
 

 

PALEOBIOLOGY OF MAMMALS USING FUNCTIONAL TRAIT-ENVIRONMENT 

RELATIONSHIPS ACROSS SPACE AND THROUGH TIME FOR CONSERVATION 

AND PUBLIC UNDERSTANDING OF SCIENCE 

 

A Dissertation 

by 

RACHEL ANN SHORT 

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  A. Michelle Lawing 

Committee Members, Perry S. Barboza 

 Jim I. Mead 

 X. Ben Wu 

Head of Department, Kirk O. Winemiller 

 

August 2020 

Major Subject: Ecosystem Science and Management 

Copyright 2020 Rachel Ann Short



 

ii 

ABSTRACT 

 

Large mammal communities are impacted by environmental changes that challenge 

conservation efforts. We can better predict responses to these ongoing changes if we 

understand responses that have been preserved in the information-rich fossil record. 

Interdisciplinary work presented here investigates trait-environment relationships to 

provide a common currency for integrating paleontological data, modern data, and future 

projections. Additionally, this work highlights informal learning institutions as locations 

for scientists to engage the public with their studies. To improve the rigor of the trait-

environment approach, I use a well-known dataset of tooth crown height and 

precipitation to explore the implications of various analytical methods. When tested with 

Pleistocene fossil sites, paleoprecipitation predictions closely match global climate 

models from the last glacial period. Next, I build a modern trait-environment model for 

the Order Artiodactyla with measures of calcaneal gear ratio to determine if the trait can 

be used as an environmental indicator as it has been for carnivorans. I demonstrate that, 

for artiodactyls, community-level gear ratio is related to ecoregion division, vegetation 

cover, and precipitation. I apply the model to historical and modern data in Kenya to 

illustrate that calcaneal gear ratio has potential to serve as an environmental predictor in 

the fossil record. Then, I describe a community of large mammals from a late 

Pleistocene site (~40,000 years old) in northern Mexico. This is a prolific site that fills a 

geographic gap in an area with an otherwise poorly understood paleontological record. 

The complex mammalian fauna includes the region’s first Rancholabrean occurrences of 
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Palaeolama, Procyon, and Smilodon. To facilitate the communication of environmental 

knowledge, I conduct a comprehensive analysis of the geographic capacity of informal 

STEM learning institutions to reach underserved populations. Three groups of counties 

have considerably fewer informal learning opportunities than expected, and higher than 

expected populations of groups who are underrepresented in STEM careers. 

Dissemination of this research will contribute to understanding how mammals are 

functionally related to their environment and will help us prepare for alternative 

environmental futures. 
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1. INTRODUCTION  

 

It has long been observed that functional traits and specific environmental factors 

are highly correlated. For example, previous studies demonstrated a shift in herbivore 

communities from predominately low-crowned teeth to high-crowned teeth with 

increasing aridity during the late Cenozoic (Janis et al. 2000, 2002, Fortelius et al. 2002, 

Eronen et al. 2010b). Increased hypsodonty provides the adaptive advantage of being 

able to better ingest abrasive foods (Strömberg 2002, 2006, Merceron et al. 2016) and 

environmental grit (Janis et al. 2002, Fortelius et al. 2006, Semprebon et al. 2019). 

However, until recently, it has been challenging to study trait-environment relationships 

over broad scales because of the focus on taxon-based methods (Barnosky et al. 2017). 

With the advent of spatial analyses using major trait-based databases, readily available 

museum specimens for identifying new traits, and climate surfaces, we can now explore 

these relationships in novel ways. 

Ecometrics is the study of community-level functional trait-environment 

relationships (Eronen et al. 2010a). Because traits have a functional relationship with 

environment, the morphology of a community will change through time as environment 

changes (Violle et al. 2007, Enquist et al. 2015). Thus, trait-environment relationships 

can be used to capture biological processes, such as adaptation, speciation, geographic 

distribution shifts, and extinction, that drive functional diversity and community 

assembly (Polly et al. 2011, 2016, Cadotte et al. 2013, Polly and Head 2015, Barnosky et 

al. 2017, Start and Gilbert 2019). Community-level morphology can be a better indicator 
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of environment than any single species (Polly and Head 2015). With the focus on 

functional trait change rather than species change, this method more easily enables 

faunal studies through time (Polly and Head 2015).  

When measured in the fossil record, morphological traits can be used for a 

thorough understanding of biotic responses to corresponding environmental changes, 

which can contribute to improved predictions for future faunal communities (Ceballos et 

al. 2005, 2015, Barnosky et al. 2011). Conservation paleobiology aims to use knowledge 

of the past to make informed predictions about the future of Earth’s threatened 

biodiversity (Dietl and Flessa 2011, Dietl et al. 2015, Barnosky et al. 2017). Detection of 

ecological and evolutionary processes in the fossil record facilitates a better 

understanding of biological responses to environmental changes and provides critical 

information about biodiversity to researchers, conservationists, and managers that can be 

used to anticipate responses to projected changes. 

1.1. Research objectives and hypotheses 

This interdisciplinary dissertation contributes to scientific efforts by enabling a 

more complete understanding of ecosystems through time and across space to facilitate 

more informed decision-making to conserve biodiversity and the ecosystem services it 

provides (Figure 1.1). I do this through four research projects: 1) investigating 

implications of analytical methods selected for use in studies of trait-environment 

relationships; 2) demonstrating the value of a new trait-environment relationship model; 

3) describing a faunal community from the Pleistocene of Sonora, Mexico; and 4) 
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highlighting institutions of informal learning as resources for increasing public 

understanding of science. 

 

 

Figure 1.1. Research framework for this interdisciplinary dissertation. 

Conservation paleobiology integrates research on documenting the past (systematic 

paleontology and paleoenvironmental reconstructions), modeling faunal turnover 

(ecological modeling and environmental change), informing the future (faunal 

predictions and conservation practice). Informal learning research aims to increase 

public understanding of science in support of conservation practice. 

 

First, I investigate four analytical methods used in ecometric studies that have 

been used or have the potential to be used in ecometric analyses for predicting 

paleoenvironment. A clear understanding of the implications of the different methods 

will increase the potential for more meaningful interpretations. I evaluate four methods 

to determine whether there have been systematic differences in paleoenvironmental 
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interpretation due to method choice. Specifically, I use linear regression, polynomial 

regression, nearest neighbor, and maximum likelihood methods with a well-known 

ecometric dataset of mammalian herbivore hypsodonty metrics (i.e., molar tooth crown 

to root height ratio; Figure 1.2A) and annual precipitation (Eronen et al. 2010c, Lawing 

et al. 2017). Differences in observed and predicted modern precipitation are compared to 

explore the predictive ability of the relationship, and each method is applied to 43 

Pleistocene fossil sites. Sites were categorized as glacial or interglacial, and 

paleoprecipitation predictions were compared to the appropriate global climate model. I 

expect maximum likelihood to produce the most accurate precipitation predictions 

because the method fits a model to a localized subset of communities that have similar 

trait values. For that reason, I also expect maximum likelihood to predict 

paleoprecipitation that most closely align with global climate models. 

 

 

Figure 1.2. Ecometric traits used in this dissertation. A, Herbivore hypsodonty (i.e., 

molar tooth crown to root height ratio) ranging from high (left; Equus caballus) to 

low (right; Tapirus terrestris); B, Calcaneal gear ratio (i.e., the ratio of the overall 

length of the calcaneum to the length of the calcaneal tuber at the sustentacular 

facet) ranging from high (left, Pecari tajacu) to low (right; Odocoileus virginianus).  
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Second, I developed an ecometric model using the calcaneal gear ratio of 

Artiodactyla across the globe. The gear ratio is a measurement of the overall length of 

the calcaneum divided by the length of the in-lever, i.e. calcaneal tuber; a low gear ratio 

indicates a long in-lever and a more plantigrade stance, whereas a high gear ratio 

indicates a short in-lever and a more unguligrade stance (Figure 1.2B; Polly 2010). In 

communities of carnivorans, this measure is related to ecoregion province, vegetation 

cover, and temperature (Polly 2010). Artiodactyls are the primary large herbivores in 

most communities, they have a nearly global distribution in almost all ecosystems, and 

species frequently overlap geographically creating a myriad of unique communities 

(Wilson and Reeder 2005, Foss and Prothero 2007).  

I collect gear ratio measurements from six museum collections, sample species 

composition of artiodactyl communities using distribution maps from IUCN, and 

calculate the mean and standard deviation of community-level gear ratio at 50 km 

equidistant points across the globe. For the same communities, I also sample 

temperature, precipitation, elevation, Matthews’ vegetation type, and Bailey’s ecoregion 

divisions to determine which environmental variables are most strongly related to the 

geographic distribution of artiodactyl gear ratio. I expect ecoregion division, vegetation 

cover, and precipitation to be strongly related to community gear ratio measures because 

this faunal group is herbivorous, and ranges will be constricted by vegetation patterns. 

To demonstrate the application of ecometric models, I apply this new model to six sites 
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in Kenya with historical and modern fauna records (Tóth et al. 2019). Using the trait-

environment relationship, I can relate faunal changes to environmental changes. 

Third, I describe the large mammals from the paleontological deposit near San 

Clemente de Térapa (hereafter referred to as Térapa). Térapa represents one of the very 

few Rancholabrean North American Land Mammal Age sites within northeastern 

Sonora, Mexico (Mead et al. 2006). At that time, pinyon-juniper-oak woodlands were 

common in the area while riparian corridors most likely followed local rivers to the Gulf 

of Mexico (Mead et al. 2006, Van Devender 2007). Summers were cooler and drier and 

winters were wetter than currently experienced in northern Mexico (Nunez et al. 2010, 

Bright et al. 2016). This new review of specimens provides a more thorough description 

of the material as well as amends incorrect initial identifications. I expect the fauna at 

Térapa to fill geographic gaps in the distributions of Pleistocene taxa because of its 

location in northwest Mexico, which has a poorly documented Ice Age fauna 

(Ferrusquía-Villafranca et al. 2010). This location is positioned between temperate and 

tropical faunas and may have served as a point of exchange during faunal range shifts. 

Finally, conservation and other science-based practices benefit from increased 

public understanding of science and greater inclusion of underrepresented groups. 

Moreover, interacting with a scientist or STEM professional can result in positive 

learning outcomes for participants, such as increased interest in science, learning, and 

awareness of STEM careers (Wiehe 2014, Boyette and Ramsey 2019). Informal learning 

institutions (ILIs), such as botanical gardens and arboretums, zoos and aquariums, public 

libraries, National Park Service lands, and biological field stations and marine 
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laboratories, create opportunities to increase scientific literacy and promote better 

representation of underrepresented groups in STEM careers (NASEM 2016); however, 

they are not equally distributed across the US.  

Using kernel density surfaces, I explore which types of ILIs occur in areas with 

higher or lower densities of other ILIs. I identify geographic gaps in the ILI landscape 

and, using simple densities at the county-level, identify three groups of underserved 

counties based on the interaction between population density and poverty percentage. 

Within those underserved counties, I consider racial and ethnic populations to connect 

the density of ILIs to populations of groups underrepresented in STEM careers. I expect 

areas of low population density and high poverty to have the lowest density of ILIs 

because the communities may have few resources. I expect groups already 

underrepresented in STEM to have higher than expected populations in the areas that are 

considered underserved by ILIs. 

1.2. Science and society 

I relate modern and past mammal morphology, climate, and environmental data 

to advance our understanding of Earth’s biodiversity and inform on mammalian 

responses to habitat loss and climate change. In the 20th century, many species, 

including many plants, mammals, birds, and butterflies, shifted their geographical ranges 

more than 10km north per decade (Parmesan and Yohe 2003, Hickling et al. 2006, 

Loarie et al. 2009). With three research chapters focused on faunal responses to 

environmental change, I advance our study of biodiversity response to environmental 

change though time. My fourth research chapter facilitates the transfer of knowledge 
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from scientists to the public by highlighting informal learning opportunities that can be 

leveraged to increase public understanding of science and environmental stewardship. 
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2. COMPARISON OF ENVIRONMENTAL INFERENCE APPROACHES FOR 

ECOMETRIC ANALYSES: USING HYPSODONTY TO PREDICT PRECIPITATION 

 

2.1. Introduction 

Functional traits are measurable features that influence an organism’s interaction 

with its environment (McGill et al. 2006, Violle et al. 2007). When measured in the 

fossil record, functional traits can be used for a thorough understanding of biotic 

responses to corresponding environmental changes (Eronen et al. 2010a), which can 

contribute to improved predictions of future faunal communities as they face severe 

impacts from environmental change (Ceballos et al. 2005, 2015, Barnosky et al. 2011). 

With climate expected to continue changing at unprecedented rates (IPCC 2014, 

Wuebbles et al. 2017), it is important to better understand the past so that we can 

anticipate future faunal responses. 

Ecometric analyses were developed to predict paleoclimatic conditions from 

fossil assemblages by providing a linkage between paleontological data, modern data, 

and projections of functional responses to impending climate change (Polly et al. 2011, 

Polly and Head 2015). These studies use the trait-environment relationship to study 

assemblage-level responses over spatial and temporal scales (Eronen et al. 2010a, Polly 

et al. 2011, Polly and Head 2015). When there is a strong trait-environment relationship, 

the traits can act as predictors of environment (McGill et al. 2006, Eronen et al. 2010a), 

and paleontology can inform conservation efforts by providing a long-term record of 

change (Dietl and Flessa 2011, Dietl et al. 2015, Barnosky et al. 2017). 
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Previous research has demonstrated relationships between community-level trait 

composition and environmental variables, including for plant leaf margins (Wolfe 1979, 

Nicotra et al. 2011, Peppe et al. 2011, Royer et al. 2012), herbivore teeth (Eronen et al. 

2010b, Evans 2013, Fortelius et al. 2016), and locomotor skeletal elements of bovids 

(Barr 2017), carnivorans (Polly 2010), and snakes (Lawing et al. 2012), but the 

estimation methods have varied. Wolfe (1979) used linear regression to demonstrate that 

areas with high mean annual temperatures are dominated by leaves with entire margins 

while areas with low temperatures are dominated by leaves with non-entire margins. 

Eronen, Puolamäki, Liu, Lintulaakso, Damuth et al. (2010c) used linear regression and 

regression tree analysis to predict Eurasian paleoprecipitation from large mammal 

hypsodonty values. Barr (2017) used general linear models to study the relationship 

between bovid postcranial elements and vegetation cover and precipitation. Fortelius et 

al. (2016) used regression and k-nearest neighbor (kNN) on dental characters to 

investigate paleoenvironment in the Turkana Basin between 7 and 1 million years ago. 

Polly (2010) and Lawing et al. (2012) used maximum likelihood estimation to explore 

the ecometric value of carnivoran calcaneal morphology and relative snake tail length, 

respectively. The community of scientists using ecometrics for conservation 

paleontology will benefit from a discussion of when to use which methods because less 

accurate methods will cause misinterpretations when ecometric relationships are applied 

to the paleontological record. 

Although the use of ecometrics has increased in recent years, only Fortelius et al. 

(2016) compares multiple methods—regression and k-nearest neighbor (kNN)—by also 
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using hypsodonty as the ecometric trait. In this case, the authors discuss merits of 

regression, which is easier to interpret because it produces an equation, and kNN, which 

is more sensitive to variation because it is non-linear. An analysis of additional 

estimation methods will enable better comparisons and address potential weaknesses of 

paleoenvironmental interpretations.  

2.1.1. Herbivore hypsodonty 

Hypsodonty is the ratio of the tooth crown height to root height of the molars, 

and the relationship between hypsodonty and annual precipitation and is highly 

correlated in large and small mammals (Eronen et al. 2010b, Lawing et al. 2017). 

Hypsodonty is functionally related to the durability of teeth in herbivores and provides 

biomechanical advantages, including more restricted areas of stress and increased 

occlusal pressure, to support more efficient mastication of grass and other tough, poor 

quality vegetation (Demiguel et al. 2016, Solounias et al. 2019). Increased hypsodonty 

has been linked to more roughage in the diet (Strömberg 2002, 2006, Erickson 2014, 

Merceron et al. 2016) and increased environmental grit consumed during feeding 

(Damuth and Janis 2011, Jardine et al. 2012, Semprebon et al. 2019). It is possible that 

both diet and habitat play a role in the development of hypsodont dentition (Williams 

and Kay 2001, Toljagić et al. 2018), so that hypsodonty at the community level has 

changed with environments over time. 

North American habitats became more open and grass-dominated in the Miocene 

(Edwards et al. 2010, Strömberg 2011). There were approximately 4 million years 

between the establishment of C3 grasslands and the origination of equid hypsodonty in 
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the Great Plains of North America (Strömberg 2006); it was approximately another 10 

million years until specialized grazers appeared (Janis 2008). Eventually, there was a 

turnover from predominately low-crowned to high-crowned taxa, so that communities 

with higher hypsodonty indices are generally found in more open and arid grasslands 

(Janis et al. 2000, 2002, Fortelius et al. 2002, Eronen et al. 2010c, Strömberg 2011). 

Annual precipitation predictions based on tooth morphology closely match predictions 

from climate modeling and paleovegetation records in Eurasia over the past 23 million 

years (Eronen et al. 2010c), and the same trait-environment relationship has been used to 

indicate changes in precipitation in Eurasia (Fortelius et al. 2002, Eronen et al. 2012), 

Italy (Meloro and Kovarovic 2013), and Kenya (Žliobaitė et al. 2016). 

Here, we use the trait-environment relationship between hypsodonty and annual 

precipitation to compare four methods of ecometric estimation – linear regression, 

polynomial regression, nearest neighbor, and maximum likelihood. We aim to 1) explore 

differences in the predictive ability of each method and 2) apply each method to Late 

Pleistocene fossil localities to demonstrate the potential impact of method selection on 

paleoenvironmental interpretations. We expect maximum likelihood to produce the most 

accurate predictions of precipitation from community hypsodonty values because the 

method predicts precipitation by fitting a model to a localized subset of communities that 

have similar trait values. For that reason, we also expect maximum likelihood to predict 

paleoprecipitation that most closely align with global climate models. 
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2.2. Materials and methods 

We used modern communities of herbivores and annual precipitation data to 

evaluate four prediction methods for ecometric analyses and investigate the capacity of 

each method to predict paleoprecipitation for paleontological sites. 

2.2.1. Study area and taxa 

We used the extant species of Artiodactyla, Perissodactyla, Rodentia, and 

Lagomorpha (n = 404) in North America, because they represent the primary herbivores 

in North American mammalian communities. Jardine et al. (2012) suggested not 

including fossorial rodents and lagomorphs in studies of precipitation because these taxa 

are under selective pressures that do not co-vary with aridity. However, hypsodonty, as 

well as fossorial behavior, of small mammals increased as habitats became more dry and 

open (Samuels and Hopkins 2017), and the relationship between hypsodonty and 

precipitation occurs in Dipodidae, which includes fossorial species (Ma et al. 2017). 

Thus, we have included all Glires here to encompass the majority of the herbivorous 

mammal community.  

We recognize that the North American fauna is biased following the Pleistocene 

mass extinction (Carrasco et al. 2009, Barnosky et al. 2011) and, therefore, the 

predictive abilities of the methods will be lower. However, because the relationship 

between hypsodonty and precipitation is well-established, it provides a good dataset for 

relative comparisons of paleoenvironmental reconstruction methods. 
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2.2.2. Traits and communities 

Hypsodonty data for this paper came from an existing dataset, which has been 

used to investigate trait composition at the community level in North America (Lawing 

et al. 2017). Crown height for each species was assigned a value of 3 (hypsodont, high 

crown height), 2 (mesodont, moderate crown height), or 1 (brachydont, low crown 

height) (Fortelius et al., 2002; Figure 2.1). An additional 72 species were assigned 

hypsodonty values based on literature for a total of 446 species. Some members of 

Rodentia and Lagomorpha have evolved hypselodont dentition in which the teeth 

continue to emerge throughout the lifespan; these taxa are classified as hypsodont for the 

purposes of this study following Fortelius et al. (2003). 

 

 

Figure 2.1. Three levels of hypsodonty. Left, Hypsodont, or high tooth crown-root 

ratio, as represented by Equus caballus; Middle, Mesodont, or moderate tooth 

crown-root ratio, as represented by Cervus canadensis; Right, Brachydont, or low 

tooth crown-root ratio, as represented by Tapirus terrestris. 
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Community composition was sampled using an equidistant 50-km point system 

(9,699 sampling points) in North America (Polly 2010, Lawing et al. 2012, 2017) from 

overlapping expert drawn polygon maps from NatureServe to produce community lists 

of North American Artiodactyla, Perissodactyla, Rodentia, and Lagomorpha with extant 

presence and native or reintroduced origin (those data were produced in collaboration 

with Bruce Patterson, Wes Sechrest, Marcelo Tognelli, Gerardo Ceballos, The Nature 

Conservancy – Migratory Bird Program, Conservation International – CABS, World 

Wildlife Fund – US, and Environment Canada – WILDSPACE; Patterson, Ceballos, 

Sechrest, Tognelli, Brooks, et al., 2007). Taxonomy associated with hypsodonty data and 

range maps were reviewed to ensure consistency following Wilson and Reeder (2005). 

Only sampling points with a species richness of five or more were kept. We calculated 

the mean (Figure 2.2A) and standard deviation of hypsodonty for every sample point.  

Our dataset on communities included the presumed presence or absence of 

species at each sampling location across North America because the ranges are not based 

only on direct observations. Another measure of community composition could include 

recording the presumed abundance of species within communities. That would allow us 

to weigh the traits by the most commonly occurring taxa (sensu Faith, Du, & Rowan, 

2019). Faith et al. (2019) show that using abundance instead of occurrence allows for 

weighted ecometric means that can produce more robust paleoclimate predictions. 

Despite these benefits, we chose to use occurrences rather than abundance to 1) use 

range maps in place of observational data for the modern communities, ensuring larger 

coverage, 2) mirror available data at fossil sites that lack abundance descriptions, 3) 
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overcome potential sampling bias that occurs in a dataset that includes both small and 

large mammals, and 4) replicate methods most commonly used in ecometric studies. In 

addition, gathering abundance data from the fossil record is highly susceptible to 

taphonomy and collection practices (Hernández Fernández and Vrba 2006, Crees et al. 

2019).  

 

 

Figure 2.2. Data used in this study. Legend values are the maximum values for the 

bin. A, Mean community hypsodonty values; B, Mean annual precipitation in log 

mm. 

 

2.2.3. Environmental data 

Annual precipitation data were downloaded from the WorldClim database at the 

2.5-degree grid scale (Hijmans et al. 2005) and extracted at each sampling point across 

North America (Figure 2.2B). The natural log of annual precipitation was used to 

transform the data for normality.  
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2.2.4. Ecometric analyses 

Four inference methods were selected for comparison: linear regression, 

polynomial regression, nearest neighbor, and maximum likelihood. Linear regression 

and polynomial regression produced predictions using the formula of a line of best fit 

that is either linear or nonlinear, respectively. Nearest neighbor predicted precipitation 

by using training data and the k closest communities of hypsodonty values. We used 

20% of the data as training data and k = 15 to include the 15 nearest neighbors in the 

analysis following Fortelius et al. (2016) who used k = 15 using a cross-validation 

analysis of hypsodonty and precipitation. For the maximum likelihood, communities 

were binned into 25 x 25 cells based on the mean and standard deviation their 

hypsodonty values following Lawing et al. (2012) and Vermillion et al. (2018). Each bin 

was analyzed to estimate the most likely precipitation value for communities with the 

same trait mean and standard deviation.  

Maps of predicted annual precipitation were produced using the community 

hypsodonty data and each of the inference methods. This step allowed for precipitation 

predictions to be evaluated through comparisons with the observed precipitation dataset. 

Predicted values were subtracted from the observed values, and differences were 

mapped to generate anomaly maps (Polly and Sarwar 2014); smaller differences between 

predicted and observed values indicated a less biased prediction. Predictions were used 

to test the Pearson correlation of each method with observed precipitation and the other 

three methods. An ANOVA test was used to compare the group means across the 

methods. 
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2.2.5. Fossil sites application 

Inference methods were applied to Late Pleistocene North American fossil sites 

to demonstrate differences in paleoprecipitation predictions. Case study sites were 

downloaded from the Paleobiology Database on 12 March 2019, using the following 

parameters: longitude = -230.449 – 36.5625, latitude = -5.0909 – 64.3969, time interval 

= Pleistocene, Orders = Artiodactyla, Perissodactyla, Rodentia, and Lagomorpha. Sites 

were further restricted to the Late Pleistocene (0.126 ma – 0.0117 ma) time bin and were 

limited to communities with at least five species (n = 43; Table A-1). Fossil taxa were 

assigned a hypsodonty index value based on literature and the New and Old World 

(NOW) Database of Fossil Mammals (The NOW Community 2019). Fossil sites were 

categorized as interglacial or glacial using literature sources that primarily reported 

relative dates with many of the site descriptions including either Sangamonian (i.e., 

interglacial) or Wisconsinan (i.e., glacial) terminology.  

Global climate models (GCM) were downloaded for the last glacial maximum at 

2.5 minutes resolution (Fick and Hijmans 2017) and for the last interglacial at 30 arc-

seconds resolution (Otto-Bliesner et al. 2006, Fick and Hijmans 2017). Precipitation 

values were extracted from the GCM models at each site, and an average value was used 

for the two glacial GCMs – CCSM4 and MIROC-ESM. These models provided 

additional precipitation predictions to evaluate the accuracy of the ecometric predictions. 

