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ABSTRACT 

Connected vehicle technology has the potential to improve the performance of the 

transportation system. The real-time traffic information communicated between connected 

vehicles and infrastructure enables a more efficient management and use of the transportation 

system. This new technology equips vehicles to receive real-time information from their 

surroundings, which can warn them of approaching congestion. The emergence of connected 

vehicles that facilitate data exchange among vehicles and infrastructure has the potential to 

improve mobility, increase safety, and reduce the harmful environmental impacts of travel. 

Unfortunately, most of the studies that evaluate the impacts of connected vehicle technology focus 

only on highway performance. Moreover, these studies often ignore the impacts of uncertainties 

and unpredictable factors in evaluating the connected environment performance. One of these 

uncertainties is the behavior of travelers. Unlike the autonomous vehicles’ user, the driver of a 

connected vehicle has decision making power. This technology helps the users to make more 

informed decisions by providing real-time traffic information of the roads on their path. However, 

the users’ acceptance rate in response to the given information is still a significant parameter 

affecting the overall performance of the transportation system.  

In order to address the questions concerning the impacts of travelers’ willingness to comply 

with the provided information, this research examined travelers’ responses to the real-time 

rerouting information provided through connected vehicle technology and its impact. An internet-

based survey was employed to investigate the impacts of different factors such as socio-economic 

characteristics, time saving, visibility of congestion, and the length of the trip on drivers’ 
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willingness to follow the rerouting information. A total of 1881 complete responses were collected 

from a random nationwide sample of people living in small and medium-sized metropolitan areas 

(SMMAs). The results of the study indicated the importance of trip and socio-economic 

characteristics of users on their willingness to follow the rerouting advice. Comparison of the 

probability of the results of the study demonstrated a higher percentage of acceptance to the 

received information from connected vehicles compared to dynamic message signs and other 

similar technologies. 

The research goal was to investigate the impacts of communication technology on the 

transportation system. There are three types of simulation frameworks in evaluating the network 

performance: microscopic, mesoscopic and macroscopic simulation models. Due to the significant 

effects of individual travelers on network performance, the microscopic simulation model is more 

appropriate. Most of the studies in this area focus on the highways or a small network. However, 

an accurate microsimulation model with different types of roads is required to be able to generalize 

the results for the real-world applications. To this end, Simulation of Urban Mobility (SUMO) is 

combined with Traffic Control Interface (TraCI) to create the network and conduct the study on 

the impacts of connected vehicles on traffic operation and fuel consumption in a large portion of 

the city of El Paso, Texas. The main objective of this study was to investigate the effects of 

providing the real-time information to the connected vehicles from two perspectives: traffic 

operation and fuel consumption. Different rerouting algorithms including rerouting based on 1. 

The real travel time information, 2. Energy (fuel) consumption, 3. Average travel time and 4. The 

modified travel time with its variance were used to determine the effectiveness of different 

methodologies for rerouting and to investigate the network performance under these scenarios. 
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Moreover, sensitivity analysis was carried out to assess the effects of important factors in the 

connected environment such as market penetration rate, driver’s acceptance rate, congestion 

levels, the update interval for rerouting etc. The impacts of incidents were also considered as an 

important factor affecting traffic operation and fuel consumption at different market penetration 

rates (MPR) of connectivity. Several scenarios were implemented and tested on the simulation 

model to determine the impacts of incidents on the network performance in the urban area. The 

scenarios were defined by changing the duration of the incidents and the number of lanes closed. 

Finally, fuel-flow, flow-density and flow-speed diagrams were developed to characterize the 

macroscopic impacts of connected vehicles technology on the network performance.  

The results of the study demonstrated the effectiveness of rerouting in improving traffic 

operations and reducing fuel consumption in a connected environment. The comparison between 

the four methods of rerouting demonstrated that the approaches involving the average travel time 

of individuals (real-time travel time and average travel time) resulted in higher efficiency of the 

network. The highest performance in terms of total travel time reduction and total decrease in fuel 

consumption over the network was observed a 20 percent of rerouting rate. The other two 

approaches (including the fuel consumption and the modified travel time which involve the 

variance of travelers’ speed) resulted in smaller improvements to travel. For these two approaches 

higher rerouting rates (40% and 60% correspondingly) resulted in higher performance in these two 

models. Various scenarios including different duration and number of lanes closed were then 

simulated. The impacts of update interval on the performance of the network were also 

investigated. Several cases of incidents including different duration and one and two-lane closures 

on the freeway were examined. For the incidents, three durations of 900, 1500 and 2400 seconds 
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and for the update interval three values of 150, 300, and 600 seconds were simulated and analyzed. 

As expected, an increase in the duration of incidents and number of lanes closed worsens the 

operation of the network. The study also showed that the update interval of 150 seconds resulted 

in higher performance of the network. The ability of connected vehicles to receive real-time traffic 

data helps the network perform more efficiently. The real-time traffic data provided by connected 

vehicle technology informs drivers of the routes with lower congestion and distributes travelers in 

the main and alternative paths which increase the throughput and efficiency of the network. This 

was demonstrated in the study using the macroscopic variables including flow, density and average 

speed. Overall, the ability of the connected vehicles in receiving the real-time traffic data improves 

the overall performance of the transportation network.  
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CHAPTER I 

INTRODUCTION 

The transportation system is responsible for approximately 27% of the greenhouse gases 

(GHG) emitted in United States in 2015 (1). Fossil fuels utilized in transportation are the primary 

sources of GHG of which carbon dioxide is the main component. Carbon dioxide represents 

approximately 82.2% of the GHG emissions from human activities. The transportation sector was 

responsible for 34.5% of the total carbon dioxide production in 2015, where the largest source of 

carbon dioxide was the highway sector including passenger cars (42.3% of produced carbon 

dioxide), medium and heavy-duty trucks (23.6%), and light-duty trucks (17.1%). Overall, there 

has been an increasing trend in GHG emission production from 1990 to 2015 due to the increase 

in travel demand (2). Vehicular fuel consumption thus continues to play an essential role in urban 

GHG emissions production as long as fossil fuels remain the primary source of energy used in 

highway transportation. 

More efficient and reliable use of the transportation system may reduce these emissions 

while also provide improved travel. To this end, the advances in wireless communication 

technology provide the potential to reach the goal of an interconnected network of vehicles and 

infrastructure in which the users can make better decisions in their use of the transportation system. 

Communication technology can enable vehicles to receive real-time information from their 

surroundings, which can warn them of approaching congestion. The emergence of connected 

vehicles that facilitate data exchange among vehicles and infrastructure has the potential to 

improve mobility, increase safety, and reduce the harmful environmental impacts from 

transportation systems.  
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In addition, connected vehicle technology is likely to be deployed in the short term and 

may provide the transportation system a transition path to reach the more efficient state of 

autonomous vehicles. The study and experiments of connected vehicle technology provides 

valuable input towards this transition state. In this research, the potential impacts of rerouting 

guidance strategy using connected vehicle technology on mobility and fuel consumption were 

examined. In a connected transportation environment, the individual vehicles communicate with 

other vehicles and the infrastructure systems including roadside devices and traffic management 

centers (TMC), to make more efficient trip decisions. This communication technology could both 

improve the mobility of the network and reduce the harmful environmental impacts of travel. This 

may lead to a safer system by enhancing driver’s awareness. From the mobility perspective, traffic 

can be managed more efficiently by enabling vehicles to be informed about travel time and routes, 

which in turn helps travelers to select the best route for traveling. This could result in less 

congestion and improved traffic operation. From the environmental perspective, the 

communication technology provides the opportunity to manage the transportation system more 

efficiently and reduce emissions. Route guidance, dynamic signal timing, and more efficient 

driving cycles are possible with the help of the real-time information provided by connected 

vehicle technology. With the route guidance strategy, selecting less congested routes leads to less 

stop-and-go traffic, which in turn can reduce emissions.  

In order to evaluate the network performance, three types of simulation frameworks have 

been used in the literature; microscopic, mesoscopic and macroscopic simulation models. The 

selection between these models depends on the level of detail required to achieve the objective of 

the study. Since individual vehicles have significant impact on the performance of the network, 
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the microscopic simulation model was most appropriate for this research. Although many studies 

have been done investigating the impacts of connected vehicles on the transportation system, most 

of the studies focused on highways or a small network. However, an accurate microsimulation 

model with different types of roads is required to be able to generalize the results for the real-world 

applications. To this end, Simulation of Urban Mobility (SUMO) was combined with Traffic 

Control Interface (TraCI) to conduct this study on the impacts of connected vehicles on traffic 

operation and fuel consumption in the city of El Paso, Texas.  

The eastern part of the city of El Paso was selected for several reasons. First, the area 

suffers from traffic congestion and travel improvements could therefore have significant benefits. 

Second, it encompasses different types of roads including freeway, arterial, and local roads. This 

provides operational information on a complex network. Third, this area is in a non-attainment 

area (an area with air quality worse than the National Ambient Air Quality Standards (NAAQS)) 

and evaluation of the potential use of CVs in this area can be beneficial for future decision making 

(93). Finally, El Paso is a medium sized metropolitan area. 273 out of 382 metropolitan areas in 

the United States are classified as small and medium-sized areas (SMMAs) (17). These areas are 

struggling with air quality problems more because automobiles are the dominant modes of 

transportation.  These areas also have more flexibility to prepare the built environment to 

accommodate future changes in transportation as they are not as densly developed as the large 

cities that get much of the research focus.  The information provided to travelers using connected 

vehicle technology might be effective and used in the short term to improve the transportation 

system performance and the air quality in these regions.  

SUMO is an open-source microscopic traffic simulator, which is widely used among 
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researchers. The effects of providing the real time information to the connected vehicles with the 

goal of selecting better routes to bypass congestion is assessed. Moreover, sensitivity analysis was 

carried out to assess the effects of important factors in the connected environment such as market 

penetration rate, driver’s willingness to follow the rerouting advice, and congestion levels. In 

addition, the simulation of events on the roads that cause congestion, such as incidents and lane 

closures, were modeled. The ultimate goal was to examine the potential influence of connected 

vehicles on traffic operations and fuel consumption. 
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CHAPTER II 

RESEARCH IMPACT 

This research study provides guidance to transportation policy makers, such as officials 

from US Department of Transportation or local Metropolitan Planning Organization (MPOs). 

First, this study investigates the travelers’ response to received information from the transportation 

system. Next, the impacts of the travelers’ decisions on the networkwide performance of the 

transportation system may help policy makers to optimize the communicated information, with an 

objective of an efficient transportation system. Third, the results from the simulation models of 

connected vehicles provide an extensive view of the transportation network performance under 

several scenarios for policy makers. Based on this result, policy makers can decide to modify and 

improve the transportation system, such as increasing the capacity of some of the roads or changing 

the traffic control devices to prepare the network for this emerging technology. Finally, the 

developed microsimulation framework can be used to examine different scenarios in transportation 

system to detect limitations and potential improvements to the system. The developed 

microsimulation framework can also be used to implement new algorithms and test them to 

optimize the system before real-world implementation, which will reduce the cost of 

implementation. This study also provides a transition path to the more efficient transportation 

system of autonomous vehicles. The study simulates part of the city of El Paso in Texas. The city 

of El Paso is the medium sized city. About 75% of the population of the United States lives in 

Small and Medium-sized metropolitan areas (SMMAs). Most of the SMMAs are considered as 

non-attainment areas in terms of the air quality according to National Ambient Air Quality 

Standards (NAAQS). Therefore, an efficient management of the transportation systems might 
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reduce the emissions produced and improve the air quality in these areas. In addition, the selected 

network includes various types of roads including highway, arterial, and local street that are helpful 

in generalizing the results to other networks as well. Finally, the developed survey which collected 

the willingness of travelers to follow the advice communicated by connected vehicles in these 

areas, can be used for other SMMAs for deployment of connected autonomous vehicles (CAVs). 
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CHAPTER III  

RESEARCH OBJECTIVES 

The primary research objective was to quantify the impacts of connected vehicles on 

mobility and energy consumption in a small and medium-sized metropolitan areas (SMMAs). 

More specifically, scenarios illustrating the potential impacts on traffic operations and fuel 

consumption on roads with the help of communication technology were defined and evaluated. 

This study addressed some of the limitations of the studies on connected vehicles found in the 

literature. First the data used in the study, including the survey, the results of the survey and data 

used in the model are unique. Previous studies focused on large metropolitan areas. However, 75% 

of the population of the United States lives in SMMAs. These areas also have a great opportunity 

for realignment to meet the infrastructure needed for the emergence of connected and autonomous 

vehicles.  This study provides an insight to the acceptance rates of drivers to reroute in response 

to information received from connected vehicles in SMMAs. Then the methodology used for 

evaluating the impacts of connected vehicle technology at the network level was provided and 

evaluated. Sensitivity analysis was done to investigate the impacts of the parameters used in the 

study on mobility and fuel consumption. Finally, the impacts of the connected vehicles at the 

macroscopic level was evaluated to demonstrate the overall performance of the network. This 

study provides a comprehensive analysis of the impacts of rerouting strategies and traveler 

response to the guidance in a connected environment that can be used for future analysis in the 

area of connected and automated vehicles (CAVs). 
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CHAPTER IV 

LITERATURE REVIEW 

Travelers’ Response to Rerouting Advice 

Surveys of travelers have shown that drivers would like to get route guidance information. 

However, the reported rerouting (to the suggested routes) rarely exceeded 40%. Cummings (3) 

found that geographic and traffic conditions affect the travelers’ response to variable message signs 

(VMS); only 4 to 7% of the travelers typically switch their routes due to the received information 

from the VMS. Ramsay and Luk (4) investigated the route choice behavior of travelers using real-

time traffic information. They estimated that up to 30% of travelers will reroute if the traffic 

congestion information is provided. A graphical traffic information and control software system 

was employed by Davidson and Taylor  (5)  to investigate travelers’ choices from a set of 

alternative messaging and controlled strategies. The software enabled the operator to locate the 

incident and also any blockage on the major roads. The authors claimed that 6 to 41% of travelers 

switched to alternative routes to bypass congestion in Sweden. Tsirimpa and Polydoropoulou (6) 

found that 54.3% of travelers switched their routes in response to the congestion reported by VMS 

in Athens. Based on these studies, there are many potential reasons why people do not adjust their 

travel due to the en-route suggestions. For some ITS technologies like VMS, drivers may overlook 

the messages (7), may not trust the messages, may be uncertain about travel time on the alternative 

route, or may not even understand the messages (8). 

The impacts of different factors on the travelers’ behavior in response to traffic information 

were also investigated, e.g., (6–9). Bonsall (10) found that the total trip duration, toll roads, 

familiarity with the network, congestion, safety, security, delays and costs affect individuals’ 
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behavior in response to route guidance information. Bonsall and Palmer (11)  found that the 

wording of the messages had a significant impact on drivers’ willingness to follow the rerouting 

advice. Lai et al. (12) also demonstrated that socioeconomic factors such as gender, age, education 

and also the display characteristic of the messages shown on ITS devices were important 

parameters in drivers’ willingness to reroute. Li et al. (13) found that drivers with more risk-based 

driving styles were more likely switch their route in case of congestion compared to drivers with 

more conservative driving styles. Dia and Panwai (9) demonstrated that factors such as commuters’ 

socioeconomic characteristics, the degree of familiarity with the network, and the expectation of 

travel time savings influence the drives’ response to route guidance information. 

The above literature on travel behavior studies has focused on metropolitan areas with 

populations greater than 500,000, e.g., (14, 15). However, the regional characteristics and city type 

are important factors that also influence travelers’ responses to rerouting advice (16). Moreover, 

273 out of 382 metropolitan areas in the United States are classified as small and medium-sized 

areas (SMMAs) (17). Hence, the findings of this study, with a focus on SMMAs, provides 

additional insight to the implementation of connected vehicle (CV) technology. In the rest of this 

section, the literature on modeling travelers’ behavior or choice models were reviewed. 

Logit models have been used for decades to model traveler behavior, e.g., (18, 19, 19–23). 

The advantages of these models include a well-defined mathematical structure of the models and 

also the possibility of interpreting the estimated parameters to provide significant insight into the 

independent variables influence over the result. The downsides include assumptions that restrict 

the applicability of the models to various analyses. New advancements in computational science 

have allowed for some machine learning models to be used in traveler behavior studies. The 
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nonlinearity in the problems and the ability of the machine learning techniques to identify the 

complicated boundaries for classification, reveal that machine learning techniques can sometimes 

be superior to the traditional statistical models. In addition, many machine learning techniques can 

quickly analyze much larger datasets (24). Moreover, the traditional statistical models use rule-

based programming that result in deterministic mathematical equations to predict the output given 

the input. However, machine learning methods do not necessarily follow an explicit program and 

can learn from the data. 

A review of the types of models used in the travel behavior/mode choice literature shows 

two major categories of ordinal and nominal logit models. The ordinal models are classified to 

three sub-categories including ordered logit model, ordered probit model, and ordered mixed logit 

models. On the other hand, there are three common nominal discrete response models that have 

been used in the literature including multinomial logit models, nested logit models and mixed logit 

models. In general, the multinomial logit model, mixed logit model and ordered probit model are 

the most frequently used models for travel behavior studies, e.g., (22, 23). Each of these models has 

its own benefits and limitations. The ordered models have the benefit of providing one coefficient 

in the model for each parameter for all of the response categories. However, the proportional odds 

assumption and parallel regression assumption restrict the usage of these models in statistical 

analysis (25). Although multinomial logit models do not have the issues of the ordered models, 

they bring two main challenges to its applicability. The first issue is the major assumption of 

Independence of Irrelevant Alternative (IIA). This property claims that in the selection among a 

set of alternatives, the odds of selecting one alternative (A) over another (B) should not depend on 

the existence of another irrelevant alternative (C). In addition, the multinomial logit model is not 
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capable of modeling randomness or variations among individuals. The mixed logit model does not 

have those limitations mentioned for the ordered and multinomial logit models. It can also 

accommodate preference heterogeneity which improves the realism of the developed model (26).  

