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ABSTRACT 

Statistical process control is an integral set of techniques in chemical engineering that 

can help guarantee the effective operation of various engineering systems. A multitude of 

techniques have been and are still being developed in order to detect and monitor faults in 

processes using process data. Deviations from the normal operating conditions can cause 

a myriad of abnormalities in the data, such as temperature and pressure readings, which 

can then be used to detect faults in the process. Processes variables can be linearly or non-

linearly correlated, and the aim of this work is to start off with linearly correlated data, 

and then move on to non-linearly correlated data, which is more complex and requires 

more advanced methods to deal with. The basis of fault detection when the data is linearly 

correlated is principal component analysis, which is widely used. Two extensions of this 

method, interval PCA (IPCA) and multiscale PCA (MSPCA), have been developed to help 

increase the efficiency of fault detection. In MSPCA, the data are decomposed using 

wavelets at multiple scales, and PCA is applied at each scale before reconstructing the 

data back to the time domain, where PCA is applied again to detect faults. MSPCA helps 

deal with auto-correlated noise and reduces its effect on the accuracy of fault detection. 

Interval PCA, on the other hand, is a technique that helps deal with uncertainty in the data 

by converting the single valued data interval by aggregating the measured samples over a 

time horizon, and PCA is applied on the generated intervals. These two methods will be 

combined, and new fault detection method, called interval multiscale PCA (IMSPCA), 

will use the advantages of both to have more efficient fault detection method. For the 

nonlinear case, a neural network-based modification of the algorithm will be used to 



iii 

 

developed neural network IMSPCA (NNIMSPCA). Neural networks are a group of 

techniques, modeled after neurons in the human brain that are taught to recognize complex 

patterns in data. 
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NOMENCLATURE 

CPV   Cumulative Percent Variance 

FAR   False Alarm Rate 

FDR   Fault Detection Rate 

IMSPCA  Interval-Multiscale Principal Component Analysis 

IPCA   Interval Principal Component Analysis 

m   Number of Data Samples 

MSPCA  Multiscale Principal Component Analysis 

n   Number of Variables  

NNIMSPCA  Neural Network Interval-Multiscale Principal Component Analysis 

PCA   Principal Component Analysis 

SNR   Signal-to-Noise Ratio 

SPC   Statistical Process Control 
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1. INTRODUCTION 

1.1 Overview 

In the chemical engineering industry, the field of statistical process controls (SPC) 

is an ever growing an expanding field, which deals with diagnosing and detecting faults. 

It is estimated that an average of $20 billion is lost every year in just the petrochemical 

industry in the United States due to faulty SPC [1]. Statistical process control has been 

constantly developing since the 1920’s, with the advent of the first control chart developed 

by Walter Shewhart [2].The main aim of SPC is to monitor the process and ensure that it 

remains within the defined limits. The Shewhart chart utilizes data from the most recent 

samples and calculates a threshold, usually m±3σ, where m is the mean and σ is the 

standard deviation of the data, and determines what could be considered to be a fault and 

needs further investigation. This very simplistic approach was the basis of control charts; 

however, it was very quickly proven to be inefficient in detecting small shifts in processes 

and correlation between variables. The focus of this work is on fault detection, which is a 

branch of SPC. Deviations in the operating conditions or equipment in a chemical plant 

may cause abnormalities in the data, and it is these abnormalities that need to be detected 

in order for a fault to be declared [3]. 

In a normal operating process, up to 1500 variables maybe observed at a time [1]. 

Handling “Big Data” has been a topic of interest in machine learning and data science [4], 

and the use of computational machine learing tools in data processing will be used in this 

work. Fault detection methods that deal with such processes are divided into 3 categories: 

quantitative model-based methods, qualitative model-based, and process data model-
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based methods. Quantitative based methods require a deep understanding of the process, 

while qualitative based methods rely on rules set by experts in the process being monitored 

[5]. These requirements make them difficult to use with highly complex data. Process 

data-based methods, however, only use past data from the process in order to develop the 

models needed for fault detection. Principal Component Analysis (PCA) is one of such 

process data-based methods [6]. It is a linear dimensionality reduction tool that has been 

used in process monitoring for a long time, where data that is linearly correlated can be 

decorrelated and its dimensionality can be reduced. PCA is also used to filter out noise 

and discover features and dynamics in data [7]. The goal of PCA is to reconstruct the data 

using less dimensions than the original data, while retaining most of the variability in the 

data. In order to perform PCA, the covariance matrix of the data is calculated, and the 

eigenvectors and eigenvalues of this matrix are then determined. The eigenvalue of 

corresponding to each variable gives information for how much variance is explained by 

the variable. A suitable number of principal components (PC’s) is then chosen, and the 

data is reconstructed using the eigenvectors of the corresponding PC’s. The Q statistic is 

usually then calculated, and a threshold is drawn that is used to determine where the faults 

are [8]. 

New algorithms for fault detection are constantly being developed in order to 

minimize safety hazards and costs, and maximize efficiency of operation in chemical 

plants. This work aims to combine two existing methods, interval PCA (IPCA) and 

multiscale PCA (MSPCA), in order to develop a better method that can be used on linear 

datasets, interval multiscale PCA (IMSPCA) . IMSPCA will then be modified using neural 
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networks, to develop an algorithm that can be used for nonlinear datasets, neural network 

IMSPCA (NNIMSPCA). 
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2. IMPROVING FAULT DETECTION USING IMSPCA 

2.1 PCA 

2.1.1 Theory 

Principal component analysis (PCA) is a multivariate statistical technique that is 

used on data to reduce its dimensionality and extract important information from it. It was 

developed by Pearson in 1901 as a way to represent data with a new axis that better fit the 

system of points [9]. PCA transforms the original data using a new set of basis called 

principal components (PC) which capture the maximum variation and minimize 

redundancy and noise. The benefits of PCA is that while most of the variability in the data 

is retained, there is a minimal loss in information if the correct number of PC are chosen. 