For each fossil community, hypsodonty mean and standard deviation were calculated 

using only one occurrence of each species to prevent duplicating the trait value of any 

repeated taxa.  
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Four precipitation predictions were made for each community using the 

hypsodonty metrics and each inference method. Predictions were compared to the GCM 

values and to predictions from the other methods using Pearson’s correlation tests. 

Anomalies were calculated by subtracting the predicted values from the GCM values at 

each site. All analyses were performed in R Statistical Package (R Core Team 2016).  

2.3. Results 

Linear regression predicts precipitation with anomalies that range between -4.90 

log mm and 4.26 log mm (mean = 0.00 log mm, R2 = 0.408, p < 0.001; Figure 2.3A), 

and polynomial regression produces anomalies that range between -4.86 log mm and 

4.42 log mm (mean = 0.00 log mm, R2 = 0.436, p < 0.001; Figure 2.3B). These methods 

overpredict precipitation in dry areas and underpredict precipitation in wet areas. Both 

regression methods overpredict precipitation in the North American deserts, the northern 

Great Plains, and the tundra, and underpredict precipitation along the Pacific Northwest 

coastline, throughout most of the eastern portion of the continent, and somewhat in 

Central America. 
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Figure 2.3. Anomaly maps of differences between observed and predicted 

precipitation from four inference methods. A, linear regression; B, polynomial 

regression; C, nearest neighbor; and D, maximum likelihood. Scale is log mm and 

values are the mean of each color bin. 

 

Nearest neighbor predicts precipitation anomalies that range between -4.33 log 

mm and 4.28 log mm (mean = -0.020 log mm; Figure 2.3C), and maximum likelihood 

produces anomalies that range between -5.19 log mm and 4.23 log mm (mean = -0.003 

log mm; Figure 2.3D). Nearest neighbor and maximum likelihood overpredict 

precipitation in dry areas, such as the arid southwest and in the tundra, and underpredict 

precipitation in wet areas, such as the Pacific Northwest coast and in the eastern part of 
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the continent. Nearest neighbor also overpredicts precipitation in the Rocky Mountains, 

and maximum likelihood also underpredicts precipitation in Central America. There is 

not a significant difference in anomalies between the four methods (F(3, 30071) = 0.694, 

p = 0.556), but maximum likelihood produces the most neutral (i.e., equal to zero) or 

nearly neutral anomalies suggesting more accurate predictions overall (Figure 2.4).  

 

 

Figure 2.4. Density of anomalies between observed and predicted precipitation 

using four inference methods.  

 

The four inference methods are all highly correlated with log precipitation and 

with the other methods, and all correlations are significant at p < 0.001 (Table 2.1). 

Precipitation is consistently correlated with each of the four methods (r = 0.640 – 0.690). 

Linear regression and polynomial regression are the most highly correlated methods (r = 

0.966), whereas linear regression and maximum likelihood are the least correlated 

methods (r = 0.897). 
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Table 2.1. Correlation matrix of observed and predicted precipitation values. All 

correlations are significant at p < 0.001. 

 Precipitation 

(log mm) 

Linear 

regression 

Polynomial 

regression 

Nearest 

neighbor 

Linear regression 0.640    

Polynomial regression 0.663 0.966   

Nearest neighbor 0.673 0.901 0.911  

Maximum likelihood 0.690 0.897 0.930 0.904 

 

2.3.1. Paleoenvironment of fossil sites 

Most of the paleontological case study sites are glacial (72%; Figure 2.5). Glacial 

and interglacial fossil communities are primarily hypsodont with some mesodont 

communities in the southeast; there are no brachydont communities. Interglacial 

predictions are higher than the GCMs across all sites (Figure 2.6A). Interglacial 

anomalies are centered at approximately -1.5 log mm and have a smaller range than 

glacial predictions (Figure 2.6B). At the interglacial sites, maximum likelihood is more 

closely aligned with the GCM mean. Glacial predictions are higher than the GCMs at 

high latitudes and converge at approximately 38°N (Strait Canyon, Virginia; Figure 

2.6C). Differences in glacial precipitation predictions and GCMs are centered just below 

0 log mm with a small increase at approximately 3 log mm (Figure 2.6D). Maximum 

likelihood produces bimodal anomalies at 0 log mm and -2 log mm, but other methods 

do not display this pattern. Predictions of precipitation at glacial sites more closely 

match the GCMs than do the predictions at interglacial sites (Figure 2.6).  
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Figure 2.5. Hypsodonty measures of fossil communities. Hypsodonty values are the 

maximum values for the bin. A, Glacial sites; B, Interglacial sites. 

 

 

Figure 2.6. Four predictions of precipitation for glacial and interglacial fossil sites. 

Glacial and interglacial global climate model predictions are for comparison. A, 

Predictions for interglacial sites; B, Predictions for glacial sites; C, Density plot of 

anomalies for interglacial sites; and D, Density plot of anomalies for glacial sites. 
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2.4. Discussion 

Trait-environment relationships can be used for understanding past 

environmental changes and corresponding biotic responses (Eronen et al. 2010a, Polly et 

al. 2011). Because there are minimal differences between inference methods (Figures 

2.3, 2.4), we expect that, when a strong ecometric relationship exists, any of the 

investigated methods will capture the relationship between hypsodonty and precipitation. 

Therefore, any of the methods can be used to predict the environment from the 

distribution of trait values within a community. Hypsodonty and annual precipitation 

have a well-established relationship, but these methods may show more differences with 

a weaker trait-environment relationship.  

Each method has constraints that should be considered when selecting a method 

for ecometric analyses. Linear regression is the least sensitive to variation in the trait-

environment relationship because the inference model is derived from a fitted regression 

line. When the model is applied to new trait data to predict precipitation, each prediction 

comes from the equation of that regression line. Because precipitation predictions are 

forced to fit the regression line, there is a reasonable chance of over- and 

underprediction. Therefore, the precipitation predictions from the linear regression 

model have the weakest correlation with the observed precipitation (Table 2.1).  

Similarly, polynomial regression uses a fitted regression curve of best fit for the 

inference model. Predictions of precipitation using polynomial regression places a 

known hypsodonty value along that curve. In this study, precipitation predictions from 

polynomial regression are more highly correlated with observed precipitation values 
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than those from linear regression or nearest neighbor (Table 2.1). However, polynomial 

regression is unable to predict precipitation values under 4.45 log mm because of the 

sinusoidal shape of the regression curve. Because of this lower limit of the curve, 

polynomial regression analyses will overpredict precipitation for communities 

dominated by taxa with hypsodont dentition because the model cannot predict low 

precipitation values. 

Nearest neighbor uses a subset of data, i.e., training data, to construct a model. A 

training dataset should be large enough to provide a robust sample for model fit, thus it 

is more advantageous to use k-nearest neighbor with a large dataset (Bhatia 2010). In 

this study, the training data was 20% of the whole data set. The k value can also be 

changed to include more or fewer surrounding data points to determine the precipitation 

value associated with a known reference value. Here, the spatial pattern of 

overprediction in the arid southwest, tundra, and Rocky Mountains and underprediction 

in the Pacific Northwest and eastern North America is generally consistent with the other 

methods (Figure 2.3C), but precipitation predictions from nearest neighbor have the 

lowest correlations with the predictions from the other three methods (Table 2.1). 

Maximum likelihood cannot predict precipitation for communities with a trait 

composition outside of the ecometric trait space used to calibrate the likelihood space. 

The ecometric trait space is constructed from the trait composition of modern 

communities. Therefore, in the paleontological case studies, two interglacial sites and 

seven glacial sites (21% of total sites) did not receive a maximum likelihood prediction 

of precipitation because the hypsodonty values fall outside of the occupied bins 
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designated based on the modern communities (Figure 2.6). Despite this limitation, 

precipitation predictions from maximum likelihood are the most highly correlated with 

observed precipitation (Table 2.1) and produce the most neutral or nearly neutral 

anomalies between predicted and observed precipitation values (Figure 2.4). 

With evolutionary trends of increasing hypsodonty (Jernvall and Fortelius 2002, 

Jardine et al. 2012, Tapaltsyan et al. 2015), we might expect predictions built on extant 

taxa to generally underpredict paleoprecipitation. Because of the relationship between 

high hypsodonty and low precipitation, as hypsodonty increases through time, 

precipitation predictions would likely decrease. Here, the analyses are on a geologically 

small temporal scale of approximately 125,000 years, so it is unlikely this evolutionary 

pattern affected the trait-environment relationship, and the four methods mostly 

overpredicted or accurately predicted precipitation for the fossil sites when compared to 

the global climate models (Figure 2.6). 

It might also be expected that today’s interglacial fauna should more accurately 

predict paleoprecipitation at interglacial sites rather than glacial sites. However, the 

interglacial predictions are consistently offset from the interglacial global climate 

models, but more closely align with the glacial global climate models (Figure 2.7). In 

this case, today’s interglacial faunal communities are, perhaps, more similar to the 

glacial communities. It is possible that the extant fauna is lagging behind the climate, so 

that the fauna has not fully responded to interglacial conditions. On the timescale of 

interglacial and glacial cycles, community reassembly, rather than evolutionary 

adaptation, may drive changes in trait composition (Polly et al. 2017). In the Holocene, 
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community assembly is largely affected by anthropogenic effects that have changed 

community structure patterns to include more segregated species pairs and restricted the 

interglacial reassembly that would have occurred, if not for the anthropogenic influence, 

following the last glacial maximum (Lyons et al. 2016). 

 

 

Figure 2.7. Four predictions of precipitation for interglacial fossil sites compared to 

glacial global climate model predictions. A, Predictions for interglacial sites; and B, 

Density plot of anomalies for interglacial estimates of precipitation and glacial 

global climate models. 

 

2.4.1. Limitations 

In this paper, we used community species lists extracted from expert drawn 

polygons of species geographic ranges, which typically overpredict species’ presence 

within communities (Jetz et al. 2008, Cantú-Salazar and Gaston 2013). This could affect 

the trait values of communities that occur along distribution margins and weaken the 

predictive ability of the inference methods. Furthermore, although species occurrence 

data are from distribution estimates updated in 2007 (Patterson et al. 2007), precipitation 

is an average of data from 1970 – 2000 (Fick and Hijmans 2017). This temporal 
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mismatch may introduce a bias as faunal assemblages are increasingly affected by 

anthropogenic pressures, such as land use and habitat loss (Lyons et al. 2016, Hobbs et 

al. 2018). For example, a current species range map may no longer capture precipitation 

regime from 1970 – 2000, but may be a reflection of distribution constraints, such as 

habitat loss and competition from invasive or introduced species. 

We have limited our modern community species lists to only native and 

reintroduced taxa. Extirpation or extinction of native species and the presence of 

invasives and non-native species can potentially change the trait values of a community, 

but, with a strong trait-environment relationship, it is unlikely that these taxa would 

change the trait values enough to notably change the environmental interpretation (Polly 

and Sarwar 2014). For instance, it was expected that the Pleistocene megafaunal 

extinction would create a bias and make the functions unable to predict precipitation of 

glacial sites. However, the glacial predictions more closely aligned with the global 

climate models (Figure 2.6).  

Fossil sites were designated as interglacial and glacial using relative dating. 

Literature often described the fossil sites as having a Sangamonian (interglacial) or 

Wisconsinan (glacial) fauna, which made it difficult to use finer temporal resolution. 

Because of the consistent predictions within interglacial sites and glacial sites (Figure 

2.6), it is unlikely that this caused a misinterpretation of results. It would be beneficial to 

further evaluate the pattern of overpredicting interglacial precipitation across sites using 

only fossil sites with absolute dating. 
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2.4.2. Implications 

Evaluating ecological and evolutionary processes from data archived in the fossil 

record provides critical information about biodiversity to researchers, conservationists, 

and managers by facilitating a better understanding of anticipated biological responses to 

expected environmental changes (Dietl and Flessa 2011, Dietl et al. 2015, Barnosky et 

al. 2017). Paleobiological records provide a broader and deeper perspective that allow us 

to forecast how impending climate change will affect species and communities (Burney 

and Burney 2007, Lawing et al. 2016). Therefore, researchers are increasingly 

considering conservation implications in their paleontological work and, as such, it is 

important that we consider the methods used to define the trait-environment relationship. 

We show that the hypsodonty-precipitation relationship is identifiable with four different 

inference methods (Figure 2.3); although, maximum likelihood produces a better fit to 

observed data and more neutral anomalies than the other methods (Figure 2.4).  

In this study, paleoprecipitation predictions of interglacial fossil communities 

were more closely aligned with glacial global climate models (Figures 2.6, 2.7). This 

pattern may be due to anthropogenic constraints on community reassembly in the 

Holocene (Lyons et al. 2016). For instance, today, only 41% of natural areas in the U.S. 

demonstrate climate connectivity, so that species can shift their ranges as climate change 

continues (McGuire et al. 2016). Thus, today’s interglacial fauna may not be wholly 

representative of the fauna from the last interglacial period, but rather is more 

representative of the last glacial period. Future studies should consider this when 

working with glacial and interglacial faunal communities. 
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For a more complete understanding of community responses to environmental 

change through time, it is imperative that we further explore trait-environment 

relationships in the paleontological record that can be used in conjunction with other 

proxies and models, such as global climate models. By using multiple proxies either in 

parallel or in merged multi-proxy models, we can provide a more complete interpretation 

of past communities, which will be needed to anticipate faunal responses to ongoing 

environmental changes. 
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3. GEOGRAPHIC VARIATION IN ARTIODACTYL LOCOMOTOR 

MORPHOLOGY AS AN ENVIRONMENTAL PREDICTOR 

 

3.1. Introduction 

Functional traits are measurable features that influence an organism’s interaction 

with its environment (McGill et al. 2006, Violle et al. 2007), and, because of this 

relationship, the morphological composition of a community will change as environment 

changes (Violle et al. 2007, Enquist et al. 2015). Study of these functional trait-

environment relationships over spatial and temporal scales and at the community level 

has come to be called “ecometrics” (Eronen et al. 2010a, Polly et al. 2011, Vermillion et 

al. 2018). Ecometric indices have been used to reconstruct paleoenvironment (Eronen et 

al. 2010b, Polly 2010, Lawing et al. 2012, Fortelius et al. 2016, Barr 2017), evaluate 

extinction risk (Polly and Sarwar 2014), to understand the impact of non-ecological 

processes on patterns of biodiversity (Lawing et al. 2017), and to estimate community 

vulnerability to environmental change (Polly and Head 2015, Barnosky et al. 2017).  In 

ecometric studies, the focus on morphological change makes it possible to examine the 

diversity of associations between climates and biotas through time. 

In faunal communities, hypsodonty (or, the ratio of tooth crown height to tooth 

root height) is commonly used as a functional trait because of its relationship with 

precipitation (Fortelius et al. 2002, Eronen et al. 2010c, 2012, Evans 2013, Meloro and 

Kovarovic 2013, Žliobaitė et al. 2016). Communities dominated by fauna with high-

crowned teeth occur in drier, more open, grassland-like environments and communities 
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dominated by fauna with low-crowned teeth occur in wetter, more closed, forest-like 

environments (Janis et al. 2000, Fortelius et al. 2002, Eronen et al. 2010c). Higher-

crowned teeth enable animals to tolerate high levels of environmental grit associated 

with arid environments (Damuth and Janis 2011, Jardine et al. 2012, Kaiser et al. 2013, 

Lucas et al. 2014, Semprebon et al. 2019) as well as increased roughage in a diet of 

primarily grass (Strömberg 2002, 2006, Erickson 2014, Merceron et al. 2016, Winkler et 

al. 2019). 

In ecometric analyses of post-cranial skeletal elements, some traits are 

functionally related to an animal’s locomotion strategy, which is directly linked to the 

landscape in which the animal moves and, thus, the environment in which they live. 

Previous research has established a relationship between the calcaneal gear ratio of 

carnivorans and ecoregion province, vegetation cover, and mean annual temperature 

(Polly 2010), but this work has not yet been applied to other taxonomic orders. Whereas 

carnivorans are the primary carnivores in most ecosystems, artiodactyls are the primary 

large herbivores. Artiodactyls are typically cursorial with limbs that are restricted to 

parasagittal movement by hinge joints (Hildebrand and Goslow Jr 2001, Foss and 

Prothero 2007). Although they are cursorial, there is still a reasonable degree of variation 

in their locomotor strategies producing functional trait variation in their tarsals and 

metatarsals that is related to vegetation cover (Barr 2017, 2020).  

Mammalian hind limbs are responsible for net propulsion at all times (Dutto et 

al. 2006, Kilbourne and Hoffman 2013), and research has correlated calcaneal 

morphology and locomotor style, which, when averaged across a community, can be 
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indicative of habitat (Polly and MacLeod 2008, Panciroli et al. 2017). The calcaneum, or 

heel bone, is the primary lever in the hind limb and serves as the insertion point for the 

gastrocnemius muscle (Radinsky 1987). The calcaneal gear ratio is a measure of the 

overall calcaneal length relative to the length of the in-lever (i.e., the calcaneal tuber) 

(Polly 2010). Calcanea are excellent elements to use for paleobiological studies because 

they have strong trait-environment relationships and are likely to be preserved in the 

fossil record because they are relatively dense elements without much soft tissue (Hill 

1996). These circumstances render an investigation of artiodactyl calcanea an important 

next step in building ecometric models to relate morphology to environment. 

Here, we test whether the trait-environment relationship between calcaneal gear 

ratio and ecoregion that was documented in Carnivora by Polly (2010) is also present in 

Artiodactyla, and we explore other environmental variables that may also produce good 

ecometric models. We contribute and analyze newly collected data of functional-trait 

measurements on the calcanea of artiodactyls. Functional traits are analyzed for 

relationships to richness, taxonomic family, and environment, including precipitation, 

temperature, elevation, vegetation cover, and ecoregion division. All five environmental 

variables are expected to have a relationship with artiodactyl calcaneal gear ratio, 

because the environmental variables are closely related to vegetation, substrate, and 

topography. We expect that vegetation cover will have the strongest relationship with the 

gear ratios of artiodactyl communities because, as herbivores, artiodactyls have a direct 

reliance on vegetation. 
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3.2. Materials and methods 

To investigate calcaneal gear ratio as an ecometric trait in artiodactyls, we 

collected gear ratio measurement from skeletal specimens preserved in museum 

collections and cross-referenced the spatial distributions of species to determine 

community composition. The variation in gear ratio, summarized at the community 

level, was evaluated for fit with five environmental variables. 

3.2.1. Study system 

With 240 species in 89 genera in 10 families (Wilson and Reeder 2005), 

Artiodactyla has a nearly global distribution in nearly all ecosystems, and species 

frequently overlap geographically creating a myriad of unique communities. Specimens 

were examined from the Smithsonian National Museum of Natural History (Washington, 

DC, USA), the Denver Museum of Nature and Science (Denver, Colorado, USA), the 

Museum für Naturkunde (Berlin, Germany), the National Museums of Kenya (Nairobi, 

Kenya), the Museo di Storia Naturale (Florence, Italy), and the Natural History Museum 

(London, United Kingdom). Only adults were measured and, when possible, both male 

and female specimens were included to account for sexual dimorphism. We resolved any 

discrepancies in species taxonomy and followed Wilson and Reeder (2005). Domestic 

species were removed from analysis following Gentry et al. (2004). Species were 

retained in the analysis if the species are extant and native or reintroduced. In all, a total 

of 571 individuals were measured from 157 (65%) extant species of Artiodactyla. 

Number of individuals per species ranged from one to 13, and the proportion of males 

and females varied with many recorded as “unknown.”  
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Calcaneal gear ratio is a measurement of the overall length of a calcaneum 

divided by the length of its tuber, or in-lever (Polly 2010) (Figure 3.1). These two linear 

measurements were measured with calipers from the medial tubercle of the calcaneal 

tuber to the furthest extent of the cuboid facet and the furthest extent of the dorsal edge 

of the astragalar facet, respectively. The ratio of these measurements indicates the 

position of the sustentaculum, which articulates with the astragalus to form the ankle 

joint. A low gear ratio indicates a long in-lever and a more plantigrade stance whereas a 

high gear ratio indicates a short in-lever and a more unguligrade stance (Polly 2010). 

Gear ratios of individuals were used to calculate mean and standard deviation values for 

each species. Mean gear ratios were evaluated for differences at the family level. 

 

 

Figure 3.1. Measurements used to calculate calcaneal gear ratio on a right 

calcaneum in dorsal view. 1, Greatest length of calcaneum. 2, Length of calcaneal 

tuber. The gear ratio is calculated by dividing measurement 1 by measurement 2 to 

represent the position of the sustentaculum. Measurements are modified from Polly 

(2010). 
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3.2.2. Sampling strategy and environment 

We downloaded species’ geographic range maps from IUCN (2018) and sampled 

communities from overlapping range maps using a global 50 km grid of equidistant 

points (Polly 2010, Lawing et al. 2012; available at 

https://pollylab.indiana.edu/data/index.html). Evenly spaced points at this scale are 

representative of geographic mixing and the derived patterns are appropriate for 

comparing with samples from the fossil record (Polly 2010). Where Hurlbert and Jetz 

(2007) suggested to only use points of at least 200 km in distance when evaluating 

global trends, Lawing et al. (2017) showed that, in mammals, ecometric relationships do 

not change when evaluating records at 50, 100, or 250 km distance. Thus, we chose to 

use 50 km points to be consistent with previous ecometric studies. In total, there were 

54,090 terrestrial global points after removing Antarctica from the dataset, with 47,420 

being occupied by at least one artiodactyl species. For each community with three or 

more species, we calculated mean and standard deviation of calcaneal gear ratio from 

species’ means. 

We extracted environmental data, including mean annual temperature (C), annual 

precipitation (mm), elevation (m), vegetation cover, and ecoregion province, at each 

geographic point in our sampling scheme. Mean annual temperature (Figure 3.2A) and 

annual precipitation (Figure 3.2B) were sourced from weather stations for 1900-2014 

and have been averaged and interpolated to a 0.5 x 0.5 degree raster layer (Matsuura and 

National Center for Atmospheric Research Staff 2017). Elevation was extracted from the 

GLOBE digital elevation model with a resolution of 30 arc-seconds (GLOBE Task 
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Team et al. 1999, Hastings and Dunbar 2008; Figure 3.2C). Matthews’ vegetation cover 

was used to classify landscapes into one of 31 vegetation types; cultivation was excluded 

from this analysis (Matthews 1983, 1984, 1999; Figure 3.2D). Bailey’s ecoregions 

define large-scale areas with similar ecosystem features, such as climate, physiography, 

and vegetation (Bailey and Hogg 1986, Bailey 1989, 1998, 2005; Figure 3.2E). Each 

ecoregion domain (n = 4) contains between four and 12 divisions for a total of 29 

divisions that were used in this study; divisions are based on monthly measures of 

temperature and precipitation and are further divided based on vegetation (Bailey 2005).  
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Figure 3.2. Environmental variables used to test for trait-environment 

relationships. A, Mean annual temperature displayed in 10 color bins using Jenks 

Natural Breaks. Dark blue is the lowest temperature (-26.9 – -17.2°C) and dark red 

is the highest temperature (23.9 – 31.4°C); B, Annual precipitation displayed in 10 

color bins using Jenks Natural Breaks. Bright yellow is the lowest precipitation (0 – 

220 mm) and dark green is the highest precipitation (4,388 – 9,916 mm); C, 

Elevation displayed in 10 color bins using Jenks Natural Breaks. Dark green is the 

lowest elevation (-1,216 – 214 m) and white is the highest elevation (4,245 – 6,231 
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m); D, Bailey’s ecoregion divisions. Colors are arbitrarily assigned to show 

variation; E. Matthews’ vegetation cover. Colors are approximately aligned with 

vegetation so that dense vegetation is darker and sparse vegetation is lighter. 

Legend values are provided in Figure B-1. 

 

3.2.3. Ecometric summaries and analyses 

Community means of calcaneal gear ratio were evaluated for relationships with 

species richness, and each of the five environmental variables. Continuous variables 

were transformed for normality as follows: cube root of richness and elevation, cube of 

mean annual temperature, and log of annual precipitation. Continuous variables were 

analyzed with a Pearson’s correlation and categorical variables were analyzed with an 

ANOVA-derived R2.  

For environmental variables that were associated with a large amount of trait 

variation, an ecometric space was constructed following Lawing et al. (2012) and 

Vermillion et al. (2018). Trait values were binned into 25x25 cells by mean and standard 

deviation within an ecometric space. Short et al. (in review) showed that maximum 

likelihood had the smallest anomalies among four methods used to fit ecometric 

relationships. Thus, we used maximum likelihood to estimate the most likely 

environmental conditions for each trait bin. The ecometric models were then used to 

predict environments for the same dataset of communities. This enabled the models to be 

evaluated by comparing the observed environment to the predicted environment. 

Differences between the observed and predicted values were used to produce anomaly 

maps (Vermillion et al. 2018). Continuous variables were evaluated using numeric 

anomaly values. Categorical variables do not allow for numeric anomalies, so these were 
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evaluated using the percentage of predictions that were “correct” (i.e., matching the 

observed) or “incorrect” (i.e., not matching the observed).  

3.3. Results 

Species-level calcaneal gear ratios range from 1.40 (Ammodorcas clarkei, 

dibatag) to 1.74 (Hexaprotodon liberiensis, pygmy hippopotamus) (µ = 1.49, SD = 

0.051; Figure 3.3A). At the family level, gear ratio means are significantly different 

among taxonomic families (R2 = 0.473, p < 0.001). Bovids and cervids make up most of 

the low gear ratios with the five lowest values from species of Antilopinae (Bovidae). 

