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ABSTRACT

Many chemical processes are characterized by nonlinear models with moving boundaries that

describe their dynamics. Such a nonlinear trajectory can explore many regions of the state space

and the spatial domains of interest as well as the dominant spatial patterns of the system change

with time. Therefore, traditional model approximation methods may fail to accurately capture the

dynamics. This underlines the need to develop strategies for obtaining computationally efficient

yet highly accurate models that aid in the prediction and control of these systems.

In such systems, care should be taken to capture the local behavior of every portion of the

solution trajectory in the state space. To achieve this, the first step of this research work com-

putes (temporally) local reduced order models by first performing time-domain partitioning using

a novel clustering strategy based on Mixed Integer Nonlinear Programming. The reduced bases are

then derived within each cluster using two model reduction methods, Proper Orthogonal Decom-

position (POD) and Dynamic Mode Decomposition (DMD). The proposed framework is tested on

a nonlinear hydraulic fracturing process, and a Model Predictive Controller (MPC) is formulated

using the (temporally) local reduced order models to design an optimum pumping schedule that

ensures uniform proppant concentration for maximum oil and gas extraction.

The idea of model reduction is then extended to the parameter space in order to estimate un-

known rock properties that directly affect the hydraulic fracturing process. Owing to the complex

dynamics exhibited, this results in the formulation of a large-scale inverse problem that is ill-posed.

To deal with this unidentifiability issue, the number of unknown model parameters are reduced

while preserving the spatial features in the geological properties via POD. The statistical informa-

tion is then updated using the available process measurements via a Monte Carlo data assimilation

technique, the Ensemble Kalman Filter.

Although the local model reduction framework is superior in performance, a single model that

is accurate within a larger domain in the state space would be beneficial in some cases. Therefore,

the next part explores an alternative approach that uses Koopman operator theory to develop linear
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predictors to approximate nonlinear systems. Before employing it to process systems, we address

several key challenges associated with it. In particular, we solve a sparse regression problem over a

large set of candidate functional forms to effectively identify the required nonlinear transformation

(observable functions). The developed models are shown to reveal important physical phenomena

such as proppant transport and fracture propagation inside a fracture. It also highlights how a

priori knowledge can be incorporated easily into the algorithm and results in accurate models that

are used for controller synthesis.

Finally, Koopman theory is integrated with Lyapunov-based MPC (LMPC) for stabilizing non-

linear systems. LMPC possesses all the advantages of a standard MPC with added explicit Lya-

punov constraints and is particularly suited as it explicitly characterizes a set of initial conditions

starting from where the closed–loop stability can be guaranteed. By leveraging the linear structure

of the Koopman models, control Lyapunov functions (CLFs) within LMPC are embedded in the

nonlinear transformation to yield a standard convex (quadratic) optimization problem. This method

is then improved by formulating the controller in Koopman eigenfunction coordinates, which leads

to a bilinear model for control affine systems. Provided there exists a continuously differentiable

inverse mapping between the original state space and (lifted) function space, the designed con-

troller is capable of translating the feedback stabilizability of the Koopman bilinear system to the

original nonlinear system. Due to the bilinear structure of the Koopman model, seeking a CLF is

no longer a bottleneck for LMPC. Benchmark numerical examples demonstrate the utility of the

proposed feedback control design.
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1. INTRODUCTION

The theme that appears throughout this research work is to employ approximate (reduced)

models for the purpose of real-time control of complex nonlinear dynamical systems, especially

those characterized by moving boundaries. This work tackles the challenge of model approxi-

mation (reduction) of nonlinear systems mainly from two different algorithmic standpoints: local

(cluster) based model reduction and nonlinear transformation based approximations. In both these

approaches, we employ operator theoretic perspective of dynamical systems as a foundation to

develop the approximate models. For the first approach, the state-space is first divided into clus-

ters and reduced-order models are developed locally within each cluster to capture the essential

features of every portion of the system trajectory. In the second approach, the dynamics are first

“lifted” onto a higher-dimensional space using nonlinear transformation and linear predictors are

constructed to approximate these dynamics in a principled manner.

1.1 Motivation

Many chemical processes are characterized by complex nonlinear models that can describe

their dynamics to near-perfect accuracy. Undoubtedly, the computational burden associated with

solving these high-fidelity models can be exorbitant, particularly when performing fully-resolved

simulations at very fine time scales and/or spatial mesh sizes. These costs can be further magnified

and impose challenges in the context of dynamic optimization, parameter estimation and controller

synthesis. For example, flow control is largely dependent upon solving the Navier-Stokes equations

which in terms of numerical computations can require large grid sizes, typically O(n = 106).

The memory required to store such matrices, O(n2), is itself around 7 TB and the cost scales as

O(n3) for computations such as matrix inversion or solution of Lyapunov or Riccati equations or

inequalities, which is prohibitive even with today’s advanced hardware. Fortunately, in several

problems, a much simpler, latent structure can be identified by using physical or mathematical

arguments that could make the aforementioned tasks computationally tractable. In recent times,
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the plummeting cost of sensors, data storage and computational resources have resulted in the

accessibility of abundant time-series data for various processes. In combination with mathematical

models, this data can lead us to identify the above mentioned reduced, predictive descriptions of the

original complex systems. These reduced models preserve a few salient features of the underlying

phenomena at a more practical scale. From a computational point of view, quite frequently, the

time evolution of all the observables is irrelevant for physical and practical purposes, so the analysis

is instead focused on a reduced set of variables. This reduced set of variables parameterizes a low-

dimensional system characterizing the long-term dynamics of the process for which the control

tools are applicable.

1.2 Operator-theoretic model approximation

The classical dynamical systems theory focuses on Poincaré’s geometric approach, i.e., state-

space description through which the evolution of the dynamics can be understood. Such an ap-

proach has met with success in a variety of settings and, at this point, one hardly needs to justify

the use of geometric theory when working on a particular problem. However, in a mathematical

and engineering sense, a phenomenon of interest can be represented in different ways. For exam-

ple, instead of working in the state-space one can shift the focus to the space of functions (of the

state) called observables and watch how these functions evolve in time. Furthermore, it would be

highly desirable if one could find such a set of functions whose evolution is governed by a linear

operator. In a general dynamical system, one measures the system output which can be interpreted

as some function of the states. This means that the spectral properties of the linear operator (i.e.,

eigenvalues and eigenfunctions) governing the evolution of observables encode global information

that allows future state prediction and scalable reconstruction of the underlying dynamics sim-

ply from measurement data [1]. Expressing the system in a function (output) space makes sense

especially in the era of big data.

The operator theoretic formalism for nonlinear systems goes back to seminal works by Koop-

man and Von Neumann [2, 3] where it was shown that Hamiltonian dynamics can be analyzed

using an infinite-dimensional linear operator on the space of all possible observable functions that
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can be measured from the underlying state. The Koopman operator is a linear operator that de-

scribes the temporal evolution of scalar observables (which are essentially functions of system

states) which are driven by the underlying nonlinear dynamics. Specifically, the Koopman oper-

ator, when acted upon an observable, governs its evolution along the original system trajectory.

Hence, the operator-theoretic description provides global insight into the system dynamics. This

makes the Koopman operator a natural choice for data-driven analysis of dynamical systems and

is appropriate for controller design.

Another feature of Koopman operator approach that makes it extremely appealing for con-

troller design is that it is a linear operator, although infinite dimensional, even when associated

with nonlinear dynamics. Thus it extends the spectral analysis concepts of linear systems to the

dynamics of observables in nonlinear systems. Specifically, the eigenvalues, eigenfunctions and

invariant subspaces of the Koopman operator encode global information and provide valuable in-

sights that allows future state prediction and scalable reconstruction of the underlying dynamics

[4]. It has been shown in the literature that Koopman eigenfunctions are strongly connected to

the geometric properties of the system [5, 6], and are related to global linearization of the system

[7]. Recently, the connection between (existence of) specific Koopman eigenfunctions and the

global stability analysis of has been explored [8]. Koopman eigenfunctions and the corresponding

eigenvalues also facilitate the estimation of limit cycles as well as their basins of attraction [9].

Furthermore, the full state of the system can be projected onto the eigenfunctions of the Koopman

operator using a linear combination of (Koopman) modes characterized by a fixed frequency and

rate of decay. Therefore, dominant patterns of the underlying nonlinear system can be captured

using these modes as useful coherent structures [1].

Since its revival in [1] , Koopman operator theory has been the focus of many research efforts as

a popular tool for data-driven analysis and control of nonlinear dynamical systems [10, 11, 12, 13].

Recently, Koopman operator has been used to study nonlinear stability and a sufficient condition

for global stability has been established with respect to the existence of stable eigenfunctions [8].

With respect to control, Koopman operator theory has been successfully used for feedback control
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of fluid flows, tracking reference output signals in Burgers equation and incompressible flow past

a cylinder [12]. In [10] it has been shown that Koopman based linear predictors show superior

performance over local linearization methods both in prediction and control of the Korteweg-de

Vries PDE. It has also been extended to input-output systems for observer synthesis [14, 15] and

constrained state estimation [16].

1.3 Operator theory and model reduction

A commonly used idea in applied mathematics and engineering for problems that deal with

infinite features is that of the expansion of a possibly complicated function of space and time

(for systems described by partial differential equations (PDEs)) into an infinite sum of simpler

components. The most common examples are of course the Taylor and Fourier expansions (or

decompositions). For these decompositions, a fixed set of functions of space is chosen, and the

evolving function or field is projected onto those to obtain time-dependent coefficients. We could

call these decompositions with a predetermined basis. With time, many model reduction tech-

niques have been proposed and implemented in the context of several applications. The exhaustive

list of available methods can be broadly classified into three categories: a) projection/modal de-

composition methods [17, 18, 19, 20], b) input-output methods [21, 22, 23, 24, 25], and c) machine

learning methods [26, 27]. Among them, the class of projection-based techniques seek to exploit

the fact that the solutions of large-scale complex systems can be projected (at some angle) onto a

low-dimensional manifold to yield reduced-order models. Generally, they take a set of data and

from it compute a set of modes, or characteristic features to form a basis that spans a subspace onto

which the original data is projected. Intuitively, operator theory which facilitates spectral analysis

via the linear operator can therefore be a natural choice for model reduction of high-dimensional

systems. The meaning of the basis chosen, modes and the angle of projection will depend on the

particular type of decomposition used. Three of the most widely used decomposition methods are

introduced below and they form the foundation of the developed model reduction framework.
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1.3.1 Proper Orthogonal Decomposition

Today, perhaps the most popular projection method for model reduction is based on Proper Or-

thogonal Decomposition (POD) which basically maximizes the energy (L2- norm) of an orthogonal

projection of a given data set. POD has come to be known by many different names, depending on

the field of application, like principal component analysis (PCA) [28], the Karhunen– Loève trans-

form [29], and empirical orthogonal function (EOF) analysis [30]. All of these reduce to computing

the Singular Value Decomposition (SVD) of a data set. It was first introduced to fluid systems by

Lorenz [30] and later by Lumley [31] for identifying coherent structures in turbulent flows [17].

The method essentially captures energetically dominant features of fluid flows and has been widely

used to achieve better understanding of complex flow physics. The potential to extract empirical

information from experimental or large-scale simulation data is one of the reasons for the wide

popularity of POD-based techniques. It utilizes detailed numerical simulations of high-fidelity

systems (in practice, we can use process/experimental data) to compute empirical eigenfunctions

that accurately describe the solution subspace. In 1987, Sirovich introduced the method of snap-

shots assuming that the eigenfunctions can be expressed as a linear combination of the snapshots

[32, 33, 34]. Under this assumption, the eigenfunctions can be algebraically computed by solving

an eigenvalue problem associated with a covariance matrix constructed from the inner product of

each snapshot with the rest of the ensemble. These empirical eigenfunctions are then used in a pro-

jection method such as the Galerkin’s framework to derive low-dimensional systems of the original

nonlinear dynamical systems [35, 36, 37]. The POD-based MOR technique has found successful

implementation in several applications [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

The main drawback of POD is that the reduced models obtained by subsequent Galerkin pro-

jection of the governing equations do not always represent the dynamics accurately. This is because

although the POD modes are energetically optimal; sometimes the evolution of dynamics are af-

fected by low energy modes [52]. For instance, when analyzing time-series data, if the data are

reordered the POD modes still remain unchanged. In other words, the time evolution or dynamics

of the system are not encoded into the POD modes. In its basic form, POD is a statistical tool used
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to capture most important features for reconstructing a given data set. Furthermore, POD does

not account for the external inputs or actuation which is very important when dealing with forced

dynamics.

1.3.2 Dynamic Mode Decomposition

Unlike POD, Dynamic Mode Decomposition (DMD) has been developed specifically for ana-

lyzing the dynamics of nonlinearly evolving dynamics. It was first introduced by Schmid [18] as

a generalization of linear stability analysis and then independently by Rowley [19] as a particu-

lar numerical algorithm to compute dynamically relevant modes for globally linearizing nonlinear

dynamics based on linear operator theory. Computationally, DMD assumes a linear model that

best represents the underlying dynamics, even if those dynamics stem from a nonlinear process.

Although it might seem equivocal describing a nonlinear system by superposition of modes whose

dynamics are governed by the corresponding eigenvalues, Schmid argues that it is valid because

DMD analyzes “linear tangent approximation to the underlying flow” [53]. In fact, Rowley ex-

plores DMD as a numerical approximation to Koopman spectral analysis providing theoretical

justification for characterizing nonlinear systems [19]. The connection between DMD and opera-

tor theory is further elaborated below.

After gaining quick popularity, DMD has found successful implementation in many fluid me-

chanics applications to analyze both numerical [54, 55, 56, 57, 58] as well as experimental flow

field data and help characterizing relevant physical mechanisms [59, 60, 61, 62, 63, 64]. Several

efforts have been made to explore the connections of DMD with other methods, such as Eigensys-

tem Realization Algorithm (ERA) [65], Fourier Analysis [66], POD [59] and Koopman analysis

[67, 68]. Several variants of the DMD algorithm have also been proposed, including optimized

DMD [66], optimal mode decomposition [69, 70], sparsity promoting DMD [71] and extended

DMD [72]. For more details on DMD literature, the review article by Mezić [1] is recommended.
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1.3.2.1 Dynamic Mode Decomposition with control

Building on its success, the authors in [73] extended the concepts of DMD and introduced the

method of Dynamic Mode Decomposition with control (DMDc) to utilize both measurements of

the system and applied external inputs in extracting the underlying dynamics. Additionally, DMDc

also provides a description of how the control inputs affect the system, and with this understanding

of the input-to-output behavior, a reduced-order model can be generated and used in the design

of feedback control systems to regulate the original high-dimensional systems. DMDc inherits a

number of advantages of DMD in that it is a completely data-driven framework and can be applied

to nonlinear systems. Furthermore, there are a number of connections between DMDc and other

popular system identification methods such as Numerical Algorithms for Subspace State Space

System Identification (N4SID) [22], Multivariable Output Error State Space (MOESP) [23], Ob-

server Kalman Filter Identification (OKID) [24], and Canonical Variate Analysis (CVA) [74]. Al-

gorithmically, these methods involve regression, model reduction, and parameter estimation steps

similar to DMDc. However, differences do exist in terms of the similarity transformation required

for projection and the use of an orthogonal complement of control inputs to generate the approx-

imate solution [75]. Therefore, DMDc can be used in diverse engineering applications, one of

which is presented in this work, where the study of dynamics while simultaneously considering

the applied control input to the complex systems is important.

1.3.3 Extended Dynamic Mode Decomposition

As mentioned earlier, the Koopman operator theory is feasible only if one can numerically

approximate the infinite-dimensional operator. Of all the methods available to do so, one that is of

particular interest to us is the Extended DMD (EDMD). EDMD has been developed in [72] as a

generalization of DMD which seeks to enrich the observable space by using nonlinear functions.

The EDMD algorithm approximates the leading eigenfunctions and eigenvalues of the Koopman

operator from time series data and a dictionary of observables that spans a subspace of the scalar

observable functions. Specifically, EDMD identifies the “slow” subspace of the Koopman operator

7



which approximates the long term dynamics of observables by neglecting the fast transients. Once

identified, they enable the reconstruction of system states as a linear combination of the Koopman

eigenfunctions. For a comprehensive treatment of the EDMD method, we refer the readers to

[72]. An alternative way, one that is more relevant to model identification and thus we follow in

this work, is to envision EDMD as a state-space transformation, so that the dynamics appear to

be linear, to accurately compute a finite-dimensional approximation of the controlled Koopman

operator. Essentially, the EDMD procedure boils down to a nonlinear transformation of the data

(lifting to the space of observables) followed by solving a regression problem to construct the

required linear predictors.

1.3.3.1 Connections with DMD

DMD has many conceptually equivalent but mathematically different definitions. In fact, one

specific definition taken from [65] proves that EDMD is equivalent to DMD for a very specific

and restrictive choice of the dictionary of observables. If the dictionary of observable functions

considered in the EDMD algorithm are restricted to linear monomials of the states (i.e., the states

alone) then the eigenfunctions computed by DMD and EDMD would be identical. Therefore,

conceptually, DMD can be thought of as producing an approximation of Koopman eigenfunctions

if the dictionary is constructed using only linear monomials. In general, this approximation is

accurate only in some small neighborhood and therefore DMD produces only a local linearization.

This reiterates the need to improve accuracy of DMD based model reduction either by computing

local bases as mentioned above or using nonlinear basis functions in the dictionary as in the case

of EDMD.

1.4 Moving boundary systems

Nonlinear dynamics can be associated with various complexities like chaos, singularities, etc.

In this regard, nonlinear transport processes commonly encountered in chemical and petroleum

systems can often be associated with moving boundaries. More specifically, the spatial domain

of interest as well as the dominant spatial patterns of the system change with time. Although
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they found successful implementation in a broad range of applications, the above mentioned meth-

ods fail to capture the fully-resolved dynamics of such complex systems with a desired accuracy

even with an unaffordable large number of basis functions. The performance of the global eigen-

functions becomes even worse when the local dynamic behavior changes significantly owing to

nonlinear process parameters that change with space and time. Therefore, there is a need to tai-

lor the existing model approximation methods to successfully handle complex systems associated

with moving boundaries.
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2. APPLICATION: HYDRAULIC FRACTURING

2.1 Introduction

The application of interest throughout this research work is hydraulic fracturing. Over the past

two decades, the natural gas from shale plays has been one of the fastest growing total primary

energy contributors in the United States; it has risen from less than 1% of domestic gas production

in 2000 to over 20% by 2010 [76]. Although shale gas has been produced for years from shales

with natural fractures, the recent shale boom has been primarily due to the use of two technologies:

horizontal drilling and hydraulic fracturing. Typically, shale formations are characterized by low

matrix permeabilities (≤ 0.01 − 0.0001 mD ) and hence preclude the use of conventional drilling

techniques. Therefore, the recovery of shale oil and gas in commercial quantities is economically

viable by creating extensive artificial fractures around wellbore [77]. Specifically, in the fracturing

process, a mixture of water, sand and chemicals is injected into the horizontal borehole of the well

at very high pressure to fracture the shale rocks and release the gas. The created fractures facilitate

the extraction of oil and gas by providing high conductivity pathways from the formation to the

wellbore, while the proppant (sand whose permeability is very high compared to the surrounding

rock) trapped inside the fracture walls at the end of the process increases the formation perme-

ability within the stimulated reservoir volume. Thus, the final fracture conductivity is paramount

in maximizing the productivity of the stimulated well, which is the ultimate goal of a fracturing

process in practice.

2.2 Hydraulic fracturing as a control problem

The final fracture conductivity chiefly depends on two factors: propped fracture geometry and

proppant distribution throughout the fracture at the end of pumping. In order to achieve a high

fracture conductivity, it is essential to create fractures with the desired geometry as well as achieve

uniform proppant concentration throughout the fracture at the end of pumping operation. Tradi-

tionally, during the planning stage, an optimization-based methodology called Unified Fracture
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Design (UFD) is used for the design of optimal hydraulic fracturing treatments [78, 79]. Specifi-

cally, based on the total quantity and properties of the proppant to be injected, reservoir properties

and drainage area, UFD determines the optimal fracture dimensions such as the fracture half-length

and fracture width that maximizes the well productivity index. Once a desired geometry is decided,

during the implementation stage, the fracture geometry is adjusted by varying the flow rate of the

injected proppant. Simultaneously, the spatial distribution of the proppant concentration across

the fracture is regulated by varying the inlet proppant concentration (i.e., pumping schedule). To

produce a fracture with desired features determined by the aforementioned optimization-based ap-

proach and to have a desired distribution of proppant across the fracture at the end of pumping,

it is important to develop a technique to generate an optimal pumping schedule. Therefore, the

design of this optimal pumping schedule can be naturally cast as a control problem. However, the

problem with controlling these petroleum systems is that the mathematical models used to describe

them are very complex due to highly-coupled nonlinear system dynamics and parametric uncer-

tainty. Solving these forward problems at very fine scales is computationally very expensive and

becomes prohibitive in the case of (optimal) controller design where such forward problems need

to be solved iteratively.

Owing to this, initial efforts viewed the fracturing process as an open-loop problem where

the pumping schedule followed a pre-determined power-law which assumed a constant leak-off

and does not take into account practical constraints [80]. To deal with its limitations, researchers

also leveraged exhaustive forward simulations which were used to adjust the pumping schedule

iteratively until the desired fracture geometry and fracture conductivity were achieved. This ap-

proach outperforms Nolte’s pumping schedule at the expense of computational resources [81, 82].

In recent years, several works successfully considered the closed-loop operation of the hydraulic

fracturing process by using model-based predictive controllers that take advantage of feedback

measurements to compensate for minor model uncertainty and disturbances [83, 84, 85]. How-

ever, the performance of these real-time control schemes highly depends on the availability of

computationally efficient approximate models capable of capturing the nonlinear process behav-
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ior.

2.3 Dynamic model of hydraulic fracturing

Typically, a hydraulic fracturing process consists of two sub-processes: fracture propagation

and proppant transport. The corresponding dynamic model is obtained using lubrication theory

(fluid momentum) and elasticity equation (rock deformation). We consider one of the classic 2D

hydraulic fracturing models, known as the Perkins-Kern-Nordgren (PKN) model [86, 87]. This

model is usually applied to the cases of long fracture length (hundreds of meters in length, shown

as the x-axis in Figure 2.1), constant height (y-axis) and a small width (z-axis). The rock bed

in which the fractures propagate is assumed to be a homogeneous elastic formation characterized

by a constant Young’s modulus E and Poisson’s ratio ν. Since the fracture length is considered

much larger compared to other dimensions, the net pressure is independent of the y-axis making

the cross-section elliptical, the most defining feature of the PKN model.

Figure 2.1: The PKN fracture model considered in this work. Reprinted with permission form
[88].
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2.3.1 Fracture propagation

A brief description of the equations governing the fracture propagation is presented below. The

fluid flow rate inside the fracture is determined by the following equation for flow of a Newtonian

fluid in an elliptical section using the lubrication theory.

dP

dx
= − 64µqx

πHW 3
(2.1)

where P is the net pressure, µ is the fracturing fluid viscosity, qx is the local flow rate in the

horizontal direction x, H is the constant fracture height and W is the width of the fracture.

The fracture width (the minor axis of the ellipse) caused by the pressure due to the fluid loading

is calculated from the solution of the plane strain condition (elasticity equation) as follows

W =
2PH(1− ν2)

E
(2.2)

By taking into account the fracture volume changes and the fluid leak-off into the surrounding

reservoir, the continuity equation gives the (incompressible) fluid volume conservation as

∂A

∂t
+
∂qx
∂x

+HU = 0 (2.3)

whereA = πWH/4 is the cross-sectional area of the elliptic fracture, and U(t) is the fluid leak-off

rate per unit height during the fracture propagation which is given by the Carter’s equation [77]

U =
2Cleak√
t− τ(z)

(2.4)

where Cleak is the overall leak-off coefficient, t is the elapsed time since fracturing was initiated,

and τ(z) is the time at which a specific fracture location gets exposed for the first time.

At the wellbore, the flow rate qz is specified, and at the fracture tip L(t), the fracture is always

13



closed (i.e., the width of the fracture is zero). These lead to the following two boundary conditions:

qz(0, t) = Q0; W (L(t), t) = 0, (2.5)

where Q0 is the fluid injection rate at the wellbore. Initially, the fracture is closed leading to the

following initial condition:

W (z, 0) = 0 (2.6)

2.3.2 Proppant transport

To model proppant transport, it is assumed that the injected proppant travels at the carrier fluid’s

velocity along the horizontal direction governed by advection while simultaneously settling at the

fracture bottom forming a proppant bank induced by gravity. The following set of equations is

used to describe the proppant transport phenomenon.

The advection of the suspended proppant can be expressed as:

∂(WC)

∂t
+

∂

∂x
(WCVp) = 0

C(0, t) = C0(t) and C(x, 0) = 0

(2.7)

where C(x, t) is the volumetric proppant concentration inside the fracture, C0(t) is the injected

proppant concentration at the wellbore. The interaction between the individual proppant particles

is assumed to be negligible because of the low proppant concentration. The drag and gravitational

forces acting on proppant particles are considered for proppant settling. The relationship between

the velocity of an individual proppant particle, Vp, the velocity of the fluid, V , and gravitational

settling velocity, Vs, is given by [89]:

Vp = V − (1− C)Vs (2.8)
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The gravity-induced proppant settling velocity Vs can be computed as [90]

Vs =
(1− C)2(ρsd − ρf )gd2

101.82C18µ
(2.9)

where ρsd is the proppant particle density, ρf is the pure fluid density, g is the gravitational accel-

eration constant, d is the proppant diameter, and µ is the fracture fluid viscosity whose relationship

with concentration can be modeled through the following empirical expression [91]:

µ(C) = µ0

(
1− C

Cmax

)−α
(2.10)

where µ0 is the pure fluid viscosity, α is an exponent in the range of 1.2 to 1.8, and Cmax is the

maximum theoretical concentration determined by Cmax = (1 − φ)ρsd where φ is the proppant

bank porosity. The evolution of proppant bank height, δ, by the settling flux is described by [92],

d(δW )

dt
=

CVsW

(1− φ)
(2.11)

where there is initially no proppant bank, so the initial condition is that δ(z, 0) = 0. Please note

that due to dilute suspension, as long as the operation is carried out for a short period of time the

proppant bank height will remain much smaller than the fracture height (δ � H).

Please note that in the above equations we have not considered the effect of fracture wall

roughness on the fluid transport. There have been several studies examining these effects of frac-

ture aperture and fracture roughness on the mechanical (elastic) and hydraulic (fluid transport)

response of a fractured rock. For example, the effect of roughness on mechanical response in-

cludes the stress dependence, which has a significant impact on seismic monitoring [93, 94], that

is shown to be useful in potentially estimating the fracture size/length [95, 96]. Additionally, as

the contact area between the fracture surfaces increases with the normal stress, or as the fracture

surfaces become rough, the fluid flow pattern also changes affecting the hydraulic response of the

fractured rock. Under the rough wall conditions, the fluid will not flow through the entire fracture
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surface but rather through a few preferred paths (channels). Several researchers have come up with

models [97, 98, 99, 100, 101, 102] for studying the characteristics of fluid flow within rough frac-

ture walls. All these models propose modifications to the lubrication (Boussinesq) equation which

relates the fracture aperture and the pressure gradient via a cubic law. Ideally, under the assump-

tion of smooth fracture walls, the fracture aperture in the equation is considered constant but in

the presence of roughness, the proposed models treat the fracture aperture as a function of fracture

roughness using empirical correlations. However, since all the modifications proposed will take

effect only in modeling the relation between the fracture aperture and the fracture roughness, it

does not significantly affect the data assimilation process adopted later in this manuscript. The

procedure would remain the same with some changes to the above dynamic model of the hydraulic

fracturing process.

An important characteristic of the hydraulic fracturing process is that as the fracture propa-

gates in the lateral direction, the system boundary changes making the spatial domain of interest

time-dependent. An efficient coupling of multiple nonlinear equations that describe the important

physical phenomena in hydraulic fracturing systems is essential to update important variables at

each time step. Due to the moving boundary nature of the problem, the number of equations to

be solved grows as a fracture treatment continues, significantly increasing the computational re-

quirements. Therefore, the aim of this work is to explore the use of Koopman operator theory to

determine a simplified representation of the nonlinear dynamics such that the use of established

control design methodologies becomes readily applicable.

2.4 Full-order simulation

The data for fracture propagation dynamics required for constructing the approximate models

in the remainder of this dissertation are obtained by solving the high-fidelity model described by

Eqs. (2.1)-(2.11). To deal with the non linearity and moving boundary nature, a novel in-house

numerical scheme based on a periodic re-meshing strategy was used (the readers can refer to [85]

for more details).

One of the most commonly used methods for dealing with time-dependent spatial domains is
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to use coordinate transformation; however, it requires an explicit expression for the growth of the

boundary l(t) to normalize the spatial coordinate [103]. Such an expression is not available a priori

for this particular application. In such cases, we can divide, the spatial (or temporal) coordinate

into equal intervals and solve the system of algebraic equations to determine the corresponding grid

size in the other coordinate so that the boundary always remains at a grid point [104, 105, 106].

Based on this, a novel numerical scheme has been developed for solving the above governing

equations by effectively handling the issues with the time-dependent spatial domain and coupling

of nonlinear equations. For the sake of completeness, the numerical solution procedure is briefly

described below.

2.4.1 Meshing strategies

A one-dimensional grid system is generated to represent the created fracture geometry. To

deal with a time-dependent spatial domain, there are two widely used meshing strategies: moving

meshing and periodic re-meshing of a fixed domain. While the former method provides a less

accurate solution (because of the limited number of meshes) with a reasonable computational re-

quirement, the latter allows for an accurate solution at the expense of CPU time (the degree of

re-meshing could lead to an interpolation error in the solution). In order to capture the detailed

process dynamics of the system that has a boundary condition of spatial domain which is subject

to change, a fixed mesh strategy is employed by additionally adapting the size of integration time

step.

2.4.2 Numerical solution procedure

The steps of the numerical algorithm are shown below:

1. At time step tk, the fracture length L(tk+1) is obtained by elongating the fracture tip by ∆z,

L(tk+1) = L(tk) + ∆z.

2. The coupled equations of Eqs. (2.1)–(2.11) are solved for the fracture width W (z, tk+1), the

net pressure P (z, tk+1), the flow rate qz(z, tk+1), and the proppant concentration C(z, tk+1)

across the fracture via a finite element method.
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Figure 2.2: The steps of numerical simulation for fracture propagation. Modified with permission
from [107].

3. Calculate τ(zk+1) in Eq. (2.4) iteratively by repeating Steps 2 and 3.

4. The time interval ∆tk+1 is determined. For computational efficiency, the size of a numerical

integration step can be adapted based on the Courant-Friedrichs-Lewy (CFL) number.

5. Set k → k + 1 and go to Step 1.

For one-dimensional case, the CFL condition has the following form for explicit numerical schemes:

u∆t

∆z
≤ 1 (2.12)

where u = |dW/dt| is the fracture width growth rate. This technique, improving the computational

efficiency by increasing the CFL number, has been widely accepted [108]. In this work, ∆z is

fixed, and u increases with spatial domain (i.e., the fracture width changes more rapidly near the

fracture tip compared to that near the wellbore), which provides room for improvement in the

computational efficiency by increasing ∆t near the wellbore.