At the same time, the obtained PC are not correlated with each other and can be studied 

individually without affecting the rest [10]. 

  PCA represents a normalized data matrix X, with m samples and n variables, as the 

product of two matrices, 𝑇 ∈ 𝑅𝑛×𝑝  and 𝑃 ∈ 𝑅𝑚×𝑝 , which contain the PC and loading 

vectors of X respectively, as X = 𝑇𝑃𝑇. The number of principal components and 

corresponding eigenvectors that are retained are represented by rewriting 𝑇𝑃𝑇as [11], 

 𝑋 = �̂��̂�𝑇 + �̃��̃�𝑇 , (1) 

where the �̂� and �̂� matrices contain the retained principal components and eigenvectors, 

respectively, and T̃ and �̃� contain the remaining principal components and eigenvectors, 

respectively. The main goals of PCA are to obtain the most important features of the data, 
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compress the amount of data while retaining the important information, and to examine 

the structure of the variables and check for correlations, and this is done by choosing a 

number of PC that is less than the number of variables in the original data set [12]. 

Determining the number of important PC is a critical step in PCA modeling, as 

underestimating the number of PC leads to an incomplete representation of the data, and 

overestimating leads to an over defined and noisy reconstruction. Several techniques have 

been developed for this purpose, which include the scree plot, the variance of the 

reconstruction error, and cumulative percent variance (CPV).  

o The scree plot graphs eigenvalues of the correlation matrix of the data in 

decreasing order versus the variable index, and a suitable number is chosen at the 

point where the graph becomes a straight line [13].  

 

Figure 1: Scree plot of 10 correlated variables 
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o Using the variance of reconstruction error method, the VRE is plotted for each 

possible number of PC, and the point at which the VRE is at minimum is chosen 

to correspond to the optimal number of PC [14].  

 

Figure 2: VRE for 10 variables with the minimum being at 4 PC 

o Using CPV, a desired percentage of variability captured by the PC (e.g. 90% or 

95%) is chosen, and the number of PC corresponding to that percentage is then 

retained. [15]  

𝐶𝑃𝑉(𝑙) =
∑ 𝜆𝑖

𝑙
𝑖=1

𝑡𝑟𝑎𝑐𝑒(∑)
x 100 

This is the most commonly used method to calculate the retained number of PC’s 

and will be used in this work. [16] 
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2.1.2 Applications of PCA 

PCA is a widespread technique used to reconstruct data with fewer components 

while retaining most of the variability and filtering out noise. It has been used in the field 

of material science to uncover patterns in atoms and molecules and then determine the 

correlation of such patterns with material characteristics [17]. It is also used in the field of 

chemometrics, a subfield of biochemistry that deals with applying multivariate statistical 

methods to laboratory studies [18], and in electrocardiography (ECG) signal processing to 

reduce the size of the signals so that they can be compressed [19]. In chemical engineering, 

the vast amounts of data that are generated from plants are compressed using PCA, which 

can then be used to determine correlations and calculate fault detection metrics for fault 

detection. 

2.1.3 PCA algorithm 

1. The training data set is first converted to an m x n data matrix X, where m is the 

number of data samples and n is the number of variables. In order to keep the data 

internally consistent, the data is first standardized. This ensures that each variable 

has the same mean of zero and standard deviation of one, so that they can be easily 

compared. This is useful when the data set contains variables of different natures, 

i.e. temperature and pressure readings  [20]. To standardize the data, the mean, µ, 

and standard deviation, σ, of each variable in the training set is calculated. Then, 

the mean is subtracted from each data point, and divided by the standard deviation 



8 

 

of its data set. This ensures that that the mean of each variable is zero, and the 

standard deviation is one.  

2. Calculating the correlation matrix of the data. The correlation matrix is a square 

matrix where the diagonals are calculated to be the variances of each variable, and 

the other components are the covariances, and is useful in assessing the correlation 

between each two variables in a data set [20]. In the m x n data matrix X, the 

covariance matrix, V can be given by  

 𝑉 =

(

 
 

𝜎(𝑥1, 𝑥1) 𝜎(𝑥2, 𝑥1) ⋯ 𝜎(𝑥𝑛−1, 𝑥1) 𝜎(𝑥𝑛, 𝑥1)
𝜎(𝑥1, 𝑥2) 𝜎(𝑥2, 𝑥2) … 𝜎(𝑥𝑛−1, 𝑥2) 𝜎(𝑥𝑛, 𝑥2)

⋮ ⋮ ⋱ ⋮ ⋮
𝜎(𝑥1, 𝑥𝑛−1) 𝜎(𝑥2, 𝑥𝑛−1) … 𝜎(𝑥𝑛−1, 𝑥𝑛−1) 𝜎(𝑥𝑛, 𝑥𝑛−1)
𝜎(𝑥1, 𝑥𝑛) 𝜎(𝑥1, 𝑥𝑛) ⋯ 𝜎(𝑥𝑛−1, 𝑥𝑛) 𝜎(𝑥𝑛, 𝑥𝑛) )

 
 

 (2) 

In the case of standardized data, the diagonals of the correlation matrix will be one, 

giving the covariance matrix. 

3. Finding the eigenvalues and eigenvectors of V. The eigenvalues are important 

because they explain the percent of variance explained by each variable and are 

used to assess how many eigenvectors to be retained. The eigenvalues, 𝛬, are 

calculated and arranged in a diagonal matrix, 

 𝛬 =

(

 
 

𝛬1 0 ⋯ 0 0
0 𝛬2 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝛬𝑛−1 0
0 0 ⋯ 0 𝛬𝑛)

 
 

 (3) 

The eigenvalues are arranged in decreasing order, and using either of the methods 

of Section 2.1 a suitable number is chosen. The corresponding eigenvectors are 
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then used to transform the data into the principal component space. This is shown 

in Figure 3, where c eigenvectors are chosen. 