There is more taxonomic diversity in the high gear ratios with the five highest values 

from different families, including Tragulidae, Suidae, Giraffidae, Camelidae, and 

Hippopotamidae (Figure 3.3B). 
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Figure 3.3. Taxonomic distributions of calcaneal gear ratios. A, Rank order plot of 

gear ratios by species. The horizontal dashed line indicates the mean (µ = 1.49) and 

the gray shading includes one standard deviation (SD = 0.051) to either side of the 

mean. B, Boxplot of gear ratios by family. 
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 Community mean gear ratios range from 1.42 to 1.59 (µ = 1.48). Mean gear 

ratios are highest in the tropical regions and lowest in the mid-latitudes (Figure 3.4A). 

Community mean gear ratios are associated with community richness (R = 0.534, R2 = 

0.285, p < 0.001) so that communities with high species richness have gear ratio values 

near the mean of 1.48 (Figure 3.4B). Communities with low species richness have mean 

gear ratios across the range of trait values, but are on average lower than the mean. 

 

 

Figure 3.4. Geography of artiodactyl community morphological composition. A, 

Mean calcaneal gear ratios; B, Species richness. Solid line is the equator (0°) and 

dotted lines are 30°N and 30°S. 
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 All five environmental variables are related to community mean calcaneal gear 

ratios (Table 1). Although, elevation explains little variation in community mean 

calcaneal gear ratio (1.6 %; Table 1). Ecoregion division is the most strongly correlated 

with gear ratio and explains 60.8% of the trait variance. Vegetation cover and annual 

precipitation are also strongly correlated with gear ratio and explain 57.6% and 44.1% of 

the variance, respectively. Because of their strong relationships with community mean 

calcaneal gear ratio, these three environmental variables are investigated further to 

produce ecometric spaces. 

 

Table 3.1. Relationships between mean gear ratio and environment. R is the 

Pearson’s correlation coefficient and R2 is the amount of variance explained by the 

environmental variable. All trait-environment relationships are significant at p < 

0.001(***). 

 R R2 p 

Mean annual temperature 0.263 0.069 *** 

Annual precipitation 0.664 0.441 *** 

Elevation -0.125 0.016 *** 

Ecoregion division  0.608 *** 

Vegetation cover  0.576 *** 

 

In the ecometric space of ecoregions, humid tropical savannas make up the 

largest division that is nearly centered in the ecometric space (Figure 3.5A). 

Communities in humid tropical divisions have mostly moderate calcaneal gear ratio 

means and low to moderate standard deviations. Communities in humid temperate 

divisions range from low mean and low standard deviation to high mean and high 

standard deviation. There are no humid temperate communities predicted to occur with a 

high standard deviation and low mean calcaneal gear ratio. Communities in dry divisions 
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have low to moderate calcaneal gear ratio means and occur across the range of standard 

deviation. Communities in polar divisions have moderate means and low standard 

deviations; these communities are mixed with humid tropical and humid temperate 

divisions.  

When the ecometric model is used to predict the ecoregion division based on the 

community calcaneal gear ratio, the model is accurate for 60.5% of the communities 

(Figure 3.5B; Table S1). Ecoregion divisions can be grouped in to four, higher-level 

ecoregion domains. The model accurately predicts the ecoregion domains for 83.46% of 

the communities. This ecometric model is most accurate in the savannas and rainforests 

divisions (humid tropical domain) of South America and Africa, and the subarctic 

regime mountains division (polar domain) of North America and Asia. The model is also 

accurate for the temperate steppe division of North America and the tropical/subtropical 

desert regime mountains division of Asia; both of these are in the dry domain.  
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Figure 3.5. Ecometric trait-environment relationships. A, Ecometric space showing 

the most likely ecoregion division given community level gear ratio means and 

standard deviations. Colors represent ecoregion domain groupings of ecoregion 

divisions. B, Anomaly map of ecoregion division predictions based on gear ratio. 

Light yellow locations are correct predictions in which the prediction accurately 

matches the observed (60.5%). Dark yellow locations are incorrect predictions in 

which the prediction does not accurately match the observed. C, Ecometric space 

showing the most likely vegetation cover given community level gear ratio means 

and standard deviations. Colors represent vegetation classes within five large-scale 

vegetation regimes. D, Anomaly map of vegetation cover predictions. Colors are as 

in B with 50.4% of locations predicted correctly. E, Ecometric space showing the 

most likely annual precipitation (log mm) given community level gear ratio means 
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and standard deviations. F, Anomaly map of annual precipitation predictions (log 

mm). Each color bin is equivalent to one standard deviation and values are the 

maximum for each bin. Precipitation is overpredicted in blue locations and 

underpredicted in pink locations. 

 

The ecometric space for vegetation cover is dominated by evergreen and 

grassland classes (Figure 3.5C). Both evergreen and grassland classes range from low 

mean and low standard deviation to high mean and high standard deviation, but 

communities in evergreen classes generally have higher gear ratio means than those in 

grassland classes. Communities in desert classes follow the same low-low to high-high 

pattern that evergreen and grassland communities do, but desert communities are 

consistently at a lower mean than most of the communities in evergreen or grassland 

communities. Communities in deciduous classes have low to moderate means and 

standard deviations. The only trait bin of arctic communities has a moderate mean and 

low standard deviation. In general, as density of vegetation cover increases, the mean 

gear ratio also increases. 

When the ecometric model is used to predict vegetation cover based on 

community calcaneal gear ratio, the model is accurate for only 50.4% of the 

communities (Figure 3.5D; Table B-1). However, the model can accurately predict the 

five binned vegetation regimes for 65.9% of the communities. This ecometric model is 

most accurate in the cold-deciduous forest without evergreens in Europe and Asia, the 

tropical evergreen rainforests of South America, Africa, and Asia, and the deserts of 

Africa and Asia.  



 

56 

Annual precipitation is separated along the mean trait values so that communities 

with low calcaneal gear ratios have low precipitation and communities with high 

calcaneal gear ratios have high precipitation (Figure 3.5E). There is no separation of 

communities along standard deviation, so that low, moderate, and high standard 

deviations exist at all levels of precipitation. Precipitation anomalies range from -4.24 

log mm – 2.44 log mm (μ = -0.002 log mm), and 84.5% of the communities have an 

anomaly value within 0.5 log mm of the mean (Figure 3.5F). The model overpredicts 

precipitation in dry areas, such as the North American desert region, the Himalayan 

Plateau, southern Africa, and central South America. The model underpredicts 

precipitation in wet areas, such as the Pacific Northwest, central Africa, and Southeast 

Asia. 

3.4. Discussion 

Here, we demonstrate the ecometric value of ungulate calcanea by quantifying 

the trait-environment relationship between mean gear ratio and five environmental 

variables, three of which make reasonably good ecometric models. Functionally, the 

calcaneum is directly related to an animal’s locomotion strategy and, consequently, the 

environment in which the animal lives. In artiodactyls, this results in strong relationships 

between calcaneal morphology and taxonomic family (Figure 3.3B), species richness 

(Figure 3.4), and ecoregion division, vegetation cover, and precipitation (Figure 3.5, 

Table 3.1). 
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3.4.1. Community trait composition 

Calcaneal gear ratio is a measure of foot posture. Animals range from 

plantigrade, or walking flat-footed on their metatarsals as in bears and humans, to 

digitigrade, or walking on their phalanges as in dogs and cats, to unguligrade, or walking 

on their distal-most phalanges as in deer and sheep. Lower calcaneal gear ratios are 

found in more plantigrade taxa, and higher gear ratios are found in more digitigrade taxa. 

Artiodactyls are unguligrade, and, in the data presented here, species-level mean gear 

ratios range from 1.40 to 1.74 (Figure 3.3A). Whereas the lowest gear ratios are found in 

stotting species, the highest gear ratios are found in plodding species. Stotting bovids 

also have longer calcanea tubers, possibly to facilitate upward propulsion and predator 

avoidance (Barr 2020). 

In Polly’s (2010) study of North American carnivorans, gear ratios range from 

1.13 in Ursus arctos (brown bear) to 1.41 in Puma concolor (mountain lion). Globally, 

carnivoran gear ratios range from 1.08 in Melursus ursinus (sloth bear) to 1.46 in 

Ichneumia albicauda (white-tailed mongoose) (Polly 2010). Therefore, there is a 

continuous increase in gear ratio from the most plantigrade carnivorans through the 

progressive elevation of the foot to the most unguligrade artiodactyls. This continuum of 

foot position could be used to study community composition and interactions across 

taxonomic orders and trophic levels. 

Community trait composition is expected to be related to taxonomic designations 

because of the constrained morphology that is typical within clades (Polly 2010, Lawing 

et al. 2012, Polly et al. 2017). In artiodactyls, species-level gear ratio has a strong 
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relationship with taxonomic family (R2 = 0.473, p < 0.001). At the family level, 

Antilocapridae, represented only by Antilocapra americana (pronghorn), has the lowest 

gear ratio, but only slightly lower than bovids and cervids whereas hippopotamids and 

camelids have the highest gear ratios (Figure 3.3B). Bovids and cervids have a nearly 

global distribution and are also the artiodactyl families that have most recently 

diversified and radiated (Janis 2007). With a large number of species that are able to 

inhabit many different geographic locations, bovids and cervids have a larger range of 

gear ratios with a lower mean. Hippopotamuses, represented by Hippopotamus 

amphibius (hippopotamus) and Hexaprotodon (Choeropsis) liberiensis (pygmy 

hippopotamus), and camels, represented by Camelus dromedarius (dromedary camel) 

and Vicugna vicugna (vicuña), have many fewer, specialized species with much more 

restricted geographic ranges and higher gear ratios.  

 Communities with a high species richness have moderate gear ratio values 

whereas communities with low species richness have gear ratios across the range (Figure 

3.4). As richness increases, the functional diversity of species also increases, and that 

diversity shifts the community trait value toward the mean (Petchey and Gaston 2002, 

2006). This is particularly evident in eastern and southeastern Africa, which is where all 

communities with species richness greater than 18 occur. Although the richness is high 

in these communities, the mean gear ratio when richness is 18 or higher is 1.50, only 

slightly higher than the global average of 1.48. In areas of low richness, such as North 

and South America, mean gear ratio is either low (e.g., North America) or high (e.g., 

South America). Communities on both of these continents have cervids and tayassuids, 
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but North America also has Antilocapra americana and bovids while South America has 

Vicugna vicugna. Thus, the mean gear ratio is shifted to the low and high ends, 

respectively. 

3.4.2. Trait-environment relationships 

In ecometric spaces, ecoregion divisions and vegetation cover overlap (Figures 

3.5A, 3.5C); humid tropical divisions overlap grassland vegetation, humid temperate 

divisions overlap evergreen vegetation, and dry divisions overlap desert, deciduous, and 

grassland vegetation cover. However, trait bins in the polar divisions mostly overlap 

evergreen vegetation rather than arctic vegetation; the one trait bin of arctic vegetation is 

in the humid tropical division. This mismatch highlights the need to consider more than 

one environmental variable. Ecoregion divisions and vegetation cover classes are 

consistently accurate across continents (Figures 3.5B, 3.5D). For instance, savannas and 

rainforests divisions are correctly classified in South America and Africa, and the 

subarctic regime mountains division is correctly classified in both North America and 

Asia. These geographically-widespread communities must have similar trait composition 

to produce these results. Thus, trait composition can be used in place of taxonomic 

composition to understand global patterns of ecoregions and vegetation. 

Ecometric models accurately predicted ecoregion division for 60.5% of the 

communities and vegetation cover for 50.36% of the artiodactyl communities (Figures 

3.5B, 3.5D). Incorrect predictions occur when trait bins include communities from more 

than one ecoregion, which is likely to happen given the amount of overlap between the 

ecoregion domains and divisions. However, for both variables, the ecometric models 
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more accurately predicted the higher-level groupings—ecoregion domain and binned 

vegetation regime—with accuracies of 83.5% and 71.6%, respectively. This is not 

unexpected because the models should be more accurate with fewer options, and there is 

potential to use these higher groupings as additional information when interpreting an 

unknown environment. For example, when a community has an incorrect prediction of 

ecoregion division, it is likely that the prediction is still from the correct ecoregion 

domain.  

Ecologically, precipitation influences the ecoregion designations and vegetation 

cover. In Bailey’s ecoregions, domains are first separated into “dry” and “humid, 

thermally differentiated”; then, the latter group is separated into humid temperate, humid 

tropical, and polar (Bailey 2005). This similar precipitation pattern is why ecoregion 

divisions in the dry domain appear less intermingled with the divisions in the humid 

temperate, humid tropical, and polar domains (Figures 3.5A). It also matches the 

distribution of precipitation values so that low precipitation largely occurs in 

communities with the same trait composition as those in the dry ecoregion divisions, and 

communities with high precipitation are in the same trait bins as those in the humid 

temperate ecoregion divisions. Precipitation has less of a relationship with the vegetation 

type categories. In ecometric spaces, the strongest match is between high precipitation 

and evergreen vegetation type, whereas low precipitation occurs across vegetation types 

(Figures 3.5C, 3.5E).  

Precipitation differs from ecoregion division and vegetation cover in that it is a 

continuous variable and enables a numeric anomaly to evaluate model accuracy. Here, 
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84.5% of the communities have an anomaly value within 0.5 log mm of the mean (μ = -

0.002 log mm). The ecometric model underpredicts precipitation in wet areas and 

overpredicts precipitation in dry areas. This tendency toward the mean is expected 

because maximum likelihood uses the most frequent precipitation of the communities in 

a trait bin to predict precipitation for all communities in that trait bin. However, the 

severely over- and underpredicted areas may also be highlighting areas of environmental 

change where the faunal community has not yet responded. Many of the areas that are 

overpredicted are also drylands that are or will be vulnerable to increased aridity by 

2100 (Berdugo et al. 2020). In these areas, the fauna may be lagging aridification, and 

thus, the morphology of native, extant communities conveys past precipitation. 

3.4.3. Conservation paleobiology 

Ecometric methods have been developed to expand conservation paleobiology 

(Eronen et al. 2010a). Lawing et al. (2012) showed shifts in mean snake tail length in 

five North American assemblages over the last 100 years in response to changes in 

vegetation. Each of these assemblages were located in conservation areas that will 

benefit from knowing how their snake communities are changing through time. 

Similarly, Polly (2010) and Polly and Head (2015) each showed changes in the calcaneal 

gear ratios of four North American carnivore communities in response to shifts in 

ecoregions. Here, we demonstrate the application of community-level artiodactyl 

calcaneal gear ratios at six sites in Kenya from Tóth et al. (2014). 

The six sites in Kenya are protected areas with historical (1896-1950) and 

modern (1950-2013) data on mammal composition (Tóth et al. 2014). Sites are from a 
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variety of habitats – Kakamega Forest Reserve (forest), Maasai Mara National Reserve 

(grassland), Nairobi National Park and Samburu Game Reserve (savanna), Lake 

Naivasha National Park (wetland), and Tsavo East and West National Parks 

(woodland/scrub). Kakamega is in western Kenya near Lake Victoria, Samburu is in 

central Kenya, and the other four sites are in southern Kenya along the Tanzania border. 

Tóth et al. (2014) found homogenization of community structure as beta-diversity 

decreased at all six sites; although, richness only decreased at Lake Naivasha. 

With the published community species lists from Tóth et al. (2014), we used 

artiodactyl calcaneal gear ratios to investigate the trait and environment shifts at each of 

the six sites through time. Historical and modern means and standard deviations of 

community-level gear ratio were calculated at each site. According to their gear ratio 

values, communities were assigned historical and modern trait bins in ecometric spaces 

from Figure 3.5. Maximum likelihood was used to predict the most likely historical and 

modern environmental conditions for each site. Vectors were used to evaluate the 

direction of change from the historical time point to the modern time point in ecometric 

space.  

Artiodactyl trait shifts support the homogenization of communities in Kenya 

(Figure 3.6). Nairobi National Park did not shift trait bins from historical to modern, but 

Maasai Mara, Lake Naivasha, and Tsavo East and West converged toward Nairobi. At 

Maasai Mara, the mean calcaneal gear ratio increased and at Lake Naivasha and Tsavo 

East and West, the mean and standard deviations decreased. Kakamega and Samburu 
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diverged from the other four sites. At Kakamega, the mean calcaneal gear ratio 

increased, and at Samburu, the standard deviation of the gear ratio increased. 

  

 

Figure 3.6. Placement of Kenyan sites in ecometric space. A, Ecoregion divisions as 

in Figure 3.5A; B, Vegetation cover as in Figure 3.5C; and C, Precipitation as in 

Figure 3.5E. Sites are from Tóth et al.  (2014): 1 – Kakamega Forest Reserve, 2 – 

Maasai Mara National Reserve, 3 – Nairobi National Park, 4 – Lake Naivasha 

National Park, 5 – Samburu Game Reserve, and 6 – Tsavo East and West National 

Parks. The box indicates no change in trait bin from historical to modern. Vectors 
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indicate change with the dotted end representing historical community traits and 

the end without a dot representing modern community traits.  

 

 Historically, five sites were savanna, and only Maasai Mara changed ecoregion 

division from tropical/subtropical steppe to savanna (Figure 3.6A; Table B-3). All of the 

sites are in the savanna ecoregion division today. Vegetation cover at Kakamega, Tsavo 

East and West, and Maasai Mara shifted from woody or desert habitats to grassland 

habitats (Figure 3.6B; Table B-3). Lake Naivasha shifted from a tropical/subtropical 

drought-deciduous forest to a xeromorphic forest/woodland. Samburu shifted away from 

grassland to tropical/subtropical evergreen seasonal broad-leaved forest. Maasai Mara 

had the largest increase in precipitation (431.71 mm) from 5.80 log mm (329.55 mm) to 

6.64 log mm (761.25 mm) (Figure 3.6C; Table B-3). Tsavo East and West had the 

largest decrease in precipitation (-527.96 mm) from 7.09 log mm (1193.90 mm) to 6.50 

log mm (665.94 mm). This distribution of precipitation change is consistent with 

observed annual precipitation trends in Kenya (Gebrechorkos et al. 2019). Because trait 

composition at Nairobi National Park did not change, historical and modern 

environmental predictions did not shift either. 

Nairobi National Park is centrally located among the six sites and did not display 

an environmental shift. In the last century, Maasai Mara, Lake Naivasha, and Tsavo East 

and West have converged toward Nairobi as Kenyan habitats have become more 

homogenized (Figure 3.6). Kakamega (furthest west) and Samburu (furthest north) do 

not show the same trend but diverge from the others. Tóth et al. (2014) document a 

similar homogenization pattern in the mammal communities, but argue against habitat 
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change as a possible driver for the stable or increasing richness and decreasing beta 

diversity. There is limited environmental data from the historical time interval, and the 

authors credit common species that can easily move between protected areas for the 

changes in community structure (Tóth et al. 2014). We posit that the environmental 

changes, captured in the ecometric spaces (Figure 3.6), enabled these common species to 

move between protected areas and facilitated the changes in community structures 

documented by Tóth et al. (2014). 

3.4.4. Limitations 

 Ecometric methods are limited by incomplete datasets. Modern range maps 

overestimate the distribution of species and, therefore, bias the trait values of 

communities (Cantú-Salazar and Gaston 2013, Chen 2013). Trait data are limited by the 

availability of museum specimens and published datasets. Fossil sites are not always a 

complete record. However, Polly and Sarwar (2014) showed that only 25% of species 

within a community are needed to predict accurate ecometric relationships. As 

geographic ranges and trait databases become more commonplace, increased availability 

of data will increase the fit of trait-environment relationships.  

No-analog communities include species that are extant today, yet they do not 

occur in the same combinations today as they did in the past (Williams and Jackson 

2007). No-analog communities are expected to increase as species reshuffling occurs in 

response to climatic and environmental changes (Williams and Jackson 2007, Hobbs et 

al. 2018). Ecometrics provides a method for comparing no-analog communities with trait 

compositions within the modern trait bins of the ecometric spaces (Vermillion et al. 
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2018). Thus, maximum likelihood predictions are possible for no-analog communities, 

but this method is limited for communities with trait compositions that do not exist in the 

trait bins of the constructed ecometric spaces.  

Community trait composition is likely to be impacted by domestics and other 

non-natives filling new ecological roles or replacing native fauna (Smith et al. 2016). 

Many domesticated and livestock animals are artiodactyls, and we have removed these 

species from the dataset used here following Gentry et al. (2004). We expect domestic 

species that are heavily managed may weaken the ecometric relationships because the 

species are not naturally interacting with their environment but are dependent on human 

activities. However, non-native species that are well-suited to their new environment and 

are not dependent on humans for survival may strengthen the ecometric relationships. As 

scientists consider agricultural land as a distinct system in the middle of a continuum 

ranging from unmanaged wilderness to human-dominated urban areas (Swinton et al. 

2007), the impact of these species on community composition should be further 

investigated.  

3.4.5. Conclusions 

Here, we present a new application of ecometrics for studying short- and long-

term change in the fossil record. These methods have been used before but have not been 

applied to artiodactyl post-crania or applied at a global scale. Ecometric models have the 

potential to be tools in understanding biodiversity responses to environmental change 

because of relationships between community calcaneal gear ratio and ecoregion division, 

vegetation cover, and precipitation. Artiodactyls make up a large proportion of the 
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world’s megabiota, which is disproportionately threatened, yet critical for ecosystem 

health and resiliency (Enquist et al. 2020).  

Ecometric models can be used in studies of conservation by providing a longer-

term view of change when environmental data are not available. In the example of the 

Kenyan sites, detailed historical environmental data were not available, but with the 

trait-environment relationships, it becomes possible to track environmental changes 

using calcaneal gear ratios. With forward modeling, the same ecometric models can be 

used to predict how communities will continue to change and where they might be in 

danger of extirpation or extinction so conservation efforts can be directed appropriately. 

Vectors in Figure 6 could be extended to match expected environmental changes at each 

location, and trait values could be extracted from the appropriate trait bin to anticipate 

impacts on artiodactyl communities. For example, Wingard et al. (2017) described how 

paleoecological data were used to establish pre-anthropogenic trends and cycles in the 

Greater Everglades Ecosystem. With this data, they were able to predict future patterns 

and identify restoration targets for resource management efforts (Wingard et al. 2017). 

In the past 50 years, biodiversity changed at a rate that was unprecedented during 

human history but is expected to accelerate in the future (Walther et al. 2002, Foley et al. 

2005, Lipton et al. 2018). Ecometrics provides methods for understanding past trait-

environment relationships so that future biodiversity responses can be better anticipated. 

For instance, in Kenya, as habitats changed, the communities of the protected areas were 

changed by the movement of common species between the protected areas. Yet, climate 

connectivity remains a challenge, so that species many not easily shift their ranges as 
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climate change continues (McGuire et al. 2016). With ecometric models, it will be 

possible to target areas for conservation efforts, such as increased connectivity, to 

facilitate community responses. 
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4. ADDITIONS TO THE PLEISTOCENE MAMMALIAN FAUNA OF TÉRAPA, 

SONORA, MEXICO 

 

4.1. Introduction 

At San Clemente de Térapa (hereafter, Térapa), Sonora, Mexico, a rich fossil 

deposit records a late Pleistocene mesic marsh savanna in an area that is now xeric desert 

chaparral. Northern Mexico contains a boundary zone between the Nearctics and the 

Neotropics; however, relatively few sites are known from the Pleistocene 

(Rancholabrean North American Land Mammal Age; LMA) of the region (Ceballos et 

al. 2010). Overall, our knowledge of the fossil mammals of Mexico is biased toward taxa 

of larger sizes and younger geological ages, possibly because of collection methods 

(Montellano-Ballesteros and Jiménez-Hidalgo 2006, Ferrusquía-Villafranca et al. 2010). 

White et al. (2010) reviewed 64 Neogene sites from Sonora, Mexico, but only three sites 

have considerable, detailed faunal records—El Golfo (Sussman et al. 2016), Térapa 

(Mead et al. 2006), and Rancho la Brisca (Van Devender et al. 1985) (Figure 4.1).  
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Figure 4.1. Geography of Sonora, Mexico (yellow; left) and selected fossil sites 

(right). Terrain basemap is from the US National Park Service. 

 

Rancho La Brisca is known to be Rancholabrean, but this site has a slightly 

different fauna than is preserved at Térapa and other sites in the region because the 

record is biased toward small and medium fish, amphibians, and reptiles (Van Devender 

et al. 1985). La Playa has the first record of Cynomys in Sonora, which was found 

alongside Bison, Platygonus, Mammuthus, Equus, camelids, and other large mammals 

(Mead et al. 2010). Fossils found at other sites, including La Botana, Llano Prieto, and 

Chinobampo, are primarily large mammals, such as Bison, Equus, Mammuthus, 

Glyptotherium, and Camelops (White et al. 2010, Cruz-y-Cruz et al. 2018). These 

taxonomic occurrences support the interpretation of a more equable climate during the 

Rancholabrean as seen today (Nunez et al. 2010). It is probable that more sites exist in 

this region and can contribute to our understanding of the paleontological record but 

have yet to be found, fully analyzed, and reported upon. 
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With Bison present throughout the stratigraphic profile, Térapa represents one of 

the few Rancholabrean LMA sites studied in detail in Sonora (Mead et al. 2006). Within 

the Térapa basin, fossils of more than 60 taxa, many with tropical affinities, have been 

recovered; a preliminary faunal list is provided in Mead et al. (2006) and an updated list 

is provided in White et al. (2010). More recent publications have described Mammuthus 

and Cuvieronius (Mead et al. 2019), Glyptotherium cylindricum and Pampatherium cf. 