2.5 High-fidelity simulation results

Using aforementioned techniques, an accurate full-order solution of the PDE system was ob-

tained using the finite element method. The values of various process parameters used in our
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calculations were obtained from [83] and tabulated below. The fracture propagation was termi-

nated at 135 m, and the spatial domain was discretized with each grid point having a size of 0.3

m, resulting in a total of n = 451 points. The total number of temporal snapshots obtained per

trajectory are 19611. The spatio-temporal evolution of the fracture width for a sample injection

flow rate of Q0 = 0.05 m3/s is shown in Figure 2.3. It can be observed that the growth rate of the

fracture width is very high in the beginning but it slows down with time. At the same time, the

fracture length grows steadily at a constant rate. The moving boundary nature of the problem is

evident in the above figure with the zero values at a spatial point indicating that the fracture has not

yet propagated to that location. Similarly, the numerical experiments were carried out for random

input profiles to collect the concentration snapshots and construct the required data matrices for

system identification. The full-order solution of the proppant concentration inside the fracture for

a sample injected concentration (u(t) = C0(t)) is shown in Figure 2.4. Please note that the results

obtained from the numerical solutions have not been validated against any experimental data.

Parameter Symbol Value Units
Leak-off coefficient Cleak 6.3× 10−5 m · s−1/2

Maximum concentration Cmax 0.64 -
Young’s modulus E 5× 10−9 Pa
Proppant permeability kf 60000 mD
Formation permeability kr 1.5 mD
Vertical Fracture height H 20 m
Proppant particle density ρsd 2648 kg/m3

Pure fluid density ρf 1000 kg/m3

Fracture fluid viscosity µ 0.56 Pa · s
Poisson ratio of formation ν 0.2 -

Table 2.1: Model parameters used for the full-order simulation of the hydraulic fracturing dynam-
ics. Adapted with permission from [107]
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Figure 2.3: Spatio-temporal evolution of fracture width. The red markers indicate sensor placement
for width measurements. Reprinted with permission from [109]

2.5.1 Measurement data

Because the hydraulic fracturing process takes place deep below the earth’s surface, the avail-

ability of width measurements at all the spatial locations is not guaranteed. In fact, in a typical

hydraulic fracturing process, real time measurements may include downhole pressure and micro-

seismic data which will be processed to provide the fracture width at the wellbore and the fracture

length, respectively [110, 111, 112]. Microseismic monitoring (MSM) is the detection of signals

produced by small seismic events and is used for determining the location and geometry of frac-

tures. When a crack occurs in a rock formation, energy is released, referred to as microseismicity,

and some of the energy travels away from the source through the surrounding rock as seismic

waves. These waves temporarily deform the material as they travel in the form of P-waves, or pri-
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mary waves, which are relatively fast propagating waves and S-waves, or secondary waves, which

are slower-propagating shear waves. MSM operations incorporate arrays of three-component geo-

phones or accelerometers deployed in a nearby monitoring well that pick up these seismic events.

The distance of the originating source of a microseismic event to each geophone is calculated based

on the difference in arrival time between P- and S- waves and a previously calibrated seismic-wave

velocity model. The detection results of the same event by three or more geophones allow determi-

Figure 2.4: Spatio-temporal evolution of proppant concentration. The red markers indicate sensor
placement for measurements. Reprinted with permission from [109].

nation of the location of the event source in three-dimensional (3D) space. Analysts interpret these

MSM locations to show induced fracture length, height and azimuth. Downhole pressure data can

be used to estimate the fracture width near the wellbore via pressure-width relationship equations.
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Therefore, unless otherwise specified, in this work, only a partially observed system is consid-

ered; the average fracture width, Wavg(t), fracture length, L(t) and fracture width at six uniformly

spaced locations, [W1(t), · · · ,W6(t)], obtained from the numerical experiment were considered as

the true process measurements, i.e., x(t) = [Wavg(t), L(t),W1(t), · · · ,W6(t)]T ∈ R8.

2.6 Research objectives

The overall objective of this doctoral study is to develop accurate data-driven approximations

for feedback control of complex nonlinear dynamical systems. From the application point of view,

the developed methods are applied and their performance is validated on a hydraulic fracturing

process with simultaneous fracture propagation and proppant transport. For this specific applica-

tion, the control objective is to design a pumping schedule that regulates the spatial variation of

proppant concentration and fracture geometry across the fracture at the end of pumping for shale

reservoirs. The unifying theme throughout this research is to achieve this from the viewpoint of

operator formalism of dynamical systems. The specific objectives of this research are:

1. Develop a novel framework for model order reduction by considering local reduced-order

bases which are particularly tailored for systems characterized by moving boundaries or pa-

rameter variations where approximating the solution of interest in a fixed lower-dimensional

subspace of global basis vectors may fail.

2. Extend the idea of model reduction to the parameter space to develop an integrated frame-

work that can successfully handle ill-posed inverse problems such as those encountered in

oil and gas simulations (history-matching problems).

3. Study the connection between operator theory and spectral decomposition-based methods to

address the drawbacks of local model-reduction and develop a principled framework for gen-

erating highly accurate approximate models while still maintaining physical interpretability.

4. Leverage Koopman operator theory to design stable feedback controllers for nonlinear sys-

tems. Analyze and comment on the stability analysis of the original nonlinear system under

the implementation of the designed controller in the Koopman space.
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2.7 Dissertation layout

Chapter 3 outlines the proposed local model reduction framework on a complex nonlinear

dynamical system characterized by moving boundaries. Specifically, we develop local reduced-

order models using POD to generate the local basis functions and Galerkin projection is used to

project onto the local subspaces to yield local models. Next, DMDc is used within the developed

framework to address some of the limitations of POD. Specifically, DMDc results in local linear

time invariant dynamical systems within each sub region leading to a completely equation-free

architecture for local model reduction. We then use the obtained local linear models within a MPC

formulation to design an optimal and practical pumping schedule to achieve a uniform proppant

concentration across fracture at the end of pumping. Finally, the generated pumping schedule is

applied to the high-fidelity hydraulic fracturing model, and the performance is compared with an

existing system identification method.

In Chapter 4, the concept of model reduction is extended to the parameter estimation problem

for controller design. Specifically, POD is used to perform parameterization to reduce the dimen-

sionality of spatially varying Young’s modulus profiles in a conventional rock formation and it is

combined with a data assimilation technique, the ensemble Kalman filter (EnKF), to estimate true

parameter values in the reduced low-dimensional subspace. Then, the local model reduction frame-

work developed in Chapter 3 is used to design feedback controllers to achieve uniform proppant

concentration in conventional oil reservoirs by explicitly taking into account the desired fracture

geometry and the total amount of injected proppant.

Although the local model reduction framework shows improved accuracy, it is susceptible to

generating unstable models due to discontinuity between various clusters. In some cases, having

a single model which can approximate the system in the entire state-space would be beneficial. In

Chapter 5, we explore the idea of nonlinear transformation for model approximation by shifting

the focus from state-space to a space of functions (of the state) which forms the second part of

this study; using Koopman operator theory to develop linear predictors for nonlinear dynamical

systems. Koopman theory has been developed to analyze flow fields by the fluids community,
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however its use in the field of chemical engineering is very limited. Before its application to

chemical process systems, there are some key challenges that need to be addressed. Particularly,

coming up with a relevant choice for the required nonlinear transformation is not trivial and will

be the focus of our research efforts. We outline a proposal for sparse identification of the basis

functions that are used as transformed coordinates. We solve a sparse regression problem over

a large set of candidate functional forms to determine the basis. The method balances model

complexity and accuracy by selecting a sparse model that avoids over fitting to accurately represent

the system dynamics when subjected to a different input profile. We implement the idea on the

hydraulic fracturing application.

In Chapter 6, we aim to leverage the fact that Koopman theory will result in linear embedding

even for nonlinear systems to develop a stabilizing control framework for nonlinear systems. Al-

though Koopman MPC has been successfully applied for data-driven control of nonlinear flows,

the tightness of the Koopman linear predictors is not established and the closed-loop stability is

not guaranteed in the literature. Therefore, we propose to study the stability properties of the

data-driven Koopman based controllers. Specifically, we look to integrate the Koopman linear pre-

dictors with Lyapunov-based model predictive controller (LMPC) to achieve feedback stabilization

of the original nonlinear system.

In Chapter 7, we improve upon the idea presented in Chapter 6 to design data-driven stabi-

lizing feedback controllers which do not require explicit mathematical expression of the original

nonlinear dynamics, which is becoming increasingly common for complex processes. Moreover,

the controllers are completely formulated in the Koopman space with the help of Koopman eigen-

functions and we show that under some conditions, the stability of the closed-loop system in the

Koopman space can be easily translated to the original system under the implementation of the

developed predictive controllers.
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3. A FRAMEWORK FOR LOCAL MODEL REDUCTION∗

3.1 Introduction

As discussed earlier, a single global reduced-order model may not accurately reproduce the

dynamics of a complex nonlinear system especially if the system features moving boundaries or

varying parameters. In such cases, in order to capture the local dynamics of a complex nonlin-

ear system more effectively, the basis used for projection must be locally tailored to capture the

behavior of every portion of the solution trajectory. The concept of exploiting local bases to ac-

curately describe complex nonlinear systems has been the subject of intensive research in the field

of applied mathematics in recent years. A simple aspect of this concept was introduced in [113]

where the time domain was partitioned into multiple subdomains and local basis functions were

used to construct a reduced-order model. Local bases were also exploited in [114] in the context

of aeroelastic applications according to a space domain partition. The concept of partitioning was

extended to combine with a machine learning technique to reduce the computational requirement

of an estimator design in [115].

In our work, we first partition the time domain into multiple clusters where the snapshots con-

tained within each cluster exhibit a similar behavior with each other and are relatively dissimilar

with the ones contained within the other clusters. This is done to ensure that every cluster approx-

imately represents similar dynamics. For practical implementation of the data clustering we use a

global optimum search (GOS) algorithm. The GOS is an intuitive and robust Mixed-Integer Non-

linear Programming (MINLP) based clustering algorithm developed in [116]. The GOS algorithm

explicitly seeks to minimize the Eucledian distances between data points and the cluster centers.

More importantly, the GOS clustering algorithm incorporates a convenient method to predict the

∗Reprinted with permission from “Temporal clustering for order reduction of nonlinear parabolic PDE systems
with time-dependent spatial domains: Application to a hydraulic fracturing process,” by A. Narasingam, P. Sid-
dhamshetty and J. S. Kwon, AIChE Journal, 2017, 63, 3818-3831. Copyright 2017 by John Wiley and Sons.

∗Reprinted with permission from “Development of local dynamic mode decomposition with control: Application
to model predictive control of hydraulic fracturing,” by A. Narasingam and J. S. Kwon, Computers & Chemical
Engineering, 2017, 106, 501-511. Copyright is retained by the authors for all articles published in Elsevier journals.
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optimal number of clusters by not only minimizing the sum of the intra-cluster distances, but also

maximizing the sum of the inter-cluster distances. Although it does not theoretically guarantee a

global optimum, the GOS algorithm tends to give good results and performs favorably over other

traditional heuristic algorithms including k-means [116].

3.2 Schematic of the proposed framework

The following points outline the proposed methodology which are discussed in detail below.

1. Initially, the nonlinear parabolic partial differential equation (PDE) system is solved using a

high-order discretization scheme, or alternatively using data collected from experiments, to

construct a representative ensemble of solutions.

2. The GOS algorithm is then applied on the solution snapshot set to obtain an optimal num-

ber of clusters and the corresponding cluster configuration. The GOS algorithm solves the

optimization problem by formulating it as an MINLP problem.

3. Then, a projection-based model reduction technique is applied to the solution snapshots

contained within each cluster to obtain a set of local basis functions that capture the dominant

spatial characteristics of the solution profile.

4. The computed basis functions are used to derive low-order systems within each cluster. The

derived reduced-order models accurately capture the dominant dynamics of the original non-

linear system and can be numerically integrated to approximate the full-order solution.

A schematic representation elaborating the different steps of the proposed local model order-

reduction methodology is presented in Figure 3.1.
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Figure 3.1: Flow diagram of local model reduction framework.
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3.3 Mathematical preliminaries

3.3.1 Parabolic PDE systems with time-dependent domains

A general quasi-linear parabolic PDE system with time-dependent spatial domains can be rep-

resented with the following formulation [117]:

∂x̄

∂t
= L1(x̄) + L2(x̄) + f(t, x̄) (3.1)

subject to the moving boundary conditions,

C1x̄(0, t) +D1
∂x̄

∂z
(0, t) = R1

C2x̄(l(t), t) +D2
∂x̄

∂z
(l(t), t) = R2

(3.2)

and the initial condition,

x̄(z, 0) = x̄0(z) (3.3)

where x̄(z, t) = [x1(z, t), . . . , xn(z, t)]T denotes the vector of state variables, z ∈ [0, l(t)] ⊂ R is

the domain of spatial coordinate z, t ∈ [0,∞] is the time coordinate, L1(x̄), L2(x̄) are nonlinear

differential operators which involve the first- and second-order spatial derivatives respectively,

f(t, z, x̄) is a nonlinear vector function, C1, D1, C2, D2, are constant matrices, R1, R2 are column

vectors and x̄0(z) is the initial condition.

It is easy to see that the hydraulic fracturing application considered in this work falls under this

category. However, the difficulty with the fracturing system shown in Eqs. (2.1)-(2.11) is that an

explicit expression for the displacement of the boundary z = l(t) is unknown.

3.3.2 Global Optimum Search

The proposed nonlinear MOR technique is based on the computation of temporally-local eigen-

functions. Within this context, the time domain of the solution is divided into subdomains (clusters)

in such a way that the snapshots contained within each cluster exhibit a similar nonlinear behav-

ior as compared to that of the others. Although there are a large number of clustering algorithms
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prevalent in the literature, the one selected here is the GOS clustering technique developed in [116]

The GOS clustering algorithm is a robust yet intuitive clustering algorithm formulated as a Mixed-

Integer Nonlinear Programming (MINLP) problem. Essentially, it tries to minimize the distances

between the snapshots and the centers of their assigned clusters, and is formulated as:

Minimize
yjk,cki

s∑
i=1

n∑
j=1

m∑
k=1

yjk(xij − cki)2

s.t
m∑
k=1

yjk = 1, ∀j = 1, . . . , n

(3.4)

where yjk are binary variables which indicate whether a snapshot j falls within the cluster k and cki

are continuous variables representing the cluster centers (i.e., center of mass obtained by averag-

ing the snapshots contained within the cluster) and m is the total number of clusters. Furthermore,

simplifying the objective function by expanding the quadratic equation and incorporating the nec-

essary first order optimality condition, the optimization problem is formulated as:

Minimize
yjk,cki

s∑
i=1

n∑
j=1

x2
ij −

s∑
i=1

n∑
j=1

m∑
k=1

(xijyjkcki)

s.t cki

n∑
j=1

yjk −
n∑
j=1

xijyjk = 0, ∀i, k

m∑
k=1

yjk = 1, ∀j = 1, ..., n

1 ≤
n∑
j=1

yjk ≤ n−m+ 1

yjk ∈ {0, 1}, ∀j, k

cLki ≤ cki ≤ cUki, ∀i, k

(3.5)

In the above expression the bounds of cki are obtained by observing the range of snapshot data:

cLki = min{xij}, ∀i = 1, . . . , s
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cUki = max{xij}, ∀i = 1, . . . , s

where cLki is the lower and cUki is the upper bound of cki, respectively. The necessary optimality

condition is included in the first set of constraints, the second requires that each snapshot be placed

in only one cluster, and the third specifies that there is at least one and no more than (n−m + 1)

snapshots in a cluster. The above optimization problems are MINLPs with bilinear terms and can

be solved by using various available relaxation techniques which seek to convert them into Mixed-

Integer Linear Programming (MILP) problems. But these approaches rely on introducing addi-

tional variables and constraints which makes the problem computationally expensive especially

if the number of data points is large. Thus, the GOS algorithm was developed as an alternative

based on a variation of the Generalized Benders Decomposition (GBD) [118]. For brevity, only

an outline of the algorithm as applied to the context of clustering is presented here. For a more

detailed description, we refer the readers to [116, 118, 119]. In brief, the GBD method decomposes

the problem into a primal and the master problem. The primal problem is solved for continuous

variables while fixing the integer (binary) variables and the objective function value provides an

upper bound to the original problem. The master problem is derived from the nonlinear duality the-

ory, making use of Lagrange multipliers and continuous variables obtained in the primal problem,

and its solution provides the lower bound on the original problem. The two sequences of upper

and lower bounds are iteratively updated until they converge to a finite value. The primal and the

master problem formulations and the algorithms are presented below:
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Step1 Primal problem

With fixed starting values for the binary variables, i.e, y∗jk where it is the optimal value obtained

by solving the master problem, the primal problem becomes a Linear Programming (LP) problem:

Minimize
cki

s∑
i=1

n∑
j=1

x2
ij −

s∑
i=1

n∑
j=1

m∑
k=1

(xijy
∗
jkcki)

s.t cki

n∑
j=1

y∗jk −
n∑
j=1

xijy
∗
jk = 0, ∀i, k

cLki ≤ cki ≤ cUki, ∀i, k

(3.6)

In the primal we include only those constraints that involve cki and the rest are dropped out. The LP

is solved to obtain cki, and the Lagrange multipliers λki for each of the constraints. The objective

function value is the upper bound of the solution to the original MINLP problem, Eq. (3.5).

Step 2 Master problem

The values obtained from the primal, c∗ki and λ∗ki, are inputted into the master problem which

makes it a Mixed Integer Linear Programming (MILP) problem:

Minimize
yjk,µB

µB

s.t µB ≥
s∑
i=1

n∑
j=1

x2
ij −

s∑
i=1

n∑
j=1

m∑
k=1

(xijyjkc
∗
ki)

+
s∑
i=1

m∑
k=1

λ∗ki

(
c∗ki

n∑
j=1

yjk −
n∑
j=1

xijyjk

)
m∑
k=1

yjk = 1, ∀j = 1, . . . , n

1 ≤
n∑
j=1

yjk ≤ n−m+ 1, ∀k

yjk = 0− 1, ∀j, k

(3.7)
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The master problem solves for yjk and µB and provides the lower bound to the solution of the

original MINLP problem, Eq. (3.5).

Step 3 Termination

The solutions from the master problem, y∗jk, are inputted in the primal problem and steps 1

and 2 are repeated until the solution converges (i.e a termination criterion is met). The termination

criterion for GBD is based on the difference between the updated upper bound and the current

lower bound. If this difference is less than or equal to a pre-specified tolerance ε ≥ 0 then we

terminate.

Remark 1. Note that in a typical GBD algorithm, there may be an infeasible primal problem,

which should be handled by reformulation of the problem statement. In this work, we can always

find a feasible assignment of snapshots to each cluster. Moreover, there is only one set of continu-

ous variables (i.e., cki). Both these features render all primal problems feasible in our case.

Remark 2. The best feasible solution of the primal problem found up to the current iteration

represents the upper bound. The solution of the master problem provides the lower bound and this

lower bound increases monotonically because we keep adding constraints to it as the iterations

increase, effectively demanding the solution of the master problem in the current iteration to be

larger than or equal to the previous one. Hence, there will always be a point at which the upper

and lower bounds converge.

Remark 3. Note that, in the primal problem the binary variables are fixed to different 0-1 com-

binations and solved. Hence, there is no reason for the obtained upper bounds to satisfy any

monotonicity property (unlike the lower bounds from the master problem which increase with the

iterations). Therefore, the upper bound is updated only when it is less than or equal to the previous

step.

Remark 4. Note also that while the GOS algorithm tends to give good optimal solutions, it does

not have a theoretical guarantee to return a global optimum. Providing a good initial point is nec-

essary to ensure that we obtain a good (in a sense that it is better than other heuristic approaches)
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result. A good initial point will depend on the nature of the data being clustered. That being said,

we suggest implementing a pre-clustering strategy which will incorporate any knowledge of the

process data. For example, if certain snapshots are not to be arranged in the same cluster be-

cause of process constraints, the pre-clustering step will help in addressing this by placing these

snapshots uniquely into different clusters by adding this constraint implicitly to the optimization

problem.

Step 4 Optimal number of clusters

For a cluster configuration to be optimal, not only the members within a cluster must be similar

in behavior with each other (characterized by the minimum intra-cluster error sum) but at the same

time they should be dissimilar with the members of other clusters (characterized by inter-cluster er-

ror sum which is to be maximized in our setting). Both these sums are combined to define a metric

called clustering balance which is used to predict the optimal number of clusters. The clustering

balance ε, initially proposed in [120], is the weighted sum of the intra-cluster error sum Λ and

the inter-cluster error sum Γ. We note here that assigning different weight factors in the clustering

balance term might result in different data clustering. Based on the problem specifications, one can

assign different weights which will put more emphasis on either the similarity of snapshots within

each cluster or the dissimilarity between different clusters. This choice of weights is completely

at the discretion of the user and has to be made depending on the problem specifications. For a

general case, it has been shown in [116] that the appropriate weight between Γ and Λ is 0.5.

Global center, c◦i =
1

n

n∑
j=1

xij

Intra-cluster error sum, Λ =
s∑
i=1

n∑
j=1

m∑
k=1

yjk‖xij − cki‖2
2

Inter-cluster error sum, Γ =
s∑
i=1

m∑
k=1

‖cki − c◦i ‖2
2

Clustering balance, ε =
1

2
(Λ + Γ)

(3.8)
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Once steps 1 to 3 are completed, the algorithm then proceeds to calculate the inter-cluster error sum

with the updated cluster centers and thereby the clustering balance. The iterative steps 1 through

4 are repeated by selecting a new initialization point and running the algorithm again. Owing to

the decreasing nature of intra-cluster error sum and increasing nature of inter-cluster error sum

with the number of clusters, a turning point (the minimum) in the clustering balance is attained

and the algorithm terminates. We now have determined the optimal number of clusters and the

corresponding cluster configuration.

3.4 Computational methods

Chapter 3.4 describes the practical implementation of the proposed local model reduction

framework using two commonly used spectral decomposition methods: POD and DMD. Using

each method, we study the performance of the local framework in accurately approximating the

hydraulic fracturing dynamics.

3.4.1 Local Proper Orthogonal Decomposition

3.4.1.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition, also known as Karhunen-Loève expansion, is a widely used

MOR technique. It essentially provides a set of orthogonal bases that span the solution subspace

of a dynamic system. The bases are then used in conjunction with a projection method to represent

the high-dimensional model (or the given data) with a certain low-dimensional reduced-order sys-

tem. POD uses a modal decomposition that is completely data-dependent without assuming any

knowledge of the underlying process.

In Chapter 3.4.1.1, we review the mathematical formulation for proper orthogonal decompo-

sition in the context of nonlinear parabolic PDE systems. Let xk be the representative ensemble

of solutions which is constructed by solving the PDE via a high-order discretization scheme or

alternatively, using available process data obtained from experiments. The POD method aims at

obtaining the most dominant spatial patterns of this ensemble. This is equivalent to finding the

basis functions φ(z) that maximizes the ensemble average of the inner products between xk(z) and
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φ(z) [103, 121]:

Maximize 〈(φ(z), xk(z))2〉

s.t ((φ(z), φ(z)) = 1

(3.9)

where 〈·〉 denotes the averaging operation, (·, ·) =
∫ l(t)

0
(·, ·)Rn dz, and (·, ·)Rn denotes the standard

inner product in Rn. The constraint imposed in Eq. (3.9) makes the computation unique and can

be taken into account by the use of a Lagrange multiplier, λ:

L[φ] = 〈(φ(z), xk(z))2〉 − λ((φ(z), φ(z))− 1) (3.10)

The optimization problem described by Eq. (3.9) seeks to find a solution such that the average

energy content is greater if the field x is projected along φ, than along any other basis function.

The necessary condition for reaching the extremum is that the functional derivative is equal to zero.

According to [103], this condition can be formulated as the following integral eigenvalue problem:

Rφ = λφ −→
∫ l(t)

0

K(z, z′)φ(z′)dz′ = λφ(z)

K(z, z′) = 〈(xk(z), xk(z
′))〉 =

1

N

N∑
k=1

xk(z)xk(z
′)

R :=

∫ l(t)

0

K(z, z′)dz′

(3.11)

where K(z, z′) is the averaged auto correlation function, N is the total number of snapshots and R

is a linear operator defined as above. The computation of the above integral eigenvalue problem is

an expensive task. To overcome this problem, Sirovich introduced the method of snapshots [32].

The basic idea is to assume the eigenfunction can be expressed as a linear combination of the

snapshots:

φ(z) =
∑
κ

cκxκ(z) (3.12)

Substituting the above expression for φ(z) in Eq. (3.11), we obtain the following eigenvalue prob-
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lem: ∫ l(t)

0

1

N

N∑
k=1

xk(z)xk(z
′)

( N∑
κ=1

cκxκ(z
′)

)
= λ

N∑
κ=1

cκxκ(z)

Bkκ :=
1

N

∫ 1

0

xk(z
′)xκ(z

′)dz′

Bc = λc

(3.13)

where B is the N × N correlation matrix comprised of elements Bkκ and c = [c1, c2, . . . , cN ]

are the set of eigenvectors corresponding to λ. These eigenvectors can be used to construct the

eigenfunctions φ(z), also called the proper orthogonal modes, using Eq. (3.12). Next, we find

a d-dimensional subspace Vd ⊂ V by using the first d eigenvalues (λ1 ≥ · · ·λd ≥ · · ·λN ), and

their corresponding eigenvectors, that describe the dominant spatial patterns of the system. The

main result of the POD method is that the subspace Vd representing the data is given by Vd =

span{φ1, φ2, . . . , φd}.

Remark 5. The corresponding eigenvalues λk, k = 1, . . . , N , also called the proper orthogonal

values, are real and non-negative since B is a symmetric, positive semi-definite matrix.

Remark 6. Once the calculated eigenvalues are normalized, they represent the energy percentage

which is the fraction of time spent by the solution along the spatial structure of the particular

eigenfunction.

Remark 7. The obtained eigenfunctions satisfy orthonormality:

∫ l(t)

0

φi(z)φj(z)dz =


0 when i 6= j

1 when i = j

(3.14)

3.4.1.2 Galerkin’s Method

In Chapter 3.4.1.2, we present the Galerkin’s method to derive low-dimensional ODE systems

that accurately reproduce the dynamics of the nonlinear parabolic PDE system defined by Eq.

(3.1). In this respect, we first formulate the PDE system in a Hilbert space H(t), consisting of n-
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dimensional vector functions defined on the spatial domain, that satisfies the boundary conditions

of Eq. (3.2), by defining the state function x onH(t) as [103, 122]:

x(t) = x̄(z, t), t > 0, z ∈ [0, l(t)] (3.15)

and operator A as:

Ax = L1(x̄) + L2(x̄) +
l̇

l(t)
z
∂x̄

∂z
(3.16)

We want to note that l̇
l(t)
z ∂x̄
∂z

accounts for convective transport attributed to the time-dependent

domain. In the case of parabolic PDE systems with fixed domains, the term does not exist because

l̇(t) ≡ 0. Then the system of Eq. (3.1) becomes,

ẋ(t) = Ax+ F(t, x(t)), x(0) = x0 (3.17)

where x0 = x̄0(z) and F(t, x(t)) = f(t, x̄(z, t)). Now, we can apply the standard Galerkin’s

method to the infinite-dimensional system of Eq. (3.17) to derive a finite-dimensional system. Note

that the eigenspectrum (set of all eigenvalues) of the time-varying operator A can be partitioned

into a dominant part consisting of d slow eigenvalues and a stable complement containing the

remaining fast eigenvalues [122, 123]. Therefore, the Hilbert space H consists of two modal

subspaces Hs and Hf defined as Hs = span{φ1, φ2, . . . , φd} and Hf = span{φd+1, φd+2, . . .}.

The state x of the system of Eq. (3.17) can be decomposed as:

x = xs + xf = Psx+ Pfx (3.18)

where Ps and Pf are two orthogonal projection operators that project the state x onto the subspaces

Hs andHf .
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We can rewrite the system of Eq. (3.17) using the above decomposition as:

ẋs(t) = Asxs + Fs(t, xs, xf )

xs(0) = Psx(0) = Psx0

ẋf (t) = Afxf + Ff (t, xs, xf )

xf (0) = Pfx(0) = Pfx0

(3.19)

where As = PsA, Fs = PsF , Af = PfA, Ff = PfF . We can neglect the fast modes, xf = 0,

and specify the dynamical system that evolves on the finite dimensional subspace as [123]:

ẋs(t) = Asxs + Fs(t, xs, 0), xs(0) = Psx0 (3.20)

To apply this method computationally, we write the finite-dimensional system with respect to the

bases (such a basis may be obtained from POD as described in Chapter 3.4.1.1), spanning the

subspace onto which it is projected:

xs(t) =
d∑
i=1

ai(t)φi (3.21)

The Galerkin’s method is applied to a system of PDEs in the form of Eq. (3.20) in the following

way:

(ẋs, φj) = (Asxs, φj) + (Fs(t, xs, 0), φj) (3.22)

Substituting Eq. (3.21) for xs and using the orthonormal properties of the eigenfunctions yields:

daj
dt

=
d∑
i=1

ai(Asφi, φj) + (Fs(t,
d∑
i=1

aiφi, 0), φj) (3.23)

where j = 1, . . . , d. This is the reduced-order model obtained by applying the POD and the

Galerkin’s methods to Eq. (3.1). The inner products in Eq. (3.23) are functionals of the known,

time-independent POD modes φ(z), and are pre-computed before solving for the time-dependent

38



coefficients aj .

3.4.1.3 Numerical algorithm

With all the required tools now in hand, we are now ready to present the numerical algorithm

for nonlinear model order reduction based on the computation of temporally-local eigenfunctions.

The approach presented in this work consists of three stages. In the first stage, the snapshots

are partitioned into clusters based on the local dynamics exhibited by the solution. In the second

stage, the POD method is applied to each cluster to compute the temporally-local eigenfunctions

that describe the dominant spatial patterns within each cluster. The final stage includes projecting

the full-order solution onto the finite-dimensional solution space by the Galerkin’s method using

the orthogonal eigenfunctions obtained in the preceding step. The detailed algorithm is presented

below in Algorithm 1.

3.4.1.4 Simulation results

As described in Chapter 2, the data required for implementing the above algorithm is obtained

as a solution to the high-fidelity model. In this specific work, we have only considered the frac-

ture propagation part described by Eqs. (2.1)-(2.6) which led to a total of 451 and 19611 nodes in

the spatial and temporal coordinates, respectively. Figure 2.3 shows the evolution of the fracture

width for Q0 = 0.05 m3/s starting from the initial condition. We now continue with the compu-

tation of the set of temporally-local eigenfunctions using the proposed methodology. A total of

981 snapshots, out of the 19611 generated from the full-order model, were taken at uniform time

intervals and used for the computation of the low-dimensional model. Then, the GOS algorithm,

described in Chapter 3.3.2, was employed to assign the snapshots into multiple clusters. The GOS

algorithm was implemented using the modeling language GAMS (General Algebraic Modeling

System) [124] and the algorithmic decomposition methodology APROS (Algorithms for PROcess

Synthesis) [125]. GAMS was interfaced with the MILP solver, CPLEX, to determine the solutions

to the primal and master problems. Please refer to Table 3.1 for a summary of the model statistics.

Remark 8. The sensitivity of the proposed method to the number of snapshots is essentially the
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Algorithm 1 Nonlinear model order-reduction using temporally-local eigenfunctions
1: Obtain N snapshots, {x1, ..., xN}.
2: Apply the GOS algorithm to generate clusters and assign the snapshots to each cluster. For the cluster k,

compute the cluster centers ck and optimal number of clusters m that minimizes the clustering balance
ε. The clustered snapshots Ck = {xk1, . . . , xknk} for k = 1, . . . ,m will satisfy:

m⋃
k=1

Ck = {x1, . . . , xN} (3.24)

3: Compute the correlation matrix and solve the eigenvalue problem.

Bk
ij =

1

nk

∫ 1

0
xki (z

′)xkj (z
′)dz′ ∀i, j

Bkvk = λkvk
(3.25)

where
∑m

k=1 n
k = N .

4: Calculate the local eigenfunctions, φk, by selecting a dimension dk for the cluster k.