 

 

Figure 3: Figure showing retention of principal components 

4. The transformation matrix �̂� = �̂��̂�𝑇is used to find the predicted data matrix �̂� =

𝑋�̂� and residuals matrix �̃� = 𝑋(𝐼 − �̂�) = 𝑋�̃�. 

5. �̂� and �̃� are used to calculate the predicted and residual matrices of the testing data, 

Y, using �̂� = 𝑌�̂� and �̃� = 𝑌�̃�, respectively. 
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2.1.4 Fault Detection using PCA 

When a fault occurs in one of the variables, the PCA model will contain differences 

in �̂� and �̃� that are larger than in normal operations. The two most commonly used 

statistics in quantifying these residuals are the Q-statistic and the Hotelling’s T2-statistic. 

The T2 statistic is a measure of the variation of each sample in the retained PC subspace, 

and is given by the equation, 

 𝑇𝑖
2 = 𝑥𝑖𝑃𝛬−1𝑃𝑇𝑥𝑖

𝑇 (4) 

The Q-statistic (or squared prediction error) is a calculation of the difference 

between a measurement and its corresponding projection in the PCA subspace[21]. The 

equation for the Q-statistic for a measurement 𝑥𝑖 is, 

 𝑄𝑖 = �̃�𝑖�̌�𝑖
𝑇 = 𝑥𝑖(𝐼 − 𝑃𝑃𝑇)𝑥𝑖

𝑇 = 𝑥𝑖�̃�𝑥𝑖
𝑇 (5) 

where �̃�𝑖 represents the projection of the measurement. The Q-statistic will be used in this 

work as it is more sensitive than the T2  statistic, which requires a larger shift in the process 

to detect a fault [22].  

After calculating the T2 or Q statistics, the accuracy of fault detection is evaluated 

using two main criteria: fault detection rate (FDR) and false alarm rate (FAR). FDR is the 

percentage of successfully detecting faults when faults exit, while FAR is the percentage 

of detecting faults when they do not exist [9]. After calculating the Q statistic, a threshold 

is then calculated.  
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Figure 4: Figure showing false alarm and detection rate 

2.2 Multiscale Principal Component Analysis (MSPCA) 

Multiscale principal component analysis (MSPCA) is one of the extensions of PCA 

that uses a multiscale representation to represent the data by passing it through low and 

high pass filters derived from scaling and basis wavelet functions, respectively. This is 

done to extract important features from the signal and remove noise, with the purpose of 

improving fault detection. Data can be passed through linear filters such as Shewhart, 

exponentially weighted moving average (EWMA), and cumulative average 

(CUSUM)[23], but their disadvantage lies in the fact that they can only look at data at one 

frequency, and only have good performance when the variables are gaussian and not 

correlated. MSPCA uses nonlinear filters derived from wavelet and scaling functions, 

which can separate the deterministic and stochastic features of a signal, and which have 

been shown to improve fault detection for multivariate data. 
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2.2.1 Multiscale representation of data 

In multiscale decomposition, the signal is written as the sum orthonormal basis 

functions called wavelets and scaling functions, that are localized in both time and 

frequency[24]. There are various families of wavelet functions such as Haar, Daubechies, 

and Coiflet. In this work, the Haar wavelet function is used for its simplicity and ease of 

use [25].It is also the only family of wavelets that is symmetric and at the same time 

compactly supported and orthogonal [26]. The signal is convoluted with a low pass filter 

derived from a scaling function, which has the form, 

 𝜑𝑗𝑘(𝑡) = 2
−𝑗
2 𝜑(2−𝑗𝑡 − 𝑘) (6) 

and shape, 

 

Figure 5: Shape of the Wavelet Scaling Function Used in multiscale decomposition 

where the parameters j and k represent the dilation and translation parameters, 

respectively. The first detail signal is the difference between the original signal and the 

approximate signal, and is obtained by convoluting the original signal with a high pass 

filter that is derived from a wavelet function which has the form, 

 ψ𝑗𝑘(𝑡) = 2
−𝑗
2 ψ(2−𝑗𝑡 − 𝑘) (7) 

and shape,  
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Figure 6: Shape of the Wavelet Basis Function used in multiscale decomposition 

This process is repeated on every scale by applying the filters on the previous 

approximate signal, until a certain depth J is reached. The original signal can be expressed 

mathematically as the sum of the last approximate signal, and all the detailed signals as,  

 𝑥(𝑡) = ∑ 𝑎𝑗𝑘𝜑𝑗𝑘(𝑡) + ∑ ∑ 𝑑𝑗𝑘𝜓𝑗𝑘(𝑡)

𝑛2−𝑗

𝑘=1

𝑗

𝑗=1

𝑛2−𝑗

𝑘=1

. (8) 

where n is the number of samples. 

 

Figure 7: Signal decomposed to a depth of 3 
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Multiscale decomposition requires defining a decomposition depth, J. A very large 

depth may result in important information being eliminated, while a small depth may result 

in the retention of large amount of noise. The optimum rule set for determining depth for 

a signal of length m is a heuristic presented by Bakshi, using the equation 𝐽 = 𝑙𝑜𝑔2𝑚 − 5, 

which results in a depth where the coarsest scale has 32 coefficients[24]. 

2.2.2 MSPCA algorithm 

The wavelet decomposition shown in section 2.2.1 is combined with PCA to obtain 

MSPCA, and the algorithm is shown in Figure (6). 

1. After standardizing the training data, X, and the testing data, Y, compute the 

wavelet decomposition of each signal to a depth, J. 