P. mexicanum (Mead et al. 2007), shrews and bats (Czaplewski et al. 2014), and 39 

species of birds (Steadman and Mead 2010, Oswald and Steadman 2011). Here, we add 

to the growing list of fossil vertebrates recovered from Térapa that have detailed 

descriptions regarding the identifications. 

Térapa is located along the Río Moctezuma, and a riparian corridor most likely 

existed from the Gulf of Mexico up the Río Yaqui and Río Moctezuma to Térapa where 

a basalt flow created a shallow lake and marsh environment (Mead et al. 2006). Stable 

isotope analyses of carbon and oxygen from fossil material at Térapa suggest that marsh 

and grasslands were likely present in the basin (Nunez et al. 2010, Bright et al. 2016). 

The basin created a shallow pond environment and began to fill with sediment at 40 ± 3 

ka (Bright et al. 2010). Today, there is an 11 m-thick sequence of medium- to fine-

grained sediments; details of the geology are provided in Mead et al. (2006) and Bright 

et al. (2016). 

Fossils found at Térapa were deposited during the Wisconsinan Glacial period 

when the climate of Sonora was more equable than today with cooler, drier summers and 

wetter winters (Metcalfe 2006, Van Devender 2007, Nunez et al. 2010, Bright et al. 
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2016). As global temperatures increased and precipitation decreased, Sonora became 

more arid, and species were forced to shift their ranges in response. Thus, Térapa 

provides a unique opportunity to further investigate the mammals and increase our 

understanding of the late Pleistocene of northern Mexico.  

Here, we describe specimens from eight mammalian species and discuss their 

geographic distribution in the North American desert region. Though previous work has 

included most of these genera on a faunal list (Mead et al. 2006), this is the first attempt 

to provide detailed descriptions. In doing so, we identify three species for which Térapa 

fills a geographic gap in their previously known occurrences. 

4.2. Materials and methods 

Specimens from Térapa are housed temporarily at The Mammoth Site, Hot 

Springs, South Dakota, USA, and are curated with numbers prefixed with TERA. We 

used primarily comparative reference specimens to determine taxonomic assignments. 

Specimens were from the Florida Museum of Natural History (FLMNH) and the East 

Tennessee Museum of Natural History (ETMNH). When possible, linear measurements 

and the related citations were provided within the taxonomic descriptions. Geographic 

occurrences were determined using online databases and literature. 

Species identifications for equid post-crania were determined using a quadratic 

discriminant analysis implemented in R (R Core Team 2016) using the package MASS 

(R Core Team 2016). Training data used in the analyses are from McHorse et al. (2016) 

and Sertich et al. (2014). For analysis of the phalanx, training data included Equus 

occidentalis, E. conversidens, E. lambei, E. scotti, and a northwest stilt-legged taxon. 
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For analysis of the metacarpal, training data included Equus complicatus, E. 

conversidens, E. occidentalis, and E. scotti. 

4.3. Results 

Among the mammalian fauna from Térapa, we provide descriptions for members 

of seven genera, including Equus, Platygonus, Camelops, Palaeolama, Canis, Procyon, 

Lynx, and Smilodon. Additional large-bodied mammalian remains have been excluded 

from this analysis and will appear elsewhere. Cervids and antilocaprids are being 

described in a forthcoming publication, and Bison will be presented in an upcoming 

review of the taxon’s presence in the southwestern US and northwestern Mexico. 

4.3.1. Systematic paleontology 

Class Mammalia 

Order Perissodactyla 

Family Equidae 

Equus Linnaeus 1758 

Equus scotti Gidley 1900 

Material: Left distal metacarpal (TERA 313), left partial phalanx 1 (TERA 320), 

phalanx 2 and sesamoid (TERA 319). 

Description: The left metacarpal (TERA 313) is broken transversely across the 

diaphysis, but the distal end is complete (Figure 4.2A). The left partial first phalanx 

(TERA 320) is missing the lateral, distal portion (Figure 4.2B). The metacarpal and 

phalanx articulate. The second phalanx is complete (TERA 319; Figure 4.2C) and 

articulates with a sesamoid. The first and second phalanges do not articulate.  
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Identification: In quadratic discriminant analyses, the second phalanx (TERA 

319) was identified to species level with 87.5% confidence, and the distal metacarpal 

(TERA 313) was identified with 100% confidence (Figure C-1). 

Remarks: Equus is widespread across the US and Mexico during the 

Rancholabrean (Ferrusquía-Villafranca et al. 2010, 2017), including in Sonora (Cruz-y-

Cruz et al. 2018). Taxonomy of Equus introduces complex questions surrounding 

species identifications. Equus scotti is a stout-legged horse that has been documented 

across the North American desert region during the Rancholabrean (Harris 2014). 

Recent efforts to revise equid taxonomy have considered E. scotti to be synonymous 

with E. mexicanus (Alberdi et al. 2014) and E. excelsus (Priego-Vargas et al. 2017), but 

there is discussion on the correct nomenclature (Harris 2014). Previous work identified 

E. excelsus at Térapa (Carranza-Castañeda and Roldán-Quintana 2007), and it is likely 

the same as our E. scotti. However, equid taxonomy needs to be thoroughly and formally 

evaluated before these issues can be confidently resolved. 
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Figure 4.2. Equus scotti specimens. A, left distal metacarpal (TERA 313); B, left 

partial phalanx (TERA 320); C, second phalanx (TERA 319). A and B articulate. 

Scale bar equals 5 cm. 

 

Equus cf. E. scotti Gidley 1900 

Material: Right P4 (TERA 284), right M2 (TERA 287), right M3 (TERA 285), 

right P4 and M1 (TERA 291), right P3 and P4 (TERA 168), left P2 (TERA 282, 289), 

left P4 (TERA 290), left M2 (TERA 286, 288), left M3 (TERA 283), right p4 (TERA 

310), lower left tooth (TERA 308), upper left tooth and lower right tooth (TERA 266). 

Description: Most of the teeth are complete with moderate wear. These teeth 

(Figures 4.3A-D) are larger and have more complex enamel patterns than the teeth 

assigned to Equus sp. (Figures 4.3E-H).  
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Identification: We hypothesize that the teeth are from the same species as the 

postcranial elements previously identified as Equus scotti because of their large size. 

 

 

Figure 4.3. Equus spp. teeth. A-B, Equus cf. E. scotti, upper left molar (TERA 286); 

C-D, Equus cf. E. scotti, lower left molar (TERA 308); E-F, Equus sp., upper left 

molar (TERA 303); G-H, Equus sp., lower right molar (TERA 295). A, C, E, and G 

are in occlusal view. B, D, F, and H are in lingual view. Scale bar equals 5 cm. 

 

Equus sp. 

Material: Right P3 (TERA 166), right M1 (TERA 263), right M2 (TERA 157, 

169, 296, 300), right M3 (TERA 298), left M2 (TERA 303), left P4 and M1 (TERA 

293), left P3-M1 and right M1 (TERA 297), upper right tooth (TERA 299, 307), upper 

tooth (TERA 267), right m2 (TERA 295), right m3 (TERA 262, 305, 306), left m2 with 

fragment (TERA 312), left m3 (TERA 322), lower left molar (TERA 301, 302), lower 
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right tooth (TERA 309), lower left tooth (TERA 311), lower tooth fragment (TERA 264, 

265, 304), mandibular symphysis (TERA 294), left partial distal humerus (TERA 314), 

left magnum (TERA 318), right distal tibia (TERA 317), left partial calcaneum (TERA 

315, 316), right cuneiform and lunar (TERA 321). 

Description: The postcranial elements are slight compared to extant Equus 

caballus and the Térapa specimens conferred to Equus scotti, and the teeth (Figures 

4.3E-H) are noticeably smaller and have less complex enamel patterns than those 

assigned to E. cf. E. scotti (Figures 4.3A-D).  

Identification: It is unknown if the post-cranial elements are of the same species 

as the dentition. At this time, there are no morphological features to confirm species 

designations.  

Remarks: Previous work on different specimens also identified E. conversidens 

at Térapa (Carranza-Castañeda and Roldán-Quintana 2007), and, because of the smaller 

size, it is possible that our Equus sp. refers to the same taxon. Occurrence of both E. 

scotti and a smaller-sized horse is common at Rancholabrean sites, and the small horse is 

often identified as E. conversidens (Harris 2014). 

Mead et al. (2006) listed Tapirus sp. among the taxa found at Térapa based on a 

mandibular symphysis (TERA 294; Figure 4.4). However, this specimen is now 

identified as Equus sp. Depth of the mandible suggests hypsodont teeth as in Equus. The 

narrow intermandibular space extends anterior to the second premolar as in Equus; in 

Tapirus, this space is closed at the anterior end of the second premolar. The mandibular 
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foramen is located well anterior to the tooth row as in Equus; in Tapirus, the mandibular 

foramen is inferior to the anterior second premolar. 

 

 

Figure 4.4. Equus spp. mandible fragments. A, Equus sp. (TERA 294) previously 

identified as Tapirus; B, Equus caballus (ETMNH-Z 15462). 

 

Order Artiodactyla 

Family Tayassuidae 

Platygonus LeConte 1848 

Platygonus compressus LeConte 1848 

Material: Molar fragments (TERA 167), deciduous upper premolar (TERA 280), 

right upper canine (TERA 281). 

Description: The molar fragments (TERA 167) are hypsodont and zygodont 

(Figure 4.5A). The deciduous tooth (TERA 280) is complete and more bunodont than 
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the molar fragments (Figure 4.5B). The canine is complete (TERA 281) and has an 

anterior occlusal surface (Figure 4.5C).  

Identification: This specimen was initially identified as cf. Platygonus by Mead 

et al. (2006). Comparisons with fossil material at FLMNH suggest that these teeth are 

Platygonus because the cusps are more zygolophodont as in Platygonus than bunodont 

as in Mylohyus. Because Platygonus is monotypic in the middle and late Rancholabrean 

(Kurtén and Anderson 1980, Wright 1998), these specimens are assigned to P. 

compressus.  

Remarks: Platygonus compressus is known from the Rancholabrean of Arizona 

(Murray et al. 2005), New Mexico, and eastern Texas as well as the Central Plateau and 

Trans-Mexican Volcanic Belt (Ferrusquía-Villafranca et al. 2010, 2017). In Sonora, 

Platygonus sp. is known from La Playa and Bajimari (White et al. 2010) and P. cf. P. 

vetus is known from El Golfo (Croxen et al. 2007). Térapa provides the first record of P. 

compressus in Sonora, but it is not unexpected. 

 

 

Figure 4.5. Platygonus compressus specimens. A, molar fragments (TERA 167); B, 

deciduous upper tooth in occlusal view (TERA 280); C, right upper canine in labial 

view (TERA 281). Scale bar equals 5 cm. 
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Family Camelidae 

Camelops Leidy, 1854 

Camelops hesternus (Leidy, 1873) 

Material: Left mandibular fragment with roots of m1-2 (TERA 278); left partial 

distal phalanx (TERA 279). 

Description: The partial distal phalanx (TERA 279) has splayed ventral trochlea 

(Figure 4.6A). This specimen is not a metapodial because of the lack of a condylar keel 

(Zazula et al. 2016). The mandibular fragment (TERA 278) has the roots of large 

selenodont molars (Figure 4.6B). At its base, the m2 measures 43.28 mm. 

Identification: These specimens were initially identified as “Camelops-sized” by 

Mead et al. (2006). The m2 measurement is within the range of Camelops provided by 

Honey et al. (1998) and Baskin and Thomas (2016). The mandible is also substantially 

larger than comparative material of Palaeolama and Hemiauchenia. The phalanx was 

also compared to phalanges of Palaeolama and Hemiauchenia, but it is considerably 

larger than specimens within both genera. Camelops is the only other Rancholabrean 

camelid, and it was large enough to have mandibles and phalanges of the size found at 

Térapa (Baskin and Thomas 2016). The most recent review of Camelops described two 

species – C. hesternus in the Rancholabrean and C. minidokae in the Irvingtonian 

(Baskin and Thomas 2016). Because Camelops is considered monotypic in the 

Rancholabrean and the specimens are consistent with the morphology, these specimens 

are assigned to C. hesternus.  
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Remarks: Camelops hesternus is widespread across the US and northern Mexico 

(Ferrusquía-Villafranca et al. 2010, 2017), including in Sonora (Cruz-y-Cruz et al. 

2018).  

 

 

Figure 4.6. Camelidae specimens. A, Camelops hesternus, partial left distal phalanx 

in anterior view (TERA 279); B, C. hesternus, left mandible fragment, including 

roots of first and second molars, in occlusal view (TERA 278); C, Palaeolama 

mirifica, right mandible fragment with a partial fourth premolar and three molars 

in occlusal view (TERA 156); D, P. mirifica, TERA 156 in labial view. Black arrow 

indicates the infolding on the p4 that is characteristic of Palaeolama. Scale bar 

equals 5 cm. 
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Palaeolama Gervais, 1867 

Palaeolama mirifica (Simpson, 1929) 

Material: Left mandible fragment with partial p4-m3 (TERA 156). 

Description: The mandibular fragment (TERA 156) has a partial p4 and m1-3 

with brachydont, selenodont dentition (Figures 4.6C-D). The p4 has a vertical groove 

just posterior to the break. The m2 measures 19.18 mm at the base and 21.25 mm at the 

occlusal surface.  

Identification: This specimen was initially identified as “Hemiauchenia-sized” by 

Mead et al. (2006). The groove on the p4 is indicative of the “complex infolding” seen in 

Palaeolama (Figure 4.6C; Honey et al., 1998, p. 454; Kurtén and Anderson, 1980). Both 

m2 measurements are within the range of Palaeolama provided by Honey et al. (1998). 

Because Palaeolama is monotypic in the Rancholabrean of North America (Honey et al. 

1998) and the specimens fit the morphology, these specimens are assigned to P. mirifica.  

Remarks: Palaeolama mirifica is found at Rancholabrean sites in Florida, 

California, and Texas (Kurtén and Anderson 1980), South Carolina (Sanders 2002), 

Costa Rica (Pérez 2011), and in the Mexican state of Puebla (Bravo-Cuevas and 

Jiménez-Hidalgo 2015). However, it has not been documented in Arizona (Mead et al. 

2005). Palaeolama sp. is documented at Irvingtonian sites at El Golfo in northwestern 

Sonora (Croxen et al. 2007) and Rio Tomayate in El Salvador (Cisneros 2005), and from 

the Rancholabrean of Guatemala (Dávila et al. 2019). Térapa is the first Rancholabrean 

occurrence of P. mirifica in northwestern Mexico. 
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Order Carnivora 

Family Canidae 

Canis Linnaeus, 1758 

Canis dirus Leidy, 1858 

Material: Left mandible with c1-m2 (TERA 154), left maxilla and jugal with P3-

M1, left mandible with partial c1-partial m2, right mandible with p4-m2, four incisors, 

two upper canines, two lower canines, one M1, one m3, and two unidentified fragments 

(TERA 450), distal left humerus (TERA 155). 

Description: The left mandible with c1-m2 (TERA 154) and the distal humerus 

(TERA 155) were previously described in detail (Hodnett et al. 2009); the remaining 

specimens (TERA 450) are described here. All teeth in the maxilla and both mandibles 

are in an advanced stage of wear. The left maxilla is articulated with the left jugal, and 

the P3 is broken between the anterior and posterior roots (Figures 4.7A-B). The left 

mandible is missing the coronoid process and angular process; the condyle is complete 

(Figure 4.7C). There is no evidence of an alveolus for a p1 on the mandible. The anterior 

mental foramen is inferior to the anterior p2, and the posterior mental foramen is inferior 

to the posterior p3. The right mandible is broken between the p4 and m1 and along the 

inferior masseter fossa (Figure 4.7D). Only the anterior root of the m2 is present and the 

alveolus for a single-rooted m3 is broken. Cranial and dental measurements suggest a 

larger than average C. dirus (Table C-1, Figure 4.8; Tedford et al., 2009). 

Identification: Mead et al. (2006) initially identified Canis dirus at Térapa, and 

Hodnett et al. (2009) agreed for TERA 154 and TERA 155. Measurements on the left 
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mandible indicate that this specimen is too large to be a different Rancholabrean-age 

canid, such as C. latrans or C. lupus (Figure 4.8). Canis armbrusteri was also a large 

canid in the late Irvingtonian (Kurtén and Anderson 1980, Harris 2014) and is thought to 

have given rise to C. dirus (Tedford et al. 2009). The Térapa teeth are too worn to 

examine the cusp patterns, but the upper molars have reduced labial cingula as in C. 

dirus rather than C. armbrusteri (Tedford et al. 2009).   

Remarks: Canis dirus is considered “one of the most common mammalian 

species in the Rancholabrean” and is found across the US and Mexico (Kurtén and 

Anderson, 1980, p. 171; Harris, 2014; Ferrusquia-Villafranca et al., 2017). However, 

Térapa is the first occurrence of C. dirus in Sonora (Hodnett et al. 2009). There are at 

least three individuals of C. dirus found at Térapa based on lower left canines. The 

maxilla and mandibles of TERA 450 are likely from the same individual because of the 

similar degree of wear on the teeth. The extensive wear on the teeth and the large size 

suggests one older individual. 
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Figure 4.7. Canis dirus specimens (TERA 450). A, left maxilla and jugal with P3-M1 

in lateral view; B, left maxilla and jugal with P3-M1 in occlusal view; C, left 

mandible with partial c1-partial m2 in buccal view; D, right mandible with p4-m2 

in buccal view. Scale bar equals 5 cm. 
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Figure 4.8. Log-ratios of Térapa Canis dirus (TERA 450) compared to Canis dirus 

from the Rancholabrean (RLB) and Irvingtonian (IRV), C. armbrusteri, C. lupus, 

and C. latrans. Measurements are relative to Eucyon davisi. Methods and reference 

data from Tedford et al. (2009); data are available in Table A-1. 

 

Family Procyonidae 

Procyon Storr, 1780 

Procyon lotor (Linnaeus, 1758) 

Material: Left calcaneum (TERA 453). 

Description: The calcaneum (TERA 453) is complete (Figure 4.9A). There is no 

knob present on the trochlear process, which has a minimal groove, and the calcaneum 

does not have an accessory surface between the anterior articular surface and the cuboid 

facet; the latter has a point on its dorsal edge. The greatest length of the calcaneum is 

28.03 mm and the transverse breadth of the sustentaculum is 14.49 mm. 
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Identification:  The calcaneum was previously identified as Procyon sp. (Mead et 

al. 2006). Following descriptions provided by Stains (1973; lack of a knob on the 

trochlear process), the calcaneum is now referred to P. lotor. Within Procyon, the 

calcaneum is assigned to P. lotor instead of P. cancrivorous because of the minimal 

trochlear groove, the cuboid facet, and the lack of an accessory surface between the 

anterior articular surface and the cuboid facet (Stains 1973). In addition, the length and 

breadth measurements are within the range of P. lotor provided by Stains (1973). 

Additional Pleistocene species of Procyon have been synonymized with P. lotor because 

the morphology was within the range of intraspecific variation (Kurtén and Anderson 

1980). Kurtén and Anderson (1980) recognized only one other fossil species, P. 

rexroadensis, which was limited to the Blancan LMA. Emmert and Short (2018) 

recommended synonymizing P. rexroadensis with P. lotor because of a lack of distinct 

morphological characters. 

Remarks: Pleistocene-age Procyon has been found across North America and 

into northern South America (Kurtén and Anderson 1980), but the fossil record is sparse 

(Harris 2014). In Mexico, Procyon sp. is at the Irvingtonian-age El Golfo (Croxen et al. 

2007), and Procyon lotor is known from the Rancholabrean in California and New 

Mexico (Harris 2014) as well as the Chihuahua-Coahuila Plateaus and Ranges, the Sierra 

Madre Oriental, the Trans Mexican Volcanic Belt and the Yucatan Platform (Ferrusquía-

Villafranca et al. 2010), so it is expected in the northwest of Mexico although it is not 

reported from the Rancholabrean of Arizona (Mead et al. 2005). 
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Figure 4.9. Carnivora specimens. A, Procyon lotor, left calcaneum in anterior view 

(TERA 453); B, Lynx rufus, left distal radius in anterior view (TERA 451). Scale 

bar equals 1 cm. 

 

Family Felidae 

Lynx Kerr, 1792 

Lynx rufus (Schreber, 1777) 

Material: Distal left radius (TERA 451). 

Description: The radius (TERA 451) is broken transversely across the diaphysis, 

which is compressed anteroposteriorly (Figure 4.9B). The styloid process, dorsal 

tubercle, and lateral tuberosity are angular and pronounced. The greatest breadth of the 

distal end (Bd; von den Driesch, 1976) measures 19.41 mm. 

Identification:  This radius was initially reported as Lynx rufus by Mead et al. 

(2006), and the identification is confirmed here. The distinct features are as in Felidae 

rather than Canidae, and the anteroposterior compression excludes Felis (Kelson 1946). 

As in L. rufus, there is a distinct horizontal ridge superior to the distal articulation on the 

posterior surface and a lack of mediolateral constriction between the diaphysis and 



 

95 

epiphysis. Lynx rufus is known from the Rancholabrean of Mexico (Ferrusquía-

Villafranca et al. 2010) and Arizona (Mead et al. 2005), whereas Lynx canadensis has 

not been found south of Utah (Lavoie et al. 2019). 

Remarks: Lynx rufus is frequently found at North American Pleistocene sites 

(Kurtén and Anderson 1980), and is known across northern and central Mexico during 

the Rancholabrean (Ferrusquía-Villafranca et al. 2010, 2017). In Mexico, L. rufus is also 

known from the Irvingtonian of Cedazo (Mooser and Dalquest 1975), and the latest 

Pleistocene or early Holocene of Jimenez Cave (Messing 1986). 

Smilodon Lund 1842 

Smilodon cf. S. fatalis (Leidy 1869) 

Material: Fragment of right dP3 including ectoparastyle and parastyle (TERA 

452). 

Description: The tooth fragment (TERA 452) is mediolaterally compressed and 

has a distinct parastyle and ectoparastyle (Figure 4.10). The tooth fragment is lacking a 

distinct protocone and preserves no evidence of any lingual flaring that would indicate a 

protocone had been present. There is a minimal anterior cingulum on the tooth. 

Diagnostic measurements are not possible because of the fragmented nature of the 

specimen. 

Identification: This specimen was initially identified as Canis latrans by Mead et 

al. (2006). However, the mediolateral compression and parastyle suggest this tooth is 

from Felidae and not Canidae. The size suggests a large cat, possibly Panthera, Puma, 

or Smilodon. The lack of protocone excludes Panthera and Puma (Cherin et al. 2013, 
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Babiarz et al. 2018), and the ectoparastyle and cingulum are as in Smilodon 

(Christiansen 2013). Therefore, we confer the tooth fragment to Smilodon. Because 

Smilodon fatalis is common during the Rancholabrean, S. populator has not been found 

in North America, and S. gracilis is from the early Irvingtonian, we confer the specimen 

to S. fatalis. 

Remarks: Smilodon is known extensively throughout North America from the 

Irvingtonian and Rancholabrean LMAs (Kurtén and Anderson 1980, Babiarz et al. 

2018), but this is the first record from the northwest of Mexico. In Mexico, S. fatalis has 

been found at Pleistocene sites across the Central Plateau, the Trans-Mexico Volcanic 

Belt, and the Sierra Madre Oriental (Ferrusquía-Villafranca et al. 2010, 2017). In the 

United States, S. fatalis is known from the Rancholabrean of eastern New Mexico and 

southern California (Kurtén and Anderson 1980, Morgan and Lucas 2001, Harris 2014), 

so its presence in northwestern Mexico is novel but not wholly unexpected, although it is 

not reported from the Rancholabrean of Arizona (Mead et al. 2005). 
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Figure 4.10. Smilodon carnassials. A, S. fatalis adult right P4 (UF/TRO 11) with 

parastyle and ectoparastyle more opaque; B, S. cf. S. fatalis fragment of right 

deciduous P3 in labial view (TERA 452). Scale bar equals 1 cm. 

 

  

4.4. Discussion 

This detailed description advances the understanding of the Pleistocene fauna of 

northwest Mexico by revising taxonomic designations at Térapa (Table C-2). Térapa 

provides the first Rancholabrean occurrences of Palaeolama, Procyon, and Smilodon in 

northwest Mexico and the first records of Platygonus compressus and Canis dirus in 

Sonora. Equus, Camelops, and Canis are well-represented in sites across the North 

American desert region and, although Platygonus and Lynx are sparsely represented in 

northern Mexico, they have extensive records in the southwestern US making them 

expected at Térapa during the Rancholabrean. It is worth noting that, during the 

Pleistocene, the Rancholabrean LMA is defined by the presence of Bison (Bell et al. 

2004). The Holarctic genus did not arrive in Mexico until much later than they appear in 

the northern part of the continent. This biochronological delay complicates assigning 

LMA ages to Mexican sites but also illustrates the need to further explore Mexico for 

fossil sites that can provide insight on North American fauna during the Pleistocene.  

