(xIκBα(t) + xIκBαn(t) + xNFκB-IκBα(t) + xNFκB-IκBαn(t))

(xIκBα,0 + xIκBαn,0 + xNFκB-IκBα,0 + xNFκB-IκBαn,0)
≈ IIκBα(t)− IIκBα,c

IIκBα,0 − IIκBα,c

yTNFα(t) =
xTNFα(t)

xTNFα,0

≈ ITNFα(t)− ITNFα,c
ITNFα,0 − ITNFα,c

(2.3)

where yIκBα(t) and yTNFα(t) are the fold changes of the IκBα and TNFα concentration at time t,

xIκBα, xIκBαn , xNFκB-IκBα, xNFκB-IκBαn and xTNFα are the cytoplasmic IκBα, nuclear IκBα, cytoplas-

mic IκBα-NFκB complex, nuclear IκBα-NFκB complex and intracellular TNFα concentration,

respectively, xi,0 is the initial concentration of the corresponding biomolecules, IIκBα and ITNFα are

the MFI of IκBα and intracellular TNFα, respectively, and Ij,0 and Ij,c, ∀ j = {IκBα, TNFα},

are the corresponding MFI at t = 0 and MFI of negative control, respectively. In each cell, IκBα

can be part of four biomolecules (xIκBα, xIκBαn , xNFκB-IκBα, xNFκB-IκBαn); however, flow cytometry

measurements can only provide the total IκBα concentration in each cell. Therefore, the simu-

lated concentrations of four IκBα-containing biomolecules were initially summed, and the fold

change of the sum (i.e., yIκBα) was computed to compare with the measurements in the subsequent

parameter estimation procedure.

One of the biggest challenges in estimating parameters of signaling pathways with a large

number of parameters is the parameter identifiability issue [23]. That is, the exact values of some

model parameters cannot be uniquely determined from experimental measurements even if a large

amount of experimental measurements are available [23, 47]. As the proposed model has a large

number of parameters, not all the model parameters can be estimated. To this end, a subset of

the model parameters, which can be uniquely estimated from the available experimental measure-

ments, was identified through a parameter selection method [23, 81]. Only these parameters were

estimated against the experimental data.

First, local sensitivity analysis [23, 102] was performed to compute two different sensitivity

matrices S1 and S2 to quantify the effect of each model parameter on yIκBα and yTNFα (i.e., the

process outputs). S1 and S2 represent the sensitivity matrices of the model parameters with re-

spect to yIκBα and yTNFα, respectively, when the cells were stimulated with LPS in the presence of
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Golgiplug™. Specifically, a sensitivity matrix is defined as:

Si =


∂yi(t1)
∂θ1

· · · ∂yi(t1)
∂θnp

... . . . ...
∂yi(tNt )

∂θ1
· · · ∂yi(tNt )

∂θnp

 , ∀i = {IκBα, TNFα} (2.4)

where np is the number of parameters in θ in Equation 2.2, and ∂yi(tl)/∂θj quantifies the effect of

a parameter θj on an output yi at t = tl,∀l = 1, · · · , Nt, where Nt is the number of measurement

instants. ∂yi(tl)/∂θj can be computed by the following equation:

∂yi(tl)

∂θj
=
∂gi(tl)

∂xT
∂x
∂θj

+
∂gi(tl)

∂θj
(2.5)

Additionally, the term ∂x/∂θj in Equation 2.5 can be computed by integrating the following

equation along with Equation 2.2:

d

dt

∂x(tl)

∂θj
=
∂f(tl)
∂xT

∂x
∂θj

+
∂f(tl)
∂θj

(2.6)

Second, the Gram–Schmidt orthogonalization method [23, 81] was used to identify the pi most

important model parameters to be estimated for each Si,∀ i = 1, 2. Here, pi is the number of

singular values of Si whose magnitudes are at least 5% of the largest singular value [80, 81]. As a

result, the parameter subset to be estimated, θs ∈ Rp×1 where p ≤ p1 + p2, is chosen as the union

of the selected parameters from S1 and S2. Third, the least-squares problem was solved to estimate

the values of θs by minimizing the difference between the model predictions and the experimental

data of yTNFα and yIκBα while the values of the unselected parameters were fixed at their nominal

values selected from the literature [1, 2, 103, 104] with some modifications.

In this study, three LPS concentrations (10, 50 and 250 ng/mL) were used to stimulate cells,

and the MFI of IκBα and TNFα were measured at t = 0, 10, 20, 30, 60, 120, 240 and 360 min

after the addition of LPS with Golgiplug™ (i.e., tl, ∀ l = 1, · · · , 7). Specifically, the MFI data

from 10 and 250 ng/mL of LPS (i.e., uk, ∀ k = 1, 2) were used to estimate the parameter values,
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while the dataset from 50 ng/mL LPS was used to validate the model with the updated parameters.

Then, the least-squares problem is formulated as follows:

min
θs

2∑
k=1

7∑
l=1

[(
yIκBα,k,1(tl)− ŷIκBα,k,1(tl)

ŷIκBα,k,1(tl)

)2

+

(
yTNFα,k,1(tl)− ŷTNFα,k,1(tl)

ŷTNFα,k,1(tl)

)2
]

(2.7)

s.t.
dxk,i
dt

= f i (xk,i,θs;uk) , xk,i(t = 0) = x0, ∀i = 1, 2 (2.8)

yj,k,1 = gj (xk,i,θs;uk) , j = {IκBα, TNFα} (2.9)

xlb ≤ xk,i ≤ xub (2.10)

θlbs ≤ θs ≤ θubs (2.11)

where yIκBα,k,1(tl) and yTNFα,k,1(tl) are the simulated fold changes of IκBα and TNFα, respectively,

through Equation 2.9 at t = tl under the initial LPS concentration of uk in the presence of

Golgiplug™, ŷIκBα,k,1 and ŷTNFα,k,1 are the corresponding experimentally measured fold changes and

x0 is the vector of the initial conditions of x (see Supplementary Materials Table S1).

In the least-squares problem of Equations 2.7-2.11, the objective function of Equation 2.7 com-

putes the difference between model predictions and the experimental measurements of the proteins

in the presence of Golgiplug™. As a whole, the objective function minimizes the difference by

varying the values of θs. While Equation 2.8 is integrated to compute the predicted protein con-

centration xk,i, f 1, which includes Equation 2.1 is integrated if Golgiplug™ is present; otherwise,

f 2, which does not involve Equation 2.1, is integrated. The initial condition of the model, x̂0, is

assumed based on a previous study [1, 9]. Equations 2.10-2.11 impose lower and upper bounds

on the states and parameters, respectively, based on previous studies and underlying biological

knowledge [1, 9, 37].

It should be noted that we preserved one set of the experimental measurements (one obtained

under 50 ng/mL of LPS) to validate the parameter estimation results [105]. As Equations 2.7-2.11

are likely to be non-convex, the choice of the initial guesses is important. In this study, the initial

guesses for the above least-squares problem were obtained from Caldwell et al. [1], which were
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validated experimentally by comparing with the population-level measurements. Therefore, the

parameter values estimated by Caldwell et al. [1] were suitable initial guesses. At the same time,

Equations 2.7-2.11 were solved multiple times with different initial values to avoid any subopti-

mal optima. Model simulations and the parameter estimation were performed in MATLAB via

its functions ode15s and fmincon. The absolute and relative tolerance criteria for ode15s were set

as 10−9, and fmincon was implemented with multistart to obtain a better result by solving Equa-

tions 2.7-2.11 multiple times with different initial conditions.

2.3 Results

Profiles of de novo synthesized intracellular TNFα under the stimulation of LPS in the pres-

ence of Golgiplug™ demonstrated that the TNFα production increased around one hour after the

stimulation (Figure 2.5). At around the same time, the IκBα concentration reached its minimum,

which is consistent with experimental observations in the literature [106, 107, 108]. Subsequently,

the IκBα concentration increased due to the induction of IκB transcript (IκBt) by nuclear transla-

tion of NFκB, while the TNFα production rate slowed down beyond 4 hours of LPS stimulation

(Figure 2.5). It should be noted that no experiments were conducted beyond 6 hours after LPS was

added to the cell culture based on the manufacturer’s guideline on Golgiplug™ use. This is most

likely based on the fact that Golgiplug™ might induce the apoptosis of cells exposed to it for a

long time [109, 110]. As a result, the calibrated model is more suitable to describe the early NFκB

signaling pathway (≤ 6 hours) upon the LPS stimulation.

2.3.1 Model Validation

Based on the criteria outlined above in the previous section, six parameters (Table 2.1) were

selected for parameter estimation. Figure 2.5 shows the simulated profiles of intracellular TNFα

and IκBα in macrophages under the stimulation of LPS in the presence of Golgiplug™ after the

parameter estimation. While the model predictions agreed well with the experimental data obtained

for 250 ng/mL of LPS, less concordance was observed between simulations and experimental data

for 10 ng/mL of LPS. Specifically, the simulated concentration of intracellular TNFα was one
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Figure 2.5: Parameter estimation before considering the Golgiplug™-induced ER stress. (a–c)
Measured (empty circle) and simulated (solid line) fold changes of IκBα concentrations over time
were plotted under different LPS concentrations in the presence of Golgiplug™. (d–f) Measured
(empty circle) and simulated (solid line) fold changes of intracellular TNFBα concentrations over
time were plotted under different LPS concentrations in the presence of Golgiplug™. Indicated
amounts of LPS were used for experiments and simulations. Experimental data are given as means
± SEM (standard error of means) with at least n = 6.

order of magnitude lower than the MFI data, while the simulated IκBα dynamics were qualitatively

similar to the measured MFI values. Since the discrepancy between the model prediction and the

experimental measurements was pronounced with 10 ng/mL of LPS, we hypothesized that the lack

of agreement between the simulations and experimental data was because the effects of Golgiplug™

addition were not adequately represented in the model structure and were more pronounced at the

lower LPS concentration.

2.3.2 Golgiplug™-Induced ER Stress

One possible explanation for this discrepancy could be that the addition of Golgiplug™ in-

duced other signaling pathways, which altered NFκB signaling dynamics [111]. As Golgiplug™

prevents protein secretion by causing collapse of the Golgi apparatus into the ER, synthesized
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Parameter
TLR4 constitutive generation rate

IKKK-mediated IKK activation (IKK→ IKKa)
IκBα transcript degradation rate

Hill coefficient of IκBα transcription
Hill coefficient of IκBε transcription

Hill coefficient of TNFα transcription

Table 2.1: The selected parameters when Golgiplug™-induced IκB translation inhibition was not
considered.

proteins will be redistributed from the Golgi complex into the ER [89]. A direct consequence of

Golgiplug™ addition could be accumulation of newly synthesized proteins in ER, which may in-

duce ER stress [111]. It is well established that the ER stress leads to phosphorylation of eukaryotic

initiation factor 2 α-subunit (eIF2α), which partially inhibits the translation of IκB in the NFκB

signaling pathway [111, 112, 113, 114]. This could lead to a decrease in the overall kinetics of the

LPS-induced NFκB signaling as the concentration of IκB proteins would be kept lower, leading

to the aforementioned mismatch between the model predictions and experimental data. Since the

low LPS concentration induces less IκBα and its isomers (IκBβ and IκBε) (Figure 2.5), the entire

LPS-induced NFκB pathway dynamics would be affected more significantly by Golgiplug™ at a

lower LPS concentration than at a high LPS concentration if the translation of IκBα and its isomers

is partially inhibited. If this is true, it can lead to the pronounced disagreement between the model

prediction and the experimental measurement under the stimulation of 10 ng/mL LPS as shown in

Figure 2.5.

Therefore, we examined whether the Golgiplug™ addition could modulate IκB levels. First,

the fold changes in IκBα MFI with the stimulation of LPS alone, Golgiplug ™ alone, and LPS and

Golgiplug ™ in macrophages were compared. Figure 2.6a shows that Golgiplug™ alone lowers

the concentration of IκBα, and Figures 2.6b–d show that the IκBα kinetics were altered when the

cells were stimulated with LPS and Golgiplug™. While IκBα levels initially decreased when cells

were exposed to LPS alone, they recovered to pre-stimulation levels after 3 hours of exposure.

However, when LPS was added along with Golgiplug™, IκBα levels continued to be lower than
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Figure 2.6: Kinetics of IκBα fold changes when the cells were stimulated by (a) 0, (b) 10, (c) 50,
and (d) 250 ng/mL of LPS in the presence (empty circles) or absence (x marks) of Golgiplug™.
Data are given as means ± SEM with at least n = 3.

pre-stimulation levels (Figures 2.6b–d). These results suggested that Golgiplug™ could affect the

IκBα kinetics (presumably through the eIF2α phosphorylation) [112, 114]. This also explains the

observations in Figures 2.5a–c, where the intracellular TNFα concentration continued to increase

since the Golgiplug™-induced response prolonged the NFκB activation by inhibiting the IκBα

synthesis.
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Table 2.2: Selected parameters and their newly estimated values for the final model.

Parameter New Value
Coefficient for eIF2α phosphorylation (ν) 1.00

A20-mediated C1 deactivation 9.04 × 103 (µM min)−1

TLR4 constitutive generation rate 3.75 × 10−2 µM min−1

IKKK-mediated IKK activation 4.75 × 103 (µM min)−1

Constitutive inactivation of IKK 2.85 × 10−2 min−1

IκBα mRNA degradation rate 5.83 × 10−3 min−1

Hill coefficient of IκBα transcription 4.16
Hill coefficient of IκBε transcription 5.00

2.3.3 Model Refinement

In order to account for the Golgiplug™-induced translation inhibition, the following equation

was considered in addition to Equation 2.1:

ktli,m = ktli

(
1− νG

G+K

)
(2.12)

where ktli,m and ktli are the IκBi, ∀ i = α, β, ε, translation rates in the presence and absence of

Golgiplug™, respectively, ν is a coefficient for the maximum translation inhibition and K is the

Michaelis constant of the eIF2α phosphorylation. Equation 2.12 was included in Equation 2.2

along with Equation 2.1 for an accurate simulation. The process affected by this translation inhi-

bition is shown in Figure 2.4 via a red arrow.

The proposed dynamic model was calibrated again using the parameter estimation procedure

as described above. Since the additional measurements of the IκBα dynamics in the absence of

Golgiplug™ were obtained, an extra sensitivity matrix was calculated, and the following was added

to the objective function (Equation 2.7):

2∑
k=1

7∑
l=1

(
yIκBα,k,2(tl)− ŷIκBα,k,2(tl)

yIκBα,k,2(tl)

)2

where ŷIκBα,k,2 and yIκBα,k,2 are the simulated and measured IκBα fold changes, respectively, in the

23



absence of Golgiplug™.

2.3.4 Final Model Validation

Based on the updated model structure and the available experimental data, the aforementioned

parameter selection approach determined eight parameters, which could be uniquely estimated

(Table 2.2). Most of the parameters selected by the proposed parameter selection procedure were

relevant to the core NFκB-IκB feedback system such as Hill coefficients for IκB-α and -ε transcrip-

tion, IKK deactivation, and IκBα transcript degradation rate. The remaining identified parameters

are the TLR4 constitutive generation rate, C1 (TNFR complex) deactivation rate and eIF2α phos-

phorylation coefficient. Hence, all major processes considered in this system, which included the

LPS- and TNFα-induced NFκB signaling pathway in the presence of Golgiplug™, were quantita-

tively validated against the single-cell experimental data.

Figure 2.7 shows simulated fold changes in IκBα and intracellular TNFα after parameter es-

timation. The simulated profiles were again compared with the experimental data. The normal-

ized root-mean-squares of the parameter estimation results before and after the incorporation of

the Golgiplug™ model (Equation 2.12) were 3.8 and 2.5, respectively, which demonstrated the im-

provement of the model fidelity. Overall, the model predictions were in qualitative and quantitative

agreement with both training datasets and validation datasets, as well as the literature data, which

validated the prediction capability of the calibrated model, as well as our hypothesis on the effect

of Golgiplug™ on the inhibition of IκB translation. The results demonstrated that the calibrated

model is capable of predicting input-output responses in the NFκB pathway. Additionally, the

predictions from the current model were compared with the model proposed by Caldwell et al. [1]

(Figures 2.7g–i). The proposed model was able to predict the observed IκBα dynamics under all

LPS concentrations more accurately than the previous model by Caldwell et al. [1], which again

demonstrated that the predictive capability of the model was improved in terms of simulating the

IκBα dynamics.

In order to further assess the predictive capability of the newly calibrated model, the simulated

dynamics of nuclear NFκB levels (i.e., activated NFκB) in the absence of Golgiplug™ were com-
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Figure 2.7: Parameter estimation considering Golgiplug™-induced ER stress. (a–c) Measured
(empty circle) and simulated (solid line) fold changes of IκBα concentrations over time were
plotted in the presence of Golgiplug™. (b–f) Measured (empty circle) and simulated (solid line)
fold changes of intracellular TNFα concentrations over time were plotted in the presence of
Golgiplug™. (g–i) Measured (empty circle) and simulated (solid line) fold changes of IκBα con-
centrations over time were plotted in the absence of Golgiplug™. The IκBα dynamics predicted
by the model in [1, 2] were also plotted in (g–i) for comparison. Indicated amounts of LPS were
used for experiments and simulations.

puted and plotted in Figure 2.8a. The maximum NFκB translocation to the nucleus occurred within

2 hours of LPS addition, which was consistent with previous experimental studies [3, 115, 116].

Moreover, as the LPS concentration increased, the nuclear NFκB levels reached their maximum

value earlier (i.e., at 50, 60, 75 and 105 min after adding LPS), and the areas under the curves in
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Figure 2.8a, which were computed as indicators of the signal strength, were around 20 µM·min

for different concentrations of LPS. Interestingly, a 25-fold change in the LPS concentration only

resulted in less than a 100% change in the signal strength. This observation was consistent with

single-cell studies by Tay et al. [78, 117], where they observed a relatively constant peak inten-

sity and decreasing response time of the NFκB signal in mouse 3T3 cells upon TNFα or LPS

stimulation.

Figure 2.8b shows the predicted amount of TNFα secreted under different LPS stimulation

conditions in macrophages. As the LPS concentration increased, the concentration of secreted

TNFα increased, which was expected since the signal (area under the peak) became stronger.

Furthermore, similar to previous studies [1, 3, 118], the TNFα concentration peaked around 5

hours after stimulation and gradually declined thereafter; however, the rate of decline was slower

than that reported by Maiti et al. [3] (Figure 2.8c), where they measured the TNFα secretion dy-

namics from RAW264.7 macrophages in response to LPS stimulation at the population level. This

observation was consistent with the observation reported by Xue et al. [77], who observed using

human monocyte-derived macrophages the amount of TNFα secreted to the medium from a single

cell in a cell population was less than that from an isolated single-cell at 20 hours after the LPS

stimulation. This suggested that the simulated dynamics by the proposed model is qualitatively

similar to the signaling dynamics of an isolated single-cell instead of population-averaged dynam-

ics, which was expected since the kinetic data obtained under Golgiplug™ were used to train the

model.

2.4 Discussion

In this study, we have developed a dynamic model that can accurately simulate the average

single-cell dynamics of the NFκB signaling pathway by combining the single-cell measurements

and a numerical scheme with sensitivity analysis, parameter selection and parameter estimation.

The dynamic model was built based on a previously developed NFκB model [1, 2, 9] and cali-

brated using the experimental data and the aforementioned numerical scheme. Predictions from

the developed dynamic model are in good agreement with the experimental measurements under
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Figure 2.8: Simulated dynamics of NFκB nuclear translation and TNFα secretion. (a) Nu-
clear NFκB concentration and (b) the amount of TNFα secreted to the medium upon stimulation
by 10, 50, 100 and 250 ng/mL of LPS. (c) The simulated dynamics of TNFα concentration in the
medium was compared with the measurement by Maiti et al. [3] in response to 100 ng/mL of LPS.
The TNFα concentration at each point was normalized to the maximum value obtained.

all LPS concentrations, which demonstrates that the model is capable of simulating the average

single-cell dynamics.

Previous studies have used stochastic simulation algorithms such as Gillespie’s algorithm [119]

and approximate methods of Gillespie’s algorithm [51, 120, 121, 122] to study single-cell dynam-

ics and investigate heterogeneity in signaling pathways at the single-cell level [37, 73, 123]. For

example, Lipniacki et al. [78, 123] proposed a hybrid stochastic-deterministic model of the TNFα-

induced NFκB signaling pathway that was able to reproduce the heterogeneous responses observed

in the single-cell measurements [78, 124] and identify possible origins of the heterogeneity. How-
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ever, stochastic simulation algorithms are computationally expensive, and they are difficult to fit

to experimental measurements for model validation [10, 125, 126]. A more viable method is a

semi-stochastic model, which uses deterministic modeling with model parameters that have distri-

butions [10, 37, 42], to reduce the computational cost while still studying the cell-to-cell variability.

The dynamic model developed here can accurately simulate average single-cell dynamics and is a

first step towards building a semi-stochastic model of the NFκB signaling.

The development of such a deterministic model for building a semi-stochastic model requires

accurate parameter estimation, where values of model parameters are estimated by solving an op-

timization problem (Equations 2.7-2.11). However, parameter estimation is a nontrivial problem

due to, but not limited to, ill conditioning, over-fitting and the non-identifiability of model param-

eters [13, 30, 127]. The ill-conditioning and over-fitting problems during parameter estimation are

attributed to the fact that available experimental measurements are usually very limited and noisy,

while mathematical models of signaling pathways are often very comprehensive and include a

large number of parameters [23, 30]. As a result, the solution to the parameter estimation problem

is likely to be non-unique or very sensitive to noise present in the experimental measurements.

Furthermore, even if a large number of noise-free experimental measurements are available, the

value of a parameter cannot be uniquely determined if the parameter is not identifiable [23, 47];

hence, it is necessary to check the parameter identifiability a priori.

The model developed in this work contains 148 parameters with limited experimental data,

and hence, parameter estimation is very likely to suffer from the aforementioned issues in the

parameter estimation procedure. Therefore, we implemented an integrated method combining

sensitivity analysis and parameter selection before parameter estimation. Specifically, the sensi-

tivity analysis quantified the effects of each parameter on the measurements, and the parameter

selection method selected identifiable parameters via Gram–Schmidt orthogonalization. Then, the

values of only the selected parameters were estimated in the parameter estimation, while the val-

ues of remaining parameters were fixed at their nominal values, which effectively alleviated the

ill-conditioning problem by reducing the degrees of freedom in Equations 2.7-2.11 [23, 30, 127].
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After parameter estimation, the simulated profiles of intracellular TNFα and IκBα exhibited

reasonable agreement between the model predictions and the experimental measurements at all

LPS concentrations (Figure 2.7). Furthermore, as shown in Figure 2.8c, model predictions after pa-

rameter estimation were distinct from that of a cell population as the simulated profiles were closer

to the signaling dynamics of isolated single-cells. This was likely because the use of Golgiplug™

inhibited secretion of cytokines [128] and hence minimized potential autocrine and paracrine sig-

naling from the secreted cytokines. This is important as the autocrine and paracrine signaling has

been proposed as a key component in determining the overall signaling dynamics of cells in a

population [77, 95, 96, 129]. Therefore, the proposed model, which was trained by the single-cell

dynamics from flow cytometry in the presence of Golgiplug™, was able to describe the single-cell

NFκB dynamics under minimal cytokine feedback.

It should be noted that the current model simulates the LPS-induced NFκB signaling dynamics

in a cell, but it does not consider the initiation of the NFκB signaling pathway by TNFα se-

creted by neighboring cells. Hence, the flow cytometry measurements obtained in the presence of

Golgiplug™ are appropriate to identify realistic parameter values to reproduce average single-cell

dynamics. At the same time, as flow cytometry measures cellular responses from thousands of

cells simultaneously, flow cytometry can provide distributions of the measurements (Figures 2.1-

2.3). Based on this statistical information, one can estimate the distributions of the parameters by

different methods such as Bayesian approaches [42, 10] or generalized polynomial chaos [130].

The model with the estimated parameter distributions is then the semi-stochastic model that can be

used to study the heterogeneity in cellular responses.

The present study also suggests that cytokine production data acquired using flow cytometry

in the presence of Golgiplug™ should be interpreted cautiously. As Golgiplug™ can block cy-

tokine secretion, it is often used to assess the cytokine production at the single-cell level using

flow cytometry [131, 132, 133]. The data shown in the work suggest that the dynamics of tran-

scription factors and other signaling intermediates may be altered by the addition of Golgiplug™

(Figure 2.6). Therefore, data from studies using Golgiplug™ need to be interpreted cautiously, and
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a model-based approach like the one presented here can be useful in eliminating the effects of

Golgiplug™ and extract true signaling dynamics from flow cytometry data.

2.5 Conclusions

We systemically extracted the average single-cell dynamics of the LPS-induced NFκB sig-

naling pathway through the integration of sensitivity analysis and a parameter selection scheme

with flow cytometry data of key protein intermediates. Based on the measurements and the model

structure, key model parameters were identified and estimated to maximize the prediction accuracy

of the calibrated model while avoiding overfitting. The mismatch between the model predictions

and experimental observations even after the parameter estimation revealed the existence of a pre-

viously unconsidered, yet important, mechanism related to Golgiplug™, which was subsequently

validated by experiments and led to the update of the proposed model. Then, the resultant model

was validated, and the simulated profiles from the updated model were in good agreement with

experimental datasets under three different LPS concentrations. This model can be used as the

nominal model to construct a deterministic model that has parameters with distributions and can

be used to study the stochasticity in signaling.
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3. AN INTEGRATED NUMERICAL AND EXPERIMENTAL FRAMEWORK FOR

MODELING OF CTB AND GD1B GANGLIOSIDE BINDING KINETICS *

3.1 Introduction

In the intestinal lumen, Vibrio Cholerae, the main culprit of cholera, secrets cholera toxin

(CTx). CTx can bind to the host cell membrane, leading to the internalization of CTx into cy-

toplasm. This process adversely increases the cyclic adenosine monophosphate level and causes

severe fluid loss from host cells [134]. Severe dehydration and electrolyte imbalance could threaten

the life of the patient if untreated [135]. Identifying the binding mechanisms of CTx to the host

cell membrane can assist in understanding the pathogenesis of cholera and developing new CTx

inhibitors for treatment.

CTx is one of AB5 toxins that consists of a catalytic A subunit and five identical B subunits

(Figure 3.1) [4, 136, 137]. The pentameric CTB can bind to ganglioside receptors in the host cell

membrane to initiate the CTx internalization. Three major characteristics associated with the CTB-

ganglioside binding mechanisms were identified by previous studies [11, 138, 139, 140]. First, a

CTB can bind up to five ganglioside receptors in the host cell membrane (i.e., pentavalent binding)

[5, 11]. Second, the binding affinity between a single CTB binding pocket and a ganglioside

receptor can be changed if any adjacent pocket has been occupied by another receptor, which

is called cooperative binding effect [5, 6, 134, 138, 141, 142]. Third, ganglioside receptors are

found to form aggregates [139, 140, 143, 144, 145], and the receptor aggregates could hinder the

association of individual ganglioside receptors with CTB proteins [139, 140, 146]. As a result,

the CTB-ganglioside binding mechanism is an inherently complicated dynamic process; therefore,

a mathematical model that can accurately predict the dynamics of the binding process is highly

desirable to enhance the fundamental understanding and guide the future experimental design.