With advances in computational science, there is growing interest in using machine 

learning methods for travel behavior studies. Recent studies using the machine learning algorithms 

found that these techniques were effective in modeling travel behaviour (27–33). In the area of 

travel mode choice modeling, a number of studies compared the accuracy of discrete choice 

models with machine learning methods. For instance, Xie et al. (32) compared the performance of 

two data mining methods including Decision Tree and Artificial Neural Network with multinomial 

logit model for work travel mode choice modeling. The authors found that the two data mining 

approaches provide better results compared to the multinomial logit model. They presented that 

Decision Tree demonstrated highest efficiency among the applied models and artificial neural 

network provides better prediction performance. Hagenauer and Helbich (31) compared seven 

machine learning classifiers for travel mode choice modeling. They claimed that the random forest 

performed better compared to other selected machine learning techniques. The authors believed 

that since the importance of variables are different from method to method, the analysis of 

variables is important for effective travel behavior modeling. A comparison of the machine 

learning techniques including Support Vector Machine (SVM) and Artificial Neural Network 

(ANN) with multinomial logit model demonstrated a better performance of the machine learning 

algorithms in modeling travelers’ behaviour (28). However, machine learning was not superior in 

all studies. Zao et al. (34) found that the random forest method produced lower accuracy than the 

multinomial logit model in travel mode choice modeling. Travelers’ responses to rerouting advice 
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suggested by connected vehicle technology can be categorized as a classification problem and 

statistical models and supervised machine learning techniques can be used to train a response 

model for studies evaluating the effectiveness of connected vehicle technology. 

In this study, the travelers’ responses to rerouting advice were also investigated using stated 

preference data. Due to the successful results of both logit models and machine learning techniques 

in the previous studies, both techniques were used to develop models of the travelers’ behaviour. 

Logit models including Ordered Logit and Probit, Multinomial Logit and Mixed Logit models and 

machine learning techniques including Decision Tree, Support Vector Machine and Multilayer 

Perceptron were used to develop models of travelers responses to the rerouting suggestions 

communicated by connected vehicles technology based on the survey response (see chapter V).  

Connected Vehicles 

Communication technology enables traffic data exchange among vehicles and 

infrastructure (Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)). This data exchange 

has the potential to improve traffic operation, air quality, and safety (35–39). Recently, many 

researchers have investigated various rerouting strategies with the help of communication 

technologies to improve the network performance. To this end, the impacts of traveler information 

systems and rerouting strategies on the performance of the network have been investigated in many 

studies that will be described in this section. 

Oh and Jayakrishnan (40) investigated the impacts of advanced traveler information 

system (ATIS) on travel time and the simulation model’s output showed that the average network 

travel time (NTT) was reduced by 25% when 40% of the drivers received real time information 

and all of them rerouted. Abdulhai & Look  (41) evaluated the impacts of dynamic route guidance 

https://scholar.google.com/citations?user=I9OcI1AAAAAJ&hl=en&oi=sra
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systems and safety-enhanced route guidance systems on the network-wide safety and travel time. 

A microsimulation model integrated with some accident prediction models were developed. The 

study concluded that the increase in the dynamic route guidance market penetration rate generally 

reduced the average travel time of travelers during an incident and the safety route guidance 

strategy performs better from the safety perspective by suggesting routes with lower crash risk to 

travelers. Lee and Park (42) conducted a study evaluating the impacts of route guidance strategies 

with the existence of incidents. A microsimulation model and two incident scenarios on two 

directions of the freeway were modeled in VISSIM and the impacts of route guidance strategies 

on travel time, vehicle miles traveled, and average speed were investigated. The authors conducted 

sensitivity analysis on the factors including market penetration rate (MPR), acceptance rate, 

congestion level and update intervals of route guidance strategies. The results of the study 

demonstrated the effectiveness of route guidance strategies on network performance. The 

environmental impacts of the same model of rerouting guidance strategies in a connected 

environment were then investigated in another study (43). The simulation results showed that this 

rerouting system that was found to be effective for enhancing traffic operation is also effective in 

improving air quality and fuel consumption. The impacts of communication technology on traffic 

operation were evaluated by implementing dynamic route diversion strategies and variable speed 

limit control during severe congestion (44). The results of the study demonstrated some evidence 

of sensitivity to the MPR and the implemented control strategies in the model. Yeo et al. (45) 

investigated the network traffic operation in response to the lane blocking freeway with and 

without communication technologies. The conclusion of the study confirms the effectiveness of 

deploying the connected vehicles technology in reducing delays and improving traffic operation.  
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 IntelliDrive vehicles (Vehicle-to-infrastructure) were developed in Paramics 

microsimulation model by Dion et al. (46) to simulate the dissemination of messages between 

vehicles and roadside devices. The results demonstrate the dependency of the quality of the data 

collection on the market penetration rates. A decentralized ATIS was developed in the connected 

environment by Kim (47) with the use of Automatic Incident Detection (AID). The results of the 

study demonstrated that ATIS using vehicle-to-vehicle communication reduced travel time and 

that AID had an important role in making the system efficient. 

Another study that evaluated the impacts of communication technology during an incident 

was done by Kattan et al. (48). Two application programming interfaces (API) were developed for 

simulating incidents and warning drivers of incidents to increase their awareness and reduce their 

aggressiveness. The impacts of congestion level and market penetration rates (MPR) on travel time 

savings were evaluated. The results support the conclusion of the effectiveness of connected 

vehicles in improving safety and reducing travel time for moderate and high congestion levels. 

Paikari et al. (49, 50) evaluated the benefits of deploying connected vehicles using the Paramics 

microsimulation model . These studies demonstrated the effectiveness of connected vehicle 

technologies in reducing travel time, improving traffic operation and incident occurrence rate. Olia 

et al. (39) investigated the impacts of real-time routing guidance strategies and warning messages 

on network performance from different aspects of safety, environment and traffic operation. In 

their study, they assume that nonconnected vehicles also reroute using the information they 

received from other control devices like dynamic message signs, GPS or seeing the congestion 

ahead of them.  

Xiong et al. (51) evaluated the impact of information provision and en-route decisions with 
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the use of variable message signs. Using an agent-based model integrated with a dynamic traffic 

assignment model, an incident scenario was designed along with ITS devices, including variable 

message signs to demonstrate the en-route diversion behavior of the drivers on network 

performance. The network fundamental diagram was used to represent traffic dynamics. 

The rerouting strategies have been investigated extensively in the literature. Many different 

algorithms of rerouting using information among vehicles and infrastructure devices were 

developed and tested using microsimulation models to assess their ability to improve the efficiency 

of the network (38, 52–54). Most of the models selected an urban freeway or a small network (55). 

However, the congestion caused by incidents affect the performance of other routes as well. In 

addition, assessing the effects of different parameters like incident duration and update interval of 

connected vehicles on the operation of the network is fundamental to have a better view of how 

frequent these data exchanges should be done to improve the performance of the transportation 

system. The present study attempts to fill these gaps.  

Network Fundamental Diagram 

The connected vehicle technology affects the performance of individual vehicles. 

Therefore, in order to evaluate the impacts of connected vehicle technology on the transportation 

system performance, the information from individual vehicles is important. However, the overall 

performance of the network requires investigating traffic flow, density and speed. These can be 

used as the parameters demonstrating the efficiency of large networks. Therefore, in this study the 

network fundamental diagram was used as a graphical method to evaluate the impacts of 

communication technology and congestion warnings on the overall performance of the network.  

Daganzo (56) reintroduced the concept of Macroscopic Fundamental Diagram (MFD) or 
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Network Fundamental Diagram (NFD). Speed, density and flow are the most common variables 

to characterize a traffic stream. For networks with homogenous, well-connected, and uniformly 

distributed demands, the existence of a network fundamental diagram has been proved in theory 

(56, 57), simulation (58) and in the real world (59, 60). One of the first studies in a large scale 

onsite experiment to demonstrate this relationship was done by Daganzo and Geroliminis (57). In 

addition, the network fundamental diagram was illustrated using a large simulation model by Ji et 

al. (58). Traditionally, traffic variables at a network level were mostly computed using link 

measurements with the data given by loop detectors. With the use of GPS data, and more recently 

connected vehicle data, vehicle trajectory data is more widely available and can be used to estimate 

traffic variables. By estimating traffic variables based on The Eddie’s methodology (61) using 

vehicle trajectories, we can derive the network fundamental diagram for complex networks. 

Courbon and Leclercq (62) mentioned three methods for estimating a network fundamental 

diagram: the analytical method, the trajectory based method and the loop detector data. The first 

method was applied on simple networks (57, 63) as well as on more complex networks (64, 65) to 

characterize the shape of the network fundamental diagram. In order to estimate the average flow, 

density and speed from link measurements, equations 1, 2 and 3 can be used (66). 

𝑄 =
∑ 𝑙𝑖𝑞𝑖

𝑀
𝑖=1

∑ 𝑙𝑖
𝑀
𝑖=1

(1) 

𝐾 =
∑ 𝑙𝑖𝑘𝑖

𝑀
𝑖=1

∑ 𝑙𝑖
𝑀
𝑖=1

(2) 

𝑉 =
∑ 𝑙𝑖𝑣𝑖

𝑀
𝑖=1

∑ 𝑙𝑖
𝑀
𝑖=1

(3) 

Where: 

Q, K, V : Networkwide average flow, density, and speed respectively 

qi, ki, vi : Individual link average flow, density, and speed respectively, for observation period 
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li : Length of lane link i 

M : Total number of lane links 

The easiest way to derive the NFD using the trajectory method is to get the vehicle 

trajectories from the simulation tools (62). Although having the trajectories of all vehicles in the 

network can simplify calculating traffic states, in the real world, acquiring such data is almost 

impossible. Some studies used a vehicle’s probe data to derive the NFD (67, 68). Saberi et al. (69) 

has extended the Eddie’s method for estimating macroscopic traffic variables by three-dimensional 

vehicle trajectories in order to construct the fundamental diagram. 

Emission and fuel consumption models 

There are several available emissions models in the literature, including Motor Vehicle 

Emission Simulator (MOVES) (70), Virginia Tech Comprehensive Power-based Fuel 

Consumption Model , Comprehensive Modal Emission Model (CMEM) (71, 72), Virginia 

Tech microscopic (VT-Micro) emission model (73–75), Handbook emission factors for road 

transport (HBEFA) (76), Passenger Car and Heavy Duty Emission Model (PHEM) etc. The first 

four models are commonly used in the United States and would provide a better estimate of the 

emissions production and fuel consumption in El Paso because the models are developed based on 

common vehicles in the United States. These models are described in the following paragraphs. 

MOVES is the U.S. Environmental Protection Agency’s emission modeling system (70). 

Four sets of outputs from a microsimulation traffic model are needed to estimate the emissions 

production of vehicles simulated in MOVES. The first one is the link average speed during the 

time of simulation. The second one is link instantaneous speed based on a second-by-second 

evaluation. The third one is the vehicle trajectory data including length, speed, acceleration, and 
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location on a second-by-second basis. The last one is the overall average speed and volume during 

the entire hour. More information like the current age distribution of vehicles on the road and 

meteorology data of the study area can help to estimate a more accurate emission production. Since 

it is hard to estimate the total emissions at the network level using MOVES, a simplified version 

of MOVES was developed based on the emission rates of several base driving cycles and some 

modification factors. The model was then validated by the results of MOVES (77–79). The 

formulation of the model is as follows: 

𝐶𝐸𝑝,𝑐 = ∑ {[∑ (𝐸𝐹𝑝,𝑏,𝑎,𝑣 × 𝐶𝐶𝐹𝑝,𝑐,𝑎,𝑣 × 𝑓𝑎,𝑣)𝑎 ] × 𝑓𝑣}𝑣      (4)

Where: 

type v  

𝑐: cycle c 

𝑏 ∶ base cycle  

𝑝 ∶ Pollutant  

𝐶𝐶𝐹𝑝,𝑐,𝑎,𝑣 = (
(∑ 𝑓𝑚

𝑐 ×𝐸𝑅𝑝,𝑎,𝑣,𝑚𝑚 )

(∑ 𝑓𝑚
𝑏 ×𝐸𝑅𝑝,𝑎,𝑣,𝑚𝑚 )

)(
𝑣𝑏

𝑣𝑐) (5) 

Where: 

𝐸𝑅𝑝,𝑎,𝑣,𝑚: default emission rate for pollutant p, age a, vehicle type v and in operating mode bin m 

𝑓𝑚
𝑐 ∶ fraction of time in operation mode bin m in cycle c 

𝑓𝑚
𝑏 ∶ fraction of time in operation mode bin m in cycle b

𝑣𝑐 ∶ cycle average speed for cycle c

𝑣𝑏 ∶  cycle average speed for cycle b

The second model, VT-CPFM estimates fuel consumption based on the driving cycles and 
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the vehicle features. This model has the merits of (1) not switching abruptly between two states of 

fuel consumption and zero consumption without any middle state and (2) it has more flexibility 

for calibrating the parameters using publicly available highway and city data (80). Two equations 

for estimating fuel consumption with the similar structure were presented. Although both of them 

need vehicle related features for calibrating the parameters in the model, one of them requires 

fewer vehicle specific parameters with the cost of lower accuracy. The following formulation is 

used to estimate fuel consumption. The model parameters are calibrated based on the vehicle’s 

feature, which increase the accuracy of the results due to considering the vehicles specific 

characteristics. 

𝐹𝐶(𝑡) = {
𝛼0 + 𝛼1 × 𝑃(𝑡) + 𝛼2 × 𝑃(𝑡)2    𝑃(𝑡) ≥ 0

∝0 𝑃(𝑡) < 0
} (6) 

𝑃(𝑡) = (
𝑅(𝑡)+1.04×𝑚×𝑎(𝑡)

3600×𝜂𝑑
) × 𝑣(𝑡) (7) 

∝0= 𝑚𝑎𝑥 (
𝑃𝑚𝑓𝑜×𝜔𝑖𝑑𝑙𝑒×𝑑

22164×𝑄𝑁
,

(𝐹𝑐𝑖𝑡𝑦−𝐹ℎ𝑤𝑦

𝑃𝑐𝑖𝑡𝑦

𝑃ℎ𝑤𝑦
)−𝜀(𝑃𝑐𝑖𝑡𝑦

2 −𝑃ℎ𝑤𝑦
2 ×

𝑃𝑐𝑖𝑡𝑦

𝑃ℎ𝑤𝑦
)

𝑇𝑐𝑖𝑡𝑦−𝑇ℎ𝑤𝑦

𝑃𝑐𝑖𝑦

𝑃ℎ𝑤𝑦

) (8) 

𝑅(𝑡) =
𝜌

25.92
𝐶𝐷𝐶𝐻𝐴𝑓𝑣(𝑡)2 + 9.8066𝑚

𝐶𝑟

1000
(𝐶1𝑣(𝑡) + 𝐶2) + 9.8066𝑚𝐺(𝑡) (9) 

𝐹𝑐𝑖𝑡𝑦 = 𝑇𝑐𝑖𝑡𝑦𝛼0 + 𝑃𝑐𝑖𝑡𝑦𝛼1 + 𝑃𝑐𝑖𝑡𝑦
2𝛼2 (10) 

𝐹ℎ𝑤𝑦 = 𝑇ℎ𝑤𝑦𝛼0 + 𝑃ℎ𝑤𝑦𝛼1 + 𝑃ℎ𝑤𝑦
2𝛼2 (11) 

Where: 

𝐹𝐶 : Fuel consumption at time t (𝑙
𝑠𝑒𝑐⁄ )

𝑃(𝑡) : Power exerted at any instant t 

𝑚 : Vehicle mass (kg) 
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𝑎(𝑡): Acceleration of the vehicle at time t (𝑚
𝑠2⁄ )

𝜂𝑑  : Driveline efficiency or the efficiency with which the vehicle transfers its 

 power from the motor to the wheels (%) 

𝑃𝑚𝑓𝑜 ∶ 𝐼𝑑𝑙𝑖𝑛𝑔 𝑓𝑢𝑒𝑙 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(400,000 𝑃𝑎) 

𝜔𝑖𝑑𝑙𝑒 ∶ 𝐼𝑑𝑙𝑖𝑛𝑔 𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑝𝑒𝑒𝑑 (𝑟𝑝𝑚) 

𝑑 ∶ 𝐸𝑛𝑔𝑖𝑛𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝐿) 

𝑄 ∶  𝐹𝑢𝑒𝑙 𝑙𝑜𝑤𝑒𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒(43,000,000
𝐽

𝑘𝑔
 𝑓𝑜𝑟 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝑓𝑢𝑒𝑙) 

𝑁 ∶ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑔𝑖𝑛𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠 

𝐹𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝐹ℎ𝑤𝑦: 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐸𝑃𝐴 𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 ℎ𝑖𝑔ℎ𝑤𝑎𝑦 𝑑𝑟𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒𝑠 

(𝑙𝑖𝑡𝑒𝑟𝑠) 

𝑃𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑃𝑐𝑖𝑡𝑦
2 : 𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑥𝑒𝑟𝑡𝑒𝑑 𝑒𝑎𝑐ℎ 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑣𝑒𝑟

 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑐𝑦𝑐𝑙𝑒 

𝑃ℎ𝑤𝑦 𝑎𝑛𝑑 𝑃ℎ𝑤𝑦
2 : 𝑆𝑢𝑚 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑥𝑒𝑟𝑡𝑒𝑑 𝑒𝑎𝑐ℎ 𝑠𝑒𝑐𝑜𝑛𝑑 𝑓𝑜𝑟

𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑤𝑎𝑦 𝑐𝑦𝑐𝑙𝑒 

𝜀 ∶ 𝑒𝑛𝑠𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝛼2) 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑧𝑒𝑟𝑜 

𝑣(𝑡): The velocity at time t (𝑚
𝑠⁄ )

𝑅(𝑡) : Resistance function determined by rolling resistance 

𝜌: Density of air at sea level at temperature of 15 ∘𝐶

𝐶𝐷: Vehicle drag coefficient 

𝐶𝐻: Correction factor for altitude 
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𝐴𝑓 : Frontal area of the vehicle (𝑚2)

𝐶𝑟 , 𝐶1, 𝑎𝑛𝑑 𝐶2 : Coefficients associated with rolling 

𝐺(𝑡) : Grade at time t 

𝛼0, 𝛼1, 𝛼2 ∶ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑇𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑇ℎ𝑤𝑦: 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 ℎ𝑖𝑔ℎ𝑤𝑎𝑦 𝑐𝑦𝑐𝑙𝑒 

The third model, CMEM, is a microscopic emission and fuel consumption model, which 

employs a physical, power-demand approach based on a parameterized analytical representation 

of fuel consumption and emissions production (71, 72). The input data of CMEM includes vehicle 

activity (second-by-second speed trace), and fleet composition of traffic. The VT-Micro software 

is a microscopic vehicle emission-modeling tool, which is used to estimate the amount of 

emissions of various pollutants including CO2, NOx, CO, HC and fuel consumption. The input of 

the model is the second-by-second vehicle’s speed profile (73–75). An image of the software is 

shown in Figure 1. 
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Figure 1. VT micro emission modeling software 

Since VT-micro model was developed based on the data from the older vehicles years. 