2. Collect and group the approximate signals and each detail signal at the different 

depths from each variable, and compute the covariance matrix for each set. 

3. Apply PCA, and then use the model to compute the Q statistic of the training and 

testing data sets. 

4. For the training data, if any of the Q statistic values cross the threshold, all of the 

scale is retained. 

5. For the testing data, if any of the Q statistic values do not cross the threshold, the 

sample is zeroed on the original scale 

6. Reconstruct the data back into the time domain after applying the above rules, and 

apply PCA. 

7. Calculate the Q statistic and assess the fault detection rate and false alarm rate. 
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Figure 8: Schematic for MSPCA 

2.3 Interval principal component analysis (IPCA) 

Interval PCA is an extension of PCA that is applied to data sets with a high number 

of samples and/or uncertainties in the data, i.e. gaps in some readings [27]. The basis of 

this extension is the aggregation of data into useful groups that make it more 

computationally efficient to work with. 

2.3.1 Interval Generation 

An interval is constructed using a lower and upper bound, for example [ a,b ], such 

that a ≤ b and { a,b } ∊ ℝ. A visual representation of an interval dataset is shown below 

[28]. 
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 |𝑿| =

[
 
 
 
 
 
[𝒙𝟏,𝟏

𝒍 , 𝒙𝟏,𝟏
𝒖 ] [𝒙𝟏,𝟐

𝒍 , 𝒙𝟏,𝟐
𝒖 ] … [𝒙𝟏,𝒑

𝒍 , 𝒙𝟏,𝒑
𝒖 ]

[𝒙𝟐,𝟏
𝒍 , 𝒙𝟏,𝟏

𝒖 ] [𝒙𝟐,𝟐
𝒍 , 𝒙𝟐,𝟐

𝒖 ] … [𝒙𝟐,𝒑
𝒍 , 𝒙𝟐,𝒑

𝒖 ]
. . … .
. . … .

[𝒙𝒏,𝟏
𝒍 , 𝒙𝒏,𝟏

𝒖 ] [𝒙𝒏,𝟐
𝒍 , 𝒙𝒏,𝟐

𝒖 ] … [𝒙𝒏,𝒑
𝒍 , 𝒙𝒏,𝒑

𝒖 ]]
 
 
 
 
 

 (9) 

where xl
n,p represents the lower bound of a given interval, and xu

n.p represents the upper 

bound of the same interval. Then for each interval, the center, xc is calculated as 

 𝑥𝐶 =
𝑥𝑙 + 𝑥𝑢

2
 (10) 

and the radius, xr is calculated as 

 𝑥𝑟 =
𝑥𝑢 − 𝑥𝑙

2
 (11) 

In some cases, the center is taken as the average of the 2 extremes, while the radius 

is taken as the standard deviation of the 2 extremes in the interval. After this is done, two 

new data sets are generated: one containing all the centers, and one containing all the radii. 

They are represented by {𝑋𝐶 , 𝑋𝑅}, which are shown below. 

 [𝑋𝐶] =

[
 
 
 
 
 
 
 
 [

𝑥1,1
𝑙 + 𝑥1,1

𝑢

2
] [

𝑥1,2
𝑙 + 𝑥1,2

𝑢

2
] … [

𝑥1,𝑚
𝑙 + 𝑥1,𝑚

𝑢

2
]

[
𝑥2,1

𝑙 + 𝑥1,1
𝑢

2
] [

𝑥2,2
𝑙 + 𝑥2,2

𝑢

2
] … [

𝑥2,𝑚
𝑙 + 𝑥2,𝑚

𝑢

2
]

. . … .

. . … .

[
𝑥𝑛,1

𝑙 + 𝑥𝑛,1
𝑢

2
] [

𝑥𝑛,2
𝑙 + 𝑥𝑛,2

𝑢

2
] … [

𝑥𝑛,𝑚
𝑙 + 𝑥𝑛,𝑚

𝑢

2
]
]
 
 
 
 
 
 
 
 

 (12) 
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 [𝑋𝑅] =

[
 
 
 
 
 
 
 
 [

𝑥1,1
𝑢 − 𝑥1,1

𝑙

2
] [

𝑥1,2
𝑢 − 𝑥1,2

𝑙

2
] … [

𝑥1,𝑚
𝑢 − 𝑥1,𝑚

𝑙

2
]

[
𝑥2,1

𝑢 − 𝑥1,1
𝑙

2
] [

𝑥2,2
𝑢 − 𝑥2,2

𝑙

2
] … [

𝑥2,𝑚
𝑢 − 𝑥2,𝑚

𝑙

2
]

. . … .

. . … .

[
𝑥𝑛,1

𝑢 − 𝑥𝑛,1
𝑙

2
] [

𝑥𝑛,2
𝑢 − 𝑥𝑛,2

𝑙

2
] … [

𝑥𝑛,𝑚
𝑢 − 𝑥𝑛,𝑚

𝑙

2
]
]
 
 
 
 
 
 
 
 

 (13) 

There are three types of interval PCA: Centers IPCA (CIPCA) [29], Midpoint-radii 

IPCA (MRIPCA) [30], and symbolic covariance IPCA (SIPCA) [31]. The method chosen 

in this work is MRIPCA, was shown to be better at detecting faults than the other two 

methods[28].  

2.3.2 Midpoint-Radii IPCA (MRIPCA) 

In MRIPCA, PCA is applied independently on the centers and radii data, and each 

corresponding PCA model is used for fault detection. The choice of how many samples to 

aggregate per interval are dependent on two things: the level of uncertainty in the data, 

and the sample size of the data. 