*Reprinted with the permission from “An integrated numerical and experimental framework for modeling of CTB
and GD1b ganglioside binding kinetics," Lee et al., 2018, AIChE Journal, 64, 3882-3893. Copyright 2018 by John
Wiley & Sons, Inc.
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Figure 3.1: Top view of a CTB protein crystal structure (Reprinted from [4] under the permission
of Creative Common CC BY license). Five monomers of the CTB are shown in five different color.

Probably due to the complexity of multivalent binding processes, many previous studies [147,

148, 149, 150, 151] still employed a simple single-site binding model, which assumes each CTB

could bind with only one ganglioside receptor, to estimate the apparent association and dissociation

rate constants. The simplified model misses the inherent multivalent binding process, which is

a key characteristic preceding the toxin endocytosis, as well as the receptor aggregation effect

[11, 134].

A more detailed mechanistic model was proposed by Lauer et al. [11]. They not only mod-

eled the initial binding step of a free CTB binding to a free ganglioside in a membrane but also

considered subsequent binding steps after a CTB gets anchored to the membrane surface. How-

ever, the effects of the cooperative binding and the receptor aggregation are still missing in the

model, which may lead to inaccurate prediction of the equilibrium binding constant by several

folds [5, 11, 139, 141].

Most of prior studies focused on CTB-GM1 interaction as GM1 is known as a primary gan-

glioside receptor of CTB due to its high avidity [152]. However, a few studies suspected that other
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gangliosides also play important roles in the CTB attachment. For example, it was shown that CTB

could bind to a cell in the absence of GM1 [152]. In addition, GM1 is of very low abundance in

human intestinal epithelial cells (0.0015-0.003 mol% of glycosphingolipids) [153]; thus, a recent

publication asked whether GM1 was sufficient to induce the CTx attachment [154]. More recently,

it was reported that GM2, GD1b, and fucosyl-GM1 (f-GM1) also bind to CTB, and CTB-GD1b

interaction is the strongest among these secondary receptors [6, 155]. Therefore, we focus on

modeling CTB-GD1b binding mechanisms.

In this chapter, we developed a systematic framework, which integrates dynamic modeling, ex-

periments, and parameter estimation to acquire more reliable binding rate parameters. Figure 3.2

illustrates the integrated experimental and numerical framework implemented in this study. Specif-

ically, the first-principle modeling and experiments are performed in parallel, which is followed

by parameter estimation to calibrate the proposed model. If the model predictions after the param-

eter estimation disagree with the the experimental measurements considerably, a series of model

development, validation, and calibration process is repeated until the satisfactory fit is obtained.

A new CTB binding model was established by introducing the cooperative binding effect and the

receptor aggregation. The nanocube-based biosensor [6, 7] was implemented to measure the CTB-

GD1b binding kinetics under various CTB and GD1b concentrations. We employed a parameter

selection method to identify the process model parameters that can be uniquely determined based

on the experimental measurements and the model structure to avoid overfitting [156]. The selected

parameters were estimated by solving a dynamic optimization problem to minimize the error be-

tween model predictions and experimental measurements. The results suggest that our framework

can be extended to other multivalent binding systems, enhancing our fundamental understanding

of the complex biological processes.
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Figure 3.2: A schematic diagram of the model development and calibration procedure via an in-
tegrative approach combining experimental and numerical methodologies. u represents the ex-
perimental conditions (i.e., GD1b surface density as well as initial CTB concentration), y and ŷ
are measured and simulated membrane-bound CTB concentration, respectively, θ∗s is a set of the
most identifiable parameters, and ŷnew is the predicted membrane-bound CTB concentration after
parameter estimation.

3.2 Mathematical Modeling

The aim of this study is to model the kinetics of CTB proteins binding to GD1b receptors on

model membranes. The artificial model membrane contains phospholipids and GD1b receptors,

allowing us to tune the membrane compositions for studying the CTB-GD1b binding mechanisms.

In addition, the model membrane can form supported lipid bilayers on nanocube sensors [6, 7].

Therefore, we could experimentally monitor CTB binding kinetics and validate the proposed bind-

ing model.

Because CTB is a homopentamer (i.e. a protein has five identical binding subunits), Lauer et

al. [11] developed a stepwise reaction pathway that considered five different binding intermediates

based on the number of bound receptors per CTB. However, it has been shown that the binding

affinity can be altered if any adjacent binding pocket has been occupied by another receptor [138,

141, 142]. In order to consider the cooperative effect, we introduced two additional binding states

of CTB-GD1b complexes to the CTB binding model developed by Lauer et al. [11]. A CTB-
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Figure 3.3: A schematic illustration of the dynamic multi-step binding mechanisms between GD1b
receptors and a CTB protein (adapted from Lin et al. [5]). Available and filled spheres represent
empty and GD1b-bound binding pockets of a CTB protein, respectively.

GD1b complex with two or three bound GD1b receptors has two different configurations based on

the relative locations of bound GD1b receptors (Figure 3.3). The binding kinetics of these seven

binding complexes are modeled by seven ODEs.

A CTB has to diffuse from the solution phase to a membrane surface before one of its binding

sites attaches to a GD1b receptor. At the same time, a free GD1b receptor moves two dimension-

ally, encounters a CTB protein, and enables subsequent binding events on the membrane. There-

fore, the transport process of CTB proteins to the membrane needs to be addressed in order to accu-

rately model the first step of the binding process. In this study, the effective rate constants are used

to simplify the modeling process [11, 157, 158]. In addition, it is known that ganglioside receptors

can form clusters in the host cell membrane and model membrane [139, 140, 144, 159, 160, 161],

and the clusters of GD1b receptors could inhibit the association between CTB and ganglioside

receptors due to steric hindrance, increasing the equilibrium dissociation constant [139, 146]. To

address this issue, we introduced an empirical factor that accounts for the clustering effect into the

association rate constant.

Based on the above considerations, kf and kr, which are the effective association and disso-

ciation rate constants between a CTB in solution and a free GD1b in a membrane, are defined as
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follows [11, 157, 158, 162]:

k1 = k1,0e
−KR

kf =
k1

1 + 5k1R
4πDaNa

kr =
k−1

1 + 5k1R
4πDaNa

(3.1)

where k1 is the association rate constant between CTB and GD1b that is reduced due to the receptor

aggregation, k1,0 is the intrinsic association rate constant, K is the binding inhibition coefficient,

R is the number of free GD1b receptors per nanocube, D is the effective diffusivity coefficient

for a CTB in solution [162], a is the effective radius of a lipid-membrane covered nanocube, Na

is the Avogadro’s number, and k−1 is the intrinsic dissociation rate constant. A prior study has

shown the apparent association constant of the CTB-GM1 binding exponentially decreases when

the surface density of GM1 increases from 0.02% to 10% [139]. Thus, we can use an exponential

decay function to model the relation of the association rate constant and receptor density. It should

be noted that receptor aggregates are not explicitly modeled as a separate state, and R refers to the

total number of free GD1b receptors, including both unaggregated and aggregated forms that are

not bound to any CTB proteins.

After a CTB attaches to a membrane, the subsequent binding occurs on the two dimensional

membrane surface. We introduced a binding rate constant k2 to describe the binding events be-

tween a CTB-GD1b complex and a GD1b receptor on a model membrane [11]. Also, we defined

a new rate constant k20, which is k2 divided by the surface area of the model membrane. As de-

scribed above, due to the cooperative binding effect, a single k20 rate parameter is not sufficient to

describe all association events between a CTB-GD1b and a free GD1b receptor. Previous studies

[5, 11, 138, 141] reported that the association energy between a CTB binding subunit and a free

glycan, which is a sugar headgroup of a ganglioside receptor, could be altered by its adjacent bind-

ing subunits. Therefore, we considered three different binding scenarios on model membranes:

a GD1b receptor binds to a binding pocket with zero, one or two GD1b-bound neighbors in a
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membrane-bound CTB (Figure 3.3). To account for such a cooperative binding effect, two more

binding rate constants (k21 and k22) were introduced, and the relationships among these rate pa-

rameters are defined as follows:

k20 = k2/A

k21 = α1k20

k22 = α2k20

(3.2)

where k20 is the effective association rate between a CTB-GD1b complex with a free GD1b recep-

tor in the membrane, A is the surface area of the model membrane, k21 and k22 are the association

rate constants for a free GD1b receptor binding to a binding pocket with one and two GD1b-bound

neighbors in a membrane-bound CTB (Figure 3.3), respectively, and α1 and α2 are the factors that

describe the cooperative binding effect of the CTB-GD1b binding.

The following system of ODEs are proposed to describe the dynamics of CTB-GD1b binding

in the model membrane (Figure 3.3):

dB1

dt
= 5kfCR− krB1 − 2k21B1R + 2k−1B21 − 2k20B1R + 2k−1B22

dB21

dt
= 2k21B1R− 2k−1B21 − 2k21B21R + 2k−1B31 − k20B21R + k−1B32

dB22

dt
= 2k20B1R− 2k−1B22 − 2k21B22R + 2k−1B32 − k22B22R + k−1B31

dB31

dt
= 2k21B21R− 2k−1B31 + k22B22R− k−1B31 − 2k21B31R + 2k−1B4

dB32

dt
= 2k21B22R− 2k−1B32 + k20B21R− k−1B32 − 2k22B32R + 2k−1B4

dB4

dt
= 2k21B31R + 2k22B32R− 4k−1B4 − k22B4R + 5k−1B5

dB5

dt
= k22B4R− 5k−1B5

(3.3)
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which are subject to the following mass balance equation and initial conditions

R(t) = R0(t)−B1(t)− 2 (B21(t) +B22(t))− 3 (B31(t) +B32(t))− 4B4(t)− 5B5(t)

Bij(0) = 0, R(0) = R0, C(0) = C0

where Bij denotes a CTB-GD1b complex with i number of bound-GD1b receptors in the jth

configuration (Figure 3.3), C is the unbound CTB concentration, R0 is the initial number of GD1b

receptors per nanocube, and C0 is the initial CTB concentration. Since the nanocube biosensor

measures the membrane-bound CTB concentration, the process output is the sum of all Bij , which

is calculated by:

CB(t) =
c

Na

(B1(t) +B21(t) +B22(t) +B31(t) +B32(t) +B4(t) +B5(t)) (3.4)

where CB is the concentration of membrane-bound CTB on all nanocubes in the solution, and c is

the number concentration of nanocubes in the solution.

In the following sections, we will use the expressions below to denote Equations 3.3-3.4:

˙̂xk = f (x̂k,θ, uk)

ŷk = g (x̂k,θ, uk)
(3.5)

where x̂k is the predicted state trajectory (i.e., x̂ = [B1 B21 · · · B5]
T ) under an input uk (i.e., an

initial concentration of CTB and a GD1b surface density), θ is the vector containing the model

parameters, ŷk is the predicted membrane-bound CTB concentration (i.e., CB).

3.3 Parameter Estimation

Parameter estimation is essential to make the model predictions more accurate and reliable

[23, 163]. It is usually formulated as a least-squares problem; that is, the model parameters are

estimated by minimizing the squared deviation between experimental data and model predictions.

In this work, among all model parameters (Equation 3.3), the values of a, c, A, D, R0, and C0
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were determined by the experimental conditions. The remaining unknown model parameters, θ =

[k1,0, k−1, k2, K, α1, α2]
T , have to be determined via fitting the binding model to experimental

data.

It is very tempted to fit all these unknown model parameters simultaneously to a set of available

experimental data. An important but often-overlooked first step is to assess the identifiability of

the model parameters [23, 156]. If the number of model parameters to be estimated exceeds the

number of parameters that could be uniquely determined from the available experimental data, the

parameter estimation problem becomes ill-conditioned, which needs to be regularized to compute

the optimal solution [76, 81, 164, 165, 166, 167].

3.3.1 Parameter Selection

Among several regularization methods proposed in the literature (reviewed in [23, 163]), the

parameter selection method proposed by Chu and Hahn [156] is employed in this work to clas-

sify model parameters into groups of identifiable and unidentifiable ones, and only the former is

estimated in the subsequent parameter estimation step. In a dynamical system, a set of model

parameters θ is identifiable if

ŷ(x̂,θ;u) = ŷ(x̂,θ1;u) =⇒ θ = θ1

Albeit of its simple definition, it is nontrivial to determine which parameters are identifiable,

especially for a nonlinear system like Equation 3.3. In this study, a parameter is selected for

estimation if it has a significant impact on the process output while it has a minimum correlation

with other parameters [23]. One way to quantify these two criteria at the same time is to perform the

local sensitivity analysis of the parameters using a set of nominal values for the model parameters

[102]. The local sensitivity sjk(tl) is defined as a partial derivative of the system output ŷk(tl) with

respect to the parameter θj ∈ θ, ∀j = 1, . . . , 6, at the sampling time tl under the input uk:

sjk(tl) =
∂ŷk
∂θj

∣∣∣∣∣
t=tl

=
∂g

∂x̂Tk

∂x̂k
∂θj

∣∣∣∣∣
t=tl

+
∂g

∂θj

∣∣∣∣∣
t=tl

(3.6)
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In order to compute the time evolution of sjk, the values of ∂x̂k/∂θj at every sampling time are cal-

culated by integrating Equation 3.7, which is derived by differentiating Equation 3.5 with respect

to θj as follows:
d

dt

(
∂x̂k
∂θj

)
t=tl

=
∂f
∂x̂Tk

∂x̂k
∂θj

∣∣∣∣∣
t=tl

+
∂f
∂θj

∣∣∣∣∣
t=tl

(3.7)

which is subject to the following initial conditions

∂x̂k
∂θj

∣∣∣∣
t=0

= 0 (3.8)

where ∂x̂k/∂θj is the sensitivity of state x̂k with respect to the parameter θj under input uk.

Suppose there are N1 different initial CTB concentrations tested under each of N2 different

GD1b surface densities (i.e., the process input u ∈ RN×1, whereN = N1×N2), and the membrane-

bound CTB concentration (i.e., the process output y) is measured at Mk different time instants for

each uk, ∀k = 1, . . . , N . Then, Equations 3.6-3.8 are integrated to compute sensitivities at Mk

sampling times under N process inputs. The obtained sensitivities can form a sensitivity matrix

S ∈ Rd×6, where d =
∑N

k=1Mk, as follows:

S =



θ̂1
ŷ1,ss

s11(t1) · · · θ̂p
ŷ1,ss

sp1(t1)

... . . . ...

θ̂1
ŷ1,ss

s11(tM1)
θ̂p
ŷ1,ss

sp1(tM1)

... . . . ...

θ̂1
ŷN,ss

s1N(t1)
θ̂p

ŷN,ss
spN(t1)

... . . . ...

θ̂1
ŷN,ss

s1N(tMN
) · · · θ̂p

ŷN,ss
spN(tMN

)



(3.9)

where ŷk,ss is the predicted steady-state value of output ŷ under input uk, and θ̂j is the nominal

value of θj . In order to eliminate possible scaling effects of different parameters and the outputs on

the sensitivity, each column is multiplied by the corresponding parameter θ̂j , and each row is di-
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vided by the corresponding ŷk,ss. Therefore, each column of the sensitivity matrix S represents the

sensitivity vector of a parameter atMk time instants underN process inputs when the measurement

is available.

Utilizing the sensitivity matrix S, the aforementioned two criteria for the parameter selection

can be quantified by computing D-optimality criterion, which is defined as follows [156]:

φD(STs Ss) = det(STs Ss) (3.10)

where Ss ∈ Rd×ps is the sensitivity matrix that consists of a set of columns in S corresponding to

the selected parameters, and ps is the number of selected parameters, which is obtained by counting

the number of singular values of S greater than 0.1% of the largest singular value [81]. A parameter

subset with the largest φD value contains the most identifiable parameters that will be estimated in

parameter estimation.

It should be noted that the result of the local sensitivity analysis highly depends on the nominal

values of the model parameters. As a result, if exact values of model parameters are not known

a priori, the selected parameter solely based on the local sensitivity analysis might not be robust

[13, 156, 168]. In this work, the nominal values of the kinetic parameters are unreliable due to the

limited number of relevant studies in the past. And, depending on the experimental techniques,

the nominal values of k1,0, k−1, α1, and α2 reported in different studies vary in a wide range

[147, 148, 155]. Moreover, the values of k2 andK have not been quantified. Thus, we implemented

an approach proposed by Chu and Hahn [156] to determine the most identifiable parameters by

combining the local sensitivity analysis with Latin hypercube sampling (LHS). The procedure can

be summarized as follows [156]:

1. Enumerate every possible combination of choosing ps out of the six model parameters

2. Determine the ranges of values for all the model parameters

3. Generate q parameter samples by LHS with a uniform distribution
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4. Compute D-optimality criterion (φD) for each parameter combination generated in Step 1

with each parameter sample from Step 3.

5. Compute the mean D-optimality criterion (φ̄D) for each parameter combination

The most identifiable parameter subset is the one with the largest φ̄D. We selected LHS because

it is an efficient and unbiased sampling methodology [156, 169]. More details of the methodology

can be found in [156].

3.3.2 Least-squares problem for parameter estimation

In the parameter estimation step, only the parameters identified in the parameter selection step,

θs, are estimated by the least-squares problem while the remaining parameters are fixed at their

nominal values (Table 3.1). The least-squares problem is formulated as follows:

min
θs

N∑
k=1

Mk∑
l=1

(
yk(tl)− ŷk(tl)

Ek(tl)

)2

(3.11a)

s.t. ŷk(tl) = g (x̂k(tl),θs, uk) (3.11b)

˙̂xk(tl) = f (x̂k(tl),θs, uk) , x̂k(t = 0) = x0 (3.11c)

xlb ≤ x̂k ≤ xub (3.11d)

θlbs ≤ θs ≤ θubs (3.11e)

where θs ∈ Rps×1 is a set of the selected parameters, Ek(tl) is the standard error of yk(tl), and x0

is the vector containing the initial conditions of x.

k1,0 (M−1s−1) k−1 (s−1) k2 (nm2s−1) K α1 α2

1.6×104 0.032 0.021 0.01 0.5 0.5

Table 3.1: The model parameters and their nominal values.
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In the least-squares problem of Equation 3.11, the objective function of Equation 3.11a rep-

resents the squared deviation between the model predictions and the experimental measurements,

which is to be minimized by adjusting the values of θs. Equation 3.11d imposes the lower and

upper bounds on states based on experimental observations and the knowledge on this biological

system, and the constraint of Equation 3.11e ensures the parameter values are consistent witthe

previous studies on the CTB-ganglioside binding process [5, 147, 148].

3.3.3 Experimental methods

The kinetic datasets of CTB binding to the model membrane containing 1, 2 and 4 mol% GD1b

at 21, 32, 40 and 52 nM CTB concentrations were acquired by the nanocube-based sensor. The

binding kinetics were used for the parameter estimation and the model validation. Specifically, the

collected experimental measurements were divided into a training dataset for the parameter esti-

mation process and a validation dataset for the model validation process. All the data considered

was in one batch.

3.3.3.1 Materials

Disialoganglioside GD1b(NH+
4 salt)(Galβ1-3GalNAcβ 1-4(Neu5Acα2-8)(Neu5Acα2-3)Gal β1-

4Glc-Ceramide) were purchased from Matreya LLC (State College, PA). 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine - sodium salt (DOPS),

and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-PE) were obtained from

Avanti Polar Lipids (Alabaster, AL). CTB (lyophilized powder) from Vibrio Cholerae, strepta-

vidin from Streptomyces avidinii (Stp) and casein from bovine milk were purchased from Sigma-

Aldrich. Chloroform and methanol were purchased from Fisher Scientific. All the CTB binding

experiments were performed in Tris-buffered saline (TBS) from Sigma Aldrich while the experi-

ments involving Stp and biotin-PE were performed in phosphate buffered saline (PBS) from Cul-

GeneX.
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Figure 3.4: The binding curve of Stp-biotin used to calibrate the nanocube-sensor for this study
(see [6, 7] for the detailed procedures).

3.3.3.2 Synthesis & calibration of the nanocube sensor

The synthesis of silica coated silver nanocubes was followed as reported in Worstell et al. [6,

155]. The silver nanocubes were prepared based on polyol method, and silica coating on the

silver nanocubes was done using Stöber’sTM process. The quality control of each nanocube syn-

thesis batch was done by a set of characterization procedures, including (1) figure-of-merit mea-

surements, (2) film thickness measurements using transmission electron microscopy (TEM), (3)

reconstituted cell membrane confirmation using cryo-TEM, and (4) the calibrations of bound

protein density using the standard protein-membrane binding systems [6, 7]. In Step 4, Stp-

biotinyl lipid binding was used as the positive control. In brief, the lipid bilayer (89% DOPC/10%

DOPS/1% biotin-PE) coated nanocubes were titrated with Stp, and the average Stp surface den-

sity on nanocubes was evaluated (Figure 3.4). All the CTB densities shown in the kinetic binding

curves have been calibrated by this positive control.
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3.3.3.3 Supported lipid membrane preparation

Small unilamellar vesicles (SUVs) were prepared at 3 g/L concentration. 1 mol%, 2 mol%,

and 4 mol% of GD1b stored in chloroform/methanol/water mixture was mixed with 10 mol% of

DOPS and 89 mol%, 88 mol%, and 86 mol% of DOPC stored in chloroform. The mixture was

dried using a rotary evaporator (Heidolph Hei-VAP Valuer) for five minutes. The dried lipids

were then rehydrated with Milli-Qr water, followed by extrusion through 100 nm polycarbonate

filters (Whatman) using a Mini-extruder (Avanti Polar Lipids). A previously established protocol

of sequential addition of silica coated silver nanocubes and buffer (TBS or PBS) solution to SUVs

was used to form supported lipid membranes [6, 155]. There was a small modification of using

vortex mixer instead of bath sonicator for mixing after each sequential addition. After membrane

coating, the nanocubes were incubated with 0.5 g/L casein in 1X TBS or 1X PBS solution to

prevent non-specific binding.

3.3.3.4 CTB binding measurement

17 µL of the lipid membrane coated nanocubes was added to two wells in the 384-well plate,

followed by addition of 3 µL of 1X TBS solution to one well (control) and 3 µL of the required

CTB concentration to the other well. Kinetic measurements of extinction spectra of the solutions

were started immediately after CTB addition in a UV/Vis microplate spectrophotometer equipped

with a CCD (FLUOstar Omegar, BMG-Labtech) and continued for three hours. Each binding

measurement was repeated in four wells. The quadrupolar LSPR peak location was estimated by

fitting the measured absorption spectra to a fifth order polynomial. All binding experiments were

carried out in triplicate and repeated at least twice.

3.4 Results

The datasets obtained with the CTB concentration of 21, 32 and 52 nM (N1 = 3) under the

GD1b receptor density of 1, 2 and 4 mol% (N2 = 3) were used for parameter estimation; therefore,

N = 9 in Equation 3.11. The binding kinetics measured at 40 nM CTB concentration were used to

validate the model [105].
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3.4.1 Parameter selection results

Although the nominal values of model parameters are needed for computing the sensitivity

matrix, the information of rate parameters are limited. MacKenzie et al. [147] and Kuziemko et

al. [148] measured values of k1,0, and k−1 for the CTB-GD1b and CTB-GM1 binding kinetics;

however, the binding kinetics reported in these two studies were quite different. This is because

they used a single-site binding model to describe the inherent multivalent binding process. Hence,

these values were not applicable to our model.

We estimated the nominal values of the model parameters by scaling down the rate parameters

of the CTB-GM1 binding reported by Lauer et al. [11]. Prior studies [147, 148] also reported k1,0

values in the CTB-GD1b binding system were around 60% in the CTB-GM1 binding system, and

k−1 value in the former was one order of magnitude higher than that in the latter. Hence, the kinetic

parameters (k1,0, k−1, k2) adopted from Lauer et al. [11] were scaled accordingly as the nominal

values of the CTB-GD1b binding model. The nominal values of the cooperative binding factors

α1 and α2 were adopted from a recent study reported by Krishnan et al. [155] (Table 3.1).

Parameter subset log10φ̄D
log10φD Probability to be

(at nominal values) the optimum

ps = 3
k1,0, k−1, K 5.5 8.6 0.76
k1,0, k2, K 4.1 7.9 0.04
k−1,k2, K 3.3 7.9 0.01

ps = 2
k1,0, K 6.0 7.9 0.26
k−1, K 5.8 8.0 0.51
k1,0, k−1 2.7 4.6 0.08

ps = 4
k1,0, k−1, k2, K 2.0 7.8 0.72
k1,0, k−1, K, α1 1.2 7.1 0.02
k1,0, k−1, K, α2 -0.04 6.0 0.09

Table 3.2: The result of the parameter selection procedure.

With the given nominal parameter values, the sensitivity analysis and parameter selection were

performed as described in the previous section. The number of identifiable parameters is deter-
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mined by the magnitude of singular values of S; the threshold used in this study was the number

of singular values of S greater than 0.01% of the largest singular value. Based on this criterion,

three out of the six model parameters are determined to be identifiable from the experimental data

obtained from the nanocube-based biosensor (ps = 3). In order to carry out the sampling-based

sensitivity analysis [156], the parameter values were allowed to vary between 1% to 10000 % of

their nominal values listed in Table 3.1, and 5000 different sets of the parameter values in these

ranges were sampled and used to perform the local sensitivity analysis 5000 times. For ps = 3,

the best parameter subset was {k1,0, k−1, K} based on the average D-optimality criterion value, φ̄D

(Table 3.2). Furthermore, its probability to be chosen as the optimal set was highest (Table 3.2),

where the probability was calculated by dividing the number of samples when each parameter

subset had the largest value of φ̄D by the total number of samples.

As a comparison, the parameter selection procedure was repeated with ps = 2 and 4. Their

φD values at the nominal parameter values and their probabilities to be the optimal set were pre-

sented in Table 3.2. When the value of ps increased from two to three, the φ̄D value of the most

optimal parameter set decreased slightly while the φ̄D value decreased by more than three orders

of magnitude when the value of ps changed from three to four. This indicates at most three model

parameters are identifiable, and estimating more than three parameters is likely to result in a non-

unique solution [23, 156].

It should be noted that under all conditions the φ̄D value of a subset deviated significantly from

that at the nominal parameter values (Table 3.2), which suggested that selecting parameters solely

based on the nominal parameter values could be misleading [156]. For example, the D-optimality

criterion value of the set {k1,0, K} was slightly smaller than that of the set {k−1, K} at the nominal

values, but their relationship was reversed when their φ̄D values were compared (Table 3.2). This

analysis suggests that the local analysis along with LHS is a viable option to determine the set

of identifiable model parameters if their nominal values were unreliable and only a wide range of

their values was known a priori.
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3.4.2 Parameter estimation results

In order to estimate the selected parameters, the least-squares problem (Equation 3.11) was

solved by varying the values of k1,0, k−1 and K while the values of the other parameters were fixed

at their nominal parameter values (Table 3.1). Equation 3.11 is a dynamic optimization problem

with ODEs as one of its constraints [168]. Here, we implemented a sequential approach to solve

the dynamic optimization problem using Matlab software suite [168, 170, 171]. Specifically, at

the inner loop of the dynamic optimization problem, numerical integration of Equation 3.11b was

performed using ode15s function in Matlab to compute the objective function as well as its gra-

dient numerically. Then, the optimization method was applied at the outer loop to minimize the

objective function via fmincon with MultiStart in Matlab to obtain an improved result by solving

Equation 3.11 with 50 different different initial conditions [170, 171]. Running in a Windows desk-

top with 3.60 GHz Quad-Core Intel i7 Processors, the total CPU time for solving the optimization

problem was around 900 seconds. In average, it took about 0.6 seconds to evaluate Equation 3.11a

once, and it was evaluated 5500 times, which took around 830 seconds (90% of the total CPU time)

through a parallel computation scheme utilizing four cores. For a large-scale problem with numer-

ous constraints, a simultaneous approach such as the collocation problem method will improve the

computational costs [172]. The estimated parameter values are listed in Table 3.3.

k1,0 (M−1 s−1) k−1 (s−1) K

2.5×103 6.6×10−3 9.3×10−4

Table 3.3: Estimated values of the selected parameters.