Therefore, the emission’s models which can be updated based on the vehicles years and adapted 

to more recent vehicles are more appropriate for the fuel consumption and emissions estimation. 

In this study, the VT-CPFM model was used to estimate fuel consumption (81). It provides the 

capability of calibrating the parameters based on the vehicle characteristics which has the merit of 

additional model parameter calibration compared to the MOVES model.  This model gives the 

estimated fuel consumption. 
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CHAPTER V 

DATA COLLECTION 

Traveler behavior 

To evaluate the effectiveness of connected vehicle technology on the overall performance 

of the network, questions concerning the travelers’ willingness to reroute to the provided 

information must be addressed. To this end, an internet-based questionnaire organized by the 

research team and administered by a commercial firm, LightSpeed Research, was used to gather 

potential traveler responses to rerouting advice. The target population was randomly selected from 

small and medium size metropolitan areas (SMMAs) in the United Sates. These areas were 

selected since as approximately 75% of the population of the United States lives in these areas (17) 

and commuters are highly dependent on automobiles in these areas. Second, SMMAs have more 

opportunities in urban growth and realignment for preparing the infrastructure for the emergence 

of connected vehicle technology. Third, El Paso is a medium sized metropolitan area and this 

research examines travel in El Paso.  

A draft questionnaire was developed and tested twice on a group of 100 respondents with 

various levels of education, age, gender, and profession. Based on feedback from the respondents, 

the questions were modified to ensure the survey was easily understood. The survey was also kept 

fairly short (less than 10 minutes for the majority of respondents) and thus survey fatigue should 

not be a factor in the quality of the responses. The final version of the survey was then distributed 

among the selected target population. 4625 participants were introduced to the questionnaire. Two 

screening questions were asked at the beginning of the survey to ensure the eligibility of the 

respondents: (1) Do you own/lease/have access to a vehicle? and (2) Do you use a vehicle for 
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travel to work or school? 

A positive response to both of these questions confirmed the eligibility of the participant. 

The survey firm also ensured only adults over 18 years old living in small to medium size 

communities took the survey. Based on these criteria, 2111 of the potential 4625 participants were 

allowed to take the survey. After the survey was completed, several steps were performed to 

remove any invalid responses. First, incomplete responses were removed from the final set of data. 

Second, the amount of time spent by each respondent to answer the questions on each section of 

the survey were recorded to identify the potential inaccurate responses. Surveys completed too 

quickly were also removed from the results, yielding 1881 valid responses. 

As mentioned earlier, one application of the connected vehicle technology is to provide 

information regarding congestion on routes and to suggest alternative route(s) to bypass the 

congestion. The survey included two potential scenarios that could take place when receiving the 

congestion alert: visible and not yet visible congestion on the road ahead. For both scenarios, the 

respondents were asked to assume that they were notified of congestion on the road ahead by the 

communication technologies while driving. In the first scenario, the respondents were also asked 

to imagine that they can see some congestion on the road ahead. Then the travel time on the current 

route (a random number between 30 and 50 minutes) and the time saved (a random number 

between 10 and 15 minutes) by following the alternative route were shown to respondents. The 

second scenario was almost identical to the first scenario except that the congestion was not yet 

visible to the respondent. The travel time (a random number between 30 and 50 minutes) and the 

time saved (a random number between 5 and 10 minutes) were shown to the respondents. There 

are five possible responses to each scenario from the participants: (1) I would take the alternative 



route, (2) I would likely take the alternative route, (3) I am not sure, (4) I would probably not take 

the alternative route, and (5) I would definitely not take the alternative route. Other survey 

questions included questions regarding the respondents’ current travel behavior and the socio-

demographic characteristics. The results are presented in the following sections. The stated 

preference question was as follows: 

For the recent trip you made (described in the early part of the survey), imagine you are 

driving a connected vehicle that is receiving traffic information from other vehicles on the road. 

What would you do if: 

You see no congestion on the road but your vehicle warns that there is congestion ahead in 

2 miles. It estimates a xx minute trip if you stay on your current road, or a yy minute trip on a 

different road. How likely would you be to switch to the different road? (xx and yy were generated 

randomly such that xx was between 5 to 10 minutes greater than yy.) 

You see some congestion on the road ahead and your vehicle warns you that there is 

congestion ahead. It estimates a AA minute trip if you stay on your current road, or a BB minute 

trip on a different road (AA and BB were generated randomly such that AA was between 5 to 10 

minutes greater than BB). 

 Now that you can see some congestion, how likely would you be to switch to the 

different road? It should also be noted that the connected vehicles were defined in the 

survey for the respondents. (see Appendix A) 

The responses of travelers to their willingness to reroute with the information provided by 

connected vehicle technologies for two cases of not seeing and seeing the congestion on the road 

ahead are displayed in Figure 1. In the case where respondents could not see the congestion, around 

25 
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70% of travelers would accept the rerouting suggestion over all of the assumed saving times (5-10 

minutes). Only around 16% of travelers would likely ignore the rerouting suggestion. 

As shown in Figure 2, for the case of visible congestion on the road ahead, a higher 

percentage of positive responses to the rerouting suggestion was observed. As demonstrated, for 

this case around 85% of travelers accepted the rerouting suggestion over the assumed saving times 

(10-15 minutes). Only around 5% preferred to stay on their original route. 

Figure 2. Acceptance Rate (a) congestion not visible (b) visible congestion 
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Figure 3. Acceptance Rate (Travel time saving of 10 minutes) 
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question, Also, for some questions, the respondents could select more than one answer, for instance 

employment. Thus, not all number of responses totaled 1881. 

Table 1. The list of explanatory variables in the model 

Variables Choices Number of Responses Percentage 

Respondents 
Driver 1718 91% 

Passenger 163 9% 

Distance to work place 

Trip miles in [0, 1) 72 4% 

Trip miles in [1-5) 490 26% 

Trip miles in [5,10) 456 24% 

Trip miles in [10,15) 272 15% 

Trip miles in [15,20) 174 9% 

Trip miles in [20,25) 109 6% 

Trip miles in [25,50) 200 10% 

Trip miles  50 108 6% 

Smartphone 
using a smart phone 1635 87% 

not using 246 13% 

Enjoy Driving 
Yes 1671 89% 

No 210 11% 

Gender 
Male 1098 59% 

Female 783 41% 

Employment Status 

Full time 990 53% 

part-time 417 22% 

Not employed 159 8% 

Retired 303 16% 

Student 66 4% 

Household size 

1 447 24% 

2 786 42% 

3 299 16% 

4 238 13% 

  111 4% 

Number of households’ 

members under 18 years 

old 

0 1445 77% 

1 232 12% 

2 149 8% 

3 41 2% 

4 9 0% 

  5 0% 

Education 

<High School 13 1% 

High School 313 17% 

College 613 33% 

BS/BA 553 29% 

Professional 53 3% 
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Table 1 (continued). The list of explanatory variables in the model 

Variables Choices Number of Responses Percentage 

Education 

Professional 53 3% 

MS/MA 286 15% 

PhD 50 3% 

Income 

[0, 25000) 228 12% 

[25000, 50000) 468 25% 

[50000, 75000) 413 22% 

[75000, 100000) 307 16% 

[100000, 200000) 318 17% 

  61 3% 

No Answer 86 5% 

Place of living 

City center 160 9% 

Urban outside of the 

city center 
368 20% 

Suburban area 1004 53% 

Rural area 349 19% 

Age group 

[18, 25) 126 7% 

[25, 35) 204 11% 

[35, 45) 278 15% 

[45, 55) 342 18% 

[55, 65) 521 28% 

  410 22% 

Trip Duration 

<20 min 850 45% 

[20, 40) 662 35% 

[40, 60) 175 9% 

[60, 90) 106 6% 

  88 5% 

Heard about connected 

vehicles 

Yes 742 39% 

No 1139 61% 

Travelling during peak 

hour period 

Yes 859 46% 

No 1022 54% 

Modeling Methodology 

To investigate travelers’ willingness to change route due to the traffic information provided 

by connected vehicle technology, several models were built based on the survey data. Both driver 

and passenger data were included since passengers often have significant navigation duties while 
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the driver focuses on the driving task. For this purpose, three discrete choice models and three 

machine learning techniques were used. The ordered probit model, multinomial logit model and 

mixed logit model were the three discrete choice models selected for this study. The three machine 

learning techniques included Decision Trees, Support Vector Machine (SVM) and Artificial 

Neural Network (ANN). All models attempted to predict the respondents’ response to the rerouting 

advice. These three techniques are the most popular strategies for supervised machine learning and 

classification. In this section, a brief explanation of each model is provided. 

Discrete Choice models 

Ordered Models: As mentioned earlier, the responses to the questionnaire followed a five-

point likert scale. Therefore, the ordered logit and probit models were examined first due to the 

ordered nature of the responses. In order to develop an ordered logit model, an unobserved variable 

(z) was defined based on a linear function for each observation (82):

𝑧 = 𝛽𝑋 + 𝜀 (12) 
The y responses are determined using the following relationships: 

𝑦 = 1  𝑖𝑓  z ≤  𝜇0 (13) 

𝑦 = 2  𝑖𝑓 𝜇0  <  z ≤  𝜇1 (14) 

𝑦 = 3  𝑖𝑓  𝜇1  <  z ≤  𝜇2 (15) 

𝑦 = 4  𝑖𝑓  𝜇2  <  z ≤  𝜇3 (16) 

𝑦 = 5  𝑖𝑓  𝑧 ≥  𝜇3 (17) 

Where X is the vector of variables for estimating the discrete ordering of the observations, 

𝛽 is the vector of parameters, 𝜀 is the random error assumed to follow the Normal distribution with 

mean 0 and variance 1 for probit model and logistic distribution with mean 0 and variance 1 for 
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logit model, and 𝜇s are thresholds for defining y variables which are estimated jointly with 𝛽. The 

problem then becomes the estimation of the probability for each response of each observation. In 

equation 5, 𝜇0 can be set to zero without loss of generality; Therefore, three thresholds should be 

calculated. For both the ordered probit and logit models, these probabilities are estimated as 

follows: 

𝑃[𝑦 = 1] =  𝛷[−𝛽𝑋]   (18) 

𝑃[𝑦 = 2]   = 𝛷[𝜇1 − 𝛽𝑋] −  𝛷[−𝛽𝑋] (19) 

𝑃[𝑦 = 3] =  𝛷[𝜇2 − 𝛽𝑋] − 𝛷[𝜇1 − 𝛽𝑋] (20) 

𝑃[𝑦 = 4] =  𝛷[𝜇3 − 𝛽𝑋] − 𝛷[𝜇2 − 𝛽𝑋] (21) 

𝑃[𝑦 = 5]   =               1 −     𝛷[𝜇3 − 𝛽𝑋] (22) 

Where  𝛷(𝜇) =
1

√2𝜋
∫ 𝐸𝑋𝑃[−

1

2
𝜔2]

𝜇

−∞
𝑑𝜔, is the cumulative Normal distribution of a

variate 𝜔. 

To estimate the values of the parameters in the ordered models, the maximum of log-

likelihood function over all observations should be calculated. The equation for the log-likelihood 

function is as follows: 

LL = ∑ ∑ δinLN[I
i=1

N
n=1 Φ(μi − βXn) − Φ(μi+1 − βXn)]                 (23)

S.t.      0 ≤ 𝜇1 ≤ 𝜇2 ≤. . . ≤ 𝜇𝐼−1 

Where N is the number of observations, I is the highest integer ordered response and 𝛿𝑖𝑛 is 

calculated based on the following equation: 

δin = {
1    The observed response is i
0           Otherwise

(24) 

The explanatory variables (Table 1) were examined for possible inclusion in the model. 
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Several factors were considered, including coefficient size, engineering judgment and significance 

level. Another issue was the assumption of having fixed parameters for all of the parameters in the 

model. This assumption limits the individual specific disturbances and can cause an erroneous 

parameter estimate. To tackle this problem, random effects models were used, similar to previous 

studies (82, 83). By using random effects models, two terms for the disturbances will be considered 

in equation (4); one is the traditional disturbance term (𝜀) and the other one is the individual 

specific random disturbances (𝜑𝑛). This variance is computed as part of the random effects model 

and demonstrates the significance of the random effects model compared to the standard ordered 

probit model. This also helps to account for reduced variance due to a single respondent answering 

multiple survey questions. With this assumption, equation 1 was modified as follows: 

𝑧 = 𝛽𝑋 + 𝜀 + 𝜑𝑛        (25) 

There were four main assumptions for using the ordered logit and probit models. The first 

assumption was that the response variable should be an ordered item (Likert item). The second 

assumption was that the ordinal predictor variables were treated as continuous or categorical not 

ordinal. The third assumption was the assumption of not having multicollinearity among 

independent variables. Finally, two specifications that restrict the use of the ordered models are 

proportional odds assumption and parallel regression assumption (25). The proportional odds 

assumption is only applied to the ordered logit model. This assumption supports the idea that the 

log-odds of each outcome differs with any other by a constant. Since this issue is raised only for 

the ordered logit model, most researchers prefer to use an ordered probit model which does not 

have this restrictive issue. The parallel regression assumption is applied to both ordered logit and 
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probit models. One of the well-known tests for determining the validity of this assumption is the 

Brant test. Brant test is a popular test for reviewing the parallel regression assumption (84, 85). The 

test considers J-1 binary models constructed by defining a variable 𝑧𝑖𝑗 = 1 𝑖𝑓 𝑦𝑖 > 𝑗. The model 

restricts the probabilities of the binary models to have the same coefficient vector 𝛽 while having 

a different constant term. This Brant test can be adopted to both ordered logit (logistic distribution) 

and ordered probit (Normal distribution). If the results of the Brant test demonstrate that the 

parallel regression assumption is valid, one set of coefficients can define the model effectively. 

Otherwise, different coefficients should be used to model each outcome group (UCLA, 2018). In this 

case the positive or negative values for the β coefficients do not necessarily represent the increase 

or decrease in the likelihood of agreeing/disagreeing to the choices defined. To this end, the 

marginal effects of each category should be determined to have an accurate sense of the impacts 

of the assumed variables on the interior categories. For indicator variables, the marginal effects 

are calculated as the difference in the estimated probabilities while value of the variable changes 

from 0 to 1. For computing the marginal impacts of the continuous variables, the partial derivatives 

are used (82): 

𝜕𝑃(𝑦=1)

𝜕𝑋
= −𝜙(−𝛽𝑋)𝛽′ (26) 

𝜕𝑃(𝑦=2)

𝜕𝑋
= [𝜙(𝜇0 − 𝛽𝑋) − 𝜙(𝜇1 − 𝛽𝑋)]𝛽′ (27) 

𝜕𝑃(𝑦=3)

𝜕𝑋
= [𝜙(𝜇1 − 𝛽𝑋) − 𝜙(𝜇2 − 𝛽𝑋)]𝛽′ (28) 

𝜕𝑃(𝑦=4)

𝜕𝑋
= [𝜙(𝜇2 − 𝛽𝑋) − 𝜙(𝜇3 − 𝛽𝑋)]𝛽′ (29) 

𝜕𝑃(𝑦=5)

𝜕𝑋
= −𝜙(𝜇3 − 𝛽𝑋)]𝛽′ (30)
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Where P(y=i) is the probability of response category i, and 𝜙 is the standard Normal 

density. The marginal effect is defined as the change in the probability of the responses for each 

threshold category given a unit change in the explanatory variables. Therefore, a positive marginal 

effect demonstrates an increase in the probability for the corresponding response and a negative 

value for the marginal effect represents a decrease in the probability of the response for the unit 

increase of the explanatory variable. Furthermore, a large value for the marginal effect represents 

large effects on the users’ response and the small value of it, demonstrates relatively small impacts 

on the users’ choice (82).  

Multinomial Logit Model: The other model developed in this study is the multinomial logit 

model. The multinomial logit model is a well-known model when the response variables are 

categorical with more than two options. The multinomial logit model is developed based on a 

stochastic utility function consisting of two systematic and random parts. The systematic portion 

of the utility function is estimated using a linear function of the predictor variables and the random 

part is estimated using a logistic distribution. The general equation for the multinomial logit model 

is: 

𝑝(𝑦 = 𝑗) =
exp(𝛽𝑗 𝑥𝑡)

∑ exp(𝛽𝑗 𝑥𝑡)
𝐽
𝑚=1

 , 𝑗 = 0, … , 𝐽        (31) 

Where p(y=j) is the probability of response category j, 𝛽𝑗 is the vector of estimable 

parameters for discrete outcome I, and 𝑥𝑡 is the vector of the explanatory variables. 