Sonora has been considered an ecotone between the northern Nearctic climate 

and the southern Neotropical climate (Mead et al. 2007) because of shifting habitats 

during glacial and interglacial periods. Modern (i.e., interglacial) Sonoran and 

Chihuahuan deserts are typified by scrubland ecosystems with warm tropical-subtropical 

climates, whereas this geographic region was more temperate during glacial periods and 
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were typified with pinyon-juniper-oak woodlands (Van Devender 2007). During the 

glacial period, lower global temperatures produced a more constricted Intertropical 

Convergence Zone (ITCZ) and increased precipitation in northwestern Mexico (Metcalfe 

2006). As temperatures increased into the modern interglacial period, the ITCZ 

expanded poleward and shifted the mid-latitude jet stream—and associated 

precipitation—poleward (Metcalfe 2006). The poleward shift of the ITCZ and mid-

latitude jet stream also shifted the biodiversity-rich savanna habitats and left the 

scrubland habitats of today (Metcalfe 2006). 

Climatically-driven habitat changes have been shown to affect the distribution 

ranges of carnivoran species and the richness of carnivoran communities in North and 

South America during the Pleistocene (Arias-Alzate et al. 2017, 2020). Inferred faunal 

corridors would have allowed for temperate species to move south and tropical-

subtropical species to move north,  and “holding pen” areas would have been inhabited 

by taxa until more preferred environments allowed further migration (Ceballos et al. 

2010, Woodburne 2010). Térapa lies along the Pleistocene Sonora – Central America 

Pacific lowlands corridor and the Rocky Mountains – Sierra Madre Occidental corridor 

(Ceballos et al. 2010). The former allowed dispersal of tropical taxa north and the latter 

permitted the movement of temperate taxa south (Ceballos et al. 2010); therefore, 

northern Mexico likely acted as a region of faunal exchange during environmental shifts 

between glacial and interglacial periods. For instance, Palaeolama originated in South 

America (Webb 1974), and researchers postulate that P. mirifica used tropical corridors 
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along the Sonora-Central America Pacific lowlands and the Tamaulipas-Central America 

Gulf lowlands to move across Mexico (Bravo-Cuevas and Jiménez-Hidalgo 2015). 

Study of past fauna can have great implications for wildlife conservation because 

of the biodiversity shifts expected as a consequence of impending climate change 

(Walther et al. 2002, Foley et al. 2005, Lipton et al. 2018). The Sonoran Desert is 

expected to expand north as climate projections include a 1–3°C increase in temperature 

and up to a 20% decrease in precipitation by the mid-21st century, resulting in an 

increasingly arid climate (Magaña et al. 2012). But, only 41% of natural areas in the 

U.S. demonstrate climate connectivity, so that species can shift their ranges as climate 

change continues (McGuire et al. 2016). Térapa and other similar fossil sites provide a 

record that informs anticipation of climate change consequences across an increasingly 

xeric landscape. Future fossil recovery may help provide more details about the fauna at 

Térapa and in Sonora but also allow for study of habitat and biodiversity shifts.  
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5. SPATIAL INEQUALITIES LEAVE MICROPOLITAN AREAS AND 

INDIGENOUS POPULATIONS UNDERSERVED BY INFORMAL STEM 

LEARNING INSTITUTIONS 

 

5.1. Introduction 

Public understanding of science requires more than content knowledge, it also 

requires knowledge of the nature of science, positive beliefs about science, and scientific 

literacy (Sinatra and Hofer 2016). A comprehensive understanding of science supports a 

better informed public that can make evidence-based decisions (Sinatra et al. 2014) and 

contributes to a healthier population, greater interest in STEM careers, and higher 

earnings (Darling-Hammond 2001, NRC 2009, NASEM 2016). Unfortunately, access to 

information is unequal; rural and poor communities receive the fewest programs for 

public education in science (Calabrese Barton 1998, Bevan et al. 2018, Rogers and Sun 

2018). When there have been investments in improving public science literacy, it has 

historically focused in the classroom (Falk et al. 2018); yet, with most people spending 

95% of their lives outside of classroom settings (Falk and Dierking 2010), informal 

learning experiences can be more valuable for science literacy, especially for adults 

(Falk and Needham 2011, Zarestky et al. 2018). 

In contrast to a classroom’s formality, sites of informal learning provide 

opportunities for visitors to learn through inquiry (Spector et al. 2012) and educate the 

public through engaging experiences (Falk and Needham 2011). Informal learning 

institutions (ILIs), such as museums and science centers, increase appreciation for 
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science (Diamond et al. 2012), increase understanding of the nature of science (Spector 

et al. 2012), and positively influence attitudes and beliefs about science and technology 

(Falk and Needham 2011). These ILIs also provide learning opportunities for 

populations underrepresented in the sciences to make STEM knowledge relevant, 

accessible, and meaningful (Institute of Medicine 2011). Other STEM-related ILIs 

include botanical gardens and arboretums, zoos and aquariums, public libraries, National 

Park Service lands, and biological field stations and marine laboratories. Together, ILIs 

comprise a geographic landscape of informal learning opportunities available to the 

general public. 

This is especially important for members of underrepresented groups in the 

sciences who may feel excluded from informal STEM learning (Dawson 2014) or who 

may not recognize the viability of STEM careers (NASEM 2016, Fuesting et al. 2017). 

Minorities, girls and women, and rural and poor populations are persistently 

underrepresented in the sciences (Garrison 2013, NCSES 2017, Rogers and Sun 2018). 

Creating informal STEM education opportunities within underserved areas and for 

underrepresented groups can reduce barriers, promote scientific literacy, and contribute 

to better representation in STEM careers (NRC 2009). Although it does not ensure 

equity or even accessibility, close proximity removes a sizeable barrier. Many people 

visit ILIs annually (Schwan et al. 2014) and are willing to travel to do so (Yucelt 2001), 

but structural barriers, such as entry and day trip costs, and socially-exclusive practices 

related to class and ethnicity limit the diversity of ILI audiences (Dawson 2017). 

Therefore, to understand where ILIs can most broaden participation in STEM, we first 



 

108 

need to know the populations who are least able to participate in informal STEM 

learning opportunities because of proximity. 

   Here, we map ILIs in the United States and explore their relative densities in 

the informal learning landscape to determine the national geographic distribution of each 

type. We identify ILI “deserts” where there are currently fewer sites for informal STEM 

education and more opportunities for ILI development, collaboration, and expansion of 

existing resources. We expect counties with higher population densities to have more 

ILIs because of larger potential audiences, and counties with higher poverty to have 

fewer ILIs because of fewer financial resources. In addition, we explore the racial and 

ethnic demographics of those underserved counties to determine if populations with few 

informal learning opportunities are also those populations who are underrepresented in 

STEM careers. 

5.2. Materials and methods 

To map US informal learning institutions (ILIs), we extracted locality data from 

the Institute of Museum and Library Services’ Museum Universe Data File (Grimes et 

al. 2014). Records were cleaned to remove duplicates and were maintained for different 

institutions at the same geographic location, e.g., Southwest Minnesota State University 

(SMSU) Museum of Natural History and SMSU Planetarium.We compiled data on 2962 

STEM-related ILIs were compiled, including 1010 arboretums, botanical gardens, and 

nature centers (BOT), 1490 children’s museums, natural history museums, natural 

science museums, science and technology museums, and planetariums (MUS), and 462 

zoos, aquariums, and wildlife conservation centers (ZOO). Additional ILIs in our 
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analysis included 16720 public central and branch libraries (LIB) extracted from the 

Public Library Survey’s Outlet Data File (Pelczar et al. 2019). Libraries were removed if 

they were listed as bookmobiles or books-by-mail only, reported as temporary or 

permanent closure, or located in outlying territories of the United States. National Park 

Service (NPS) lands included 167 national parks, national monuments, national 

preserves, and national seashores (NPS 2019). Centroid points were used to represent 

national park lands because informal learning activities are often available throughout 

the park. Finally, 435 biological field stations and marine labs (FSML) were compiled 

from the Organization of Biological Field Stations (OBFS 2016) and National 

Association of Marine Laboratories (NAML 2016). In all, 20,284 ILIs were included in 

this study, and all ILI data are available in Appendix D.  

We sourced population data at the county level from the American Community 

Survey (ACS) 2017 5-year estimate dataset (USCB 2018) and included population 

density, measures of poverty, and populations of racial and ethnic groups. Population 

density was calculated as the census number divided by the land area for each county 

(individuals per km2) and was transformed to natural log for analysis. For each county, 

we extracted a Rural-Urban Continuum Code (RUCC; USDA ERS 2013a). Nine RUCC 

categories are based on county population density and metropolitan influence (USDA 

ERS 2013b). The first three categories (RUCC 1-3) are metro counties, and the 

remaining six (RUCC 4-9) are non-metro counties that are either adjacent or not adjacent 

to a metro area (USDA ERS 2013b; Table D-1). Adjacency is defined as a shared border 

with a metro area and at least 2% of workers commuting into the central counties of the 
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larger metro area (USDA ERS 2013b). Poverty was determined at the family level by 

comparing income over the previous 12 months to set thresholds that vary depending on 

the size of the family (USCB 2017). Percentage of poverty was binned into six 

categories from lowest (1) to highest (6) using Jenks Natural Breaks (Jenks 1977; Table 

D-2). Racial and ethnic data from the ACS 2017 5-year estimate dataset (USCB 2018) 

were used to calculate population percentages. All county-level data are available in 

Appendix D. 

5.2.1. Analyses 

To determine the density of ILIs, we calculated a kernel density surface of ILIs 

per km2 with a cell size of 1000 within a World Geodetic System 1984 (WGS84) spatial 

reference system. At each ILI location, the ILI kernel density was extracted from the 

kernel density surface to calculate the mean density, standard deviation, and standard 

error for all ILIs and for each ILI type (BOT, FSML, LIB, MUS, NPS, and ZOO). The 

ILI densities for each type were compared using a one-way ANOVA test to determine 

statistical differences between the types. 

Next, we calculated a simple density surface of ILIs per county area (km2) that 

we could compare to county population density and to percentage of poverty. We 

modeled the influence of log population density and poverty percentage on ILI density 

with a generalized linear model that included log population density, poverty percentage, 

and their interaction as factors, along with a rational quadratic correlation structure to 

account for spatial autocorrelation of the variables. McFadden’s pseudo-R2 was used to 

evaluate the models. This statistic indicates a good fit when 0.2 <= R2 <= 0.4 (McFadden 
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1979). We compared the residuals of this model across RUCCs to determine the 

geographic element of equality of access relative to population density. We also 

compared the residuals across poverty categories. Residuals were evaluated across 

RUCC categories and poverty categories using analyses of variance.  

Three strategies were then used to identify groups of counties most underserved 

in the ILI landscape: 1) counties with no ILIs, 2) 0.5% of counties with the greatest 

negative residuals defined as more than 2.5 standard deviations below the mean (i.e., 

they had the fewest ILIs relative to their expected number), and 3) counties in the RUCC 

or poverty category with the greatest mean negative residual. The greatest mean negative 

residual indicates the group with the fewest opportunities relative to the expected. We 

calculated the percentages of the US population and racial and ethnic groups in each of 

the three groups of underserved counties ((group population of underserved 

counties/total group population of US) * 100). All analyses were performed in ArcMap 

and R (R Core Team 2016, ESRI 2017). 

5.3. Results  

Our results document the landscape of ILIs across the US and indicate 

geographic gaps across the West, Midwest, and South (Figure 5.1A). National Park 

Service (NPS) lands and biological field stations and marine laboratories (FSMLs) occur 

in areas with lower ILI densities than other types; botanical gardens occur in areas with 

the highest ILI densities (F(5,20278) = 22.37, p < 0.001; Figure 5.1B). Geographic 

distributions vary depending on the type of ILI (Figures 5.1C-H); NPS lands (Figure 
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5.1C) are much denser in western states and along the East Coast, whereas botanical 

gardens (Figure 5.1H) are sparse across the west and dense on the coasts.  

 

 

Figure 5.1. Landscape of ILIs in the US (density per 1000 km2). A, Kernel density 

surface of all ILIs displayed as six quantiles (cell size = 1000 m2; µ = 6.5 ILI per 

1000 km2), B, Mean density of ILIs per 1000 km2 at each type (abbreviations 

follow) with standard error bars (colors correspond to A, C-H), C, National Park 

Service lands (NPS), D, Biological field stations and marine laboratories (FSML), 

E, Zoos, aquariums, and wildlife conservation (ZOO), F, Science museums, 

children’s museums, and planetariums (MUS), G, Libraries (LIB), H, Botanical 

gardens, arboretums, and nature centers (BOT). All densities are displayed as six 

quantiles and values associated with each break are in Table D-3. Mean values for 

the bar plot are provided in Table D-4. All ILI point data are in Appendix D.  

 

There are 48 counties with no ILIs, and these counties are primarily in the middle 

part of the country from North Dakota to Texas (Figure 5.2A), which leaves 327,121 

people underserved (0.10% of the US population). Low densities of ILIs are in the 

southeast and the intermountain west (Figure 5.1A), and high densities of ILIs are in the 
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Northeast, near the Great Lakes in the Midwest, and along the west coast. These 

geographic patterns may be related to population density and poverty levels in those 

areas. When considered together, population density and poverty maintain a significant 

relationship with ILI density, and the interaction of population density and poverty 

percentage is also significantly related to ILI density (R2
McFadden = 0.322; Table 5.1). 

With lower population density and higher poverty, a county is expected to have fewer 

ILIs than counties with higher population density and lower poverty. 

 

 

Figure 5.2. Distribution of ILIs among the US population summarized at the county 

level. A, Standard deviation of ILI residuals with the darkest purple indicating the 

fewest number of ILIs (σ < -2.5) and the darkest green indicating the most ILIs (σ > 

1.5) relative to the number expected. Blue counties have no ILIs. B, ILI residuals 

grouped by Rural-Urban Continuum Codes with standard error bars; C, ILI 

residuals grouped by poverty categories with standard error bars; ILI residuals are 

from a spatially-corrected regression between log ILI density and the interaction of 

log population density and poverty percentage. Standard deviation values are in 

Table D-5 and county data are in Appendix D. 
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Table 5.1. Summary of the generalized linear model that included log population 

density, poverty percentage, and their interaction as factors. 

Factor Co-efficient t-value p-value 

Intercept -7.63 -74.9 0 

Log population density 0.468 26.9 0 

Poverty percentage -0.014 -4.35 0 

Log population density * Poverty percentage 0.006 6.46 0 

 

Geographically, the residuals between log ILI density and the interaction 

between log population density and poverty percentage are higher than expected in the 

northeast and across the central Midwest, and residuals are lower than expected in the 

southeast and the intermountain west (Figure 5.2A). There are 21 counties in the lowest 

0.5% of ILI residuals (σ < -2.5), and these counties are primarily in the southeast and 

northwest (Figure 5.2A). These counties have a total of 29 ILIs (µ = 1.4 ILIs per county) 

and include 1,372,650 people or 0.43% of the US population.  

ILI density residuals of the interaction between log population density and 

poverty percentage were further used to investigate which groupings based on Rural-

Urban Continuum Codes (RUCCs) or poverty percentages are more underserved by ILIs 

than expected. RUCC 1 includes counties in the largest metro areas (more than one 

million people) and has residual values higher than expected, which indicates these 

counties have more ILIs than expected for their population densities and poverty levels 

(Figure 5.2B). Other metro counties with 250,000 to 1,000,000 residents (RUCC 2) and 

fewer than 250,000 (RUCC 3) have nearly as many ILIs as expected. Counties that are 

completely rural or urban with less than 2,500 people have more ILIs than expected 

regardless of if they are adjacent (RUCC 8) or not adjacent to a metro area (RUCC 9). 
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Most non-metro counties have nearly as many ILIs as expected. This occurs in counties 

with an urban area of 20,000 people or more that are adjacent to a metro area (RUCC 4), 

and counties with an urban area of 2,500 to 19,999 that are either adjacent (RUCC 6) or 

not adjacent (RUCC 7) to a metro area. The exception is RUCC 5, which includes 

counties with an urban area of 20,000 people or more that are not adjacent to a metro 

area and has the lowest ILI residuals (µ = -0.30, σ = 0.67). Therefore, RUCC 5 counties 

have the fewest ILIs relative to the expected for their population densities and poverty 

levels. The 92 RUCC 5 counties include 5,028,805 people (1.6% of the US population). 

There is an inverse relationship between ILI residuals and poverty, so that 

counties with a low poverty percentage (poverty category 1) have higher ILI residuals 

and more ILIs than expected, whereas counties with a high poverty percentage (poverty 

category 6) have lower residuals and fewer ILIs than expected (Figure 5.2B). Poverty 

category 5 (23.6 – 31.4% poverty) has the lowest residuals and fewer ILIs than expected; 

this group includes 1,229,241 people (0.38% of the US population). None of the poverty 

categories have a mean residual value as low as RUCC 5 counties (Figures 5.2A-B). 

5.3.1. Underserved counties 

We further examined the demographics of the counties identified as underserved. 

There are 48 counties with no ILIs (Figure 5.3A), 21 counties in the lowest 0.5% of ILI 

residuals (Figure 5.3B), and 92 counties in RUCC 5 (Figure 5.3C). Five RUCC 5 

counties also have residuals in the lowest 0.5%. These counties are Campbell, WY, 

Garfield, OK, Lamar, TX, Val Verde, TX, and Laurens, GA. They include a total of 

256,365 people, and each occurs in a different poverty category from 1 to 5, 



 

116 

respectively. In all, these 156 underserved counties (5.0%) are home to 6,472,211 people 

(2.0% of the population). 

Underserved counties occur across the Rural-Urban Continuum depending on the 

group. Counties without ILIs are mostly (48%) in RUCC 9 – completely rural or urban 

with less than 2,500 people and not adjacent to a metro area. Counties with ILI residuals 

in the lowest 0.5 are mostly the mid-metro counties with 250,000 to 1,000,000 residents 

(RUCC 2; 24%) or the largest non-metro counties with an urban area of 20,000 people 

that are not adjacent to a metro area (RUCC 5; 24%). Counties in RUCC 5 are 

micropolitan areas with urban cores of 10,000-50,000 people (USOMB 2010), such as 

Gillette, WY, Carlsbad, NM, and Elko, NV.  

All underserved counties occur across the poverty categories. Most counties 

without ILIs (40%) are in poverty category 1 (0-10.1% poverty) with a mean poverty of 

17%. Most counties with ILI residuals in the lowest 0.5% (29%) and counties in RUCC 

5 (39%) are in poverty category 3 (14.2-18.4% poverty). Both of these groups have a 

mean poverty of 18%. 

The three underserved groups of counties include a small percentage of the 

overall US population, but larger percentages of indigenous populations (Figure 5.3D; 

Table D-6). Counties without ILIs include just 0.10% of the US population but 0.95% of 

the American Indian or Alaskan Native populations. Only 0.43% of the US population 

lives in counties with ILI residuals in the lowest 0.5%, yet 1.0% of the American Indian 

or Alaskan Native population and 0.79% of the Native Hawaiian and Other Pacific 

Islander population reside in these counties. Similarly, although 1.6% of the US 
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population lives in RUCC5 counties, 5.3% of the American Indian or Alaskan Native 

population and 6.5% of the Native Hawaiian and Other Pacific Islander population live 

in RUCC5 counties. 

 

 

Figure 5.3. Counties that are the most underserved by informal learning 

institutions (ILIs). A, Counties that do not have ILIs; B, Counties with ILI 

residuals in the lowest 0.5% (σ < -2.5); C, Non-metro, not adjacent counties with 

urban populations over 20,000 (RUCC 5) with standard deviations of log ILI 

residuals and the interaction of log population density and poverty percentage as in 

Figure 5.2A; D, Racial and ethnic percentages in underserved counties. US 

population is the percentage of the general population in each underserved group 

of counties for comparison with the racial and ethnic groups. Bar plot values are in 

Table D-6. 
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5.4. Discussion  

Many of the counties underserved by ILIs, unsurprisingly, are in regions of low 

ILI density, and the largest counties by area also occur in areas of lowest ILI density 

(Figure 5.4). This increases the challenge of providing informal STEM learning 

opportunities in these areas. Some of the underserved counties, particularly in the eastern 

part of the county, are in regions with neighboring counties with high ILI density; 

residents of these underserved counties may take advantage of informal learning 

resources in nearby counties. Conversely, ILI practitioners may be able to use these 

resources to target nearby counties with fewer ILIs and increase opportunities for 

participation closer to home for neighboring county residents. 

NPS lands and FSMLs play a unique role in the spatial distribution of ILIs by 

reaching geographic areas with fewer ILIs of other types (Figure 5.1B). These 

institutions use their resources to provide place-based informal STEM education to the 

public (Novey and Hall 2007, Karlstrom et al. 2008, Billick et al. 2013, Struminger et al. 

2018). FSMLs are also unique because they can easily incorporate scientists in their 

outreach programming (Billick et al. 2013, Struminger et al. 2018). Unlike marine 

laboratories, primarily located along the coast, biological field stations occur across the 

country’s interior and can reach more geographically widespread populations 

(Struminger et al. 2018). Even at National Parks, scientists are more able to interact with 

visitors at field stations within the parks than at visitor centers (Stevens and Gilson 

2016). Interacting with a scientist or STEM professional can result in positive learning 
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outcomes for participants, such as increased interest in science, learning of content, and 

awareness of STEM careers (Wiehe 2014, Boyette and Ramsey 2019).  

 

 

Figure 5.4. ILI density from Figure 5.1A with underserved counties from Figure 

5.3A-C highlighted in white.  

 

Gaps in the ILI landscape represent opportunities for resource investment and 

capacity building in informal STEM education (NRC 2015). Establishment of ILIs in 

these gaps will result in more programming, which will lead to improved public 

understanding of science (NRC 2009, Falk and Dierking 2019). We recommend targeted 

efforts to reach counties that are in the three groups of underserved counties – without 

ILIs, with too few ILI opportunities, and outside of metro areas but not completely rural. 

These counties have fewer than expected ILIs and larger percentages of indigenous 

groups (Figure 5.3) than counties that are not underserved. Indigenous students engage 

with STEM at lower rates than nonindigenous students and are less likely to pursue 

STEM careers (Abrams et al. 2013), and Native American students have difficulty 
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perceiving themselves as scientists (Laubach et al. 2012). Community-based and place-

based learning may be more engaging for indigenous populations because these 

approaches to learning can more easily be intercultural (Bang and Medin 2010, Abrams 

et al. 2013). Underserved counties would benefit from increased investment in informal 

STEM learning opportunities that meaningfully integrate cultural practices with effective 

learning (Windchief and Brown 2017). 

Partnerships between educational and community organizations can broaden 

participation of underserved populations (Penuel 2017), and ILIs are well-situated to 

play a role in these partnerships because of their geographically-widespread 

distributions. In particular, libraries occur in nearly every county and are 75% of the ILIs 

found in RUCC5 counties. When other ILIs, such as museums and botanical gardens, are 

further away, collaborations with libraries can facilitate STEM learning in these 

underserved communities (LaConte and Dusenbery 2016, Shtivelband et al. 2019, 

Wilhelm and Jones 2019). By providing engaging learning experiences for surrounding 

communities, ILIs can foster an increase in underrepresented groups in STEM careers 

and, more broadly, a more scientifically-literate population that can rely on scientific 

findings to inform decision-making and influence policies in areas such as health, 

technology, and the environment (NASEM 2016, Sinatra and Hofer 2016). 
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6. CONCLUSIONS 

 

This interdisciplinary dissertation contributes to scientific efforts by: 1) providing 

confidence in analytical method selection for researchers using trait-environment 

relationships; 2) developing a new trait-environment relationship for ecometric analyses; 

3) filling a geographic gap in our knowledge of Pleistocene mammals in the 

northwestern Mexico; and 4) identifying underserved counties and populations in the 

informal STEM learning landscape.  From each of these chapters, I draw conclusions 

and make recommendations to inform scientists, as well as non-scientists, about 

community responses to climate change. 

Of four analytical methods used to predict precipitation from hypsodonty, 

maximum likelihood produces more accurate predictions than linear regression, 

polynomial regression, and nearest neighbor (Figure 2.4). All four methods produce 

results that are highly correlated with log precipitation and predictions from the other 

methods (p < 0.001; Table 2.1). When applied to paleontological sites, paleoprecipitation 

predictions align more closely with glacial global climate models than with interglacial 

models regardless of the age of the site (Figures 2.5-2.6). It is unexpected that the 

interglacial paleoprecipitation predictions closely match glacial global climate models. I 

posit this is likely because of the anthropogenic effects on community reassembly in the 

Holocene following the last glacial period. 

Calcaneal gear ratio data from 571 individuals in 157 (65%) artiodactyl species 

were measured to develop a new model of trait-environment relationship. At the 
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community-level, variance in mean calcaneal gear ratio is most explained by ecoregion 

division (60.8%), vegetation cover (57.6%), and precipitation (44.1%) (Table 3.1; Figure 

3.5). Community gear ratio measures were applied to six sites in Kenya with historical 

and modern fauna records. Morphology captures habitat homogenization in the 

southwestern portion of Kenya and matches mammal community patterns described by 

previous researchers (Figure. 3.6; Tóth et al. 2014). With this ecometric framework, 

fossils of artiodactyl postcrania can be used to interpret paleoenvironment for a more 

comprehensive understanding of the past.  

A new, detailed description of the mammals at Térapa provides a more thorough 

understanding of the Rancholabrean fauna of northern Mexico (Table C-1). It is 

important to document the past because it provides a baseline record that enriches our 

understanding of interactions between fauna and environment. It is now recognized that 

there are two distinct morphotypes of Equus, including E. scotti and a smaller species. 