1. The training data sets 𝑋𝐶  and 𝑋𝑅  are used to compute the transformation model 

matrices {�̂�𝐶 , �̃�𝐶} and {�̂�𝑅 , �̃�𝑅}, by using �̂� = �̂��̂�𝑇and �̃� = (𝐼 − �̂��̂�𝑇), which can 

be used to calculate the Q statistics. 

2. {�̂�, �̃�} are used on the testing data {𝑌𝐶 , 𝑌𝑅} to generate their transformation 

matrices to calculate the Q statistic: {�̃�𝐶 , �̃�𝑅} = {𝑌𝐶�̃�𝐶 , 𝑌𝑅�̃�𝑅} . 

3. A false alarm rate is then set and that threshold value is used on the faulty testing 

data to assess fault detection rate. 
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2.4 Objectives and methodology 

In this section the parameters used to assess the different algorithms are discussed. The 

objectives of this work as follows: 

1. Develop a combined interval-multiscale PCA (IMSPCA) algorithm that can detect 

faults in linear process data with a high accuracy. 

2. Perform a comparative study of IMSPCA with the conventional PCA, IPCA, and 

MSPCA algorithms. 

2.4.1 Interval-Multiscale principal component analysis 

In literature, there is no observed integration of wavelet decomposition with 

interval data, which is why this topic was explored. The benefits of generating intervals 

such as reduced computational complexity and reducing the data set size, coupled with the 

multiscale decomposition, which can separate the stochastic and deterministic features of 

a signal, is carried out in this work to yield Interval-Multiscale principal component 

analysis (IMSCPA). Using IMSPCA, the data is first converted into centers and radii 

intervals, and the multiscale decomposition to a certain depth J is applied on the interval 

data. The algorithm is shown in section 2.4.2. 

2.4.2 Algorithm 

1. The centers and radii interval matrices {𝑋𝐶 , 𝑋𝑅}, are generated from the data 

matrix X. The rest of the steps are done independently on the centers and radii 

data. 
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2. Multiscale decomposition is performed using the scaling and basis functions 

discussed in section 2.2.2. 

3. PCA is done each group of scaled and approximate signals, and the Q statistic is 

calculated. 

4. The reconstruction rules discussed in section 2.2.2 are applied, and then the data 

is reconstructed back into intervals. 

5. IPCA is performed on the reconstructed data sets. 

6. The Q statistic is then calculated, and a threshold is set to assess the FDR and FAR. 

2.5 Data set generation 

The data sets that are simulated in this work are of two types: one where the 

dependent variables are linearly correlated to the independent variables (cases 1 and 2), 

and one where the dependent variables are nonlinearly correlated to the dependent 

variables (cases 3 and 4). This section will cover cases 1 and 2, and then IMSPCA will 

modified and tested in section 3. In each case, the first two variables generated are random 

Gaussian variables with a certain mean, 𝜇𝑖, and standard deviation, 𝜎𝑖. The data is divided 

into two: training and testing. Each of these sets contain 32,768 samples, and this is 

purposefully done in order to have large data sets where the advantages of interval 

generation can be felt. 

2.5.1 Fault generation 

In processes there are two common faults that can occur: shifts in mean, and shifts 

in variance. To simulate a shift in mean, a constant value is added to one of the variables. 
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To simulate a shift in variance, white Gaussian noise added to one of the variables. The 

fault is added to the testing region of one variable. 

 

Figure 9: Variable experiencing a shift in variance and shift in mean 

2.5.2 Noise generation 

In order to mimic real life conditions, noise is added to each variable. In the first 

two experiments, the noise added is white Gaussian noise with zero mean and certain 

standard deviation, and the signal to noise ratio (SNR) is calculated in order to quantify 

this noise. The SNR is the ratio of the standard deviation of the noise free signal, 𝜎𝑥 to the 

standard deviation of the noise, 𝜎𝑛 [32], given by 

 𝑆𝑁𝑅 =
𝜎𝑥

𝜎𝑛
 (14) 

The 2nd type of noise used in work is colored noise which is autocorrelated and had the 

equation of the form, 

 η𝑘 = a ∗ η
𝑘−1

+ η(0,1) (15) 
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, where a varies between 0 and 1. The addition of noise is essential so that the data mimics 

real life processes. 

The training data is used to train all the methods and generates the predictive and 

transformation matrices that are then used in the testing data. A Monte Carlo realization 

of 1000 runs is done for each case, to ensure that the results are consistent. 

2.5.3 Interval size 

One of the parameters of the IMSPCA method is the choice of how many samples 

should be included in each generated interval. If the interval size is too large, the method 

will not be able to capture important features and fault detection will suffer as a result. If 

the interval size is too small, this defeats the purpose of using intervals to reduce 

computational complexity. The interval size chosen for this data set was 128 samples per 

interval, which resulted in the data being compressed to 512 samples. 

2.5.4 Choice of depth in multiscale 

The choice of multiscale decomposition depth is important in the algorithm: if the 

depth is too small, the decomposition will not serve its purpose of separating deterministic 

and stochastic features of the signal and if the depth is too large, important features of the 

signal will be lost. The depth was then chosen using the heuristic mentioned in Section 

2.2.1, and was calculated to be 4 for the interval based methods which had 512 samples, 

and 8 for the conventional MSPCA, algorithm. 
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2.6 Results 

2.6.1 Case 1: Synthetic linear data set with white noise 

In case 1 a linear data set was simulated with white noise. It contained 2 variables 

that were randomly generated gaussian with a mean and standard deviation of 0 and 2, 

respectively. The 2nd two variables were linearly related to the first two, as shown below. 