The estimated CTB-GD1b association rate constant is one order of magnitude lower than that

of the CTB-GM1 binding estimated by Lauer et al. [11]. This result is consistent with the previous

studies of the CTB-ganglioside binding kinetics [147, 148, 149]. The estimated value of dissoci-
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ation constant (k−1) was about the same order of magnitude (∼ 10−3s−1) compared to that of the

CTB-GM1 binding kinetics estimated [11] while previous studies [147, 148] reported k−1 of the

CTB-GD1b binding kinetics was one order of magnitude larger.
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Figure 3.5: The results of the parameter estimation. Model predictions were compared with the
experimental datasets used in the parameter estimation. Experimental data are given as means ±
SEM.
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The experimental and the predicted kinetics of the CTB-GD1b binding were shown in Fig-

ure 3.5. Comparing the simulated profiles with the experimental data used for model fitting, the

proposed model agreed reasonably well with the experimental observations except CTB binding

to 1 mol% of GD1b at 50nM CTB concentration. To further validate the proposed model, we

compared the model predictions with the experimental measurements that were not used in the

parameter estimation (Figure 3.6). The results demonstrated our parameter selection and estima-

tion procedures could improve the predictive capability of the proposed dynamic model without

overfitting.

The same parameter selection and estimation procedure was implemented to calibrate the

model proposed by Lauer et al. [11]. The k10 and k−1 were determined as identifiable parame-

ters, so they were estimated using the same experimental measurements. Then, we compared the

normalized root-mean-square error (RMSE) of the two models. The RMSE values were 150 and

76 for the model proposed by Lauer et al. [11] and for the one proposed in this work, respectively,

which demonstrated the proposed model was better than the one proposed by Lauer et al. [11].

3.5 Discussion

CTB binding to membrane receptors can be significantly influenced by the cell membrane en-

vironment and cooperative actions between CTB and its receptors. It requires a comprehensive

analysis to understand this dynamic binding process. This study developed a systematic tool to

estimate the binding parameters used in the CTB-GD1b recognition. We successfully integrated

the first-principle modeling, the biosensing platform, and the algorithm of parameter selection and

estimation (Figure 3.2). Specifically, we established a multi-step dynamic model, which consid-

ered the multivalency of CTB, the cooperative binding effect, and the receptor aggregation process

to simulate the CTB-GD1b binding on model membranes. To acquire more reliable binding pa-

rameters, the nanocube sensing platform was employed to measure the CTB binding kinetics in

the cell-membrane-mimicking environment. The proposed binding model was fit to the experi-

mental data by estimating the identifiable parameters. This systematic approach could ensure that

the values of estimated parameters were accurate and robust.
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Figure 3.6: Validation of the parameter estimation results. Datasets obtained under 40.2 nM CTB
concentration were used to validate the predictive capability of the proposed model since these
datasets were not used in the parameter estimation. Experimental data are given as means ± SEM
(standard error of means).

The values of model parameters were estimated by the model fitting and then validated by

conducting a new set of experiments (Figures 3.5 and 3.6, respectively). While the model predic-

tions agreed well with the experimental measurements obtained under 4% GD1b surface density,

there was a small degree of discrepancy between the model predictions and the experimental data

under 1% and 2% GD1b surface densities (Figure 3.5). It is probably due to the higher experi-

mental errors at these experimental conditions. It is worth noting that the error bar in Figure 3.5

represents the standard error of the measurements, and the model predictions still fall within the
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95% confidence intervals of the experimental measurements. To further validate the reliability of

the fitted parameters, additional experiments were conducted (Figure 3.6). The model predictions

agree well with the new set of experimental measurement. This result demonstrates that our mod-

eling procedures could improve the predictive capability even though the experimental errors were

considerable.

A distinct advantage of the mathematical model is allowing us to estimate the average valency

of membrane-bound CTB proteins (i.e. the average number of receptors binding to CTB proteins).

Although a single ganglioside binding to CTx is sufficient for intoxication, prior studies have

shown multivalent binding can significantly increase CTx toxicity [173, 174]. In order to describe

the toxicity, it is essential to estimate the average valency of membrane-bound CTB proteins. It

is difficult to experimentally quantify the valency; hence, mathematical modeling becomes an

attractive tool.

We calculated the average valency of membrane-bound CTB proteins at various GD1b sur-

face densities and CTB concentrations using the resultant model (Figure 3.7). The percentage of

CTB proteins bound to only one GD1b increased with CTB concentrations as more CTB pro-

teins competed to bind with relatively scarce GD1b receptors. At the same time, the percentage

of membrane-bound CTB proteins that had more than two bound GD1b increased when the CTB

concentration decreased. Nevertheless, the percentage of the membrane-bound CTB proteins with

more than four bound GD1b receptors remained low at the conditions we tested. Considering

the fact that physiological concentrations of ganglioside and CTB are low [153, 175], we expect

most of membrane-bound CTB proteins receive two GD1b receptors in a homogeneous membrane

containing only GD1b receptors. Although CTx binding to membrane is not the only mechanism

involving in the pathogenesis, this study offers a mathematical approach to assist the biologist in

estimating the influences of membrane receptors in toxin entry.

It should be noted that we reported the average and standard errors of individual experimental

results conducted on different days (i.e., inter-day validation), which was one of the factors caus-

ing the data fluctuations shown in Figures 3.5-3.6. Furthermore, the low GD1b surface densities
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Figure 3.7: Predicted changes in the average valency of CTB proteins under various conditions by
the proposed model. The amounts of membrane-bound CTB proteins with the different number of
bound GD1b receptors under different CTB and GD1b concentrations were computed and plotted
against the CTB concentration after being normalized by the total number of membrane-bound
CTB proteins after 3 hours.

considered in this work rendered the CTB-GD1b binding process to be stochastic as the num-

ber of GD1b receptors on a model membrane would be far less than Avogadro’s number, which

would inevitably introduce some fluctuations in the experimental measurements. Our previous

study [7] has shown that the fluctuations in the measurements were largely due to the process it-

self. Specifically, when binding kinetics of fluorescence-labeled CTB binding to GM1 receptors

were measured by the nanocube-sensor and fluorescence correlation spectroscopy [176], a similar

degree of fluctuation was observed through two different methods [7]. To partially handle these
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undesired uncertainties in the measurement data, the objective function of the parameter estimation

(Equation 3.11a) was normalized by the standard errors so that the measurement data with larger

uncertainties would be less important during the parameter estimation process. Additionally, we

have developed in kMC model for the CTB-GD1b binding kinetics in order to analyze to what ex-

tent the measurement uncertainties are originated from the stochasticity present in the CTB-GD1b

binding kinetics, which will be beneficial for the design of future experiments to minimize the

measurement uncertainties (see Chapter 7).

3.6 Conclusion

Numerous pathogens and their virulence factors (e.g. viruses, bacteria, and toxins) recognize

the host cell membrane receptors via multivalent bindings. So far, most of biological studies still

rely on the classic monovalent binding model to describe this essential process. In this work,

we developed a systematic approach to model the dynamic process of the multi-step CTB-GD1b

binding. We introduced several key features, including the stepwise reaction, the cooperative bind-

ing effect, and the membrane receptor aggregation, into the CTB-binding model. The parameter

estimation and the parameter selection strategies were implemented for the model fitting. In ad-

dition, the nanocube-based biosensor was employed to measure the CTB-GD1b binding kinetics.

The identifiable parameters were estimated by minimizing the difference between the experimen-

tal measurements and the model predictions. The calibrated model was able to make an accurate

and robust prediction of the membrane-bound CTB concentration. Because many recent biolog-

ical studies suggested that multivalency is a fundamental principle in lectin-glycan recognition

[177, 178], there is an urgent need of a reliable multivalent binding analysis. Our study shows the

potential of mathematical modeling in the analysis of complex multivalent binding on cell mem-

brane surfaces. The future work involves analyzing a more complicated hetero-multivalent binding

process where CTB proteins can bind to different types of membrane receptors simultaneously.
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4. IDENTIFICATION OF A TIME-VARYING INTRACELLULAR SIGNALING MODEL

THROUGH DATA CLUSTERING AND PARAMETER SELECTION: APPLICATION TO

NFκB SIGNALING PATHWAY INDUCED BY LPS IN THE PRESENCE OF BFA *

This chapter proposes a method to construct a time-varying model for a partially known system.

Specifically, when an accurate model for describing a signaling pathway under one stimulus is

available, we can modify that model to describe the same signaling pathway under a lesser-known

stimulus [179, 180]. Hereafter, we refer to the model constructed for the well-studied stimulus

as the nominal model. The rationale for using the nominal model is two-fold. First, the nominal

model already contains a number of important pathway components as well as their interactions,

which are likely to be important under the lesser-known stimuli as well. Second, this approach

avoids the lengthy model selection procedure, which requires a number of different candidate

models to be synthesized, calibrated, and compared [179]. On the other hand, the structure of

the nominal model is likely to be insufficient to describe the signaling dynamics under the lesser-

known stimulus due to unincorporated and unknown reactions and components specific to this

stimulus [179]. Therefore, a poorly characterized signaling pathway induced by a lesser-known

stimulus needs to be described by a data-driven approach to complement the inaccuracy of the

nominal model. Here, we choose to introduce time-varying parameters to the nominal model,

which is usually time-invariant, based on the available experimental measurements [180, 181].

Through this data-driven approach, a more accurate model for the lesser-known stimulus can be

derived based on the nominal model and the available data.

Motivated by the above considerations, we propose a numerical scheme to construct a time-

varying model to simulate an intracellular signaling pathway with a lesser-known stimulus based

on a nominal model. First, global sensitivity analysis is performed on the nominal model to identify

*Reprinted with the permission from “Identification of a time-varying intracellular signalling model through data
clustering and parameter selection: application to NF-κB signalling pathway induced by LPS in the presence of BFA,"
Lee et al., 2019, IET Systems Biology, 13, 169-179. Copyright 2019 by Dongheon Lee, Arul Jayaraman and Joseph S.
Kwon distributed under Creative Commons Attribution-NonCommercial-NoDerivs License

55



a set of parameters that are identifiable given the model structure and experimental observations,

and only these parameters are assumed to vary with time. Next, the temporal profiles of the model

parameters are partitioned into several temporal subdomains whose boundaries are determined

by clustering the experimental observations. And the parameters determined by the sensitivity

analysis have fixed values in each temporal subdomain. Finally, a least-squares problem is solved

to estimate the values of the parameters in each temporal subdomain by minimizing the difference

between the model predictions and the experimental data.

The chapter is organized as follows: first, the motivation for formulating a time-varying sig-

naling model is presented. Next, the proposed methodology that consists of the optimal temporal

clustering and the global sensitivity analysis to construct a time-varying model is presented in

details. Lastly, the proposed methodology is implemented to develop a time-varying model for

the NFκB signaling pathway induced by LPS in the presence of BFA to assess the efficiency and

accuracy of the proposed scheme.

4.1 Background

4.1.1 System Description

Consider an intracellular signaling pathway initiated by an external stimulus, u, which has been

well characterized by the following model:

ẋ = f (x,θ, u; t) ; x(0) = x0

y = g (x,θ, u; t)

(4.1)

where x ∈ Rnx is the state vector, θ ∈ Rnθ is the parameter vector, x0 is the initial value of the

state vector x, and y ∈ Rny is the output vector.

When a lesser-known stimulus, ua, is added to a cell, the signaling dynamics deviate signifi-

cantly from those predicted by Equation 4.1. Due to the disparity in our understanding of the roles

of ua, u, and their interplay in the signaling dynamics, little information on the signaling dynamics

is available a priori. Consequently, the construction of a high-fidelity model, which faithfully sim-
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ulates the signaling dynamics initiated by ua and u, requires iterative experimentation and model

refinement, which can be an arduous and lengthy process [8, 27, 182].

A more viable alternative is to approximate the dynamics induced by ua through introducing

a time-varying model where θ in Equation 4.1 changes with time so that the well-defined model

(Equation 4.1) can be used to describe the signaling dynamics under the two stimuli [181]. To this

end, the temporal profile of θ is described as piece-wise constant functions. Under this represen-

tation, the entire temporal domain is divided into several temporal subdomains, each of which has

its own parameter values. Consequently, the following modified form of Equation 4.1 is used to

describe the signaling dynamics under two stimuli:

ẋ = f
(
x,θσ(t), u; t

)
; x(0) = x0

y = g
(
x,θσ(t), u; t

)
σ(t) = i if t ∈ Ti, i = {1, . . . , nσ}

(4.2)

where θi ∈ Rnθ , where i = 1, . . . , nσ, is the vector of parameter values used when time t belongs

to temporal subdomain, Ti, nσ is the number of temporal subdomains, and σ(t) is the discrete

variable to denote which θi is used at time t.

Under this formulation, the overall temporal domain is partitioned into nσ subdomains, where

different values of θ are used. From here on, ua is neglected since the use of θσ(t) implies the

presence of ua.

4.1.2 Experimental Measurements

In order to train and validate Equation 4.2, y is measured experimentally under different con-

ditions. Here, nu different values of u with a fixed value of ua were used. Due to the technical

and economical constraints in a biological experiment, y can be measured at only a few sampling

time instants, tl, l = 1, . . . , Nt, where Nt is the number of sampling instants [183]. Also, it should

be noted that commonly used biochemical assays such as Western blots, flow cytometry, or mi-

croarrays typically give qualitative or semi-quantitative datasets, which measure relative but not
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absolute concentrations of biomolecules [42]. In other words, the measured output is defined as:

zsi (tl) = ci · ŷi(us; tl) + νi (4.3)

where zsi , i = 1, . . . , ny, is the relative measured output that is corrupted with measurement noise

under the input us, s = 1, . . . , nu, ŷi is the output in absolute concentration that is not directly

measurable in the experiments, ci is the proportional constant relating zsi and ŷi, and νi is measure-

ment noise. Here, it is assumed that the mean value of νi can be inferred during the equipment

calibration procedure [184].

Since the values of c are not usually known beforehand, an alternative quantity is computed

to facilitate the comparison between the model and the experimental measurements. Specifically,

fold changes of the measurements are calculated as follows [8]:

ȳsi (tl) =
zsi (tl)− ν̄i
zsi (t1)− ν̄i

=
ŷi(u

s; tl)

ŷi(us; t1)
(4.4)

where ȳsi (tl) is the fold change of zsi at tl, t1 is the first sampling instant (usually t1 = 0), and ν̄i is

the average measurement noise that can be obtained by performing a negative control measurement

without reagents.

4.1.3 Problem Statement

In this study, we seek to construct a time-varying model (Equation 4.2) by estimating the tem-

poral dynamics of θ, and this can be achieved by addressing the following two problems:

Problem. Given the model (Equation 4.2) and the experimental measurements (Equations 4.3-

4.4), determine the number of temporal subdomains, nσ, as well as the temporal subdomains,

Ti, ∀i = 1, . . . , nσ.

Since nσ and Ti are not known a priori, the experimental measurements are clustered to esti-

mate the value of nσ and the temporal subdomains, Ti.

Problem. Given the model (Equation 4.2), the experimental measurements (Equation 4.3), and the
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temporal subdomains of the parameters (T1, . . . ,Tnσ ), estimate the values of parameters, θi, i =

1, . . . , nσ, in each temporal subdomain.

For many intracellular signaling pathways, only a small subset of θ is identifiable from the

experimental measurements [47, 183]. As a result, the additional parameters introduced in the

time-varying model (Equation 4.2), which increases the size of the parameter space by nσ-fold,

are likely to be even more unidentifiable. Hence, a sequential parameter selection methodology is

implemented to identify the most important parameters in θ, and the values of these parameters in

each temporal subdomain are estimated. The resultant model then can be used to investigate the

system dynamics and design the optimal experiments for future studies to advance our understand-

ing of systems.

4.2 Temporal Clustering

Since the intracellular signaling dynamics are described by the time-varying model Equa-

tion (4.2) with the piecewise constant θ, the value of nσ and all the temporal subdomains, Ti, need

to be determined. In this work, they are inferred by clustering the experimental measurements into

several temporal subdomains in a way that the data points contained in each subdomain exhibit

similar temporal behaviors [185]. This inference assumes that the time-invariant parameters in one

temporal subdomain, Ti, result in the relatively uniform dynamics in y.

For the given experimental measurements D ∈ RNc×Nt , where Nc = nu · ny,

D =



ȳ11(t1) · · · ȳ11(tNt)

... . . . ...

ȳnu1 (t1) · · · ȳnu1 (tNt)

ȳ12(t1) · · · ȳ12(tNt)

... . . . ...

ȳnu2 (t1) · · · ȳnu2 (tNt)

... . . . ...

ȳnuny (t1) · · · ȳnuny (tNt)



(4.5)
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a clustering algorithm will assign Nt column vectors of D into nσ different temporal subdomains

by minimizing the distance between vectors in a subdomain and the center of the subdomain, which

is measured by the following intracluster error sum [185]:

Λ =
Nt∑
i=1

nσ∑
k=1

zik ‖Di − ck‖22 (4.6)

where Di is the ith column of D, zik is a binary variable indicating whether Di is in the kth subdo-

main, and ck ∈ RNc is the center of the kth cluster.

Since a value of nσ is not known a priori, a clustering method is implemented with all possible

number of subdomains (1,. . .,Nt) to find an optimal nσ by computing and comparing the values of

Λ as well as the inter-cluster error sum, Γ, which is defined as follows [185]:

Γ =
nσ∑
k=1

‖c◦ − ck‖22 (4.7)

where c◦ ∈ RNc is the global cluster center, which is defined as

c◦j =
1

Nt

Nt∑
i=1

Dji (4.8)

where c◦j is the j th element of c◦. When an optimal clustering configuration is achieved, the value

of Λ is minimized while the value of Γ is maximized to achieve the maximum intracluster simi-

larity and intercluster dissimilarity [185, 186]. Mathematically, this is quantified by the clustering

balance, ε, which was proposed in [186], as follows:

ε = 0.5Γ + 0.5Λ (4.9)

where 0.5 in front of Γ and Λ is a weight coefficient, which can be adjusted based on the problem

[187]. As Λ and Γ are expected to decrease and increase, respectively, with the number of subdo-

mains, a turning point in the value of ε determines the optimal value of nσ [185]. Once the value of
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nσ is determined, all the Ti can also be determined by clustering D into nσ temporal subdomains.

4.3 Parameter Estimation

The aim of the parameter estimation is to quantitatively calibrate a model so that it can make

an accurate and robust prediction of the system, which then can be used to analyze underlying

mechanisms and design optimal experiments [105, 182]. We can formulate a parameter estimation

for Equation 4.2 as a least-squares problem to minimize the difference between model predictions

and measurements as follows:

min
c,θ1,...,θnσ

nu∑
s=1

ny∑
i=1

Nt∑
l=1

(yi(u
s; tl)− ȳsi (tl))

2 (4.10a)

s.t. ẋ = f
(
x,θσ(tl), u

s; tl
)

; x(0) = x0 (4.10b)

y = g
(
x,θσ(tl), u

s; tl
)

(4.10c)

σ(tl) = k if tl ∈ Tk; k = {1, . . . , nσ} (4.10d)

θlb ≤ θk ≤ θub (4.10e)

where θlb and θub are lower and upper bounds for the values of the model parameters, respectively.

It should be noted that the parameter estimation (Equation 4.10) is often ill-conditioned and

results in a non-unique solution [23]. This is especially problematic for calibrating biological

models since biological systems are often partially observable and over-parameterized (i.e., ny �

nθ) [47]. As the time-dependency of the model parameters are introduced, the issue of the non-

uniqueness in the parameter estimation exacerbates since the number of parameters increases by

nσ-fold. In order to handle this issue, we assume that only identifiable parameters, which is a

subset of θ, vary with time while the remaining parameters are time-invariant and fixed at their

nominal values. Consequently, this study carries out the parameter selection methodology before

the parameter estimation to determine the identifiable parameters and estimate their values in each

Ti by solving the least-squares problem.
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4.3.1 Parameter Selection

The objective of the parameter selection procedure is to determine the identifiable parameters

that will be estimated in the parameter estimation step. In this study, two global sensitivity analysis

techniques are implemented to determine which parameters are identifiable.

4.3.1.1 Sensitivity Analysis

In the literature, several analytical methods have been proposed to determine parameter iden-

tifiability, including Taylor series expansion [188], differential algebra [189], or similarity trans-

formation [190]. But these methods require symbolic manipulation and thus only applicable to a

relatively small system (for nθ +ny ≤ 10) due to the computational requirements of these methods

[13].

Alternatively, the parameter identifiability can be assessed by sensitivity analysis (SA), which

evaluates the importance of the model parameters by quantifying changes in model outputs due

to changes in model parameters. A common method is the local SA method that is based on the

direct differentiation of a system model with respect to its parameters. However, the evaluation of

the system model as well as its derivatives with respect to its parameters depends on the values of

the model parameters, which are unknown before the parameter estimation. Therefore, a result of

the local SA method is local in nature and likely to be unreliable, particularly when the parameter

values are largely uncertain [156, 191].

In this study, two global SA methods, Morris method [192] and Sobol’ method [193], are

implemented sequentially to determine the most important parameters. Even though the parameters

take different values in each temporal subdomain, the model structure remains the same. Hence,

the results of global sensitivity analysis on the time-invariant model will be valid for the time-

varying one because the global sensitivity analysis computes the importance of model parameters

over the entire parametric domain. Therefore, all the analysis in the following sections is conducted

based on the time-invariant model (Equation 4.1).
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4.3.1.2 Morris Method

The Morris method computes the average sensitivity of a model parameter by calculating the

average change in model outputs due to changes in its value. Specifically, the value of a parameter

θj ∈ θ, j = 1, . . . , nθ, is perturbed by ∆j to compute its effect on an output yi, which is quantified

as follows [102]:

dij(u
s; tl) =

yi(x, θ1, . . . , θj + ∆j, . . . , θnθ , u
s; tl)− yi(x,θ, us; tl)

∆j

(4.11)

where dij(us; tl) is called the elementary effect of θj on yi at time tl, l = 1, . . . , Nt. By calculating

Nm different dij with Nm different values of ∆j , the average sensitivity measure of the parameter

θj , which is denoted as sij , is computed as follows:

sij(u
s; tl) =

1

Nm

θj
yi(x,θ, us; tl)

Nm∑
k=1

∣∣∣d(k)ij (us; tl)
∣∣∣

=
1

Nm

θj
yi(x,θ, us; tl)

×
Nm∑
k=1

∣∣∣∣∣yi(x, θ1, . . . , θj + ∆
(k)
j , . . . , θnθ , u

s; tl)− yi(x,θ, us; tl)

∆
(k)
j

∣∣∣∣∣
(4.12)

where ∆
(k)
j is the kth perturbation applied to parameter θj . Here, dij(us; tl) is normalized by

θj/yi(x,θ, us; tl) to eliminate possible scaling effects [102]. And, the suggested value for Nm

is r(nθ + 1), where r is usually around six [194].

Then, the final scaled sensitivity of all the model outputs with respect to a parameter across all

the time instants is defined as follows:

Sj =
1

ny

ny∑
i=1

∥∥∥∥[sij(u1; t1) · · · sij(u
1; tNt) · · · sij(u

nu ; tNt)

]∥∥∥∥
2

(4.13)

where sij(us; tl) is the average sensitivity computed under input us, s = 1, . . . , nu, at time tl.

Although the Morris method is conceptually simple and easy to be implemented, it has a lim-

ited capability in capturing the nonlinear output behavior and the dependency among parameters

[102]. Therefore, this study utilizes the Morris method as a screening tool to reduce the number
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of parameters to be analyzed by the Sobol’ method, which overcomes the problems of the Morris

method but is computationally more expensive.
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Figure 4.1: Schematic diagram for the LPS-induced NFκB signaling pathway (adapted from [8]).
Due to space limitation, TRIF-dependent regulation of TNFα production [2] and the feedback
regulation between NFκB and IκB-β and -ε are not illustrated. Also, the NFκB activation induced
by TNFα-TNFR is not shown in details due to the limited space (see [9] for details). Colored
arrows indicate the processes affected by the addition of BFA (see text for details).

4.3.1.3 Sobol’ Method

Once the Morris method screens out less important parameters from θ, the importance of the

remaining parameters, which are denoted as θ̄ ∈ Rnp , np < nθ, is analyzed via the Sobol’ method.

Different from the local SA method or the Morris method, the Sobol’ method is a variance-based

method. Specifically, the sensitivity of a parameter is computed by quantifying how much each pa-

rameter contributes to the output variance. A brief overview on the Sobol’ SA method is presented

below, and further details can be found in [193, 194, 195].

64



Number of Clusters, n
σ

1 2 3 4 5 6 7 8

E
rr

o
r 

S
u

m
s,

 Γ
 a

n
d

 Λ

0

0.2

0.4

0.6

0.8

1

Γ

Λ

Figure 4.2: Values of the intracluster error sum (Λ) and intercluster error sum (Γ) with the number
of subdomains (nσ). Each error sum is normalized by its maximum value.

The main idea of the Sobol’ method is the decomposition of the model output into summands

of increasing dimensionality. Specifically, a model output y can be decomposed as follows:

y(θ̄) =

y0 +

np∑
i=1

yi(θ̄i) +

np−1∑
i=1

np∑
j>i

yi,j(θ̄i, θ̄j) +

np−s+1∑
i=1

. . .

np∑
j>i+s−2

yi,...,j
(
θ̄i, . . . , θ̄j

)
+ y1,...,np(θ̄)

(4.14)

where s, where 3 ≤ s ≤ np, is the number of parameters involved in a summand yi,...,j
(
θ̄i, . . . , θ̄j

)
,

and y0 is defined as follows:

y0 =

∫
y(θ̄)dθ̄ (4.15)

Here, we assume y0 is a constant and the integrals of every summand over any of its variables

are zero, i.e.,

∫
yi1,...,ir(θ̄i1 , . . . , θ̄ir)dθ̄k = 0∀k = i1, . . . , ir, 1 ≤ i1 < · · · < ir ≤ np (4.16)
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in order for the decomposition of y as above (Equation 4.14) to hold [183, 193].

Then, by assuming that y is square integrable, its variance can be expressed as follows:

V =

∫ (
y2(θ̄)− y20

)
dθ̄ =

∫ ( np∑
i=1

y2i (θ̄i) +

np−1∑
i=1

np∑
j>i

y2i,j(θ̄i, θ̄j) + . . .+ y21,...,np(θ̄)

)
dθ̄

=

np∑
i=1

Vi +

np−1∑
i=1

np∑
j>i

Vi,j +

np−s+1∑
i=1

. . .

np∑
j>i+s−2

Vi,...,j + V1,...,np

(4.17)

where V is the total variance of a model output y, and Vi,...,j is the partial variance of the output

due to the parameters θ̄i, . . . , θ̄j .