Also present in the fauna are Platygonus compressus, Camelops hesternus, Canis dirus, 

and Lynx rufus, and the first regional records of Palaeolama mirifica, Procyon lotor, and 

Smilodon cf. S. fatalis. The faunal record documents biotic responses to environmental 

changes in an increasingly xeric landscape. 

Among informal learning institutions (ILIs), National Park Service lands, 

biological field stations, and marine laboratories occur in areas with the fewest informal 

learning opportunities and have the greatest potential to reach populations underserved 

by ILIs (Figure 5.1). Most counties that are underserved occur in the Great Plains, the 

southeast, and the northwest. Furthermore, the counties that are most underserved also 
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have higher than expected indigenous populations who are underrepresented in STEM 

careers (Figure 5.3). These gaps represent opportunities for national investments in ILI 

offerings through new infrastructure and expansion of existing resources as well as 

collaborations with facilities in neighboring counties. 

6.1. Recommendations 

Conservation paleobiology is an emerging field that aims to use the fossil record 

to anticipate potential responses of species to future environmental changes (Dietl et al. 

2015, Barnosky et al. 2017). Conservation paleobiology will benefit from further 

development of ecometrics, including additional analyses of the methods used in these 

studies but also development of new trait-environment models. Expansion of ecometric 

methods will improve the utility of the models and their application to biodiversity 

conservation. In the development of these models, I recommend using maximum 

likelihood to ensure the least biased predictions (Chapter 2). I also recommend using 

caution with models constructed with trait data from extant fauna because of possible 

anthropogenic effects on community assembly (Chapter 2). 

Additional models will be informative, but existing models should be integrated 

to develop multi-trait models. For instance, with the new development of an ecometric 

model for the artiodactyl calcaneal gear ratio (Chapter 3), the data could be integrated 

with the carnivoran gear ratio models (Polly 2010) to include a larger segment of the 

mammalian community and improve environmental interpretation. These ecometric 

models can be applied to past and modern fauna to determine a directional vector of 

environmental change (Chapter 3). I recommend extending these vectors based on 
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projected climatic and environmental change to inform anticipatory management of 

biodiversity.  

As ecometric models become incorporated in conservation paleobiology, the 

field will benefit from more detailed descriptions of fossil assemblages (Chapter 4) as 

well as increased sharing of trait data. Traits of fossil assemblages can be used for 

paleoenvironmental interpretation but much of this data remains undiscovered in 

museum collections or in unexcavated sediments (Uhen et al. 2013, Bell and Mead 

2014). Collecting and sharing this original data contributes to the effort to build 

functional trait databases for modern and extinct organisms (Jones et al. 2009, The NOW 

Community 2019); thus, advancing the study of trait-environment relationships. While 

an ecometric analysis of Térapa would have been advantageous, the available data did 

not allow for it at this time. With more trait data from more fossil species, it will be 

possible to include more fossil sites in ecometric studies. 

Ecometric models have the potential to influence environmental stewardship and 

inform conservation and management efforts for Earth’s threatened biodiversity. 

However, effective decision-making relies on a well-informed public with increased 

scientific literacy. I recommend more scientists associate with informal learning 

institutions (ILIs) to engage with the public and increase public understanding of science 

(Chapter 5). Interactions with scientists contribute to positive learning outcomes, such as 

increased interest in science and science careers (Wiehe 2014, Boyette and Ramsey 

2019). In underserved counties, this is even more important because of the lack of 

informal learning opportunities that are largely affecting groups already 
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underrepresented in STEM careers. This will require increased investments in resources 

and partnerships with nearby ILIs to fill the geographic gaps in the informal learning 

landscape. 
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Table A-1. Fossil sites used for analysis of paleoprecipitation predictions. Site ID numbers correspond to x-axis labels in 

Figure 2.6. 
Site ID Site Name Longitude Latitude Country State TimeBin 

1 Riddell -106.70 52.20 CA Saskatchewan interglacial 

2 Silver Creek Junction -111.20 40.90 US Utah interglacial 

3 Harrodsburg Crevice -86.50 39.00 US Indiana interglacial 

4 Eagle Cave -79.28 38.83 US West Virginia interglacial 

5 Melrose Caverns -78.89 38.48 US Virginia interglacial 

6 Mesa de Maya -105.00 37.30 US Colorado interglacial 

7 Island Ford Cave -81.34 37.10 US Virginia interglacial 

8 Coppel -96.60 32.80 US Texas interglacial 

9 Mayfair -81.10 32.00 US Georgia interglacial 

10 Isle of Hope -81.07 31.98 US Georgia interglacial 

11 Arredondo IIA -82.42 29.60 US Florida interglacial 

12 Rock Springs -81.45 28.72 US Florida interglacial 

13 Lost Chicken Creek (Purdy Collection) -141.88 64.05 US Alaska glacial 

14 January Cave -114.52 50.18 CA Alberta glacial 

15 Shelton -83.36 42.81 US Michigan glacial 

16 Little Box Elder Cave -105.68 42.78 US Wyoming glacial 

17 Ravine South of Fairfield Creek -100.08 42.78 US Nebraska glacial 

18 Sheriden Cave -83.45 40.97 US Ohio glacial 

19 Samwel Cave No. 1 -122.23 40.92 US California glacial 

20 Potter Creek Cave -122.28 40.78 US California glacial 

21 Mandy Walters Cave -79.30 38.83 US West Virginia glacial 

22 Hoffman School Cave -79.36 38.58 US West Virginia glacial 

23 Haystack Cave (Upper Levels 1-3) -107.15 38.48 US Colorado glacial 

24 Natural Chimneys -79.08 38.36 US Virginia glacial 

25 Strait Canyon -79.57 38.33 US Virginia glacial 

26 Clark's Cave -79.66 38.09 US Virginia glacial 

27 Gregg Ranch Site -100.70 36.78 US Oklahoma glacial 

28 White Mesa Mine Fissure 1 -106.80 35.53 US New Mexico glacial 
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29 Isleta Caves -106.88 34.88 US New Mexico glacial 

30 Ladd's Quarry -84.80 34.20 US Georgia glacial 

31 Moore Pit -96.71 32.71 US Texas glacial 

32 Dry Cave -104.45 32.37 US New Mexico glacial 

33 Burnet Cave -104.78 32.35 US New Mexico glacial 

34 U-Bar Cave -108.40 31.57 US New Mexico glacial 

35 Fowlkes Cave -104.20 31.18 US Texas glacial 

36 Avenue Area A -98.26 30.27 US Texas glacial 

37 Ichetucknee River -82.79 29.95 US Florida glacial 

38 Friesenhahn Cave -98.40 29.58 US Texas glacial 

39 Vero -80.40 27.64 US Florida glacial 

40 West Palm Beach Site -80.17 26.70 US Florida glacial 

41 Cutler Hammock -80.40 25.70 US Florida glacial 

42 San Josecito Cave -99.82 24.10 MX Nuevo Leon glacial 

43 Barranca Piedras Negras -98.62 20.05 MX Hidalgo glacial 
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Code 

#all maps were made in ArcMap using point data from R code 

#links to data sources are provided 

#data available on request 

 

#set working directory and install required packages 

install.packages(c("sp", "raster", "ggplot2", "class", "caret", "FNN", 

"maps")) 

library(sp) 

library(raster) 

library(ggplot2) 

library(class) 

library(caret) 

library(FNN) 

library(maps) 

 

################prepare data################ 

#grid points with precipitation from WorldClim 

points <- read.csv("samplingpointsNOGRNLND.csv") 

 

#transform precipitation for normality 

points$LogPrecip <- 2 * (log1p(points$BIO12) - min(log1p(points$BIO12), 

na.rm = T)) + 1 

h <- hist(points$LogPrecip, breaks = 10, xlab = "Annual Precipitation", 

col = "gray") 

hbreaksmod <- ((expm1(h$breaks) - 1)/2) + min(expm1(h$breaks), na.rm = 

T) 

 

#traits data 

traits <- read.csv("NA_hypsodonty.csv", header = T) 

rownames(traits) <- traits$SCI_NAME 

 

#geographic ranges from NatureServe 

#available: https://www.natureserve.org/conservation-tools/digital-

distribution-maps-mammals-western-hemisphere 

#download data and read as a shapefile 

mammals <- shapefile("natureservemammals.shp") 

geography <- subset(mammals, PRESENCE == 1 & (subset = ORIGIN == 1 | 

ORIGIN == 2 | ORIGIN == 3 | ORIGIN == 4 | ORIGIN == 5 | ORIGIN == 8)) 

 

#convert sampling points to spatial points 

sp <- SpatialPoints(points[ , 2:3], proj4string = 

CRS(proj4string(geography))) 

 

#sample species at each sampling locality 

o <- over(sp, geography, returnList = T) 

 

#calculate sample size at each point 

richness <- unlist(lapply(o, function(x) length(traits[x$SCI_NAME, 

"hypsodonty"]))) 

points$richness <- richness 
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#summarize traits for community level distributions 

ecometric_hypsodonty <- unlist(lapply(o, function(x) 

mean(traits[x$SCI_NAME, "hypsodonty"], na.rm = T))) 

points$hypmean <- ecometric_hypsodonty 

 

#restrict data for analysis 

restricted <- richness >= 5 & ecometric_hypsodonty <= 3 & 

ecometric_hypsodonty >= 1 & !is.na(ecometric_hypsodonty) & 

!is.na(points$LogPrecip) 

x <- ecometric_hypsodonty[restricted] 

y <- points[restricted,"LogPrecip"] 

 

################analysis 1################ 

################linear regression################ 

linreg <- lm(y~x) 

summary(linreg) 

 

#calculate anomaly 

anom_lin <- points$LogPrecip[restricted] - 

predict(linreg,data.frame(x=x)) 

max(anom_lin, na.rm = T) 

min(anom_lin, na.rm = T) 

mean(anom_lin, na.rm = T) 

 

################polynomial regression################ 

model_hyp <- lm(y ~ poly(x,3)) 

summary(model_hyp) 

 

#calculate anomaly 

anom_poly <- points$LogPrecip[restricted] - 

predict(model_hyp,data.frame(x=x)) 

max(anom_poly, na.rm = T) 

min(anom_poly, na.rm = T) 

mean(anom_poly, na.rm = T) 

 

################maximum likelihood################ 

#calculate standard deviation 

sd_ecometric_hypsodonty <- unlist(lapply(o, function(x) 

sd(traits[x$SCI_NAME, "hypsodonty"], na.rm = T))) 

points$hypsd <- sd_ecometric_hypsodonty 

 

#group the community trait distributions in 25 x 25 bins 

mhyp <- range(ecometric_hypsodonty, na.rm = T) 

sdhyp <- range(sd_ecometric_hypsodonty, na.rm = T) 

#get the break points for sd and mean 

mbrks <- seq(mhyp[1]-0.001, mhyp[2]+0.001, diff(mhyp)/25) 

sdbrks <- seq(sdhyp[1]-0.001, sdhyp[2]+0.001, diff(sdhyp)/25) 

#assign bin codes 

mbc <- .bincode(ecometric_hypsodonty, breaks = mbrks) 

sdbc <- .bincode(sd_ecometric_hypsodonty, breaks = sdbrks) 

#limit bin designations to restricted communities 

mbc[!restricted] <- NA  

sdbc[!restricted] <- NA 
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#calculate the data for the raster 

obj <- array(NA, dim = c(25, 25)) 

for (i in 1:25) { 

  for (j in 1:25) { 

    dat <- points$LogPrecip[which(mbc == i & sdbc == j)] 

    obj[26 - j, i] <- mean(dat, na.rm = T) 

  } 

} 

 

#calculate maximum likelihood for all bins 

modmax <- array(NA, dim = length(points[ , 1]))  

mod <- list() 

for (i in 1:length(points[ , 1])) { 

  if(!(is.na(mbc[i]) | is.na(sdbc[i]))) { 

    dat <- points$LogPrecip[which(mbc == mbc[i] & sdbc == sdbc[i])] 

    mod[[i]] <- density(dat[!is.na(dat)], bw = 1) 

    modmax[i] <- mod[[i]]$x[which.max(mod[[i]]$y)] 

  } 

} 

 

#calculate anomaly 

anom_maxlik <- points$LogPrecip - modmax ##observed - predicted 

max(anom_maxlik, na.rm = T) 

min(anom_maxlik, na.rm = T) 

mean(anom_maxlik, na.rm = T) 

anom_maxlik_csv <-cbind(points[ , 2:3], anom_maxlik) 

anom_maxlik_csv <- 

anom_maxlik_csv[!(is.na(anom_maxlik_csv$anom_maxlik)), ] 

 

##################nearest neighbor###################### 

#partition training and testing data 

#training and testing data provided to match manuscript results 

#near <- data.frame(x, y) 

#colnames(near)[colnames(near)==c("x", "y")] <- c("Hypsodonty", 

"LogPrecip") 

#near$ID = rownames(near) 

#inTrain <- createDataPartition(y = near$Hypsodonty, p = 0.2, list = 

FALSE) 

#training <- near[inTrain, ] #training dataset, small (p) of whole data 

#testing <- near[-inTrain, ] #testing dataset, large of whole data 

#write.csv(training, file = "training.csv") 

#write.csv(testing, file = "testing.csv") 

training <- read.csv("training_data.csv") 

testing <- read.csv("testing_data.csv") 

 

#calculate nearest neighbor 

#k = 15 

pred_nn <- knn.reg(train = data.frame(training$Hypsodonty), test = 

data.frame(testing$Hypsodonty), y = training$LogPrecip, k = 15) 

 

#calculate anomaly 

anom_nn <- testing$LogPrecip - pred_nn$pred 

max(anom_nn, na.rm = T) 

min(anom_nn, na.rm = T) 
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mean(anom_nn, na.rm = T) 

anom_nn_csv <- cbind(testing, anom_nn) 

points$rows <- as.numeric(rownames(points)) 

anom_nn_csv <-merge(points, anom_nn_csv[ , 4:5], by.x = "rows", by.y = 

"ID") 

 

######################Figure 2.4###################### 

k <- density(anom_lin) 

l <- density(anom_poly) 

m <- density(anom_nn) 

n <- density(anom_maxlik, na.rm = T) 

plot(k, col = "black", xlim = c(-5, 5), ylim = c(0, 0.6), yaxs = "i", 

main = " ", xlab = "Anomaly") 

abline(v = 0, lwd = 2) 

polygon(k, border = "black", col = adjustcolor("#969696", alpha = 0.5), 

lty = 1, lwd= 2) 

polygon(l, border = "black", col = adjustcolor("#bdbdbd", alpha = 0.5), 

lty = 2, lwd= 2) 

polygon(m, border = "black", col = adjustcolor("#d9d9d9", alpha = 0.5), 

lty = 3, lwd= 2) 

polygon(n, border = "black", col = adjustcolor("#f7f7f7", alpha = 0.5), 

lty = 6, lwd= 2) 

legend("topright", c("Linear regression", "Polynomial regression", 

"Nearest neighbor", "Maximum likelihood"), bty = "n", col = "black", 

lty = c(1, 2, 3, 6), lwd = 2) 

 

###################correlations################ 

#compile paleoprecipitation predictions into one dataframe 

pointsdata <- points 

pointsdata$rownames <- as.numeric(row.names(pointsdata)) 

linregdata <- as.data.frame(predict(linreg, data.frame(x=x))) 

linregdata$rownames <- as.numeric(row.names(linregdata)) 

polyregdata <- as.data.frame(predict(model_hyp,data.frame(x=x))) 

polyregdata$rownames <- as.numeric(row.names(polyregdata)) 

modmaxdata <- as.data.frame(modmax) 

modmaxdata$rownames <- as.numeric(row.names(modmaxdata)) 

nearneighdata <- testing 

nearneighdata$preddata <- pred_nn$pred 

nearneighdata <- nearneighdata[ , 4:5] 

colnames(nearneighdata)[1] <- "rownames" 

 

pointsdata <- merge(pointsdata, linregdata, by = "rownames", all = 

TRUE, incomparables = NA) 

pointsdata <- merge(pointsdata, polyregdata, by = "rownames", all = 

TRUE, incomparables = NA) 

pointsdata <- merge(pointsdata, modmaxdata, by = "rownames", all = 

TRUE, incomparables = NA) 

pointsdata <- merge(pointsdata, nearneighdata, by = "rownames", all = 

TRUE, incomparables = NA) 

colnames(pointsdata)[10:13] <- c("linregdata", "polyregdata", 

"modmaxdata", "preddata") 

 

#correlation tests 

correlations <- cor(pointsdata, use = "complete.obs") 
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correlations 

 

#anova 

anova <- read.csv("anovadata.csv", header = T, na = ".") 

anovamodel <- aov(anomaly ~ method, data = anova) 

anovamodel 

summary(anovamodel) 

 

################analysis 2################ 

#read fossil site data with precipitation 

#global climate model values were extracted using ArcMap 

fossildata <- read.csv("fossil_gcm_estimates.csv") 

#transform paleoprecipitation to match precipitation 

fossildata$LogMR <- 2 * (log1p(fossildata$mrlgmbi12) - 

min(log1p(fossildata$mrlgmbi12), na.rm = T)) + 1 

fossildata$LogCC <- 2 * (log1p(fossildata$cclgmbi12) - 

min(log1p(fossildata$cclgmbi12), na.rm = T)) + 1 

fossildata$LogIG <- 2 * (log1p(fossildata$interglacial) - 

min(log1p(fossildata$interglacial), na.rm = T)) + 1 

 

#read fossil site data with hypsodonty 

#fossil sites are already limited to a richness > 5 

fossil <- read.csv("fossilcomm.csv", header = T) 

fossilmean <- aggregate(fossil[ , 10], list(fossil$siteID), mean, na.rm 

= TRUE) 

fossilsd <- aggregate(fossil[ , 10], list(fossil$siteID), sd, na.rm = 

TRUE) 

fossildata <- merge(fossildata, fossilmean, by.x = "siteID", by.y = 

"Group.1") 

fossildata <- merge(fossildata, fossilsd, by.x = "siteID", by.y = 

"Group.1") 

colnames(fossildata)[15:16] <- c("hyp_mean", "hyp_sd") 

 

#generate paleoprecipitation predictions from previous models 

#predict - linear regression 

fossildata$LinReg <- predict(linreg, data.frame(x = 

fossildata$hyp_mean)) 

 

#predict - polynomial regression 

fossildata$PolyReg <- predict(model_hyp, data.frame(x = 

fossildata$hyp_mean)) 

 

#predict - maximum likelihood 

fossilpoints <- points 

fossilpoints$mbc <- mbc 

fossilpoints$sdbc <- sdbc 

fossilpoints$modmax <- modmax 

fossilmbc <- .bincode(fossildata$hyp_mean, breaks = mbrks) 

fossilsdbc <- .bincode(fossildata$hyp_sd, breaks = sdbrks) 

 

#predictions for each community 

fossilmod <- list() 

for (i in 1:length(fossildata[ , 1])) { 

  if(!(is.na(fossilmbc[i]) | is.na(fossilsdbc[i]))) { 
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    fossilmod[[i]] <- fossilpoints[which(mbc == fossilmbc[i] & sdbc == 

fossilsdbc[i]), 11][1] 

    } 

} 

fossildata$MaxLike <- as.numeric(fossilmod) 

 

#predict - nearest neighbor 

fossil_nn <- knn.reg(train = data.frame(training$Hypsodonty), test = 

data.frame(fossildata$hyp_mean), y = training$LogPrecip, k = 15) 

#Fortelius etal used k = 15 

fossildata$NearNeigh <- fossil_nn$pred 

 

#sort by latitude 

fossildataorder <- fossildata[order(-fossildata$lat),] 

#split sites into glacial and interglacial 

glacial <- fossildataorder[fossildataorder$G_IG == "G", ] 

interglacial <- fossildataorder[fossildataorder$G_IG == "IG", ] 

 

######################Figure 2.6###################### 

#interglacial sites - Fig 6A 

par(bg = NA, mar = c(14, 4.1, 2, 2.1)) 

interglacial$siteID <- as.factor(interglacial$siteID)  

plot(NULL, xlim = c(1, 12), ylim = c(0, 8), ylab = "Log Precip", xlab = 

" ", xaxt = "n") 

axis(1, at = c(1:12), labels = interglacial$sitename, las = 2, cex.axis 

= 0.8) 

mtext("Interglacial Sites", side = 1, line = 12) 

points(interglacial$siteID, interglacial$LogIG, col = "black", pch = 

16, cex = 2) 

points(interglacial$siteID, interglacial$LinReg, pch = 22, cex = 2, bg 

= "#969696", col = "black") 

points(interglacial$siteID, interglacial$PolyReg, pch = 24, cex = 2, bg 

= "#bdbdbd", col = "black") 

points(interglacial$siteID, interglacial$NearNeigh, pch = 23, cex = 2, 

bg = "#d9d9d9", col = "black") 

points(interglacial$siteID, interglacial$MaxLike, pch = 25, cex = 2, bg 

= "#f7f7f7", col = "black") 

legend("bottomright", c("Global circulation - interglacial", "Linear 

regression", "Polynomial regression", "Nearest neighbor", "Maximum 

likelihood"), pch = c(16, 22, 24, 23, 25), bty = "n", col = "black", 

pt.cex = 2, pt.bg = c("black", "#969696", "#bdbdbd", "#d9d9d9", 

"#f7f7f7")) 

 

#glacial sites - Fig 6C 

par(bg = NA, mar = c(14, 4.1, 2, 2.1)) 

glacial$siteID <- as.factor(glacial$siteID)  

plot(NULL, xlim = c(1, 31), ylim = c(0, 8), ylab = "Log Precip", xlab = 

" ", xaxt = "n") 

axis(1, at = c(1:31), labels = glacial$sitename, las = 2, cex.axis = 

0.8) 

mtext("Glacial Sites", side = 1, line = 12) 

segments(as.numeric(glacial$siteID), glacial$LogMR, 

as.numeric(glacial$siteID), glacial$LogCC, col = "black", lwd = 7) 
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points(glacial$siteID, glacial$LinReg, pch = 22, cex = 2, bg = 

"#969696", col = "black") 

points(glacial$siteID, glacial$PolyReg, pch = 24, cex = 2, bg = 

"#bdbdbd", col = "black") 

points(glacial$siteID, glacial$NearNeigh, pch = 23, cex = 2, bg = 

"#d9d9d9", col = "black") 

points(glacial$siteID, glacial$MaxLike, pch = 25, cex = 2, bg = 

"#f7f7f7", col = "black") 

legend("bottomright", c("Global circulation - glacial", "Linear 

regression", "Polynomial regression", "Nearest neighbor", "Maximum 

likelihood"), pch = c(16, 22, 24, 23, 25), bty = "n", col = "black", 

pt.cex = 2, pt.bg = c("black", "#969696", "#bdbdbd", "#d9d9d9", 

"#f7f7f7")) 

 

dev.off() 

 

#calculate differences between GCM and predictions for interglacial 

sites 

interglacial$GCMlin <- interglacial$LogIG - interglacial$LinReg 

interglacial$GCMpoly <- interglacial$LogIG - interglacial$PolyReg 

interglacial$GCMnear <- interglacial$LogIG - interglacial$NearNeigh 

interglacial$GCMmax <- interglacial$LogIG - interglacial$MaxLike 

 

#interglacial curves - Fig. 6B 

e <- density(interglacial$GCMlin) 

f <- density(interglacial$GCMpoly) 

g <- density(interglacial$GCMnear) 

h <- density(interglacial$GCMmax, na.rm = T) 

par(bg = NA) 

plot(e, col = "black", xlim = c(-5, 5), ylim = c(0, 0.6), yaxs = "i", 

main = " ", xlab = "Anomaly") 

abline(v = 0, lwd = 2) 

polygon(e, border = "black", col = adjustcolor("#969696", alpha = 0.5), 

lty = 1, lwd= 2) 

polygon(f, border = "black", col = adjustcolor("#bdbdbd", alpha = 0.5), 

lty = 2, lwd= 2) 

polygon(g, border = "black", col = adjustcolor("#d9d9d9", alpha = 0.5), 

lty = 3, lwd= 2) 

polygon(h, border = "black", col = adjustcolor("#f7f7f7", alpha = 0.5), 

lty = 6, lwd= 2) 

legend("topright", c("Linear regression", "Polynomial regression", 

"Nearest neighbor", "Maximum likelihood"), bty = "n", col = "black", 

lty = c(1, 2, 3, 6), lwd = 2) 

 

#calculate differences between GCM and predictions for glacial sites 

glacial$glacGCM <- (glacial$LogMR + glacial$LogCC)/2 

glacial$GCMlin <- glacial$glacGCM - glacial$LinReg 

glacial$GCMpoly <- glacial$glacGCM - glacial$PolyReg 

glacial$GCMnear <- glacial$glacGCM - glacial$NearNeigh 

glacial$GCMmax <- glacial$glacGCM - glacial$MaxLike 

 