 

𝑥1 = 𝑁(𝜇1, 𝜎1) + η 

𝑥2 = 𝑁(𝜇2, 𝜎2) + η 

𝑥3 = 𝑥1 + 𝑥2 + η 

𝑥4 = 𝑥1 − 𝑥2 + η 

(16) 

The noise that was added was white and gaussian with a standard deviation and 

mean of 0.5, and the signal to noise ratio was calculated as the standard deviation of the 

signal divided by the standard deviation of the noise and was equal to 4. Each variable had 

a sample size of 65,536, and was split into half testing and half training. The CMV method 

was used to calculate the number of PC retained in each method, and the interval size for 

the interval-based method was chosen by optimizing the interval length, and was chosen 

to be 128 samples aggregated per interval. A fault was then added to variable 𝑥1 from 

sample to 16,385 to sample 49153. In the first simulation shown in Figure 10, it was added 

as a change in mean in terms of the variable 𝑥1’s standard deviation, and in the 2nd 

simulation it was added a change in variance by adding gaussian white noise with a mean 

of 0 and standard deviation of 1. The detection rate was plotted for a variety of fault sizes 
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ranging from +0.3 to +3 change in mean, and +0.3 to +3 change in variance, and are shown 

in Figure 10 and Figure 12, respectively. 

 

Figure 10 :Fault detection rate versus fault size for a shift in mean of case 1 

IMSPCA-C had the highest detection rate at all fault sizes, followed by MSPCA, 

and then IPCA-C. The radii based interval methods had a constant low detection rate of 

around 40 and 5% for IMSPCA-R and IPCA-R, respectively. Figure 11 shows the Q 

statistics for each method. 
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Figure 11: Q statistics of each method for case 1 with a mean shift of 1 

As can be seen in Figure 11, the centers based methods are able to detect the shift 

in mean with much greater accuracy than the radii based methods, which perform quite 

poorly. In regards to the multiscale decomposition based algorithms, the testing regions 

contain much less noise than the training regions due to the rules set out in section []. The 

95% threshold criteria on the training data means that all of the training data scales are 

retained, while the samples in the testing region that cross the threshold are set to zero. 
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Figure 12: Fault detection rate versus fault size for a shift in variance of case 1 

For a change in variance shown in Figure 12 the IMSPCA-R method had the 

highest detection rate in all cases, followed by IPCA-R and IMSPCA-C. Figure 13 shows 

the Q statistic for each method. 
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Figure 13:Q statistic of each method for case 1 at a variance shift of 0.5 

Figure 13 shows that the radii based methods are much better at detecting shifts in 

variance than their centers based counterparts, which perform quite poorly in comparison. 
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2.6.2 Case 2: Synthetic linear data set with autocorrelated noise 

In the 2nd case the same data set was simulated as the first case, but the noise added 

in this case was autocorrelated “pink’ noise, with the equation  

 η𝑘 = 0.67η
𝑘−1

+ η(0,1) (17) 

 

Figure 14: Fault detection rate versus fault size for a shift in mean of case 2 

Figure 14 shows the results of case 2 for a shift in mean. IMSPCA-C had the 

highest detection rate for all the faults, followed by IPCA-C and MSPCA. The Q statistics 

for each method are shown in Figure 15.  
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Figure 15: Q statistic of each method for case 2 at a fault size of 1 

It can be seen from Figure 15 that the centers based methods show the same trends 

as case 1 in being better able to detect shifts in mean than the radii based methods. 
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Figure 16: Fault detection rate versus fault size for a shift in variance of case 2 

Figure 16 shows the results for a change of variance in case 2. IMSPCA-R had the 

highest detection rate, followed by IPCA-R. The Q statistics for each case are shown in 

Figure 17.  
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Figure 17:Q statistic of each method for case 2 at a variance shift of 1 

The results of the first two cases for a mean shift of +1 and a variance shift of +1 

are summarized in Table 1. 
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Table 1: Summary of detection rates for cases 1 and 2 

 
Case 

Detection Method 1 

(mean 

shift) 

1 

(variance 

shift) 

2 

(mean 

shift) 

2 

(variance 

shift) 

PCA 6.50 5.4 12.2 8.6 

MSPCA 10.9 7.4 14.8 11.4 

IPCA-C 55.4 11.3 19.7 7.1 

IPCA-R 5.1 64.2 5.6 42.9 

IMSPCA-C 90.9 13.2 67.5 11.6 

IMSPCA-R 7.9 91.0 8.3 82.6 
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3. IMPROVING FAULT DETECTION USING NNIMSPCA 

3.1 Neural Networks 

The extension of PCA to nonlinear methods is a topic of interest when dealing with 

highly complex data where conventional PCA may fail to detect correlations. Neural 

networks (NN) are a set of algorithms modeled after neurons in the human brain that seek 

to discover these correlations in nonlinear data. The data is modeled using fewer 

components, and the dimensionality of the data is reduced [33]. Neural networks have 

been used in many applications such as pattern recognition, prediction, optimization, 

associative memory, and process control [34]. Neural networks have been used 

specifically in chemical engineering industry in many applications like sensor data 

analysis, nonlinear process identification, and fault detection [10].  

In this work, neural networks are used in the field of process control to improve the 

accuracy of fault detection in the IMSPCA algorithm for nonlinear data. There are two 

kinds of NN setup: feedforward and feedback. In a feedforward NN, the signal is passed 

through successive nodes in the network, starting with the input layer. As the signal moves 

from one node to the next, it is assigned a specific weight, and the receiving node sums all 

the weighted signals before processing the output via a function, f, before moving on to 

the next node. The output in a feedforward network is known beforehand, and the network 

is assessed based on the difference between the actual output and the desired output. The 

error between these two is used to optimize the weights until the error is minimized. In a 

feedback neural network, the weights are kept constant, and the input is changed based on 

the desired outputs. [35] 
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3.1.1 Process control using neural networks 

Neural networks are a group of nodes that are connected to each other by weights 

that are optimized during the training period to give the desired output. In a controls 

problem, the neural network is used to try and reconstruct a set of data, usually a nonlinear 

dynamic system, using “hidden nodes” or layers within the network. The trained network 

is then used on testing data, and the deviation of the reconstructed data from the input data 

is used a measure of the fault in the data. This use of neural networks is termed nonlinear 

or neural network PCA. In this work, nonlinear PCA is used to modify the IMSPCA 

algorithm by replacing conventional PCA with nonlinear PCA at all the steps in the 

algorithm, yielding neural network IMSPCA (NNIMSPCA), and its efficiency in fault 

detection was assessed using a nonlinear dataset. 