Based on V and Vi,...,j , the importance of a parameter, θ̄j , can be quantified by the first order

and total sensitivity indices, which are defined as follows [196]:

SSj =
Vj
V

STj =
1

V

(
Vj +

np∑
k 6=j

Vj,k + . . .+ V1,...,np

)
=

1

V
(V − V∼j)

(4.18)

where SSj and STj are the first-order and total sensitivity indices, respectively, of the model pa-

rameter θ̄j , Vj is the partial variance of a model output due to θ̄j , and V∼j is the partial variance

of a model output due to joint effects of the model parameters θ̄ except θ̄j . Here, SSj refers to

the main effect of the parameter θ̄j , and STj measures the importance of a parameter, θ̄j , by taking

into account the direct effect (SSj ) as well as its joint effects with other parameters. It should be

noted that the difference between STj and SSj indicates how much θ̄j is involved in interactions

with other parameters in terms of changing the model output [195].

In this study, a Monte Carlo method proposed by Homma and Saltelli [196] is implemented

to estimate the total sensitivity indices. First of all, two matrices (A and B ∈ RNint×np) are gen-

erated randomly from the parameter space via a Sobol’ sequence to produce parameter samples

without overlapping [193, 197]. Here, Nint is the sample size for the Monte Carlo estimation,

which is typically around a few hundreds to thousands [194]. Then, another set of matrices

Cj ∈ RNint×np , ∀j = 1, . . . , np, can be defined for every parameter, θ̄j , by replacing the j-th

66



column of B with the j-th column of A. Next, the model outputs can be computed for all the

sampled parameter values in the matrices A, B, and Cj . Finally, the first-order and total sensitivity

indices in Equation 4.18 can be approximated as follows:

SSj(u
s; tl) ≈

1/Nint

∑Nint
i=1 y(us, a(i); tl) · y(us, c(i)j ; tl)− f 2

0 (us; tl)

1/Nint

∑Nint
i=1 (y(us, a(i); tl)2 − f 2

0 (us, tl)

STj(u
s; tl) ≈ 1−

1/Nint

∑Nint
i=1 y(us,b(i); tl) · y(us, c(i)j ; tl)− f 2

0 (us; tl)

1/Nint

∑Nint
i=1 (y(us, a(i); tl)2 − f 2

0 (us, tl)

(4.19)

where a(i), b(i), and c(i)j are i-th rows of A, B, and Cj , respectively, and f 2
0 (us, tl) is defined as

follows:

f 2
0 (us, tl) =

(
1

Nint

Nint∑
i=1

yi(u
s, a(i); tl)

)2

(4.20)

Since the proposed model (Equation 4.2) has ny outputs obtained under nu values for u sampled

at Nt time instants, a lumped sensitivity metric for the total sensitivity index is defined to ease the

parameter selection process as follows:

STij =
1

Nc

nu∑
s=1

Nt∑
l=1

Si,Tj(u
s; tl) (4.21)

where STij is the average total sensitivity of yi with respect to θ̄j , which will be used to select the

most influential parameters, and Si,Tj is the total sensitivity index, STj , computed for an output,

yi, i = 1, . . . , ny. Similarly, a lumped sensitivity metric for the first-order sensitivity index is

defined as follows:

SSij =
1

Nc

nu∑
s=1

Nt∑
l=1

Si,Sj(u
s; tl) (4.22)

where SSij is the average first-order sensitivity of yi with respect to θ̄j , which will be used to select

the most influential parameters, and Si,Sj is the first-order sensitivity index, SSj , computed for an

output, yi, i = 1, . . . , ny.

Based on the values of STij and SSij , a set of identifiable parameters, Θ ∈ Rnps , where

nps ≤ np, can be identified from θ̄. And the final parameter estimation problem (Equation 4.10) is
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reformulated as follows:

min
Θ1,...,Θnσ

nu∑
s=1

ny∑
i=1

Nt∑
l=1

(yi(u
s; tl)− ȳsi (tl))

2 (4.23a)

s.t. ẋ = f
(
x,Θσ(tl), u

s; tl
)

; x(0) = x0 (4.23b)

y = g
(
x,Θσ(tl), u

s; tl
)

(4.23c)

σ(tl) = k if tl ∈ Tk; k = {1, . . . , nσ} (4.23d)

θlb ≤ Θσ(tl) ≤ θ
ub (4.23e)

The computational time required for the sensitivity analysis depends on the sample size, the

number of parameters, and the time for running a model. For the Morris and Sobol’ methods,

the numbers of simulations required to compute the sensitivity indices are nθ × Nm × nu and

(np + 2)Nint × nu, respectively, which shows that the computational cost will increase linearly.

Moreover, the computational cost of solving Equation 4.23 depends on the time required for run-

ning a model, the number of the model parameters, the number of the temporal subdomains, and

the number of different initial guesses to solve Equation 4.23.

4.4 Application to NFκB Signaling

In this section, we applied the proposed methodology to model the NFκB signaling dynamics

in RAW murine macrophages induced by LPS in the presence of BFA.

4.4.1 NFκB Signaling Pathway

NFκB is an important regulator of inflammation and immune responses in various immune

cells such as macrophages [198]. Under homeostatic conditions, the activity of NFκB is minimal

because it is sequestered by isomers of IκB (inhibitors of κB) proteins such as IκB-α, -β and -ε

[198]. In the classical NFκB activation pathway, an external stimulus (e.g., LPS) activates IKK,

which leads to degradation of IκB and thus activates NFκB [198]. Then, the derepressed NFκB

protein translocates to the nucleus and upregulates the expression of various target genes such as
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Figure 4.3: Change in the cluster balance value (ε) with the change in the number of subdomains
(nσ). The cluster balance value is normalized by its maximum value.

IκB, and pro-inflammatory cytokines such as TNFα, which propagates the inflammatory signals

to adjacent cells and tissues [3, 199].

As a component in gram-negative bacteria’s outer membranes, LPS is a potent activator of the

NFκB signaling pathway in macrophages through Toll-like receptor 4 (TLR4) [200]. By forming

a complex with LPS, TLR4 and its accessory molecules activate NFκB signaling through the clas-

sical activation pathway as described earlier. In contrast, BFA activates NFκB through an alternate

signaling pathway [201, 202]. Since exposure to BFA leads to the Golgi apparatus fusing with the

endoplasmic reticulum (ER), normal intracellular trafficking is disrupted, which leads to accumu-

lation of proteins in ER. This, in turn, initiates the ER-stress pathway and leads to the activation of

NFκB [8, 88, 201].

Although several mechanisms have been proposed to explain how NFκB activity is induced by

the ER-stress pathway, mechanistic details have not been fully elucidated yet due to the complex-

ity of the ER-stress signaling pathway [203, 204]. Furthermore, recent studies demonstrated that

interactions between the ER-stress and NFκB signaling pathways are actually bidirectional, which

further complicates the system analysis (see [202] and references therein). To unravel the com-

plexity of the ER-stress signaling pathway, several computational models [203, 204, 205] have
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been proposed; however, they have not been validated thoroughly under various physiological

conditions, whereas the NFκB signaling pathway model has been continuously tested and im-

proved since the early 2000s [75, 206, 207]. Furthermore, few studies have attempted to model the

crosstalk between the ER-stress and NFκB signaling pathways. Consequently, this study chose to

use the time-varying model to represent the LPS-induced NFκB signaling dynamics in the pres-

ence of BFA because the detailed model structure is still not known fully. The proposed model can

be used to design future experiments that can help elucidate the underlying molecular interactions

in future studies.

Motivated by the above considerations, we considered the LPS-induced NFκB signaling model

as the well-characterized model (Equation 4.1) while the model for the NFκB signaling dynamics

induced by LPS in the presence of BFA is considered as the unknown high-fidelity model, which

would be approximated by the LPS-induced signaling model with time-varying parameters.
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Figure 4.4: Temporal subdomains of the measured (a) IκBα and (b) TNFα dynamics from [8].
The data points in black diamonds and red circles were measured under 10 and 250 ng/mL of
LPS, respectively, in the presence of 1µg/mL of BFA, and three different temporal subdomains are
separated by blue dash lines.
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Rank Parameter Normalized Sj
1 Hill coefficient for TNFα transcription 1.00

2
Constant for TRIF∗-induced

0.99
TNFα production enhancement (Ka0)

3
Constant for TRIF∗-induced

0.29
TNFα production enhancement (Ka)

4 TNFα protein synthesis rate constant 0.28
5 TNFα nascent mRNA processing rate constant 0.16
6 TNFα protein degradation rate constant 0.12

7
Maximum degradation rate constant

0.089
for TNFα transcript

8
IKK∗-mediated degradation rate constant

0.081
for IκBα in NFκ-IκBα

9 IKKK∗-mediated IKK activation rate constant 0.053
10 Constitutive IKKK activation rate constant 0.032
11 IκBα transcript degradation rate constant 0.032
12 IκBα translation rate constant 0.025
13 IκBα degradation rate in nucleus 0.023
14 IκBα degradation rate in cytoplasm 0.023
15 EC50 constant for TNFα transcription 0.022
16 Constitutive IκBα transcription rate constant 0.021
17 Hill coefficient for IκBα transcription 0.021
18 NFκB-induced TNFα transcription rate constant 0.015
19 Constitutive IKKK deactivation rate constant 0.012

20
Rate constant for IκBα and

0.011
NFκB association in nucleus

21
Constitutive rate constant

0.011
for IKK inactivation (IKK→ IKKi)

22 Constitutive rate constant for IKK activation 0.010

Table 4.1: Result of Morris Sensitivity Analysis

4.4.2 Dynamic Model of LPS-induced NFκB Signaling

The schematic diagram for the NFκB signaling pathway and the TNFα production induced

by LPS in the presence of BFA is shown in Figure 4.1. The starting point of the model is the

LPS-induced NFκB signaling model developed by Hoffmann et al. [1, 2], where the LPS-NFκB

signaling pathway model was adopted from Caldwell et al. [1], and a model describing the regu-

lation of the TNFα production by internalized LPS-TLR4 complexes was adopted from Junkin et
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al. [2]. Lee et al. [8] further updated the model by incorporating a new role for A20 protein as an

inhibitor of LPS-induced signaling. Also, the well-known effect of BFA addition on the collapse

of Golgi apparatus was taken into account by introducing time-dependent decays in rate constants

associated with protein secretion and protein translocation to the membrane [8]. The model outputs

are the dynamics of IκBα protein and intracellular TNFα protein (i.e., ny = 2), and the updated

model contains 49 states and 146 parameters (i.e., nx = 49 & nθ = 146, and see [8] for the details

on the model).

The datasets obtained through flow cytometry in our previous study [8] were used to perform

the temporal clustering as well as the parameter estimation required in the proposed methodology.

As discussed earlier, the datasets obtained through flow cytometry are relative data, which will not

give the measurements in absolute concentrations, so the fold changes were computed based on

Equation 4.4. Therefore, the model output functions y = g
(
x,θσ(t), u; t

)
are also defined as the

fold change of the two states with respect to their initial conditions as follows:

y1(tl) =
IκBαtotal(tl)

IκBαtotal(t1)

y2(tl) =
TNFα(tl)

TNFα(t1)

(4.24)

y1(tl) and y2(tl) are the predicted fold changes of IκBα and intracellular TNFα concentrations,

respectively, at time tl, and TNFα(tl) and IκBαtotal(tl) are the predicted IκBα and intracellular

TNFα concentrations, respectively, by the model.

4.4.3 Temporal Clustering

In the flow cytometry experiments described in our previous study [8], the sampling time in-

stants were 0, 10, 20, 30, 60, 120, 240, 360 minutes (i.e., Nt = 8) after LPS were added to the

cell culture in the presence of BFA. Two LPS concentrations (10 and 250 ng/mL) and one concen-

tration of BFA (1µg/mL) were used to obtain the experimental datasets (i.e., nu = 2). Then, the

temporal clustering methodology described in the preceding section was implemented to partition

the measurement datasets to determine the optimal value of nσ as well as the corresponding tem-
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poral subdomains, Ti, ∀i = 1, . . . , nσ. In this work, the k-means clustering algorithm was used

via kmeans function available in MATLAB, and multiple initial conditions were used to initialize

the k-means clustering for each number of subdomain.

Since the value of Nt is eight, the maximum number of possible subdomains is eight in this

work. Figure 4.2 shows the changes in the intra- and inter-cluster error sums (Λ and Γ, respec-

tively) with the number of subdomains. As expected, the value of Λ decreases with the number of

subdomains while the value of Γ increases. Based on these two values, the cluster balance (ε) de-

fined in Equation 4.9 can be computed for each number of subdomains and plotted in Figure 4.3.

As described earlier, a turning point in Figure 4.3 is used to determine the optimal value of nσ,

which is found to be three.

Based on nσ = 3, each temporal subdomain can be determined by clustering the experimental

datasets into three temporal subdomains, which are shown in Figure 4.4. Specifically, the first,

second and third subdomains contain the data points spanning from 0 to 60 minutes, 120 minutes,

and 240 to 360 minutes, respectively. Each temporal subdomain can be interpreted to represent a

different phase of the NFκB signaling pathway induced by LPS in the presence of BFA. The first

subdomain shows the early phase of the NFκB signaling, where IκBα is quickly degraded while

TNFα has not been synthesized. The second subdomain corresponds to the transition from the late

phase of the LPS-induced NFκB signaling pathway, where the rate of TNFα synthesis accelerates

and the IκBα is being re-synthesized, to the BFA-dominated signaling. The last subdomain can be

seen as BFA-induced NFκB dynamics, where the IκBα concentration is sustained at a low level

due to the inhibition of its translation by BFA [8].

4.4.4 Sensitivity Analysis Result

The Morris and Sobol’ sensitivity methods were implemented as described above, and all the

sensitivity computation was performed in parallel in ADA supercomputing cluster at Texas A&M

University. The result of the sensitivity analysis via the Morris method is shown in Table 4.1. For

each parameter, six different values were randomly sampled from its parameter domain ranging

from 10% to 1000% of its nominal value, and the average sensitivity of each parameter with

73



Time, minutes
0 100 200 300 400

T
N

F
α

 F
o

ld
 C

h
an

g
es

0

10

20

30

40

50

60
10ng/mL LPS

Experiment
After Parameter Estimation
Before Parameter Estimation

(a)

Time, minutes
0 100 200 300 400

T
N

F
α

 F
o

ld
 C

h
an

g
es

0

10

20

30

40

50

60
250ng/mL LPS

(b)

Figure 4.5: The result of parameter estimation. The predicted dynamics of TNFα before (dash line)
and after (solid line) the parameter estimation were compared with the experimental observations
under (a) 10 ng/mL and (b) 250 ng/mL of LPS in the presence of BFA.

respect to the two outputs was computed (Equation 4.13). Table 4.1 only lists the parameters

whose sensitivity measures were at least 1% of that of the most important parameter. Interestingly

enough, parameters whose normalized Sj values are at least 0.1 are the ones directly involved

in the TNFα dynamics such as synthesis rate constants and degradation rate constants of TNFα

transcripts and proteins. On the other hand, the parameters involved in the IκBα dynamics appear

to be less important. This is probably because of the intrinsic property of the NFκB reaction

network. Specifically, the existence of the feedback loop formed between NFκB and IκB proteins,

where the activation of one will be inhibited by the other [84], ensures that an abrupt change in

a reaction rate relevant to IκBα is less likely to result in an abrupt change in the overall IκBα

dynamics.

Out of 22 parameters selected from the Morris method, the first eleven parameters were fur-

ther analyzed by the subsequent sensitivity analysis through the Sobol’ method [102]. Here, the

parameters after the eleventh parameters were not further analyzed as their significance became

negligible since the cumulative sum of the normalized Sj value does not increase more than 1% af-

ter the eleventh parameter [156]. Same as the Morris method, the values of these eleven parameters
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Rank Parameter STij SSij
With Respect to IκBα

1 IKK∗-mediated degradation rate constant for IκBα in NFκ-IκBα 0.49 0.30
2 IKKK∗-mediated IKK activation rate constant 0.36 0.19
3 Constitutive IKKK activation rate constant 0.31 0.10
4 IκBα transcript degradation rate constant 0.30 0.15
5 Ka0 0.075 0.02
6 TNFα protein degradation rate constant 0.075 0.02
7 Maximum degradation rate constant for TNFα transcript 0.075 0.02
8 TNFα nascent mRNA processing rate constant 0.075 0.02
9 TNFα protein synthesis rate constant 0.075 0.02
10 Hill coefficient for TNFα transcription 0.075 0.02
11 Ka 0.075 0.02

With Respect to TNFα
1 Hill coefficient for TNFα transcription 0.95 0.08
2 Ka 0.85 0.03
3 TNFα nascent mRNA processing rate constant 0.79 0.00
4 IKK∗-mediated degradation rate for IκBα in NFκ-IκBα complexes 0.78 0.00
5 Ka0 0.76 0.01
6 Maximum degradation rate constant for TNFα transcript 0.46 0.00
7 TNFα protein degradation rate constant 0.43 0.01
8 Constitutive IKKK activation rate constant 0.41 0.00
9 IκBα transcript degradation rate constant 0.25 0.00
10 IKKK∗-mediated IKK activation rate constant 0.22 0.00
11 TNFα protein synthesis rate constant 0.21 0.00

Table 4.2: Result of Sensitivity Analysis by the Sobol’ Method

were varied from 10% to 1000% of their nominal values, and the sample size for the integration

approximation (Nint) was 5000. It should be noted that two different sensitivity indices were com-

puted for each parameter with respect to each output separately through the Sobol’ method, and

parameters that are important to at least one output were selected for the subsequent parameter

estimation.

Based on the values of STij and SSij computed with respect to the IκBα dynamics (Equa-

tions 4.21-4.22), the top four parameters were selected for the subsequent estimation since the

values of both sensitivity measures were one order of magnitude larger than the remaining ones

(Table 4.2). With respect to the TNFα dynamics, the STij values are relatively large while the
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SSij values are quite small for all the parameters. This means that the parameters are highly de-

pendent on each other in terms of making changes in the TNFα dynamics while one parameter has

a little effect in changing the TNFα dynamics. Therefore, only one parameter, the Hill coefficient

for TNFα transcription, was selected for the parameter estimation as it has the highest sensitivity

measures. In summary, five parameters were selected to vary with time, and their values in each

temporal subdomain were determined in the following parameter estimation step (Table 4.3).

Parameter
Parameter values in each temporal subdomain

T1 T2 T3

IKK∗-mediated degradation rate constant for
2.59 0.23 0.04

IκBα in NFκ-IκBα ((µM·min)−1)
IKKK∗-mediated IKK activation

5200 52 4230
rate constant ((µM·min)−1)
Constitutive IKKK activation

5×10−6 1.3×10−7 4.9×10−6
rate constant (min−1)
IκBα transcript degradation

0.33 0.18 0.12
rate constant (min−1)
Hill coefficient for TNFα transcription 3.73 1.96 2.02

Table 4.3: Result of the Parameter Estimation

4.4.5 Parameter Estimation

With the results from the temporal clustering and sensitivity analysis, the parameter estimation

problem (Equation 4.23) was solved to obtain the values of these parameters in each temporal sub-

domain (Table 4.3). Here, the model evaluation and the parameter estimation were performed via

MATLAB built-in functions, ode15s and fmincon, and the multistart function available in MAT-

LAB was used to solve the optimization problem multiple times with different initial values.

Figures 4.5-4.6 showed the predicted dynamics of TNFα and IκBα after the parameter estima-

tion. In order to show the improvement of the prediction accuracy, the predicted dynamics after

the parameter estimation were compared with experimental measurements [8] and those predicted

before the estimation. The prediction accuracy for the dynamics of the proteins was significantly
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Figure 4.6: The result of parameter estimation. The predicted dynamics of IκBα before (dash line)
and after (solid line) the parameter estimation were compared with the experimental observations
under (a) 10ng/mL and (b) 250ng/mL of LPS in the presence of BFA.

improved. In particular, the model was able to track the TNFα dynamics very accurately under

both conditions (Figure 4.5). Although there was some discrepancy between the model predic-

tion and the experimental measurements for the IκBα dynamics under 10ng/mL LPS, the overall

prediction was improved.

In order to further validate the resulted model, the prediction accuracy of the resulted model

was assessed with the experimental dataset, which was not used to train the model. In Figure 4.7,

the TNFα and IκBα dynamics predicted by the model under 50ng/mL LPS in the presence of BFA

were plotted and compared with the corresponding experimental dataset. As shown in Figure 4.7,

the resultant model was able to accurately predict the TNFα and IκBα dynamics reasonably well

even though the 50ng/mL dataset was not used in the model calibration, which demonstrated the

robustness of the calibrated model and thus validate the proposed methodology.

Lastly, the resulted model was compared with our previous model, which partially incorporated

the ER-stress signaling pathway through further experimentation and literature survey. Figures 4.8-

4.9 compare the model performance of these two models by comparing their temporal dynamics

under two different LPS concentrations. In general, both models were similar in terms of re-
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Figure 4.7: The validation of the parameter estimation results with an independent dataset, which
was not used in the model calibration. The predicted dynamics of (a) TNFα and (b) IκBα before
(dash line) and after (solid line) the parameter estimation were compared with the experimental
observations under 50ng/mL of LPS in the presence of BFA.

producing the IκBα dynamics while the model developed in the current work predicted slightly

more accurately in terms of root-mean-squares (RMS) of the parameter estimation: the normal-

ized RMS of the parameter estimation for the presented model is 1.75 while the RMS value for

the previous model is 2.29, which showed the improved model accuracy by implementing the pro-

posed approach. It should be noted that the development of the previous model went through the

iterative implementation of experiments and modeling, which can be time-consuming. However,

through the proposed approach, one can get a model with a reasonable prediction accuracy in a

short amount of time.

Since intracellular signaling pathways regulate various cellular behaviors, their dynamics and

outcomes bear great importance for studying and predicting the tissue-level responses in vivo. One

important factor dictating the signaling pathways is different stimuli that initiate the pathways.

As discussed in the manuscript, there can be multiple stimuli for one signaling pathway, and the

number of stimuli is likely to be high for those with highly complex network structures. For

example, it has been found that there are around 100 stimuli that can trigger the NFκB signaling
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Figure 4.8: The comparison between the model developed in this study and the model developed
by [8]. The predicted dynamics of IκBα were compared with the experimental observations under
(a) 10 ng/mL and (b) 250 ng/mL (b) LPS concentration in the presence of BFA.

pathway. Moreover, the dynamics of one signaling pathway induced by different stimuli can be

very different since these stimuli activate the intracellular signaling pathway through different

mechanisms. Again, with the NFκB signaling pathway as an example, TNFα and LPS, two well-

known stimuli of the NFκB signaling pathway, activate the signaling pathway through two different

molecules (TNFα receptor and TLR4, respectively), resulting the distinctive signaling dynamics.

Therefore, the comprehensive characterization of an intracellular signaling pathway is nontriv-

ial since each stimulus of the signaling pathway has its own distinct activation mechanism and

corresponding dynamics. Under this circumstance, a model-based approach can be implemented

to facilitate the study. However, this model-based approach is often practical only for a handful

of well-characterized stimuli such as TNFα and LPS for the NFκB signaling pathway since the

underlying signaling mechanisms induced by these stimuli are relatively well studied. Motivated

by the above considerations, the current study proposes a methodology to construct a data-driven

mechanistic model for those less-studied stimuli, whose corresponding signaling dynamics are less

characterized. This is feasible since the mechanisms of the signaling pathway induced by different

stimuli overlap with each other. For example, the NFκB signaling pathway network induced by
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Figure 4.9: The comparison between the model developed in this study and the model developed
by [8]. The predicted dynamics of TNFα were compared with the experimental observations under
(a) 10 ng/mL and (b) 250 ng/mL LPS concentration in the presence of BFA.

TNFα and LPS will change the level of IKK activation, whose activation level will determine how

fast NFκB proteins will be freed from their inhibitors. Therefore, for a new or less-studied stim-

ulus of an intracellular signaling pathway, its corresponding signaling dynamics can be described

by modifying the nominal model into a time-varying one as discussed in the manuscript. Then, the

constructed model can be used for the optimal experimental design to enhance our understanding.

It should be noted that the proposed methodology is a semi-data-driven approach, where the

model construction is guided by both the available experimental data and the mechanistic model.

Specifically, based on the experimental data, the temporal profiles of the model parameters are

inferred to complement the model mismatch due to the use of a nominal model. As a result, the

resultant model can provide relatively accurate predictions in spite of the incomplete knowledge

of the underlying system. At the same time, the use of the mechanistic model allows the resultant

model to be used in the detailed analysis of the underlying mechanisms, which is difficult to be

performed through a data-driven model.

Additionally, the proposed time-varying model was able to robustly predict the dynamics of

IκBα and TNFα proteins, which are the core components in the NFκB signaling pathway, under
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the various conditions although the detailed ER-stress signaling mechanisms were not incorporated

into the model. Due to the accuracy and robustness of the model, it can be used in the future studies

to design optimal experiments to enhance our understandings on how BFA can activate the NFκB

signaling pathway.

Although the proposed methodology can be used to obtain a more accurate and predictive

model as described above, it has the following limitations. First, the increase in the number of

parameters need to be estimated due to the temporal partitioning the parameters may exacerbate

the unidentifiability issue in the model calibration. This can be a severe issue since a signaling

pathway model is often over-parameterized while the available experimental measurements are

limited. Second, the identified model may not reflect the true mechanisms associated with the

less-studied stimulus. Specifically, the proposed method relies on the global sensitivity analysis

to identify which parameters are time-varying, but it does not consider any biological significance

while selecting the parameters. Therefore, the identified temporal profiles of the parameters may

not have the biological relevance, which will constrain the process analysis based on the resultant

model. It should be noted that this limitation can be mitigated by adding additional constraints into

the minimization problem (Equation 4.23) so that the resultant parameters retain their biological

significance.

4.5 Conclusion

In this work, we presented a methodology for constructing a time-varying model for an intracel-

lular signaling pathway when its reaction network is not fully known a priori. First, experimental

data were clustered through the k-mean clustering algorithm to determine the temporal subdomains

for the model parameters, where the parameters have different values in each temporal subdomain.

Next, the global sensitivity analysis, which uses the Morris and Sobol’ methods in sequence, was

carried out to identify the most important parameters with respect to the model outputs. And only

these parameters were determined to be time-varying while the remaining parameters were fixed

at their nominal values. Finally, the least-squares problem was solved to estimate the values of

five parameters in each temporal subdomain to construct an accurate time-varying model. The
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proposed methodology was implemented to model the NFκB signaling pathway induced by LPS

in the presence of BFA to predict the dynamics of IκBα and TNFα proteins. The prediction ac-

curacy of the resulted model was comparable to that of a more detailed model proposed by Lee et

al. [8], which demonstrated the performance of the proposed methodology. In summary, the pro-

posed methodology speeds up the overall model development process without losing the prediction

accuracy by avoiding the time-consuming procedure of experimentation and literature survey for

developing a high-fidelity model.
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5. HYBRID MODELING APPROACH TO CONSTRUCT A SEMI-MECHANISTIC MODEL

OF PARTIALLY KNOWN INTRACELLULAR SIGNALING PATHWAY

5.1 Introduction

When our prior understanding of a dynamic system is limited, first-principle mathematical

models may not be able to generate accurate predictions. Alternatively, a data-driven model can be

developed from available experimental measurements [208]. The resulted data-driven model can

describe the system adequately, even when mechanistic understanding is limited [209, 210, 211].