#glacial curves - Fig. 6D 

a <- density(glacial$GCMlin) 

b <- density(glacial$GCMpoly) 
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c <- density(glacial$GCMnear) 

d <- density(glacial$GCMmax, na.rm = T) 

par(bg = NA) 

plot(a, col = "black", xlim = c(-5, 5), ylim = c(0, 0.6), yaxs = "i", 

main = " ", xlab = "Anomaly") 

abline(v = 0, lwd = 2) 

polygon(a, border = "black", col = adjustcolor("#969696", alpha = 0.5), 

lty = 1, lwd= 2) 

polygon(b, border = "black", col = adjustcolor("#bdbdbd", alpha = 0.5), 

lty = 2, lwd= 2) 

polygon(c, border = "black", col = adjustcolor("#d9d9d9", alpha = 0.5), 

lty = 3, lwd= 2) 

polygon(d, border = "black", col = adjustcolor("#f7f7f7", alpha = 0.5), 

lty = 6, lwd= 2) 

legend("topright", c("Linear regression", "Polynomial regression", 

"Nearest neighbor", "Maximum likelihood"), bty = "n", col = "black", 

lty = c(1, 2, 3, 6), lwd = 2) 

 

######################Figure 2.7###################### 

#interglacial sites with glacial GCM - Fig 7A 

par(bg = NA, mar = c(14, 4.1, 2, 2.1)) 

interglacial$siteID <- as.factor(interglacial$siteID)  

plot(NULL, xlim = c(1, 12), ylim = c(0, 8), ylab = "Log Precip", xlab = 

" ", xaxt = "n") 

axis(1, at = c(1:12), labels = interglacial$sitename, las = 2, cex.axis 

= 0.8) 

mtext("Interglacial Sites", side = 1, line = 12) 

segments(as.numeric(interglacial$siteID), interglacial$LogMR, 

as.numeric(interglacial$siteID), interglacial$LogCC, col = "black", lwd 

= 7) 

points(interglacial$siteID, interglacial$LinReg, pch = 22, cex = 2, bg 

= "#969696", col = "black") 

points(interglacial$siteID, interglacial$PolyReg, pch = 24, cex = 2, bg 

= "#bdbdbd", col = "black") 

points(interglacial$siteID, interglacial$NearNeigh, pch = 23, cex = 2, 

bg = "#d9d9d9", col = "black") 

points(interglacial$siteID, interglacial$MaxLike, pch = 25, cex = 2, bg 

= "#f7f7f7", col = "black") 

legend("bottomright", c("Global circulation - interglacial", "Linear 

regression", "Polynomial regression", "Nearest neighbor", "Maximum 

likelihood"), pch = c(16, 22, 24, 23, 25), bty = "n", col = "black", 

pt.cex = 2, pt.bg = c("black", "#969696", "#bdbdbd", "#d9d9d9", 

"#f7f7f7")) 

 

dev.off() 

 

#calculate differences between glacial GCM and predictions for 

interglacial sites - Fig. 7B 

interglacial$glacGCM_glac <- (interglacial$LogMR + 

interglacial$LogCC)/2 

interglacial$GCMlin_glac <- interglacial$glacGCM_glac - 

interglacial$LinReg 

interglacial$GCMpoly_glac <- interglacial$glacGCM_glac - 

interglacial$PolyReg 
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interglacial$GCMnear_glac <- interglacial$glacGCM_glac - 

interglacial$NearNeigh 

interglacial$GCMmax_glac <- interglacial$glacGCM_glac - 

interglacial$MaxLike 

 

#interglacial curves with glacial predictions 

r <- density(interglacial$GCMlin_glac) 

s <- density(interglacial$GCMpoly_glac) 

t <- density(interglacial$GCMnear_glac) 

u <- density(interglacial$GCMmax_glac, na.rm = T) 

par(bg = NA) 

plot(r, col = "black", xlim = c(-5, 5), ylim = c(0, 0.6), yaxs = "i", 

main = " ", xlab = "Anomaly") 

abline(v = 0, lwd = 2) 

polygon(r, border = "black", col = adjustcolor("#969696", alpha = 0.5), 

lty = 1, lwd= 2) 

polygon(s, border = "black", col = adjustcolor("#bdbdbd", alpha = 0.5), 

lty = 2, lwd= 2) 

polygon(t, border = "black", col = adjustcolor("#d9d9d9", alpha = 0.5), 

lty = 3, lwd= 2) 

polygon(u, border = "black", col = adjustcolor("#f7f7f7", alpha = 0.5), 

lty = 6, lwd= 2) 

legend("topright", c("Linear regression", "Polynomial regression", 

"Nearest neighbor", "Maximum likelihood"), bty = "n", col = "black", 

lty = c(1, 2, 3, 6), lwd = 2) 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

Table B-1. Ecoregion predictions. Total points are the number of grid points in 

each domain or division. Predicted points are the number of the total points for 

which a prediction was produced. Correct points are the number of predicted 

points that correctly matched the observed ecoregion category. Correct percentage 

is the percentage of the predicted points that were correct. 

Domain Division 

Total 

Points 

Predicted 

Points 

Correct 

Points 

Correct 

Percentage 

Dry 18552 3689 2593 70.3%  
Tropical/subtropical desert regime mountains 1275 453 410 90.5% 

 Temperate steppe  1900 546 379 69.4% 

 Temperate desert  2193 295 173 58.6% 

 Tropical/subtropical steppe  3878 995 303 30.5% 

 Temperate steppe regime mountains 429 303 81 26.7%  
Tropical/subtropical desert  6836 497 112 22.5%  
Tropical/subtropical steppe regime mountains 1792 583 116 19.9%  
Temperate desert megime mountains 249 17 0 0% 

Humid temperate 8552 2320 1129 48.7%  
Subtropical regime mountains 590 375 197 52.5% 

 Subtropical  1331 472 161 34.1% 

 Marine  465 91 26 28.6% 

 Marine regime mountains 823 227 37 16.3% 

 Warm continental regime mountains 417 367 43 11.7% 

 Mediterranean  383 28 0 0% 

 Mediterranean regime mountains 591 27 0 0% 

 Prairie  1759 238 0 0% 

 Prairie regime mountains 512 114 0 0% 

 Hot continental  641 164 0 0% 

 Warm continental  850 217 0 0% 

 Hot continental regime mountains 190 0 0 -- 

Humid tropical 15024 11992 11474 95.7%  
Savanna  8062 6806 5583 82.0% 

 Rainforest  3962 3435 2791 81.3% 

 Rainforest regime mountains 1251 597 160 26.8% 

 Savanna regime 1749 1154 154 13.3% 

Polar 9926 2378 1812 76.2%  
Subarctic regime mountains 2301 1129 812 71.9% 

 Subarctic  4835 1165 784 67.3% 

 Tundra  1425 31 0 0% 

 Tundra regime mountains 560 53 0 0% 

 Icecap  805 0 0 . 
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Table B-2. Vegetation cover predictions. Total points are the number of grid points 

in each vegetation category. Predicted points are the number of the total points for 

which a prediction was produced. Correct points are the number of predicted 

points that correctly matched the observed vegetation cover. Correct percentage is 

the percentage of the predicted points that were correct. 
Vegetation Vegetation Cover Total 

Points 

Predicted 

Points 

Correct 

Points 

Correct 

Percentage 

Evergreen 13965 7139 5618 78.7%  
Tropical evergreen rainforest 4802 4023 3637 90.4%  
Tropical/subtropical evergreen seasonal 

broad-leaved forest 

1551 1078 551 51.1% 

 
Temperate evergreen seasonal broadleaved 

forest, summer rain 

423 282 122 43.3% 

 
Tropical/subtropical evergreen needle-

leaved forest 

204 176 64 36.4% 

 
Temperate/subpolar evergreen needle-

leaved forest 

3755 1038 193 18.6% 

 
Evergreen needle-leaved woodland 1078 376 50 13.3%  
Evergreen broadleaved sclerophyllous 

woodland 

889 80 0 0% 

 
Evergreen broadleaved shrubland/thick, 

evergreen dwarf-shrubland 

556 58 0 0% 

 
Evergreen needle-leaved or microphyllous 

shrubland/thicket 

258 26 0 0% 

 
Subtropical evergreen rainforest 93 2 0 0%  
Evergreen broadleaved sclerophyllous 

forest, winter rain 

214 0 0 -- 

 
Temperate/subpolar evergreen rainforest 142 0 0 -- 

Deciduous 10155 5000 3219 64.4%  
Cold-deciduous forest, without evergreens 2193 1027 1026 99.9%  
Tropical/subtropical drought-deciduous 

forest 

1493 1146 726 63.4% 

 
Tropical/subtropical drought-deciduous 

woodland 

1886 1750 1044 59.7% 

 
Cold-deciduous forest, with evergreens 2978 721 146 20.2%  
Drought-deciduous shrubland/thicket 385 133 7 5.3%  
Cold-deciduous subalpine/subpolar 

shrubland/dwarf shrub 

173 2 0 0% 

 
Cold-deciduous woodland 1047 221 0 0% 

Grassland 13508 5986 3780 63.1%  
Medium grassland, no woody cover 569 291 154 52.9%  
Tall/medium/short grassland, shrub cover 4292 1513 794 52.5%  
Tall/medium/short grassland, < 10% 

woody cover 

1644 1035 368 35.6% 

 
Tall/medium/short grassland, 10-40% 

woody cover 

3409 2076 420 20.2% 

 
Meadow, short grassland, no woody cover 2902 753 73 9.7%  
Tall grassland, no woody cover 583 268 5 1.9%  
Forb formations 109 50 0 0% 

Desert 11035 1892 825 43.6%  
Desert 6231 641 439 68.5%  
Xeromorphic shrubland/dwarf shrubland 3626 786 287 36.5% 
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Xeromorphic forest/woodland 1178 465 101 21.7% 

Arctic 3643 374 0 0%  
Arctic/alpine tundra, mossy bog 2714 360 62 17.2%  
Ice 929 14 0 0% 
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Table B-3. Kenyan sites and ecometric data from Figure 6. Sites are from Tóth et al. (2014). Time intervals are 

historical (H) and modern (M). Mean and standard deviation are community calcaneal gear ratio measurements. 

Ecoregion division, vegetation cover, and precipitation are predictions using ecometric models. 
Site 

ID Site Time Mean 

Standard 

Deviation Ecoregion Division Vegetation Cover 

Precipitation 

(log mm) 

1 Kakamega Forest Reserve H 1.509 0.033 Savanna tropical/subtropical drought-

deciduous woodland 

7.002 

  M 1.517 0.036 Savanna tall/medium/short grassland, 

10-40% woody cover 

7.013 

2 Maasai Mara National 

Reserve 

H 1.481 0.047 Tropical/Subtropical Steppe xeromorphic shrubland/dwarf 

shrubland 

5.801 

  M 1.496 0.048 Savanna tall/medium/short grassland, 

shrub cover 

6.636 

3 Nairobi National Park H 1.493 0.047 Savanna tall/medium/short grassland, 

shrub cover 

6.503 

  M 1.492 0.050 Savanna tall/medium/short grassland, 

shrub cover 

6.503 

4 Lake Naivasha National 

Park 

H 1.505 0.057 Savanna tropical/subtropical drought-

deciduous forest 

6.809 

  M 1.493 0.052 Savanna xeromorphic forest/woodland 6.509 

5 Samburu Game Reserve H 1.497 0.053 Savanna tall/medium/short grassland, 

10-40% woody cover 

6.553 

  M 1.497 0.055 Savanna trop/subtropical evergreen 

seasonal broad-leaved forest 

6.272 

6 Tsavo East and West 

National Parks 

H 1.505 0.052 Savanna tropical/subtropical drought-

deciduous forest 

7.086 

  M 1.493 0.048 Savanna tall/medium/short grassland, 

shrub cover 

6.503 
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Figure B-1. Legend values for Figure 3.2. 
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Data collected for ecometric analyses. 1, Length of calcaneum; 2, Length of calcaneal tuber. Gear ratio is measurement 

1 divided by measurement 2. 
Family Genus Species Museum Number Sex 1 2 Gear 

ratio 

Mean Standard 

Deviation 

Antilocapridae Antilocapra americana 
      

1.46 0.02    
DMNS 7035 U 88.31 60.27 1.47 

  

   
USNM 251131 M 77.34 51.84 1.49 

  

   
USNM 266393 M 79.00 54.66 1.45 

  

   
USNM 271663 F 82.49 57.89 1.43 

  

   
USNM A 22387 M 80.03 54.91 1.46 

  

Bovidae Addax nasomaculatus 
      

1.52 0.05    
ZMB_Mam 70824 F 89.89 60.66 1.48 

  

   
ZMB_Mam 78826 F 83.49 53.72 1.55 

  

Bovidae Aepyceros melampus 
      

1.45 0.03    
USNM 162001 M 81.82 56.36 1.45 

  

   
USNM 241588 F 75.53 53.32 1.42 

  

   
USNM 261111 F 79.42 53.76 1.48 

  

Bovidae Alcelaphus buselaphus 
      

1.46 0.04    
USNM 161950 F 81.13 57.38 1.41 

  

   
USNM 163147 M 116.20 79.49 1.46 

  

   
USNM 164705 F 100.39 67.92 1.48 

  

   
ZMB_Mam 77219 F 91.88 61.43 1.50 

  

Bovidae Alcelaphus lichtensteinii 
      

1.47 --    
NHM 1940.82 U 109.32 74.42 1.47 

  

Bovidae Ammodorcas clarkei 
      

1.40 0.02    
LaSpecola 2164 M 73.66 53.18 1.39 

  

   
LaSpecola 2165 F 69.99 48.95 1.43 

  

   
LaSpecola 3309 M 71.43 51.28 1.39 

  

   
LaSpecola 3311 F 70.59 50.12 1.41 

  

   
NHM 1896.10.6.2. F 72.90 52.62 1.39 

  

   
NHM 1935.12.13.5. M 72.79 52.15 1.40 

  

   
NHM 1935.12.13.6. M 75.58 53.92 1.40 

  

Bovidae Ammotragus lervia 
      

1.49 0.06    
LaSpecola 9818 M 86.92 61.50 1.41 

  

   
USNM 13069 M 75.81 49.70 1.53 

  

   
USNM 287527 M 78.36 53.03 1.48 
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USNM A 49996 F 69.47 45.21 1.54 

  

Bovidae Antidorcas marsupialis 
      

1.44 --    
USNM 173040 M 65.80 45.68 1.44 

  

Bovidae Antilope cervicapra 
      

1.44 0.02    
USNM 124653 M 67.95 46.31 1.47 

  

   
USNM 174628 M 62.14 42.42 1.46 

  

   
USNM 259836 F 65.87 45.68 1.44 

  

   
USNM 268196 F 61.77 43.92 1.41 

  

   
ZMB_Mam 78829 F 61.30 43.21 1.42 

  

   
ZMB_Mam 78830 U 64.10 44.66 1.44 

  

Bovidae Beatragus hunteri 
      

1.44 0.02    
LaSpecola 2835 M 95.51 67.18 1.42 

  

   
NHM 1936.3.28.12 M 94.22 65.91 1.43 

  

   
NHM 1936.3.28.13 U 92.04 64.65 1.42 

  

   
NHM 1938.7.11.1 U 99.59 69.15 1.44 

  

   
OM 1901 U 101.00 68.21 1.48 

  

Bovidae Bison bison 
      

1.52 0.02    
DMNS 8477 U 158.92 105.78 1.50 

  

   
USNM 172689 M 170.85 112.73 1.52 

  

   
USNM 249894 M 161.92 105.10 1.54 

  

   
USNM 251147 M 142.67 93.84 1.52 

  

   
USNM 286873 U 159.02 105.25 1.51 

  

   
ZMB_Mam 14800 M 147.30 95.77 1.54 

  

   
ZMB_Mam 38676 U 152.57 103.34 1.48 

  

   
ZMB_Mam 46559 M 171.96 113.39 1.52 

  

Bovidae Bison bonasus 
      

1.48 0.03    
USNM 546176 M 173.79 114.92 1.51 

  

   
ZMB_Mam 2229 U 161.20 110.78 1.46 

  

   
ZMB_Mam 14798 F 152.52 102.53 1.49 

  

   
ZMB_Mam 33834 U 167.89 115.11 1.46 

  

   
ZMB_Mam 33837 U 143.73 99.04 1.45 

  

   
ZMB_Mam 33838 F 141.06 95.57 1.48 

  

   
ZMB_Mam 33865 F 146.91 99.65 1.47 

  

   
ZMB_Mam 44213 M 172.16 120.13 1.43 

  

   
ZMB_Mam 46548 M 165.84 109.33 1.52 

  

   
ZMB_Mam 47193 F 151.30 102.81 1.47 

  

   
ZMB_Mam 77264 F 155.54 104.37 1.49 
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ZMB_Mam 77277 F 149.26 98.59 1.51 

  

   
ZMB_Mam 84981 F 156.29 107.15 1.46 

  

Bovidae Bos javanicus 
      

1.47 --    
NHM 1910.11.29.4 M 115.91 78.71 1.47 

  

Bovidae Bos sauveli 
      

1.53 0.00    
USNM 361392 F 130.08 85.13 1.53 

  

   
USNM 399379 F 126.65 83.04 1.53 

  

Bovidae Boselaphus tragocamelus 
      

1.51 0.01    
LaSpecola 1461 F 112.35 74.85 1.50 

  

   
NHM 1937.5.1.1. F 121.53 80.63 1.51 

  

   
NHM 1949.12.30.1 M 121.39 80.31 1.51 

  

   
NHM 648.b. U 123.08 81.53 1.51 

  

   
ZMB_Mam 14737 F 111.77 73.46 1.52 

  

Bovidae Bubalus depressicornis 
      

1.56 0.01    
NHM 1983.2 U 84.47 54.29 1.56 

  

   
ZMB_Mam 14758 M 82.22 52.32 1.57 

  

Bovidae Budorcas taxicolor 
      

1.52 0.01    
USNM 258652 M 126.31 83.80 1.51 

  

   
USNM 258656 F 115.56 75.45 1.53 

  

   
USNM 259415 M 125.74 83.33 1.51 

  

Bovidae Capra caucasica 
      

1.51 0.00    
NHM 1892.31.6.1 (689.3) M 83.13 54.90 1.51 

  

   
ZMB_Mam 53012 F 70.15 46.49 1.51 

  

Bovidae Capra falconeri 
      

1.44 --    
ZMB_Mam 43651 M 65.89 45.73 1.44 

  

Bovidae Capra ibex 
      

1.45 --    
ZMB_Mam 6530 F 51.67 35.71 1.45 

  

Bovidae Capra nubiana 
      

1.48 0.01    
ZMB_Mam 2196 M 60.88 41.16 1.48 

  

   
ZMB_Mam 2197 U 63.69 42.84 1.49 

  

Bovidae Capricornis crispus 
      

1.53 --    
USNM 13829 M 68.20 44.68 1.53 

  

Bovidae Capricornis milneedwardsii 
      

1.48 0.03    
NHM 1965.3.25.1 U 81.93 57.04 1.44 

  

   
USNM 152165 F 87.49 58.84 1.49 

  

   
USNM 258653 F 99.45 66.03 1.51 

  

   
USNM 258670 M 95.00 64.22 1.48 
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USNM 259025 F 95.59 64.69 1.48 

  

Bovidae Capricornis sumatraensis 
      

1.49 0.01    
NHM 1970.187 U 97.26 65.09 1.49 

  

   
NHM 1937.2.10.1 U 79.99 53.28 1.50 

  

   
NHM 1965.3.25.2 U 79.54 53.88 1.48 

  

Bovidae Capricornis swinhoei 
      

1.52 0.04    
USNM 308872 M 56.84 36.77 1.55 

  

   
USNM 311229 F 62.56 41.85 1.49 

  

Bovidae Cephalophus adersi 
      

1.55 --    
OM 5338 M 36.17 23.37 1.55 

  

Bovidae Cephalophus dorsalis 
      

1.50 0.02    
NHM 1863.12.29.1 (1439.A.) U 46.50 30.54 1.52 

  

   
NHM 1936.10.28.34. M 48.45 32.00 1.51 

  

   
NHM 1936.10.28.35. M 52.91 35.80 1.48 

  

Bovidae Cephalophus leucogaster 
      

1.51 --    
NHM 1950.9.23.1 M 49.65 32.90 1.51 

  

Bovidae Cephalophus natalensis 
      

1.56 0.01    
NHM 1936.3.30.3 M 44.55 28.44 1.57 

  

   
NHM 1936.3.30.5 F 46.36 30.08 1.54 

  

   
NHM 1948.7.19.10 U 46.97 30.02 1.56 

  

Bovidae Cephalophus nigrifrons 
      

1.53 0.01    
NHM 1936.10.28.32. M 48.67 31.37 1.55 

  

   
NHM 1936.10.28.33. M 48.09 31.23 1.54 

  

   
NHM 1936.12.1.61 U 54.95 35.91 1.53 

  

   
NHM 1950.9.23.2. U 47.74 31.39 1.52 

  

   
NHM 31.11.1.79 M 47.97 31.33 1.53 

  

Bovidae Cephalophus rufilatus 
      

1.51 0.03    
NHM 1865.5.9.9 F 42.01 27.83 1.51 

  

   
NHM 1928.8.2.12. U 46.68 31.63 1.48 

  

   
ZMB_Mam 71443 U 38.65 25.12 1.54 

  

Bovidae Cephalophus silvicultor 
      

1.50 0.01    
NHM 1691.8.9.80 F 77.38 52.12 1.48 

  

   
USNM 537289 M 86.09 57.09 1.51 

  

   
USNM 542447 M 80.42 53.86 1.49 

  

Bovidae Cephalophus zebra 
      

1.55 0.00    
DMNS 6047 U 45.45 29.30 1.55 

  

   
NHM 1887.9.15.2 U 43.86 28.36 1.55 
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Bovidae Connochaetes gnou 
      

1.54 0.03    
NHM 1981.802. U 100.19 63.96 1.57 

  

   
NHM 645.d. F 94.65 62.21 1.52 

  

Bovidae Connochaetes taurinus 
      

1.49 0.02    
DMNS 8106 U 114.21 76.46 1.49 

  

   
USNM 161974 M 112.93 76.82 1.47 

  

   
USNM 161976 M 116.54 78.05 1.49 

  

   
USNM 578576 F 109.00 72.16 1.51 

  

Bovidae Damaliscus korrigum 
      

1.42 0.01    
USNM 163008 M 98.40 69.50 1.42 

  

   
USNM 163170 F 99.42 69.44 1.43 

  

Bovidae Damaliscus lunatus 
      

1.45 0.02    
LaSpecola 3998 M 105.23 71.74 1.47 

  

   
OM 123 U 107.23 74.97 1.43 

  

   
OM 3564 M 103.21 71.10 1.45 

  

Bovidae Damaliscus pygargus 
      

1.46 0.01    
OM 129 U 88.11 60.91 1.45 

  

   
USNM 218725 F 85.15 58.42 1.46 

  

   
USNM 537290 M 86.46 58.57 1.48 

  

   
USNM 537649 F 85.51 58.14 1.47 

  

Bovidae Dorcatragus megalotis 
      

1.41 --    
NHM 1895.5.2.1 U 47.83 33.88 1.41 

  

Bovidae Eudorcas rufifrons 
      

1.42 0.02    
NHM 39.2544 M 64.96 45.31 1.43 

  

   
NHM 28.8.2.7. U 64.84 45.53 1.42 

  

   
NHM 73.8.29.9 U 59.33 42.63 1.39 

  

   
USNM 252685 M 62.28 44.32 1.41 

  

   
USNM 252686 M 63.68 44.52 1.43 

  

   
ZMB_Mam 13578 M 61.63 42.97 1.43 

  

Bovidae Eudorcas thomsonii 
      

1.42 0.02    
OM 774 M 55.59 38.50 1.44 

  

   
OM 840 F 53.99 37.84 1.43 

  

   
USNM 162007 M 58.85 41.00 1.44 

  

   
USNM 163067 F 54.79 39.73 1.38 

  

   
USNM 164850 U 58.58 41.46 1.41 

  

   
ZMB_Mam 44157 M 61.20 42.49 1.44 

  

Bovidae Gazella bennettii 
      

1.45 0.03 
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USNM 328578 F 50.67 34.56 1.47 

  

   
USNM 329354 M 55.96 38.36 1.46 

  

   
USNM 329355 M 55.89 39.53 1.41 

  

Bovidae Gazella cuvieri 
      

1.46 --    
NHM 1866.12.30.24 (1675.a) U 63.07 43.27 1.46 

  

Bovidae Gazella dorcas 
      

1.44 0.01    
USNM 241500 M 50.45 34.91 1.45 

  

   
USNM 325878 M 50.75 34.91 1.45 

  

   
USNM 395622 M 50.53 35.52 1.42 

  

   
USNM 395623 F 51.25 35.56 1.44 

  

   
USNM 575152 F 48.24 33.32 1.45 

  

Bovidae Gazella leptoceros 
      

1.46 0.01    
DMNS 7381 U 54.18 36.87 1.47 

  

   
NHM 1936.3.26.1 M 56.08 38.63 1.45 

  

Bovidae Gazella spekei 
      

1.43 0.02    
NHM 1935.12.13.2 F 57.83 39.46 1.47 

  

   
NHM 1935.12.13.4 F 58.20 41.02 1.42 

  

   
NHM 96.10.6.1. U 54.70 38.43 1.42 

  

   
USNM 581995 F 47.69 33.62 1.42 

  

   
USNM 582089 F 49.59 34.20 1.45 

  

   
USNM 588207 F 47.06 33.61 1.40 

  

Bovidae Gazella subgutturosa 
      

1.42 0.01    
NHM 1890.4.20.1 (1702.g.) F 62.52 44.19 1.41 

  

   
NHM 1897.1.14.6 M 51.30 36.09 1.42 

  

   
NHM 1897.1.14.7 F 52.37 36.36 1.44 

  

   
NHM 97.1.14.9 F 51.44 36.48 1.41 

  