3.1.2 Setting up the neural network for nonlinear PCA 

Using neural networks in nonlinear PCA, the initial input data, , is connected to a 

series of hidden layers where the input of each layer, netj, is a weighted sum of the previous 

input, and is given by the equation 𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖𝑖 + 𝑏𝑗 . 
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Figure 18: Neural Network with 2 hidden layers 

In this equation wji is a weight assigned to each data point xi in the input and is 

used to move it from the ith to the jth processing element, or node. b is the bias of each 

node and is usually minimized. The data is then mapped into a feature space, the output, 

using a nonlinear function, 𝜎(𝑥), where the most commonly used function being the 

sigmoid function [36], 

 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (18) 

The most commonly used neural network setup is the feed forward network that is 

trained by back propagation[37], in which the weights are adjusted and input back to the 

model. It is an iterative method and the weights in the network are adjusted by first 

calculating the instantaneous error, 



35 

 

 𝐸 = ∑[𝑑𝑞 − 𝑦𝑞]
2
,

𝑛

𝑞=1

 (19) 

where 𝑑𝑞is the expected output of the network at sample q, n is the total number of outputs, 

and 𝑦𝑞is the actual output of the network, and then changing the weight by the equation, 

 𝛥𝑤𝑖𝑗 = −𝑘
𝑑𝐸

𝑑𝑤𝑖𝑗
 (20) 

where k is a constant of proportionality. The input data is then passed through the network 

containing the adjusted weights, and this is done until 𝐸 can no longer be minimized. 

3.1.3 Neural network PCA fault detection 

In the first step of neural network fitting, the data is trained using a training data 

set, i.e. a nonfaulty set of data, where the input and outputs are known. The training data 

set is used as the input and output to the model. This is an iterative step where the weights 

and bias are optimized in order to give the desired output. After the training is done, the 

testing data is then passed the network and the output is used to calculate the Q statistic. 

The success of the neural network reconstructing the data lies in the presence of a 

hidden layer, which correspond to principal components in conventional PCA, that 

contains nonlinear nodes. Without these nonlinear nodes the network would only be able 

to reconstruct linear functions. These artificial neural networks are called supervised 

training, because the output for the training network are known [38]. Neural networks are 

used in order to classify a set of data as faulty or nonfaulty. 
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3.2 Objectives and Methodology 

In this section the parameters used to assess the different algorithms are discussed. The 

objectives of this work as follows: 

1. Develop a combined nonlinear (neural network) IMSPCA algorithm that can 

detect faults in nonlinear process data with a high accuracy. 

2. Perform a comparative study of NNIMSPCA with IMSPCA as well as the 

conventional PCA, IPCA, and MSPCA algorithms. 

3.2.1 Neural network interval multiscale principal component analysis 

Due to their computational complexity, neural networks have a disadvantage when 

dealing with data sets are extremely large, and are not able to process large data sets. They 

are coupled with interval and multiscale representation in this work in order to solve this 

problem and yield interval-multiscale neural network principal component analysis 

(NNIMSPCA), that will be used on nonlinear data.  

1. The centers and radii interval matrices {𝑋𝐶 , 𝑋𝑅}, are generated from the data 

matrix X. The rest of the steps are done independently on the centers and radii 

data. 

2.  Compute the wavelet decomposition of each signal to a depth, J. 

3. Collect and group the approximate signals and each detail signal at the different 

depths from each variable, and compute the covariance matrix for each set. 

4. Apply nonlinear PCA, and then use the neural network to compute the Q statistic 

of the training and testing data sets. 



37 

 

5. For the training data, if any of the Q statistic values cross the threshold, all of the 

scale is retained. 

6. For the testing data, if any of the Q statistic values do not cross the threshold, the 

sample is zeroed on the original scale 

7. Reconstruct the data back into the time domain after applying the above rules, and 

apply nonlinear PCA. 

8. Calculate the Q statistic and assess the fault detection rate and false alarm rate. 

 

Figure 19: NNIMSPCA schematic diagram  
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3.2.2 Dataset generation 

The data generated for cases 3 and 4 was done similarly to that described in Section 

[], the main difference being that variables 𝑥3 and 𝑥4 are nonlinearly correlated to the first 

two variables. In the 3rd and 4th cases, a nonlinear data set was simulated. The first 2 

variables were random gaussian with a mean and standard deviation of 0 and 2 

respectively, while the last two variables had a nonlinear relationship to the first two, and 

shown below.  

 

𝑥1 = 𝑁(𝜇1, 𝜎1) + η 

𝑥2 = 𝑁(𝜇2, 𝜎2) + η 

𝑥3 = sin (𝑥1𝑥2) + η 

𝑥4 = cos (𝑥1/𝑥2) + η 

(21) 

 

The sample size was also 65,536, and was split to half training and half testing. For 

the neural network method, the number of hidden nodes was optimized by simulating it 

with 3 hidden nodes. 