φki =
nk∑
j=1

vki,jx
k
j i = 1, . . . , dk (3.26)

5: Apply Galerkin’s method to derive dk-dimensional ODE systems for the cluster k.
6: Solve the system of ODEs numerically to obtain the time-dependent coefficients [ak1, . . . , a

k
dk

]
7: Compute the approximate solution:

x̄k(z, t) ≈
dk∑
i=1

aki φ
k
i (3.27)

same as the global POD method. One should ensure that the collected snapshots contain all the

essential information regarding the spatial and dynamic behavior of the underlying system.

Figure 3.2 presents the intra-cluster and inter-cluster error sum profiles for different number of

clusters. As can be seen from the graph, the intra-cluster error sum decreases with the total number

of clusters which is expected from a divisive clustering algorithm. The intra-cluster error sum

measures the extent of dissimilarity between snapshots within the same cluster, and hence should

be minimized. On the other hand, the inter-cluster error sum measures the extent of dissimilarity

between different clusters and hence is to be maximized. Using the two error sums, clustering

balance was calculated for different cluster numbers. Figure 3.3 shows how the clustering balance
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Clusters iterations equations binary (yjk) continuous ( cki) CPU time (s)
2 1 1809 1962 824 5.35
4 3 2637 3924 1646 12.41
6 7 3461 5886 2468 46.05
8 6 4292 7848 3290 46.72
10 6 5116 9810 4112 57.24
12 10 5941 11772 4934 158.94
16 16 7604 15696 6578 504.31
20 20 9251 19620 8222 438.12

Table 3.1: Summary of model statistics for the clustering problem solved using the GOS algorithm.
Reprinted with permission from [107]
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Figure 3.2: Plots of the Intra-cluster error sum (�) and Inter-cluster error sum (�) from the cluster-
ing of 981 snapshots generated from the full-order solution data, each containing 411 spatial data
points. Reprinted with permission from [107]

changes with the total cluster number. We can predict the optimal number of clusters by selecting

the turning point in the curve. The GOS algorithm determined the optimal number of clusters as

m = 16 and the corresponding cluster configuration, Ck, has been extracted.
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by the turning point in the curve. Reprinted with permission from [107]

Once the optimal number of clusters have been determined, the POD method was applied to the

snapshots in each cluster to compute eigenfunctions that span the dominant local spatial patterns

embedded in each cluster. Then, the d-dimensional local POD basis is constructed by taking the

first d largest eigenvalues obtained from solving the eigenvalue problem. Specifically, in our case

of m = 16 clusters, the number of eigenfunctions (dimension for the low-order model) selected is

dk = 2, ∀k = 1, . . . , 16. We present the two empirical eigenfunctions for each of the 16 clusters

in Figures 3.4 and 3.5. Finally, the computed eigenfunctions are used in the Galerkin’s framework

to successfully derive the low-order ODE system, which is subsequently solved by discretizing the

time coordinate to calculate the approximate solution to the full-order solution.

Remark 9. We want to note the proposed approach does not provide a way to select the dimension

r of the reduced-order model. One rule in selecting this dimension is the energy of the normalized

eigenvalues. However, different clusters have different eigenfunctions (thereby different corre-

sponding eigenvalues), and thus, they will result in different r values. Additionally, as pointed out

earlier including those modes which correspond to low energies will introduce fluctuations in the

42



 length (m)

0 100 200

 φ
(z

)

-0.2

0

0.2

0.4

0.6

Cluster No.1

mode 1

mode 2

 length (m)

0 100 200
 φ

(z
)

-0.2

0

0.2

0.4

0.6

Cluster No.2

 length (m)

0 100 200

 φ
(z

)

-0.4

-0.2

0

0.2

0.4

0.6

Cluster No.3

 length (m)

0 100 200

 φ
(z

)

-0.2

0

0.2

0.4

0.6

Cluster No.4

 length (m)

0 100 200

 φ
(z

)

-0.2

0

0.2

0.4

0.6

Cluster No.5

 length (m)

0 100 200

 φ
(z

)

-0.4

-0.2

0

0.2

0.4

0.6

Cluster No.6

 length (m)

0 100 200

 φ
(z

)

-0.2

0

0.2

0.4

0.6

Cluster No.7

 length (m)

0 100 200

 φ
(z

)

-0.2

0

0.2

0.4

0.6

Cluster No.8

Figure 3.4: The two temporally-local eigenfunctions for clusters 1− 8. Reprinted with permission
from [107]

system and will lead to numerical instability.

The standard inner product introduced earlier is defined for systems with time-invariant spatial

domains. However, leveraging the fact that the fracture width is zero when the fracture does not

propagate to a specified length, this problem can be viewed as a time-invariant case. This leads

to a matrix for the spatiotemporal data that has nonzero values in the upper triangle and it has

0’s at the lower triangle which corresponds to all the spatial locations where the fracture hasn’t

propagated yet at each time instant. Therefore, the definition of the standard inner product still

holds. Additionally, the differential operator and thereby its eigenvalues can also be considered
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Figure 3.5: The two temporally-local eigenfunctions for clusters 8−16. Reprinted with permission
from [107]

time-invariant. This makes the computations for the KL decomposition and, subsequently, the

Galerkin’s projection valid for the system considered.

Figure 3.6 shows the complete width profile with respect to spatial and temporal coordinates

obtained from the reduced order model (ROM) based on the temporally-local eigenfunctions. Fur-

thermore, Figure 3.7 shows the comparison between the full-order solution and the reduced-order

solution at z = 0 (i.e., wellbore) and z = 62.7 m (i.e., the fracture center) where we observe a very

good agreement at all times between the two models. The oscillations observed in the proposed

reduced-order model arise due to the presence of the leak-off term in the system. The leak-off term
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is not dissipative and adds an error to the approximation in the reduced-order model. This type

of behavior is not observed when we applied the proposed method to a fluid system governed by

one-dimensional Burgers’ equation, the results of which are not presented in this manuscript.

Figure 3.6: Approximate width profile computed from the ROM based on temporally-local eigen-
functions (dk = 2, ∀k = 1, . . . , 16). Reprinted with permission from [107].

For the comparison purpose, we also constructed a low-dimensional model using the ROM

based on the temporally-global eigenfunctions. The solutions obtained from the temporally-global

eigenfunctions are presented in Figures 3.8 and 3.9. We note that the number of eigenfunctions

required to successfully describe the dominant spatial patterns is d = 16 when a set of temporally-

global eigenfunctions is used for computing the low-order model. By comparing Figures 3.6 and

3.7 with Figures 3.8 and 3.9, respectively, we observe that the temporally-local eigenfunctions,

when used to approximate the nonlinear PDE system provide a better result in terms of accuracy.

Even though the distinction is difficult to visualize in Figures 3.6 and 3.8, it becomes more apparent
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Figure 3.7: Comparison of width profiles obtained at two different spatial locations, z = 0 and
z = 62.7, from the full-order model and the ROM based on temporally-local eigenfunctions at two
different spatial locations. Reprinted with permission from [107].

in Figures 3.7 and 3.9. At both spatial locations, z = 0 and z = 62.7 m, we can clearly notice that

the reduced order solution computed via the proposed technique is closer to the original full-order

solution.

To further illustrate the significance of the ROM based on the temporally-local eigenfunctions,

we compared the two methods with respect to their relative errors. The relative error is calculated

in the following manner [103]:

E(t) =
‖xfull − xrom‖fro
‖xrom‖fro

(3.28)

where ‖xfull‖fro and ‖xrom‖fro are the Frobenius norms of the high-order discretization of the

PDE and the reduced-order model, respectively. Figure 3.10 shows the relative error profiles

E(t) between the low-dimensional model obtained from the temporally-global eigenfunctions and

temporally-local eigenfunctions. From the plot we observe that initially the deviation is high,

but the error decreases with time. This is attributed to the fact that the parabolic PDE system is

characterized by fast initial dynamics followed by the slow (dominant patterns) dynamics and the

computed eigenfunctions only capture the dominant spatial patterns (we neglect the fast dynam-

46



Figure 3.8: Approximate width profile computed from the ROM based on temporally-global eigen-
functions (d = 16). Reprinted with permission from [107].
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(a) W(t) at boundary z = 0
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Figure 3.9: Comparison of width profiles obtained at two different spatial locations, z = 0 and
z = 62.7, from the full-order model and the ROM based on temporally-global eigenfunctions.
Reprinted with permission from [107].
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ics in the Galerkin’s method) after the fast dynamics of the system becomes less significant. The

presented error profiles clearly show that the ROM constructed using 2 temporally-local eigenfunc-

tions provides a better approximation to the original solution profile than the ROM derived using 16

temporally-global eigenfunctions. This is a significant reduction in the number of eigenfunctions

required to accurately represent the full-order solution.
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Figure 3.10: Profiles of the relative error with time for approximate solutions constructed from the
ROM based on temporally-local and temporally-global eigenfunctions. Reprinted with permission
from [107].

We also compared the computational time taken by the two models to generate the approx-

imated solution. In this regard, we expanded the ensemble size and computed the approximate

solutions using the two models. Figure 3.11 shows the computational time with respect to different

number of snapshots considered as part of the solution ensemble. The figure depicts the signifi-

cant advantage of the temporally-local ROM over the global model. In general, the POD method
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Figure 3.11: Computational time profiles of the local and global reduced order models with respect
to different sizes of the snapshot set. Reprinted with permission from [107].

involves the computation of an N ×N eigenvalue problem, where N is the number of snapshots.

The proposed method instead requires the computation of several small eigenvalue problems be-

cause each cluster contains only a fraction of the total number of snapshots. Although both of the

methods start off with similar computational times when less number of snapshots are used, the

difference becomes significant as the number increases ( ≈ 92% reduction in computational time

when N = 6501 snapshots). The times taken by the ROM based on the temporally-local eigen-

functions remains almost same because even though the total number of snapshots increases the

snapshots per cluster does not change significantly for the considered data. Please note all the cal-

culations were performed using MATLAB on a Dell workstation, powered by Intel(R) Core(TM)

i7-4790 CPU@3.60GHz, running the Windows 8 operating system.

We note here that the computational time presented does not include the time required for data

clustering. The comparison between the two methods has been performed only with respect to the
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POD and Galerkin steps of the algorithm. Even though we implement the proposed model order

reduction algorithm online for the purpose of, for example controller design, the data clustering

step will be performed offline. Thus, it will not affect the computational requirements for the

implementation of the proposed model-order reduction technique online.

As we notice from the error results presented, the MOR technique with temporally-local eigen-

functions performs favorably in terms of accuracy, computational efficiency, and the number of

POD modes required to capture the dominant spatial patterns embedded in the set of snapshots.

This can be justified by the fact that dominant spatial patterns obtained over the entire temporal

and spatial domains often include undesired information from the standpoint of local domains.

Therefore, it is desirable to first decompose the temporal and/or spatial domain of the original

high-order model into multiple subdomains, and then subsequently develop low-order models that

better capture the dominant local dynamics of the system.

3.4.2 Local Dynamic Mode Decomposition

The preliminary results presented in Chapter 3.4.1 are very encouraging in terms of choosing

the proposed local MOR framework over its global counterpart when dealing with complex sys-

tems. However, one of the main drawbacks of POD is that the energetically optimal modes do not

necessarily represent the system dynamics accurately. In fact, when the order of the snapshots is

changed the computed POD modes do not change meaning that the modes are not dynamically

optimal. Moreover, the subsequent Galerkin projection requires a priori knowledge of the system

equations which are not always available readily. In Chapter 3.4.2, we aim to address these issues

by moving to a completely data-driven architecture that captures the dynamics accurately.

Developed specifically for analyzing the dynamics of nonlinear systems, DMDc provides a lin-

ear time invariant (LTI) type reduced-order models by explicitly accounting for the system inputs.

Since the overall objective of this work is to develop approximate models for control synthesis,

DMDc is an intuitive choice to be incorporated into the proposed framework. It is very attractive

because it does not require any knowledge on the system equations and provides linear dynamical

models with the potential to enable prediction, estimation and control of nonlinear systems using
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linear systems theory. Motivated by this, we apply the concept of local DMDc to approximate

the nonlinear hydraulic fracturing system with an emphasis on process control. Basically, POD

is replaced by DMDc in the local MOR framework shown in Figure 3.1. This also reveals the

flexibility of the proposed framework where the model reduction technique can be replaced based

on its suitability with respect to the application of interest.

3.4.2.1 Dynamic Mode Decomposition with control

DMD is a method that can extract dynamically relevant spatial structures solely from the data

of a high-dimensional complex system. These structures, called dynamic modes, are equivalent

to a linear tangent approximation and describe the dominant dynamic behavior of a nonlinear

data sequence. In Chapter 3.4.2.1, we present a short mathematical description of DMD and the

formulations required for DMDc.

We start with a general description of state vector fields x collected at regular time intervals ∆t,

either by direct numerical simulations or from experimental data, xi = x(ti) ∈ Rn where ti = i∆t

and n represents the number of available spatial measurements. Through the course of this paper,

we will refer to these measurements as snapshots. The fundamental assumption in DMD is that we

seek a linear operator A that approximately connects the snapshot xi to the subsequent snapshot

xi+1, which is given by

xi+1 = Axi, (3.29)

and that this mapping is approximately the same over the full sampling interval t ∈ [0, (m−1)∆t].

We collect an ensemble of trajectories containingm snapshots and arrange them into two matrices,

X1 = [x1 x2 . . . xm−1], X2 = [x2 x3 . . . xm] (3.30)

Based on the above description the relation between the two snapshot matrices is given by

X2 = AX1 (3.31)
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The primary objective now is to solve for an approximation of the system matrix A. In [19],

the authors presented a mathematical expression for computing the matrix A using a companion

matrix based on a variant of the Arnoldi algorithm. A more well-conditioned algorithm, which we

will follow here, based on a similarity transformation achieved using SVD is presented by [54].

The computation of A follows from applying the pseudo-inverse of X1 to both sides of Eq. (3.31)

as shown below:

A = X2X
†
1 (3.32)

where X†1 is the Moore-Penrose pseudo-inverse of X1. Computationally, the most efficient way to

perform the pseudo-inverse is via SVD.

X1 = UΣV∗ ≈ ÛΣ̂V̂∗ (3.33)

where U ∈ Rn×n, Σ ∈ Rn×m−1, V∗ ∈ Rm−1×m−1, Û ∈ Rn×r , Σ̂ ∈ Rr×r, V̂∗ ∈ Rr×m−1 and ∗

denotes the complex conjugate transpose.

We recognize that in the above decomposition the left singular vectors, U, contains proper

orthogonal modes of the snapshot set and hence amounts to a projection of the linear operator A

onto a set of POD bases. Furthermore, Eq. (3.33) results in a low-dimensional representation of A

by accounting for the rank-deficiency in the snapshot sequence via a limited number of projection

modes given by r. The appropriate value of r can be given by non-zero singular values (or more

practically singular values above a prescribed threshold) [66, 126, 127, 128]. The approximation

for the linear operator A can thus be computed from SVD of the snapshot set by plugging Eq.

(3.33) into Eq. (3.32) as follows:

A ≈ X2X
†
1 = X2V̂Σ̂−1Û∗ (3.34)
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The reduced-order model can therefore be derived by taking a basis transformation, Û∗X = X̂,

X̂2 =Û∗AÛX̂1

=Û∗X2V̂Σ̂−1X̂1

=ÂX̂1

(3.35)

where X̂ ∈ Rr represents the states in the reduced-order model obtained by projecting the original

states onto a new subspace with a reduced dimension r, and Â denotes an approximation to the

linear operator A.

The eigendecomposition of Â defined by ÂW = ΛW yields the eigenvalues and eigenvec-

tors. According to the property of similarity transformation, the eigenvalues of Â are also the

eigenvalues of the full matrix A. The eigenvectors of the full matrix A are called dynamic modes,

denoted by Φ, and are related to the eigenvectors of Â via the following transformation,

Φ = PW = X2VΣ−1W (3.36)

where P = X2VΣ−1 is the required linear transformation.

Building on the DMD theory, [73] developed the DMDc method in order to ascertain the dy-

namic characteristics of a system that depend both on inherent dynamics (e.g., states) as well as

applied external inputs. In addition to the sequence of state snapshots in DMD, we now collect the

sequence of input snapshots as

Γ = [u1 u2 . . . um−1] (3.37)

where ui ∈ Rl and l denotes the number of input variables. The system description can therefore

be rewritten in an augmented form as

X2 = AX1 + BΓ = [A B]

X1

Γ

 = GΩ (3.38)
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where A ∈ Rn×n, B ∈ Rn×l, Γ ∈ Rl×(m−1), Ω ∈ R(n+l)×(m−1) and G ∈ Rn×(n+l).

In contrast to DMD, SVD is performed on the augmented data matrix Ω = ÛΣ̂V̂∗ and the

approximations for A and B are derived as follows:

A ≈ X2V̂Σ̂−1Û∗1

B ≈ X2V̂Σ̂−1Û∗2

(3.39)

where Û∗1 ∈ Rn×p, Û∗2 ∈ Rl×p, [Û1 Û2]T = Û and p denotes the reduced-order of the augmented

system.

In the next step, we project the state onto a subspace on which it evolves using a basis trans-

formation. However, in DMDc, the truncated left singular vectors Û of the augmented matrix, Ω,

can not be used to define this transformation because they include the inputs as well as states; it

is a key difference from DMD. To find a linear transformation for the states alone, we utilize a

reduced-order subspace of the shifted snapshot sequence, X2. This fundamental observation al-

lows for DMDc to discover a reduced-order representation of the dynamics A and the input matrix

B. Computationally, SVD of the shifted snapshot sequence (X2 = ŨΣ̃Ṽ∗ where Ũ ∈ Rn×r,

Σ̃ ∈ Rr×r, Ṽ ∈ Rm−1×r and r denotes the dimension of the subspace) is used to define the linear

transformation required for projecting the state. Using the new transformation, a low-dimensional

representation of the system matrices can be computed as follows:

Â , Ũ∗AŨ = Ũ∗X2V̂Σ̂−1Û∗1Ũ

B̂ , Ũ∗B = Ũ∗X2V̂Σ̂−1Û∗2

(3.40)

where Â ∈ Rr×r and B̂ ∈ Rr×l. In general, the dimension p of the reduced SVD for augmented

data is greater than that of the dimension r of the subspace onto which the states are projected.

Please note that one could equivalently use SVD of X1 to obtain the required basis transformation.

Depending on the choice of X1 or X2 the corresponding linear transformation will be unique.
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3.4.2.2 Numerical implementation

Recall, the basic assumption that drives DMDc is that the snapshots are approximately related

by a linear operator. Therefore, DMDc may fail to capture the local dynamics if there is signif-

icant non linearity in the local dynamics. To handle this issue, in this work, we use a two-step

process where, in the first stage, the snapshots are partitioned into clusters by applying the GOS

algorithm based on the local dynamics exhibited by the solution, and in the second stage, we apply

DMDc to each cluster and compute the low-dimensional representations of A and B matrices. To

achieve this, we first compute SVD of the augmented matrix, Ωk = ÛkΣ̂kV̂∗
k , and the shifted

snapshot sequence, Xk
2 = ŨkΣ̃kṼ∗

k , where k denotes the current cluster number. Next, using the

transformation basis Ũk, i.e., the left singular vectors of the shifted snapshot sequence, we apply

Eq. (3.17) to identify the input-to-output relationship within each cluster. The algorithm detailing

the application of the proposed local DMDc method is presented below.

Remark 10. Recall, the fundamental form of DMDc is as follows:

xi+1 = Axi + Bui (3.41)

The above equation is analogous to a general nth order discrete-time linear state-space model.

Hence, we recognize that the DMDc method can be used for system identification of a linear

time-invariant state-space model that captures the underlying dynamics in the data obtained from

high-fidelity models.

3.4.2.3 Simulation results

Similar to the previous case, we first collect the high-fidelity data by solving the dynamic model

of hydraulic fracturing. However, this case study considers simultaneous fracture propagation and

proppant transport to provide a detailed simulation of the process. As described in Chapter 2.5.1,

proppant concentration measurements inside the fracture are very difficult to obtain and are usually

determined with empirical correlations using microseismic data. So, out of all the spatial locations,
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Algorithm 2 Nonlinear model order-reduction using temporally-local dynamic modes
1: Collect the state and input snapshots and construct the data matrices, X1 = [x1 x2 . . . xm−1],X2 =

[x2 x3 . . . xm] and Γ = [u1 u2 . . . um−1].
2: Apply the GOS algorithm to generate clusters and assign the snapshots to each cluster. For the kth

cluster, compute the cluster centers ck and the optimal number of clusters m that minimizes the clus-
tering balance ε. The clustered snapshots Ck = {xk1, . . . ,xknk} for k = 1, . . . ,m, where nk denotes the
number of snapshots in the kth cluster, will satisfy:

m⋃
k=1

Ck = {x1, . . . ,xn}

3: For every cluster, stack the state and input matrices to construct the augmented matrix Ωk

Ωk =

[
Xk

1

Γk

]
4: Compute the reduced SVD of the augmented matrix and the shifted snapshot sequence. Choose values

for the reduced-orders pk and rk based on the singular values and the corresponding singular vectors to
obtain

Ωk = ÛkΣ̂kV̂∗
k

Xk
2 = ŨkΣ̃kṼ∗

k

5: Compute the low-dimensional representations of the operators Ak and Bk as described in Eq. (3.40)

Âk = Ũ∗
k
Xk

2V̂kΣ̂k−1
Û∗

k

1 Ũk

B̂k = Ũ∗
k
Xk

2V̂kΣ̂k−1
Û∗

k

2

6 were selected with uniform spacing inside the fracture and it was assumed the real-time concen-

tration measurements are available at these locations. The test input profile has been designed to

mimic the practically-viable inlet proppant concentration profile in the field. Specifically, a sim-

ple uniformly increasing staircase input profile has been considered to solve the dynamics of the

process, which is presented in Figure 3.12. The corresponding response of the open-loop system

is then obtained by solving the high-fidelity model and stored along with the manipulated input

trajectory. The stored vectors then comprise the columnar entries in the data matrices.

The GOS algorithm, then, has been applied to the generated data to cluster the snapshot vectors

based on the similarity between their local dynamic behaviors. The GOS algorithm has been

implemented using the modeling language GAMS, which was interfaced with CPLEX (an MILP
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Figure 3.12: The input profile applied to generate the open-loop simulation data of the process.
Reprinted with permission from [129].

solver) to determine solutions to the primal and master problems. Figure 3.13 shows how the

clustering balance changes with the total number of clusters considered. We can predict the optimal

number of clusters by selecting the turning point in the curve. The GOS algorithm determined the

optimal number of clusters as m = 100 and the corresponding cluster configuration, Ck, has been

extracted. Once clustering has been completed, using the data matrices, the DMDc computation

has been performed within each cluster to find an approximation of the system matrices. These

reduced system matrices are subsequently used to compute approximate solutions to the full-order

model.

To illustrate the superior performance of the proposed local model reduction methodology, a

comparison with its global counterpart (i.e., applying DMDc over the entire time domain) has been

performed. Figure 3.14 illustrates one such comparison arising from the numerical realizations of

the fracture width at the wellbore, fracture length and the proppant concentration at two different
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Figure 3.13: Clustering balance curve predicting the optimal number of clusters, which is m =
100. Reprinted with permission from [129].

spatial locations. It can be observed from the plot that the approximate solution computed using

the proposed local model reduction method mimics the full-order solution more accurately than

the one obtained from its global counterpart.

To quantify the significant performance difference between the two reduced-order models, we

compared the two methods with respect to their relative errors. The relative error has been calcu-

lated using the Frobenius norms of the state vectors using Eq. (3.28). The relative error profiles for

approximate solutions constructed from the local and global DMDc are presented in Figure 3.15.

From the plot we observe that the proposed local reduced-order model provides a precise ap-

proximation to the original solution, thus exhibiting its superior performance and warranting its

application in closed-loop operation of the hydraulic fracturing process.

Convergence behavior. Before attempting to design feedback control systems, we study vari-

ous factors that influence the accuracy of the reduced-order models developed based on global and
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Figure 3.14: Comparison of the approximate solutions computed using local and global DMDc
methods. Reprinted with permission from [129].

59



Time (s)

0 200 400 600 800 1000 1200

R
e

l 
E

rr
o

r,
 E

(t
)

0

0.1

0.2

0.3

0.4

0.5
local DMDc

global DMDc

Figure 3.15: Profiles of the relative error with time for approximate solutions constructed from
the reduced-order models based on the proposed local and global DMDc methods. Reprinted with
permission from [129].

local DMDc methods. Such a study is essential in gaining knowledge that will help us identify

reduced-order models that accurately capture the dynamically relevant spatial behavior contained

in the process data sequence. For the case of global DMDc, as the number of spatial points (i.e., the

number of concentration measurements at different locations) increases, we expect convergence of

the reduced-order model towards the high-fidelity model. This is observed in Figure 3.16 which

shows that the relative error decreases with an increase in the number of spatial measurements.

Next, we studied the influence of clusters on the convergence behavior of the reduced-order

models developed by the proposed local DMDc. Intuitively, we expect an increase in the accu-

racy of the approximate solutions computed using local reduced-order models with an increase in

the number of clusters. In other words, as the number of partitions increases, the local dynamic

behavior of the underlying system can be better captured by affine subspaces constructed by the

selected dynamic modes and hence will result in more accurate approximations. A demonstration
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of the convergence of reduced-order models based on the proposed local DMDc methodology is

presented in Figure 3.17, where we see an overall decrease in the relative error with respect to an

increase in the number of clusters.

Another critical factor that dictates the level of accuracy of the reduced-order models is the

truncation value r in the SVD step of the DMDc algorithm. Again, one expects an increase in the r

value should result in a more accurate reduced-order model. We compare the convergence behavior

of the local reduced-order models (both partitioned into 100 clusters) with two different r values

in Figure 3.18. From the plot it is clear that the addition of the 3rd mode has greatly improved

the accuracy of the low-order approximation. However, as we further increased the value of r,

a “blow-up” of the numerical values occurred (i.e., infinite error). Figure 3.19 shows that the
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magnitude of the eigenvalues of the reduced-order model describing cluster 1 is less than unity,

|λ| < 1, implying that this “blow-up” is not due to the numerical instability but probably due to

the inherent instability in the system alone. Please note that cluster 1 is used as a representative but

this has been observed to be true for all the clusters. Therefore, we suspect as the r value increases

it results in the inclusion of very small singular values that in turn introduce fluctuations into the

system and results in a “blow-up”.

3.4.2.4 Controller design

Equipped with the above results, we used the local reduced-order models developed (with

m = 100 clusters and truncation value r = 3) by applying the proposed methodology to design

a MPC framework for the hydraulic fracturing process. The MPC formulation is introduced first,

followed by closed-loop simulation results.
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In practice, the ultimate goal of hydraulic fracturing is to increase the productivity of a stim-

ulated (i.e., fractured) well. In summary, achieving uniform proppant concentration across the

fracture at the end of pumping, which strongly influences the propped fracture height and geome-

63



λ
r

0 0.2 0.4 0.6 0.8 1

λ
i

-0.5

-0.25

0

0.25

0.5

Figure 3.19: The approximate eigenvalues of the system matrix Â describing the local dynamics
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try, is paramount for effective oil and gas extraction.

Minimize
C0,k

(C̄(tf )− Ctarget)TQc(C̄(tf )− Ctarget) (3.42a)

s.t x̄(tk+1) = Āix̄(tk) + B̄iC0,k, ∀tk ∈ Ci (3.42b)

ȳ(tk) = x̄(tk) (3.42c)

x̄(tk) = x(tk) (3.42d)

Cmin ≤ C̄(tk + j∆) ≤ Cmax, ∀j = 0, . . . , 10− k (3.42e)

C0,k−1+m ≤ C0,k+m ≤ C0,k−1+m + 4, m = 1, . . . , 10− k (3.42f)

2Q0∆
(∑

k

C0,k

)
= Mprop (3.42g)

L̄(tf ) = Lopt, W̄0(tf ) ≥ Wopt (3.42h)
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where (̄·) indicates the predicted state trajectory, Qc is a positive definite matrix used to compute

the weighted norm, tf denotes the total treatment time, ∆ is the sampling time, tk is the current

time, C̄ is the vector of proppant concentrations at 6 locations, and C0,k is the inlet proppant

concentration (i.e., manipulated input) corresponding to kth time interval, i.e., t ∈ [tk, tk+1).

In the above optimization problem, Eq. (3.42a) is a quadratic function which penalizes the

squared deviation of the proppant concentration from the set-point at 6 different locations at the

end of pumping. The predicted state trajectory x̄(t) is computed using an approximate linear

model, Eq. (3.42b), under the piecewise constant input profile computed by the MPC framework.

This approximate model is available to us by applying the proposed local DMDc methodology

and inverse transformation as detailed in Algorithm 2. Since temporal clustering is performed on

the process data offline, we have to use different local in time state-space models at different time

instants. Therefore, the corresponding approximate model, Eq. (3.42b), is used to predict the state

trajectory at a particular time interval in which the calculation is being performed. More specifi-

cally, at any time tk ∈ Ci, Āi and B̄i matrices corresponding to the ith cluster (i.e., ith temporal

subdomain) will be selected to predict the state trajectory. Eq. (3.42c) specifies that the outputs of

the process are equal to the states as stated before. The initial conditions are given in Eq. (3.42d)

which are obtained at each sampling time from the current full-state measurements. Eq. (3.42e) im-

poses limits on the concentration profiles to avoid premature termination of the process. Eq. (3.42f)

demands a monotonic increase in the input concentration profiles with a maximum increase of 4

ppga/stage, where ppga is a concentration unit used in petroleum engineering that refers to 1 pound

of proppant added to a gallon of water. Lastly, Eq. (3.42g) specifies the total mass of the proppant

to be injected, Mprop, and Eq. (3.42h) imposes the terminal constraints on the fracture geometry at

the end of pumping. Please note that the performance index in the above MPC formulation does

not include a penalty term on the process inputs. In the specific example presented here, this is

implicitly addressed by introducing the input constraint, Eq. (3.42f), specifying that the rate of

change of inlet proppant concentration at the wellbore should not exceed 4 ppga/stage. Addition-

ally, in practice, there is no need for penalizing control actions on proppant concentration, because
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it is not the major source of high production expenses required for hydraulic fracturing.

The MPC block diagram that describes the closed-loop operation of hydraulic fracturing pro-

cesses is presented in Figure 3.20. The process outputs are used as a feedback to the controller in

which the developed local in time reduced-order models predict the state trajectory and compute

the optimal input profile that will be applied to the process.

Figure 3.20: Schematic representation of the closed-loop operation of hydraulic fracturing.
Reprinted with permission from [129].

3.4.2.5 Closed-loop simulation results

The values used for various process parameters are the same as given earlier. In the closed-loop

simulation, the sampling time ∆ and the total time of operation tf were chosen to be 100 s and

1220 s, respectively during which a total of Mprop = 48, 000 kg of proppant has been injected

into the fracture. In the field, real-time measurements of the fracture width at the wellbore and

the fracture length are available through downhole pressure analysis and microseismic monitoring

techniques respectively. This raw data will be analyzed to remove outliers and ensured they are

chosen correctly. Therefore, the time required for the data to be prepared typically ranges from

1-5 minutes. Due to this reason, the sampling time was chosen to be around 2 minutes. During

the initial stages of the hydraulic fracturing process, a high-pressure fluid (called pad) consisting
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mostly of water is pumped to break the rock and propagate fractures in the formation at perforated

sites. The duration of this pad stage, tp, has been fixed at 220 s to reach the desired fracture length

of Lopt = 135 m without tip-screen out (premature termination of the process). The feedback

control system was initialized after the injection of pad (i.e., tk ≥ tp). The proppant pumping

schedule was partitioned into 10 substages (i.e, k = 1, . . . , 10) and the duration of each substage

is given by the sampling time, ∆. We assumed that at the beginning of each substage, the full-state

measurements of x(tk) are available, which are used to predict the estimates of the future states

via the developed approximate models. For illustration purposes, the approximate model for the

1st cluster computed by the proposed approach has been presented below.