However, a data-driven model has narrow applicability as it is tailored to describe input-output

relationships contained in the training datasets [212, 213, 214].

As an alternative, a hybrid modeling approach that combines first-principles and data-driven

modeling techniques has been proposed to describe a partially known process [208]. Hybrid

models have better prediction capabilities than first-principle models, and they have better gen-

eralizability and interpretability than data-driven models [212, 213, 215]. One classical example

of the hybrid modeling approach is to model a fedbatch bioreactor, where the biomass growth

rate is inferred from process data and coupled with mass conversation laws [213, 216]. In this

model, the mass conservation laws represent our prior knowledge about the system (i.e., the first-

principle model), where its growth rate is uncertain and inferred from experiment measurements

to improve the model’s prediction accuracy. Due to its merits, the hybrid modeling approach

has been implemented in various research areas such as bioprocess development and optimization

[212, 213, 216, 217], modeling propagation of fractures during the hydraulic fracturing process

[215], transcription factor dynamics [218], tumor development and treatment [219], and flour bee-

tles population dynamics [220, 221].
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5.2 Preliminaries

In this study, the following hybrid modeling formulation is adopted [179, 222]:

ẋ = f (x,θ, u; t) +w(x(u; t); t); x(0) = x0

y = g (x,θ, u; t)

(5.1)

where x ∈ Rnx is the state vector whose dynamics are partially correct, u is the external pertur-

bation given to the system, w(x(u; t); t) ∈ Rnx is the vector of correction terms necessary for the

model to compensate for model-system mismatch due to incomplete understanding of the system,

and y ∈ Rny is the output vector of the system. Here, it is assumed that the correction terms

depend on the values of states and time [212, 223].

In order for Equation 5.1 to properly predict true dynamics of the system, the values ofw need

to be inferred from experimental measurements at every time instant along the temporal trajectory

of the system. Suppose that experimental datasets are obtained under nu different concentrations

of u, and y are measured at Nt discrete time instants from t = 0 to t = tNt . Then, the following

minimization can be solved:

min
H

nu∑
s=1

ny∑
i=1

Nt∑
l=1

(
yi(us; tl)− ȳi(us; tl)

ȳi(us; tl)

)2

(5.2a)

s.t. ẋ = f (x, us; t) +w(x(us; t); t); x(0) = x0 (5.2b)

y = g (x, us; t) (5.2c)

w(x(us; t); t) = H(x(us; t); t) (5.2d)

where yi(us; tl) and ȳi(us; tl) are simulated and experimentally measured outputs, respectively, at

time t = tl, where l = 1, . . . , Nt in response to the sth input, and H(x(us; t); t) is a function that

computes the values of w for given values of the model states and the current time.

In the above least-squares problem, we seek to estimateH so that values ofw can be computed

once the value of x and current time are known. However, the functional forms of w (i.e., H) are
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usually unknown a priori. Although there are some methods proposed in the literature to identify

functional forms from the data, inferring functional forms usually requires a large amount of data

and can be computationally expensive [214, 224, 225, 226]. Consequently, we assume H to be a

shallow artificial neural network (ANN) [212, 213, 215]. Specifically, this study adopts a shallow

ANN that has one input layer, one hidden layer, and one output layer, where each layer contains

multiple neurons as shown in Figure 5.1. Here, an ANN is chosen here due to its proven ability to

represent any arbitrary input-output relations with sufficient accuracy [227, 228].

Figure 5.1: A shallow ANN

For each neuron in the hidden layer of a shallow ANN, the following hyperbolic tangent sig-

moid transfer function is used:

oi =
2

1 + e−2ûi
− 1, ûi =

nu∑
j=1

(αij · zj + bj), ∀i = 1, . . . , Nn (5.3)

where oi is the output of the ith neuron in a hidden layer, ûi is the weighted sum of inputs given to

the ith neuron in the hidden layer, nu is the number of inputs given to the shallow ANN, αij is a

weight term for the input zj to the ith neuron, zj is the j th input of the ANN, bj is a bias given to

the ith neuron, and Nn is the number of neurons in the hidden layer [229]. For the purpose of this

study, the inputs to the ANN are the states and time (i.e., z = [x1 x2 · · · xnx t]), so the number of
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inputs to the ANN (i.e., nu) will be equal to nx + 1.

On the other hand, the outputs of the ANN will be computed as follows:

wk =
Nn∑
i=1

βkioi + ck, k = 1, . . . , nx (5.4)

where wk is the kth element of w, βki is the weight given to oi for wk, and ck is a bias term given

to wk.

After assuming the computed ANN as H, a solution to Equation 5.2 can be obtained by two

subsequent steps: first, the following optimization problem is solved to obtain w(t) under the nu

different conditions:

min
w(us;t)

nu∑
s=1

ny∑
i=1

Nt∑
l=1

(
yi(us; tl)− ȳi(us; tl)

ȳi(us; tl)

)2

(5.5a)

s.t. ẋ = f (x, us; t) +w(x(us; t); t); x(0) = x0 (5.5b)

y = g (x, us; t) (5.5c)

and, second, from the obtained values of w(t), a shallow ANN is developed for predicting the

values of w for given x and current time. While the development of an ANN is easier as multiple

software packages such as MATLAB Neural Network Toolbox are available to use, the first sub-

problem (Equation 5.5) is more difficult to solve. Specifically, the inference of w(t) is likely to

be ill-conditioned since a mathematical model for a biological system is often over-parameterized

with a large number of states (i.e., large nx) with a limited number of measurements (i.e., low ny

and Nt) to calibrate the model [23, 47]. Moreover, as how w evolves with time is unknown, the

values of w need to be estimated at a large number of time points, which will significantly exceed

Nt (i.e., the number of time points where the measurements are taken). As a result, the overall

w inference problem is very likely to be ill-posed [76, 185]. Hence, the estimated values of w

become unreliable, and the resulted hybrid model constructed based on the estimated w will be

difficult to be generalized for future predictions. Therefore, this study will focus on how to solve
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the first subproblem, the inference of w, in a systematic way.

5.3 Problem Statement

In summary, this section seeks to solve the following problems

Problem. Given the first-principle model (Equation 4.1) and the experimental datasets measured

at Nt time instants under nu different inputs, estimate the values of w at multiple time points by

addressing the ill-posedness of the w inference problem.

Problem. Given the estimated the values ofw, develop a shallow ANN with the states and time as

inputs and w as outputs of the ANN.

5.4 Proposed Methodology

As described above, the inference of w is likely to be ill-conditioned. In this study, several

assumptions are made to reduce the dimension of decision variables. First, the values of w will

be estimated only when the measurements are taken (i.e., from t = 0, . . . , tNt). Second, instead

of adding w to all model states as in Equation 5.1, a subset of states is selected a priori, and only

these states are given the correction terms. Hence, the resulted hybrid model can be formulated as

follows:

ẋ = f (x, us; t) +H


ws1(t)

...

wsns (t)

 x(0) = x0

y = g (x, us; t)

Hij =


1 if xi = xsj , i = 1, . . . , nx, j = 1, . . . , ns

0 otherwise.

(5.6)

where H is a nx × ns matrix, xs = [xs1 , · · · , xsns ]T ∈ Rns is a subset of x whose dynamics are

corrected byws = [ws1 , · · · , wsns ]T ∈ Rns , Hij is the entry inH at the ith row and the j th column.
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It should be noted that Equation 5.6 assumes that each correction term adjust the dynamics of the

corresponding state.

With the above two assumptions, this study formulates the ws inference problem as a least-

squares problem with a L2 regularization. With these approaches, the inference of the correction

terms can be formulated as follows:

min
W

nu∑
s=1

Nt∑
l=1

ny∑
i=1

(
yi(us; tl)− ȳi(us; tl)

ȳi(us; tl)

)2

+
α

2
·R(W ) (5.7a)

s.t. ẋ = f (x, us; t) +Hws(us; t) x(0) = x0 (5.7b)

y = g (x, us; t) (5.7c)

R(W ) =
nu∑
s=1

Nt∑
l=1

‖ws(us; tl)‖22 (5.7d)

W =

[
ws(u1; t1) · · · ws(u1; tNt) ws(u2; t1) · · · ws(unu ; tNt)

]
(5.7e)

ŵs(us; t) =


ws(us; tl), if t = tl, l = 1, . . . , Nt

ws(us; tl) + (t− tl)ws(us;tl+1)−ws(us;tl)
tl+1−tl , ∀t /∈

[
0, . . . , tNt

] (5.7f)

whereW ∈ Rns×(nu·Nt) is the correction term matrix to be estimated, R(W ) is the L2 regulariza-

tion term, and α is the tuning parameter for regularization. Since the values of ws are estimated

only at the time points when the measurements are taken, a linear interpolation is employed to

compute values of ws at time tk /∈ [0, . . . , tNt ], as described in Equation 5.7f. Also, it should

be noted that the L2 regularization is chosen so that Equation 5.7 is more robust to experimental

noise, and its objective function is continuously differentiable [76, 230, 231, 232].

5.4.1 Selection of xs

Before solving Equation 5.7, we need to determine which states should be classified into xs.

Specifically, two questions need to be answered: first, what the dimension of xs (i.e., ns) is, and

second, when the value of ns is known, which states in x should be selected to form xs. In this

study, we employ a graph-theoretical approach to determine a state subset, to which the correction
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terms are given.

First, this study aims to make the hybrid model (Equation 5.6) to be invertible by letting ns, the

dimension of ws to be equal to ny. If a system is invertible, for a given value of x0, unique values

of y will correspond to unique values of inputs [233, 234]. Therefore, one could reconstruct the

values of inputs from available output measurements. Hence, if we view ws in the hybrid model

(Equation 5.6) as inputs to the system and the hybrid model is invertible, the values of ws can be

uniquely characterized from given measurements [233, 235]. Hence, it is our best interest to select

the dimension of ws as well as its placement so that the resulted hybrid model is invertible, which

will attenuate the ill-posedness of the inverse problem. Daoutidis and Kravaris [233] have shown

that a dynamic system is invertible when the following matrix is nonsingular:

C(x) =


Lh1Lr1−1f g1(x) · · · LhnsL

r1−1
f g1(x)

... . . . ...

Lh1L
rny−1
f gny(x) · · · LhnsL

rny−1
f gny(x)

 =


c11 · · · c1ns
... . . . ...

cny1 · · · cnyns

 (5.8)

where C(x) is the characteristic matrix of the system, L represents Lie derivative defined as

Lfgi(x) =
∑nx

j=1(∂gi/∂xj)fj(x), hk, where k = 1, . . . , ns, is a kth column vector of the ma-

trix H in Equation 5.6, and ri is the relative order of the output yi with respect to ws, which is

defined as the smallest integer for which

[
Lh1L

ri−1
f gi(x) · · · LhnsL

ri−1
f gi(x)

]
6=
[
0 · · · 0

]
(5.9)

or ri =∞, if such integer does not exist [235].

Therefore, one prerequisite for C(x) to be nonsingular is to ensure this matrix is square by

setting ns = ny. Once the value of ns is determined, the second step is to examine to which states

the ny number of correction terms should be placed.

In this study, the selection of xs is achieved by considering the following two criteria:

1. For each output yi, i = 1, . . . , ny, only one state is chosen so that the placement of a correc-
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tion term on this state will have the maximum ‘physical closeness’ to this output.

2. While an output has the maximum ‘physical closeness’ with one correction term, this output

will have the minimum correlation with other correction terms in the system.

By meeting the above two criteria, ws will have the maximal correlation with only one correction

term, which will minimize the likelihood of the ill-posedness of Equation 5.7 [191].

In this study, the correlation between an output and a correction term is assessed by a relative

order matrix, which is defined as follows:

r =



r11 r12 · · · r1ns

r21 r22 · · · r2ns
...

...
...

rny1 rny2 · · · rnyny


(5.10)

where rij is the relative order of the output yi with respect to wsj , j = 1, . . . , ns, which is defined

as the smallest integer for which LhjL
rij−1
f gi(x) 6= 0 or rij = ∞ if such integer does not exist.

Additionally, the relationship between ri and rij is as follows:

ri = min(ri1, ri2, · · · , rins) (5.11)

With this relative matrix, the above two criteria can be redefined in terms of relative orders

[236]:

• The value of
∑ny

i=1 ri needs to be minimal.

• The value of
∑

i

∑
j 6=i ri/rij needs to be minimal.

Previous studies have demonstrated that the relative order measures ‘physical closeness’ between

a correction term and an output [235, 236]: a lower value of ri represents a stronger connection

betweenws and yi. So, the first criterion rendersws to have the maximum impacts on the outputs.
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On the other hand, the second criterion is to render each wsj will have a maximum impact on only

one output while having minimal impacts on the remaining outputs [236, 237].

In order to select a combination based on the above criteria, the following steps are taken:

1. Enumerate all ny permutations of x.

2. For each candidate, construct the corresponding relative order matrix, and compute its
∑ny

i=1 ri.

3. Find a candidate that has the lowest value of
∑ny

i=1 ri.

4. In case multiple candidates have equal minimal
∑ny

i=1 ri values, compute their
∑

i

∑
j 6=i ri/rij

values, and select a candidate with the lowest value.

For implementing the above procedure, a relative order matrix has to be constructed for each

candidate. Instead of performing iterative Lie differentiation that can be computationally expen-

sive, Daoutidis and Kravaris [235] have demonstrated that a graph-based approach can be used to

easily evaluate relative orders of the system, which will be briefly discussed below.

5.4.2 Graph-theoretical Approach

A state-space model of a process (Equation 5.6) can be represented by a digraph, which is

defined by a set of vertices and a set of edges by the following rules [235]:

• States (x ∈ Rnx), outputs (y ∈ Rny ), and manipulated inputs (ws ∈ Rns) are represented by

a set of vertices in a digraph.

• If ∂fi(x)/∂xj 6= 0, i, j = 1, . . . , nx,, there is a unidirectional edge pointing from the vertex

of xj to that of xi.

• If ∂fi(x)/∂wsk 6= 0, k = 1, . . . , ns, there is a unidirectional edge pointing from the vertex

of wsk to that of xi.

• If ∂yl/∂xj 6= 0, l = 1, . . . , ny, there is a unidirectional edge pointing from the vertex of xj

to that of yl.
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In a digraph, a path from one vertex to another is a sequence of edges without repeating vertices,

and the path length is the number of edges included in one particular path [235, 238]. Figure 5.2

provides an example on how a state-space model is translated into a digraph. Specifically, Fig-

ure 5.2 is a representation of the following dynamic system:

dx1
dt

= f1(x2) + u

dx2
dt

= f2(x3)

dx3
dt

= f3(x1)

y = g(x3)

(5.12)

What is important for this study is the connection between a digraph and a relative order matrix:

Daoutidis and Kravaris [235] demonstrated that rij can be calculated by computing the shortest

path length from an input wsj to an output yi as follows:

rij = lij − 1 (5.13)

where lij is the shortest path length from an input wsj to an output yi. Therefore, the relative order

matrix can be easily computed once a digraph of a state-space model is constructed.

Figure 5.2: An illustration of a diagrph.
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In summary, the procedures for selecting xs, whose dynamics will be corrected by ws, are

illustrated with the following steps:

1. Set ns, the size of xs, to be equal to the dimension of outputs (i.e., ny).

2. Enumerate all ns permutations of x as candidates of xs.

3. Construct a digraph by adding correction terms to each xs candidate enumerated in the

previous step.

4. Construct the corresponding relative order matrix based on Equation 5.13.

5. Find a configuration that has the lowest
∑ny

i=1 ri value, and the configuration with the lowest

value is the best selection for xs.

6. If there are multiple candidates of xs with the equal lowest
∑ny

i=1 ri value, compute their∑
i

∑
j 6=i ri/rij values, and select the digraph with the lowest value.

Once the optimal xs is chosen, Equation 5.7 is solved to infer the values of W . With the

estimated W , an ANN model will be developed to predict the values of ws for any given values

of x and time so that the developed ANN can be integrated with the original state-space model

(Equation 4.1) to predict the dynamics of the system accurately even with partial knowledge of the

system.

5.5 Results

The above hybrid modeling approach is implemented to construct a semi-mechanistic model

for the NFκB signaling pathway dynamics stimulated by LPS and BFA together. As described

earlier, the dynamics under these two stimuli are not well studied; therefore, the system is a suitable

example for constructing a hybrid model. Here, the previously developed LPS-induced NFκB

signaling pathway model is used as the first-principle model [8], and correction terms are estimated

from the available experimental measurements.
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5.5.1 Selection of Locations of Correction Terms

As outlined in the previous section, the first step in developing a hybrid model is to optimize

the number of correction terms needed as well as to which states these correction terms should

be added. As the number of outputs for the system of interest is two (i.e., TNFα and IκBα), we

assume that the dimension of xs is also two to ensure the resulted hybrid model is invertible.

Second, all two-permutations from 49 model states are enumerated, and their corresponding

digraphs are constructed to compute their corresponding relative order matrices. Based on the

constructed relative order matrices, the minimum value of
∑ny

i=1 ri is found to be two, and Table 5.1

lists all the configurations whose
∑ny

i=1 ri values equal to two.

xs1 xs2 r11 r12 r21 r22
∑ny

i=1 ri
∑

i

∑
j 6=i ri/rij

5 37 1 6 6 1 2 0.33

1 37 1 6 5 1 2 0.37

3 37 1 6 5 1 2 0.37

34 37 1 6 5 1 2 0.37

2 37 1 6 4 1 2 0.417

4 37 1 6 4 1 2 0.417

5 28 1 4 6 1 2 0.417

1 28 1 4 5 1 2 0.45

3 28 1 4 5 1 2 0.45

34 28 1 4 5 1 2 0.45

2 28 1 4 4 1 2 0.50

4 28 1 4 4 1 2 0.5

Table 5.1: All the configurations with the minimal
∑ny

i=1 ri value.
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It should be note that r1j and r2j compute the relative order with respect to IκBα and TNFα

measurements, respectively, in Table 5.1.

Based on the result presented in Table 5.1, x5 and x37 are chosen as the best candidate to add

ws since this pair has the lowest
∑

i

∑
j 6=i ri/rij value. It should be noted that both x5 and x37

represent the concentrations of IκBα and TNFα transcripts, respectively. Therefore, adding cor-

rection terms to these states is a reasonable choice since one of the important factors affecting the

dynamics of a protein concentration is its transcript dynamics. Hence, by correcting the dynamics

of these two proteins’ transcript through inferringws, the resulted hybrid model will have a higher

chance to predict the output dynamics more accurately.

With xs = [x1 x37], the regularized least-squares problem (Equation 5.7) is solved to estimate

W that contains the values of ws at eight time points under three input concentrations. Since the

value of regularization parameter α in Equation 5.7 is unknown beforehand, its optimal value is

determined by five-fold cross-validation. For this study, there are three experimental datasets, each

of which contains fold changes of TNFα and IκBα concentrations measured at eight time instants

under a specific LPS concentration. For the purpose of the cross-validation, the experimental

datasets are divided into training and validation dataset in five different ways, and the regularized

least-square problem (Equation 5.7) is solved with one particular value of α with respect to each

five training dataset. Then, the optimal value of α is chosen by examining average model errors

with respect to both the training and validation datasets. Particularly, for each α value tested, the

following average error criterion is computed:

Λ =
1

5

5∑
i=1

[
1

Ntl

∑
j

(
ytlij − ȳtlij

)2
+

1

Nvl

∑
l

(
yvlil − ȳvlil

)2]
(5.14)

where Λ is the average error for a given α value,Ntl andNvl are the number of data points included

in the training and validation datasets, respectively, ytlij and ȳtlij are the j th predicted and measured

output in the ith training dataset, respectively, and yvlij and ȳvlij are lth predicted and measured output

in the ith training dataset, respectively.
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Figure 5.3 plots changes in the value of Λ with respect to the value of α. From this result,

the optimal value of α is determined to be 0.001, and the estimated values of W obtained with

α = 0.001 are considered as optimal.
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Figure 5.3: A plot showing how the value of average error (Λ) changes with the value of α. The
error value equals to 0.14, which is the minimum, when α = 0.001.

Before constructing an ANN model, the accuracy of the inferred W is assessed by comparing

the experimental measurements and the predictions from the model with the inferredW . The root

mean squared error is 28.75. Figures 5.4-5.5 compare the predicted and measured TNFα and IκBα

dynamics under three different LPS concentrations. Additionally, the predictions of the model cou-

pled with the inferredW are compared with those of the model withoutW . Figures 5.4-5.5 show

the addition of W significantly improves the model accuracy across all three LPS concentrations.

Specifically, the addition ofW renders the model prediction to match with the experimental trend,
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which shows the sustained low concentration of IκBα. At the same time, the addition ofW helps

the model predictions agree much better with the measured TNFα dynamics. Overall, these com-

parisons have demonstrated that the integration ofW greatly improves the predictive capability of

the hybrid model (Equation 5.6).
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Figure 5.4: Comparison between predicted (red solid line) and measured (blue empty circle) TNFα
dynamics in the presence of BFA under the LPS concentrations of (a) 10ng/mL, (b) 50ng/mL, and
(c) 250ng/mL. Blue dash lines represent the model predictions without the correction terms (W ).

Lastly, with the inferred W , an ANN is developed with the values of x and time as inputs to

the ANN and ws as outputs to the ANN. The ANN development is necessary so that the model

coupled with the developed ANN can be used to predict the system dynamics under a new LPS

concentration and to generalize the hybrid model performance. In order to increase accuracy of
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Figure 5.5: Comparison between predicted (red solid line) and measured (blue empty circle) IκBα
dynamics in the presence of BFA under the LPS concentrations of (a) 10ng/mL, (b) 50ng/mL, and
(c) 250ng/mL. Blue dash lines represent the model predictions without the correction terms (W ).

the ANN to be developed, the values of ws are linearly interpolated from t = 0 to t = 360

minutes with one minute as the sampling interval based on the inferred ws values. Accordingly,

the values of x at the same time instants are also computed with the interpolatedws values and the

hybrid model (Equation 5.6). This approach will ensure that the size of the datasets to be used for

developing ANN is large enough.
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Figure 5.6: Comparison between IκBα dynamics predicted from the hybrid model (red solid line)
and measurements (blue empty circle) in the presence of BFA under the LPS concentrations of (a)
10ng/mL, (b) 50ng/mL, and (c) 250ng/mL. Blue dash lines represent the model predictions without
the ANN.

In this study, a shallow ANN with one hidden layer with ten neurons are used for describing

an empirical mapping from x and t to ws. All calculations related to the ANN construction are

implemented in the MATLAB Neural Network Toolbox. The R2 statistics for the developed ANN

model are 0.999 and 0.998 with respect to the training and validation datasets, respectively, which

show the accuracy of the developed ANN. Then, the developed ANN is integrated with the first-

principle model to construct the hybrid model. The root mean squared error of the constructed

the hybrid model with respect to the experimental measurements is 63.9. Figures 5.6-5.7 show the

prediction capabilities of the resultant hybrid model by comparing its predictions with the available
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experimental results.
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Figure 5.7: Comparison between TNFα dynamics predicted from the hybrid model (red solid line)
and measurements (blue empty circle) in the presence of BFA under the LPS concentrations of (a)
10ng/mL, (b) 50ng/mL, and (c) 250ng/mL. Blue dash lines represent the model predictions without
the ANN.

It should be noted that the most significant model-system mismatch occurs under the 10 ng/mL

LPS concentration throughout Figures 5.4-5.7. It is hypothesized that this is due to the low LPS

concentration. Since the concentration of BFA is constant, its effects are more pronounced at a

lowe LPS concentration. Specifically, at 10 ng/mL LPS concentration, the first-principle model

becomes least accurate as the effects of the BFA-induced signaling pathways dominate the effect

by the low LPS concentration, which may contribute to the largest discrepancy. Increasing the
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dimension of ws may further improve the prediction accuracy due the increase in the degree of

freedom. Alternatively, the first-principle model can be modified further by incorporating known

mechanisms of the BFA-induced signaling pathways (see [8] for an example) to improve the first-

principle model before estimating the values of ws.

5.6 Conclusion

In this work, a systematic method has been proposed to construct a hybrid model to describe

the dynamics of an intracellular signaling pathway when our knowledge about the system is lim-

ited. Specifically, by combining merits of the first-principle and data-driven modeling approaches,

a hybrid model is more suitable under such circumstances. This study employs one particular

formulation (Equation 5.6), where its first-principle part is correct by additional correction terms

inferred from experimental observations. One key step in constructing such a hybrid model is

to infer the values of correction terms (w) to improve the model predictions. As this inference

problem is likely to suffer from overfitting issues, several measures are implemented to reduce the

dimension of w to be estimated. Specifically, a graph-theoretical approach has been implemented

to estimate only a subset of w (i.e., ws) from the given experimental measurements. Once the

ws values are estimated, an ANN is developed so the first-principle model integrated with the de-

veloped ANN can be used for predicting the dynamics of the signaling pathway even under new

conditions. In the future, the hybrid model will be used for solving a model-based optimal exper-

imental design problem to explore unknown mechanisms for further improving the first-principle

model.
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6. IDENTIFICATION OF CELL-TO-CELL HETEROGENEITY THROUGH SYSTEMS

ENGINEERING APPROACHES *

6.1 Background

Once an accurate deterministic ODE model is developed by any of the methods implemented or

proposed in previous chapters, an IBPM can be developed by estimating model parameters’ PDFs.

In this regard, we propose a new methodology to estimate the PDFs of parameters from single-

cell measurements by handling the identifiability issue without increasing the computational cost.

First, a normal-distribution assumption is made to ensure the overall inference problem is finite-

dimensional. Second, a parameter selection method that consists of the extended Sobol’ method

is implemented to assess the practical identifiability of each parameter’s PDF to determine which

parameter’s PDF should be estimated. Third, an ANN is developed to predict the measurements

for given PDFs of parameters, and it is evaluated iteratively to solve the overall PDF inference

problem in a computationally efficient manner. The proposed methodology is implemented to infer

the PDFs of model parameters in TNFα signaling pathway by utilizing in silico measurements.

6.2 Preliminaries

6.2.1 Model descriptions

In the IBPM framework, the dynamics of individual cells within a cell population are repre-

sented by the following ODE [10, 34, 42]:

M =


ẋ(i)(t) = f

(
x(i),θ(i), u; t

)
; x(i)(0) = x(i)

0 , θ
(i) ∼ pθ(θ)

y(i)(t) = g
(
x(i),θ(i), u; t

)
; ∀i = 1, . . . ,M

(6.1)

where x ∈ Rnx is the state vector, θ ∈ Rnθ is the parameter vector, u is the external stimulus

as an input to the system, x0 is the initial condition of x, pθ(θ) : Rnθ
+ → R+ is the multivariate

*Reprinted with the permission from “Identification of cell-to-cell heterogeneity through systems engineering ap-
proaches," by Lee et al., 2020, AIChE Journal, 66, e16925. Copyright 2020 by John Wiley & Sons, Inc.
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PDF of θ, y ∈ Rny is the output vector, M represents the number of cells, and index i represents

the ith cell in the population. In this study, x0 is obtained by running Equation 6.1 with u = 0

until the system reaches an equilibrium and setting the values of x0 at the equilibrium. It should

be noted that the current IBPM modeling framework assumes the cell-to-cell communication is

minimal [10]. By simulating Equation 6.1) M different times with M different values for θ,

the heterogeneous responses within the cell population can be simulated. As discussed earlier,

Equation 6.1 assumes the extrinsic source is a dominating factor for the heterogeneous dynamics

of an intracellular biochemical reaction pathway. This assumption is generally valid for many

systems as the intrinsic source of the heterogeneity may have only transient effects on the overall

reaction dynamics.