Mixed Logit Model: The mixed logit model has the ability to capture randomness in 

parameters in the model. In addition, the mixed logit model provides more flexibility compared to 

the multinomial logit model which is restricted by the assumption of independence from irrelevant 
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alternatives (IIA) (82). The features of the mixed logit model enabling the unobserved factors to 

follow any distribution, make the mixed logit model applicable in any discrete model estimation. 

Another weakness of the standard multinomial logit model that is addressed with the mixed logit 

model is the ability of this model to allow the parameters to vary across observations (82). The 

general form of the mixed logit model, which is the weighted average of the standard multinomial 

logit model with the weights determined by the density function, is as follows: 

𝑃𝑛
𝑚(𝑖) = ∫ 𝑃𝑛(𝑖)𝑓(𝛽|𝜑)𝑑𝛽          (32)

Where 𝑃𝑛
𝑚(𝑖) is the mixed logit model probabilities of observation n with discrete outcome

I, 𝑃𝑛(𝑖) is the probability of observation n having discrete outcome of I, 𝑓(𝛽|𝜑): The density

function of  with  as the vector of parameters of the density function (mean and variance).  

The choice models were developed using Nlogit 5. First, the ordered probit (Table 2) and 

logit (Table 3) models were developed based on the simulation-based maximum likelihood method 

using 500 Halton draws for parameter estimation. Numerous combinations of fixed and random 

parameters were selected and tested. A t-test was used to verify the randomness of the parameters. 

A comparison between the two ordered probit and logit models demonstrated similar results in 

terms of significant parameters and goodness of fit test. However, the number of significant 

parameters in the ordered probit model were higher compared to the ordered logit model. The 

marginal effects of the parameters of ordered porbit model is reported in Table 4. As mentioned 

earlier, in order to verify the accuracy of the parameter estimates, the parallel regression 

assumption should be tested. For this purpose, we used the Brant test and the results of the Brant 

test rejected the validity of the parallel regression assumption (Table 5).  
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Table 2. Likelihood of changing route, from 5=Definitely Change to 1= no change using 

Ordered Probit Model 

Explanatory variables 
Parameter 

estimates 
t-statistic

Non-random parameters 

Constant 1.22*** 0.00 

Trip miles (1 if travel to workplace takes less than 5 miles, 

0 otherwise) 
.11** 0.01 

Smartphone (1 if the respondent uses a smartphone, 0 

otherwise) 
-.18*** 0.00 

Number of persons in households under 18 -.10*** 0.00 

Income (1 if higher than 25,000, 0 otherwise) -.23*** 0.00 

Random parameters 

See the congestion ahead (1=visible congestion, 

0=otherwise) 
-.63*** 0.00 

Enjoy driving (1 if enjoy driving, 0 otherwise) -.20*** 0.00 

Location of living (1 if location of living is city center, 0 

otherwise) 
-.20*** 0.00 

Employment (1 if employed full-time, 0 otherwise) -.09** 0.02 

Age group (1 if aged between 18 and 34 years, 0 otherwise) -0.18*** 0.00 

Threshold 1 1.20*** 0.00 

Threshold 2 1.73*** 0.00 

Threshold 3 2.61*** 0.00 

AIC 9313.4 

Log-likelihood function at convergence -4638.68
***, **==> Significance at 1%, 5% level 

Table 3. Likelihood of changing route, from 5=Definitely Change to 1= no change using 

Ordered Logit Model 

Explanatory variables 
Parameter 

estimates 
t-statistic

Non-random parameters 

Constant 1.99*** 0.00 

Trip miles (1 if travel to workplace takes less than 5 miles, 0 

otherwise) 
.18** 0.02 

Smartphone (1 if the respondent uses a smartphone, 0 

otherwise) 
-.29*** 0.00 

Number of persons in households under 18 -.16*** 0.00 

Income (1 if higher than 25,000, 0 otherwise) -.38*** 0.00 
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Table 3 (continued). Likelihood of changing route, from 5=Definitely Change to 1= no 

change using Ordered Logit Model 

Explanatory variables 
Parameter 

estimates 
t-statistic

Random parameters 

See the congestion ahead (1=visible congestion, 0=otherwise) -1.01*** 0.00 

Enjoy driving (1 if enjoy driving, 0 otherwise) -.35*** 0.00 

Location of living (1 if location of living is city center, 0 

otherwise) 
-.32*** 0.01 

Employment (1 if employed full-time, 0 otherwise) -.13** 0.00 

Age group (1 if aged between 18 and 34 years, 0 otherwise) -0.29*** 0.04 

Threshold 1 1.93*** 0.00 

Threshold 2 2.82*** 0.00 

Threshold 3 4.58*** 0.00 

AIC 9312.7 

Log-likelihood function at convergence -4638.3
***, **==> Significance at 1% and 5% level 

Table 4. Marginal effects of the explanatory variables in the ordered probit model 

Explanatory Variables 

Marginal effects of taking the alternative routes 

Definitely 

take 

Probabl

y take 

Not 

sure 

Probably 

not take 

Definitel

y not 

take 
Non-random parameters 

Trip miles (1 if travel to workplace takes less 

than 5 miles, 0 otherwise) 
-0.0425 0.0118 0.01137 0.0137 0.0034 

Smartphone (1 if the respondent uses a 

smartphone, 0 otherwise) 
   0.0668 -0.0165 -0.0219 -0.0226 -0.0058

Number of persons in households under 18 0.0388 -0.0119 -0.0123 -0.0119 -0.0028

Income (1 if higher than 25,000, 0 otherwise) 0.0837 -0.0200 0.0275 -0.0288 -0.0075

Random parameters 

See the congestion ahead (1=visible 

congestion, 0=otherwise) 
0.2360 -0.0702 -0.0736 -0.0736 -0.0186

Enjoy driving (1 if enjoy driving, 0 otherwise) 0.0792 -0.0207 -0.0257 -0.0262 -0.0066

Location of living (1 if location of living is city 

center, 0 otherwise) 
0.0766 -0.0283 -0.0230 -0.0207 -0.0045

Employment status (1 if being full-time 

employment, 0 otherwise) 
0.033 -0.0101 -0.0105 -0.0102 -0.0024

Age group (1 if aged between 18 and 34 years, 

0 otherwise) 
0.0703 -0.0247 -0.02141 -0.0197 -0.0044
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Table 5. Brant Specification Test for equal coefficient vectors in the ordered probit model 

Brant Test 
Coefficients in implied model 

Prob(y>j) 

Explanatory variables ChiSquare Pvalue 0 1 2 3 

See the congestion ahead (1=visible congestion, 

0=otherwise) 
10.78 .01 -.93 -.93 -1.08 -.47 

Trip miles (1 if travel to workplace takes less than 5 

miles, 0 otherwise) 
1.25 .74 .16 .20 .11 .27 

Smartphone (1 if the respondent uses a smartphone, 0 

otherwise) 
6.00 .11 -.20 -.42 -.24 -.49 

Enjoy driving (1 if enjoy driving, 0 otherwise) 6.61 .09 -.30 -.43 -.23 -.38 

Number of persons in households under 18 1.15 .77 -.14 -.17 -.22 -.22 

Income (1 if higher than 25,000, 0 otherwise) 23.26 .00 -.27 -.53 -.12 -.65 

Location of living (1 if location of living is city 

center, 0 otherwise) 
3.51 .32 -.28 -.21 -.41 -.95 

Age group (1 if aged between 18 and 34 years, 0 

otherwise) 
1.42 .70 -.26 -.27 -.17 -.43 

Employment (1 if employed full-time, 0 otherwise) 5.86 .12 -.15 -.03 -.12 .24 

Chi squared test statistic 62.241 

The multinomial logit model (Table 6) and mixed logit model (Table 7) were then 

developed in Nlogit 5. As discussed in the previous section, the mixed logit model not only has 

the ability to capture randomness in the parameters’ estimation, but also does not suffer from the 

major assumption of IIA as in the multinomial logit model. The comparison between the results 

of these two models (using the R-squared values) demonstrated a higher performance of the mixed 

logit model compared to the discrete choice models. Table 7 contains the results of the mixed logit 

model. The values in parenthesis are the standard deviation of the estimated random parameters 

with Normal distribution. 
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Table 6. Multinomial logit model 

Explanatory variables Parameter estimates t-statistic

Definitely take the new route 

Constant 

Trip miles (1 if travel to workplace takes less than 5 miles, 0 

otherwise) 
-0.19** 0.0283 

Saving time (minutes) 0.20*** 0.0000 

Enjoy driving (1 if enjoy driving, 0 otherwise) 0.55*** 0.0000 

Number of households under 18 0.17*** 0.0001 

Income (1 if higher than 200,000, 0 otherwise) 0.38*** 0.0459 

Education (1 if the education level is master’s degree, 0 otherwise) 0.25** 0.0295 

Employment status (1 if being full-time employment, 0 otherwise) 0.18** 0.0085 

Location of living (1 if City center, 0 otherwise) 0.32*** 0.0076 

Probably take the new route 

Constant 0.47** 0.0136 

See the congestion ahead -0.67*** 0.0000 

Saving time (minutes) 0.22*** 0.0000 

Enjoy driving (1 if enjoy driving, 0 otherwise) 0.38*** 0.0001 

Education (1 if the education level is PhD, 0 otherwise) 0.32*** 0.0001 

Not sure if taking the new route or not 

Constant 0.59** 0.0420 

See the congestion ahead -0.73*** 0.0002 

Saving time (minutes) 0.16*** 0.0000 

Smartphone (1 if the respondent uses a smartphone, 0 otherwise) -0.60*** 0.0000 

Education (1 if the education level is less than high school, 0 

otherwise) 
1.46*** 0.0016 

Probably not take the new route 

Constant 1.33*** 0.0000 

Smartphone (1 if the respondent uses a smartphone, 0 otherwise) -0.35** 0.0320 

Age group (1 if aged between 35 and 45 years, 0 otherwise) 0.34** 0.0264 

Education (1 if the education level is less than high school, 0 

otherwise) 
1.23** 0.0234 

Definitely not take the new route 

Constant 0.95*** 0.0101 

Smartphone (1 if the respondent uses a smartphone, 0 otherwise) -0.60** 0.0273 

Education (1 if the education level is PhD, 0 otherwise) -0.75** 0.0490 

Household size -0.29** 0.0097 

AIC 9353.1 

Log-likelihood function at convergence -4811.58

R-squared (R2) 0.034

***, **==> Significance at 1%, 5% level 
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Table 7. Mixed logit model 

Explanatory variables Parameter estimates t-statistic

Definitely take the new route 

Trip Duration -1.11*** (0.71) 0.00 

Trip miles (1 if travel to workplace takes less than 5 miles, 0 otherwise) -0.19*** 0.03 

Saving time (minutes) 0.48*** 0.00 

Enjoy driving (1 if enjoy driving, 0 otherwise) 0.66*** 0.00 

Number of households under 18 0.15*** 0.00 

Income (1 if higher than 200,000, 0 otherwise) 0.54** 0.01 

Education (1 if the education level is master’s degree, 0 otherwise) 0.35*** 0.01 

Employment status (1 if being full-time employment, 0 otherwise) 0.17*** 0.02 

Location of living (1 if City center, 0 otherwise) 0.31*** 0.01 

Probably take the new route 

Alternative Specific Coefficient 0.27 0.16 

See the congestion ahead -0.92*** 0.00 

Saving time (minutes) 0.53*** 0.00 

Enjoy driving (1 if enjoy driving, 0 otherwise) 0.48*** 0.00 

Education (1 if the education level is PhD, 0 otherwise) 0.43*** 0.00 

Not sure if taking the new route or not 

Alternative Specific Coefficient 0.45 0.13 

See the congestion ahead -0.99*** 0.00 

Saving time (minutes) 0.48*** 0.00 

Smartphone (1 if the respondent uses a smartphone, 0 otherwise) -0.64*** 0.00 

Income (1 if higher than 200,000, 0 otherwise) 0.74** 0.01 

Education (1 if the education level is less than high school, 0 otherwise) 1.56*** 0.00 

Probably not take the new route 

Alternative Specific Coefficient 3.25*** 0.00 

Driver/Passenger (1 if the respondent is driver) -9.38*** (3.88) 0.00 

Smartphone (1 if the respondent uses a smartphone, 0 otherwise) -7.53*** (6.94) 0.00 

Education (1 if the education level is less than high school, 0 otherwise) 2.79*** 0.02 

Definitely not take the new route 

Alternative Specific Coefficient 9.75*** 0.00 

Smartphone (1 if the respondent uses a smartphone, 0 otherwise) -2.77*** 0.00 

Household size -2.44*** 0.00 

AIC 9390.4 

Log-likelihood function at convergence -4665.22

R-squared (R2) 0.23

***, **==> Significance at 1%, 5% level 

Machine Learning Techniques 

Decision Tree: Decision trees are non-parametric supervised learning methods applicable 

to both classification and regression analysis. This approach is one of the most practical methods 

in supervised learning problems. It uses an algorithm to determine a pattern in the data to split it 
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into multiple parts. The objective of this method is to build a model to predict the value of the 

response variables by learning the rules achieved from the given attributes. The basic algorithm 

which is used in the decision tree is called ID3. This algorithm creates the decision tree using a 

greedy approach. The first step for this approach is to find the best attribute. This is measured 

using a statistical property called ‘information gain’ which demonstrates how well the attributes 

separate the data into groups. To define this property, a commonly used measure in information 

theory representing the impurity in a group of datasets, is used. This measure is known as entropy 

(86).  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) =  −𝑝+ 𝑙𝑜𝑔2 𝑝+ − 𝑝− 𝑙𝑜𝑔2 𝑝−       (33) 

Where T is a sample of training set, 𝑝+ is the proportion of positive examples in T and 𝑝− 

is the proportion of negative examples in T. 

The information gain can then be measured using the Entropy: 

𝐺𝑎𝑖𝑛(𝑇, 𝐴) =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − ∑ 𝑟𝑎𝑐|𝑇𝑏||𝑇| × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇𝑏)𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)    (34)

Where A is the selected attribute, Gain (T, A) is the information gain of attribute A relative 

to the training sample T, Values(A) is the set of all values of attribute A in the given dataset, 𝑇𝑏 is 

the subset of the sample of training that have the value of b and 𝑟𝑎𝑐|𝑇𝑏||𝑇| represents the fraction

of examples belong to 𝑇𝑏. 

Equation 26 indicates that the information gain is measured as the difference between the 

entropy of the parent node and the average entropy of the children nodes. In this way, the 

information gain for each attribute is calculated and the attribute with highest information gain is 

selected for further analysis. This selection is done at each node of the tree and continued until the 
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algorithm classified all the training data and also all the attributes were used. 

Support Vector Machine: Support vector machine (SVM) is another supervised learning 

algorithm which can be used for both classification and also regression, though more promising 

for classification. SVM uses a separating hyperplane in an N-dimensional space to classify the 

data. The dimension of the hyperplane depends on the number of features in the data and the 

location of it is selected with the aim of maximizing the distance to the nearest training data. There 

are two types: linear and non-linear SVM. SVM found the optimal hyperplane for linearly 

separable patterns and extend it for the data that are not linearly separable by transforming the 

original data into the new space. This method takes the low dimensional input space and transforms 

it to a higher dimensional space using kernel functions and then find out a way to separate the new 

transformed data. Reducing the dimensionality were used to be common for analyzing the data. 

However, for SVM transforming the data to a higher dimensional space is beneficial in creating a 

larger space providing the opportunity of finding a separating hyperplane. This method is used for 

non-linear separation problem. 

The ultimate goal of this approach is to determine the hyperplane represented in equation 

(25) while maximizing the margin between the linear decision boundaries. The parameter of a

Normal vector (w) and bias (b) that define the decision boundaries, are estimated through a 

learning process on the training dataset.  

𝑦(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0          (35)

The support vectors are the data points that are close to the hyperplane and have significant 

impacts on the position of the hyperplane. The optimal hyperplane can be found using the objective 

function demonstrated in equation (26): 
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𝑚𝑖𝑛𝑖𝑚𝑧𝑒 𝜆||𝜔||
2

+ 𝐶 ∑ max(0,1 − 𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏))𝑖 (36) 

Where 

𝜆 is the regularization parameter 

𝜔 is the weight vector (feature vector) 

𝑦𝑖 is the actual response 

𝜔𝑇𝑥𝑖 + 𝑏 : function representing the predicted response

The first term in the loss function (equation 26) which is called as the hard margin SVM 

tries to minimize the ||𝜔||
2
 which is equivalent to maximizing the margin. The second term which

is called the soft margin, penalizes the misclassification. The term 𝜆 as the regularization was 

added to the loss function to avoid overfitting by penalizing the large coefficients in the vector of 

solution.  

Artificial Neural Network: The third approach selected for this study is the Artificial neural 

network (ANN). ANNs are inspired by the structure of the biological neural systems and originates 

from the neuro and computer science fields and currently are being used in many other disciplines 

(87). The basic elements of the ANNs are the neurons which are arranged in layers. The neurons 

of each layer are interconnected to all the neurons in the next layer. The input layer of the ANN 

model consists of the explanatory variables as a set of neurons. The output neurons are the 

dependent variables or the response variables. The difference of the ANN model with the logistic 

regression model is with the hidden layers that handle the non-linearity relationship of the data. 

Each neuron in the hidden layer created by the weighted linear summation of the neurons in the 

previous layer followed by a non-linear activation function applied to the calculated sum. These 

nodes are connected using the links with weights that are learned through the model development 
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from the given data. The advantages of the ANN models are: (1) ability in learning non-linear 

models, and (2) ability to perform online learning. The disadvantages of these models are: (1) non-

convex loss function (2) requiring tuning a number of hyperparameters, and (3) sensitivity to 

feature scaling (88–91).  