Ā1 =



0 0.00012 0.00059 −0.00091 0.00042 0.00082 −0.00220 0

−0.00193 0.98919 −0.15894 0.25095 −0.11058 −0.22025 0.61124 0

0.00061 0.00288 0.04775 −0.07333 0.03343 0.06585 −0.17973 0

−0.00043 0.00233 −0.07444 0.11438 −0.05211 −0.10268 0.28031 0

0.00042 0.00271 0.03331 −0.05117 0.02333 0.04595 −0.12539 0

0.00084 0.002945 0.06602 −0.10141 0.04622 0.09106 −0.24853 0

−0.00231 0.00198 −0.18183 0.27936 −0.12729 −0.25079 0.68460 0

0 0 0 0 0 0 0 0



B̄1 =



0.00088

3.56998

0.04725

−0.04819

0.03557

0.06147

−0.13161

0


(3.43)
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The predicted state estimates are then used in the optimization problem to compute the control

inputs and the corresponding process behavior that minimizes the squared deviation from its pre-

specified target value. The uniform target proppant concentration desired at the end of pumping is

Ctarget = 10 ppga. Please refer to [130] for details on how to calculate this set-point value. The

positive definite matrix, Qc, containing the weights on the penalty function of the MPC optimiza-

tion problem is considered to be unity. However, one can use appropriate weights depending on

the process nature. The first step, C0,1, of the input profile, C0,k, obtained by solving the optimiza-

tion problem over a prediction horizon length of Np was applied to the high-fidelity model in a

sample-and-hold fashion, and this procedure was repeated at every sampling time until the end of

treatment. In this application, we used a shrinking horizon which gives Np = tf − tk. We solve an

optimization problem to compute the control inputs while regulating the output values at the final

time step, which is what we desire in this specific application.

In order to gauge the performance of the proposed model reduction method in designing a

closed-loop control scheme, we compared it with MOESP, one of the well known subspace iden-

tification methods. We developed a 6th-order model by applying the MOESP algorithm to regress

a linear time-invariant state-space model of the hydraulic fracturing process using the simulation

results from the high-fidelity model. The developed reduced-order model was then used in the

MPC framework to achieve the same control objective. Figure 3.21 presents the generated spatial

proppant concentration at the end of pumping. As can be observed from the plot, the controller

based on the reduced-order model developed by local DMDc drives the concentration closer to the

target value thus achieving the control objective to a desirable level compared to the MOESP one,

thus establishing the superiority of the proposed method (note that the order of the two reduced-

order models is the same). The pumping schedule (i.e., the input concentration profile required to

achieve uniform proppant concentration) for the corresponding process parameters and the overall

operation time considered is presented in Figure 3.22.

Remark 11. Please note that due to the presence of moving boundaries and the highly nonlinear

68



z (m)

0 50 100 150

 C
 (

p
p

g
a

)

0

2

4

6

8

10

12

14

local DMDc

6
th

 order MOESP

Target
L

opt
 = 135 m

Figure 3.21: Spatial profiles of the proppant concentration at the end of pumping under MPC based
on the reduced-order models developed by the proposed local DMDc and the MOESP methods.
Reprinted with permission from [129].

nature of the problem, an extra effort should be made in selecting the test input profile so that the

overall range and trend of the test input profile is similar to the optimal input profile, especially

since we are approximating the system using a linear model. Therefore, for significantly different

process set-point values, the local in time reduced-order models should be recomputed carefully

with different test input profiles to obtain good approximate models.

3.5 Conclusions

In Chapter 3, we tackled the problem of approximating highly complex dynamics encoun-

tered in moving boundary systems such as hydraulic fracturing via spectral decomposition based

methods by tailoring the basis functions to capture the local dynamic behavior. Specifically, we

developed a local model reduction framework that uses data clustering within projection-based

methods to accurately capture the local behavior of every portion of the solution trajectory in the
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pant concentration at the end of pumping under MPC based on the reduced-order models developed
by the proposed local DMDc method. Reprinted with permission from [129].

state-space. Intuitively, since moving boundary systems are associated with varying spatial fea-

tures, a time-domain partitioning is performed as a first step. To achieve this, a novel clustering

strategy based on Mixed Integer Nonlinear Programming is implemented on the time-series data

associated with the system of interest. This data can be obtained either from numerical simulations

of the high-fidelity model or from experimental runs and should be able to represent a large portion

of the solution state space (i.e., the data is collected at different initial conditions, inputs etc.). The

motive of this step is that each cluster is implicitly characterized by the similarity of its dynamic

behavior, and therefore, represents a particular portion of the solution. In the next step, the reduced

bases are derived within each cluster, using methods such as POD and DMD.

In the case of hydraulic fracturing process, a full-order discretization resulted in a large system

of 450 spatial and 20, 000 temporal nodes. The local technique when applied to reduce this system

resulted in a 95% decrease in the dimensionality and computation time while having superior ap-
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proximation accuracy in comparison with the global counterparts. Moreover, local DMDc resulted

in linear state-space models, which were easily incorporated in an MPC framework to design an

optimal pumping schedule that achieved uniform proppant concentration throughout the fracture.

Overall, the results are very encouraging and illustrate the potential of the proposed method in

approximating the prevalent dynamics and designing a feedback control system from just snapshot

measurements alone, even though the entire spatiotemporal evolution data is only partially cap-

tured by the measurements (the fact that we considered the concentration measurements at only 6

different locations).
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4. HANDLING SPATIAL HETEROGENEITY IN RESERVOIR PARAMETERS USING

POD-BASED EnKF FOR MODEL-BASED FEEDBACK CONTROL OF HYDRAULIC

FRACTURING∗

In Chapter 3, we presented a novel framework based on local model reduction to accurately ap-

proximate complex dynamics associated with hydraulic fracturing process. However, we employed

reservoir models where the rock mechanical properties (eg. Young’s modulus, permeability etc.)

were assumed to be known and spatially homogeneous. However, field data indicates that even

within the same rock formation, the performance of hydraulic fracturing can be notably different

[131, 132]. This variability can, in part, be attributed to the spatially varying rock mechanical

properties such as the Young’s modulus. As a consequence, one of the key tasks, which has to be

performed prior to the model-based controller design, is the characterization of spatially varying

rock mechanical properties. We have seen that a large number of discrete elements are required to

provide a detailed description of the reservoir in a hydraulic fracturing process. This results in the

formulation of a large-scale inverse problem where the number of parameters to be estimated far

exceeds the number of available field measurements, resulting in an ill-posed problem.

To deal with this unidentifiability issue, the original problem must be reformulated and one

way to achieve this is to reduce the number of unknown model parameters by parameterization.

Additionally, it is of critical importance to preserve the spatial features in the geological properties

during the parameterization process. Therefore, in Chapter 4 we extend the idea of model reduction

to the parameter space to develop an integrated framework to parameterize the unknown spatially

varying Young’s modulus profile via POD, keeping the key spatial pattern in the geological prop-

erties intact, and to update the statistical information using the available process measurements via

a Monte Carlo data assimilation technique, the Ensemble Kalman Filter.

∗Reprinted with permission from“Handling of spatial heterogeneity using POD-based EnKF in model-based feed-
back control of hydraulic fracturing," by A. Narasingam, P. Siddhamshetty and J. S. Kwon, Industrial & Engineering
Chemistry Research, 2018, 57, 3977–3989. Copyright 2018 by American Chemical Society.
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4.1 Computational methods

Chapter 4.1.1 provides a brief description of the particular parameterization and data assimi-

lation techniques essential for characterizing the spatially varying Young’s modulus profile of the

reservoir followed by the detailed numerical algorithm. A schematic of the proposed method is

shown below.

Figure 4.1: Overall flow integrating the POD-based EnKF parameter estimation scheme with
LDMDc-based MPC. Reprinted with permission from [133].

4.1.1 POD-based EnKF

In this work, we employ the EnKF, which is a statistical Monte-Carlo simulation where the

ensemble of process model states is evolved forward in time with the ensemble mean as the best

state estimate [134] and the ensemble spread as the error variance. It combines a stochastic model

with a prior assumption about the states, process noise, and measurement noise to derive the first
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two statistical moments of the states’ posterior distribution. In other words, it is a sequential state

estimation method for dynamical systems. It has also been widely used to estimate process model

parameters [135, 136, 137]. In this work, we use it for solving the inverse problem to estimate the

spatially varying Young’s modulus profile of the reservoir.

In a practical implementation, the EnKF involves a forecast step which predicts the mean and

covariance of the process model parameters at the next time step using the high-fidelity process

model of hydraulic fracturing described by Eqs. (2.1)-(2.11). While the true values of the spatially

varying parameters are unknown, we can assume that we have access to the first two statistical mo-

ments (i.e., mean and covariance) of the underlying geological features of the formation based on

historical data. Please note, in reservoir characterization problems, the input reservoir properties

are unknown, so two-point geostatistical assumptions are made regarding the reservoir properties

and the initial ensemble is generated as random samples drawn from a multivariate Gaussian dis-

tribution defined by a variogram or covariance function. If historical data of nearby reservoirs or

already induced fractures is available, such data can be used as a starting point for making assump-

tions regarding the mean and covariance function for generating the initial ensemble of realizations

of the unknown reservoir properties. Such data can also be available, to an extent, from the mini-

frac test performed prior to the hydraulic fracturing operation. Using this a priori knowledge, an

initial ensemble of R realizations is constructed by adding R different perturbations to the mean of

the spatially varying parameter distribution. In the next step, called the assimilation step, the cross

covariance between the predicted observations and the unknown parameters is updated by means

of a filter gain using the available true measurements.

In a hydraulic fracturing process, these available measurements are the estimates of fracture

length and fracture width at the wellbore which are provided via the processed micro-seismic and

downhole pressure data, respectively. Now, since the number of parameters to be estimated is huge

compared to the available measurements, the inverse problem becomes ill-posed. One can increase

the identifiability of this inverse problem by reducing the number of parameters to be estimated

by transforming the original high-dimensional parameter space to a low-dimensional subspace.
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Also, since the spatially varying geological properties follow certain patterns, it is required to

preserve the key spatial features observed in the high-dimensional parameter space. To achieve

this, we apply POD to extract the most dominant geological features and provide a low-dimensional

representation of the parameters, which is then incorporated in the EnKF parameter estimation

routine. Below, we present a mathematical formulation for the steps involved in the POD-based

EnKF estimation methodology.

Let us consider a horizontal fracture geometry containing I grid points in the discretized sys-

tem. Therefore, the representation of the spatially heterogeneous parameters (e.g. Young’s modu-

lus profile) will be in the form of an I × 1 vector. One can generate R realizations of the spatially

varying Young’s modulus profile as described above, and construct a representative ensemble of

this data in the form of an I × R matrix. Now, we calculate the correlation matrix using the real-

izations and solve the integral eigenvalue problem to obtain the basis functions. The members of

the ensemble can be approximately represented by a set of basis functions as follows:

E ≈
d∑
i=1

µiϕi (4.1)

Here E ∈ RI×1 denotes the spatially varying Young’s modulus, which is an I-dimensional vector,

ϕi ∈ RI denote the orthogonal basis functions, µi ∈ R are real-valued coefficients that define the

appropriate linear combination of basis functions to approximate the true spatially varying Young’s

modulus profile, and d is the dimension of the reduced parameter space obtained by examining the

energy (in a mean square sense) of the singular values. The expression in Eq. (4.1) is a reduced-

order representation of the parameter space where the basis functions, shared by all the ensemble

members, contain the key spatial patterns of the unknown parameters. These basis functions induce

a parameterization of the spatially varying Young’s modulus profile if we allow the coefficients µi

to be free. Therefore, these coefficients will constitute the actual variables to be estimated via the

EnKF, thereby effectively reducing the number of parameters to be estimated from I to d. Let the

vector µk ∈ Rd be the collection of all the free variables used in Eq. (4.1) at time tk. Now, at time
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step k, let us consider the forward (high-fidelity) model:

xk+1 = f(xk,uk,µk) (4.2)

where f is a nonlinear function given in Eqs. (2.1)-(2.11) of the state xk, the coefficients µk and

the input uk. Please note that we have used a subscript k for µ simply to denote that its value

updates at every data assimilation step, but the model parameters do not change with time. Let

yk ∈ Rp be the predicted data (i.e., system outputs) at time tk. In this work, the measurements

are the fracture length and the fracture width at the wellbore, which are a subset of the state vector

xk. The p- dimensional vector of predicted outputs is therefore generated as yk = Axk, where A

is a linear operator which contains zeroes and ones, and picks out the components of xk that are

measured at time tk. However, since the states are a nonlinear function of the model parameters, the

relation between the predicted outputs and the model parameters can be represented by a nonlinear

operator, h, as yk = h(µk,uk).

Since the measurements are a nonlinear function of the model parameters, we can consider an

augmented state vector, Xk ∈ R(d+p)×1, that includes the output measurements, yk, along with the

unknown model parameters, µk:

Xk =

µk

yk

 =

 µk

h(µk,uk)

 (4.3)

With this definition, the relation between the predicted output vector, yk, and the augmented state

vector, Xk, is given by the following linear expression:

yk = HXk =

[
0 I

] µk

h(µk,uk)

 (4.4)

where H ∈ Rp×(d+p), 0 ∈ Rp×d and I ∈ Rp×p. In this work, the state variables, xk, include the

fracture width and proppant concentrations at various locations across the fracture and the fracture
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length, the model parameters include spatially varying Young’s modulus, although it is parame-

terized via POD and the coefficients, µk, are considered as the actual variables to be estimated.

Additionally, the observations, yk, include the fracture length and fracture width at the wellbore

that are processed from the microseismic monitoring and downhole pressure analysis. The inputs

to the system include the flow rate and the proppant concentration at the wellbore. Algorithm 3

details the sequence of steps involved in the estimation of spatially varying parameters using the

POD-based EnKF scheme.

We refer the readers to [138] for rigorous details regarding the practical EnKF implementation.

4.2 Simulation results

For the high-fidelity simulation, we generated a synthetic spatially varying Young’s modu-

lus profile which is shown in Figure 4.2 (black). This is taken to be the true parameter profile.

Eqs. (2.1)-(2.11) constitute the high-fidelity model and they are solved using a higher-order dis-

cretization scheme to describe the fracture propagation, fluid flow, and proppant transport simulta-

neously. The fracture propagation is terminated at 135 m and the spatial domain is discretized with

each grid point having a size 0.1 m, resulting in a total of I = 1351 points. The fluid injection rate

is fixed at 0.03 m3/s. The fracture width at the wellbore and the fracture length obtained from the

simulation are considered as the true process measurements, giving p = 2. The values of the key

process parameters used in the simulation are summarized in Table 2.1.

To estimate the true Young’s modulus distribution generated above, we construct an initial en-

semble of R = 100 parameter realizations. To achieve this, we consider a mean that is different

from the true parameter profile to represent the initial distribution. In practice, as noted earlier, the

first two statistical moments of the spatially varying Young’s modulus profile are known a priori

based on available historical data. The mean of the initial ensemble is shown in Figure 4.2 (green).

A covariance function is then used to generate 100 parameter realizations by adding 100 different

perturbations to the initial ensemble mean. Figure 4.2 (blue) shows two representative realizations

selected from the initial ensemble that are at the extremes of the ensemble range. Each realization

consists of I = 1351 points describing the spatial variability in the Young’s modulus profile. The
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Algorithm 3 Parameter estimation using integrated POD-based EnKF

1: Generate R realizations of the unknown parameter fields Ê = {E1,E2, . . . ,ER} ∈ RI×R using the
mean and covariance functions available from the prior knowledge.

2: Parameterize the ensemble of realizations via POD, and compute the spatial basis functions Φ =
{ϕ1(z), ϕ2(z), . . . , ϕd(z)} ∈ RI×d, leaving the coefficients, M = {µ1

k,µ
2
k, . . . ,µ

R
k } ∈ Rd×R, to

be free.
3: Given a vector of true measurements dk ∈ Rp available at every sampling time tk, generate R artificial

observations for data assimilation.

djk = dk + εjk, j = 1, . . . , R; εjk ∈ N(0,CD) (4.5)

which can be stored in the columns of Dk = {d1
k, . . . ,d

R
k } ∈ Rp×R. Here ε is a random perturbation

drawn from a normal distribution such that ε ∈ N(0,CD), where CD ∈ Rp×p is the covariance matrix
of the measurement noise.

4: Forecast : At time tk, for every realization of the spatially varying parameters in the set M, the forecast
of the ensemble of augmented states, Xf

k = {X1,f
k , . . . ,XR,f

k } ∈ R(d+p)×R, is generated according to:

Xj,f
k =

[
µj,fk
yj,fk

]
=

[
µj,ak−1

h(µj,ak−1,uk−1)

]
(4.6)

where the superscripts f and a denote the forecast and assimilation steps, respectively.
5: Assimilation: The covariance matrix at time tk, Ck ∈ R(d+p)×(d+p), associated with the ensemble of

augmented states is computed as:

X̄f
k =

1

R

R∑
j=1

Xj,f
k (4.7)

Ck =
1

R− 1

(
Xf
k − X̄f

k · 1R
)(

Xf
k − X̄f

k · 1R
)T (4.8)

where X̄f
k denotes the ensemble average of the augmented states and 1R ∈ R1×R is a row vector whose

elements are all equal to 1. The update to the predicted state and outputs is then computed as:

Kk = CkH
T
(
HCkH

T + CD

)−1 (4.9)

Xa
k = Xf

k + Kk

(
Dk −HXf

k

)
(4.10)

where Kk ∈ R(d+p)×R is the Kalman gain of the ensemble at time tk.
6: The sequence of forecast and assimilation steps is repeated until all the available measurements are

assimilated.
7: The mean of the free coefficients in the final ensemble, µ̄a ∈ Rd, along with the previously obtained

basis functions, Φ, is used to compute the unknown spatially varying Young’s modulus profile, Etrue,
as follows:

Etrue ≈
d∑
i=1

µ̄aiϕi = Φµ̄a, µ̄a =
1

R

R∑
j=1

µj,a (4.11)
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Figure 4.2: The true Young’s modulus profile (black) along with two representative realizations
(blue) and the mean (green) of the initial ensemble. Reprinted with permission from [133].

high-fidelity model of the hydraulic fracturing process is solved with each realization that repre-

sents a spatially varying Young’s modulus profile to predict the fracture width at the wellbore and

the fracture length. The predicted outputs are compared against the true measurements at every 25

s. The total duration of the process is 1000 s, which gives k = 40 time steps. Consequently, every

parameter realization utilizes a set of 2× 40 distinct measurements. In the numerical experiments,

measurement errors are modeled as white noise (Gaussian random samples with zero mean) with

the covariance CD, the value of which is taken as diag(0.005, 0.008), where the first term in the

matrix corresponds to the error in the wellbore width and the second term to the fracture length,

respectively. The units of the above matrix CD are meters and the above values have been deter-

mined based on the order of the wellbore width whose maximum value is approximately 15 mm

(the variance of the error is taken as 5 mm). During the forward simulations, the predicted outputs

79



are assimilated against the true measurement values with added noise to update the ensemble at

each time step. Therefore, we performed a total of 100× 40 high-fidelity simulations.

Number of basis functions
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e
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0.995

1

Figure 4.3: Cumulative energy captured by the basis functions as represented by their normalized
singular values. Reprinted with permission from [133].

We first performed POD on the initial ensemble where 100 different spatially varying Young’s

modulus profiles are sampled from the known first two statistical moments. The computed spatial

basis functions are then employed to reduce the number of parameters to be estimated. Figure 4.3

shows the cumulative energy content of the singular values associated with the ensemble. Based on

this we chose the first d = 10 basis functions which correspond to 99% of the total energy captured

by the singular values. The coefficients (µ ∈ R10×100) that describe the linear combination of

these basis functions to reconstruct the parameter profiles are allowed to be free in the EnKF

algorithm which leads to the parameterization of the spatially varying Young’s modulus profile.

We emphasize that the number of parameters to be estimated in this problem was reduced to 10

from 1351, which alleviates the ill-posed nature of the original problem.

Remark 12. Please note that the reduction in the number of parameters via POD depends on the

covariance function chosen to sample the initial ensemble. This is because the rate of decay of

singular values depends on the covariance function used.
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(a) Final ensemble mean (red) and the true param-
eter profile (black).
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(b) A realization from the final ensemble (blue) and
the true profile (black).

Figure 4.4: A comparison between the true and the final estimated Young’s modulus profile through
POD-based EnKF. Reprinted with permission from [133].

Once the parameterization step is completed, we implemented the EnKF algorithm to obtain

the best estimate of the true spatially varying parameter profile. Since a major computational

requirement is associated with the high-fidelity simulations used in the forecast step, the EnKF

algorithm was conveniently parallelized to speed up the computations. In our work, the high-

fidelity simulations and the EnKF programs are developed using Parallel Computing ToolboxTM

in MATLAB R© and then scaled up to computing clusters by running it on MATLAB Distributed

Computing ServerTM. Each assimilation step gives a set of new coefficient vectors that are used

with the basis functions to regenerate the estimated spatially varying Young’s modulus profile.

This set of new parameters is further used in the forecast of output variables at the next time step.

The forecast and the assimilation steps are repeated until all the measurements are integrated into

the high-fidelity simulation.

Remark 13. We note that ill-conditioning might occur when computing the matrix inverse in the

Kalman gain formulation, in Eq. (3.23). This potential singularity of the inverse computation

requires the use of pseudo inverse via Truncated Singular Value Decomposition (TSVD). We would

like to note that we have followed the practical implementation suggested in [138, 139, 140] in

computing the pseudo inverse and using the singular vectors to complete the analysis step in the

EnKF algorithm.
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(a) Evolution of the error variances, Cii, during
data assimilation via the EnKF.
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(b) Evolution of the error covariances, Cij , during
data assimilation via the EnKF.

Figure 4.5: Profiles showing the evolution of the error covariances, Ck, during the data assimilation
steps. Reprinted with permission from [133].

The results of parameter estimation are shown in Figure 4.4. Specifically, Figure 4.4a shows

an ensemble member, which represents a candidate Young’s modulus profile, after the final update

step and Figure 4.4b shows the final ensemble mean. In a typical EnKF implementation, the mean

of the final ensemble is taken as the approximation for the unknown parameter profile. Therefore,

it is evident from the figure that the POD-based EnKF method provided a very good estimate for

the true spatially varying Young’s modulus profile after assimilating all the available measurement

data. The estimated parameter profiles in Figure 4.4 retain the major spatial trend of the true

Young’s modulus profile. This is attributed to the basis functions which capture the dominant

spatial patterns in the underlying data of the prior distribution. Figure 4.5 shows the evolution

of error covariances during the data assimilation process. One would expect the covariances to

approach to zero as more data is being assimilated. This can be observed in Figure 4.5 where both

variances (Cii) and covariances (Cij) decline to zero with time. Additionally, this also shows that

the ensemble estimates converge to the true values at the end of data assimilation. Although the

figures show a few elements taken from the covariance matrix to describe their time evolution, a
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Figure 4.6: Posterior to prior standard deviation ratio of the spatially varying Young’s modulus
profile. Reprinted with permission from [133].

similar behavior is observed throughout the covariance matrix. Please note that the covariances

have been normalized prior to the plots.

One way to measure the performance of the EnKF method is the reduction in the final ensemble

spread which is evident by comparing Figures 4.4a and 4.4b. From the figure, it can be seen that

the difference between the final ensemble member and the mean is small. Note that for illustration

purposes, only one representative member is selected randomly from the final ensemble. However,

this reduction in the spread is observed with respect to all the final ensemble members. Further-

more, by comparing Figures 4.2 and 4.4, it can be observed that the uncertainty in the ensemble

members is also reduced between the prior and posterior distributions. In order to highlight this

point more clearly, we show the ratio of the standard deviation between the final and initial en-

semble in Figure 4.6. Please note that a value close to 0 indicates a large reduction in uncertainty

whereas a value close to 1 indicates a small reduction. As can be seen from the figure, a significant

reduction in uncertainty is achieved throughout the fracture. Figure 4.7 shows the mean square

error (MSE) plot between the true parameter values and the mean of the ensemble posterior dis-

tribution at each time step. Note that the MSE values have been normalized with respect to the

maximum. As can be seen from the figure, a significant reduction in the error is observed between
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Figure 4.7: The profile of MSE with time. Reprinted with permission from [133].

the initial and final update steps. As more data are integrated into the high-fidelity model, the

EnKF estimate converges to the original value, resulting in a decrease in the MSE .

In addition to finding a good approximation between the true and estimated parameter values,

one of the primary objectives of parameter estimation of dynamic models is to accurately predict

the process dynamics. This is an important feature in order to design model-based control systems

or perform dynamic optimizations of the process. The comparison between the process dynamics

predicted by the updated model, based on the estimated parameters, and the true values is shown in

Figure 4.8. The predictive capability of the updated model is evident from the figure, which shows

a good match between the true and predicted values of the fracture width at the wellbore and the

fracture length through Figure 4.8a and 4.8b, respectively.

Remark 14. Please note that although the EnKF handles the nonlinear dynamics correctly during

the forecast step, it sometimes fails in the analysis step [141, 142, 143, 144]. More specifically,

for a highly nonlinear problem, the current state estimates obtained from EnKF and the current
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(a) Fracture width at the wellbore, W0(t), predicted by the updated model
(red) and its true values (black).
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(b) Fracture length, L(t), predicted by the updated model (red) and its
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Figure 4.8: Profiles of the predicted system outputs and their true measurements. Reprinted with
permission from [133].

state values computed by re-solving the forward model with the updated parameters may not be

identical, implying the production of unrealistic parameter estimates. However, we emphasize that

in this manuscript we only estimated the model parameters via the EnKF and the predicted outputs

are obtained from the forward model with the updated model parameters.

4.3 Closed-loop results

With the updated spatially varying Young’s modulus profile, open-loop simulations of the high-

fidelity model are performed using a set of training inputs to generate the data required for devel-

oping the reduced-order models. The LDMDc methodology described in Chapter 3.4.2 determined

the optimal number of clusters as m = 100 and the corresponding reduced-order models are gen-
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erated within each temporal subdomain. Figure 4.9 shows the comparison between the actual state
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Figure 4.9: Comparison of the approximate solutions computed using local in time reduced-order
models with the true measurements of the fracture width at the wellbore, fracture length and prop-
pant concentration at two different positions. Reprinted with permission from [133].

values and their corresponding approximate solutions of the fracture width at the wellbore, fracture

length, and proppant concentration profiles at two different positions. It can be observed that the
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LDMDc technique provides accurate approximations to the true process state values obtained from

the high-fidelity model.

Now that we have accurate reduced-order models, a model-based feedback controller of Eqs.

(3.42a)-(3.42h) is designed to achieve a uniform final proppant concentration profile across the

fracture along with a desired final fracture length and width to enhance the production of the frac-

tured well. The values used for various process parameters are the same as the ones given in

Table 2.1. In the closed-loop simulation, the sampling time ∆ and the total time of operation tf

were chosen to be 100 s and 1220 s, respectively, during which a total of Mprop = 48, 000 kg of

proppant has been injected into the fracture. The sampling time was chosen to be around 100 s to

accommodate the practical time required for processing the raw microseismic data and downhole

pressure analysis to obtain the wellbore fracture width and fracture length measurements, respec-

tively. During initial stages of the hydraulic fracturing process, a high-pressure fluid (called pad)

consisting mostly of water is pumped to break the rock and propagate fractures in the formation

at perforated sites. The duration of this pad stage, tp, has been fixed at 220 s to reach the desired

fracture length of Lopt = 135 m without tip-screen out (premature termination of the process).

The feedback control system is initialized after the injection of pad (i.e., tk ≥ tp). The proppant

pumping schedule is partitioned into 10 substages (i.e, k = 1, . . . , 10) and the duration of each

substage is given by the sampling time, ∆. We assumed that at the beginning of each substage,

the full-state measurements of x(tk) are available (x = [W0, L,C]), which are used to predict the

future states via the developed local in time reduced-order models. The predicted state trajectories

are then used in the optimization problem to compute the control inputs, and the corresponding

process behavior that minimizes the squared deviation from its pre-specified target value. The uni-

form target proppant concentration desired at the end of pumping is Ctarget = 10 ppga. Please

refer to [85] for details on the calculation of this set-point value. The positive definite matrix, Qc,

containing the weights on the penalty function of the MPC optimization problem is considered to

be an identity matrix. However, one can use appropriate weights depending on the process nature.

The first step of the input profile, C0,k, obtained by solving the optimization problem over a predic-
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tion horizon length of Np was applied to the high-fidelity model in a sample-and-hold fashion, and

this procedure was repeated at every sampling time until the end of pumping. In this application,

we used a shrinking horizon which gives Np = tf − tk. We solve the optimization problem to

compute control inputs while regulating the output value to be close to the set-point at the end of

the final time step, which is what we desire in this specific application.

The results are presented in Figure 4.10a which shows the final concentration profile of the

closed-loop system under MPC. Clearly, the designed controller drives the final proppant concen-

tration (red) towards the target value (black) while propagating the fracture to the desired length

(arrow) specified by the geometry constraints. For the sake of illustrating the effect of not char-

acterizing the spatially varying Young’s modulus profile prior to the design of feedback control

systems, we have also designed a closed-loop system under MPC based on a constant Young’s

modulus profile. Here, the value of the Young’s modulus is fixed at E = 50 × 102 MPa across

the fracture. The closed-loop performance under the MPC designed based on the constant Young’s

modulus is shown in Figure 4.10b. As can be seen, when the rock properties are not character-

ized accurately, it can result in a poor controller performance, i.e, non-uniform final concentration

profiles, thereby diminishing the production capabilities of the fracture well.

4.4 Conclusions

Accurate characterization of reservoir properties is of central importance to achieve a desired

fracture geometry during a hydraulic fracturing process. However, the estimation of spatially vary-

ing geological properties in hydraulic fracturing is inherently ill-posed due to a limited number

of measurements. In this work, parameterization is performed to reduce the dimensionality via a

combined POD based EnKF method for the estimation of spatially varying Young’s modulus pro-

file. Parameterizing via POD resulted in a significant increase in the identifiability of the original

parameter estimation problem, i.e., the number of variables to be estimated in the data assimila-

tion framework is reduced from 1351 to 10. The method gives good results after all the available

data has been integrated, and it is demonstrated that a significantly better match is obtained for the

Young’s modulus estimate relative to the synthetic true Young’s modulus profile that is used for

88



z, m

0 50 100

C
(t

f),
 p

p
g

a

0

2

4

6

8

10

12

MPC - E(z)

set-point L = 135 m

(a) MPC based on the updated spatially varying
Young’s modulus E(z).

z, m
0 50 100

C
(t

f),
 p

p
g

a

0

2

4

6

8

10

12

MPC - E

set-point

(b) MPC based on the constant Young’s modulus
assumption.

Figure 4.10: Final proppant concentration profiles of the closed-loop system under MPC of hy-
draulic fracturing. Reprinted with permission from [133].

testing purposes. Additionally, we observed significant predictive capabilities from the updated

model as evident from the close match to both the fracture length and the fracture width at the

wellbore. The designed closed-loop controller based on the updated parameter profile, is able to

drive the proppant concentration profile at each spatial location to a uniform target value at the end

of pumping. Comparison of closed-loop simulation results shows the significance of accurately

characterizing the spatial variability in the reservoir parameters.
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5. APPLICATION OF KOOPMAN OPERATOR FOR MODEL-BASED CONTROL OF

FRACTURE PROPAGATION AND PROPPANT TRANSPORT IN HYDRAULIC

FRACTURING OPERATION∗

In Chapter 3, we focused on generating accurate approximations to highly nonlinear processes

such as hydraulic fracturing by tailoring the basis functions to capture local dynamics of every

portion of the system trajectory. Although the local model reduction framework is superior in

performance, sometimes it may lead to unstable models due to discontinuity between different

clusters. Therefore, a single model that is accurate within a larger domain in the state-space would

be beneficial in some cases. However, as discussed earlier, using model reduction methods directly

will not yield good results. In Chapter 5, we investigate an alternative approach where we employ

Koopman operator theory to generate data-driven models that approximate the hydraulic fracturing

dynamics. It is particularly attractive because of its ability to provide (nearly) globally valid linear

models. To be more specific, the Koopman linear models are often valid in a larger domain unlike

local models whose validity is, in general, limited by the training data [7]. It is important to note

here that this is a natural extension to the previous work due to the fact that DMDc is indeed a

special case of Koopman theory which will be mathematically detailed below. Although counter

intuitive, it is due to this close connection that DMDc is successful in approximating nonlinear

dynamics using a linear system.