6.2.2 Experimental measurements

In this work, we consider the output measurements are provided by flow cytometry, which is

widely used to infer the intracellular protein concentrations since 1970s [239]. Flow cytometry is

suitable for studying the heterogeneous single-cell dynamics because it measures the concentration

of a biomolecule of interest from thousands of cells at a time. Specifically, at each sampling

time tk, k = 1, . . . , Nt, where Nt is the number of sampling times, flow cytometry provides

experimental measurements in the form of population snapshots, D̂k, which is expressed as follows

[10, 42]:

D̂k = {ŷ(1)(tk), ŷ(2)(tk), · · · , ŷ(Nk)(tk)} (6.2)

where ŷ(i)(tk) is the measurement from the ith cell in the cell population, and Nk is the number of

cells analyzed at the kth sampling time, which is usually around a few thousands.

It should be noted that a cell has to be removed from the cell culture to be analyzed by flow

cytometry, so the flow cytometry does not provide the time-series measurement from the same

cell [10, 42]. That is, two measurements, ŷ(i)(tk) and ŷ(i)(tj), where k 6= j, are not from the

same cell. Consequently, the measurement snapshots, D̂k, ∀k = 1, . . . , Nt, are assumed to be

independent from each other [42].
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Similar to other biochemical assays, flow cytometry provides semi-quantitative datasets; in

other words, it only measures the relative concentrations of intracellular biomolecules [240]. In

this study, we assume the relative concentration measured by the flow cytometry can be expressed

in terms of the absolute concentration as follows:

ŷj(tk) = cj · x̂j(tk) + νj, j = 1, . . . , ny (6.3)

where x̂j(tk) is the concentration of a biomolecule, xj , in the absolute concentration at time tk,

ŷj(tk) is the relative concentration of x̂j measured by the flow cytometry, cj is the proportional

constant relating ŷj and x̂j , and νj is the measurement noise. Here, we assume both cj and νj

are mutually independent and log-normally distributed (i.e., ln cj ∼ N
(
µcj , σcj

)
and ln νj ∼

N
(
µνj , σνj

)
, respectively), [184]. For the purpose of this study, we assume µcj , µνj , σcj , and σνj

are known a priori through the equipment calibration [184, 241].

Based on this description of the experimental measurement (Equation 6.3), the model output,

yj , in Equation 6.1 is defined accordingly:

yj(tk) = c̄j(tk) · xj(tk) + ν̄j(tk) (6.4)

Here, c̄j(tk) and ν̄j(tk) are randomly sampled from the known distributions of cj and νj , respec-

tively.

6.2.3 Problem statement

In this study, we seek to infer the PDFs of IBPM model parameters, pθ(θ) (Equation 6.1),

utilizing the available population snapshot measurements, {D̂k}Ntk=1. Mathematically, we seek to
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solve the following minimization problem [10]:

min
pθ(θ)

Nt∑
k=1

∥∥p̂ŷ(tk)(ŷ(tk))− p̂y(tk)(y(tk))
∥∥
2

(6.5a)

s.t. ẋ(i)(tk) = f
(
x(i),θ(i), u; tk

)
(6.5b)

y(i)(tk) = g
(
x(i),θ(i), u; tk

)
(6.5c)

x(i)(0) = x(i)
0 , θ

(i) ∼ pθ(θ), ∀i = 1, . . . ,M (6.5d)

Dk = {y(1)(tk), y(2)(tk), · · · , y(M)(tk)} (6.5e)∫
pθ(θ)dθ = 1, pθ(θ) ≥ 0 (6.5f)

where p̂ŷ(tk)(ŷ(tk)) : Rny
+ → R+ is the output PDF at time tk based on the snapshot measurement

D̂k, p̂y(tk)(y(tk)) : Rny
+ → R+ is the simulated output PDF obtained by solving Equations 6.5b-

6.5c M times for the given pθ(θ), and Dk is the simulated snapshot measurement. The constraints

(Equation 6.5f) ensure the estimated pθ(θ) is a PDF. It should be noted that p̂ŷ(tk)(ŷ(tk)) and

p̂y(tk)(y(tk)) are estimated from the population snapshot datasets, D̂k andDk, respectively, through

a PDF estimation method such as Gaussian mixture modeling.

Unfortunately, this minimization problem (Equation 6.5) is nontrivial to solve. First of all,

the problem is infinite-dimensional since its decision variable is a function instead of a finite-

dimensional vector [10, 242]. Usually, one has to rely on an approximation method to solve such

an optimization problem. Second, it is expected that the PDFs of the entire parameter set are

difficult to be estimated accurately from the measurements due to the unidentifiability of the PDFs

of the model parameters [23, 47, 76]. Specifically, the PDFs of only a small subset of the model

parameters, θs ∈ Rnθs where nθs < nθ, are often identifiable from the available experiments

[23, 47, 243]. Therefore, even if a solution to Equation 6.5 is obtained through an approximation

scheme, the solution to the minimization problem above is likely to be unreliable or subject to a

large uncertainty. Lastly, solving the IBPM (Equations 6.5b-6.5e) is computationally demanding,

so the overall minimization problem (Equation 6.5) requires an immense computational effort as
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well.

In summary, this study proposes a new numerical scheme to address the following problem:

Problem. Given the IBPM (Equation 6.1) and the measured population snapshot data, D̂k, k =

1, . . . , Nt, estimate the underlying parameter probability density function, pθ(θ), accurately in a

numerically efficient manner.

6.3 Proposed methodology

Infinite-dimensional 

Minimization Problem 

Constrained by Eq. 1

Parameter Selection

Neural Network Model

Finite-dimensional 

Minimization Problem

Constrained by ANN

Sampling of θ

Solve Eq. 1 through

 Particle Filtering

Sobol’ Sensitivity 

Analysis

Parameter Dimension 

Reduction

Sampling of θs 

Solve Eq. 1 through

 Particle Filtering

Model Selection

Figure 6.1: An overall flow diagram for describing the proposed methodology. Equation 6.1 refers
to the IBPM.

In this study, we develop a systemic framework to efficiently solve the proposed PDF esti-

mation problem (Equation 6.5) while considering the identifiability of pθ(θ). Specifically, this

approach consists of dimension reduction of pθ(θ), which is the decision variable of Equation 6.5,

and development of an ANN to replace the computationally expensive IBPM (Equations 6.5b-

6.5e). The overall procedure is illustrated in Figure 6.1, and each step is described below.
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6.3.1 Assumptions

For the purpose of this study, we make one assumption: the PDF of θ is assumed to be a mul-

tivariate normal distribution [36]. The assumption is motivated by the two considerations. First,

since a normal distribution is fully characterized by its mean and covariance matrix, the normal-

distribution assumption allows the above minimization problem (Equation 6.5) to be reduced to the

one with a finite number of variables (i.e., means, and standard deviations (SDs), and covariances

of θ). Second, previous studies [42, 10] attempted to infer pθ(θ) through the PDF parameterization.

Although these approaches resolved the infinite dimensionality of the problem, the implementation

of such methodologies generally results in a large number of decision variables to be estimated,

which is likely to exacerbate the unidentifiability problem. In contrast, the normal-distribution

assumption renders the total number of decision variables limited to Ms = 2nθ + nθ!
2!(nθ−2)! . In the

end, the normal-distribution assumption reduces the decision variables of Equation 6.5 to finite-

dimensional vectors, µ ∈ Rnθ and σ ∈ Rnθ+
nθ !

2!(nθ−2)! , from an infinite-dimensional function, pθ(θ),

where µ and σ are the vector of means and the one with SDs and covariances of θ, respectively.

6.3.2 Parameter selection

The first step of the proposed methodology is the parameter selection [156], where the dimen-

sion of θ is reduced through identifiability analysis. Specifically, its goal is to select a subset of

θ whose PDFs can be accurately estimated from the population snapshot data. For determinis-

tic modeling approaches that utilize ODEs, this procedure is fairly well established with various

methods proposed in the past [23, 34, 47]. However, the identifiability of an IBPM has not been

examined as thoroughly as that of a deterministic model. Only available method for the IBPM

is proposed by Zeng et al. [48, 50], but their method is only applicable for a linear IBPM while

the most of the models for intracellular processes are nonlinear. Therefore, their method is not

implemented in this study.

Under this circumstance, this study performs sensitivity analysis to determine the most impor-

tant parameters and assumes that these parameters’ PDFs are identifiable. Specifically, the Sobol’
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method [193], a global sensitivity analysis method, is implemented. Through the sensitivity anal-

ysis, a parameter is chosen to be estimated if 1) it has a significant impact on ouputs and 2) it has

minimum correlations with other parameters. Theses two criteria will be evaluated through the

Sobol’ sensitivity index [23, 191].

For an ODE-based deterministic model, the parameter identifiability is often evaluated numer-

ically via a sensitivity analysis method, which assesses the significance of each model parameter

by computing the change in the model output due to the change in the parameter value [195]. The

Sobol’ method is appropriate for the purpose of this study since results from the Sobol’ method are

global and, thus, more reliable when the parameter values are largely uncertain or subject to PDFs

[197, 243].

In an ODE modeling setting, the Sobol sensitivity index of a parameter θi is computed based

on the variance of model outputs y, whose dimension is usually finite (i.e., ny). However, since

the output and parameters of an IBPM are both PDFs (i.e., p̂y(tk)(y(tk)|pθ(θ)) and pθ(θ), respec-

tively), the Sobol’ sensitivity index of an IBPM should be computed based on the variance of

p̂y(tk)(y(tk)|pθ(θ)) with respect to the change in pθ(θ). Specifically, the Monte Carlo method pro-

posed by Homma and Saltelli [196] is implemented along with the discretization of the output

dimension. The detailed procedures are explained as follows:

1. Two matrices (A and B ∈ RNs×Ms) are generated randomly via a Sobol’ sequence to sample

µ and σ [193, 195], where Ns is the Monte Carlo sample size and Ms is the total number

of statistical parameters (i.e., means, SDs, and covariances) needed to be considered for a

system with nθ model parameters (Ms = 2nθ + nθ!
2!(nθ−2)! ).

2. Another set of matrices Cj, ∀j = 1, . . . ,Ms, is constructed by substituting the j th column of

B by the j th column of A.

3. Determine pθ(θ) and the corresponding p̂y(tk)(y(tk)|pθ(θ)), ∀k = 1, . . . , Nt, based on each

row vector of A, B, and Cj through the particle filtering and Gaussian mixture model ap-

proximation (GMM) (see Supplementary Materials for the descriptions on these methods).
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4. Discretize the dimension of each output, ym,m = 1, . . . , ny, into M1 uniformly spaced

points, Ym = {y1m, . . . , yM1
m }, and create a meshgrid matrix, Y ∈ RM

ny
1 ×ny . Here, each row

vector of Y , which is denoted as Y i, contains discrete points in the ny-dimensional output

space.

5. Evaluate each p̂y(tk)(y(tk)|pθ(θ)) obtained in Step 3, and compute the sensitivity index at the

discretized points, Y i = {yi11 , yi22 , . . . , y
iny
ny }, ∀ i1, · · · , iny = 1, . . . ,M1, at each sampling

time as follows:

Sij(Y i(tk)) ≈ 1−
1/Ns

∑Ns
l=1 p

(
Y i(tk)|N (b(l))

)
p
(
Y i(tk)|N (c(l)j )

)
− p̄2i

(
Y i(tk)|N (a(l))

)
1/Ns

∑Ns
l=1 (p (Y i(tk)|N (a(l))))

2 − p̄2i (Y i(tk)|N (a(l)))
(6.6)

where

p̄i
(
Y i(tk)|N (a(l))

)
=

1

Ns

Ns∑
l=1

p
(
Y i(tk);N (a(l))

)
, ∀i = 1 . . . ,M

ny
1 (6.7)

and N (a(l)),N (b(l)), and N (c(l)j ) are the multivariate normal PDFs defined by the lth rows

of the matrices A,B, and Cj , respectively.

6. An effective sensitivity index, STj of the j th statistical parameters of pθ(θ) now can be

defined over all the sampling times and all the points in Y :

STj =
1

NtM
ny
1

M
ny
1∑

i=1

Nt∑
k=1

Sij(Y i(tk)) (6.8)

Here, the value of Ms equals to 2nθ + nθ!
2!(nθ−2)! , since a system with nθ number of parameters has

nθ number of means and SDs, and nθ!
2!(nθ−2)! number of covariances between the model parameters.

In this procedure, pθ(θ) can be fully characterized by each row vector of A, B, and Cj since

it contains sampled means and covariance matrix of θ. Based on the Sobol’ sensitivity indices, a

subset of important statistical parameters, φ ∈ Rns , ns < Ms, can be identified. In this work, we

assume only the model parameters, whose at least one of their statistical parameters are included in

φ, are normally distributed, which will be denoted as θs ∈ Rnθs , nθs ≤ nθ, hereafter. In contrast,
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the remaining parameters are fixed at their nominal values (i.e., they are not subject to PDFs).

Consequently, the decision variables of the minimization problem (Equation 6.5)) are reduced to a

vector whose dimension is ns.

It should be noted that this study employs the total sensitivity index as a measure to assess the

two criteria of identifiability. The total sensitivity index, ST , can be decomposed into two terms:

the first-order and higher-order sensitivities. The first-order sensitivity quantifies the direct effect

of a statistical parameter, which computes its significance. On the other hand, the higher-order

sensitivity computes its correlations with other parameters. Therefore, a parameter should have a

high magnitude of the first-order sensitivity with a low higher-order sensitivity.

6.3.3 Neural network model

Through the normal-distribution assumption and the parameter selection, the minimization

problem becomes finite dimensional. However, it is still numerically challenging to solve it di-

rectly. The difficulty mainly stems from the fact that it has the IBPM (Equations 6.5b-6.5e) as

one of its constraints. Motivated by the above considerations, an ANN (i.e., surrogate model) is

developed to approximate the IBPM. In this study, the ANN approach is chosen over other sur-

rogate modeling approaches because ANNs can approximate any arbitrary input-output relations

with sufficient accuracy as long as a dataset with a sufficient size is provided to train the ANN

[227, 228].

In order to ensure the developed ANN can accurately represent the IBPM (Equations 6.5b-

6.5e), a sufficient number of datasets are needed for training the ANN. The procedures for gener-

ating the training datasets are listed below:

1. A matrix Ā ∈ RNn×ns is generated via Sobol’ sequence to obtain samples of φ, where Nn is

the sample size.

2. Discretize the parameter space of each parameter in θs into M2 uniformly spaced points,

Pj = {θ1j , . . . , θ
M2
j }, ∀j = 1, . . . , nθs , and create a meshgrid matrix, P ∈ RM

nθs
2 ×nθs .

Here, each row vector of P , which is denoted as Pj , contains a discrete point in the nθs-
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dimensional parameter space.

3. Evaluate each pθs(θs) characterized by each row of Ā at their discretized grid points, Pj , and

stack the evaluated values side-by-side to form the input dataset matrix, B̄ ∈ RNn×(M
nθs
2 ×nθs ).

4. The particle filtering method and GMM (see Supplementary Materials) are implemented

sequentially to estimate Nn different p̂y(tk)(y(tk)|pθs(θs))), ∀k = 1, . . . , Nt, corresponding

to Nn row vectors of Ā.

5. Every set of {p̂y(tk)(y(tk)|pθs(θs))}Ntk=1 corresponding to each row of Ā is evaluated at Y to

construct a matrix C̄ ∈ RNn×(Nt×Mny
1 ) as the output dataset.

Here, it should be noted that all the remaining parameters, which do not belong to the set θs,

are fixed at their nominal values while generating the training datasets. During the model training,

the training datasets (both B̄ and C̄) are divided into training, validation, and testing sets [244].

In this study, the structure of ANN is restricted to that with only one hidden layer, whose neuron

has the hyperbolic tangent sigmoid transfer function, and one linear output layer. For each neuron

in the hidden layer, the following function is used:

oi =
2

1 + e−2ûi
− 1, ûi =

Nu∑
j=1

(wij · uj + bj) , ∀i = 1, . . . , N

where oi is the output of the ith neuron in the hidden layer, ûi is the weighted sum of inputs applied

to the ith neuron in the hidden layer of the ANN, Nu is the number of inputs given to the ANN,

wij is the weight given to the input uj at the ith neuron, uj is the jth input of the ANN, bj is a bias

term given to the ith neuron, and N is the number of neurons in the hidden layer.

On the other hand, the output of the ANN is calculated as follows:

Ok =
N∑
i=1

(Wkioi +Bk) ,∀k = 1, . . . , No

where Ok is the kth output of the ANN, N is the number of neurons in the hidden layer, Wki is the

111



weight term given to oi for Ok, Bk is a bias term given to Ok, and No is the number of outputs of

the ANN. As a result, the total number of hyper-parameters used in the ANN is Nu ·N +N +N ·

No +No = N(Nu + 1) +No(N + 1).

In order to determine the optimal number of neurons in the hidden layer, ANNs with the dif-

ferent number of hidden-layer neurons are trained, and their expected AICc (E(AIC)c) values (see

Supplementary Materials) are computed. Specifically, an ANN for a given number of hidden-

layer neurons is trained Ntr times with partitioning the training dataset differently to compute its

E (AICc) values. Then, the ANN with the smallest E (AICc) is chosen as the optimal one.

6.3.4 Re-formulation of PDF estimation problem

In summary, the proposed methodology reduces the original infinite-dimensional and compu-

tationally expensive problem to a finite-dimensional and numerically tractable one through the

parameter selection and the ANN development. Through this proposed methodology, the original

minimization problem (Equation 6.5) is reformulated as follows:

min
φ

Nt∑
k=1

∥∥p̂ŷ(tk)(ŷ(tk))− p̂y(tk)(y(tk))
∥∥
2

(6.9a)

s.t. p̂y(tk) (y(tk))) ≈ h (φ) , ∀k = 1, . . . , Nt (6.9b)

φlb ≤ φ ≤ φub (6.9c)

where h(·) is the developed ANN that predicts the output distribution for the given PDF of pa-

rameters characterized by φ. It should be noted that the l-2 norm in the objective function (Equa-

tion 6.9a) is evaluated via the standard trapezoid rule [10]. In this study, Equation 6.9a is solved 50

times with 50 different initial guesses via fmincon along with Multistart in Matlab to minimize the

chance of obtaining a suboptimal local solution. The allowed number of iteration and the tolerance

on the constraint violation are set to be 104 and 10−12, respectively, to achieve a high accuracy.
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Figure 6.2: Schematic diagram for the TNFα signaling pathway. Adapted from Hasenauer et
al. [10].

6.4 Results: Application to TNFα Signaling Pathway

Here, our proposed methodology was validated by implementing it in two different scenarios.

First, the PDFs of model parameters were inferred when only one measurement was available and

the correlation parameters were not considered. Second, the PDFs of the model parameters were

estimated when two measurements under the consideration of the parameter correlation.

6.4.1 TNFα Signaling Pathway

We implemented and validated the proposed methodology by estimating the PDFs of model

parameters in the TNFα signaling pathway model [245] based on in silico measurement data.

The mechanisms of co-activation of pro- and anti-apoptotic pathways by TNFα were modeled by

Chaves et al. [245], which is illustrated in Figure 6.2. This model describes the dynamic interaction

among four key proteins, which are NFκB, active caspase 8 (C8a), active caspase 3 (C3a), and

IκB, with TNFα as an external stimulus to the system. Through modeling the dynamics and

interactions among these proteins, the model represents a simplified version of three regulatory

networks present in the overall TNFα signaling pathway: the anti-apopotic NFκB network, the

pro-apoptotic caspase activation network, and the crosstalks between these two pathways [246]. A

detailed discussion on this system as well as its dynamic model is presented in [245, 246].
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The corresponding ODE model is formulated as follows [42]:

ẋ1 = −x1 +
1

2
(inh4(x3) · act1(u) + act3(x2))

ẋ2 = −x2 + act2(x1) · inh3(x3)

ẋ3 = −x3 + inh2(x2) · inh5(x4)

ẋ4 = −x4 +
1

2
(inh1(u) + act4(x3))

(6.10)

where xi, i = 1, . . . , 4 represent the relative activities of C8a, C3a, NFκB, and IκB, respectively,

and u represents the TNFα. The initial concentrations x0 = [x1(0) x2(0) x3(0) x4(0)]T are the

steady states of Equation 6.10 with u = 0. Also, the functions, inhi and acti, in the model are

rational functions given by:

inhi(xj) =
x2j

a2i + x2j

acti(xj) =
b2i

b2i + x2j

(6.11)

where ai, i = 1, . . . , 5, and bi, , i = 1, . . . , 4, are the model parameters ranging from 0 and 1

(Table 6.1) [42]. So, the parameter vector of this model is θ =

[
a1 . . . a5 b1 . . . b4

]T
, and

their nominal values are listed in Table 6.1.

Parameter Value Parameter Value
a1 0.6 b1 0.4
a2 0.2 b2 0.7
a3 0.2 b3 0.3
a4 0.5 b4 0.5

b5 0.4

Table 6.1: Nominal parameter values of the TNFα signaling model
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6.4.2 Parameter Selection Results

We started with the case where only one measurement was available (i.e., ny = 1) and parame-

ter correlations were not considered (i.e, Ms = 2nθ). In order to assess the identifiability of pθ(θ)

in the TNFα signaling pathway (Equation 6.10), the extended Sobol’ method was implemented as

described above. Specifically, since the dimension of θ was nine, significance of their eighteen

statistical moments (i.e., first and second moments of each model parameter) was evaluated by

computing their sensitivity indices. In this study, the sample size of 1000 was used to perform the

Monte Carlo evaluation of the sensitivity indices (i.e., Ns = 1000), and p(y) was evaluated at 100

uniformly distributed grid points in the y dimension (i.e., M1 = 100).

Figure 6.3 shows the results of the Sobol’ sensitivity analysis. Here, a2 represents the rate

constant of the C8a-induced C3a activation. It is evident that values of sensitivity indices were

quite close to each other except those of a2’s mean and SD. This suggests that their ST values

were dominated by their higher-order sensitivities, which indicates that these parameters were

highly correlated and not identifiable. Based on this result, the statistical moments of a2 were

determined to be most influencing, and it was assumed that only a2 follows the normal distribution

while the remaining model parameters (i.e., a1, a3, a4, b1, . . . , b4) were fixed at their values shown

in Table 6.1. Consequently, the decision variables of the PDF estimation problem were reduced to

the mean and SD of a2 from entire eighteen means and SDs of the model parameters.

6.4.3 Neural Network Model Development

For developing an ANN, 2000 pairs of {µa2 , σa2} values were randomly sampled (i.e., Nn =

2000) to obtain Ā, and the corresponding output PDFs were approximated through the particle

filtering. Then, these inferred output PDFs were evaluated at 100 uniformly distributed grid points

in the y dimension to construct the output dataset matrix, C̄ ∈ R2000×(100×Nt). At the same time,

the parameter space of a2 was discretized into 200 uniformly spaced grid points (i.e., M2 = 200)

to construct the input dataset matrix, B̄ ∈ R2000×200.

ANNs with various numbers of neurons in the hidden layer were trained 100 times by the train-
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Figure 6.3: Sensitivity Analysis Results. Sensitivity indices of the first and second moments (µ
and σ, respectively) of the model parameters in the TNFα signaling pathway.)

ing dataset with different partitions to compute E(AICc) [244]. Here, all computations relevant

to the ANN development were performed in the MATLAB Neural Network Toolbox. Figure 6.4

shows the E(AICc) values of ANNs with different sizes. Based on Figure 6.4, the ANN with

11 neurons in the hidden layer was chosen since the E(AICc) value reached the minimum value

and remained unchanged after it. Based on the current structure of the ANN, the number of hyper-

parameters used in the ANN isN(Nu+1)+No(N+1) = 11×(200+1)+1000×(11+1) = 14211.

The R2 statistics for the final ANN model were 0.984 with respect to the training dataset and 0.978
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Figure 6.4: Change of E(AIC)c values with the change in the number of neurons in the hidden
layer.

with respect to the validation dataset.

6.4.4 In Silico Experimental Measurement

From the previous studies, it has been shown that the TNFα signaling exhibits a high degree

of cell-to-cell variability [37, 246, 247]. To generate artificial experimental measurements, we

assumed a4 and b3 to be log-normally distributed and mutually independent. Then, the activity of
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Figure 6.5: Artificial flow cytometry measurements and the Gaussian Mixture model (GMM) fitted
to the flow cytometry measurements.

C3a (x2) was measured every hour from 0 to 10 hours subject to the following TNFα stimulation:

u(t) =


1, ∀ t ∈

[
0, 2

]
0, ∀ t > 2

(6.12)

At each sampling point, tk, x2 was measured from 5000 cells [8, 10], and the measurements were

subsequently corrupted with noise (Equation 6.3). Specifically, the proportional factor (c) and

measurement noise (ν) were log-normally distributed, and their statistics were known a priori
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from the equipment calibration, where µc, σc, µν , and σν were 0, 0.1, -3, and 0.3, respectively.

Figure 6.6: The second set of an artificial flow cytometry measurements and GMM fitted to the
flow cytometry measurements.

Figure 6.5 illustrates an exemplary experimental measurement when the natural logarithms of

a4 and b3 were distributed according to N (0.5, 0.2) and N (0.3, 0.15), respectively. Figure 6.5

indicates that the originally homogeneous cell population (i.e., t = 0) evolved into a heteroge-

neous one with two distinct subsets characterized by the low and high levels of C3a activities.
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Additionally, it also shows that the GMM smoother performed well to estimate the underlying

PDF of the obtained population snapshot data, which justified the use of the GMM smoother for

approximating the underlying PDFs.

Figure 6.7: The third set of an artificial flow cytometry measurements and GMM fitted to the flow
cytometry measurements.

To test the robustness of the proposed approach, two additional datasets were generated with

different PDFs for a4 and b3 (Figures 6.7-6.7). The proposed scheme was implemented to infer the
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PDFs of a2 from these three datasets (i.e., Figures 6.5-6.7).

6.4.5 Parameter Estimation Result

The minimization problem (Equation 6.9) was solved to estimate the PDF of a2 (p(a2)) for each

of the three datasets generated in the previous section (Figures 6.5-6.7), and the means and SDs of

the estimated PDFs are listed in Table 6.2. All the calculations were performed in MATLAB via

functions fmincon with multistart to solve Equation 6.9 with 50 different initial conditions [191].

To assess the validity of the estimated PDFs, the corresponding p̂y(tk)(y(tk)) was computed and

plotted in Figures 6.8-6.10. Overall, the predicted output PDFs were in qualitative and quantitative

agreement with the in silico experimental measurements; especially, the IBPM with the inferred

p(a2) was able to predict the temporal evolution from the unimodal distribution at t = 0 to the

bimodal distribution at later time points.