3.3 Results 

3.3.1 Case 3: Synthetic nonlinear data set with white noise 

Similar to cases 1 and 2, the fault was added to first value with a mean shift ranging 

from +0.3 to +3 and a variance shift ranging from +.3 to +3 of the standard deviation of 

𝑥1, from sample 16,385 to sample 49153. 
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Figure 20: Fault detection rate versus fault size for a shift in mean of case 3 

The results for a shift of mean are shown in Figure 20. NNIMSPCA-C performs 

the best at all fault sizes, followed by IMSPCA-C and IPCA-C. From the graph of the Q 

statistics shown in Figure 21, it can be seen that the centers based methods perform better 

than the radii based methods for detecting a shift in mean. 
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Figure 21: Q statistics for IMSPCA and NNIMSPCA methods for case 3 
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Figure 22: Fault detection rate versus fault size for a shift in variance of case 3 

Figure 22 shows the results for a change of variance, and it can be seen that the 

NNIMSPCA-R method performs the best for most fault size, and fall slightly behind 

IMSPCA-R at +0.5. 
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Figure 23:Q statistics for IMSPCA and NNIMSPCA methods for case 3 
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3.3.2 Case 4: Synthetic nonlinear data set with autocorrelated noise 

In the 4th case the same data set was simulated as the 3rd case, but autocorrelated 

‘pink’ noise from case 2 was used instead of white noise. 

 

Figure 24: Fault detection rate versus fault size for a shift in mean of case 4 

NNIMSPCA-C performs better at all fault sizes, followed by IMSPCA-C and 

IPCA-C. 
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Figure 25: Q statistics for IMSPCA and NNIMSPCA methods for case 4 
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Figure 26: Fault detection rate versus fault size for a shift in variance of case 4 

 

Figure 27: Q statistics for IMSPCA and NNIMSPCA methods for case 4 
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The results of cases 3 and 4 for a fault size of +1 are summarized in Table 2 

Table 2: Summary of results for cases 3 and 4 

 
Case 

Detection 

Method 

3 

(mean shift) 

3 

(variance shift) 

4 

(mean shift) 

4 

(variance shift) 

PCA 8.1 8.0 6.9 6.8 

MSPCA 10.5 11.4 12.7 10.7 

IPCA-C 47.1 10.8 15.1 6.5 

IPCA-R 7.0 44.4 5.6 29.0 

IMSPCA-C 78.0 13.1 29.5 8.2 

IMSPCA-R 8.8 75.6 7.5 59.1 

NNIMSPCA-

C 

100 7.7 50.3 8.5 

NNIMSPCA-

R 

5.6 95.2 5.4 86.3 
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4. 100,000 liter penicillin fermentation system 

This dataset was acquired from existing data simulated using a realistic reactor 

design used to produce penicillin in in the pharmaceutical industry, called IndPenSim [39]. 

The process in nonlinear and 12 variables were input, shown in Table 3. 
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Table 3: Description of process variables 

Variable 

Index 

Description Units 

1 Penicillin concentration 𝑔

𝐿
 

2 Phenylacetic acid 

concentration 

𝑚𝑔

𝐿
 

3 Nitrogen concentration 𝑚𝑔

𝐿
 

4 Viscosity µ − 𝑐𝑃 

5 Temperature K 

6 pH pH 

7 Dissolved Oxygen 

concentration 

𝑚𝑔

𝐿
 

8 Weight kg 

9 Off-gas CO2 concentration ppm 

10 Off-gas O2 concentration ppm 

11 Biomass concentration 𝑔

𝐿
 

12 Substrate concentration 𝑔

𝐿
 

 

The training data obtained from this reactor was divided into training (3000 

samples) and testing (3000 samples), and shift of mean varying from +1 to +3 was added 
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to variable 2 from sample 1 to sample 1500 of the testing data. The FDR was assessed 

using a 5% FAR value, and the results for each algorithm are shown in Table 4. 

Table 4: FDR for various techniques (mean shift) 

Mean 

Shift 

PCA MSPCA IPCAC IPCA

R 

IMSPCA

C 

IMSPCA

R 

NNIMSPCAC NNIMSPCA

R 

+3 60.1 60.733

3 

100 8.77 100 0.7 100 10.3 

+2 12.7 13.5 34.3 8.7 84.0 0.7 100 10.4 

+1 11.26 8.6 32.7 8.7 72.0 0.7 100 10.4 

 

The same was also repeated for a variance shift, and white gaussian noise was 

added to variable 2 from sample 1 to sample 1500 of the testing data. The shift of variance 

was varied from +1 to +3. The results are shown in Table 5. 

Table 5: FDR for various techniques (variance shift) 

Variance 

Shift 

PCA MSPCA IPCA

C 

IPCA

R 

IMSPCA

C 

IMSPCA

R 

NNIMSPCA

C 

NNIMSPCA

R 

+3.0 38.9 24.9 30.0 99.3 10.0 100.0 16.6 100.0 

+2.0 25.3 7.5 12.0 96.7 6.0 100.0 13.1 100.0 

+1.0 12.3 4.1 6.0 49.3 1.3 76.7 5.6 84.1 
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5. CONCLUSION 

Inaccurate fault detection has caused many health, safety, and monetary problems in 

the past, and is an ever growing and expanding field of work in the chemical engineering 

industry. Enhanced techniques and algorithms are extremely important to be able to keep 

up with new processes in the industry. This work aims to contribute to the development 

of such algorithms that could be applied in order to improve fault detection, in linear and 

nonlinear processes. In this work, multiscale PCA (MSPCA), which uses wavelet 

decomposition to separate deterministic and stochastic features in data, is combined with 

interval PCA, which generates intervals from data that helps reduce the complexity and 

uncertainty in data, to yield a new method: interval-multiscale PCA (IMSPCA). This 

algorithm was first tested on linear data, and the results show that IMSPCA has increased 

fault detection than PCA, MSPCA, and IPCA for linear data. IMSPCA was then modified 

using neural networks to yield neural network IMSPCA (NNIMSPCA), and the results 

show that this method has increased fault detection on nonlinear data.   
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