Operator theoretic approaches have recently sparked a lot of research interest, however, it is

still in its infancy and has not been applied to large scale systems. Our contribution in Chapter 5

is demonstrating, on a non-trivial engineering application of hydraulic fracturing, the data-driven

Koopman method for constructing linear models that can be readily used within a predictive control

∗Reprinted with permission from “Application of Koopman operator for model-based control of fracture propaga-
tion and proppant transport in hydraulic fracturing operation,” by A. Narasingam and J. S. Kwon, Journal of Process
Control, 2020, 91, 25-36. Copyright is retained by the authors for all articles published in Elsevier journals.

∗Reprinted with permission from “Data-driven identification of interpretable reduced-order models using sparse
regression,” by A. Narasingam and J. S. Kwon, Computers & Chemical Engineering, 2018, 119, 101-111. Copyright
is retained by the authors for all articles published in Elsevier journals.
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framework to maximize the productivity of a fractured well. To do so, we first apply the Koopman-

based system identification method to create a dynamic model of the fracturing process and verify

that it captures the system’s true dynamic behavior. Then, we design a model predictive controller

(MPC) using the model obtained in the previous step. Since the developed models are linear in

the space of observable functions, the predictive controller when formulated in this space will lead

to a standard convex optimization problem, which allows for extremely fast solutions compared

to the original nonlinear problem. We consider two case studies of varying complexities. First,

we apply the approach to regulate fracture geometry by considering only the fracture propagation

dynamics governed by a PDE. Second, as a more sophisticated case study, we consider the simul-

taneous fracture propagation and proppant transport to determine the optimal pumping schedule

that achieves uniform proppant concentration throughout the fracture at the end of operation. The

overall dynamic model describing rock deformation, fluid flow, and proppant transport is a set of

highly-coupled nonlinear equations defined over a time-dependent spatial domain making it con-

siderably more complex than fracture propagation alone. Therefore, this calls for careful curating

of the Koopman basis and we show how a priori system knowledge can be incorporated during

system identification in choosing appropriate observable functions.

5.1 Preliminaries

In Chapter 5.1, we present some preliminaries on the Koopman operator theory and its appli-

cation for model identification and controller synthesis.

5.1.1 Koopman Operator

Consider a discrete controlled nonlinear dynamical system given below:

xk+1 = F (xk, uk) (5.1)

where xk ∈ X ⊆ Rn is the state of the system, uk ∈ U ⊆ Rm is the input, F is the flow map that

evolves the system states forward in time, and k ∈ Z represents the time step such that tk = k∆

where ∆ is the sampling time.
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Let us define a set of scalar-valued observables that are functions of the states and the inputs,

g : X ×U → R. Each observable is an element of an infinite-dimensional function space G which,

for example, can be defined by the Lebesgue square-integrable functions, G = `2(X × U ,R), or

other appropriate spaces [145]. In this infinite-dimensional function space, the flow of the system

is governed by the Koopman operator, K : G → G that defines the dynamics of observables g ∈ G

along the trajectories of the system as:

Kg , g ◦ F (5.2)

By definition, the Koopman operator is linear even though the underlying dynamical system is

nonlinear. For all g1, g2 ∈ G and all α, β ∈ R, it satisfies

K(αg1 + βg2) = (αg1 + βg2) ◦ F

= (αg1 ◦ F ) + (βg2 ◦ F )

= αKg1 + βKg2

(5.3)

The system identification method described below exploits the fact that any finite-dimensional

nonlinear system can be equivalently represented using an infinite-dimensional linear system by

transforming the traditional state-space to the space of functions (observables) of the system’s

states and inputs. Please note that the Koopman operator has originally been proposed for au-

tonomous dynamical systems, and it can be adopted to controlled systems by considering joint

observations of state and input, i.e., K for the above system Eq. (5.1) can be considered as the

classical Koopman operator for the augmented system, x+ = F (x, u) and u+ = S(u) where

S(u) indicates a forward shift operator of a known input signal. This is just one way to adopt

the Koopman operator to controlled systems, and for more generalizations the readers can refer to

[146, 147, 148].
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5.1.2 System identification using EDMD

The Koopman operator theory is conceptually developed on the infinite-dimensional function

space G. However, it is not practically feasible unless we can determine finite-dimensional approxi-

mations to the Koopman operator without a great loss in accuracy. To this end, we consider a finite-

dimensional subspace Ḡ ⊂ G spanned by a set of basis functions φ(x, u) = [φ1(x, u), · · · , φNφ(x, u)]T .

Now, any observable function ψ ∈ Ḡ can be represented as a linear combination of these basis

functions as follows:

ψ = c1φ1 + c2φ2 + · · ·+ cNφφNφ = cTφ (5.4)

For these functions in Ḡ, we seek to generate the finite-dimensional approximation of the Koopman

operator, denoted as K ∈ RNφ×Nφ . Because, typically Ḡ is not invariant with respect to K, there is

a residual term which is minimized in the L2-norm sense via linear regression [149]. Intuitively, if

these observables ψ represent the system’s outputs (or equivalently, sensor measurements), a cost

function to be minimized in an optimal control problem, or nonlinear constraints, then the evolution

of these “nonlinear” observables can now be analyzed using a linear system via K. This is done

by carrying a nonlinear transformation of the system states (outputs) to the so-called “lifted” space

using the set of Nφ basis functions.

In its most general form, the Koopman linear system is presented as follows:

φ(xk+1, uk+1) = K(xk, uk)φ(xk, uk) (5.5)

where φ ∈ RNφ and usually Nφ � n. For the augmented state (x, u), the above formulation

will admit any nonlinear dynamical system. However, as the dimension of the original system

increases, the number of basis functions to be considered can grow to infeasible levels. So, to

make the computations tractable and amenable in the case of predictive controller design (please

see Chapter 5.2 for more details), the simplifications described below are introduced in the structure

of the nonlinear transformation [10].
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Specifically, the objective is to identify a linear dynamical system of the following form (similar

to a linear time invariant state-space model) in the space of observables using time-series data

generated by the control system of Eq. (5.1).

φ(xk+1) = Aφ(xk) +Buk (5.6)

For this purpose, we use the recently developed EDMD algorithm. To construct a finite dimen-

sional approximation to the Koopman operator for the controlled system in Eq. (5.1), the EDMD

algorithm requires

1. a time-series data set of Nt snapshot pairs satisfying the dynamical system in Eq. (5.1),

which can be organized in the following matrices.

X = [x1, x2, · · · , xNt ], Y = [y1, y2, · · · , yNt ],

U = [u1, u2, · · · , uNt ]
(5.7)

Note that we use y instead of xk+1 here because the data above need not be temporally

ordered as long as it satisfies yk = F (xk, uk).

2. a library of nonlinear basis functions {φ1, φ2, . . . , φNφ} whose span is Ḡ ⊂ G.

The EDMD algorithm then seeks to solve a least-squares problem to obtain K which is the trans-

pose of the finite-dimensional approximation to the Koopman operator, K:

min
K

Nt∑
k=1

‖φ(yk, uk)−Kφ(xk, uk)‖2
2 (5.8)

In order to obtain the form described in Eq. (5.6), the following simplification can be introduced

into the formulation. Since we are not interested in predicting the future values of inputs, without
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loss of generality we can assume that

φ(x, u) =

φ(x)

u

 , φ(y, u) =

φ(y)

u

 (5.9)

which is to say that the nonlinear observable functions are applied to the system states alone and

not the inputs. Suppose that N nonlinear functions are used to lift the states to the observable

space and the m system inputs are added separately to the basis as shown in Eq. (5.9), we have

Nφ = N+m. To obtain the evolution of lifted states, we can then disregard the last m components

of each of the terms in Eq. (5.8), decompose the Koopman matrix as K = [A,B], and use only the

first N rows in K, which leads to the following minimization problem

min
A,B

Nt∑
k=1

‖φ(yk)− Aφ(xk)−Buk‖2
2 (5.10)

The practical solution to the above equation is obtained by using regularization via a TSVD and

the value of K that minimizes Eq. (5.10) is given by

KN := [A,B] = φXY φ
†
XX (5.11)

where † denotes the pseudo inverse, and the matrices are computed as

φXX =

φX
U


φX
U


T

, φXY = φY

φX
U


T

φX =[φ(x1), · · · , φ(xNt)], φY = [φ(y1), · · · , φ(yNt)]

(5.12)
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with

φ(xk) =


φ1(xk)

...

φN(xk)

 (5.13)

Please note that any solution to Eq. (5.11) is a solution to Eq. (5.10), and the formulation of

Eq. (5.11) has an advantage of being independent of the number of data samplesNt. Therefore, the

Koopman linear system obtained using the above algorithm will be in the form of the controlled

linear dynamical system given by Eq. (5.6), where φ ∈ RN is the lifted state in the observable

space, and A ∈ RN×N and B ∈ RN×m are the matrices that describe the system dynamics in the

lifted space.

The Koopman linear system Eq. (5.6), derived using the above algorithm, governs the evolution

of the basis φ in the lifted space. With the use of these basis functions, all observables of interest

ψ ∈ Rnψ can be determined (refer to Eq. (5.4)) by simply using a matrix of coefficients as ψ(xk) =

Cφ(xk), where C ∈ Rnψ×N . In summary, the basis functions are first evolved linearly using the

Koopman operator, and the value of (required) observable is then computed by linearly combining

these basis functions. In reality, not all observables can be contained in the span of the chosen

subspace (recall, we are only using a finite-dimensional truncated function space). Thus, the matrix

C must be chosen such that the projection of ψ onto the span{φ1, · · · , φN} is minimized in the L2-

norm sense as below:

min
C

Nt∑
k=1

‖ψ(xk)− Cφ(xk)‖2
2 (5.14)

When dealing with dynamical systems, since the goal is stability analysis or controller synthe-

sis, it is advantageous to reproduce the state dynamics. Therefore, the observable of interest here

is the state itself, ψ = x. In such cases, we can assume that the basis also contains the state observ-

able, i.e., [φ1, · · · , φn]T = x. In particular, such a set of basis functions is said to be state-inclusive,

and typically the solution to matrix C is trivial and can be obtained by C = [In, 0N−n].

The concept of linearizing dynamics is not new, but unlike local linearization around equi-
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librium points, the Koopman operator provides a global linearization of the original dynamics

provided the set of (observable) basis functions is “rich enough.” So, the main source of error

stems from our choice and the finite size of the set of basis functions used in the approximation of

the Koopman operator. Nevertheless, the convergence of EDMD approximation has been recently

established under the assumption that the dimension of the subspace N approaches infinity [149].

Therefore, this error can be made arbitrarily small by considering a large set of basis functions.

However, making a shrewd choice of the basis functions for unknown systems is still an active

research area and a few studies suggest that canonical choices like radial basis functions, Hermite

polynomials, etc., are a good starting point [10, 72]. Several other approaches propose using deep

learning methods to discover these dictionaries [150, 151]. Nevertheless, when the system model

is known or a limited knowledge on the functional forms present in the model is available, it can be

readily incorporated in the basis function dictionary as will be shown with an illustrative example

below.

5.2 Koopman Model Predictive Control

In Chapter 5.2, we briefly describe how the Koopman linear model obtained in Eq. (5.6) is used

within an MPC scheme. In an MPC controller, an optimization problem is solved repeatedly over

finite prediction horizons with respect to control inputs and predicted outputs of the system and a

feedback behavior is achieved by taking process measurements as the initial condition. Typically,

for nonlinear systems this is a non convex optimization problem due to the nonlinear dynamics.

For the system in Eq. (5.1), the MPC problem at sampling time step k is given by

Minimize
uk,··· ,uk+Np−1

Np−1∑
i=1

xTk+iQxk+i + uTk+iRuk+i + xTk+NpQNpxk+Np

s.t xk+i = F (xk+i−1, uk+i−1), i = 1, · · · , Np

xk = xmeasuredk

c(xk+i) ≤ b, i = 1, · · · , Np

u ≤ u ≤ u

(5.15)
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where the cost matrices Q,QNp ∈ Rn×n and R ∈ Rm×m are positive semi-definite matrices, Np is

the prediction horizon, xmeasuredk is the state measured at time tk = k∆ where ∆ is the sampling

time during the closed-loop operation, c : Rn → Rnc are nonlinear functions used to define the

state constraints, b ∈ Rnc is a constant vector, and u and u denote the lower and upper bounds,

respectively, on the manipulated inputs.

In contrast to the above nonlinear optimization problem, in the Koopman MPC framework, a

convex quadratic optimization problem (QP) is solved instead via lifting to the observable functions

space. At time step k, the predictions of the system trajectory are initialized from the lifted state

φk = φ(xk). Similarly, the objective function and the state constraints are all transformed to the

lifted space. In this lifted space, the original nonlinear equation is replaced by the linear dynamics

obtained in Eq. (5.6). Additionally, any nonlinear constraints associated with the system can be

absorbed in the basis and therefore predicted in a linear manner through Eq. (5.6). For simplicity,

if we consider the following output mapping φ

φ =

φ̄(x)

c(x)

 (5.16)

where φ̄ ∈ RN−nc are some nonlinear functions in the lifted space, the nonlinear state constraints

in x then translate to linear constraints in φ, i.e., c(x) = Eφ(x) where E = [0n Inc ]
T . Based on

the above transformations, the Koopman MPC, in discrete formulation, solves the following QP

problem at time step k of the closed-loop operation.

Minimize
uk,··· ,uk+Np−1

Np−1∑
i=1

φTk+iQφk+i + uTk+iRuk+i + φTk+NpQNpφk+Np

s.t φk+i = Aφk+i−1 +Buk+i−1, i = 1, · · · , Np

φk = φ(xmeasuredk )

Eφk+i ≤ b, i = 1, · · · , Np

u ≤ u ≤ u

(5.17)
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This feature of incorporating all nonlinearities within the observable basis is one of the main

attractions of the Koopman operator approach. For example, in our previous work, the same idea

was used to propose a stabilizing Lyapunov-based MPC formulation for nonlinear systems [152].

It can be further extended to translate any nonlinear objective functions such as those observed in

Economic MPC formulations [153] to convex quadratic functions.

Remark 15. It is emphasized that the convex MPC presented in Eq. (5.17) is only an approxi-

mation of the original nonlinear MPC problem in Eq. (5.15). But, nonlinear MPC problems are

typically np-hard whereas the presented convex QP is polynomial time solvable and as long as

the predictions are accurate, we expect the solution of the linear MPC problem to be close to the

optimal solution of the nonlinear MPC problem. Please note that the rigorous quantification of

approximation errors in the Koopman operator is still an actively researched area with several

results available for the convergence of the EDMD algorithm under some assumptions [149].

Remark 16. Regarding the stability of the closed-loop system, the Koopman methodology presents

an exciting avenue to develop stabilizing feedback controllers. Specifically, the Lyapunov theory

can be naturally extended to analyze the stability of the resulting closed-loop system. Several

successful results exploring this can be found in the following works [8, 152, 154]. One idea is

to design a stabilizing control framework by explicitly including Lyapunov constraints within the

MPC problem and show that the stability properties of the linear system (in the observable space)

are inherited by the original nonlinear system under certain assumptions which is the subject of

the following chapters.

5.3 Regulating fracture geometry

To demonstrate and evaluate the performance of the Koopman system identification method

outlined in Chapter 5.1.2, we first applied it to regulate the fracture propagation during a hydraulic

fracturing process. In the following, we describe in detail the model identification, model perfor-

mance evaluation and controller design.
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5.3.1 Koopman model identification

The first step in the system identification method is to collect and construct the required data

matrices. The fracture propagation dynamics can be obtained by solving part of the high-fidelity

model described by Eqs. (2.1)-(2.6). The fracture propagation was terminated at 135 m, and the

spatial domain was discretized with each grid point having a size of 0.3 m, resulting in a total

of n = 451 points. In this work, we assumed only a partially observed system; the average

fracture width, Wavg(t), fracture length, L(t) and fracture width at six uniformly spaced locations,

[W1(t), · · · ,W6(t)], obtained from the numerical experiment were considered as the true process

measurements, i.e., x(t) = [Wavg(t), L(t),W1(t), · · · ,W6(t)]T ∈ R8.

The data required to construct the Koopman linear model was collected from 100 simulated

trajectories over varying operating time periods with each numerical experiment terminated when

the fracture propagates to a total length of 135 m. A total of 1000 (synchronous) time samples per

trajectory were used to populate the required data matrices. Each trajectory starts with the same

initial condition and was subjected to an input signal generated randomly over each sampling time.

The manipulated inputs were bounded as {u, u} = {0.03, 0.06} m3/s. This results in the data

matrices X and Y of size 8× 105 and the matrix U of size 1× 105. A 50% train-test split was then

created to partition the collected data set into training and validation sets.

Remark 17. Please note that in the case of a real hydraulic fracturing process, the unmeasurable

states such as local fracture width, proppant concentration, etc. can be estimated by using the high-

fidelity model and a state observer such as Kalman Filter (see [84] for reference). Alternatively,

one can design a state estimator directly for the Koopman linear model using linear observer

design methodologies [14, 15]. When the high-fidelity model is unknown, one can use classical

system identification techniques such as time-delayed measurements to construct the data matrices

required for Koopman operator approximation (see [12, 65]).

Once the data has been collected, the next step is to choose a set of basis functions that span

the Koopman subspace to which the system dynamics are lifted. In this case, we chose a basis of
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monomials of the system states with the total degree less than or equal to 2 (all possible linear and

bilinear combinations) as follows:

φi(x) ∈
{ 8∏
j=1

x
mj
j | (m1, · · · ,m8) ∈ Z+

0 ,

8∑
j=1

mj ≤ 2
}

=⇒ φ(x) = [1, Wavg, L, W1, · · · , W6, W
2
avg, WavgL, · · · , W 2

6 ]T

(5.18)

where Z+
0 denotes the set of non-negative integers. Therefore, the total number of functions in the

basis {φi}Ni=1 is equal to N = 45. This choice was motivated by the presence of polynomial terms

in the governing equations. One observation here is that when the order of the monomials is 1, they

represent the states themselves; in other words, this basis is state-inclusive. Consequently, (any of)

the original physical states can be recovered by a trivial linear transformation of the lifted states

back to the state space as discussed in Chapter 5.1.2. For unknown systems, there is no established

way to select the dictionary although some canonical choices like radial basis functions have been

proposed as a good starting point [72]. As a matter of fact, in the next example we will see that a

canonical basis like the polynomial basis selected here fails to accurately capture the dynamics. In

such cases, system knowledge becomes paramount.

Using the collected data and the constructed basis φ, we determined approximate linear pre-

dictors for the fracture propagation model described in Eqs. (2.1)-(2.6). We then evaluated its

accuracy by comparing the Koopman model predictions to each of the validation data sets, one

of which is shown in Figure 5.1. From the figure it can be seen that a relatively good agreement

between the true model and the identified linear model was achieved with respect to the test data.

To assess this comparison quantitatively, goodness of fit for the trajectory of system states starting

from the same initial condition subjected to random input profiles was calculated and averaged

over Ntotal = 100 simulations using the average relative root mean squared error (RMSE) defined
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Figure 5.1: The measured output of the system (black) superimposed with the predictions of the
Koopman-based model (blue dotted) given the same initial condition and control inputs. Reprinted
with permission from [109].
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as:

RMSE =
‖x− x̂‖fro
‖x‖fro

Avg. RMSE =
1

Ntotal

Ntotal∑
i=1

RMSEi

(5.19)

where ‖·‖fro is the Frobenius norm. The RMSE details of the validation experiments are presented

in Table 5.1. Based on these results, we can say that the Koopman model consistently captures the

real behavior of all eight measured states of the system.

Please note that the developed Koopman models are valid for the fixed values of model param-

eters presented in the manuscript. When the system parameters change, one has to determine a new

model in the new parameter space. For example, in the case of a hydraulic fracturing process, when

modeling two different reservoirs, the parameters that are subject to change are the rock properties

such as Young’s modulus, porosity, permeability, etc. Since the underlying flow physics remain

the same, the basis functions will be kept constant, and the Koopman matrices will be computed

independently for the reservoirs using the data collected from each reservoir.

Case Max. RMSE Min. RMSE Avg. RMSE
Fracture Width 6.82 0.78 3.79
Proppant Concentration 9.77 4.77 7.19

Table 5.1: RMSE values of validation experiments. Reprinted with permission from [109].

5.3.2 Closed-loop results

Now that an accurate model is identified, the Koopman-based MPC presented in Chapter 5.2

was formulated to achieve the desired geometry whose objective is to minimize the squared devia-

tion of the fracture length from its set-point at the end of propagation. To prevent early termination

of hydraulic fracturing due to tip-screen out, the average fracture width at the end of the oper-

ation must be greater than a pre-specified target value; this is considered as the state constraint.

So, the MPC controller solves the following optimization problem of the closed-loop operation at
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sampling time step k:

Minimize
uk,··· ,uT−1

(DφT − Ltarget)2

s.t φk+j = Aφk+j−1 +Buk+j−1, j = 1, · · · , T − k

φk = φ(xk)

EφT ≤ −Wtarget

u ≤ u ≤ u

(5.20)

where D ∈ R1×N and E ∈ R1×N are matrices that project the lifted state back to the original state

space to obtain fracture length and average width, respectively, u and u denote the lower and upper

bounds, respectively, on the manipulated input (i.e., the injection flow rate), Ltarget and Wtarget

are the desired fracture length and average width, respectively, k is the current time step, and T

denotes the total sampling time steps. The solution of this problem defines a feedback control law

u = u?(xk) where only the first value is applied to the closed-loop system for the next sampling

time period t ∈ [tk, tk+1), and the procedure is repeated until the end of operation.

To design the above MPC, the optimal fracture geometry which will maximize the productivity

of a stimulated well for a given amount of proppant particles was obtained using the UFD scheme.

Specifically, the total mass of proppant to be injected was taken as 48, 000 kg over the entire treat-

ment. For this specified amount, the corresponding optimal fracture length and width determined

by UFD are Ltarget = 135 m and Wtarget = 5.4 mm, respectively. Please refer to [85] for more

details on these target values. The control objective is to generate a fracture having a total length

equal to Ltarget while keeping the average fracture width greater than the optimal width Wtarget at

the end of the treatment.

Since the basis was state-inclusive, the matrices D and E used in the objective function and

state constraints are trivial. Specifically, based on Eq. (5.18), D ∈ R1×N = [0 1 01×N−2] and

E ∈ R1×N = [01×2 1 01×N−3], where 01×j is a row matrix whose elements are equal to 0, were

used to determine fracture length and average width, respectively. In the closed-loop simulation,
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the sampling time, ∆, between consecutive measurements was considered to be 100 s and the total

process duration to be 800 s; thus, the injection schedule was partitioned into a total of T = 8

stages (i.e., k = 1, · · · , 8) with the duration of each step given by the sampling time, ∆. In the

beginning of each stage, the state measurements were assumed to be available, which were lifted

to the Koopman subspace and used to predict the estimates of the future states via the developed

approximate model. The optimization problem was then solved in a shrinking horizon manner

(since the control objective was to regulate the output at final time) in this lifted space and the

control inputs were computed.

Starting from the initial point, the closed-loop simulation results from t = 0 to t = 800 s

are shown in Figure 5.2. Using Koopman-based MPC controller, the closed-loop trajectory of the

fracture length was able to converge to its set-point at the end of the treatment. Additionally, the

average fracture width was able to satisfy the state constraint to prevent tip-screen out.

5.4 Learning the EDMD dictionary using sparse regression

In Chapter 5.5, we consider the design of an optimal pumping schedule by considering the

coupled dynamics of fracture propagation as well as proppant transport. The high fidelity model

is now described by Eqs. (2.1)-(2.11) and is considerably more complex than the case of fracture

propagation alone. Due to increased complexity in the dynamics, the choice of basis functions

for this case study is not trivial. As a matter of fact, a key challenge in implementing Koopman

theory is identifying observables that provide the best finite-dimensional approximation of the

linear operator which is the subject of ongoing research. The choice of these observable functions

is closely related to the form of nonlinearity in the dynamics. In fact, for the prediction of the

developed linear models to be accurate, it should be satisfied that the states of the system are

included in the space spanned by the selected observable functions.

Although canonical functions such as Hermite polynomials and radial basis functions are

shown to work for simple systems [72], it is critical to identify optimal observables especially

for a system such as hydraulic fracturing which is characterized by a large number of state vari-

ables compared to the number of measurements. Several numerical experiments (the results of
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Figure 5.2: Closed-loop trajectories of fracture length, average width and inputs determined by the
MPC. Reprinted with permission from [109].

which are not presented here) revealed that using a canonical basis failed to accurately reproduce

the concentration dynamics observed here. Specifically, polynomial basis with an order up to 5

and gaussian radial basis functions have been observed to fail when used as Koopman basis func-

tions. In such cases, it is really helpful to incorporate any system knowledge to populate the basis.

Motivated by this, we propose a strategy for data-driven identification of the observable functions

using sparse regression. Recently, a lot of emphasis is being placed on developing techniques that

allow for the identification of physics-based models purely from measurements of the system. In
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Chapter 5.4, we explore the idea of using sparse regression techniques to identify the observable

functions that span the Koopman subspace.

5.4.1 Sparse Identification

Let us suppose that the time-series data is obtained from the simulation of a high-fidelity pro-

cess model whose state-space form is given by

d

dt
x(t) = f(x(t),u(t)) (5.21)

where x(t) = [x1(t), · · · , xn(t)] ∈ Rn denotes the vector of state variables at time t, u(t) =

[u1(t), · · · , ul(t)] ∈ Rl denotes the vector of inputs applied to system at time t, and the nonlinear

vector function f(·, ·) represents the governing equations that define the dynamics of the system.

We seek to learn the functional form of f in the above dynamics by determining an approximate

system shown below.

d

dt
x̂(t) = f̂(x̂(t),u(t)) (5.22)

where x̂(t) = [x̂1(t), · · · , x̂d(t)] ∈ Rd denotes the vector of approximate state variables at time t,

and the nonlinear function f̂(·, ·) represents the governing equations that approximate the dynamics

of the system. Now, we formulate a regression problem to solve for which functional forms are

present in f̂ . In this work, we assume that f̂ contains only a few terms and therefore formulate this

as a sparse regression problem. This is a reasonable assumption which holds for many physical

systems. More specifically, we induce sparsity in the right-hand-side dynamics selection by con-

structing an over-full library of possible functions. In other words, if we select the over-full library,

since the number of relevant terms in f̂ associated with the response is relatively small, while the

number of irrelevant ones is large, it makes the model selection problem sparse in the space of

potential candidate functions.

To determine the function f̂ , the time-series data of x̂(t) is collected atm time instants t1, · · · , tm

and used to construct the matrix X̂ ∈ Cm×n. The left-hand-side of Eq. (5.22) is formed by com-
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puting the derivatives of the state (either numerically using the sampled time-series data or by

experimental measurement) and arranged into a matrix ˙̂
X ∈ Cm×n as follows:

X̂ =



x̂T (t1)

x̂T (t2)

...

x̂T (tm)


=



x̂1(t1) x̂2(t1) · · · x̂n(t1)

x̂1(t2) x̂2(t2) · · · x̂n(t2)

...
... . . . ...

x̂1(tm) x̂2(tm) · · · x̂n(tm)



˙̂
X =



˙̂xT (t1)

˙̂xT (t2)

...

˙̂xT (tm)


=



˙̂x1(t1) ˙̂x2(t1) · · · ˙̂xn(t1)

˙̂x1(t2) ˙̂x2(t2) · · · ˙̂xn(t2)

...
... . . . ...

˙̂x1(tm) ˙̂x2(tm) · · · ˙̂xn(tm)



(5.23)

In the above matrices, the columns correspond to the time evolution of states and the rows

correspond to the snapshots, respectively. Please note when the state measurements are corrupted

by measurement noise, the derivatives can be computed numerically either by filtering the data first

or using smoothing functions like Gaussian kernels or polynomial interpolation [155] which can

provide more robust differentiation. Proper evaluation of the numerical derivatives is a critical task

for the success of the method.

In the next step, a library of p potential candidate functions is constructed using the columns of

X̂. This library is not limited to linear terms and may contain several nonlinear functions, which

makes the proposed model identification method more suitable for complex nonlinear models. For

example, the library which we denoted here by Θ(X̂) ∈ Cm×p may consist of linear, polynomial,

trigonometric, and other functions as shown below:

Θ(X̂) =

[
1 X̂ X̂P2 X̂P3 · · · sin(aX̂) cos(bX̂) · · ·

]
(5.24)

Here, X̂P2 and X̂P3 denote second- and third-order polynomials in x̂(t). For example, the

quadratic nonlinearities in the state variables are denoted by X̂P2 and constructed as follows:
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X̂P2 =



x̂2
1(t1) x̂1(t1)x̂2(t1) · · · x̂2

2(t1) x̂2(t1)x̂3(t1) · · · x̂2
n(t1)

x̂2
1(t2) x̂1(t2)x̂2(t2) · · · x̂2

2(t2) x̂2(t2)x̂3(t2) · · · x̂2
n(t2)

...
... . . . ...

... . . . ...

x̂2
1(tm) x̂1(tm)x̂2(tm) · · · x̂2

2(tm) x̂2(tm)x̂3(tm) · · · x̂2
n(tm)


(5.25)

Therefore, each column of the library Θ(X̂) contains the values of a particular candidate func-

tion choice for the right-hand-side of Eq. (5.22) at all time instants. It is clear that there is a high

degree of freedom in choosing which candidate functions to be included in the function library Θ.

However, since we assume that only a few terms are required to approximate the dynamics of the

original system, this provides us an opportunity to set up the problem as a sparse regression in the

space of possible functions. In general, m � p, i.e., there are more time-series data samples than

the number of candidate functions. Thus, we seek a sparse solution to the over determined system.

More specifically, the proposed model reduction method can now be formulated as the following

regression problem for which we seek the sparsest solution.

˙̂
X = Θ(X̂)Σ (5.26)

Here, Σ ∈ Rp×n represents the matrix of regression coefficients that determine which candi-

date functions are active in the right-hand-side dynamics. Since we seek a sparse solution, the

columns of Σ are sparse vectors with a majority of the elements equal to zeros. Once Σ has been

determined, a model of the low-dimensional system may be constructed with the respective func-

tional forms used to generate data in the library. Please note that the states have not undergone any

linear or nonlinear transformation to determine the approximate dynamics. We emphasize here

that Θ has a sufficiently rich column space in order for it to represent the dynamics within its

range. In other words, enough candidate functions are to be chosen in the library that the ROM can

be written as a weighted sum of a few terms. From a practical point of view, one may test many
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Algorithm 4 Learning the EDMD dictionary using sparse regression

1: Collect the time-series data and construct the reduced state matrix, Ĉ

2: Numerically differentiate Ĉ to construct ˙̂
C

3: Select the candidate functions and populate the library, Θ

4: Solve the least-squares problem ˙̂
C = ΘΣ . this gives Σ with all non-zero coefficients

5: Initialize λ . assign desired value to the threshold parameter
6: for i = 1:iter do

bigcoeffs = {j : |Σ[j]| ≥ λ} . select coefficients greater than threshold
Σ[bigcoeffs] = 0 . apply hard threshold
˙̂
C = ΘΣ[bigcoeffs] . solve least-squares problem for new non-zero coefficients

7: Perform cross-validation to determine λ in the algorithm . optional

different functions and use the trade-off between complexity and accuracy of the resulting model

as a diagnostic tool to determine the correct basis to represent the dynamics.