A comparison of these models suggested that the decision tree techniques have the 

advantage that no real hyperparameters need to be tuned except the number of trees (92). On the 

other hand, there are many parameters need hyper-tuning for SVM and ANN. Comparing the 

artificial neural network and support vector machine revealed that there is not any clear differences 

between these two methods from the accuracy perspectives. On some datasets, ANN works better 

and, on some others, SVM results in a more accurate classification model. In this study, the 

aforementioned machine learning methods were developed to train a model that classifies human 

responses falling into 5 categories of “definitely take a new route”, “probably take a new route”, 

“Unsure if taking a new route or not”, “probably not taking a new route” and “definitely not taking 

a new route”. Given the set of features collected using the survey, the proposed models learned 

travelers’ decision and classified them into the five categories mentioned earlier. 

Three machine learning techniques described earlier were implemented in Python to 

investigate the travelers’ responses to rerouting advice communicated by connected vehicle 

technology. As mentioned in the methodology section, Decision Tree does not have any real 

hyperparameter tuning except the maximum depth. The maximum depth in the decision tree model 

demonstrated how deep the tree can be. As the tree gets deeper, more attributes will be provided 

for the model development and more splits the tree will have. In order to determine the maximum 
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depth of the tree, we examine the range from 1 to 32 for the maximum depth and 10_fold cross 

validation was used to estimate the average accuracy of the model over the validation dataset. The 

maximum accuracy of 0.59 achieved at the maximum depth of 23.  

SVM model were then implemented in Python. The first parameter for Hyper-tuning in the 

SVM model is Kernel. Kernel parameter defines the type of hyperplane which is used to separate 

the data. Linear and non-linear hyperplane can be used for the model development. In this study 

we tested three types of hyper-plane including the linear, rbf and poly. Gamma is another 

parameter for non-linear hyperplanes. The higher the gamma value is, the more the model tries to 

fit the training data. The values of {0.1, 1, 10, 100} were examined. When the hyperplane is set to 

poly, another hyperparameter need to be considered is called degree. This parameter determines 

the degree of polynomial for finding the hyperplane for splitting the data. Regularization term in 

another important parameter that need to be determined in classification using SVM. One of the 

major aspects of training the data using machine learning technique is to assure that the model 

does not overfit the training dataset. If overfitting happened, the data will have a very low accuracy 

on the test data. Regularization is one method of avoiding overfitting by regularizing the 

coefficients estimates toward the zero. The regularization parameter in the model makes a tradeoff 

between having a smooth decision boundary and classifying the training data accurately. In this 

study, we used the values of {0.1, 1, 10, 100, 1000} for tuning the regularization parameter.  

The data was then classified using the Artificial Neural Network. Similar to what has been 

done for the SVM, there are many hyperparameters in the ANN model that need to be tuned. The 

following categories were examined for tuning each hyperparameters: hidden layer size: 

{(10,10,10), (10,20,10), (10,), (30,30,30,30), (20,20,20),(20,10,10), (20,20,10,10)}, activation 
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function for the hidden layer:{‘tanh’ , ‘relu’}, solver: {‘lbfgs’, ‘sgd’, ‘adam’}, alpha 

(regularization term): {0.0001,0.01, 0.05, 0.1,1}, learning rate: {constant, adaptive}. The best 

parameters found results in having a neural network with two hidden layers of sizes (30,30,30,30), 

with alpha 0.05, and Adam as the solver of the model with the activation function of Relu and 

adaptive learning rate.  

In order to examine how well these models performed on the data, precision, recall and F1-

score were estimated. The formulations of these evaluation techniques were provided in equations 

27, 28 and 29. True Positive is the number of correctly predicting a class in the problem. For 

example, for the first category of “definitely take”, the true positive is the number of observations 

where the actual response and predicted response are both “definitely take”. The False Positive for 

the first category means the number of observations where the predicted value of the observation 

is “definitely take”, but the actual value is not associated to the first category of response 

(“Definitely Take”). The false negative of the first category of response also occurred when the 

actual category of the response is “Definitely Take” and the model classified it as the other 

categories of response. For instance, the actual value of the class is “definitely take” and the 

predicted value assigned the observation to other classes of response. Figure 4 demonstrates the 

precision and recall of the response classes using the three machine learning techniques. It should 

be noted that the F1-score value provided in equation 29 represents a weighted average of the 

precision and recall.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (37) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       (38) 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(39) 

The results demonstrated that SVM and ANN performed better compared to DT for most 

of the categories. In order to have a trade-off between the precision and recall, F1 scores were also 

estimated. The results are shown in Figure 5. Based on F1 score, it was found that the F1-score 

was higher for SVM in 4 categories of the response variable. 

Figure 4. Precision (a) and Recall (b) of the three machine learning models 
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Figure 5. Comparison of the accuracy of the machine learning models using F1-score 

Comparison of Machine Learning Techniques and Discrete Choice Models 

In this section the predictive accuracy of the discrete choice models applied in this study 

including the multinomial logit model and mixed logit model were compared to the machine 

learning algorithms. To compare the models in terms of minimizing overall prediction error, an 

evaluation criterion was identified. This criterion is often theoretical measures such as adjusted 

R2, AIC and BIC or resampling based measures such as cross validation and bootstrapping 

techniques. Generally, resampling based measures are more common to compare different 

approaches (34). To this end, the K-Fold Cross Validation approach was used to compare the 

results of the traditional statistical analysis with the machine learning techniques. 

Cross validation is a resampling technique used to evaluate the machine learning models. 

One parameter K is defined in the model which refers to the number of groups the data is divided 

into. In this method, the data is divided into K subsets and each time k-1 subsets are used for 

training the model and one is used for the test. The overall error is estimated using the average of 

all the k model estimations. This technique reduces the bias and variance of the model. It reduces 

the bias since it used most of the data for fitting and also it reduces the variance because it also 
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used most of the data for validation as well. As a rule of thumb, 5 or 10 categories are commonly 

used for K-Fold Cross Validation.  

Here a 10-Fold Cross Validation was applied to the multinomial logit model, mixed logit 

model, Decision Tree, Support Vector Machine and Artificial Neural Network. The accuracies of 

the models are shown in Figure 6. The standard deviation of the accuracy of each model is 

represented by lines. Based on the results of the cross validation, both multinomial logit model and 

mixed logit model have similar performance and the accuracy of the models developed using these 

techniques is high. However, the Rho value of mixed logit model is higher than the multinomial 

logit model in this study (Table 6 and Table 7). The machine learning techniques demonstrated a 

relatively lower performance compared to the discrete choice models. The results of the 

comparison among these machine learning models demonstrated that support vector machine 

performed better compared to decision tree and artificial neural network. 

Discussion on the impacts of explanatory variables on Travelers Acceptance Rate 

As demonstrated in the previous section, the multinomial and mixed logit models 

performed better in predicting the travelers’ responses to rerouting advice. Seeing the congestion 

ahead was a significant parameter for two response categories, including: probably take the new 

route and not sure if taking a new route (see Table 7). The negative value of this parameter in the 

aforementioned categories may be due to travelers who see congestion selecting they would 

definitely take the new route. The short distance trips (trips less than 5 miles) was also a significant 

parameter for the response category of definitely take the new route. The negative value of this 

parameter confirms that when the distance of travel is short, the traveler rarely reroutes to the 
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alternative path for saving time. Saving time, resulting from changing to the new route and enjoy 

driving were also significant parameters for two categories of definitely take the new route and 

also probably take the new route. The positive value of these two parameters demonstrates that the 

increase in the saving time results in higher tendency for changing the route and also the probability 

of rerouting for travelers who enjoy driving is higher. The use of a smart phone was also a 

significant parameter in the three categories of definitely not take the new route, probably not take 

the new route and not sure if taking the new route. The negative value of this parameter 

demonstrates that the respondents who do not use smart phone have higher likelihood of not 

changing the route. This can be explained by the fact that respondents who do not use smartphones 

probably feel new technology is not as beneficial or useful as those that own smart phones. 

Therefore, it does not seem that they are as accepting of the information communicated by 

connected vehicles. Different categories of education were also significant in the mixed logit 

model. The estimated coefficients for education represent that the higher level of education results 

in the higher probability of rerouting to the alternative routes. Another significant variable in the 

model is whether the respondent was a driver or passenger. This variable was significant for 

probably not take the new route. The negative sign of the coefficient states that the passengers 

have higher tendency to change the route which seems to be reasonable. Passengers are more able 

to navigate the new route and check maps than the drivers. 
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Figure 6. Comparison of the accuracy of the models using cross validation 

The outcome of this study showed that in the case where respondents could not see the 

congestion ahead, around 70% of travelers would accept the rerouting suggestion over all of the 

assumed saving times (5-10 minutes). Only around 16% of travelers would likely ignore the 

rerouting suggestion.  For the case of visible congestion on the road ahead, around 85% of travelers 

accepted the rerouting suggestion over the assumed saving times (10-15 minutes). Only around 

5% preferred to stay on their original route. 

The results of this study provide an insight into the travelers’ acceptance rate. As mentioned 

earlier, the connected vehicle technology provides travelers with the real-time traffic information. 

Therefore, the drivers of connected vehicles can make the decision to follow the advice and reroute 

or just continue their last path. This study helps to estimate the range of travelers acceptance rate 

to guidance information provided by connected vehicle technology. A random distribution for 

travelers’ response was then developed using the results of the study (see chapter VI).  

Transportation Network Description 

The study area is the east part of El Paso in Texas. There are several reasons why this area 

was selected for the study. First it is a congested region. Figure 7 and Figure 8 Show the traffic 



52 

during the peak hour period on I-10.  Secondly, it encompasses different types of roads including 

freeway, arterial, and local roads. This provides operational information on a complex network. 

Third, this area is in a non-attainment area (an area with air quality worse than the National 

Ambient Air Quality Standards (NAAQS)) and evaluation of the potential improvement methods 

in this area can be beneficial for future decision making (93).  For a non-attainment area, there 

must be a plan for the future to reduce the pollutant produced to meet the NAAQS defined in the 

Clean Air Act Amendments. Figure 9 shows the conditions of the city due to high levels of smog 

in the city. Therefore, evaluating emission productions and understanding the reasons of the 

current conditions is helpful for future decisions. 

Figure 7.  Use of ITS devices for controlling traffic during the peak hour period (Photo 

courtesy of Texas A&M Transportation Institute) 



53 

Figure 8. Traffic during the peak hour period (Photo courtesy of Texas A&M 

Transportation Institute) 

Figure 9. An illustration of the level of smog and emissions (Photo courtesy of Texas A&M 

Transportation Institute) 

The network was modeled in Simulation of Urban Mobility (SUMO) software for the 

morning peak period (6 am to 8 am). Simulation of Urban Mobility (SUMO) could simulate the 

traffic of the selected area and assess the impacts of strategies in mitigating congestion and also 

conduct a sensitivity analysis on the required parameters in the model on network performance 
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and en-route decision effectiveness. 

SUMO is used in this study for three reasons. First, it provides detailed output of 

operational characteristics of vehicles such as speed, acceleration, position of vehicles, etc. 

Secondly, it has application programming interface (API) called TraCI which enables extending 

the basic functionality of the tool and investigate different research objectives in a microsimulation 

model (94–97). Third, since this tool is open source, accessing all the codes enabled us to modify 

the operational functionalities based on the desired functional features (94, 96, 98–100). This 

software has been widely used in research including modeling of connected and automated 

vehicles (97, 101, 102). 

The east part of the network of El Paso, Texas was modeled in SUMO. This network 

consists of the roads between and including I10 and Montana Avenue from Chelsea street to 

McRae Blvd. The simulated network is shown in Figure 10. The area includes 5.6 miles of 

interstate I10 and 4.8 miles of arterial Montana Ave. as well as the major roads and the local streets 

between these two roads allowing for more comprehensive impact analysis than previous efforts. 

I10 includes 4 lanes in each direction and Montana Avenue, known to be congested especially 

during the peak period, has 3 lanes in each direction. The maximum speed limit of the freeway in 

the selected part is 60 mph on I10 and the maximum speed limit of the arterial on this network is 

45 mph on some parts of Montana Avenue and the frontage road on I10. The area modeled in the 

microscopic simulation model is a much larger model and covered different types of roads 

compared to the models in the literature. These properties of the model provides the opportunity 

to conduct a more comprehensive study than most studies that look at the small areas with limited 

types of roads. 
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Overall, the network includes 584 nodes and 712 edges with the total length of 135.96 km 

and the total lane length of 313.74 km. There are 48 traffic signals in the network, which are 

designed based on the real phasing of traffic signals in El Paso.  The total number of vehicles 

entering the network is 50,872 from 6 to 8 am on a typical weekday. The map and a snapshot of 

the network of El Paso modeled in SUMO is demonstrated in Figure 10. 

Figure 10. Map of the network with street names 

The origin-destination (OD) data given by Texas A&M Transportation Institute El Paso 

office was used to model the traffic in the area. In order to convert the given origin-destination 

data to the route file, the developed dynamic traffic assignment model known as DuaIterate was 

used. The DuaIterate algorithm in SUMO is an iterative process to find the shortest path and try to 

minimize the individuals travel time based on the updated cost function. Then, the simulation 

model was run, and the volume on each link was then compared and adjusted based on the camera 

traffic counts of TxDOT. An iterative process was performed to calibrate the routes for achieving 

the desired accuracy (Figure 11). In Figure 11, an acceptable change was defined such that a 

reduction was observed in the total differences in the traffic volumes and the simulated traffic. The 
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algorithm stopped when no improvement was observed for 5 iterations. 

Figure 11. The flow chart of adjusting traffic data 

Based on the presented flow chart (Figure 11), first DuaIterate built-in function in SUMO 

was used with the origin-destination data as the input to find the shortest path. Then the simulation 

model was running, and the links volume was generated after the simulation completed. The links 

volumes were compared with the links volume given by TXDOT. Then links with high difference 

between the real volume and simulated was selected. If the real volume is higher than the 

simulated, some vehicles traveling on the alternative route with high volume were forced to use 

this link during the path generation using DuaIterate. If the real value is lower than the simulated, 

then some vehicles were forced to use an alternative path in the process of generating paths with 

DuaIterate. A comparison of the 15-minute link volumes of the simulation model and the real 

traffic on the road for part of the network of El Paso for 7:00 AM to 8:00 AM is demonstrated in 
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Figure . 

The network-wide flow-density diagram is demonstrated in Figure 13. The comparison of 

this network-wide flow density diagram with the literature represents the high congestion level on 

the network. The network-wide maximum flow rate for the high demand level of two cities of 

Chicago and Salt Lake City were around 300 and 350 veh/hr/ln (103). In the current study the 

maximum flow rate over the network was about 470 veh/hr/ln. 

Figure 12. 15-minute links volume of the simulation model and real-traffic on part of the 

network from 7:00 AM to 8:00 AM 
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Figure 12 (continued). 15-minute links volume of the simulation model and real-traffic on 

part of the network from 7:00 AM to 8:00 AM 
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Figure 12 (continued). 15-minute links volume of the simulation model and real-traffic on 

part of the network from 7:00 AM to 8:00 AM 

Figure 13. Flow-Density diagram for the base case scenario without any incidents 

In this section, stated preference data were analyzed to characterize travelers’ behavior in 



60 

response to rerouting information communicated by connected vehicle technology. Then a 

simulation model of the east part of El Paso, Texas was developed in SUMO to evaluate the 

network-wide impacts of connected vehicles on traffic operation and fuel consumption. In the next 

section, the rerouting scenarios in the connected environment were defined and the parameters 

affecting the performance of the rerouting approaches on the efficiency of the transportation 

system were determined. 
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CHAPTER VI  

METHODOLOGY 

A microsimulation model of the network of El Paso, Texas was developed to assess the 

impacts of en-route decisions made by travelers using the information communicated by connected 

vehicle technology. Simulation of Urban Mobility (SUMO) was utilized to develop the 

microsimulation model of the selected network. SUMO is an open source traffic simulation 

package which is used along with Traffic Control Interface (TraCI) to develop the connectivity 

scenarios and investigating different research objectives in a microsimulation model (16–19). This 

simulation model has many functionalities that allow it to adapt to the future of the transportation 

system. 

The developed network consists of the roads between and including I10 and Montana 

Avenue from Chelsea street to McRae Blvd. The simulated network is shown in Figure 10. The 

data used for developing this model was discussed in the previous section. 

The default car-following model in SUMO, which is the modified version of the Krauss 

model, was used to characterize the behaviour of the regular and connected vehicles. However, it 

was assumed that regular vehicles do not receive and send any information. So, they follow the 

route that they were originally assigned to using the dynamic traffic assignment. On the other hand, 

it was assumed that the connected vehicles are able to send and receive information to and from 

other connected vehicles and also roadside devices which can be used by drivers to make en-route 

decisions. Congestion warning and rerouting algorithms were developed to assess the effectiveness 

of the deployment of connected vehicle technology. The developed congestion warning and 

rerouting algorithm is shown in a flowchart in Figure 14 (104, 105).  
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Figure 14. Flowchart of the rerouting algorithms and congestion warning 
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This algorithm takes advantage of the real time traffic information disseminated by connected 

vehicles and roadside devices. The algorithm informs CV drivers of any significant congestion on 

their route using warning messages. Then a new route will be suggested to the CV drivers. This 

new route uses the real time traffic data collected by roadside devices from connected vehicles to 

determine the current links traffic information and travel conditions to the vehicle’s destination.  

In order to define if there is significant congestion on any links on the vehicles’ routes, the 

ratio of current average speed to the speed limit of the link was used. It was assumed that only 

connected vehicles provide information for roadside devices. Therefore, for calculating the 

average speed utilized for the congestion warning, the speed data of connected vehicles were 

collected during the simulation. If the average speed over the link is less than a specified 

percentage of the speed limit (for instance 40% which is used in most of the cases in this study), 

then the link would be marked as congested. The information of congestion is then transferred to 

the connected vehicles. After informing the drivers of the connected vehicles of the upcoming 

congestion, drivers will make the decision to reroute to a parallel path or not. This was defined in 

this study by two factors acceptance rate and rerouting rate (combination of MPR and acceptance 

rate). 