Dataset used for the estimation µ σ
Figure 6.5 0 0.26
Figure 6.6 0.19 0.03
Figure 6.7 0 0.17

Table 6.2: Estimated mean and SD of a2

6.4.6 When Two Measurements are Available

Lastly, we implemented the proposed methodology to a system with two measurements, where

parameters were possibly correlated with each other. Specifically, it was assumed that the activities

of C3a and IκB (i.e., x2 and x4) were measured every hour from 0 to 10 hours subject to the same

TNFα profile (Equation 6.12). To this end, a4 and b3 were log-normally distributed, and the noise

for both both of two measurements were also log-normally distributed, whose statistics were shown

121



0 hour

PDF Fitted to Experimental Data via GMM
Predicted PDF After Parameter Estimation
Experimental Data Histogram

1 hour 2 hour

3 hour 4 hour 5 hour

6 hour 7 hour 8 hour

9 hour 10 hour

Figure 6.8: The PDF of a2 was inferred from the artificial experimental data shown in Figure 6.5,
and the predicted output PDFs with the inferred PDF of a2 were plotted with the original his-
tograms and the fitted PDFs.

as follows: [
µc, σc, µν , σν

]
=


[
0 0.1 −3 0.3

]
for x2[

0 0.05 −1.9 0.25

]
for x4

(6.13)

Figure 6.11 illustrates the approximated PDFs of the in silico experimental measurements when

the natural logarithms of a4 and b3 were distributed according to N (0.5, 0.2) and N (0.3, 0.15),

respectively. As before, the cell population eventually evolves into a heterogeneous population

with two distinct subsets in terms of C3a activity while the cell population is relatively more

homogeneous in terms of IκB activity.
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Figure 6.9: The PDF of a2 was inferred from the artificial experimental data shown in Figure 6.6,
and the predicted output PDFs with the inferred PDF of a2 were plotted with the original his-
tograms and the fitted PDFs.

For assessing the identifiability of pθ(θ) with respect to the two available measurements (i.e.,

ny = 2), the sensitivity analysis was implemented as described earlier with Ns = 500 and

M1 = 50, and its results are shown in Figure 6.12. From Figure 6.12, it is clear that the means of

a2 and a4 are the most important statistical parameters. Therefore, we assumed that only a2 and

a4 were subject to PDFs while the remaining parameters were fixed at their nominal values. Also,

since none of the covariances between the model parameters was selected through the sensitivity

analysis, it was assumed that the PDFs of a2 and a4 are two mutually independent normal dis-

tributions since the correlation between a2 and a4 will not influence the PDFs of the two outputs

significantly. It should be noted that the variances of a2 and a4 were fixed at 0.5 for the subsequent
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Figure 6.10: The PDF of a2 was inferred from the artificial experimental data shown in Figure 6.7,
and the predicted output PDFs with the inferred PDF of a2 were plotted with the original his-
tograms and the fitted PDFs.

ANN development and parameter estimation.

As the means of a2 and a4 were identified as the most influencing factors, the corresponding

ANN was developed accordingly. To this end, 5000 pairs of {µa2 , µa4} values were randomly

sampled (i.e.,Nn = 5000) to obtain Ā, and the corresponding output dataset matrix C̄ was obtained

with M1 = 10. With the obtained training datasets, the optimal number of neurons in the hidden

layer was determined by finding the minimum E(AICc) values. Figure 6.13 plots the values of

E(AICc) of ANNs with different number of neurons in the hidden layer, and the ANN with five

neurons in the hidden layer was chosen to be optimal based on Figure 6.13. Based on the current

structure of the ANN, the number of hyper-parameters used in the ANN is N(Nu + 1) +No(N +

124



Figure 6.11: Artificial flow cytometry measurements when both C3a and IκB are measured. PDFs
of the output based on the estimated PDF of b1. The approximated PDFs of the artificial flow
cytometry measurements at t = 0, 5, 10 hours when the C3a and IκB activities were measured.

1) = 5 × (80000 + 1) + 10000 × (5 + 1) = 460005. The R2 statistics for the final ANN model

were 0.772 with respect to the training dataset and 0.748 with respect to the validation dataset.

Based on the trained ANN and the in silico experimental measurements, the means of a2 and a4

were inferred by solving Equation 6.9. The inferred values of µa2 and µa4 are 1.5 and 1.3, respec-

tively. In order to validate the estimation results, the corresponding p̂y(tk)(y(tk)) were computed

and plotted in Figure 6.14 along with the in silico experimental measurements. Overall, the pre-
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Figure 6.12: The results of the Sobol’ method of the parameters in the TNFα signaling pathway
when the C3a and IκB activities were measured. For clarity, the sensitivity indices of only twenty
statistical parameters of θ are shown.

dicted output PDFs agreed with the in silico measurements, which demonstrated that the proposed

methodology can be applicable even when there are more than one measurement.

6.5 Discussion

A central problem in systems biology is the construction of predictive mathematical models for

biological systems, and its key part is the inference of accurate model parameters [47]. Due to the

limitations in experimental techniques as well as the inherent complexity of biological systems,

the parameter estimation problem is usually ill-posed with many parameters that are not able to

be identified from experimental measurements [23, 36]. Therefore, the parameter identifiability

analysis has been extensively investigated by the systems biology community [47]. In previous

studies employing the IBPM approach, the parameter identifiability was not explicitly analyzed.

Instead, the PDFs of all parameters were estimated [44], or PDFs of a subset of parameters, which

were selected based on prior knowledge, were estimated; therefore, the resultant models were

mathematically suboptimal [10, 37, 42]. In contrast, this study implemented the Sobol’ sensitivity
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Figure 6.13: Changes in E(AICc) values with the change in the number of neurons in the hidden
layer when the C3a and IκB activities were measured.

analysis method to assess the identifiability of an IBPM numerically. Based on the presented TNFα

signaling pathway case study, the importance of the identifiability analysis is evident. Specifically,

when the PDF of a2, which was identified as the most important, was estimated, the model with the

inferred PDF of a2 was able to predict the experimental measurements. Although the estimation

results presented in Figures 6.8-6.14 agree reasonable well with the measurements, there were

noticeable mismatches present. Particularly, the secondary peaks present in measured PDFs of

C3a activities at 5 and 10 hours in Figure 6.14 were not well reproduced in the predicted PDFs.

Such mismatch may be reduced by improving the accuracy of an ANN through adaptive sampling

and/or iterations between surrogate modeling and optimization [248, 249, 250]. Such approaches

would detect the inaccuracy of the ANN due to the insufficient sampling and re-train the ANN to

achieve a better estimation result.

Previously, Hasenauer et al. [10, 42] proposed efficient density-matching schemes to infer
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Figure 6.14: PDFs of the outputs based on the estimated PDFs of a2 and a4. Histograms of in
silico measurements are compared with those predicted with the estimated means of a2 and a4 at
t =0, 5, and 10 hours.

PDFs of model parameters, where they parameterized the PDFs of parameters into a linear combi-

nation of multiple known PDFs whose corresponding output PDFs are computed a priori. Through

this parameterization, the PDF inference problem becomes much easier to be solved since it be-

comes a convex optimization problem and does not require to solve the forward model (Equa-

tion 6.1) repetitively, which is computationally expensive. Similarly, one of the main advantages

of the proposed methodology in our work is to avoid simulating the forward model iteratively
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while solving parameter inference problem (Equation 6.9) since the empirical mapping between

PDFs of model parameters and measurements is constructed beforehand. The key difference lies

in whether identifiability of PDFs is considered or not. Specifically, Hasenauer et al. [10, 42], at

least in their case studies, identified a subset of important parameters based on the prior informa-

tion and estimated their PDFs only. However, for many systems, it is unknown a priori which

model parameters exhibit cell-to-cell variabilities. Also, even if such information is available, it

may not be possible to uniquely estimate the PDFs of those parameters if those PDFs are not iden-

tifiable. In comparison, the proposed methodology in this work tries to address the identifiability

issue by performing the global sensitivity analysis of the PDFs of model parameters to determine

the identifiable PDFs, which are estimated in the subsequent inference problem. Consequently, the

possibility of obtaining a non-unique solution will be minimized.

The other contribution of this study is to propose the use of a surrogate model (i.e., ANN).

Since the ANN is developed offline with its validity spanning the entire parameteric space, the

minimization problem (Equation 6.9) could be solved in a very efficient manner. Without the ANN

development, the minimization problem (Equation 6.5) is computationally expensive because 1)

each iteration requires to solve the ODE model (Equation 6.1) a large number of times to estimate

p(y) and 2) the problem has to be solved multiple times with multiple initial conditions to avoid

locally optimal solutions. Therefore, the introduction of ANN reduces the computational cost.

The proposed methodology can be implemented in a biomanufacturing process for estimation and

control, as cell-to-cell variability can result in reduced yields and a bioreactor instability [16, 17,

34]. Although it is now feasible to measure the dynamics of biomolecules at the single-cell level

[251, 252], it is still difficult to measure the dynamics of every biomolecule of interest at the

single-cell level [14]. Therefore, the proposed methodology can be used to estimate the PDFs of

unmeasurable biomolecules by estimating the underlying PDFs of parameters so that the biological

system can be monitored more effectively. Furthermore, it is known that the phenotypes of cells

can evolve in a long term due to various reasons such as genetic mutations [253]. Consequently,

the PDFs of the model parameters need to be updated continuously in a real time, which requires
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a numerically efficient method. Therefore, the proposed methodology can be an attractive option

to achieve this goal. Also, the proposed approach can be used as a method to develop a grey-

box model to improve the prediction accuracy, when there is a considerable amount of model

uncertainty. In many circumstances, a first-principle model is partially accurate due to our limited

understandings of a process [8, 243]. As a result, a model training via parameter estimation is

unlikely to be successful due to the model mismatch. On the other hand, our proposed methodology

can be used for modeling and estimating a partially known system by introducing PDFs of model

parameters, which will take into account the uncertainty in a model structure.

6.6 Conclusion

In this work, we presented a new methodology for estimating the PDFs of parameters in an

intracellular biochemical reaction from the population snapshot measurements. Since this was

formulated as a density matching problem (Equation 6.5) with its decision variables to be infinite-

dimensional, the normal-distribution assumption and the Sobol’ sensitivity analysis method were

implemented sequentially to reduce the dimension and transformed the decision variables to be

finite-dimensional (i.e., requiring the first and second moments of the parameters only). Next, in

order to avoid the excessive computational cost associated with solving the minimization problem,

an ANN was developed beforehand to find an empirical mapping from the PDFs of parameters

into the output PDF. Finally, the re-formulated minimization problem constrained by the developed

ANN was solved to estimate the PDFs of parameters. To validate the proposed methodology, it

was implemented to infer the PDFs of the selected parameters in the TNFα signaling pathway

based on the experimental measurements generated in silico. The model with the estimated PDFs

of the selected parameters was able to predict the output PDFs that agreed reasonably well with

the measured output PDFs used in the estimation, which validated the proposed methodology.
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7. KINETIC MONTE CARLO MODELING OF MULTIVALENT BINDING OF CTB

PROTEINS WITH GM1 RECEPTORS*

7.1 Background

In Chapter 3, we have developed a new multi-step binding model describing interactions be-

tween CTB and ganglioside. Although the newly developed model performs better than existing

models in the literature [11, 147, 148, 149, 151], there are three limitations in this modeling ap-

proach. First, in order for a deterministic model to account for the surface micro-configuration

(e.g., receptor clustering and lipid rafts), which has been reported as one of the key factors de-

termining the CTB-ganglioside binding kinetics [11, 139, 143, 144], a large number of states and

parameters are required [56]. Second, the surface densities of GM1 receptors are usually low in the

gastrointestinal tract, which will increase stochastic fluctuations in the binding kinetics [153, 254];

however, such fluctuations are not easy to be captured by deterministic models [68, 254]. Lastly,

implementing the deterministic models for a cell membrane containing more than one type of

ganglioside receptors becomes increasingly difficult since all the possible binding configurations

between CTB proteins and ganglioside receptors need to be tracked during the simulation [255].

Motivated by these limitations, in Chapter 7, a kMC framework is proposed to model the CTB-

GM1 binding kinetics on a cell membrane. The kMC is a stochastic modeling approach to simulate

detailed surface reactions as well as the evolution of surface micro-configurations. Consequently,

it has been widely used to model the microscopic processes of a variety of applications such as

protein crystallization [51, 52, 53, 54, 55], thin film deposition [56, 57, 58, 59, 60], catalytic surface

reactions [61, 62, 63, 64, 65, 66, 67], and receptor-ligand interactions on a cell membrane [68, 69,

70, 71]. The proposed kMC modeling approach can handle the aforementioned shortcomings of

the deterministic models for the CTB-ganglioside binding system. Specifically, first, a kMC model

can explicitly describe the surface micro-configuration of how membrane-bound CTB proteins

*Reprinted with the permission from “Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with
GM1 receptors," by Lee et al., 2018, Computers & Chemical Engineering, 118, 283-295. Copyright 2018 by Elsevier
Ltd.
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and free GM1 receptors are distributed on a cell membrane as well as its influence on the binding

kinetics, which is difficult to be captured by deterministic models [59, 69, 70]. Second, the kMC

framework computes the binding kinetics in a probabilistic manner that is suitable for describing

a stochastic nature of the CTB-ganglioside binding process such as the fluctuation in the binding

kinetics when the concentration of CTB proteins in the solution and the density of GM1 receptors

on the surface of a cell membrane are low [56, 256]. Third, since the kMC framework executes

one event at every time step (i.e., a discrete-time model), the process dynamics are described by

a series of jumps from one surface micro-configuration to another in a discrete manner, while

the deterministic model updates simultaneously all of the possible binding configurations in a

continuous manner. The kMC model becomes extremely advantageous when the number of states

to be considered is huge, as in the case of a cell membrane containing multiple types of receptors.

In this chapter, a kMC modeling framework is proposed to predict the binding kinetics between

CTB proteins in the solution phase and GM1 receptors localized on a cell membrane. Furthermore,

the subsequent binding of membrane-bound CTB proteins with additional GM1 receptors on a cell

membrane is considered (Figure 7.1). It is important to note that GM1 is the primary ganglioside

receptor for CTB proteins [6]. Since the CTB-GM1 binding process takes place at both solution

and membrane-bound phases, the proposed kMC model needs to consider the binding kinetics in

both phases and their interdependence. Specifically, the CTB-GM1 binding process in the solution

phase is modeled by the steady-state diffusion equation to capture the CTB proteins diffusing to-

wards or away from the cell membrane [11, 157]. On the other hand, the surface binding process

is modeled by a standard kMC scheme to describe the surface reactions of membrane-bound CTB

proteins and free GM1 receptors on a cell membrane. For a manageable computational require-

ment, the migration of GM1 receptors is decoupled from other surface reaction processes since

it is an overwhelmingly frequent event than others [59, 60]. The simulation results indicated that

the proposed kMC model is comparable with the experimentally verified deterministic model pro-

posed by [11], which demonstrates the viability of the proposed stochastic modeling framework

for a CTB-ganglioside binding system.
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The chapter is organized as follows: first, we present the dynamic model that describes the

CTB-GM1 binding kinetics in the solution phase and on a cell membrane. Next, a simulation

lattice that represents a cell membrane is introduced to mimic the cell membrane environment,

and the execution procedure of kMC simulations is provided with details. Lastly, the simulation

results of binding kinetics predicted by the proposed kMC model are compared with those of an

experimentally verified deterministic model.

host cell membrane

CTB

GM1

Figure 7.1: Macroscopic (left) and microscopic (right) illustrations of the CTB-GM1 binding pro-
cess. CTB proteins are in the solution phase while GM1 receptors are localized on cell membranes.

7.2 CTB-GM1 binding process description and modeling

We consider CTB proteins binding to a cell membrane containing only GM1 ganglioside re-

ceptors (Figure 7.1). Initially, CTB proteins are in the solution phase, and GM1 receptors are

localized on the cell membrane. The CTB-GM1 binding process only occurs on the cell mem-

brane after CTB proteins are transported to the cell membrane via diffusion, which requires an

integrated model capable of capturing both the solution-phase diffusion of CTB proteins as well as

multiple microscopic reactions and transport phenomena (Figure 7.2).
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Figure 7.2: Schematic illustrations for microscopic processes considered to describe the CTB-
GM1 binding on a cell membrane.

7.2.1 Solution phase binding model

7.2.1.1 CTB diffusion and reactions

The solution phase binding model consists of two processes: CTB attachment to a cell mem-

brane and CTB detachment from a cell membrane. The former refers to a two-step process where

a protein diffuses to the vicinity of a cell membrane and attaches to the cell membrane by binding
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with a free GM1 receptor, which can be illustrated by the following reaction:

CTB(s) + GM1(m)→ CTB [GM1]1 (7.1)

where CTB(s) represents a CTB protein in the solution phase, GM1(m) represents a GM1 receptor

on a cell membrane, and CTB [GM1]1 represents a membrane-bound CTB protein with one bound

GM1 receptor. Similarly, the CTB detachment refers to a two-step process where a membrane-

bound CTB protein (i.e., CTB [GM1]1 in Equation 7.1) dissociates with its bound GM1 receptor

and diffuses away from the cell membrane as follows:

CTB [GM1]1 → CTB(s) + GM1(m) (7.2)

7.2.1.2 Rates of CTB attachment and detachment

In this study, we introduce effective rate constants to treat the two-step CTB attachment as

a one-step process that takes into account simultaneously the diffusion and binding processes of

CTB proteins. The lumped rate constant will be functions of the intrinsic CTB-GM1 association

rate constant, the number of free GM1 receptors on a cell membrane, the diffusion coefficients of

a CTB protein in the solution, and the radius of a cell [157].

Suppose a cell with a radius of a is placed at the origin of a spherical coordinate system, the

steady-state diffusion equation for a CTB protein in the solution phase is as follows:

D
1

r2
d

dr

(
r2
dCs
dr

)
= 0 (7.3)

where D is the diffusivity coefficient of a CTB protein in the solution phase, and Cs(r) is the

spatially varying CTB concentration. The first boundary condition is as follows:

r →∞ Cs → C (7.4)
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where C is the bulk CTB concentration. The second boundary condition can be obtained by apply-

ing a mass balance on a cell membrane. More specifically, at the surface of a cell membrane where

r = a, it is assumed that the overall CTB diffusion rate equals to the rate at which CTB proteins

bind with GM1 receptors on the cell membrane, which can be defined as [257]:

4πa2DNA
dCs
dr

∣∣∣∣
r=a

= 5k0 · Cs(r = a) ·R (7.5)

where NA is the Avogadro’s number, k0 is the intrinsic association rate constant for the CTB-GM1

binding, and R is the number of free GM1 receptors on the cell membrane. Here, a coefficient

of 5 is included because there are five different ways for a CTB protein to associate with a free

GM1 receptor to result in one configuration for a membrane-bound CTB protein with one bound

GM1 receptor (C1 in Figure 7.3) as a CTB protein is a homogeneous pentamer. Applying these

two boundary conditions, the analytical solution to Equation 7.3 is obtained as follows:

Cs(r) =
−5k0aCR

4πDaNA + 5k0R

1

r
+ C (7.6)

C1 C4 C5C2 C3

r-1

r1

r-2

r2

r-3

r3

r-4

r4

Surface forward reaction

Surface backward reaction

Figure 7.3: A schematic diagram for the step-wise CTB-GM1 binding kinetics on a cell membrane
adopted from [11]. Ci represents the membrane-bound CTB protein with i bound GM1 receptors.
Empty and filled circles represent the binding pockets of a membrane-bound CTB protein without
and with bound GM1 receptors, respectively. ri and r−i, ∀i = 1, . . . , 4, are the corresponding
reaction rates.
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By introducing the effective association rate constant, kf , the overall CTB flux to a cell mem-

brane can be defined as 5kfCR, which should be equal to the left hand side of Equation 7.5.

Consequently, kf can be defined as follows [11]:

kf =
k0

1 + 5k0R
4πDaNA

(7.7)

Similarly, the effective dissociation rate constant, kr, that describes both the CTB detachment and

diffusion away from a cell membrane is defined as follows [157]:

kr =

(
1− 5k0RNA

5k0RNA + 4πDa

)
k−1 =

k−1
1 + 5k0R

4πDaNA

(7.8)

where k−1 is the intrinsic CTB-GM1 dissociation constant.

Now, the CTB attachment and detachment rates are computed by

ra = 5kfCR

rd = krC1

(7.9)

where ra and rd are the CTB attachment and detachment rates, respectively, C is the CTB concen-

tration in the solution phase, R is the number of free GM1 receptors on the cell membrane, and Ci

is the number of membrane-bound CTB proteins with i bound GM1 receptors.

7.2.1.3 CTB mass balance

In this work, the change in the total CTB concentration determined by the interplay between

the CTB detachment and attachment processes can be described by the following mass balance

equation:
dC

dt
= (rd − ra)

Ncell

NA · V
(7.10)

whereNcell is the number of cells suspended in the solution phase, and V is the volume of solution.
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7.2.2 Surface binding model

As this is the first time applying the kMC methodology to model the dynamic CTB-GM1

binding process, the microscopic surface binding interactions between CTB proteins and GM1

receptors are described in great detail (Figure 7.2). The proposed surface binding model consists

of the multi-step binding process and the migration of GM1 receptors on a cell membrane.

7.2.2.1 CTB and GM1 surface reactions

The multi-step binding mechanisms proposed by [11] are adopted to describe the interactions

between CTB proteins and GM1 receptors on a cell membrane. Specifically, they considered four

surface forward reactions and four surface backward reactions (Figure 7.3). Here, the surface

forward reaction refers to a binding process where a membrane-bound CTB protein binds with an

additional GM1 receptor on a cell membrane, which can be illustrated by the following reaction:

CTB [GM1]i + GM1→ CTB [GM1]i+1, ∀i = 1, · · · , 4 (7.11)

where i represents the number of bound GM1 receptors. Since a CTB protein has five binding

pockets, the surface forward reaction can take place until a membrane-bound CTB protein be-

comes fully occupied with five bound GM1 receptors. On the other hand, the surface backward

reaction refers to a process where a membrane-bound CTB protein dissociates one of its bound

GM1 receptors, which can be illustrated by the following reaction:

CTB [GM1]i → CTB [GM1]i−1 + GM1, ∀i = 2, · · · , 5 (7.12)

During the surface forward and backward reactions, the intermolecular distances between free

GM1 receptors and membrane-bound CTB proteins are constantly changing due to the migration

of those molecules on a cell membrane. Specifically, a free GM1 receptor cannot bind with a bind-

ing pocket of a membrane-bound CTB protein if their intermolecular distance exceeds a threshold

value, which will hereafter be denoted as lc. In this work, all free GM1 receptors are allowed to
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migrate on a cell membrane while membrane-bound CTB proteins are assumed to be immobile:

since considering the migration of both membrane-bound CTB proteins and free GM1 receptors

will bring similar effects on the intermolecular distances, it is decided to consider only the migra-

tion of free GM1 receptors for computational efficiency.

7.2.2.2 Surface binding rates

The rate equations for four surface forward and four surface backward reactions are presented

as follows:

ri = (5− i) k1
4πa2

CiR

r−i = (i+ 1)k−1Ci+1, ∀i = 1, · · · , 4
(7.13)

where ri is the forward reaction rate from Ci to Ci+1, k1 is the surface forward association rate

constant, a is the radius of a cell, and r−i is the backward reaction rate from Ci+1 to Ci. Here, the

factors (5 − i) and (i + 1) are included to show that there are (5 − i) and (i + 1) ways in which

the corresponding reactions can occur with identical results due to the symmetric nature of a CTB

protein.

As a GM1 receptor is allowed to migrate to any adjacent sites including diagonally neighboring

sites, the migration rate can be computed via the following equation [68, 258]:

rm = NempkD/l
2 (7.14)

where rm is the migration rate for GM1 receptors, Nemp is the total number of empty neighboring

sites available for the migration of free GM1 receptors, kD is the diffusion coefficient of GM1

receptors on a cell membrane, and l is the average distance between two neighboring lattice sites

(details on lattice sites will be presented in the following section). It should be noted that Equa-

tion 7.14 computes the mean rate of the receptor migration to any neighbors, including 1st and 2nd

nearest (i.e., diagonal) neighbors. This is an acceptable practice to simulate the CTB-GM1 bind-

ing process as the rate of migration is overwhelmingly dominating compared to the rates of the
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remaining events, which will be discussed further in a subsequent section. However, if the value of

km decreases very significantly, two separate migration rates should be computed to represent the

migration rates to 1st and 2nd nearest neighbors differently with different values of l and Nemp.

7.3 Kinetic Monte Carlo Model

7.3.1 Simulation Lattice

A two-dimensional solid-on-solid lattice with a periodic boundary condition is implemented

to model the foregoing surface interactions among GM1 receptors and CTB proteins via a kMC

methodology, which considers the CTB attachment and detachment, GM1 migration, and surface

forward and backward reactions (Figure 7.2) [51, 53, 68]. The dimension of the lattice sites is

(N ·ls)× (N ·ls), whereN is the number of lattice sites on each side, and ls is the lattice spacing. In

this work, we considered a simplified cell membrane, composing of two molecules: GM1 receptor

and a phospholipid (DOPC), which does not interact with CTB proteins. Under this assumption,

the value of ls is set to be 0.96 nm, which is the diameter of DOPC head group estimated based on

its surface area (0.72 nm2) [259]. We could introduce different numbers of GM1 receptors on the

two-dimensional lattice sites to reach the desired surface densities of GM1 receptors. Prior to the

simulation, GM1 receptors are randomly distributed over the simulation lattice. Each lattice site

can be either empty or occupied by one GM1 receptor, and GM1 receptors can migrate to eight

neighboring sites, including the four diagonal directions, unless they are occupied (Figure 7.4). In

this case, l in Equation 7.14 equals to ((1 +
√

2)/2) · ls, which is the average value of the lattice

spacing, ls, and the distance between two diagonally neighboring sites,
√

2 · ls

A CTB protein consists of five identical monomers to form a pentemeric ring whose diameter

is 6 nm [260]. In this work, a CTB protein on the lattice sites is approximated by a pixelated

pentagon that covers a total of 24 lattice sites (Figure 7.5). Hence, the covered lattice sites that

represent a membrane-bound CTB protein is around 22 nm2, which is very close to the surface

area of a regular pentagon that inscribes a circle of diameter of 6 nm. In this work, we assumed a

CTB protein attaches to the lattice sites with the following configuration: the CTB will be aligned
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Figure 7.4: A schematic illustration of GM1 receptors on the lattice sites for the kMC simulation.
Squares in blue represent lattice sites occupied by GM1 receptors, and arrows indicate possible
migration directions.

with the lattice sites so that all of its five binding pockets belong to a plane that is in parallel to

the two-dimensional lattice sites. As membrane-bound CTB proteins are assumed to be immobile,

their bound GM1 receptors are also immobile and only available for a surface backward reaction

or a CTB detachment event.

7.3.2 Kinetic Monte Carlo Implementation

In this work, a hybrid n-fold kMC algorithm is applied to the CTB-GM1 binding process oc-

curring on a cell membrane [261], and the GM1 migration event is handled separately by another

approach for computational efficiency [59, 60], which will be discussed in the following subsec-

tion. The total surface reaction rate, rt, is defined as follows:

rt = ra + rd +
4∑
i=1

(ri + r−i) (7.15)

Then, a random number, ξ1 ∈ (0, 1], is generated. If ξ1 < ra/rt, the CTB attachment event

is selected; if ra/rt ≤ ξ1 < (ra + rd)/rt, the CTB detachment event is selected; if (ra + rd +
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Figure 7.5: A schematic illustration of a pixelated CTB protein. Each square box represents a
lattice site with its side length of 0.96 nm, and filled squares represent the lattice sites covered
by a membrane-bound CTB protein. Five shaded boxes represent the five binding pockets of the
membrane-bound CTB protein.