To determine solutions to the above regression problem, one can adopt any available sparsity

promoting algorithms. For example, the LASSO developed in statistics works well in providing

a sparse solution to a regression problem with minimum residue. However, when the data matrix

has high correlations between columns due to the addition of spatially correlated noise, variable

selection may fail to be consistent when using path dependent regression methods like the LASSO.

In such cases, an `2 regularized variation of the least-squares, called the ridge regression [156], can

be used to avoid the issue due to correlations [157]. So, depending on the nature of the regression

problem and the available time-series data, one can incorporate any regression method to find the

sparse solution to determine the required ROM. In our case, we used the ordinary least-squares

method with an additional hard thresholding step to force some of the coefficients to zero. More

specifically, we used an iterative process where the coefficients with magnitudes smaller than a

threshold tolerance, λ, are forced to become zero and the process is repeated till the remaining

coefficients converged. Since, each value of the threshold tolerance, λ, will give a different level

of sparsity in the final solution, we used cross-validation to find the best tolerance. Algorithm 4

presented below summarizes the proposed method to develop physics-based interpretable ROMs.

Please note that several pre-processing steps may be required to obtain a good solution. For
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example, depending on the magnitude of the data, if the higher powers are either very large or

very small, it will be extremely useful to normalize all the columns of Θ to unit length before

solving for sparse regression coefficients Σ. Also, if a high measurement error is expected to exist

in the system, it may be necessary to perform data filtering for a proper evaluation of the numerical

derivatives before solving for Σ.

5.4.2 Simulation results

We outline the numerical experiments carried out on a nonlinear hydraulic fracturing process

model and the simulation results for comparing the proposed method to the available model re-

duction methods with respect to the model accuracy and future state prediction for designing a

model-based feedback controller. All the calculations presented in this work were carried out in

Matlab version 8.5.0.197613 installed on an Intel (R) core (TM) i7-4790 CPU @ 3.60 GHz Dell

workstation. The data required for constructing the state matrices was obtained by solving the

high-fidelity model. We first collected the time-series data of proppant concentration across the

fracture to construct the state, X̂, and the corresponding time derivative, ˙̂
X, matrices, respectively.

The derivatives are computed using implicit finite difference schemes. Note that in this work, we

assume the data is clean with no measurement noise added to it. In the presence of noisy data, one

can use a more robust numerical differentiation to compute the time derivatives accurately.

The next step is to create a large library of candidate terms that may appear in the approximate

model. From the proppant concentration data available from the high-fidelity simulations, we

realize that the system closely resembles an empirical first-order plus dead time (FOPDT) model.

Because of the simultaneous fracture propagation and proppant transport, there is a time delay

in the input variable, i.e., it takes some time for proppant particles injected at the wellbore to

reach a particular spatial location. Based on this observation, we constructed the library, Θ, using

linear functions of the concentrations at the six locations. Additionally, the time delay in the input

variable is incorporated into the model implicitly by constructing six inputs (one for each location)

based on the time it takes for the inlet concentration to reach the specific location. This is one of

the main advantages of the proposed method because any a priori knowledge of the system can be
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readily incorporated. Since we consider only linear functions in the library, the total number of

columns in Θ is p = 12. More specifically, the library of the candidate functions is constructed as

shown below.

Θ(Ĉ,u) =



C1(t1) · · · C6(t1) C0,1(t1) · · · C0,6(t1)

C1(t2) · · · C6(t2) C0,1(t2) · · · C0,6(t2)

... . . . ...
... . . . ...

C1(tm) · · · C6(tm) C0,1(tm) · · · C0,6(tm)


m×12

(5.27)

where Ci(t), i = 1, · · · , 6 is the proppant concentration at the six locations considered inside the

fracture, and C0,i(t), i = 1, · · · , 6 is the time-delayed input proppant concentration directly acting

on the specific location.

Once the library is populated, the final step in the method is to solve a sparse regression prob-

lem, Eq. (5.26), to obtain the regression coefficients, Σ, that provides a sparse representation of

the dynamics.The algorithm converged to the final solution in a small number of iterations. The

final solution of the regression problem is presented in Table 5.2.

C1 C2 C3 C4 C5 C6

C1 -0.01450 0 0 0 0 0
C2 -0.00399 -0.00881 0 0 0 0
C3 0 -0.00458 -0.00623 0 0 0
C4 0 0 -0.00258 -0.00487 0 0
C5 0 0 0 -0.00144 -0.00451 0
C6 0 0 0 0 -0.00180 0.00350
C01 0.02041 0 0 0 0 0
C02 -0.00150 0.01430 0 0 0 0
C03 0 0 0.01205 0 0 0
C04 0 0 -0.00214 0.01091 0 0
C05 0 0 0 -0.00352 0.01075 0
C06 0 0 0 0 -0.00398 0.00855

Table 5.2: Regression coefficients for the ROM of the hydraulic fracturing process. Reprinted with
permission from [158].
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Figure 5.3: Inlet proppant concentration, C0(t), profile used to train the developed reduced-order
models. Reprinted with permission from [158].

We compared the proposed method with other model reduction techniques with respect to

model accuracy and future state prediction using a set of training and validation data. To this end,

we selected MOESP and DMD techniques. The training input-output data required to develop

ROMs has been obtained from the open-loop simulations of the hydraulic fracturing process. The

training input profile has been designed to mimic the practically viable inlet proppant concentration

profile in the field. Specifically, a simple uniformly increasing staircase-like input profile has been

considered to solve the dynamics of the process, which is presented in Figure 5.3. The input-output

data is then used to obtain ROMs using both the MOESP and DMD methods. To make a consistent

comparison, 6th order models are constructed using both MOESP and DMD methods similar to

the order of the ROM developed using the proposed method. Figure 5.4 illustrates this comparison

with respect to the proppant concentration profiles at six different locations.

It can be observed from the plot that all the ROMs perform comparably in approximating the

solutions to the original high-fidelity model. This observation becomes more apparent in Fig-

ure 5.5, which represents the error profiles for all the ROMs. The error is calculated using the

`2-norm of the residuals in the following manner:
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Figure 5.4: Approximate solutions of the proppant concentration profiles showing the comparison
between different reduced-order models with the true measurements at six different locations inside
the fracture. Reprinted with permission from [158].

E(t) = ‖x(t)− x̂(t)‖2 (5.28)

where ‖.‖2 denotes the `2-norm, x(t) and x̂(t) are state vectors obtained from the high-order

discretization of the PDE and the reduced-order model, respectively.

To validate the performance of the generated ROMs, approximate solutions were computed us-

ing open-loop simulations in response to a different input profile. A simple step input profile shown

in Figure 5.6, is given to the system as the validation input. The results of the model validation us-

ing all the different methods is shown in Figure 5.7. As is evident from the plots, the approximate

solution generated using the proposed ROM is more accurate and closer to the original solution

compared to DMD method. However, the performance of the proposed method and MOESP are

comparable. This is also shown clearly in Figure 5.8, which represents the approximation error
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Figure 5.5: Profile of the `2 norm error for training data. Reprinted with permission from [158].
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Figure 5.6: Inlet proppant concentration, C0(t), profile used to validate the developed reduced-
order models. Reprinted with permission from [158].

computed for the validation input.

Although there is no significant difference between the two methods in terms of model accuracy

and future state prediction, the proposed method has an added benefit of determining physics-based

and interpretable functions that provide valuable insights into the underlying physical phenomena
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Figure 5.7: Approximate solutions of the proppant concentration profiles for the testing data set
showing the comparison between different reduced-order models with the true measurements at
six different locations inside the fracture. Reprinted with permission from [158].
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Figure 5.8: Profile of the `2 norm error for testing data. Reprinted with permission from [158].
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of the system. As can be seen from the generated ROM shown in Table 5.2, the proppant concen-

tration at a spatial location inside the fracture is a function of its neighboring locations. This is

an accurate representation because in a hydraulic fracturing process, due to the simultaneous frac-

ture propagation and fluid leak-off into the surrounding reservoir, the concentration at a location

depends on the adjacent locations. Let us suppose the fracture has propagated to a spatial node n.

As the proppant is transported to that location, its concentration increases with time. Additionally,

a further increase in concentration is also observed due to the fluid leaking off into the reservoir.

However, due to simultaneous fracture propagation, a new spatial location, say n + 1 becomes

available which facilitates the transport of the proppant away from the location n. Therefore, the

concentration at n is slightly decreased or remains constant depending on the magnitude of the in-

put. This phenomenon can be clearly seen in the generated ROM where the states (concentration) at

a spatial location are direct functions of the neighboring states. Because the proposed method does

not transform the states in any manner, it results in a ROM that can provide physical interpretations

and insights into some of the significant underlying phenomena. Therefore, by reformulating the

learning problem as a sparse regression problem, we were able to determine the functional form

of the dynamics. These functions can now be considered as observables to construct the Koopman

basis functions.

5.5 Regulating spatial proppant concentration distribution

In Chapter 5.4, we developed a dictionary learning algorithm by reformulating the problem as

a sparse regression problem. Based on these results, the Koopman basis was chosen using linear

functions of the concentrations at the six locations. Therefore, the total number of functions in the

basis {φi}Ni=1 is equal to N = 6. Note that this is again a state-inclusive basis.

φi(x) ∈
{ 6∏
j=1

x
mj
j | (m1, · · · ,m6) ∈ Z+

0 ,

6∑
j=1

mj = 1
}

=⇒ φ(x) = [C1 C2 · · · C6]T

(5.29)
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However, the complexity of this system actually lies in the way that the input is handled, not in

the states themselves. If a simple linear basis was used without proper handling of the input,

the obtained result failed to accurately represent the system. Since it takes different times for

the inlet concentration to reach different locations inside the fracture, this time delay in the input

variable was incorporated into the model implicitly by constructing 6 auxiliary inputs (i.e., one for

each location) based on the time it takes for the inlet concentration to reach the specific location,

u ∈ R6. The numerical values for input time-delays were determined from the simulation data.

The validation results of the identified Koopman linear model are shown in Figure 5.9. It

can be seen that the Koopman model was able to identify the measured concentration dynamics

fairly accurately. This was further verified from the low Avg. RMSE value of 7.19% when 100

trajectories were validated with different inputs. Please refer to Table 5.1 for more details.

5.5.1 Closed-loop results

Based on the optimal length and width computed in the previous example in Chapter 5.3, a

target concentration can be computed as follows:

Ctarget =
Mprop

HLtargetWtarget

= 9.5 ppga (5.30)
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Figure 5.9: The measured concentration output of the system (black) superimposed with the pre-
dictions of the Koopman-based model (blue dotted) given the same initial condition and control
inputs. Reprinted with permission from [109].

The control objective is to achieve the above concentration Ctarget uniformly throughout the

fracture. There are several constraints associated with the problem. The input profile should

increase monotonically to follow the practical implementation in the field (C0,k ≤ C0,k+1). A

material constraint given by 2Q0∆
∑
C0,k = Mprop is also required to ensure the required amount

of proppant is injected into the fracture. All these constraints are introduced into the MPC problem

as linear constraints in a similar manner as described in Chapter 5.2. The following optimization

problem was then solved over the prediction horizon, and the first step of the solution was applied to

the high-fidelity model in a sample-and-hold fashion, and the procedure repeated at every sampling

time until the end of treatment.
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Minimize
uk,··· ,uT−k

(DφT − Ctarget)TQ(DφT − Ctarget)

s.t φk+j = Aφk+j−1 +Buk+j−1, j = 1, · · · , T − k

φk = φ(xk)

Guu ≤ 0

Gmu = Mprop

u ≤ u ≤ u

(5.31)

where D is the identity matrix in this example. The cost matrix Q was taken to be identity.

The input constraint matrix Gu ∈ RT−k×T−k is an upper bi-diagonal matrix with Gu(j, j) =

1, Gu(j, j + 1) = −1 ∀j = 1, · · · , T − k. Essentially, this constraint specifies that the injected

concentration at a time step k + 1 is greater than or equal to that of k, i.e., an increasing input pro-

file. This constraint was used to obtain a practical pumping schedule, one that closely resembles

the field. The material constraint vector Gm is given by Gm ∈ R1×T = 2Q0∆ ∗ 11×T where 11×j

denotes a row vector whose elements are equal to 1. This constraint ensures that the total mass of

injected proppant, given by the cumulative input concentration, is equal to the pre-specified value

of Mprop.

The results of the Koopman-based MPC are presented in Figure 5.10. From the figure it can

be seen that the derived controller was able to regulate the final proppant concentration to the pre-

specified target value throughout the fracture. The pumping schedule (i.e., the input concentration

profile required to achieve the desired proppant concentration) for the corresponding process pa-

rameters over the entire operation time is shown in Figure 5.10b. Please note that the developed

approximate models considered only measurements at 6 (out of 451) locations; in the control prob-

lem, we do not necessarily require knowledge of the entire system state but only of some obser-

vations which are used in the controller. We see that even by using partial observations, the linear

model was able to control the PDE fairly accurately. Moreover, the dimension of the optimization

problem is reduced because instead of using a high-dimensional discretization and a higher order
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time integrator, we use a matrix vector product to predict the dynamics of the observed states.
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Figure 5.10: Final proppant concentration and input trajectories of the closed-loop process deter-
mined by the Koopman MPC. Reprinted with permission from [109].

5.6 Conclusions

In Chapter 5, we successfully applied the Koopman operator theory for system identification

and feedback control of a hydraulic fracturing process. We studied two cases: (1) fracture prop-

agation and (2) proppant transport. The results showed that in both the examples presented, the

generated linear models were able to accurately predict the evolution of all the observed states and
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resulted in a very small Avg. RMSE value (3.79% and 7.19%) over 100 trajectories with different

inputs. One major difference in the examples is in the choice of the Koopman basis functions. In

the case of fracture propagation, since the dynamics were relatively simple, a canonical basis like

the bilinear basis functions was able to accurately capture the observed dynamics. However, the

case of proppant concentration is more sophisticated where the dynamics are highly coupled and

nonlinear. In such cases, it is observed that a priori process knowledge can be leveraged to select

the required basis of observables. Specifically, sparse regression based dictionary identification

was used as a precursor to obtain the most relevant functions in the basis.

The obtained Koopman models for both the cases were then used to design feedback controllers

to regulate the fracture geometry and proppant concentration. Due to the superior predictive capa-

bilities of the linear models, the derived controllers achieved the final desired fracture length while

satisfying the constraint on average fracture width and uniform proppant concentration at the end

of the fracturing treatment. Moreover, because of its linear structure, the Koopman model resulted

in a convex quadratic MPC problem that is amenable to be solved using any of the available lin-

ear MPC solvers. Although future work in this direction will need to certify these controllers,

providing guarantees on stability, and a rigorous quantification of error and uncertainty bounds,

the current work shows the potential of the operator-theoretic framework for approximation and

control of chemical and petroleum engineering processes.
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6. KOOPMAN LYAPUNOV-BASED MODEL PREDICTIVE CONTROL OF NONLINEAR

CHEMICAL PROCESS SYSTEMS∗

In Chapter 5, we introduced a new operator theoretic viewpoint of dynamical systems and

obtaining linear representations for nonlinear systems. By virtue of linearity, Koopman operator

facilitates the use of existing linear control methodologies on nonlinear systems and promotes

convex optimization based solutions for predictive control formulations with the computational

complexity comparable to that of linear systems (with the same number of inputs and states).

However, in Chapter 5 as well as in several recent research works [10, 11, 12, 13], the tightness

of the linear predictors is not established and the closed-loop guarantees on stability are not well

studied. This is critical because, in practice, EDMD models are known to have closure issues

as there is no guarantee that the selected observables form Koopman invariant subspaces [72, 147,

159]. This is especially true for the systems with multiple steady states (as a linear system can only

characterize a single steady state). This may lead to spurious dynamics which may subsequently

lead to unstable controllers.

Motivated by these considerations, in Chapter 6, we propose a systematic approach for the

design of a stabilizing feedback predictive controller for nonlinear systems. To this end, we pro-

pose to integrate Koopman based linear predictors with Lyapunov-based model predictive control

(LMPC) scheme [160]. LMPC is known for its explicit characterization of stability properties and

guaranteed closed-loop stabilization of nonlinear systems in the presence of state and input con-

straints [161]. LMPC is a powerful tool that combines the complementary properties of the CLF

(stability) and predictive control (optimality) approaches. Recently, researchers have also success-

fully designed LMPC that guarantees closed-loop stability even when (linear) empirical models

are used in the design as long as a set of assumptions is satisfied [162]. Consequently, in this work,

we integrate Koopman linear predictors with LMPC for the stable control of nonlinear dynamical

∗Reprinted with permission from “Koopman Lyapunov-based model predictive control of nonlinear chemical
process systems,” by A. Narasingam, and J. S. Kwon, AIChE Journal, 2017, 63, e16743. Copyright 2019 by John
Wiley and Sons.
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systems. Specifically, we perform a lifting (nonlinear transformation) of the system states to an

observable space using nonlinear functions and obtain linear representations of the system in the

observable space. We then design LMPC based controllers in the same observable space that stabi-

lize the nonlinear system. The proposed method introduces an attractive modification that exploits

the construction of linear predictors and the structure of LMPC to yield a completely standard con-

vex (quadratic) optimization problem (provided the state and input constraints are linear) within

the LMPC framework. Therefore, the large library of efficient solvers available for linear MPC can

be readily used to solve the proposed Koopman based LMPC scheme for the control of nonlinear

systems.

6.1 Feedback control design

The methodology presented in Chapter 5.1.2 allows us to construct accurate linear predictors

of the dynamical system in the form of Eq. (5.6). Here, we will utilize these predictors to design a

model based control scheme to control the original nonlinear system. To this end, the LMPC is a

powerful tool for the design of a stabilizing feedback controller which is also optimal with respect

to the state and input constraints. This is particularly attractive in this context because the linear

predictors obtained using regression methods for approximating the Koopman operator are known

to have closure issues which may lead to unstable controllers. More specifically, the premise

of EDMD is that if the set of observable functions is “rich enough” we can then reconstruct the

original system states from these observables. However, since the dictionary depends on our choice

of variables, in most applications, it is possible to miss some elements and therefore the Koopman

operator cannot be fully represented in the chosen dictionary. As a result, the subspace spanned by

the dictionary of observable functions is not guaranteed to be forward invariant, which may lead to

closure issues [72, 147, 159]. Moreover, as described in Chapter 5.1.2, we numerically compute a

projection of the Koopman operator K onto the finite dimensional subspace rather than the infinite

dimensional Koopman operator, K, itself. Therefore, the tightness of these linear predictors is not

guaranteed and this may lead to a closed-loop design that is unstable. To address this issue, in

this work, we use the Koopman based linear predictors in an LMPC framework which allows for
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an explicit characterization of the stability region and provides guarantees on controller feasibility

and closed-loop stability.

6.1.1 Lyapunov-based model predictive control

In Chapter 6.1.1, we briefly describe the LMPC design proposed in [160]. We recall that LMPC

is a control strategy that is designed based on an explicit stable (albeit not optimal) control law h(x)

and a Lyapunov constraint by virtue of which the controller is able to stabilize the closed-loop

system. Before we go into the formulation, the LMPC framework requires certain assumptions

that need to be satisfied by the nonlinear dynamical system considered in Eq. (5.1).

Assumption 1. The dynamics f that govern the evolution of system states is assumed to be locally

Lipschitz on Rn × Rm such that f(0, 0) = 0. This implies that the origin is an equilibrium point

for the nominal system. Note that this assumption on f is reasonable which holds true for many

chemical processes.

Assumption 2. The control input space U is restricted to be nonempty and convex.

Assumption 3. Stabilizability assumption. The nonlinear systems considered are restricted to a

class of stabilizable systems which implies the existence of a feedback control law u(t) = h(x)

that satisfies input constraints for all x(t) inside a given stability region and renders the origin

of the closed-loop system asymptotically stable. This is equivalent to assuming that there exists a

Lyapunov function for the nominal system (Lyapunov theorem).

Based on the above assumptions, the predictive control of the system of Eq. (5.1) under LMPC
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is formulated as follows:

min
u∈S(∆)

∫ tk+Np

tk

[‖x(τ)‖W + ‖u(τ)‖R]dτ, (6.1a)

s.t ˙̂x(t) = f(x(t),u(t)) (6.1b)

x̂(tk) = x(tk) (6.1c)

V (x(t)) ≤ r (6.1d)

∂V (x(tk))

∂x
f(x(tk),u(tk)) ≤

∂V (x(tk))

∂x
f(x(tk),h(x(tk))) (6.1e)

where S(∆) is the family of piece-wise constant functions with sampling period ∆, Np is the

prediction horizon, W ∈ Rn×n and R ∈ Rm×m are positive definite weighting matrices, x̂ is the

predicted state trajectory, with initial (measured) state x(tk), due to the application of the control

input u, and V (x) is the Lyapunov function associated with the explicit control law h(x). The

manipulated input (optimal solution) of the above system under the LMPC control law is defined

as

u(t) = u?(t|tk), ∀t ∈ [tk, tk+Np) (6.2)

where u?(t|tk) = [u?(tk), · · · ,u?(tk+Np)]. The first value of u?(t|tk) is applied to the closed-loop

system for the next sampling time period t ∈ [tk, tk+1) and the procedure is repeated until the end

of operation.

In the LMPC formulation of Eqs. (6.1a)- (6.1c), Eq. (6.1a) denotes a performance index that is

to be minimized, Eq. (6.1b) is the nominal model of the nonlinear system used to predict the future

evolution of the states, and Eq. (6.1c) provides the initial state which is obtained as a measurement

of the actual system state. In addition to these constraints, the LMPC formulation considers the

Lyapunov constraints, Eq. (6.1d) and (6.1e). Eq. (6.1d) ensures that the closed-loop system stays

within the stability region Ωr = {x ∈ Rn : V (x) ≤ r} and Eq. (6.1e) guarantees that the rate

of change of the Lyapunov function, V (x), at time tk is smaller than or equal to that of the value

obtained if the explicit control law h(x) is applied to the closed-loop system in a sample-and-hold
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fashion. These constraints allow the LMPC controller to inherit the stability properties, i.e., it

possesses the same stability region Ωr as the controller h(x). This implies that the (equilibrium

point of) closed-loop system is guaranteed to be stable for any initial state inside the region Ωr

provided the sampling time ∆ is sufficiently small. Note that because of this property, the LMPC

does not require the terminal constraint generally used in a traditional MPC setting. Additionally,

the feasibility of LMPC is also guaranteed because u = h(x) is always a feasible solution to the

above optimization problem. Even though the above formulation does not explicitly consider the

state and input constraints, they can be readily incorporated.

6.1.2 Integrating EDMD with LMPC

In Chapter 6.1.2, we show how the linear predictors based on EDMD can be embedded into the

most general LMPC formulation described above. Additionally, we propose a simple modification

which will result in a standard convex quadratic optimization problem. This attractive feature has

already been alluded to in Chapter 5, specifically via Eq. (5.16)

In order to use the Koopman based model in the LMPC framework, the problem must be

formulated in the observable (lifted) space. Therefore, at each time step tk the predictions of

the system trajectory are initialized from the lifted state zk = φ(xk). Similarly, the objective

function and the state constraints are all transformed to the lifted space. In addition, we propose

to include the Lyapunov function in the dictionary of nonlinear observable functions by setting

for some j, φj = V (x). By including the Lyapunov function as one of the observable functions,

we can effectively transform the nonlinear Lyapunov constraint in Eq. (6.1d) to a linear one. For

example, if we set φ1 = V (x) we can simply define a vector D = [1, 0, · · · , 0]T ∈ RN such that

Dzk = V (xk). Now, writing the Lyapunov constraint of Eq. (6.1d) in discrete formulation, we

have

V (F(xk,uk))− V (xk) ≤ V (F(xk,h(xk)))− V (xk) (6.3)
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Substituting V (xk) = Dzk into the above equation, we get

Dzk+1 −Dzk ≤ V (F(xk,h(xk)))− V (xk) (6.4)

We exploit the linear structure of the nonlinear system in the observable space to transform the

nonlinear LMPC formulation to a standard convex quadratic optimization problem. Intuitively, we

can see that a Lyapunov function is indeed a particular observable function, the decrease of which

dictates the stability of a nonlinear system. The motivation behind this comes from the fact that

operator-theoretic approaches have been successfully applied (albeit implicitly) to nonlinear sys-

tems for global stability analysis and control [8]. Particularly, Lyapunov’s stability criterion relies

on the operator-theoretic framework which uses a (Lyapunov) function description in the infinite

dimensional function space to analyze the stability of a system, rather than a point wise description

that traditionally studies stability with respect to equilibrium points in the finite-dimensional state

space.

Based on the above modifications, the proposed Koopman-LMPC framework, in discrete for-

mulation, solves the following optimization problem at each time step k of the closed-loop opera-

tion.

min
ui

Np∑
i=0

(
(Czi)

TW (Czi) + ui
TRui

)
(6.5a)

s.t zi+1 = Azi + Bui, i = 0, · · · , Np − 1 (6.5b)

z0 = φ(xk) (6.5c)

Eizi + Hiui ≤ bi, i = 0, · · · , Np − 1 (6.5d)

Dzi ≤ r, i = 0, · · · , Np − 1 (6.5e)

Dz1 −Dz0 ≤ V (F(xk,h(xk)))− V (xk) (6.5f)

In the above formulation, Eq. (6.5a) represents the quadratic cost function which has been trans-

formed to the observable state-space, Eq. (6.5b) denotes the linear predictors based on EDMD
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that describe the evolution of the lifted states with matrices A and B constructed as described in

Chapter 5.1.2, Eq. (6.5c) determines the initialization z0 using the observable functions mapping

φ, Eq. (6.5d) gives the state and input polyhedral constraints using the matrices Ei ∈ Rnc×N ,Hi ∈

Rnc×m and the vector bi ∈ Rn
c , and Eqs. (6.5e) and (6.5f) correspond to the Lyapunov constraints

(Eqs. (6.1d) and (6.1e)) which guarantee the closed-loop stability of the system. The above op-

timization problem of Eq. (6.5) is parameterized by the current state xk of the nonlinear system

(see Eqs. (6.5c) and (6.5f)). Please note that Eq. (6.5f), although appears nonlinear, is still a linear

constraint because it requires computation of the Lyapunov function derivative of the system under

the nonlinear control law at the current state value alone, which is available from the measurement.

The above optimization problem defines a feedback controller uk = u?0 where u?0 denotes the first

component of the optimal solution to Eq. (6.5) parameterized by the current state xk. This problem

is solved at each time step k of the closed-loop operation.

Several important features of the proposed method are summarized below:

1. The optimization problem Eq. (6.5) is a convex quadratic programming problem even when

the original dynamic model is nonlinear. Therefore, it avoids solving difficult non-convex

optimization problems and allows for a fast evaluation of the control input.

2. The evaluated controller possesses the same stability region, Ωr, as that of the nonlinear

control law h(x), thereby mitigating the closure issues that otherwise plague the linear pre-

dictors developed using the EDMD algorithm that solves a regression problem.

3. As previously shown in Chapter 5, if nonlinear state constraints are present in the sys-

tem, they can be absorbed into the observable function dictionary φ. For example, if the

state constraints are given as ci(xi) ≤ 0, i = 1, · · · , Np where ci are scalar-valued, by

simply considering φ = [x, V (x), ci, · · · , φN−n−1−nc ] we can obtain the matrices Ei =

[01×n+1, 1, 0N−n−1−i] such that the nonlinear state constraints can be rendered linear. This

is also true if the objective function is defined by nonlinear functions (other than quadratic

costs) such as those prevalent in economic MPC design [162].
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6.2 Application to chemical process example

In Chapter 6.2, we illustrate the proposed method on a well mixed, non isothermal continuously

stirred tank reactor (CSTR) example. We consider an irreversible exothermic reaction, A → B,

where the conversion of reactant A to product B is governed by second-order kinetics. The feed

to the reactor is pure A at a constant flow rate F , inlet temperature TA0 and molar concentration of

CA0. Since the process is non isothermal, heat is either removed or provided to the system through

the reactor jacket. The dynamic model of the system can be easily obtained by applying mass and

energy balances as given below:

dCA
dt

=
F

Vr
(CA0 − CA)− k0e

−E
RTrC2

A

dTr
dt

=
F

Vr
(TA0 − Tr)−

∆H

ρCp
k0e

−E
RTrC2

A +
Q

ρCpVr

(6.6)

where CA and Tr are the concentration of reactant A and the reactor temperature, respectively

(system states), Q is the rate of heat input to the reactor (manipulated input), Vr is the volume of

the reactor, k0, E,∆H denote the pre-exponential factor, activation energy and the enthalpy of the

reaction, respectively, and ρ, Cp denote the density of the fluid and its heat capacity, respectively.

The above system is characterized by three steady states (two asymptotically stable and one

unstable) for Qs = 0 KJ/h which is the steady-state value of the manipulated input. The con-

trol objective is to operate the CSTR in a compact state-space around the steady-state given

by [CAs, Trs] = [1.22 kmol/m3, 438.2 K]. The given steady-state is open-loop stable. The

reason for choosing this steady-state for operation is that it has been shown to maximize the

time-averaged production rate of product B [162]. Throughout the rest of Chapter 6.2, the dy-

namic model in Eq. (6.6) is used in its deviation form that defines the state and input vectors as

x = [CA − CAs, Tr − Trs]
T and u = [Q − Qs], respectively. Therefore, the origin is a stable

equilibrium point for the new system.
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Property Unit Value
Inlet temperature, T0 K 300
Volume, V m3 1.0
Pre-exponential factor, k0 m3/hr/kmol 8.46× 106

Pure fluid density, ρ kg/m3 1000
Heat capacity, Cp kJ/kg/K 0.231
Flow rate, F m3/hr 5.0
Activation energy, E kJ/kmol 5.0× 104

Enthalpy of reaction, ∆H kJ/kmol −1.15× 104

Gas constant, R kJ/kmol/K 8.314

Table 6.1: Parameters of the CSTR process. Reprinted with permission from [152].

6.2.1 Model identification and validation

To demonstrate the application of EDMD, we assume that the nonlinear dynamic model for the

CSTR, Eq. (6.6), is not available and a linear time invariant state-space model (in the observable

space) will be identified and validated using the algorithm described in the Chapter 5.1.2. In order

to obtain the predictors, we first collect the data by solving the set of ODEs using the Matlab solver

ode45 with an integration time step of h = 1 × 10−4 hr. The values of the process parameters

used in the simulations are presented in Table 6.1. Since the goal is to design a controller, we

used closed-loop simulation data to build the linear predictors. The data required to construct these

predictors using the EDMD algorithm is obtained from 250 simulated trajectories over an operating

period of 1 hr. A total of 1000 time samples per trajectory are used to populate the required

data matrices. Each trajectory starts with an initial condition generated randomly over an interval

around the operating steady-state, and is subjected to an input signal determined by a feedback

controller applied to the process. The manipulated inputs are bounded as−5×105 ≤ Q ≤ 5×105

kJ/hr. We assume that the output is equal to the state (i.e., a state feedback problem). This results

in the data matrices X and Y of size 2× 25 · 104 and the matrix U of size 1× 25 · 104.

For unknown systems, there is no established way to select the dictionary although some canon-

ical choices like radial basis functions have been proposed as a good starting point. However, in

this example, we wanted to show the flexibility of the method where any available knowledge of
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the system can be easily incorporated into the dictionary. Specifically, the observable functions

φi are chosen as the state itself, quadratic and exponential functions of the state, and a quadratic

Lyapunov function so the dimension of the observable state-space is N = 7.