There are three factors used in this study for determining what percentage of vehicles 

would reroute due to the received congestion alert and suggested path.  These include the market 

penetration rate (MPR) of connected vehicles, the acceptance rate, and the rerouting rate. As 

discussed earlier, the MPR is the percentage of vehicles which received the congestion 

information.  The acceptance rate (sometimes referred to as the compliance rate) is the percentage 

of the vehicles that used the new, suggested, route for bypassing congestion out of all the vehicles 
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which received the information. The rerouting rate is the multiplication of the two factors 

(acceptance rate and MPR) to represent the percentage of vehicles rerouted. For example, if the 

MPR was 60% (percentage of connected vehicles) and the acceptance rate was 40%, the rate of 

rerouting would be 24%. In other words, 24% of all vehicles would use the new route. 

This study examined four potential scenarios for why a vehicle may be given a suggested 

alternate route.  These four scenarios are discussed below. 

The first scenario assumed that the new route is found using real-time travel time data. For 

this purpose, the average travel time of connected vehicles on each link was used as the real-time 

travel time of the links. In the case of no connected vehicles on the links, the speed limit of the 

road was used to estimate the real-time travel time on the links. Then the shortest route was 

computed by assigning the estimated travel time to the links as the cost of traveling on the links. 

A list of connected vehicles aimed to reroute is provided by a comparison of a random probability 

assigned to the vehicle and acceptance rate assumed for the simulation. Then the route for each 

connected vehicle provided by the aforementioned list was updated based on the new estimated 

shortest path. The connected vehicles are following the new route till they received new 

information of congestion. 

The second approach for finding the new route was to estimate the shortest path based on 

the average travel time on the links in the network. The difference between this method and the 

previous one is that, in this scenario, the average speed of connected vehicles for an assumed 

interval of time (compared to the last time step of the simulation which corresponds to the real-

time traffic data) was considered for travel time estimation. For instance, for a link the speeds of 

connected vehicles for an interval (values between 30 and 150 seconds) collected (for the real-
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time travel time data, the speed of the last time step was used). Then the average of the collected 

speeds was calculated, the travel time was estimated using the average of speeds and assigned to 

the links as the cost of traveling the link. Different interval of time was tested to assess the impacts 

of them on the overall performance of the network. A similar process was then implemented to 

characterize the traffic for the simulation model for the upcoming time steps. To this end, first the 

current average speed was calculated using the speed data of the connected vehicles. This value 

was then compared to the speed limit of the links to prepare a list of congested links on the network. 

A random number between 0 and 1 is then generated and assigned to the connected vehicles. This 

number is compared with the predicted willingness of drivers to reroute following the rerouting 

advice or not. Shortest paths from the current location of connected vehicles who aimed to follow 

the warning advice to their destination are also estimated using the new costs (average travel time) 

assigned to the links. The paths of the connected vehicles willing to reroute are updated with the 

new information and rerouting is applied.  

Looking for effective factors in the performance of the network, the third scenario of 

rerouting was dedicated to the fuel consumption on the links of the network. To this end, the real-

time fuel consumption was used on the links as the link travel cost for finding the shortest path. In 

order to estimate fuel consumption, the trajectories of vehicles including speed and acceleration 

for each time step were recorded. Vehicle trajectories can be measured in the real world with the 

help of equipped vehicles or from the microsimulation model as was done in this research. Fuel 

consumption was calculated using the Virginia Tech Comprehensive Power-based Fuel 

Consumption Model (CPFM) (81, 106). This method was described in the literature review 

section.  
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A 2012 Toyota Camry was used as a typical vehicle for fuel consumption model calibration. The 

2012 Toyota Camry represents the family sedan and was selected because it was reported as the 

bestselling car (107) Table 8 shows the calibrated parameters for estimating fuel consumption 

using the Comprehensive Power-based Fuel Consumption Model (108). 

Table 8. Vehicle parameters for CPFM calibration 

Parameter Toyota Camry-2012 

Vehicle Mass(m) [kg] 1446.96 (109) 

Drag Coefficient (CD) 0.28 (109) 

Frontal Area (Af) 2.276 (109) 

Rolling Coefficient (Cr) 1.75 (110) 

C1 0.0328 (110) 

C2 4.575 (81) 

Drive Efficiency (ηd) 0.9 (81) 

Number of Cylinders (N) 4 (109) 

Engine Size [L] 2.5 (109) 

Altitude (H) [km] 0 

Pmfo [Pa] 400000 (81) 

Q[J/kg] 43000000 (81) 

Engine Idle Speed (ωidle) [rpm] 675 (81) 

Engine Displacement(d)[L] 2.494 (109) 

Fuel Economy City (FEcity) [mi/gal] 25 (109) 

Fuel Economy Highway (FEhwy) 35 (109) 

ε 1 × 10−6 (81)

For estimating the fuel consumption for the links without any connected vehicles the 

average fuel consumption was assumed to be 0.04347 * length of the link which corresponds to 

the average 23 MPG reported by Bureau of Transportation Statistics (111). Following the 

estimation of the links cost using the fuel consumption during the last time step of the simulation, 

the average speed is also calculated using the speed data collected from connected vehicles 

technology. The comparison of the average speed on the links with the speed limit defines the need 
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for warning to the connected vehicles having this link as their upcoming path. After determining 

the congested links, similar process is performed. At the end, the new route which was found based 

on the real-time information of links fuel consumption was assigned to the connected vehicles 

willing to reroute. 

For the last rerouting scenario, a scenario using the travel time was developed. The 

modified version of travel time (link cost) was defined such if people set aside that much time for 

travel they are 95% confident they will arrive on time or early (equation 32).  

𝐿𝑖𝑛𝑘 𝐶𝑜𝑠𝑡 = 𝑇𝑇 + 1.96 
𝜎

√𝑛
(40) 

In which 𝑇𝑇 is the average travel time, 𝜎 is the standard deviation of the travel time of vehicles on 

the links and n is the number of vehicles in the estimation. Moreover, with the use of standard 

deviation in calculating the link cost we are considering the shockwave formation (112) in our 

calculations. Following the estimation of links cost, the new shortest path for connected vehicles 

is calculated and suggested to these vehicles. As explained earlier, the connected vehicles then can 

reroute or not to the new path based on their willingness.  

The rerouting algorithms were developed in python and Traffic Control Interface (TraCI) 

was used to run the code in SUMO. Two traffic scenarios were examined; one with typical 

(baseline) traffic and one with a major incident on I-10 during the simulation to make a high 

congestion level on part of the network. The vehicles can still use the link that the incident 

occurred. However, the affected lanes is closed to traffic.  

The impact assessment was divided to three main parts. In the first part of the study, the 

impacts of rerouting using the typical cost function of real-time travel time data is used on the base 
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simulation model without lane closures. Different market penetration rates of connectivity 

assuming that all of the drivers of connected vehicles follow the suggested route are examined. In 

the second part of study, a major incident causing lane closures is simulated and the four discussed 

scenarios of rerouting were investigated. The impacts of willingness to rerouting and also market 

penetration of connected vehicles are applied together in this section.  Finally, different scenarios 

of incidents with various duration and number of closed lanes were studied. A sensitivity analysis 

on the update interval of information is also performed to understand the impacts of frequent traffic 

information communication on the overall performance of the network. In order to take into 

account the random behaviour of travelers in response to congestion and warning messages, a 

probability distribution was used. We assumed travelers’ willingness to change route followed a 

Normal distribution. To this end, the equation (3) was used as the to find the probability of a CV 

traveller adjusting their route. 

Probability of route change = α ×
exp (

−n2

2×σ2)

2√π×σ
(41) 

Where 𝛼 is a constant to adjust the probability function, 𝑛 is the number of rerouted 

vehicles due to congestion on each link, and 𝜎 is the standard deviation of the Normal distribution. 

Different values of 𝛼 were considered to simulate the behaviour of travelers on each lane of the 

roads. These values are defined such that the vehicles on the inner lane (further away from the exit 

ramp) have a lower probability of choosing the suggested new route. Another assumption in this 

equation is that as the number of vehicles rerouted to the alternative routes increases, the 

probability that the next vehicle accepts the alternative route decreases. 
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As discussed in the section of input data (chapter V), an internet-based questionnaire was 

prepared. Almost 1900 completed responses were collected to investigate the travelers’ reaction 

to the rerouting information. Based on the results of the study, 87-92% of travelers would accept 

the rerouting suggestion if they see the congestion ahead of them and 75-79% would accept in case 

the congestion is not visible. On the other hand, 8-13% of travelers would not accept the rerouting 

advice with visible congestion and 21-25% would not accept rerouting suggestion without visible 

congestion. These probabilities were used to develop the distribution representing the random 

behaviour of drivers of connected vehicles. To develop the distribution using these probabilities, 

the parameters are defined such that the travelers following the advices on all the lanes, the 

percentage of rerouting is about the sum of the probabilities of definitely take the new route and 

half of the probabilities of travelers who are not sure if take the new route or not.   

After calculating the rate for willingness of drivers to reroute, a random value will be 

assigned to the traveler and compared with the willingness to reroute to determine whether the 

vehicle will change its route or not. Figure 15 demonstrates the probability distribution of travelers’ 

willingness to reroute. Figure 16 shows a sample of the lane numbering used for freeways in Figure 

15.
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Figure 15. The probability distribution of tavelers choosing the suggested route 

As presented in Figure 15, the same value was considered for various update intervals. It 
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should be noted that acceptance rate is the percentage of connected vehicles accept the congestion 

alert and reroute to the suggested path for traveling. It was assumed that it does not matter how 

frequent the information is provided (every 150, 300 or 600 seconds). The driver’s willingness to 

accept the new suggested route or not would not change by the frequency of the information. This 

provides an increased impact of the update interval to more easily see the impact of update interval 

on the performance of the system. 

In the next section, the rerouting models described here were evaluated. First the four 

rerouting strategies were modeled and tested. A sensitivity analysis was also performed on the 

congestion threshold, update interval of rerouting, and interval for estimating the average travel 

time for the second approach of rerouting.  

Next, the best rerouting approach was used to analyze the model during various incident 

scenarios (duration and number of lane closures). In this part, a similar sensitivity analysis on the 

update interval was also performed. In this part, instead of using a fixed value for rerouting rates, 

the Normal distribution developed in this section was used to mimic random behavior of travelers. 

Finally, the best approach of rerouting was used to visualize the fuel-flow, flow-density and flow-

speed diagrams. These diagrams demonstrated the efficiency of the model at the macroscopic 

model. 
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CHAPTER VII  

ANALYSIS AND RESULTS* 

To conduct a comprehensive evaluation on the implemented rerouting algorithms, factors 

involving the rerouting should be concisely defined. The important factors in the study include: 

the market penetration rate of connectivity, the willingness of drivers to reroute, the update interval 

of information, the interval of time for the average travel time rerouting algorithm, the factors 

associated with incidents including the duration and number of lanes closed. This section is divided 

into three parts. In the first part, the four scenarios of rerouting were analyzed and sensitivity 

analysis was performed on some of the parameters in the simulation model. These parameters 

include the rerouting rates (combination of MPR and acceptance rate), the update interval of travel 

time and the interval for estimating the average travel time. As the acceptance rate and market 

penetration rate of connectivity both determine the rate of accepting a suggested route, in this 

study, these two parameters were considered together as one parameter called rerouting rate. The 

best rerouting approach was selected based on the results of this section. This rerouting algorithm 

was then used for the rest of the study.  

In the second part, the focus was on the incident scenarios in the mixed environment of 

connected and non-connected vehicles. To this end, the analysis was performed on some 

parameters including incident duration, number of lanes closed and the update interval of travel 

time. Unlike the first section, in which static acceptance rates were considered for travelers 

response to the information, in this section, the Normal distribution explained in the previous 

section was used to take into account the random behaviour of travelers which is affected by other

 *Reprinted with permission from “The impacts of connected vehicle technology on network-wide traffic operation 

and fuel consumption under various incident scenarios” by Samimi Abianeh, A., Burris, M., Talebpour, A., & Sinha, 

K., 2020. Transportation Planning and Technology, 43(3), 293-312, Copyright 2020 by Routledge.
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travelers on the network (Figure 15). This would help in having variable rerouting rates during the 

simulation (in previous part, the model was analyzed using static rerouting rates). 

 Finally, in the last section, the goal was to see how the rerouting in the connected 

environment affects the network performance at the macroscopic level. Similarly, the best 

rerouting algorithm from the first part was used here. The static rerouting rates were also 

considered to simulate the travelers responses in the mixed traffic of connected and non-connected 

vehicles. To this end, the Flow-Density relationship, Fuel-Flow and Flow-Speed were presented. 

The three parts of analysis explained here, are summarized in Table 9. It should be noted that in 

all the parts of analysis except section 2 (evaluating incident scenarios) acceptance rate and MPR 

was considered as one factor called rerouting rate. In section 2, they were defined separately and 

acceptance rate follows Figure 15. 
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Table 9. Summary of the analysis 

Part Aspect 

evaluation 

Rerouting 

strategies 

Examined 

Update 

interval (sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Number 

of lanes 

closed 

Traveler 

Rerouitng 

Rate 

1 

Evaluating 

rerouting 

strategies 

a Rerouting based 

on the real-time 

travel time 

30, 60, 90, 

120, 150 

40% 0 - 20% 

b Rerouting based 

on the real-time 

travel time 

150 20%, 40%, 

60% 

0 - 20% 

c 1.Rerouting based

on the real-time

travel time

2. Rerouting based

on the average

travel time

3. Rerouting based

on the Fuel

consumption

4.Rerouting based

on the modified

version of travel

time (upper limit

of confidence

interval of mean

travel time)

150 40% 900 1 0,10%,20%,4

0%,60%,80% 

d Best found in 1-c best found in 

1-a

40% 900 1 best found in 

1-c
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Table 9 (continued). Summary of the analysis 

Part Aspect 

evaluation 

Rerouting 

strategies 

Examined 

Update 

interval (sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Number of 

lanes 

closed 

Traveler 

Rerouitng 

Rate 

e Best found in 

1-c

best found in 

1-d

best found 

in 1-b 

900 1 best found 

in 1-c 

2 

Evaluating 

incident 

scenarios 

a Best found in 

1-c

150, 300, 

600 

40% 0, 600, 

900, 1500, 

2400, 

2700 

1, 2 MPR(0%,2

0%,40%,60

%,80%, 

100%) 

Acceptance 

rate of 

figure 15 

3 

Network 

performanc

e at the 

macroscopi

c level 

a Best found in 

1-c

150 40% 900 1 0,10%,20%

,40%, 

60%,80% 
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Rerouting Strategies 

As described earlier, four rerouting algorithms were simulated in this study. Several 

scenarios of rerouting rates (static) were considered for each rerouting algorithm. For the base case 

(Table 9, 1-a and 1-b), the model was simulated without any incident to analyze the impacts of 

update interval (Table 9, 1-a) and congestion threshold (Table 9, 1-b) on the network performance. 

Then the rerouting algorithms were implemented with a simplified assumption on the update 

interval and congestion threshold. It should also be noted that the rerouting rate which was defined 

in chapter VI as the combination of MPR and acceptance rate was used in this section. 

Base Case Scenario 

Before proceeding to the evaluation of the rerouting strategies, a selection must be made 

for two common factors among all of the rerouting scenarios. Table 10 demonstrated the network 

performance without any connected vehicle technology. The first factor in the model is the update 

interval. For the update interval several values including 30, 60, 90 120, and 150 seconds were 

considered for the sensitivity analysis (Table 9, 1-a). Another factor which is in common for all 

the rerouting scenarios is the congestion threshold (Table 9, 1-b). The congestion threshold is the 

level at which the links are marked as congested and warning messages are sent out to the 

connected vehicles. The congestion threshold was studied based on comparing the current average 

speed to the speed limit. For the purpose of this study, average speeds that were 20%, 40% and 

60% of the speed limit were analyzed for the congestion threshold (Table 9, 1-b). The first 

rerouting algorithm, rerouting based on the real-time travel time data, with the rerouting rate of 

20%, without simulating any incident was considered for the sensitivity analysis of these factors 

on the performance of the model.  
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Table 10. Network performance for 0% connectivity, the traffic without any connected 

vehicle technology 

Base scenario Fuel consumption VMT TT 

0% connectivity 21650 232683 15957 

Table 11. Networkwide performance for various update intervals_ Congestion threshold of 

40% (average speed  40% of speed limit) (Table 9, 1-a) 

Update interval Fuel consumption VMT TT 

30 24352 232419 17955 

60 19023 239317 14000 

90 18547 238272 13650 

120 19420 237690 14299 

150 19721 237570 14521 

Table 12. Networkwide performance for various congestion level- update interval of 150 

seconds (Table 9, 1-b) 

Congestion 

Level Fuel consumption VMT TT 

20% 19357 237020 14254 

40% 19721 237570 14521 

60% 19279 237314 14193 

The results of this analysis demonstrated that, for the rerouting rate of 20%, the update 

interval of 90 seconds had the highest benefit in terms of fuel consumption and travel time (Table 

11) . Moreover, the average speed of less that 60% of the speed limit resulted in the lowest travel

time and fuel consumption (Table 12). However, because for the rest of the scenarios the 

simulation need to model higher rerouting rates and incidents, for computational needs, 150 

seconds was assumed for the update interval and a threshold of 40% was assumed for congestion. 

At the end, the best approach was tested for the best values found in this section to assure that this 
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assumption had not impacted the overall findings. In the next section, each rerouting scenarios 

with a simulated incident of 900 seconds on the I-10 freeway (Figure 17), update interval of 150 

seconds and congestion threshold of 40% were evaluated (unless otherwise specified) .  