∑j−1
i=1 ri)/rt ≤ ξ1 < (ra + rd +

∑j
i=1 ri)/rt, ∀j = 1, . . . , 4, the surface forward reaction event

from Cj to Cj+1 is selected; if (ra + rd +
∑4

i=1 ri +
∑j−1

i=1 r−j)/rt ≤ ξ1 ≤ (ra + rd +
∑4

i=1 ri +∑j
i=1 r−j)/rt, ∀j = 1, . . . , 4, the surface backward reaction event from Cj+1 to Cj is selected.

Since the kMC model simulates only a part of a cell membrane, the mass balance equation of

Equation 7.10 should be modified to account for the difference in the surface areas of an actual cell

membrane and the two-dimensional lattice as follows:

C(t+ ∆t) = C(t)±
(
Ar ·

Ncell

NA · V

)
(7.16)

where ∆t is the elapsed time of one CTB attachment or detachment event, and Ar is the ratio

between the surface area of a cell membrane (4πa2) and the lattice surface area (N2l2s). It is

important to note that Equation 7.16 is a discrete-time model, which is readily implementable in

the kMC modeling approach. A flow diagram of the overall kMC simulation procedures is shown

in Figure 7.6.
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Figure 7.6: The kMC flow chart. Due to the space limitation, only one surface forward reaction
(rf ) and one surface backward reaction (rb) are shown.
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When the CTB attachment event, ra, is selected, a random integer ξ2 ∈ (0, R] is generated to

select which free GM1 receptor on the lattice sites will be bound to the incoming CTB protein, and

another random integer ξ3 ∈ [1, 5] is generated to select one out of the five available binding sites

of the incoming CTB protein to which the selected free GM1 receptor will be bound. It should be

noted that the incoming CTB protein needs a group of available lattice sites around the selected

GM1 receptor for an attachment event to occur (Figure 7.5). If an enough area is not reserved

due to overlapping with any of existing membrane-bound CTB proteins on the lattice sites, the

attachment event is rejected, and the kMC simulation proceeds to the next step.

When the CTB detachment event, rd, is selected, an integer ξ4 ∈ (0, C1] is randomly generated

to select a membrane-bound CTB protein with only one bound GM1 receptor, and the selected

CTB protein will leave the cell membrane while the dissociated GM1 receptor is now available for

binding with other membrane-bound or incoming CTB proteins.

When the surface forward reaction rate, ri, is selected, a random integer ξ5 ∈ (0, Ci] is gen-

erated to select a membrane-bound CTB protein with i bound GM1 receptors to bind with an

additional GM1 receptor, which is then selected by generating another random integer ξ6 ∈ (0, R].

Additionally, another random integer ξ7 ∈ [1, 5 − i] is generated to select a binding pocket of

the selected CTB protein to which the selected free GM1 receptor will be bound. It should be

noted that the intermolecular distance between the selected binding pocket and the selected GM1

receptor is important. Specifically, if the intermolecular distance is larger than the value of lc, the

surface forward reaction between the selected CTB protein and GM1 receptor will be rejected, and

the kMC simulation proceeds to the next step.

When the surface backward event, r−i, is selected, a random integer ξ8 ∈ (0, Ci+1] is gener-

ated to determine a membrane-bound CTB protein that currently has i + 1 bound GM1 receptors.

Then, another random integer ξ9 ∈ [1, i + 1] is generated to determine a GM1 receptor bound

to the selected membrane-bound CTB protein. The selected GM1 receptor dissociates from the

membrane-bound CTB protein and becomes free.

Once an event is selected and executed, an additional random number ξt ∈ (0, 1] is drawn to
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determine the elapsed time associated with the executed event [51]. Specifically, a time increment,

∆tt, is computed based on ξt and rt as follows:

∆tt =
− ln ξt
rt

(7.17)

7.3.2.1 Decoupling GM1 migration

Although the GM1 surface density is usually low, the rate of GM1 receptor migration is still

much larger than the rates of all other events combined (Figure 7.7). Specifically, if the GM1

surface density is 1 mol% and N = 100, there are 100 free GM1 receptors on the lattice sites;

therefore, the migration rate is around 109/s via Equation 7.14 since the diffusivity of GM1 recep-

tors is estimated to be 8.25×106 nm2/s [140, 262]. In contrast, the CTB attachment rate is 0.1/s via

Equation 7.13 when the CTB concentration is 100 nM and the kf value is about 104/(M·s). The

rates of other events are even smaller than the GM1 attachment rate. From this comparison, it is

clear that the migration rate is much greater than the rate of other reactions by several orders of

magnitude. Under this condition, the effect of the receptor migration on the membrane reactions

becomes negligible, which allows to approximate the receptor migration [263]. Consequently, the

GM1 migration is decoupled from the event selection for computational efficiency. More specifi-

cally, after executing one non-migration event, the GM1 migration event is carried out by randomly

reassigning locations of all free GM1 receptors: two random integers from (0, N ] are generated to

determine a new location for every free GM1 receptor. If a new location is occupied by another

receptor, this procedure is repeated until the GM1 receptor finds an empty site. The time increment

associated with the decoupled migration process is calculated as follows [59, 60]:

∆tm =
− ln ξm
rt

(7.18)

where ξm is another random number sampled from (0,1].

Consequently, the updated time instant after the event execution is tk+1 = tk+∆tt+∆tm, where
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Figure 7.7: Reaction rates of microscopic events considered in the proposed kMC model with the
CTB concentration of 25 nM and the GM1 surface density of 0.01 mol%.

tk+1 and tk are the next and current time instants, respectively. It should be noted the time will

elapse by (∆tt + ∆tm) even if the selected event is rejected due to the surface micro-configuration.

The simulation will continue to proceed until the pre-specified end time. The kMC simulation is

implemented in C# with Visual Studio 2017, and it is executed on a Windows desktop with 3.60

GHz Quad-Core Intel i7 Processors.

7.4 Results

The values of the model parameters used for the kMC simulation are listed in Table 7.1. Please

note that these values were adopted from [11] except k1. In the model proposed by [11], only

surface forward and backward reactions are considered without the GM1 migration. Therefore, the

k1 in their model in fact is an effective surface forward association rate constant, which is a function
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of the intrinsic surface forward association rate constant, the average distance between membrane-

bound CTB proteins, the lc value, and the GM1 diffusivity on a cell membrane [162]. On the

other hand, k1 in the proposed kMC model refers to the intrinsic surface forward association rate

constant as the GM1 migration and lc are explicitly incorporated in the proposed kMC framework.

Therefore, the k1 value proposed by [11] was not able to be readily used in the proposed kMC

model.

Parameter Value Source

k0 (/(M·s)) 2.8×104 [11]
k−1 (/s) 3.2×10−3 [11]

k1 (µm2/s) 1.3×10−2 Estimated
kD (m2/s) 8.25×10−12 [264]
D (m2/s) 10−10 [155]
lc (nm) 1.45 [265]
a (µm) 2.5 Fixed

Ncell/V (/L) 5×108 Fixed
ls (nm) 0.96 [259]
N 500 Fixed

dmem(nm) 3.6 [266]

Table 7.1: Values of the model parameters used in the kMC simulation

Unfortunately, there was no previous study reported the k1 value of the CTB-GM1 binding

kinetics in this context. Therefore, we estimated the value of k1 based on the following correlation

with k0, which is the intrinsic rate constant describing the CTB-GM1 binding in the solution phase

(Equation 7.7) [162]:

k1 = k0 ·
1

dmemNA

(7.19)

where dmem is the thickness of a cell membrane, which is set to be 3.6 nm [266].

Additionally, the values of kD and D were adopted from previous studies [155, 259, 264], and

the value of a was fixed at 2.5 µm (Table 4.1). The value of Ncell/V in Equation 7.16 was fixed at
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5×108 cell/L, which was taken from [11]. Lastly, the threshold distance of lc = 1.45 mm was used

for the surface forward reactions, which is one half of the distance between two adjacent binding

pockets of a CTB protein [265].

In order to validate the receptor migration decoupling strategy, separate simulations without

the receptor migration were executed to validate the accuracy of the proposed kMC model. In

these simulations, the migration event was explicitly considered in the event selection by consid-

ering Equation 7.14, the migration event rate calculation, in calculating the total surface reaction

rate, rt. The obtained predictions were compared with those with the migration decoupling. As

shown in Figure 7.8, the simulated binding kinetics with and without kinetics showed a reasonable

consistency, which demonstrated the validity of the migration decoupling strategy implemented in

this study.

In order to validate the proposed kMC model, the total number of membrane-bound CTB pro-

teins (i.e.,
∑5

i=1Ci) was compared with that predicted by the deterministic model proposed by

[11]. Since the deterministic model was experimentally validated, a reasonable match between the

two models would validate predictive capability of the proposed kMC model. Figures 7.9-7.10

present the total number of membrane-bound CTB proteins predicted by the proposed kMC model

when the GM1 surface densities are 0.01 and 0.03 mol% with 3, 5, 10 and 15 nM CTB concen-

trations. Although some discrepancy between the predictions from these two models existed due

to the lack of efforts to carry out a sophisticated parameter estimation procedure, the total number

of membrane-bound CTB proteins predicted by the proposed kMC model and the deterministic

model by [11] were reasonably close to each other, which suggests that the proposed kMC model

is a valid mathematical tool to simulate the CTB-GM1 binding kinetics on a cell membrane.

Each realization of the kMC model represents the CTB-GM1 binding process on a cell mem-

brane. Therefore, we can simulate the cell-to-cell variability in the CTB-GM1 binding kinetics by

running the kMC model under the same condition multiple times; the simulation results are dif-

ferent because the generated random numbers that determine a series of the surface reaction rates

of CTB proteins and GM1 receptors will not be identical. In Figures 7.9-7.10, ten realizations of
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Figure 7.8: Validation of the migration decoupling strategy. The solid line was the predicted
kinetics with decoupling the migration while dotted points were the predicted kinetics without
decoupling under the particular migration rate constant. For each condition, ten realizations were
obtained, and their mean values were plotted.

the kMC model were plotted together to compare how the total number of membrane-bound CTB

proteins changes with time under the same condition of CTB concentrations and GM1 surface

densities: Specifically, in Figure 7.9, the maximum of the total number of membrane-bound CTB

proteins after 1000 seconds was almost four times the minimum of the total number of membrane-

bound CTB proteins among the realizations. This fluctuation was attributed to the low copy number

of CTB proteins and GM1 receptors. Here, we simulated a cell membrane with a low GM1 surface

density (< 0.1 mol%), and the corresponding number of GM1 receptors on a cell membrane was

around 104. In the physiological condition, GM1 is approximately 0.001 mol% of total glycol-

ipids in human intestinal epithelia [153], and the typical total glycolipid fraction of the entire cell
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Figure 7.9: Comparing the CTB-GM1 binding kinetics predicted by the proposed kMC model
and the deterministic model proposed by [11] for the GM1 surface density of 0.01 mol%. Ten
realizations were plotted for each CTB concentration.

membrane for a mammalian cell is around 5 mol% [267]. Therefore, the continuum assumption,

which is necessary for the use of deterministic models, may not be valid because the number of

receptors on a cell membrane is far smaller than Avogadro’s number, resulting in the rate of the

CTB-GM1 binding process to fluctuate [126]. Therefore, the proposed kMC model is more suit-

able than deterministic models to capture the fluctuation in the binding kinetics attributed to low

CTB concentrations and GM1 surface densities.

By increasing the CTB concentration from 3 nM (Figure 7.10a) to 15 nM (Figure 7.10d), the

difference in the maximum and minimum total number of membrane-bound CTB proteins among
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Figure 7.10: Comparing the CTB-GM1 binding kinetics predicted by the proposed kMC model
and the deterministic model proposed by [11] for the GM1 surface density of 0.03 mol%. Ten
realizations were plotted for each CTB concentration.

ten realizations at 1000 seconds reduced by 30% at the GM1 surface density of 0.03 mol%. Also,

the same difference decreased by 20% when the GM1 surface density increased from 0.01 mol%

(Figure 7.9d) to 0.03 mol% (Figure 7.10d) at the CTB concentration of 15 nM. These results

demonstrated that the fluctuation in the CTB-GM1 binding rates decreased with the increase in

the number of CTB proteins and GM1 receptors involved in the binding process; this observation

justifies the use of deterministic models at high CTB concentrations and GM1 surface densities.

In addition to the total number of membrane-bound CTB proteins, it is also important to check

the number of bound GM1 receptors per a membrane-bound CTB protein on a cell membrane,
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which will be denoted as valency. A recent study elaborated that the CTx toxicity increases with

the valency [173]. In this work, the average valency over 1000 seconds was simulated using

the proposed kMC approach. Figure 7.11 presents the average valency increased with the GM1

surface density, while the average valency decreased as the CTB concentration increased. It should

be noted that 100 realizations were computed to calculate the average valency for each condition to

obtain a better statistics, and the simulation lattice with N = 1000 was used for the GM1 surface

density of 0.01 mol% and CTB concentration of 1 nM to minimize the potential finite size effect.

CTB Concentration, nM
0 10 20 30

A
ve

ra
g

e 
V

al
en

cy

1

1.5

2

2.5

3

3.5

4

4.5
0.01 mol% GM1
0.03 mol% GM1
0.05 mol% GM1

Figure 7.11: Average valency under various GM1 surface densities and CTB concentrations at
t = 1000 seconds. Data points are given as means ± standard error of means.

7.5 Discussion

In this work, a kMC model was proposed to describe the CTB-GM1 binding kinetics by con-

sidering various microscopic processes in the solution phase as well as on a cell membrane. By

taking into account the significance of each microscopic process depending on its reaction rate,

the proposed kMC model was able to describe the stochastic nature of the CTB-GM1 binding ki-
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netics, particularly when the number of participating CTB proteins and GM1 receptors is low. At

the same time, the simulated profiles were in reasonable agreement with those predicted by the

experimentally validated deterministic model proposed by [11]. It should be noted a stochastic

model and a deterministic model are likely to make different predictions when the number of re-

actants are low [69, 126]. However, Mayalawa et al. [69] demonstrated that a deterministic model

can accurately describe a biomolecular interaction on a membrane when the migration rate on the

membrane is much faster than those of reactions. Based on the parameter values available from the

literature (Table 4.1), the CTB-GM1 binding process is expected to be a migration-dominating pro-

cess as described above. Consequently, the deterministic model by [11] can describe the dynamics

accurately enough to be used in assessing the accuracy of the proposed kMC model.

It should be noted that the parameters used in the proposed kMC model were taken from the

deterministic model proposed by [11] after a minor modification. However, these values are sub-

optimal for the kMC model since these values were originally obtained for a deterministic model,

resulting in a discrepancy shown in Figures 7.9 and 7.10. The optimal parameter values for the

kMC model can be acquired by employing rigorous parameter estimation methods. Specifically,

various parameter estimation methods for stochastic dynamic models were proposed such as max-

imum likelihood methods and Bayesian inference methods [126, 268], but these methods are com-

putationally inefficient because of the high computational requirements for stochastic models to

obtain accurate simulation results. One way to handle this computational issue is to derive a re-

duced model that approximates the dominant dynamics of the original stochastic model during the

parameter estimation step [269, 270].

In order to obtain high-throughput data of the CTB-GM1 binding kinetics under different GM1

concentrations, we should be able to manipulate the composition of receptors on a cell membrane.

A novel nanocube biosensor, which was recently developed by Wu and his colleagues [7, 6, 155],

is a viable option to collect high-throughput data for the parameter estimation as the CTB-GM1

binding kinetics can be measured quantitatively under a cell-membrane-mimicking environment

while the composition of receptors on a model membrane can be manipulated.
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Lastly, it should be noted that the proposed kMC model is a flexible framework, which can

be easily extended to incorporate other characteristics of multivalent binding dynamics on a cell

membrane. Recent studies [6, 152, 155, 271] have demonstrated that the presence of weak recep-

tors along with strong receptors leads to an increase in the number of membrane-bound proteins,

which is mainly caused by a mechanism called reduction of dimensionality (RD) [155, 271, 272]:

once a multivalent protein is localized on a membrane by strong receptors, effective association

rates between membrane-bound proteins and both strong and weak receptors are enhanced by sev-

eral folds due to the reduction of the reaction domain from three to two dimensions [155]. As a

cell membrane consists of multiple types of receptors, the RD mechanism is expected to play a

key role in the binding process in vivo. Therefore, it is necessary for a model to be capable of

describing the multivalent membrane reactions accurately to predict a binding process on an actual

cell membrane more realistically. And the proposed kMC model can be easily extended to study

effects of the presence of other receptors along with GM1 receptors by considering a few more

events in the event selection procedure.

Furthermore, previous studies have revealed that the receptors are not uniformly distributed

on a cell membrane and its spatial organization is an important factor in determining kinetics of

membrane reactions and their subsequent downstream signaling pathways [68, 70, 139, 273]. For

example, multiple types of CTB receptors, including GM1 receptors, are found to form micro-

clusters on a cell membrane, which mainly consist of glycolipids, cholesterol and membrane pro-

teins [274]. In [139], the authors showed that the formation of the GM1 clusters on a membrane

inhibited the CTB-GM1 binding. On the other hand, the inhibition of the cluster formation by

removing cholesterol from a membrane decreased the amount of cholera toxin internalized into

the cytoplasm and attenuated the cholera toxin toxicity [275, 276]. As the proposed kMC model

explicitly accounts for the temporal evolution of the surface configuration, it can be modified to

take into account the clustering of the receptors, which will provide valuable insights on the effects

of the clustering on a more realistic binding process.
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7.6 Conclusion

The present work focuses on the development of a kMC modeling framework to describe the

CTB-GM1 binding process on a cell membrane. Since CTB proteins are initially in the solution

phase while GM1 receptors are localized on the cell membrane, the proposed modeling frame-

work considered the binding processes over the two spatial domains. Specifically, the solution

phase binding model was developed by taking into account the diffusion, attachment and detach-

ment processes of CTB proteins utilizing the steady-state diffusion equation. On the other hand,

a lattice kMC model was developed to account for the GM1 receptor migration and the multi-

step surface association and dissociation reactions between membrane-bound CTB proteins and

GM1 receptors on a cell membrane. Along with the surface binding reactions, the intermolecular

distances between membrane-bound CTB proteins and free GM1 receptors were considered to ac-

count for the effect of migration on the surface micro-configuration, which was not considered by

[11]. For computational efficiency, the GM1 migration process was decoupled from the kMC event

selection procedure to reduce the high computational cost introduced by considering the GM1 mi-

gration. Then, a mass balance equation was implemented to integrate the lattice kMC model with

the solution phase model, and the integrated model was compared with the experimentally vali-

dated deterministic model proposed by [11]. The reasonable agreement between predictions by

two models demonstrated the prediction accuracy of the proposed kMC model. Furthermore, the

proposed model was able to capture the stochastic nature of the CTB-GM1 binding kinetics on a

cell membrane, which became more evident with a low copy number of CTB proteins and GM1

receptors.

155



8. SUMMARY & FUTURE WORK

8.1 Summary

Due to the intrinsic stochasticity as well as the cell-to-cell differences, the signaling dynam-

ics in a clonal population of cells exhibit cell-to-cell variability at the single-cell level, which is

distinct from the population-average dynamics. Even the bacteria, which are the simplest form of

life, also show population heterogeneity, which suggests the cellular heterogeneity is a ubiquitous

feature of every population of living organisms [277]. Therefore, it is of great interest for research

communities to explore onsets and roles of such cellular heterogeneity. For example, Stamatakis

[277] suggested two reasons why one needs to study the cellular heterogeneity: first, in order for

utilizing mammalian or bacterial cell bioreactors to produce commercial products, it is important

to explicitly consider the cell-to-cell variability since it will directly impact the production yield

as well as the process design and control of bioreactors; and second, it has been suggested that the

cellular heterogeneity is important for survival of cells even under sudden changes in cellular en-

vironment. Hence, this study aims to capture and investigate these important phenomena through

computational modeling approaches. Specifically, this study proposed systematic methods to ad-

dress two main sources of the cellular heterogeneity, that is, cell-to-cell differences and reaction

stochasticity.

For developing a model that can address the first source of the cellular heterogeneity, an IBPM

modeling approach is implemented. Development of an IBPM consists of two steps, where its

ODE model needs to be constructed first and its model parameters’ PDFs need to be inferred

from the PDFs of the measurements. Hence, this study presented how to achieve each goal in

a systematic manner. For developing an ODE model, two scenarios are considered. First, when

the underlying mechanisms are well understood, an integrative approach that consists of in vitro

experimentations, parameter selection and estimation, model validation, and model refinement is

implemented so that model predictions match well with experimental observations. In the second
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scenario, we presented two different numerical approaches to construct an accurate model even

when underlying mechanisms are only partially known. The first method aims to construct a time-

varying model by assuming the most influential model parameters to be piecewise constant whose

temporal dynamics are determined by temporal clustering of measurements and parameter estima-

tion. On the other hand, the second method constructs a hybrid model, where its state dynamics

are constantly adjusted by additional correction terms inferred from experimental datasets. While

estimating values of these necessary correction terms, the dimension of the correction terms is min-

imized by the graph-theoretical approach to avoid ill-posedness as well as the computational costs

of the inference problem. Once an accurate ODE model is developed by any of three methods men-

tioned earlier, parameters’ PDFs are inferred from the measurement PDFs. This study proposed a

three-step procedure to estimate parameters’ PDFs at a reasonable computational requirement.

Lastly, we propose a kMC modeling framework to incorporate reaction stochasticity in a

receptor-ligand binding system, which is an initial event in an intracellular signaling pathway. This

is necessary since a receptor-ligand binding process is another source of the cellular heterogene-

ity. While the IBPM focuses on capturing the cell-to-cell differences, a kMC model is designed

to capture stochasticity that is intrinsic to a biochemical reaction due to low copy numbers of re-

actants involved in the process. Furthermore, the proposed kMC model offers a way to take into

account the multivalent binding, which is common for many receptor-ligand interactions on a cell

membrane, migration of receptors on a membrane, and non-uniform distributions of receptors on

a membrane. Since these features along with the reaction stochasticity are not easily captured

by an ODE or IBPM, such a kMC model offers a flexible modeling framework to study how the

stochasticity and heterogeneous spatial configurations contribute to the cellular heterogeneity in an

intracellular signaling pathway.

8.2 Future Work

This study laid the foundations for formulating a multiscale mathematical model for describing

cellular heterogeneity in response to perturbation in their environment. In what follows, a list of

potential improvements currently under consideration in the lab is provided:
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1. Construction of an IBPM requires an accurate ODE model before estimating PDFs of its

model parameters. Constructing an accurate ODE model requires us to address both para-

metric and structural uncertainties. In this regard, Chapters 2 and 3 addressed how we can

estimate the values of model parameters so that we can improve the model accuracy. Such

parameter estimation scheme assumes that the underlying model structure is accurate. On

the other hand, Chapter 5 discussed how we can construct a hybrid model to infer correct

state trajectories for addressing the underlying structural model uncertainty. Since it is likely

to have both parametric and structural model uncertainty while developing a model, Dr.

Kwon’s group aims to propose a simultaneous parameter and state estimation scheme. Since

the numbers of model parameters and states are usually large for many intracellular signaling

pathway models, a dimension reduction scheme combining sensitivity analysis and observ-

ability analysis will be implemented to determine a subset of states and parameters that need

to be estimated from experiments. Once this subset is identified, a regularized least-squares

problem can be solved to determine parameter values as well as trajectories of states.

2. In this study, optimization-based approaches have been implemented to infer parameter val-

ues. Such approaches aim to obtain the best estimates of parameter values by minimizing

discrepancy between the experimental measurements and model’s predictions. Alternatively,

Bayesian approaches can be used to estimate unknown parameter values [38, 43, 46]. On top

of estimating parameter values, a Bayesian approach also computes uncertainty associated

with the estimated values of model parameters. The computed uncertainty will help assess

the robustness of the estimation results. In this regard, Dr. Kwon’s lab intends to imple-

ment a Bayesian approach such as approximate Bayesian computation methodology [38] to

estimate the parameter values as well as their uncertainties to assess how reliable they are.

3. Constructing a first-principle model for an intracellular signaling pathway is to translate our

prior understanding of the pathway into a model that can be used for in silico experiments

to validate hypotheses regarding the system and generate new ones to be tested in a new
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set of experiments. For this purpose, the model needs to be trained and validated by ex-

perimental measurements. Chapter 2 discussed how to improve the NFκB model accuracy

by iterations between model training, validation, and model updates. But, the final model

presented in the Chapter still did not agree perfectly with the experimental results, which

suggests the model deficiency. In this regard, Dr. Kwon’s lab plans to further improve the

accuracy of the model by further experimentation and model update. Specifically, we plan

to incorporate BFA-induced ER-stress response mechanisms much more in details so that

the model accuracy can be improved. The improved model will be further trained and val-

idated by new experimental measurements. To obtain a good model training result, it is

imperative to obtain new reliable experimental measurements. To this end, we will aim to

measure expression levels of TNFα and other proteins, which are secreted to extracellular

matrix. Specifically, we want to measure such proteins instead of IκBα, since expression

levels of these secreted proteins are expected to be higher than proteins that remain inside a

cell; as a result, the noise-to-signal ratio in measurements will be smaller and thus increase

the estimation accuracy.

4. In this study, two sources of the cellular heterogeneity are modeled separately with differ-

ent modeling approaches. Specifically, the cell-to-cell differences are modeled by IBPM

by estimating the PDFs of model parameters while the reaction stochasticity is considered

through the kMC simulation framework. Since both sources are important and biologically

significant, a multiscale model is needed to integrate these two approaches to consider both

sources of the cellular heterogeneity. Specifically, in this multiscale model, the on-lattice

kMC model will explicitly consider spatial distributions of biomolecules on cell membranes

and stochastic binding dynamics between these molecules and external molecules from a

cellular environment. As such receptor-ligand dynamics are usually the initiating events for

many intracellular signaling pathways, it is important to investigate how the stochastic dy-

namics on cell membranes will propagate along intracellular signaling pathways and how

these integrated dynamics will contribute to the cell-to-cell heterogeneity. In this regard, in
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the future, Dr. Kwon’s lab aims to develop a multiscale modeling framework incorporating

IBPM and kMC so that both sources of the cellular heterogeneity are incorporated to study

the origins and impacts of such heterogeneity.

5. Although the parameter estimation has been performed for an ODE or an IBPM model to

enhance their predictive power, the parameters for a kMC model have not be estimated from

experimental measurements. In Chapter 7, by using the same parameter values, the accu-

racy of the proposed kMC model was validated by comparing its predictions with its deter-

ministic counterpart. However, the proposed kMC model is intrinsically different from the

deterministic one since the kMC model explicitly considers the surface migration as well as

the effects of membrane configurations. It can be erroneous for the kMC model to use the

parameter values derived from the deterministic model. Hence, the parameter estimation is

necessary for the kMC model to increase its accuracy and interpretability. In this regard,

Dr. Kwon’s lab aims to develop a computationally efficient parameter estimation scheme for

a kMC model by developing a surrogate model for the kMC model as well as the adaptive

sampling to reduce the computational costs.
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