φ =

[
x1 x2 x2

1 x2
2 e1/x1 e1/x2 xTPx

]T
(6.7)

where

P =

1060 22

22 0.52

 (6.8)

Using the collected data and the constructed library φ, we determined approximate linear predic-

tors for the CSTR model described in Eq. (6.6).

Remark 18. The choice of this library is highly dependent on the specific process of interest. For

example, in the case of hydraulic fracturing where only the proppant concentration at different

spatial locations are important it was shown that considering monomials of the concentration

terms yields accurate reduced-order models that can be used in the design of feedback controllers

[158]. Therefore, it is intuitive to use these monomials as the observable functions in the EDMD

algorithm.

In order to evaluate the performance of the Koopman based linear predictors, we compared its

prediction performance with two commonly used methods for obtaining linear models.

1. Linear model obtained using local linearization of the dynamics at the stable steady-state.

2. Linear model obtained using a subspace identification method, MOESP [21].

The identified matrices for the localized linear model of the CSTR in continuous-time are given

below:

A =

−27.76 −0.473

1130 18.1

 , B =

 0

0.0043

 (6.9)

132



where as to obtain the MOESP based model, we used the input/output data to regress a second-

order linear model using n4sid function in Matlab.

Figures 6.1 and 6.2 show the output predictions of the above described linear models for two

different initial conditions (randomly) chosen from the training data set. From the figure it can

be seen that a relatively good agreement between the true model and the identified linear models

is achieved with respect to the training data. The associated input trajectories are depicted in

Figure 6.3. To validate this model, we used additional responses generated by applying a series

of step, impulse and random input signals to the process initiated from a given initial condition.

Specifically, (a) a step of magnitude Q = 5000 kJ/hr was given to the heat rate input starting

at t = 0.5 hr, (b) an impulse was numerically simulated using a rectangular pulse of magnitude

Q = −10000 kJ/hr for one sampling period starting at t = 0.5 hr, and (c) a random heat rate profile

satisfying the input bounds was generated using rand function in Matlab, which was provided to

the system throughout the operating period.

The results of the model validation are shown in Figures 6.4-6.6. As can be seen from the fig-

ures, the best prediction performance is achieved by Koopman based linear predictors followed by

the local linearization model. Please note that the prediction quality of the MOESP based model

can be enhanced by using a higher-order model. It is well known that for a CSTR process, the local

linearization around the stable steady-state provides a very good approximation to the original sys-

tem. This is clearly reflected in the above figures. Nevertheless, the Koopman based linear models

perform even better by virtue of enriching the data with nonlinear observable functions. To assess

this quantitatively, the relative root mean squared errors (RMSE) of all the models starting from

the same initial condition subjected to random input profiles are averaged over 100 simulations and

presented in Table 6.2. The average RMSE is computed as

RMSE =
‖xapprox − xtrue||fro

‖xtrue‖fro

Average RMSE =
1

100

100∑
i=1

RMSEi

(6.10)
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Figure 6.1: Prediction comparison of the CSTR response with respect to the input profile shown
in Figure 6.3a that was randomly chosen from the set of training data. Reprinted with permission
from [152].

where ‖ · ‖fro is the Frobenius norm. From the table, we observe that the Koopman based linear

model is superior to both the local and MOESP models in terms of prediction accuracy. To test the

closed-loop performance of these predictors, we utilize them in the design of a feedback controller

below.

6.2.2 Closed-loop simulation results

The formulation used in Eq. (6.5) needs an explicit controller (see Eq. (6.5e)) to be constructed

based on which the Lyapunov constraint and the stability region of the closed-loop operation are

characterized. To this end, we design a Lyapunov-based controller developed initially by Son-
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Figure 6.2: Prediction comparison of the CSTR response with respect to the input profile shown
in Figure 6.3b that was randomly chosen from the set of training data. Reprinted with permission
from [152].

tag [163] for a class of input affine nonlinear dynamical systems of the form:

ẋ = f(x) + g(x) · u (6.11)

Utilizing the above notation, the nonlinear controller for the rate of heat input is given as

h(x) =


−LfV+

√
LfV 2+LgV 4

LgV
, if LgV 6= 0

0, if LgV = 0

(6.12)

where f(x) and g(x) are the terms in the ODE corresponding to the temperature of the reactor in

Eq. (6.6), and LfV, LgV are the Lie derivatives of the Lyapunov function along the trajectories of
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Figure 6.3: The associated input profiles selected from the training data sets. (a) input profile cor-
responding to Figure 6.1. (b) input profile corresponding to Figure 6.2. Reprinted with permission
from [152].

Predictor Average RMSE
Koopman 0.5549
Local linear 0.6323
MOESP 0.6331

Table 6.2: Average RMSE of different predictors over 100 random input profiles. Reprinted with
permission from [152].

the functions f(x) and g(x), respectively (for example, LfV = ∂V
∂x
f(x)). The quadratic Lyapunov

function considered in this example is given in Chapter 6.2.1. Following [162], the stability region

Ωr = {x ∈ Rn : V (x) ≤ r}, which will be used in the LMPC formulation, is taken as r = 64.3.

Using the nonlinear control law shown above, we designed the proposed LMPC formulation in

the form of Eq. (6.5) using the Koopman based linear predictors and the Lyapunov constraint. The

sampling time and the prediction horizon of the optimization problem are taken as ∆ = 0.01 hr

andNp = 10 (i.e., 0.1 hr), respectively. The weighting matrices are taken asW = diag(102, 1) and

R = 10−6 based on the magnitudes of x1, x2 and u. In this specific example, we did not consider

any explicit state constraints so that Ei,Hi,bi = 0. At the beginning of each sampling interval,
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Figure 6.4: Prediction comparison of the CSTR response with respect to a impulse input profile
used to validate the linear models. Reprinted with permission from [152].

the state measurements are assumed to be available, which are used to initialize the linear model,

as shown in Eq. (6.5c), and perform future state predictions. Additionally, the state measurements

are used to calculate h(x) which enforces the Lyapunov constraint of Eq. (6.5e) numerically by

imposing it at the beginning of each sampling period. Please note that the input h(x) was applied

with input saturation at the bounds and setting it to zero at the steady-state according to Eq. (6.12).

The predicted state values are then used in the optimization problem to compute the control inputs

and the corresponding process behavior that minimizes the squared deviation from the origin. At

any time step, k, the optimization is performed over the prediction horizon length of Np, and the

first step, u?0, of the optimal input profile, [u?0, · · · , u?Np−1], is applied to the process in a sample-

and-hold fashion, and this procedure is repeated at every sampling time over the entire operating

period of 1 hr.
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Figure 6.5: Prediction comparison of the CSTR response with respect to a step input profile used
to validate the linear models. Reprinted with permission from [152].

The constrained optimization problem was solved using the interior point solver within fmincon

function in MATLAB R2016b. The default settings of the solver were used with the steady-state

value of the input chosen as the initial guess at every sampling time. The CSTR was initialized

from [x1, x2] = [0.5,−18] and the simulations were performed using an Intel(R) Core(TM) i7-

4790 CPU at 3.60 GHz with a 16 GB RAM and an x64-based processor running Windows 8.1

Enterprise.

The closed-loop trajectories of the CSTR under the proposed linear LMPC scheme are shown

in Figure 6.7. As can be seen from the figure, starting from the initial condition, successful stabi-

lization of the closed-loop system was achieved and the controller was able to drive the system to

its steady-state (dotted line). The proposed controller was able to accomplish this due to accurate

predictions of the Koopman based linear model over the prediction horizon of the optimization
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Figure 6.6: Prediction comparison of the CSTR response with respect to a random input profile
used to validate the linear models. Reprinted with permission from [152].

problem. The associated input profile determined by solving the optimization problem is shown in

Figure 6.8. Note that, in addition to good closed-loop performance, the proposed control scheme

has the benefit of being completely data-driven requiring only state (output) measurements. Also,

the average computation time required to evaluate the control input from the proposed method is

low because it solves a convex quadratic programming problem (when compared to using nonlinear

models within the LMPC framework).

6.3 Conclusions

In Chapter 6, we presented a data-driven method for the design of stabilizing controllers for

nonlinear dynamical systems by integrating Koopman linear predictors within the LMPC frame-

work. The key idea is to compute finite-dimensional approximations to the Koopman operator

which yields linear models that are valid on the entire state space or at least a larger subset of
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Figure 6.7: The closed-loop response of the CSTR under the proposed Koopman based LMPC
scheme for the initial condition of x1 = 0.5 kmol/m3 and x2 = −18 K. Reprinted with permission
from [152].
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Figure 6.8: The optimal input profile of the CSTR determined by the proposed Koopman based
LMPC scheme for the initial condition of x1 = 0.5 kmol/m3 and x2 = −18 K. Reprinted with
permission from [152].

it compared to a small neighborhood around an equilibrium point. These linear models can be

used to predict future state evolution in the design of feedback controllers. Specifically, we pro-
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posed the use of these predictors in combination with LMPC to obtain closed-loop stability of the

time-varying nonlinear operation. Moreover, we showed that the integration of Koopman linear

predictors within the LMPC framework leads to a convex (quadratic) optimization problem which

can be solved using any of the extensive array of solvers suitable for linear MPC. We demonstrated

the application of the proposed method on a nonlinear chemical process example and extensive

simulation results were presented. The average RMSE taken for 100 simulations subjected to ran-

dom input profiles showed the superior performance of Koopman linear predictors compared to

local linearization and subspace identification methods. The resultant linear model was then used

in the design of a feedback controller using the LMPC approach. In the simulations, the LMPC

formulation with the Koopman linear predictors successfully achieved closed-loop stability.

Please note that in order to use the proposed Koopman based LMPC formulation, a CLF for

the nominal system must be available a priori. This is a limitation of the proposed approach;

however, for simple systems such CLFs can be obtained by solving the Riccati equation using the

matrices of the associated linearized system. Furthermore, the stability region used in the LMPC

formulation should be characterized using extensive closed-loop simulations under the nonlinear

explicit controller h(x). Under this control law the stability region is determined as a sufficiently

large level set where the time-derivative of the Lyapunov function along the closed-loop state

trajectories is negative.
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7. DATA-DRIVEN FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS:

KOOPMAN-BASED MODEL PREDICTIVE CONTROL

Although successfully implemented on a broad range of applications, the true potential of

Koopman approach can only be realized by certifying that the controllers will guarantee closed-

loop stability and robustness. Unlike systems characterized by unforced dynamics, providing sta-

bility analysis for forced (input dependent) systems has proven to be difficult because the predictive

capability of the Koopman operator can be significantly impacted unless the role of actuation (i.e.,

the manipulated inputs) is appropriately accounted. To deal with this, [148] redefined the Koopman

operator as a function of both states and the inputs. In [146], a modification of EDMD was pre-

sented that compensates for the effect of inputs. In [15], a bilinear representation was provided in

the Koopman space that is tight and theoretically justified. Using this representation, the authors in

[154] proposed a stabilizing feedback controller which relies on control Lyapunov function (CLF)

and thus achieves stabilization of the bilinear system.

However, the method in [154] neither solved an optimal control problem nor accounted for ex-

plicit state and input constraints. Moreover, it did not comment on the stability analysis of the orig-

inal nonlinear system under the implementation of the designed controller in the Koopman space.

To address this, CLFs were employed in Chapter 6 where a feedback controller was designed for

the Koopman space (i.e., lifted domain) using Lyapunov constraints within a MPC formulation.

The linear structure of the Koopman models was exploited to transform the original nonlinear

MPC problem to a convex quadratic MPC problem that is computationally attractive. However,

the limitation of the method presented in Chapter 6 is that the CLF was derived for the original

system which requires an explicit mathematical expression of the original nonlinear dynamics; it is

particularly challenging when we have limited a priori knowledge of the original nonlinear system.

Additionally, even though we have a good understanding of the nonlinear system, it is in practice

computationally demanding to determine its corresponding CLFs.

To address these issues, in Chapter 7, we seek to improve upon Chapter 6 by proposing a
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stabilizing feedback controller applicable to a general system. The major difference here is that

the Koopman linear system is represented in terms of the eigenfunctions of the Koopman operator

rather than observable functions - for control affine systems this results in a bilinear model in

the (lifted) function space. To do so, first, a modified Koopman system identification is applied

to derive a bilinear representation of the dynamics. Then, a CLF is determined for the bilinear

system in the Koopman eigenfunction space which is employed in the LMPC formulation. Then,

a stability criterion is presented that guarantees stability of the original closed-loop system in the

ε − δ sense based on stability of the Koopman bilinear system. Unlike Chapter 6, the feedback

control design proposed in this work is completely data-driven and does not require any a priori

knowledge of the original system. Moreover, deriving CLFs for the Koopman bilinear system is

much more computationally affordable than the original nonlinear system. In fact, the search for

CLFs can be focused on a class of quadratic functions which are known to effectively characterize

the stability region of simpler systems like the (Koopman) bilinear systems.

7.1 Linear embedding using Koopman eigenfunctions

In Chapter 7.1, we provide background on the Koopman operator for continuous dynamical

systems (unlike Chapter 6) and its relation to forced dynamical systems. Subsequently, we present

a new modified system identification method over Koopman eigenfunctions, which yields a prac-

tical training procedure for embedding nonlinear systems to a bilinear model (for control affine

systems) from data.

7.1.1 Koopman eigenfunctions

Let x ∈ X ⊆ Rn be the vector of state variables of a continuous-time nonlinear dynamical

system whose evolution is governed by the function

ẋ = F(x) (7.1)

where F : X → X is the nonlinear operator that maps the system states forward in time. It is

assumed that the vector field F is continuously differentiable. The solution to Eq. (7.1) is given
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by the flow field Φt(x). Typically, an analytic form for Φt(x) is impossible to determine and we

resort to numerical solutions for Eq. (7.1), which can become computationally intractable.

Now, let G be a Hilbert space of complex-valued functions on X . The elements of G are

often called observables as they may correspond to measurements taken during an experiment

or the output of a simulation. In his seminal work, Koopman realized an alternative description

of Eq. (2.1) in terms of the evolution of these observables denoted as g(x) with g : X → C.

Specifically, Koopman theory asserts that the nonlinear system in Eq. (7.1) can be mapped to a

linear system using an infinite dimensional linear operator Kt that advances these observables

forward in time.

Definition 1 (Koopman operator). For a given space G of observables, the Koopman (semi)group

of operators Kt : G → G associated with system Eq. (7.1) is defined by

[Ktg](x) = g ◦Φt(x) (7.2)

By definition, the Koopman operator is linear even though the underlying dynamical system is

nonlinear, i.e., it satisfies

[Kt(αg1 + βg2)](x) = α[Ktg1](x) + β[Ktg2](x) (7.3)

The linearity of the Koopman operator allows it to be characterized by its eigenvalues and eigen-

functions. An eigenfunction ψ ∈ G : X → C of the Koopman operator is defined to satisfy

[Ktψ](x) = eλtψ(x)

d

dt
ψ(x) = λψ(x)

(7.4)

where λ ∈ C is the associated eigenvalue. These eigenfunctions can be used to predict the time

evolution of an observable, in relation with the state dynamics, as long as the given observable lies

within the span of these eigenfunctions. Applying chain rule to Eq. (7.4),
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d

dt
ψ(x) = ∇ψ(x) · F(x) , LFψ(x) = λψ(x) (7.5)

where the Lie derivative with respect to the vector field F, denoted as LF = F ·∇, is the infinitesi-

mal generator of the Koopman operatorKt, i.e., lim
t→0

(Kt−I)/t. Hence, the time varying observable

g̃(t,x) = Ktg(x) can be obtained as a solution to the partial differential equation,

∂

∂t
g̃ = F · ∇g̃ , LFg̃

g̃(0,x) = g(x)

(7.6)

Any finite subset of the Koopman eigenfunctions naturally forms an invariant subspace and

discovering these eigenfunctions enables globally linear representations of strongly nonlinear sys-

tems.

7.1.2 Modeling forced dynamics

The Koopman operator theory has been conceptually developed for uncontrolled systems. To

adopt it for the purposes of control, consider a control affine system as follows:

ẋ = F(x) +
m∑
i=1

Gi(x)ui (7.7)

where x ∈ X ⊆ Rn, ui ∈ U for i = 1, · · · ,m, and Gi : X → X denotes the control vector fields

that dictate the effect of input on the system. It is assumed that the vector fields are locally Lipschitz

continuous. This is a reasonable assumption which holds true for many physical systems. The

evolution of the observable functions for the controlled system of Eq. (7.7) is given, by applying

chain rule similar to Eq. (7.6), as

∂

∂t
g̃ = LFg̃ +

m∑
i=1

uiLGi
g̃

g̃(0,x) = g(x)

(7.8)
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where LF and LGi
denote the Lie derivatives with respect to the vector fields F and Gi for i =

1, · · · ,m, respectively. The system Eq. (7.8) is analogous to a bilinear system except for the

fact that the operators LF and LGi
are infinite dimensional, operating on the function space G.

However, if there exist a finite number of observable functions ḡ1, · · · , ḡN that span a subspace

Ḡ ⊂ G such that Kḡ ∈ Ḡ for any ḡ ∈ Ḡ, then Ḡ is said to be an invariant subspace and the

Koopman operator becomes a finite-dimensional matrix, K. For practical implementation, the

Koopman eigenfunctions can be used for ḡ such that the finite-dimensional approximation can be

determined by projecting on the subspace spanned by these eigenfunctions [164]. The choice of

using eigenfunctions as basis is intuitive because an action of the infinitesimal generator of the

Koopman operator on these eigenfunctions is dictated simply by a scalar, i.e., the corresponding

eigenvalue (see Eq. (7.5)).

7.1.3 Koopman bilinear system identification

To obtain a bilinear form of system of Eq. (7.7) in the Koopman eigenfunction coordinates, we

use the Koopman canonical transform (KCT) [15]. Such a transformation is given by

z = Ψ(x) = [ψ1(x), · · · , ψN(x)]T ,where

ψj(x) = ψ̃j(x), if ψ̃j : X → R

[ψj(x), ψj+1(x)]T = [2Re(ψ̃j(x)), − 2Im(ψ̃j(x))]T ,

if ψ̃j, ψ̃j+1 : X → C

and assuming ψ̃j+1 = ψ̃?j

(7.9)

where ? denotes the complex conjugate. Applying the above transformation to Eq. (7.7) yields

ż = Λz +
m∑
i=1

uiLGi
Ψ (7.10)

146



where Λ is a block-diagonal matrix constructed using the Koopman eigenvalues λj, j = 1, · · · , N ,

which are corresponding to the Koopman eigenfunctions shown in Eq. (7.9), i.e.,

Λj,j = λj, if ψ̃j : X → R Λj,j Λj,j+1

Λj+1,j Λj+1,j+1

 = |λj|

 cos(∠λj) sin(∠λj)

−sin(∠λj) cos(∠λj)

 ,
if ψ̃j, ψ̃j+1 : X → C

and assuming ψ̃j+1 = ψ̃?j

(7.11)

Assumption 4. ∃ ψj, j = 1, · · · , N such that

LGi
Ψ =

N∑
j=1

bGi
j ψj(x) = BiΨ

where bGi
j ∈ Rn and ψj(x) are defined in Eq. (7.9). In other words, it is assumed that LGi

Ψ lies

in the span of the eigenfunctions ψj, j = 1, · · · , N so that it can be represented using a constant

matrix, Bi ∈ RN×N .

Based on this assumption, the system of Eq. (7.10) becomes the following bilinear control

system in the Koopman space,

ż = Λz +
m∑
i=1

uiBiz (7.12)

The objective of the system identification method is to determine the continuous bilinear system

of Eq. (7.11) using time-series data generated by the controlled dynamical system of Eq. (7.7).

This is done in two parts. First, we calculate the system matrix Λ using the eigenfunctions of

the Koopman operator for the uncontrolled part of Eq. (7.7). Although there are several methods

available in the literature that can achieve this, the EDMD algorithm is utilized in this work. The

algorithm is detailed below.

Calculating Λ:

1. The time-series data of Nt snapshot pairs satisfying the dynamical system of Eq. (7.1) are
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generated and organized in the following matrices:

X = [x1,x2, · · · ,xNt ], Y = [y1,y2, · · · ,yNt ], (7.13)

where xk ∈ X , yk = F(xk)∆t+ xk ∈ X and ∆t is the discretization time. Note yk is used

here instead of xk+1 because the data need not necessarily be temporally ordered as long as

the corresponding pairs (xk,yk) are obtained as shown above.

2. A library of nonlinear observable functions D = {φ1, φ2, . . . , φN} is selected to define the

vector-valued function φ : X → RN

φ(x) = [φ1(x), φ2(x), · · · , φN(x)]T (7.14)

where φ is used to lift the system from a state space to a function space of observables.

3. A least-squares problem is solved over all the data samples to obtain K ∈ RN×N which is

the transpose of the finite dimensional approximation to the Koopman operator, Kt:

min
K

Nt∑
i=1

‖φ(yi)−Kφ(xi)‖2
2 (7.15)

The value of K that minimizes Eq. (7.15) can be determined analytically as:

K = φXYφ
†
XX (7.16)

where † denotes the pseudo inverse, and the data matrices are given by

φXX = φXφ
T
X , φXY = φYφ

T
X

(7.17)
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where
φX = [φ(x1), · · · ,φ(xNt)],

φY = [φ(y1), · · · ,φ(yNt)]

It has been previously shown that the matrix K asymptotically approaches the Koopman

operator as we increase Nt [149], and hence approximates the evolution of observables.

4. An eigen decomposition of K is performed to determine the eigenvalues λ̃j and eigenvectors

ej for j = 1, · · · , N .

5. The eigenvalues are converted to continuous time as λj = log(λ̃j)/∆t, and the eigenfunc-

tions, ψj , are computed, using ψ̃j = φT ej , according to the procedure described in Eq. (7.9).

6. The system matrix Λ is constructed using the block-diagonalization described in Eq. (7.11).

Calculating control matrix Bi:

In the next step, the control matrix Bi is calculated using the eigenfunctions. Specifically using

Assumption 4 and the fact that Ψ(x) = ETφ(x) where E = [e1, · · · , eN ] is the matrix containing

the eigenvectors, we have

BiΨ(x) = LGi
Ψ(x)

= LGi
(ETφ(x)) = ET ∂φ

∂x
Gi(x)

(7.18)

The control matrix Bi can be obtained by equating the coefficients of right- and left-hand-side

functions of the above equation. Once the system matrices Λ and Bi are determined, a bilinear

system of Eq. (7.12) can be constructed using the Koopman eigenfunctions and can be used for the

task of designing feedback controllers.

7.2 Koopman Lyapunov-based MPC

In Chapter 7.2, we detail how Koopman operator theory can be integrated with Lyapunov-based

predictive control scheme to stabilize the system of Eq. (7.7).
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7.2.1 Lyapunov-based predictive control

For simplicity, let us consider the control affine system of Eq. (7.7) with i = 1, i.e., a single

input. All the results can be generalized to the case of multiple inputs. Without loss of generality,

we assume F(0) = 0 and that the origin is an unstable equilibrium point of the uncontrolled sys-

tem. Then, the closed-loop stabilization problem associated with Eq. (7.7) seeks a state-dependent

control law of the form u = h(x), h : Rn → R which renders the origin stable within some domain

D ⊂ Rn for the closed-loop form of Eq. (7.7).

One of the widely used approaches to design state feedback controllers is via the use of CLFs

as they facilitate explicit consideration of the stability prior to the controller design. CLF is a

continuously differentiable positive definite function V : D → R+ such that for all x ∈ D/{0},

V̇ := LFV + uLGV < 0. Once this CLF is constructed, design of a feedback law can be straight-

forward [163].

LMPC is a powerful tool that uses CLFs for the design of an optimal stabilizing feedback

controller for nonlinear dynamical systems [160], particularly those characterized by a set of con-

straints. Essentially, LMPC is a control strategy that possesses all the advantages of a standard

MPC and is designed based on an explicit, stable (albeit not optimal) control law h(·). By explic-

itly adding a Lyapunov constraint to a standard MPC formulation, the controller is able to stabilize

the closed-loop system. Additionally, LMPC explicitly characterizes a set of initial conditions

starting from where the closed–loop stability is guaranteed. Hence, it ensures stability irrespec-

tive of the prediction horizon, i.e., the computational time can be made smaller by decreasing the

prediction horizon (reducing the size of the optimization problem). However, the main bottleneck

to the success of this method lies in the construction of CLFs for a general nonlinear system. To

avoid this, in the proposed method, the system of Eq. (7.7) is first transformed into a bilinear con-

trol system of Eq. (7.11), using the procedure described above, for which determining a CLF is

much easier. Particularly, the search for a CLF of a bilinear system can now be limited to the class

of quadratic functions and an optimization problem can be solved to determine the required CLF

[154]. Then, one can apply LMPC in the Koopman eigenspace to determine a stabilizing input for
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the bilinear system of Eq. (7.11).

7.2.2 Bounded explicit control h(z)

Let us consider the Koopman bilinear system of Eq. (7.11) with i = 1, i.e., a single input

obtained using the system identification method described in Chapter 7.1.3. This system is as-

sumed to be stabilizable, which implies the existence of a feedback control law u(t) = h(z(t))

that satisfies input constraints for all z inside a given stability region and renders the origin of the

closed-loop system asymptotically stable. This is equivalent to assuming that there exists a CLF

for the system of Eq. (7.11). Due to the bilinear structure of the system, the CLF can be limited to

a class of quadratic functions, i.e., V (z) = zTPz. The necessary and sufficient conditions for the

symmetric positive definite matrix P such that the system of Eq. (7.11) is stabilizable are provided

in [154]. The theorem is stated below.

Proposition 1 (see [154], Theorem 2). The bilinear system of Eq. (7.11) is stabilizable if and only

if there exists an N × N symmetric positive definite matrix P such that for all z 6= 0 ∈ RN with

zT (PΛ + ΛTP )z ≥ 0, we have zT (PB +BTP )z 6= 0.

In other words, for V̇ (z) = zT (PΛ + ΛTP )z + u(zT (PB +BTP )z) to be negative, given that

the first term on the right hand side is positive, then the second term cannot be zero so that the

control action u can render V̇ < 0. Once the conditions of Proposition 1 are satisfied, one way to

determine the explicit control law h(z), required to stabilize the bilinear system, is provided by the

following formula by Sontag [165]:

b(z) =


−LΛV+

√
LΛV 2+LBV 4

LBV
, if LBV 6= 0

0, if LBV = 0

h(z) =



umin, if b(z) < umin

b(z), if umin ≤ b(z) ≤ umax

umax, if b(z) > umax

(7.19)
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where LΛV = zT (PΛ + ΛTP )z, LBV = zT (PB + BTP )z, and h(z) represents the saturated

control law that accounts for the input constraints umin ≤ u(t) ≤ umax ∈ U . For the above

controller, one can show, using a standard Lyapunov argument, that if the closed-loop state evolves

within a level set of V , the time-derivative of the CLF is negative definite ensuring asymptotic

stability. Let the largest level set of V be given by

Ωr = {z ∈ RN : V (z) ≤ r} (7.20)

where r is the largest number for which Ωr ⊆ Ω. Ω is the complete stability region, starting from

which the origin of the bilinear system under Eq. (7.19) is guaranteed to be stable. In practice, the

entire region of attraction, Ω, is very difficult to estimate even for simple systems.

7.2.3 Koopman Lypaunov-based predictive control

Now that we have the explicit control law, the idea is to stabilize the bilinear system using the

Lyapunov-based predictive control scheme as below:

min
u∈S(∆)

∫ tk+Np∆

tk

[zT (τ)Wz(τ) + uT (τ)Ru(τ)]dτ, (7.21a)

s.t ż(t) = Λz(t) + u(t)Bz(t) (7.21b)

z(tk) = Ψ(x(tk)) (7.21c)

umin ≤ u(t) ≤ umax, ∀t ∈ [tk, tk +Np∆) (7.21d)

V (z(t)) ≤ r̂, ∀t ∈ [tk, tk +Np∆]

if x(tk) ∈ Ωr̂ (7.21e)

V̇ (z(tk),u(tk)) ≤ V̇ (z(tk), h(z(tk))),

if x(tk) ∈ Ωr/Ωr̂ (7.21f)

where S(∆) is the family of piece-wise constant functions with sampling period ∆, Np is the

prediction horizon, and W ∈ RN×N and R ∈ R are positive definite weighting matrices. The
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manipulated input (solution to the optimization problem) of the above system under the LMPC

control law is defined as

u = u?(t|tk), ∀t ∈ [tk, tk +Np∆) (7.22)

where u?(t|tk) = [u?(tk), · · · , u?(tk + Np∆)]. The first value of u?(t|tk) is applied to the closed-

loop system for the next sampling time period t ∈ [tk, tk + ∆) and the procedure is repeated until

the end of operation.

In the LMPC formulation of Eqs. (7.21a) -(7.21c), Eq. (7.21a) denotes a performance index that

is to be minimized, Eq. (7.21b) is the Koopman bilinear model of the system of Eq. (7.11) used

to predict the future evolution of the states, and Eq. (7.21c) provides the initial condition which is

obtained as a transformation of the actual state measurement. In addition to these constraints, the

LMPC formulation considers two Lyapunov constraints, Eq. (7.21e) and Eq. (7.21f). In the design

of LMPC, one important factor we need to consider is the sample-and-hold implementation of the

control law. To explicitly deal with the sampled system, we consider a region Ωr̂, where r̂ < r.

Specifically, when z(tk) is received at a sampling time tk, if z(tk) is within the region Ωr̂, the

LMPC minimizes the cost function within the region Ωr̂; however, if z(tk) is in the region Ωr/Ωr̂,

i.e., z(tk) ∈ Ωr but z(tk) /∈ Ωr̂, the LMPC first drives the system state to the region Ωr̂ and then

minimizes the cost function within Ωr̂. In other words, due to the sample-and-hold implementation

of the control law, the region Ωr̂ ⊂ Ωr is chosen as a ‘safe’ zone to make Ωr invariant. Please note

that this is not a limitation of the LMPC formulation but of the discrete-time implementation of

the control action to a continuous-time dynamical system. Ultimately, the size of the safe set Ωr̂

depends on the hold time (i.e., sampling time), ∆ (details given below in Proposition 2).

Therefore, Eq. (7.21e) is only active when z(tk) ∈ Ωr̂ and ensures that the sampled state is

maintained in the region Ωr̂ (so that the actual state of the closed-loop system is in the stability

region Ωr). The constraint of Eq. (7.21f) is only active when r̂ < V (z(tk)) ≤ r and ensures the

rate of change of the Lyapunov function is smaller than or equal to that of the value obtained if the

explicit control law h(z) is applied to the closed-loop system in a sample-and-hold fashion. These

constraints allow the LMPC controller to inherit the stability properties of h(z), i.e., it possesses
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at least the same stability region Ωr as the controller h(z). This implies that the (equilibrium

point of) closed-loop system of Eqs. (7.21a) -(7.21f) is guaranteed to be stable for any initial state

inside the region Ωr provided that the sampling time ∆ is sufficiently small. Note that because of

this property, the LMPC does not require a terminal constraint used in a traditional MPC setting.

Additionally, the feasibility of Eqs. (7.21a) -(7.21f) is guaranteed because u = h(z) is always a

feasible solution to the above optimization problem. Even though the above formulation does not

explicitly consider the state constraints, they can be readily incorporated.

Proposition 2. Consider the system of Eq. (7.11) under the MPC control law of Eqs. (7.21a)-

(7.21f), which is designed using a CLF, V , that has a stability region Ωr under continuous im-

plementation of the explicit controller h(z). Then, given any positive real number d, ∃ posi-

tive real numbers ∆? such that if z(0) ∈ Ωr and ∆ ∈ (0,∆?], then z(t) ∈ Ωr,∀t ≥ 0 and

limt→∞ ‖z(t)‖ ≤ d.