Four Rerouting Scenarios 

As mentioned earlier, in this section, the roadside communication devices disseminated 

congestion warning messages when meeting the congestion threshold of 40% and the information 

were distributed every intervals of 150 seconds. The vehicles equipped with communication 

devices (connected vehicles) receive these messages and can decide to change their route to 

alternative routes to bypass congestion or not. In order to model the congestion during the peak 

hour period, for all of the rerouting scenarios, one incident on the I-10 freeway (westbound lanes-

peak direction) was simulated. The location of the incident is shown in Figure 17. The duration of 

the incident varied based on the scenarios but was 900 seconds in this scenario (Table 9, 1-c). After 

this period of time, the crashed vehicle was removed and the lane opens to traffic. 

Figure 17. The location of the incident in the simulation model (West direction) 
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Six rerouting rate scenarios including 0%, 10%, %20, %40, %60 and %80 were assumed 

(Table 9, 1-c). It should also be noted that one rerouting strategy was used for each of the 

simulation and the algorithms were not used concurrently for each simulation in the current study. 

Rerouting based on the real-time travel time data 

As described earlier, the first approach for rerouting was to use the real-time travel time 

data collected by the roadside devices from the equipped vehicles on the road. To this end, the 

algorithm was developed in Python for rerouting the connected vehicles and TraCI was used for 

applying the implemented algorithm in the simulation model. Here, this rerouting algorithm was 

tested with the assumption of 40% congestion threshold, update interval of 150 seconds, a 900 

seconds incident and rerouting rates varying from 0% to 80% (Table 9, 1-c).  

Rerouting based on the average travel time data 

For this rerouting algorithm, the average travel time was used to reroute the vehicles when 

their assigned route was congested. Before final analysis of this approach, a sensitivity analysis 

was performed to find an appropriate value for the interval over which the average should be 

estimated. For this analysis, the rerouting rates of 20% and 40% with 5 values of interval including 

30, 60, 90, 120, 150 seconds were evaluated.  

Rerouting based on fuel consumption 

The third approach involved calculating the real-time fuel consumption over the links using 

the data collected by connected vehicles. To this end, VT-CPFM model was used for estimating 

the fuel consumption. This estimated fuel consumption was considered as the costs on the links 

for finding the least cost path from the last vehicle position to the destination. Similar assumptions 
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including the congestion threshold of 40%, the update interval of 150 seconds and the rerouting 

rates between 0% and 80% were simulated. 

Rerouting based on the upper-bound confidence interval of travel time 

The last approach developed in this study also considered the travel time for rerouting. The 

only modification that is applied to estimating the cost involved using the standard deviation of 

the travel time on the network links (equation 32). This will result to having higher costs when the 

individual vehicles’ speed varies significantly on a link. 

Similar parameters as the other approaches were then used to explore the impacts of these 

parameters on the overall performance of the network. The assumed parameters are the congestion 

threshold of 40%, the update interval of 150 seconds, a 900-second incident and rerouting rate 

which varies from 0% to 80% (Table 9, 1-c).  

First, a sensitivity analysis was performed on the interval for the rerouting based on the 

average travel time. The intervals including 30, 60, 90, 120, and 150 seconds were analyzed. The 

results of the analysis for 20% and 40% of market penetration is shown in Table 13 and Table 14. 

Based on the results of the sensitivity analysis, 60 seconds with lowest network-wide fuel 

consumption and travel time was assumed for the rest of the analysis. 
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Table 13. The impact of length of time over which the average travel time was calculated 

(20% MPR) (Table 9-1-c (2)) 

Interval for 

Average 
Fuel consumption VMT TT 

30 20587 237569 15165 

60 18267 240262 13444 

90 18956 237247 13957 

120 19918 236883 14669 

150 20107 236738 14810 

Table 14. The impact of length of time over which the average travel time was calculated 

(40% MPR) (Table 9-1-c (2)) 

Interval for 

Average 
Fuel consumption VMT TT 

30 18174 240154 13378 

60 17170 242335 12632 

90 17629 239147 12974 

120 18029 239039 13269 

150 18402 238811 13547 

Then the four rerouting strategies were developed in Python and TraCI was used to communicate 

between the simulation model and the algorithms. The networkwide travel time, fuel consumption 

and vehicle miles traveled for each scenario were estimated and presented in Table 15. 
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Table 15. Comparison of four scenarios of rerouting for various rerouting rates (Table 9, 1-c) 

Model 

Rerouting 

rates 

Congestion 

Level 

Fuel 

consumption (L) 

Vehicle Miles 

Traveled (mile) 

Total Travel 

Time (hours) 

Travel Time 0 0.4 23636 232643 17426 

Travel Time 0.1 0.4 18457 235671 13588 

Travel Time 0.2 0.4 16998 244439 12503 

Travel Time 0.4 0.4 17207 243329 12659 

Travel Time 0.6 0.4 17239 242732 12684 

Travel Time 0.8 0.4 18434 242947 13570 

Average Travel Time 0 0.4 23636 232643 17426 

Average Travel Time 0.1 0.4 18648 239230 13728 

Average Travel Time 0.2 0.4 18267 240262 13444 

Average Travel Time 0.4 0.4 17170 242335 12632 

Average Travel Time 0.6 0.4 17541 241924 12908 

Average Travel Time 0.8 0.4 17924 241165 13192 

Fuel Consumption 0 0.4 23636 232643 17426 

Fuel Consumption 0.1 0.4 19953 235118 14695 

Fuel Consumption 0.2 0.4 19302 237710 14213 

Fuel Consumption 0.4 0.4 18252 240651 13436 

Fuel Consumption 0.6 0.4 18851 237341 13880 

Fuel Consumption 0.8 0.4 19444 236157 14315 
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Table 15 (continued). Comparison of four scenarios of rerouting for various rerouting rates (Table 9, 1-c) 

Model 

Rerouting 

rates 

Congestion 

Level 

Fuel 

consumption (L) 

Vehicle Miles 

Traveled (mile) 

Total Travel 

Time (hours) 

Modified Travel Time 0 0.4 23636 232643 17426 

Modified Travel Time 0.1 0.4 18702 239972 13768 

Modified Travel Time 0.2 0.4 18437 239286 13572 

Modified Travel Time 0.4 0.4 17787 240738 13090 

Modified Travel Time 0.6 0.4 17496 242534 12874 

Modified Travel Time 0.8 0.4 18740 242481 13797 
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Table 15 presented the total travel time, vehicle miles traveled and fuel consumption at the 

network level for four scenarios of rerouting. For the average travel time and the real-time travel 

time methods, the highest benefits were achieved at the rerouting rate of 20% and 40% 

accordingly. For fuel consumption and the modified travel time, the least network-wide travel time 

and fuel consumption occurred at the rerouting rate of 40% and 60%, correspondingly. With an 

increase in the rate of rerouting, an increase in the total travel time and fuel consumption was 

observed. For vehicle-miles-traveled, an increasing trend with the increase in the rerouting rate 

was observed. This occurred because with high congestion on the roads, the vehicles with 

communication technology received warning to change their path and most of the time, the 

suggested alternative path was not the path with the shortest distance to the destination and with 

the congestion on the main path, these alternative becomes more efficient in terms of travel time 

and fuel consumption. Therefore, the increase in the rerouting increased the vehicle-miles-

traveled. The comparison among these methods presented that the first two methods, real-time 

travel time and the average travel time performed better than the second two methods. One 

difference between the two set of approaches, is that the second set considered the variance in the 

individuals travel time; however, the first two focused on the average travel time of all vehicles 

over a period of time. Based on the results, for the implemented simulation model, accounting for 

the variance of travel times (individual travel time) is not beneficial in the rerouting scenarios. 

The rerouting strategy with the real-time travel time resulted in the lowest travel time and 

fuel consumption at the rerouting rate of 20%. Here the model was tested again using the best 

values found for the update interval and congestion threshold in Table 11 and Table 12. The results 
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(Table 16 and Table 17) demonstrated that the update interval of 150 seconds and congestion level 

of 40% resulted in better efficiency of the network. 

Table 16. Networkwide travel time and fuel consumption for real-time travel time 

rerouting algorithm at two update intervals 

Rerouting rates Update interval 

Fuel 

consumption (L) 

Vehicle Miles 

Traveled (mile) 

Total Travel 

Time (hours) 

0.2 90 17233 224771 12683 

0.2 150 16998 244439 12503 

Table 17. Networkwide travel time and fuel consumption for real-time travel time 

rerouting algorithm at two congestion thresholds 

Rerouting rates 

Congestion 

threshold 

Fuel 

consumption (L) 

Vehicle Miles 

Traveled (mile) 

Total Travel 

Time (hours) 

0.2 0.60 18997 237839 13985 

0.2 0.40 16998 244439 12503 

In the next section the impacts of the incidents (duration and number of lanes closed) and 

the update interval of travel time on the performance of the network was evaluated. However, 

instead of using the rerouting rates as a factor combining the MPR of connectivity and travelers’ 

acceptance rate, these factors were used separately. For the market penetration rate, 0%, 20%, 

40%, 60%, 80% and 100% were assumed. For the acceptance rate, the Normal distribution 

demonstrated in Figure 15 were used. The first rerouting algorithm which resulted in lowest travel 

time and fuel consumption was considered in this section as well. 

Incident Scenarios in a Connected Environment 

In the previous section, four methods of rerouting algorithms were evaluated. Here, a 

sensitivity analysis on some parameters associated with incidents is performed (Table 9, 2-a). 
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These include the incident duration, number of lanes closed during the incident, and the update 

interval at various incident scenarios. It should also be noted that the acceptance rate and MPR 

were considered separately in this section. The acceptance rate followed the distribution presented 

in Figure 15 and acceptance rate was varied between 0% and 100%. 

Incident Scenarios 

To investigate the impacts of nonrecurring congestion on the network performance several 

incident scenarios were defined and evaluated (Table 9, 2-a). First, for the base case scenario with 

no CVs, several incidents of various duration and number of lanes closed (one lane or two lanes) 

on the I-10 freeway were modeled. Incident durations is a critical parameter in evaluating the 

congestion caused by incidents. In addition, the number of lanes affected is another crucial 

parameter to study the performance of the network under the congestion induced by incidents. The 

same scenarios were then modeled with the addition of CVs at various market penetration rates 

(MPR), including 20%, 40%, 60%, 80%, and 100%. 

As discussed in the chapter VI, to model the random behaviour of travelers in response to 

congestion and warning messages, a probability distribution (Normal distribution) was used 

(Figure 15). These values were defined such that the vehicles on the inner lane (further away from 

the exit ramp) have a lower probability of choosing the suggested new route. Another assumption 

in this equation is that as the number of vehicles rerouted to the alternative routes increases, the 

probability that the next vehicle accepts the alternative route decreases. 

Case 1 (base case): 0% MPR of CVs 

In this case, incident scenarios with various durations and number of lanes closed were 
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developed in SUMO. The duration of incidents included 600, 900, 1500, 1800, 2400, and 2700 

seconds (Table 9, 2). Two scenarios were examined for each duration: one lane closed, and two 

lanes closed. The incidents were on the westbound lanes of I10 where traffic is moving towards 

the center of El Paso. The location of the incident is shown in Figure 17. It was assumed that there 

is no connectivity among vehicles. Therefore, the vehicles don’t receive or send any information. 

The objective of this set of scenarios was to assess the networkwide impacts of incidents on overall 

travel time and fuel consumption. 

As demonstrated in Figure 18 and Figure 19, the networkwide fuel consumption and 

networkwide travel time follow similar behaviour in response to the changes in the duration of 

incidents and number of lane closures. Increase in the duration of incidents and number of lane 

closure result in more fuel consumption and higher travel time. 

Figure 18. Total fuel consumption over the network vs the duration of incidents 
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Figure 19. Total travel time over the network vs the duration of incidents 

Case 2: Adding connectivity technology to the vehicles 

In this section, three of incident duration scenarios (900, 1500, and 2400 seconds) with 

various market penetration rates of connectivity were investigated. Including connectivity, enabled 

the vehicles to send and receive information on congestion from other vehicles on the road and 

make more informed decisions on route choice. The vehicles with communication technologies 

follow the algorithm shown in Figure 11 for rerouting. The objective of this case is to investigate 

the impacts of connectivity on networkwide performance based on energy consumption, travel 

time and vehicle miles traveled (VMT). 

As demonstrated in Figure 20 and Figure 21, the increase in the market penetration rate 

improves the performance of the network from both the travel time and energy consumption 

perspectives. However, the increase in the VMT represented in Figure 22 suggests that the 

rerouting scenarios do not necessarily select the routes with lower distance. However, vehicles 

were rerouted to the paths with lower travel time and lower fuel consumption. Figure 20 and Figure 
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21 also demonstrate the significant dependency of the fuel consumption and travel time on update 

interval of information exchange among vehicles. The results also indicate that rerouting to the 

shortest route (lowest travel time) reduces the fuel consumed on the network. 

Figure 20. Total fuel consumption for different market penetration rate (MPR) of 

Connected Vehicles 

Figure 21. Total travel time for different market penetration rate (MPR) of Connected 

Vehicles 
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Figure 22. Total vehicle miles traveled for different market penetration rate (MPR) of 

Connected Vehicles 

Table 18 and Table 19 include the change in the network performance measures in 

proportion to the base case (without any communication technology) as MPR increases. For an 

incident with one lane closed for 900 seconds, the highest increase in the vehicle miles traveled 

due to the connected vehicle technology is 2.28%, the highest reduction in fuel consumption is 

20.10% and the highest reduction in travel time is 19.76% (see Table 18). For an incident with one 

lane closed lasting for 1500 seconds, the highest increase in VMT is 2.27%, the highest reduction 

in fuel consumption is 21.96% and the highest reduction in travel time is 22.76% (see Table 19). 

For an incident with one lane closed that lasts for 2400 seconds, the highest increase in VMT is 

2.38%, the highest reduction in fuel consumption is 23.46% and the highest reduction in travel 

time is 23.58% (see Table 20). Although the rerouting scenario results in longer routes, it improves 

network performance by lowering the fuel consumption and travel time. Moreover, connected 

vehicle technology has greater benefits as congestion worsens. This result was examined by 

modelling incidents with longer durations. The results demonstrate the larger improvements in 
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travel time and fuel consumption for the network with longer incidents and more congestion (see 

Table 18, Table 19 and Table 20). 

Table 18. Impacts of connected vehicles technology on the network with a 900 second 

incident 

Market 

penetration rate 

Fuel 

consumption 

Vehicle-miles 

traveled 

Total Travel 

time 

20% -10% 1% -10%

40% -12% 2% -12%

60% -18% 2% -18%

80% -20% 2% -20%

100% -18% 2% -18%

Table 19. Impacts of connected vehicles technology on the network with a 1500 second 

incident 

Market 

penetration rate 

Fuel 

consumption 

Vehicle-miles 

traveled 

Total Travel 

time 

20% -16% 1% -16%

40% -18% 2% -18%

60% -20% 2% -19%

80% -22% 2% -23%

100% -21% 2% -22%

Table 20. Impacts of connected vehicles technology on the network with a 2400 second 

incident 

Market 

penetration rate 

Fuel 

consumption 

Vehicle-miles 

traveled 

Total Travel 

time 

20% -20% 1% -20%

40% -20% 2% -20%

60% -21% 2% -21%

80% -23% 2% -23%
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 Table 20. (continued). Impacts of connected vehicles technology on the network with a 

2400 second incident 

Market 

penetration rate 

Fuel 

consumption 

Vehicle-miles 

traveled 

Total Travel 

time 

100% -23% 2% -24%

Update Interval of Rerouting 

The relationship between the parameters in the rerouting algorithms and their effectiveness 

is unknown. Therefore, it is important to investigate the impacts of these parameters on network 

performance. As discussed earlier in this section of incident analysis, the CV update interval was 

assumed to be 600 seconds. Thus, vehicles only receive information every 10 minutes and travelers 

would only react to that information at ten-minute intervals. In this section, the impacts of this 

parameter on the operation of the network is evaluated. It should also be noted that Figure 15 was 

used for all of the update intervals. The same probability distribution was used for all of the update 

intervals for two reasons. First, it provides a more wider and general impacts of the update interval 

on the network performance. Second, this would keep the acceptance rate the same and a 

sensitivity analysis would be performed on the impacts of frequency of the communicating 

information on the overall performance of the network. The total vehicle-miles traveled, fuel 

consumption and travel time for different values of the update interval including 150, 300, and 600 

seconds are shown in Figure 23, Figure 24 and Figure 25. 

For an update interval of 150 seconds, the total fuel consumption and total travel time are 

reduced. The total vehicle-miles traveled increases as the frequency of communication increases. 
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Since the fuel consumption and travel time are the more crucial network performance measures, 

the more frequent the CVs are updated, the higher the efficiency of the network. Also, the results 

of the study show that an increase in VMT does not necessarily increase the travel time and fuel 

consumption. For the interval update of 600 seconds, there is a slight increase in the travel time 

and fuel consumption for MPR of 100% compared to 80% as represented in Figure 27 and Figure 

28. This increase is mainly due to the rerouting of so many vehicles to alternative routes that the

alternate routes become slower. Additionally, since vehicles are rerouted to signalized arterials, 

some of the rerouted vehicles may encounter more signal delay than expected. This issue was 

resolved by decreasing the update interval and providing the connected vehicles more frequent 

traffic data. 

Figure 23. Total vehicle miles traveled for different market penetration rates (MPR) of 

connected vehicles and different update intervals 
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Figure 24. Total fuel consumption for different market penetration rates (MPR) of 

connected vehicles and different update intervals 

Figure 25. Total travel time for different market penetration rates (MPR) of connected 

vehicles and different update intervals 

Table 21 and Table 22 show the network performance measures relative to the base case 

(without any communication technology) for update intervals of 300 seconds (Table 21) and 150 

seconds (Table 22) with an incident duration of 900 seconds. Based on the results shown in Table 

18, Table 21 and Table 22, the lowest assumed update interval (150 seconds) performs better with 

the highest benefits gained which are around 26% reduction in fuel consumption and travel time. 
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This would result in 3.51% increase in vehicle-miles traveled. 

Table 21. Impacts of connected vehicle technology on the network with update interval of 

300 seconds 

Market 

penetration rate 

Fuel 

consumption 

Vehicle-miles 

traveled 

Total Travel 

time 

20% -16% 2% -15%

40% -18% 3% -17%

60% -22% 3% -21%

80% -22% 3% -22%

100% -24% 3% -24%

Table 22. Impacts of connected vehicle technology on the network with update interval of 

150 seconds 

Market 

penetration rate 

Fuel 

consumption 

Vehicle-miles 

traveled 

Total Travel 

time 

20% -18% 2% -18%

40% -21% 3% -20%

60% -23% 4% -23%

80% -24% 4% -23%

100% -26% 4% -26%

As presented in this section, an increase in the duration of incidents and number of lanes 

closed worsens the operation of the network. With the connected vehicles technology, assuming a 

600 seconds interval of time for updating the network traffic data for connected vehicles, a 

reduction of 20% in travel time for an incident with the duration of 900 seconds, and a reduction 

of 23% for an incident with the duration of 2400 seconds were observed. A sensitivity analysis of 

the parameters demonstrated that reducing the interval of time for updating traffic information 
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improved the efficiency of the network based on travel time. The reduction in the network-wide 

travel time and will reach 26% if the update interval is reduced to 150 seconds. 

From an environmental perspective, the rerouting algorithm discussed here significantly 

reduced fuel consumption. As the amount of CO2 emitted from a vehicle is directly related to the 

fuel consumed, this reduction in fuel consumption will result in the reduction of pollutants and as 

the consequence will improve the air quality in the area. As estimated by the simulation model, 

the rerouting strategy will reduce the amount of fuel consumed by 26% for the case of a 900-

second incident and update interval of 150 seconds. The total fuel consumed for the base case is 

about 23,635 liters. Therefore, the reduction is about 6,137 liters which corresponds to a reduction 

of 14,238,523 grams of CO2.  

Table 23 provides a summary of the first and second section of the analysis part. Overall, 

4 rerouting strategies were developed, and a sensitivity analysis was performed on various factors 

including market penetration rate of connectivity, acceptance rate, congestion threshold, update 

interval and incident duration on the overall performance of the network. As demonstrated in this 

table, the real-time travel time and the average travel time approach performed similarly. The 

highest benefits for these approaches occurred at the rerouting rate of 20%. The other two 

approaches of rerouting resulted in the lower performance. The sensitivity analysis on various 

factors demonstrated that all of these factors including the duration of incident, the update interval 

and the acceptance rate of travelers are critical factors. Deployment of connected vehicles requires 

to consider and evaluate all these factors to plan accordingly to achieve the highest performance. 

Overall, the results of the study with various scenarios confirmed the benefits of the connected 

vehicles deployment even at low market penetration rate.  
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Table 23. Impacts of connected vehicle technology on the network with update interval of 150 seconds 

Part 1 

Evaluating rerouting strategies 

Rerouting 

strategies 

Examined 

Update 

interval 

(sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Market 

Penetration 

Rate 

Acceptance 

Rate 

Traveler 

Rerouting 

Rate 

Fuel 

consumption 
VMT TT 

section a 

Rerouting 

based on the 

real-time 

travel time 

30 

40% 0 

- - 

20% 

24352 232419 17955 

60 - - 19023 239317 14000 

90 - - 18547 238272 13650 

120 - - 19420 237690 14299 

150 - - 19721 237570 14521 

section b 

Rerouting 

based on the 

real-time 

travel time 

150 

20% 

0 

- - 

20% 

19357 237020 14254 

40% - - 19721 237570 14521 

60% - - 19279 237314 14193 

section c 

1.Rerouting
based on the

real-time 
travel time 

150 40% 900 

- - 0% 23636 232643 17426 

- - 10% 18457 235671 13588 

- - 20% 16998 244439 12503 

- - 40% 17207 243329 12659 

- - 60% 17239 242732 12684 

- - 80% 18434 242947 13570 



98 

Table 23 (continued). Impacts of connected vehicle technology on the network with update interval of 150 seconds 

Part 1 

Evaluating rerouting strategies 

Rerouting 

strategies 

Examined 

Update 

interval 

(sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Market 

Penetration 

Rate 

Acceptance 

Rate 

Traveler 

Rerouting 

Rate 

Fuel 

consumption 
VMT TT 

section c 

2. Rerouting
based on the

average 
travel time 

150 40% 900 

- - 0% 23636 232643 17426 

- - 10% 18648 239230 13728 

- - 20% 16427 243029 12080 

- - 40% 17170 242335 12632 

- - 60% 17541 241924 12908 

- - 80% 17924 241165 13192 

3. Rerouting
based on the

Fuel 
consumption 

150 40% 900 

- - 0% 23636 232643 17426 

- - 10% 19953 235118 14695 

- - 20% 19302 237710 14213 

- - 40% 18252 240651 13436 

- - 60% 18851 237341 13880 

- - 80% 19444 236157 14315 

4.Rerouting
based on the

modified 
version of 
travel time 

150 40% 900 

- - 0% 23636 232643 17426 

- - 10% 18702 239972 13768 

- - 20% 18437 239286 13572 

- - 40% 17787 240738 13090 

- - 60% 17496 242534 12874 

- - 80% 18740 242481 13797 
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Table 23 (continued). Impacts of connected vehicle technology on the network with update interval of 150 seconds 

Part 1 

Evaluating rerouting strategies 

Rerouting 

strategies 

Examined 

Update 

interval 

(sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Market 

Penetration 

Rate 

Acceptance 

Rate 

Traveler 

Rerouting 

Rate 

Fuel 

consumption 
VMT TT 

section d 

Rerouting 

based on the 

real-time 

travel time 

90 40% 900 20% 17233 224771 12683 

section e 

Rerouting 

real-time 

travel time 

150 60% 900 20% 18997 237839 13985 
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Table 23 (continued). Impacts of connected vehicle technology on the network with update interval of 150 seconds 

Part 2 

Evaluating incident scenarios 

Rerouting 

strategies 

Examined 

Update 

interval 

(sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Market 

Penetration 

Rate 

Acceptance 

Rate 

Traveler 

Rerouting 

Rate 

Fuel 

consumption 
VMT TT 

section a 

Rerouting 

based on the 

real-time 

travel time 

600 40% 900 

0% 

Figure 15 

- 23636 232643 17330 

20% - 21209 236025 15627 

40% - 20723 236908 15266 

60% - 19310 237621 14221 

80% - 18885 237723 13905 

100% - 19297 237936 14212 

Rerouting 

based on the 

real-time 

travel time 

600 40% 1500 

0% - 24795 232538 18286 

20% - 19805 235849 14588 

40% - 19821 236701 14600 

60% - 19596 237664 14434 

80% - 19096 238050 14062 

100% - 18978 238065 13974 

Rerouting 

based on the 

real-time 

travel time 

150 40% 900 

0% - 23636 232643 17330 

20% - 19273 237940 14192 

40% - 18779 240238 13828 

60% - 18161 241980 13368 

80% - 18036 241169 13276 

100% - 17498 240805 12878 
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Table 23 (continued). Impacts of connected vehicle technology on the network with update interval of 150 seconds 

Part 2 

Evaluating incident scenarios 

Rerouting 

strategies 

Examined 

Update 

interval 

(sec) 

Congestion 

Threshold 

Incident 

Duration 

(sec) 

Market 

Penetration 

Rate 

Acceptance 

Rate 

Traveler 

Rerouting 

Rate 

Fuel 

consumption 
VMT TT 

section a 

Rerouting 

based on the 

real-time 

travel time 

600 40% 2400 

0% 

Figure 15 

- 24235 232747 17845 

20% - 20359 235982 14998 

40% - 19909 236880 14665 

60% - 19500 237706 14422 

80% - 18914 237953 13783 

100% - 19091 238032 13889 

Rerouting 

based on the 

real-time 

travel time 

300 40% 900 

0% - 23636 232643 17330 

20% - 19957 236886 14700 

40% - 19492 238818 14355 

60% - 18506 239038 13624 

80% - 18360 239840 13516 

100% - 17995 239722 13247 
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Network Fundamental Diagram 

In the previous sections, the impacts of rerouting strategies on the network performance 

was investigated with the focus of network-wide travel time and fuel consumption. In this section, 

the impacts of this technology at the macroscopic level was demonstrated. To this end, a network 

fundamental diagram of traffic flow relationships is established using the trajectory data of 

vehicles taken from the microscopic model. Due to the importance of fuel consumption, which is 

directly related to emissions production, a fuel consumption dimension to the network fundamental 

diagram may prove beneficial. Aggregated fuel consumption for different levels of flow and 

density are estimated using an available fuel consumption model. The impacts of connectivity on 

the network throughput and the relationship of macroscopic traffic variables with fuel consumption 

for different levels of connectivity are exhibited. In this section, similar to what was done in the 

first section of the analysis (Rerouting Strategies), the rerouting rate (the combination of MPR and 

acceptance rate defined in Chapter VI) was used. 

The Fuel-flow, flow-density and flow-speed diagrams for the base case scenario (0% 

rerouting) and for different rerouting rates (10%, 20%, 40%, 60% and 80%) of connected vehicles 

is presented in Figure 26,Figure 27 and Figure 28. These diagrams were presented to examine the 

impacts of rerouting strategies at the macroscopic level. Vehicle trajectories were employed to 

quantify the fuel consumption in the network using Comprehensive Power-based Fuel 

Consumption Model (CPFM). Toyota Camry 2012 was assumed as the typical vehicle for 

calibrating CPFM parameters. For rerouting of connected vehicles technology, the first approach 

of rerouting was used. The same assumptions on the update interval (150 seconds) and congestion 

level (40%) were considered. Figure 26 illustrates the relationship between the flow and fuel 
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consumption for different rerouting rates. As it can be expected, an increase in the flow results in 

higher fuel consumption. However, the emergence of the connected vehicles has the potential to 

not only improve the mobility (higher flow for the same density presented in Figure 27), but also 

to reduce the fuel consumption and associated emissions.  

The flow-density diagram presented to examine the throughput of the network in the 

presence of rerouting strategies in a connected environment. Figure 27 presenting this relationship 

demonstrates that with the increase of rerouting rate, higher flows are observed for the same 

density. Therefore, the increasing rate of connected vehicles (rerouting) increases the throughput 

of the network, which may prove beneficial especially in the event of blocked lanes or incidents 

on the roads. However, as the rerouting rate increases the rate of increase in throughput decreases. 

Lastly, Figure 28 demonstrates the flow-speed relationships. As presented in this figure, with the 

same flow over the network, higher speed was observed for higher rates of connectivity.   
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Figure 26. Fuel-flow relationship 

Figure 27. Flow-density diagram 

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600

Fu
le

 C
o

n
su

m
p

ti
o

n
 (

L)

Flow (num/hour)

0% Rerouting Rate

10% Rerouting Rate

20% Rerouting Rate

40% Rerouting Rate

60% Rerouting Rate

80% Rerouting Rate

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

Fl
o

w
 (

 n
u

m
/h

o
u

r)

Density (num/mile)

0% Rerouting Rate

10% Rerouting Rate

20% Rerouting Rate

40% Rerouting Rate

60% Rerouting Rate

80% Rerouting Rate



105 

Figure 28. Flow-speed diagram 
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CHAPTER VIII 

CONCLUSION 

A route guidance system that provides information on the alternative routes during 

recurring and non-recurring congestions can be useful for drivers. Individual drivers may get this 

information from the variable message signs, radio broadcast, and some applications via smart 

phones. Connected vehicle technology may improve on this as it facilitates data exchange among 

vehicles and infrastructure. The real-time traffic information communicated between connected 

vehicles and infrastructure may enable a more efficient management of the transportation system 

which has the potential to improve mobility, increase safety, and reduce the harmful environmental 

impacts from the transportation system. Receiving real-time traffic data by vehicles, enables the 

drivers to make more informed decisions during the trip which improves the performance of the 

transportation system. The main objective of this study was to investigate the potential impacts of 

rerouting strategies in the connected environment. To this end, a microsimulation model of part of 

the network of El Paso, Texas was developed to assess the impacts of en-route decisions made by 

travelers using the information communicated by connected vehicle technology. The east part of 

El Paso, Texas was selected in this study. Simulation of Urban Mobility (SUMO) was utilized to 

develop the microsimulation model of the selected network. 

First four rerouting algorithms were developed including rerouting based on the real-time 

travel time, average travel time, fuel consumption, and the modified travel time accounting for the 

variance of individuals’ travel time. The average travel time and real-time travel time approaches 

resulted in the highest benefits at the rerouting rate of 20%. For fuel consumption and the modified 

travel time approaches, the least total travel time and fuel consumption occurred at the rerouting 
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rate of 40% and 60%, correspondingly. After this rerouting rate, an increase in the total travel time 

and fuel consumption was observed. For the vehicles-miles-traveled, an increasing pattern with 

the increase in the rerouting rate was observed. 

This study also explored the impacts of connected vehicle technology on the network-wide 

travel time and fuel consumption for various incidents scenarios. The first implemented rerouting 

strategy, real-time travel time approach, which works the best among the rerouting strategies, was 

used in this part of study. In order to consider the travelers’ responses to the rerouting information 

communicated by connected vehicles technology, an internet-based questionnaire was employed. 

A Normal distribution was developed based on the acceptance percentage estimated from the data 

of the survey to consider the random behaviour of travelers in response to the rerouting advice. 

From the traffic operation perspective, assuming a 600 seconds interval of time for updating the 

network traffic data for connected vehicles, a reduction of 20% in travel time for an incident with 

the duration of 900 seconds, and a reduction of 23% for an incident with the duration of 2400 

seconds were observed. A sensitivity analysis on the model’s parameters demonstrated that 

reducing the interval of time for updating traffic information improved the efficiency of the 

network based on travel time. The reduction in the network-wide travel time would reach 26% if 

the update interval was reduced to 150 seconds. From the environmental perspective, the rerouting 

algorithm discussed in this study significantly reduced the fuel consumption. As the amount of 

CO2 emitted from a vehicle is directly related to the fuel consumed, this reduction in fuel 

consumption will result in the reduction of pollutants and as the consequence improve the air 

quality in the area. As estimated by the simulation model, the rerouting strategy will reduce the 
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amount of fuel consumed by 26% for the case of a 900-second incident and update interval of 150 

seconds at 100% market penetration rate of connectivity. 

Finally, the first rerouting approach, the real-time travel time rerouting strategy was 

evaluated in terms of the network-wide macroscopic variables. To this end, network-wide flow, 

density, speed and fuel consumption were estimated using the trajectory of all vehicles. The results 

show the ability of the connected vehicles technology in increasing the throughput of the network 

and the efficiency of the transportation system by distributing the traffic on the network. 

This comprehensive study evaluated the impacts of rerouting in a connected environment 

on the overall performance of the network. The contribution of the current study is 1. the model 

which simulated a large network consisting of part of the network of El Paso including 5.6 miles 

of interstate I10 and 4.8 miles of arterial Montana Ave. as well as the major roads and the local 

streets between these two roads allowing for more comprehensive impact analysis than previous 

efforts. 2. Various scenarios of rerouting with the help of real-time travel time and fuel 

consumption were developed and compared to investigate the network-wide impacts from the 

traffic operation and fuel consumption perspectives 3. A travel behaviour study was performed 

using the stated preference data to evaluate  4. Sensitivity analysis was performed on the 

parameters including MPR of connectivity, Acceptance rate (which were considered together as 

rerouting rate in most part of the study), congestion threshold, update interval, and incident 

scenarios including various duration and number of lanes closed.  

This study was limited to one type of vehicle and a more general study with various types 

of vehicles including trucks and other heavy vehicles is valuable. This study used the traffic 

information to generate shortest path for travelers. However, this information can be used to 
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predict congestion and links travel time which might have more impressive impacts on the 

network. For example, with the use of machine learning, a framework can be built to learn from 

the traffic data and improve the performance as more data was received. Furthermore, in this study, 

the current traffic signal timing were used. However, with the communication technologies, a more 

efficient traffic signal can be developed. For instance, reinforcement learning can be used to 

penalize or reward a decision made by the signal and these rewards and penalize can help to 

optimize the performance of the signals as more data are received. In this study, VT-CPFM model 

was used for estimating fuel consumption. However, other emissions and fuel consumption can be 

developed and compared. Finally, collecting the socio-economic characteristic of the study area 

can help in finding a more accurate travel response to the communicated information.  
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APPENDIX A 

SURVEY QUESTIONS 

For the recent trip you made (described in the early part of survey), imagine you are driving 

a connected vehicle that is receiving traffic information from other vehicles on the 

road.  What would you do if: 

A) You see no congestion on the road, but your vehicle warns that there is congestion ahead in

2 miles. It estimates a 30-minute trip if you stay on your current road, or a 25 minute-trip on a 

different road. 

How likely would you be to switch to the different road? 

• ¨ I would take the different road

• ¨ I would likely take the different road

• ¨ I am unsure

• ¨ I would probably not take the different road

• ¨ I would definitely not take the different road

B) You see some congestion on the road ahead and your vehicle warns you that there is

congestion ahead.  It estimates a 54 minute-trip if you stay on your current road, or a 45 minute-

trip on a different road. 

Now that you can see some congestion, how likely would you be to switch to the different road? 

• ¨ I would take the different road

• ¨ I would likely take the different road
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• ¨ I am unsure

• ¨ I would probably not take the different road

• ¨ I would definitely not take the different road