Proof. The proof is divided into three parts. In Part 1, the robustness of the explicit controller

is shown which preserves the closed-loop stability when the control action is implemented in

a sample-and-hold fashion with a sufficiently small hold time (∆). In Part 2, the controller of

Eqs. (7.21a)-(7.21f) is shown to be feasible for all z(0) ∈ Ωr. Subsequently, in Part 3, it is shown

that the stability region Ωr is invariant under the predictive controller of Eqs. (7.21a)-(7.21f).

Part 1. To prove the robustness of the explicit controller, we need to show the existence of a positive

real number ∆? such that all state trajectories originating in Ωr converge to the level set of Ωr̂ for

any value of ∆ ∈ (0,∆?]. To achieve this, we need to consider different cases for z(0) inside the

stability region, i.e., we consider arbitrary regions Z and Ωr′ inside Ωr. Figure 7.1 represents a

schematic of the different cases considered in the following proof.

First, consider a small region close to the boundary of the stability region denoted asZ := {z :

(r − r′) ≤ V (z) ≤ r}, for some 0 < r′ < r. Now, let h(0) = h0 be computed for z(0) = z0 ∈ Z
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Figure 7.1: A schematic representing the stability region of the bounded controller Ωr, together
with the sample-and-hold constrained set, Ωr̂, and the overall stability region of the system, Ω. The
gray shaded part represents the ring, Z , close to the boundary of the stability region, Ωr.

and held constant until a time ∆̂ such that h(t) := h0 ∀t ∈ (0, ∆̂]. Then,

V̇ (z(t)) = LΛV (z(t)) + LBV (z(t))h0

= LΛV (z0) + LBV (z0)h0

+ (LΛV (z(t))− LΛV (z0))

+ (LBV (z(t))h0 − LBV (z0)h0).

(7.23)

Since the initial state z0 ∈ Z ⊆ Ωr, and h0 are computed based on the stabilizing control law

Eq. (7.19), it follows that V̇ (z0) := LΛV (z0) + LBV (z0)h0 ≤ −ρV (z0) (this can be shown

by substituting Eq. (7.19) in V̇ ). Combining this with the definition of Z , we have LΛV (z0) +

LBV (z0)h0 ≤ −ρ(r − r′).

We also need the following properties to complete the proof.

Property 1. Since the evolution of z is continuous, ‖u‖ ≤ umax and Z are bounded, one can find,
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for all z0 ∈ Z and a fixed ∆̂, a positive real number k1 such that ‖z(t)−z0‖ ≤ k1∆̂ for all t ≤ ∆̂.

Property 2. Additionally, since LΛV (·) and LBV (·) are continuous functions, the following prop-

erties hold:

‖LΛV (z(t))− LΛV (z0)‖ ≤ k2‖z(t)− z0‖ ≤ k1k2∆̂

‖LBV (z(t))h0 − LBV (z0)h0‖ ≤ k3‖z(t)− z0‖ ≤ k1k3∆̂

(7.24)

where the second inequality in each equation holds because of Property 1. Using all the above

inequalities in Eq. (7.23),

V̇ (z(t)) ≤ −ρ(r − r′) + (k1k3 + k2k3)∆̂ (7.25)

Now, if we choose ∆̂ < (ρ(r − r′) − c)/(k1k3 + k2k3) where c < ρ(r − r′) is a positive number,

we get V̇ (z(t)) ≤ −c < 0 for all t ≤ ∆̂. This implies that, given a r̂, if we find an r′ such that

r − r′ < r̂ and determine the corresponding ∆̂, then the control action computed for any z ∈ Z

and held for a time period less than ∆̂ will ensure that the state does not escape Ωr (because V̇ < 0

during this time).

Now, we need to show the existence of a ∆′ such that for all z0 ∈ Ωr′ := {z0 : V (z0) ≤ r− r′}

we have z0 ∈ Ωr̂ := {z0 : V (z0) ≤ r̂}. Consider ∆′ such that

r̂ = max
z0∈Ω′r,h∈U ,t∈[0,∆′]

V (z(t)) (7.26)

This is possible because both V and z are continuous functions, and therefore for any r′ < r, one

can find a sufficiently small ∆′ such that Eq. (7.26) holds. All that remains now is to show that for

all z0 ∈ Ωr̂ if ∆ ∈ (0,∆?] where ∆? = min{∆̂,∆′}, then z(t) ∈ Ωr̂ ∀t ≥ 0.

Consider all z0 ∈ Ωr̂ ∩ Ωr′ . Then by definition, z(t) ∈ Ωr̂ for t ∈ [0,∆?] since ∆? ≤ ∆′. On

the other hand, for all z0 ∈ Ωr̂/Ωr′ , i.e., z0 ∈ Z , it was shown that V̇ < 0 for t ∈ [0,∆?] since

∆? ≤ ∆̂. Therefore, Ωr̂ is an invariant set under the control law of Eq. (7.19).

Hence, all trajectories originating in Ωr converge to Ωr̂ with a hold time less than ∆?. That is,

for all z0 ∈ Ωr, lim supt→∞V (z(t)) ≤ r̂. Since, V (·) is a continuous function, one can always find
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a finite, positive number d such that V (z) ≤ r̂ =⇒ ‖z‖ ≤ d. Therefore, lim supt→∞V (z(t)) ≤

r̂ =⇒ lim supt→∞‖z(t)‖ ≤ d.

Part 2. Let us consider some z(0) ∈ Ωr under the predictive controller of Eqs. (7.21a)-(7.21f)

with a prediction horizon Np denoting the number of prediction steps. There are two cases. If z0 ∈

Ωr/Ωr̂, the feasibility of constraint of Eq. (7.21f) is guaranteed by the control law of Eq. (7.19)

as shown in Part 1. Additionally, if V (z(0)) ≤ r̂, once again the control input trajectory under

the explicit controller of Eq. (7.19), given by u(t) = h(z(t)), ∀t ∈ [tk, tk + Np∆], provides a

feasible initial guess to constraint of Eq. (7.21e) because it was designed to stabilize the system,

i.e., V (z(t)) ≤ r̂. This shows that for all z(0) ∈ Ωr the Koopman LMPC of Eqs. (7.21a)-(7.21f) is

feasible.

Part 3. To prove the last part, please note that since constraint of Eq. (7.21f) is feasible, upon

implementation it ensures that the value of the Lyapunov function under the predictive controller

u(t) decreases at each sampling time. Since Ωr is a level set of V , and V̇ decreases, the state tra-

jectories cannot escape Ωr. Additionally, satisfying constraint of (7.21e) means that Ωr̂ continues

to remain invariant under the implementation of the predictive controller of Eqs. (7.21a)-(7.21f).

The recursive feasibility of Eqs. (7.21d)-(7.21f) implies that V ≤ r and V̇ < 0 for all z(t) under

the Lyapunov-based controller given by Eqs. (7.21a)-(7.21f). However, since it is implemented in

a sample-and-hold fashion there exists a maximum sampling time ∆?, given in Part 1, such that

when ∆ ∈ (0,∆?) it is guaranteed that for all z(0) ∈ Ωr, limt→∞‖z(t)‖ ≤ d.

This completes the proof.

Remark 19. Please note that in practice, one can characterize the values of r, r̂,∆? and d by

performing several closed-loop simulations where the controller defined in Eqs. (7.21a)-(7.21f)

is continuously applied to the system. However, the estimate of the stability region Ωr determined

using explicit controllers such as Eq. (7.19) does not necessarily equate the entire domain Ω, which

remains a difficult problem even for linear systems. Nevertheless, these estimates can be improved

by considering multiple CLFs.
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Proposition 2 formalizes that the stability properties of the Koopman bilinear system under the

Lyapunov–based predictive controller are inherited from the explicit (bounded) controller under

discrete implementation. Now, when there is no mismatch between the Koopman model and the

original system, the stability properties will be easily translated to the original system. Obviously,

we can derive an exact model without any model-plant mismatch if we can implement the infi-

nite dimensional Koopman operator. However, as described previously, only a finite dimensional

approximation based on the projection of these operators on a subspace is commonly used for prac-

tical implementation. In this regard, since the model-plant mismatch between the Koopman model

and the original system is inevitable, we additionally study and derive the bound on the prediction

error between the original state and the predicted state from the Koopman model in the following

theorem.

In order to extend the stability results to the original nonlinear system of Eq. (7.7), we make

the following assumption.

Assumption 5. Let the inverse mapping from the Koopman space, z, to the original state space,

x, be continuously differentiable, i.e., ∃ ξ(z) = [ξ1(z), · · · , ξn(z)]T ∈ C1 : RN → Rn such that

x̂i = ξi(z), i = 1, · · · , n where x̂ = [x̂1, · · · , x̂n] is the predicted state vector obtained from the

inverse mapping defined above.

Then, the stability properties of the closed-loop system of Eqs. (7.21a)-(7.21f) of z can be

shown to be inherited to the original nonlinear system of x under the above assumption and is

formalized in the following theorem.

Theorem 1. Suppose that system Eq. (7.7) satisfies Assumptions 4-5. Let x(t) and x̂(t) denote

the original state and the predicted state values, respectively. The solutions for x(t) and x̂(t) are
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given by the following dynamic equations:

ẋ(t) = f(x(t), u(t)), x(0) = x0 (7.27)

x̂(t) = ξ(z(t)), x̂(0) = x0 (7.28)

ż(t) = Λz(t) + u(t)Bz(t), z(0) = φ(x̂(0)) (7.29)

Then, the difference between x(t) and x̂(t) is bounded by

‖x(t)− x̂(t)‖ ≤ ν

lx
(elxt − 1) (7.30)

where ν denotes the modeling error which bounds the difference between

‖f(x̂, u)− f̂(x̂, u)‖ ≤ ν (7.31)

where f(·) = F(·) + G(·)u is the original nonlinear dynamical system, and f̂(x̂, u) = ∂ξ
∂z

ż denotes

the solution to ˙̂x(t). Under this condition, the stabilizing feedback control input u?(t) obtained

from the Lyapunov-based predictive control law of Eqs. (7.21a)-(7.21f) for the Koopman linear

system of Eq. (7.9) also stabilizes the original system of Eq. (7.6), i.e., the origin of the closed-loop

system of Eq. (7.6) is Lyapunov stable.

Proof. The proof is divided into two parts. First, we show that the predicted state x̂(t) is stable

under the application of the Koopman LMPC controller of Eqs. (7.21a)-(7.21f) to the Koopman

bilinear system. In the second part, we show that the evolution of the error between the original

state and the predicted state is bounded under Assumption 5 and the Lipschitz property of the vector

fields, F and G.

Part 1. Let us consider any initial condition x(0) such that x(0) = x̂(0) = x0 and ‖x0‖ ≤

δ. Recall from Proposition 2 that the predictive controller of Eqs. (7.21a)-(7.21f) ensures that

the lifted states do not escape the stability region Ωr, i.e., V (z(t)) ≤ r, V̇ < 0 ∀t. Therefore,
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lim supt→∞‖z(t)‖ ≤ d. Now, from Assumption 5, since the inverse mapping ξ(z) is assumed to be

continuous (differentiable), the following holds true:

‖ξ(z(t))‖ := ‖x̂(t)‖ ≤ εz‖z(t)‖

lim supt→∞‖x̂(t)‖ ≤ d̂

(7.32)

where d̂ = εzd. In other words, since the controller ensures asymptotic stability of the lifted state,

it implies that ‖z(t)‖ is bounded at all times and eventually converges to d. This in turn implies

that x̂(t) is bounded at all times, albeit by different constants at different sampling times. Now,

if we choose ε̂ to be the maximum of all these bounds, then ‖x̂(t)‖ < ε̂, ∀t. Hence, for any

initial condition ‖x0‖ ≤ δ, the implementation of the predictive controller of Eqs. (7.21a)-(7.21f)

guarantees that ‖x̂(t)‖ ≤ ε̂,∀t. This implies that the predicted states of the original system starting

close enough to the equilibrium (at a distance δ) will be maintained close to the equilibrium at all

times.

Part 2. Now, it remains to prove that the modeling error between the original state vector and

the predicted states is bounded at all times for all ‖x0‖ ≤ δ. Let us consider the modeling error

e(t) = x(t)− x̂(t), then the evolution of the error is given as

‖ė(t)‖ = ‖ẋ(t)− ˙̂x(t)‖

= ‖f(x, u)− f̂(x̂, u)‖
(7.33)

where f(x, u) = F(x) + G(x)u is the nonlinear dynamical system, and f̂(x̂, u) denotes the evo-

lution of the predicted state x̂, which can be determined from the following Koopman bilinear

system:

f̂(x̂, u) =
∂ξ

∂z
ż (7.34)
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By adding and subtracting f(x̂, u) to Eq. (7.33), we get

‖ė(t)‖ = ‖f(x, u)− f(x̂, u) + f(x̂, u)− f̂(x̂, u)‖

≤ ‖f(x, u)− f(x̂, u)‖+ ‖f(x̂, u)− f̂(x̂, u)‖
(7.35)

The Lipschitz property of f(·), combined with the bounds on u, implies that there exists a positive

constant lx such that the following inequality holds for all x,x′ ∈ X and u ∈ U:

‖f(x, u)− f(x′, u)‖ ≤ lx‖x− x′‖ (7.36)

Additionally, since x̂ is bounded (see Part 1 in the proof of Theorem 1), f is Lipschitz, and the

mapping ξ is continuously differentiable, there exists a positive constant ν such that the second

term on the right hand side of the inequality in Eq. (7.35) is bounded by ν. Combining it with

Eq. (7.36) we have

‖ė(t)‖ ≤ lx‖x− x̂‖+ ν

≤ lx‖e(t)‖+ ν

(7.37)

Therefore, given the zero initial condition (i.e., e(0) = 0), the upper bound for the norm of the

error vector can be determined by integrating Eq. (7.37) as

∫ t

0

‖ė(τ)‖
lx‖e(τ)‖+ ν

≤ t (7.38)

and solving for ‖e(t)‖

‖e(t)‖ = ‖x(t)− x̂(t)‖ ≤ ν

lx
(elxt − 1) (7.39)

Finally, since the error between the original and predicted vectors is bounded and that the Koop-

man LMPC controller of Eqs. (7.21a)-(7.21f) stabilizes the predicted state vector ‖x̂(t)‖ ≤ ε̂, there

exists a positive constant ε such that ‖x(t)‖ ≤ ε for all t.

Therefore, for all ‖x0‖ ≤ δ, the implementation of the predictive controller of Eqs. (7.21a)-

(7.21f) ensures that ‖x(t)‖ ≤ ε for all t, thereby rendering the original nonlinear system stable.
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This completes the proof.

Remark 20. Please note that one cannot guarantee asymptotic stability of the original nonlinear

system under the proposed controller because there is always loss of information when transform-

ing the system to a different space.

Remark 21. Assumption 5 seems restrictive in selecting the types of basis functions to determine

the Koopman bilinear models as the inverse of the eigenfunctions is required to be C1. However, in

practice, one can numerically obtain a separate mapping from the Koopman space to the original

space without actually inverting the eigenfunctions. One example would be to assume the system

states x be contained in the span of Ḡ, the finite subset of the observable space. This implies that

there exists a constant matrix C ∈ Rn×N such that x = Cz. Then, a convex optimization problem

can be solved to determine the relation C [10]. In this case, the error of the optimization problem

must be certified to be bounded to ensure that the proposed controller successfully stabilizes the

closed-loop system.

Remark 22. Please note that in this work we do not consider model-plant mismatch due to uncer-

tainties. In the presence of disturbances, to ensure the robust closed-loop stability of the original

system, we have to show the inherent robustness of the KLMPC law of Eq. (7.21) by guaranteeing

the robust feasibility and robust positive invariance of the control system (such as in [166, 167])

under a specific prediction error bound. This robust closed-loop stability of KLMPC will be stud-

ied as a future work, and the prediction error bound between the original state and the predicted

state based on the Koopman model, which derived in Theorem 1, would be a great starting point.

7.3 Numerical experiments

We applied our results on two illustrative examples: Van der Pol oscillator and a simple pendu-

lum system, showing the performance of our provably-stable Lyapunov-based predictive controller

designed in the Koopman function space. Each example produced closed-loop results that are sta-

ble with respect to the original state-space.
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7.3.1 Van der Pol oscillator

In our first example, we consider the Van der Pol oscillator, which is described by the following

equations:

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1 + u

(7.40)

At u = 0, the unforced dynamics of the Van der Pol oscillator are characterized by a limit

cycle with an unstable equilibrium point at the origin. We will see whether the proposed Koopman

LMPC is able to stabilize the system at the origin. First, the data required to build the Koopman

bilinear model is generated by simulating the unforced system of Eq. (7.40). The simulations were

initialized uniformly over a circle around the origin, and a number of trajectories for 10 s were

collected with a sampling time of ∆ = 0.01 s, i.e., 103 time-series samples per trajectory. In the

next step, the states were lifted to the high-dimensional space by using monomials of degree 5 as

the dictionary functions φ(x(t)), i.e., φ(x(t)) = [1, x1, x2, x
2
1, x1x2, · · · , x5

2]T . This results in a

lifted system of dimension z ∈ R21, and the system matrix Λ was constructed using the algorithm

described in Chapter 7.1.3. To determine the B matrix in the controlled setting, the relation be-

tween the Koopman eigenfunctions and dictionary functions was used as shown in Eq. (7.18). The

derivatives of the eigenfunctions were computed using the symbolic toolbox in MATLAB. This

completes the identification of the Koopman bilinear model of Eq. (7.11).

Next, the Koopman LMPC developed in Chapter 7.2 was applied to control the system of

Eq. (7.40) with N = 21 eigenfunctions as the new states, z, in the transformed space. The initial

condition was chosen randomly around the unstable equilibrium and the control objective was to

stabilize the system at the origin. The CLF used to define the explicit stable controller h(z) was

obtained by solving the following optimization problem as defined in [154]:
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min
σ>0,P=PT

σ − γtrace(PB)

s.t σI − (PA+ ATP ) ≥ 0

cLI ≤ P ≤ cUI

(7.41)

where σ represents the epigraph form of the largest singular value of (PA+ATP ), and cL, cU > 0

are two positive scalars used to bound the eigenvalues of P . The weighting parameter γ > 0 was

chosen as 2 in this example. The explicit controller, h(z), was determined by using the obtained

CLF, V = zTPz, within the Sontag’s formula as shown in Eq. (7.19). The matrices W and R in

Eq. (7.21a) were chosen to be W = I ∈ R21×21 and R = 1, respectively. The prediction horizon

was set to 1 s, i.e., Np = 1/∆ = 100. Figure 7.2 shows the comparison between open and closed

loop results. It can be observed from Figure 7.2 that the system was stabilized at the origin as

desired.
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Figure 7.2: Comparison of open-loop and closed-loop trajectories for the Van der Pol oscillator
with u from Eqs. (7.21a) - (7.21f).
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7.3.2 Simple pendulum

The next example we considered is the controlled two dimensional pendulum oscillator given

by the following dynamics:

ẋ1 = x2

ẋ2 = 0.01x2 − sin(x1) + u

(7.42)

where [x1, x2] = [θ, θ̇] ∈ R2 denote the angular displacement and angular velocity of the pendulum,

respectively. The system of Eq. (7.42) is characterized by a unique unstable equilibrium point at

the origin. We considered the system dynamics near the unique unstable equilibrium point at the

origin all the way until the limit cycle (shown in Figure 7.3). The Koopman models have to make

predictions over this range of initial conditions, and the control objective is to stabilize the system

at the origin.

The training data were generated by simulating the unforced pendulum equation from uniform

random initial conditions (x1(0), x2(0)) ∈ [−2, 2] × [−2, 2]. From each trajectory, 103 samples

were recorded at ∆ = 0.01 s apart. Similar to the previous example, the dictionary of observable

functions required for nonlinear transformation was considered to be monomials of degree up to 5,

i.e., z ∈ R21. The approximation of the Koopman operator and eigenfunctions was then performed

by lifting the time-series data samples using the selected dictionary. The system matrices, Λ, and

the control matrix, B, were then used to design the feedback controller proposed in Eq. (7.21).

The CLF used in the explicit control design was determined by solving the optimization problem

of Eq. (7.41) using the cvx package, a MATLAB-based modeling system for solving disciplined

convex optimization problems and is much suitable for semidefinite matrix optimization problems

like Eq. (7.41).

It is worth mentioning that the proposed Koopman LMPC controller design is not restricted

to using a specific form of control law for h(z). In fact, besides Sontag’s formula, there are

several other possible choices for the explicit controller h(z). Provided we are not constrained

to specifications on the amplitude of feedback, we can use the following simple feedback law to
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define the control law: h(z) = −kLBV (z) = −kzT (PB+BTP )z . In this example, the value of k

was chosen to be k = 10. The matricesW andR in Eq. (7.21a) were chosen to beW = I ∈ R21×21

and R = 1, respectively. The prediction horizon was set to 1 s, i.e., Np = 1/∆ = 100. For the

closed-loop simulation, we randomly selected initial points within [−1, 1]× [−1, 1] and solved the

closed-loop system with ode45 solver in MATLAB. Figure 7.3 shows the comparison between

open and closed loop results for one such initial condition. It can be observed from Figure 7.3 that

the controller forced the trajectory of the closed-loop system to the origin as desired. Moreover, in

the case of pendulum system, the limit cycle of the open loop system corresponds to the boundary

of the basin of attraction and the proposed Koopman LMPC controller forced the states to remain

inside this stability region (limit cycle) at all times before the trajectories slide to the origin.
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Figure 7.3: Comparison of open-loop and closed-loop trajectories for the simple pendulum oscil-
lator with u from Eqs. (7.21a) - (7.21f).
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7.4 Conclusions

In Chapter 7, we introduced a new approach for designing stabilizing feedback controllers

for nonlinear dynamical systems. Leveraging Koopman operator theory, nonlinear dynamics are

lifted to a function space where they are embedded in bilinear models that are computed using

finite-dimensional approximations to the Koopman operator and its eigenfunctions. A feedback

controller is then designed using LMPC that uses explicit Lyapunov constraints to characterize

closed-loop stability of the Koopman bilinear system. Due to the bilinear structure of the Koopman

model, the CLF can be obtained easily by limiting the search to the class of quadratic functions

via an optimization problem. Furthermore, universal control approaches like Sontag’s formula

readily provides the explicit control law required in the LMPC formulation which is typically

a bottleneck for general nonlinear systems. Most importantly, we demonstrated, based on the

stability of the Koopman model, that the proposed controller was capable of stably regulating

nonlinear dynamics in the original state-space provided that a continuously differentiable inverse

mapping exists. The numerical examples indicated that the proposed feedback controller was able

to successfully force unstable dynamics to the origin. This was observed from the closed-loop plots

presented. Future work will focus on certifying the proposed approach in terms of robustness in

the presence of uncertainties. Furthermore, we hope to apply the proposed approach to other flow

control problems, studying whether it can provide similar insight into how to design stabilizing

feedback controllers for other applications.
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8. SUMMARY AND FUTURE WORK

8.1 Summary

Nonlinear systems abound in nature. In fact, many chemical processes are characterized by

complex nonlinear models that describe their dynamics. However, a nonlinear trajectory can ex-

plore many regions of the state space, and therefore, different portions of such a trajectory can be

associated with distinct regimes especially in the case of systems with moving boundaries. In such

systems, since the spatial domain of interest as well as the dominant spatial patterns of the system

changes with time, traditional model approximation methods may fail to accurately capture the

dynamics. This poses challenges for optimization, estimation and synthesis of practically imple-

mentable controllers that achieve optimal (economic) performance. To this end, my work focuses

on developing novel methods based on linear operator theory by combining spectral decompo-

sition, model reduction and machine learning techniques to obtain computationally efficient yet

highly accurate models that aid in prediction and control. The application of interest throughout

this research work is hydraulic fracturing. Specifically, we consider simultaneous fracture prop-

agation and multi-phase proppant flow within a single fracture based on the widely used PKN

model. The hydraulic fracturing process is inherently a moving boundary problem associated with

highly-coupled dynamics which makes obtaining approximate models extremely difficult. The

problem we seek to solve is to obtain a desired final fracture conductivity, via model predictive

control (MPC), in order to maximize the productivity of a fractured well.

Specifically, this research work tackles the hydraulic fracturing control problem on two fronts.

First, by developing a local model reduction framework that uses data clustering within projection-

based methods to accurately capture the local behavior of every portion of the solution trajectory

in the state-space. Intuitively, since moving boundary systems are associated with varying spatial

features, a time-domain partitioning is performed as a first step. To achieve this, a novel clustering

strategy based on Mixed Integer Nonlinear Programming is implemented on the time-series data
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associated with the system of interest. This data, which can be obtained either from numerical

simulations of the high-fidelity model or from experimental runs, should be able to represent a

large portion of the solution state space (i.e., the data is collected at different initial conditions,

inputs, etc.). The motivation of this step is that each cluster is implicitly characterized by the

similarity of its dynamic behavior, and therefore, represents a particular portion of the solution.

In the next step, the reduced bases are derived within each cluster, using methods such as Proper

Orthogonal Decomposition and Dynamic Mode Decomposition. In the case of fracking, a full-

order discretization resulted in a large system of 450 spatial and 20,000 temporal nodes. The local

technique, when applied to reduce this system, resulted in a 95% decrease in the dimensionality

and computation time while having superior approximation accuracy in comparison with the global

methods.

Second, by adopting an operator-centric perspective of dynamical systems to develop linear

models. Although the local model reduction framework is superior in performance, sometimes

it may lead to unstable models due to discontinuity between different clusters. Therefore, a sin-

gle model that is accurate within a larger domain in the state-space would be beneficial in some

cases. However, as discussed earlier, using model reduction methods directly will not yield good

results. To avoid this, an alternative approach is explored which relies on nonlinear transforma-

tion. Specifically, Koopman operator theory is relied on developing linear predictors (usually

high-dimensional) that approximate nonlinear systems. In order to achieve this, the first step is to

learn the finite-dimensional approximation of the Koopman operator from data using a dictionary

of observable functions. For example, the dictionary can be populated with polynomial functions

of proppant concentration, or in an unsupervised fashion by using sparse regression from machine

learning. A large number of basis functions must be constructed such that the observable quan-

tities of interest (states) lie in the span of these functions and hence can be predicted in a linear

fashion. The problem of dictionary learning is re-envisioned from the perspective of sparse regres-

sion. Specifically, a sparse regression problem is solved over a large set of candidate functional

forms. By imposing sparsity, only the functional forms that contribute the most towards the system
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dynamics are selected to determine the underlying structure of the model. Since no transformation

of the state variables is performed, the obtained model will be able to infer some key underlying

physical phenomena. On application to a hydraulic fracturing process with simultaneous fracture

propagation and proppant transport, the sparse regression based method was able to successfully

reveal important physical phenomena such as proppant transport and fracture propagation inside a

fracture. It also highlights how a priori knowledge can be incorporated easily into the algorithm.

The functional forms thus obtained from sparse regression are then taken as observables to span

the Koopman subspace. In the final step, the control part is incorporated by solving a multi-step

error minimization problem which is simply a least-squares regression. The final model will be in

the form of a linear time invariant system which results in a standard convex optimization problem

in the MPC formulation allowing it to be solved faster than in the case of nonlinear MPC prob-

lems. Moreover, we can integrate these linear predictors within a stabilizing control framework

and show that the stability properties of the linear system (in the observable space) are inherited

by the original nonlinear system under certain assumptions. Based on numerical simulations it is

demonstrated that the developed linear predictors perform favorably in terms of prediction accu-

racy compared to several standard techniques. Additionally, it is shown that the Koopman MPC

framework successfully achieves the control objective and has superior performance compared to

feedback strategies based on local linearization.

Overall, this work enhances the capabilities of traditional methods to approximate more com-

plex dynamical systems such as those characterized by moving boundaries and provides a platform

for future innovation within data-based model identification with potential applications to many

real world industrial systems.

8.2 Future work

The latter part of this research work has shown the tremendous potential of operator theory

in designing universal and principled feedback controllers for general nonlinear systems. Despite

the tremendous progress in operator-based control, there are a number of theoretical and applied

questions that must be addressed in the future. In line with this, the following is a list of natural
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extensions and potential improvements in this direction that are currently under consideration in

Dr. Kwon’s research lab.

1. Deep auto encoders for learning Koopman invariant subspaces

As described earlier, one of the key challenges in Koopman system identification is the re-

quirement to select, a priori, a suitable dictionary of basis functions for the nonlinear trans-

formation, which is usually left to the discretion of the user. Although we proposed a sparse

regression based learning algorithm to deal with this, it can quickly become computationally

intractable especially for systems with a large number of states, which results in a combina-

torially large search space for potential functions. Moreover, the effect of actuation must be

appropriately accounted for to describe a general nonlinear system. The challenge of includ-

ing actuation is that since the input affects the Koopman operator and its eigenfunctions in

a nonlinear way, it would be necessary to include many nonlinear functions of the input, in

addition to the state variables within the dictionary of EDMD. For this reason, the function

space, once again, may quickly become prohibitively large to cover a sufficiently large range

of the dynamics. One way to deal with this issue is to leverage the power of deep learning to

discover parsimonious representations of the nonlinear dictionary. Specifically, the proposed

architecture will be made up of a deep auto encoder neural network that has three high-level

requirements: (1) the dictionary function values are given as the outputs of an encoder net-

work, i.e., the states and inputs are lifted using the encoder; (2) a linear time evolution of

these nonlinear functions is given by the finite dimensional approximation of the Koopman

operator, parameterized by the state and inputs; and (3) a nonlinear decoder reconstructs the

original state values from the dictionary values. The three requirements are associated with

different loss functions namely, the reconstruction error of the encoder/decoder, the error

associated with enforcing linear dynamics with the Koopman operator, and the future state

prediction error with respect to a fixed horizon. A regularization term can also be added for

generality and to avoid over fitting as is the standard practice. Simultaneous learning of the

operator with the encoder and decoder networks in this fashion has the capability to extract
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more information about the original states from fewer features provided by the encoder. This

enables nonlinear reconstruction of the states from descriptive dictionary functions while still

keeping the dictionary size to be extremely small. This is actually the same principle that

has led to the incredible success of auto encoders for feature extraction, manifold learning,

and dimensionality reduction in many applications. In this regard, several works utilized the

power of machine learning to train the dictionary employed in EDMD [150, 151, 168, 169].

However, all these works consider unforced systems and, at this point, these advanced em-

bedding techniques have not been adapted for controlled dynamics, which is an exciting

avenue of ongoing work.

2. Switched-system control of nonlinear systems using multiple Koopman models

Obtaining global bilinearization for a nonlinear system (with moving boundaries) is prac-

tically impossible owing to the time-varying spatial domain. In such cases, one way to

improve the control performance of Koopman LMPC is to use multiple Koopman models

(this is in line with the local model reduction idea presented in Chapter 3). While it is com-

putationally difficult to estimate the entire stability region of a controlled dynamical system,

the computational requirement can be substantially improved by using multiple CLFs. Mo-

tivated by this, it is beneficial to develop multiple model-based controllers. In this case, the

control design problem transforms to a switching problem between multiple control prob-

lems based on different Koopman models. In fact, this idea of quantization has been explored

in the context of Koopman operator based control in [170] where the control system is re-

placed by a set of autonomous systems with constant inputs. Specifically, in [170], within

the set of admissible inputs, a finite number of constant input profiles are predefined and the

corresponding autonomous Koopman linear models are generated and used within the opti-

mal control problem. The problem then becomes a (computationally very demanding) mixed

integer optimal problem where the set of feasible inputs (decision variables) is restricted to

the finite set of constant inputs used for model generation. The proposed approach con-

siders a linear interpolation or Euclidean distance based online switching between models
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that will eliminate the combinatorial nature of the optimization problem introduced in [170].

Also, for each Koopman model of the switched system, a CLF will be designed to estimate

the stability region based on each CLF. This will improve the stability region estimates and

will ensure that the underlying closed-loop system remains stable. Moreover, the proposed

method should not assume fixed constant input profiles, and therefore, the feasibility set of

inputs and their optimality will be significantly increased compared to [170] and will enable

controller designs for continuous dynamical systems.
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