   
USNM 240691 M 62.80 43.71 1.44 

  

   
USNM 240693 M 63.41 44.81 1.42 

  

Bovidae Hemitragus hylocrius 
      

1.46 --    
NHM 1936.3.2.1 M 70.18 48.19 1.46 

  

Bovidae Hemitragus jemlahicus 
      

1.44 0.01    
DMNS 6818 U 69.04 47.52 1.45 

  

   
NHM 886.p M 75.39 52.56 1.43 

  

   
USNM 143864 M 83.60 58.67 1.42 

  

   
USNM 251850 M 72.28 49.98 1.45 

  

Bovidae Hippotragus equinus 
      

1.51 0.05    
LaSpecola 829 M 133.70 90.00 1.49 
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OM 1528 F 120.89 76.79 1.57 

  

   
ZMB_Mam 67967 M 137.58 90.84 1.51 

  

   
ZMB_Mam 68009 U 137.69 94.11 1.46 

  

Bovidae Hippotragus niger 
      

1.51 0.02    
NHM 1964.7.8.1 F 112.22 73.85 1.52 

  

   
OM 7330 U 119.12 79.08 1.51 

  

   
USNM 21638 M 126.53 84.18 1.50 

  

   
USNM 252518 M 119.85 80.22 1.49 

  

   
USNM 396597 F 101.14 65.93 1.53 

  

Bovidae Kobus ellipsiprymnus 
      

1.48 0.02    
OM 876 F 109.36 73.12 1.50 

  

   
OM 909 F 120.92 81.74 1.48 

  

   
OM 910 M 118.36 79.86 1.48 

  

   
OM 2266 U 119.21 82.87 1.44 

  

   
OM 7768 U 112.72 76.67 1.47 

  

   
ZMB_Mam 68128 U 120.25 80.22 1.50 

  

   
ZMB_Mam 77169 F 85.55 58.10 1.47 

  

Bovidae Kobus kob 
      

1.50 0.03    
NHM 1934.5.1.12 M 92.26 61.94 1.49 

  

   
NHM 28.8.2.6 M 88.38 59.21 1.49 

  

   
NHM 79.6.23.4 M 81.48 55.80 1.46 

  

   
OM 915 U 92.91 61.99 1.50 

  

   
ZMB_Mam 16577 M 82.55 53.65 1.54 

  

Bovidae Kobus leche 
      

1.50 0.01    
NHM 69.1147 U 99.86 66.17 1.51 

  

   
NHM 70.103 U 95.09 63.65 1.49 

  

   
OM 913 M 90.94 61.01 1.49 

  

Bovidae Kobus megaceros 
      

1.48 --    
NHM 1934.5.1.9. M 91.95 62.31 1.48 

  

Bovidae Kobus vardonii 
      

1.52 0.01    
NHM 62.799 F 83.66 55.03 1.52 

  

   
NHM 62.801 M 84.22 55.16 1.53 

  

   
NHM 62.803 M 84.52 56.01 1.51 

  

Bovidae Litocranius walleri 
      

1.41 0.01    
DMNS 14514 U 73.07 51.80 1.41 

  

   
DMNS 15682 U 69.46 48.90 1.42 

  

   
USNM 164033 F 72.04 51.19 1.41 
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USNM 164034 M 75.41 53.52 1.41 

  

   
USNM 164035 F 71.39 50.42 1.42 

  

Bovidae Madoqua guentheri 
      

1.48 0.03    
OM 5341 M 33.10 22.11 1.50 

  

   
OM 5343 F 35.21 24.31 1.45 

  

   
USNM 589450 M 34.36 22.86 1.50 

  

Bovidae Madoqua kirkii 
      

1.54 0.02    
NHM 1932.6.6.46. F 38.44 24.93 1.54 

  

   
NHM 1932.6.6.49. F 38.09 25.06 1.52 

  

   
NHM 1932.6.6.51. M 37.41 23.76 1.57 

  

   
NHM 1936.5.28.1. F 37.17 24.58 1.51 

  

   
USNM 163039 M 38.42 24.64 1.56 

  

   
USNM 396306 F 37.78 24.54 1.54 

  

   
USNM 538104 F 36.45 23.76 1.53 

  

Bovidae Madoqua piacentinii 
      

1.47 0.04    
LaSpecola 6389 F 29.49 20.40 1.45 

  

   
LaSpecola 9822 M 27.68 18.42 1.50 

  

Bovidae Madoqua saltiana 
      

1.50 0.03    
LaSpecola 1903 U 29.41 19.53 1.51 

  

   
LaSpecola 3534 F 29.93 19.87 1.51 

  

   
LaSpecola 4138 F 27.93 18.72 1.49 

  

   
LaSpecola 5541 F 31.73 20.83 1.52 

  

   
LaSpecola 5543 M 30.06 20.63 1.46 

  

   
LaSpecola 5545 M 30.13 20.06 1.50 

  

   
LaSpecola 18850 F 29.94 20.39 1.47 

  

   
OM 7338 M 32.75 21.29 1.54 

  

Bovidae Naemorhedus goral 
      

1.47 0.02    
ZMB_Mam 14451 U 61.35 42.13 1.46 

  

   
ZMB_Mam 70035 F 62.80 43.50 1.44 

  

   
ZMB_Mam 70721 F 65.36 44.03 1.48 

  

   
ZMB_Mam 83318 F 61.86 41.47 1.49 

  

Bovidae Naemorhedus griseus 
      

1.50 0.04    
USNM 258674 F 67.63 46.22 1.46 

  

   
USNM 259023 F 68.21 44.37 1.54 

  

   
USNM 259398 M 64.21 42.81 1.50 

  

Bovidae Nanger dama 
      

1.43 0.02    
LaSpecola 22316 U 78.38 55.46 1.41 

  



 

 

1
5
5 

   
USNM 543093 M 86.22 60.17 1.43 

  

   
USNM 578578 F 85.83 60.58 1.42 

  

   
USNM 599686 M 84.42 58.37 1.45 

  

Bovidae Nanger granti 
      

1.42 0.02    
OM 810 U 83.75 59.31 1.41 

  

   
OM 814 F 78.66 55.12 1.43 

  

   
OM 6272 U 83.19 60.17 1.38 

  

   
USNM 162013 M 87.80 60.27 1.46 

  

   
USNM 163083 M 79.45 55.83 1.42 

  

   
USNM 164655 F 77.79 54.29 1.43 

  

Bovidae Nanger soemmerringii 
      

1.43 0.02    
NHM 1935.12.12.9. U 72.72 51.14 1.42 

  

   
NHM 1935.12.13.1. M 78.05 55.60 1.40 

  

   
USNM 582229 M 73.83 51.15 1.44 

  

   
ZMB_Mam 77205 F 70.74 48.90 1.45 

  

   
ZMB_Mam 77223 M 79.94 55.50 1.44 

  

Bovidae Neotragus batesi 
      

1.51 0.01    
NHM 1981.796 M 28.58 18.79 1.52 

  

   
NHM 1936.10.28.36 M 28.83 19.15 1.51 

  

   
NHM 1937.8.4.26. U 29.87 19.92 1.50 

  

   
NHM 1937.8.4.27 U 25.79 17.17 1.50 

  

Bovidae Neotragus moschatus 
      

1.50 0.04    
NHM 1936.3.30.3 F 33.38 22.68 1.47 

  

   
NHM 1962.12.14.5 M 31.72 20.59 1.54 

  

   
OM 2570 F 28.93 19.24 1.50 

  

   
OM 5457 F 32.49 21.13 1.54 

  

   
OM 7597 M 32.09 22.21 1.44 

  

Bovidae Neotragus pygmaeus 
      

1.54 --    
USNM 429835 M 25.10 16.34 1.54 

  

Bovidae Oreamnos americanus 
      

1.52 0.04    
DMNS 7738 U 83.16 52.86 1.57 

  

   
USNM 319790 F 77.05 51.76 1.49 

  

   
ZMB_Mam 67805 U 79.43 53.76 1.48 

  

   
ZMB_Mam 83324 M 77.64 51.00 1.52 

  

Bovidae Oreotragus oreotragus 
      

1.50 0.05    
OM 2220 M 47.08 30.69 1.53 

  

   
USNM 163024 M 48.25 33.77 1.43 
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USNM 314958 M 48.94 33.09 1.48 

  

   
USNM 589129 U 49.54 31.99 1.55 

  

Bovidae Oryx beisa 
      

1.51 0.02    
OM 1529 M 115.10 77.62 1.48 

  

   
OM 1531 M 102.37 67.03 1.53 

  

   
OM 2493 U 114.26 76.30 1.50 

  

   
USNM 163215 M 108.07 71.92 1.50 

  

   
USNM 267605 M 105.96 68.71 1.54 

  

Bovidae Oryx dammah 
      

1.47 0.02    
USNM 575162 F 98.78 66.53 1.48 

  

   
USNM A 35256 U 94.60 63.65 1.49 

  

   
ZMB_Mam 70822 F 98.96 68.36 1.45 

  

Bovidae Oryx gazella 
      

1.44 0.03    
ZMB_Mam 16029 F 90.34 63.46 1.42 

  

   
ZMB_Mam 77257 M 91.51 62.48 1.46 

  

Bovidae Oryx leucoryx 
      

1.49 0.02    
USNM 282796 M 77.99 51.23 1.52 

  

   
USNM 580353 M 88.25 59.40 1.49 

  

   
USNM 581996 F 88.85 59.79 1.49 

  

   
ZMB_Mam 14730 U 96.06 64.82 1.48 

  

Bovidae Ourebia ourebi 
      

1.47 0.01    
OM 2232 F 54.29 37.13 1.46 

  

   
OM 2234 U 54.97 37.70 1.46 

  

   
USNM 163243 M 53.39 35.73 1.49 

  

   
USNM 163244 M 60.22 41.06 1.47 

  

   
USNM 164711 M 54.50 36.80 1.48 

  

Bovidae Ovibos moschatus 
      

1.48 0.04    
NHM 16.3.28.3 U 104.69 72.03 1.45 

  

   
ZMB_Mam 8048 F 98.17 63.87 1.54 

  

   
ZMB_Mam 14789 M 118.15 81.59 1.45 

  

   
ZMB_Mam 67804 U 113.62 77.04 1.47 

  

Bovidae Ovis ammon 
      

1.46 0.05    
NHM 1898.2.6.9 U 99.62 69.66 1.43 

  

   
ZMB_Mam 83438 F 64.24 42.99 1.49 

  

Bovidae Ovis canadensis 
      

1.48 0.01    
DMNS 6898 U 85.06 57.19 1.49 

  

   
DMNS 10977 U 82.93 56.73 1.46 
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DMNS 12667 U 78.47 52.84 1.49 

  

Bovidae Ovis dalli 
      

1.46 0.01    
DMNS 187 U 82.82 57.04 1.45 

  

   
DMNS 17530 U 68.88 46.87 1.47 

  

Bovidae Pantholops hodgsonii 
      

1.46 0.02    
NHM 1970.191 U 65.14 45.30 1.44 

  

   
NHM 614.c U 67.39 45.98 1.47 

  

   
USNM 62086 F 59.24 40.07 1.48 

  

Bovidae Philantomba monticola 
      

1.55 0.02    
DMNS 14752 U 27.72 17.92 1.55 

  

   
NHM 1901.8.9.132. F 30.70 20.19 1.52 

  

   
NHM 1936.10.28.28. M 34.33 22.39 1.53 

  

   
NHM 1936.10.28.29. M 32.89 20.84 1.58 

  

   
NHM 1936.10.28.30. F 35.25 22.46 1.57 

  

   
NHM 1936.10.28.31. F 33.88 21.83 1.55 

  

   
OM 5339 U 35.91 23.46 1.53 

  

Bovidae Pseudois nayaur 
      

1.44 0.00    
NHM 70.19 U 69.56 48.28 1.44 

  

   
NHM 66.8.c U 73.23 50.65 1.45 

  

   
ZMB_Mam 68734 U 70.08 48.50 1.44 

  

Bovidae Raphicerus campestris 
      

1.44 0.10    
OM 2250 F 45.04 30.49 1.48 

  

   
OM 2251 M 46.15 30.89 1.49 

  

   
USNM 161981 M 41.89 33.07 1.27 

  

   
USNM 161983 M 49.11 33.44 1.47 

  

   
USNM 586524 U 50.45 34.09 1.48 

  

Bovidae Raphicerus melanotis 
      

1.50 --    
NHM 1862.3.19.13. (994.B.) F 48.30 32.17 1.50 

  

Bovidae Raphicerus sharpei 
      

1.52 0.02    
OM 2254 M 41.03 27.35 1.50 

  

   
USNM 367434 M 41.31 27.22 1.52 

  

   
USNM 367445 M 38.43 24.90 1.54 

  

Bovidae Redunca arundinum 
      

1.53 --    
NHM 1966.7.19.1 U 93.89 61.34 1.53 

  

Bovidae Redunca fulvorufula 
      

1.44 0.02    
NHM 1936.3.30.9. M 62.68 43.04 1.46 

  

   
ZMB_Mam 70097 M 67.33 47.21 1.43 
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ZMB_Mam 70511 F? 70.75 48.81 1.45 

  

Bovidae Redunca redunca 
      

1.47 0.03    
NHM 1934.5.1.7. M 77.19 52.74 1.46 

  

   
NHM 1960.11.10.1. F 73.88 50.56 1.46 

  

   
NHM 1962.12.14.7. F 77.68 52.40 1.48 

  

   
NHM 28.8.2.5. U 80.36 54.12 1.48 

  

   
OM 901 U 78.44 52.26 1.50 

  

   
OM 902 M 78.64 54.51 1.44 

  

   
OM 7117 M 77.69 54.48 1.43 

  

Bovidae Rupicapra rupicapra 
      

1.46 0.01    
LaSpecola 3927 M 66.99 45.86 1.46 

  

   
NHM 1886.12.27.1 (631.q.) U 74.36 50.12 1.48 

  

   
NHM 1892.3.16.8 (631.u.) M 71.69 49.47 1.45 

  

   
ZMB_Mam 70531 U 60.63 41.37 1.47 

  

Bovidae Saiga tatarica 
      

1.48 0.03    
USNM 304688 F 56.10 38.59 1.45 

  

   
ZMB_Mam 14741 M 65.76 44.31 1.48 

  

   
ZMB_Mam 46558 M 58.01 39.67 1.46 

  

   
ZMB_Mam 55370 M 60.96 39.91 1.53 

  

   
ZMB_Mam 61578 F 59.01 39.47 1.50 

  

Bovidae Sylvicapra grimmia 
      

1.48 0.01    
OM 261 M 49.60 33.59 1.48 

  

   
OM 778 U 51.29 34.33 1.49 

  

   
OM 792 M 49.07 33.36 1.47 

  

   
USNM 161979 F 50.42 33.93 1.49 

  

   
USNM 367409 F 55.53 38.12 1.46 

  

   
USNM 586526 U 55.05 36.95 1.49 

  

Bovidae Syncerus caffer 
      

1.58 0.02    
DMNS 9977 U 151.92 97.40 1.56 

  

   
OM 498 F 155.92 98.69 1.58 

  

   
OM 500 M 155.19 99.33 1.56 

  

   
OM 540 U 144.91 91.74 1.58 

  

   
OM 5542 F 134.34 82.85 1.62 

  

Bovidae Taurotragus derbianus 
      

1.48 0.02    
NHM 1934.5.16 M 168.84 115.55 1.46 

  

   
OM 2265 U 161.35 109.86 1.47 

  

   
OM 6331 U 158.79 105.60 1.50 
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Bovidae Taurotragus oryx 
      

1.52 0.03    
DMNS 16381 U 159.08 108.35 1.47 

  

   
OM 942 F 139.54 90.19 1.55 

  

   
OM 945 U 145.09 94.15 1.54 

  

   
OM 946 F 134.46 87.72 1.53 

  

   
OM 4299 F 145.31 94.97 1.53 

  

Bovidae Tetracerus quadricornis 
      

1.43 --    
NHM 1858.5.4.41. (628.h.) U 60.67 42.29 1.43 

  

Bovidae Tragelaphus angasii 
      

1.45 0.04    
DMNS 6817 U 100.78 69.69 1.45 

  

   
NHM 1936.3.30.1. M 102.94 72.81 1.41 

  

   
NHM 1936.3.30.2 F 84.72 59.20 1.43 

  

   
USNM 258851 F 83.04 55.05 1.51 

  

Bovidae Tragelaphus eurycerus 
      

1.53 0.02    
DMNS 7821 U 138.51 91.68 1.51 

  

   
USNM 163226 F 119.32 78.32 1.52 

  

   
USNM 396015 M 131.23 84.48 1.55 

  

   
USNM 542466 F 132.64 86.83 1.53 

  

Bovidae Tragelaphus imberbis 
      

1.49 0.00    
LaSpecola 3994 M 91.61 61.64 1.49 

  

   
NHM 1935.12.13.7 U 102.16 68.50 1.49 

  

   
NHM 35.7.24.4 M 98.83 66.13 1.49 

  

Bovidae Tragelaphus scriptus 
      

1.47 0.05    
OM 935 M 85.95 58.49 1.47 

  

   
OM 6606 M 76.76 50.01 1.53 

  

   
OM 7149 F 71.23 48.44 1.47 

  

   
USNM 164500 F 72.84 48.67 1.50 

  

   
USNM 164560 M 86.48 61.78 1.40 

  

Bovidae Tragelaphus spekii 
      

1.49 0.03    
NHM 73.11 U 90.97 62.16 1.46 

  

   
NHM 1.8.9.82 M 103.84 70.75 1.47 

  

   
NHM 1882.7.24.11. (1989.c.) U 100.60 67.07 1.50 

  

   
NHM 1929.1.1.28 U 87.40 58.34 1.50 

  

   
NHM 1929.1.1.31. F 73.57 47.78 1.54 

  

   
NHM 1967.8.18.1. U 98.47 66.08 1.49 

  

   
OM 1895 U 82.32 56.67 1.45 

  

   
USNM 164558 M 91.34 60.59 1.51 
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Bovidae Tragelaphus strepsiceros 
      

1.47 0.02    
OM 7764 M 133.91 90.19 1.48 

  

   
USNM 21652 F 127.41 85.18 1.50 

  

   
USNM 21655 F 116.13 80.27 1.45 

  

   
USNM 163320 M 131.97 89.94 1.47 

  

Camelidae Camelus dromedarius 
      

1.65 0.02    
DMNS 15684 U 156.93 95.76 1.64 

  

   
DMNS 17550 U 147.01 88.04 1.67 

  

Camelidae Vicugna vicugna 
      

1.54 0.05    
LaSpecola 1443 M 86.36 55.98 1.54 

  

   
NHM 1861.1.18.3 (675.c) M 60.37 38.09 1.58 

  

   
ZMB_Mam 56204 M 70.54 47.52 1.48 

  

Cervidae Alces alces 
      

1.48 0.03    
NHM 1850.11.22.72 (703.h.) M 152.01 101.76 1.49 

  

   
NHM 1851.11.10.3 (703.i.) F 143.42 95.65 1.50 

  

   
NHM 1951.6.4.1 M 162.14 107.97 1.50 

  

   
ZMB_Mam 7155 U 153.53 107.66 1.43 

  

   
ZMB_Mam 62663 M 168.51 114.56 1.47 

  

Cervidae Alces americanus 
      

1.49 0.02    
USNM 275127 M 163.98 109.11 1.50 

  

   
USNM A 12758 M 160.12 108.46 1.48 

  

Cervidae Axis axis 
      

1.47 0.03    
DMNS 6800 U 80.90 55.49 1.46 

  

   
ZMB_Mam 2050 F 61.01 42.16 1.45 

  

   
ZMB_Mam 77166 F 74.10 49.18 1.51 

  

Cervidae Axis porcinus 
      

1.50 0.01    
NHM 1858.12.16.2 (698s) U 64.91 43.64 1.49 

  

   
ZMB_Mam 6667 F 66.23 44.17 1.50 

  

   
ZMB_Mam 14817 F 62.03 41.01 1.51 

  

Cervidae Blastocerus dichotomus 
      

1.46 0.02    
DMNS 2579 U 67.63 46.89 1.44 

  

   
USNM 261017 M 106.22 72.57 1.46 

  

   
USNM 261018 F 97.32 66.03 1.47 

  

Cervidae Capreolus capreolus 
      

1.48 0.03    
LaSpecola 9731 M 68.57 46.78 1.47 

  

   
LaSpecola 9817 M 61.11 41.77 1.46 

  

   
LaSpecola 9876 M 65.83 44.81 1.47 
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ZMB_Mam 43119 U 56.99 37.39 1.52 

  

Cervidae Capreolus pygargus 
      

1.46 0.01    
ZMB_Mam 97904 M 71.73 49.07 1.46 

  

   
ZMB_Mam 97907 F 66.56 45.81 1.45 

  

Cervidae Cervus elaphus 
      

1.50 0.02    
USNM 251054 M 136.94 90.27 1.52 

  

   
USNM A 13973 M 151.12 99.39 1.52 

  

   
USNM A 49424 M 143.15 95.39 1.50 

  

   
ZMB_Mam 17910 F 99.01 65.37 1.51 

  

   
ZMB_Mam 31246a M 130.06 88.68 1.47 

  

Cervidae Dama dama 
      

1.44 0.05    
DMNS 9311 U 84.73 57.10 1.48 

  

   
USNM 197040 M 77.73 56.50 1.38 

  

   
ZMB_Mam 34544 M 84.96 58.56 1.45 

  

   
ZMB_Mam 94751 F 88.06 60.23 1.46 

  

Cervidae Elaphodus cephalophus 
      

1.48 0.01    
NHM 1970.186 U 56.69 37.86 1.50 

  

   
NHM 1878.11.14.4 (1699.b.) U 56.11 37.98 1.48 

  

   
ZMB_Mam 70004 F 60.50 41.18 1.47 

  

   
ZMB_Mam 86277 F 57.11 38.88 1.47 

  

Cervidae Elaphurus davidianus 
      

1.51 0.02    
NHM 1929.7.3.1 M 122.51 82.49 1.49 

  

   
USNM 307612 F 108.15 71.84 1.51 

  

   
USNM 396592 M 116.99 77.69 1.51 

  

   
ZMB_Mam 67527 M 123.75 81.62 1.52 

  

   
ZMB_Mam 77243 M 122.32 79.37 1.54 

  

Cervidae Hippocamelus antisensis 
      

1.50 --    
NHM 1934.9.2.189 F 75.61 50.37 1.50 

  

Cervidae Hippocamelus bisulcus 
      

1.42 --    
USNM 92167 F 87.13 61.24 1.42 

  

Cervidae Hydropotes inermis 
      

1.53 0.01    
USNM 290513 U 48.47 31.56 1.54 

  

   
USNM 304664 U 46.45 30.24 1.54 

  

   
ZMB_Mam 65432 F 48.83 32.10 1.52 

  

Cervidae Mazama americana 
      

1.46 0.04    
NHM 1878.8.31.13 (1700.a.) F 65.98 44.27 1.49 

  

   
USNM 269164 F 52.90 36.81 1.44 
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Cervidae Mazama gouazoubira 
      

1.48 0.04    
DMNS 2586 U 62.88 41.37 1.52 

  

   
USNM 236649 M 52.91 36.62 1.44 

  

   
USNM 251747 M 49.56 33.65 1.47 

  

Cervidae Mazama temama 
      

1.49 --    
DMNS 6474 U 54.72 36.85 1.49 

  

Cervidae Muntiacus muntjak 
      

1.50 0.03    
NHM 1894.6.12.11 M 54.07 35.64 1.52 

  

   
NHM 1895.5.7.6 U 52.19 35.16 1.48 

  

   
NHM 701.y. M 45.38 29.55 1.54 

  

   
ZMB_Mam 46530 F 57.08 39.11 1.46 

  

Cervidae Muntiacus reevesi 
      

1.49 0.09    
NHM 84.1247 U 46.69 31.52 1.48 

  

   
NHM 1985.747 U 47.43 31.31 1.51 

  

   
NHM 1997.269 M 48.88 32.06 1.52 

  

   
NHM 2006.685 F 38.43 29.21 1.32 

  

   
NHM 1862.12.23.2 (1524.a.) M 37.20 24.07 1.55 

  

   
NHM 1872.9.3.8 (1524.b.) U 49.70 32.35 1.54 

  

Cervidae Odocoileus hemionus 
      

1.44 0.00    
DMNS 7752 U 90.46 62.75 1.44 

  

   
DMNS 11018 U 101.95 71.02 1.44 

  

Cervidae Odocoileus virginianus 
      

1.44 0.03    
DMNS 2604 U 82.29 57.56 1.43 

  

   
DMNS 7438 U 85.22 58.96 1.45 

  

   
NHM 1850.11.22.25 (681.j) U 79.29 56.01 1.42 

  

   
NHM 1851.11.10.6  (681.r.) U 84.27 56.80 1.48 

  

   
ZMB_Mam 8553 U 68.20 47.70 1.43 

  

Cervidae Ozotoceros bezoarticus 
      

1.45 0.04    
NHM 54.8.16.1 (686.c.) U 70.72 49.53 1.43 

  

   
NHM 61.11.15.2 (686.j.) F 71.56 49.24 1.45 

  

   
NHM 686.k F 55.51 37.98 1.46 

  

   
USNM 270379 F 66.78 46.85 1.43 

  

   
USNM 270380 M 66.41 47.29 1.40 

  

   
ZMB_Mam 2055 M 69.26 46.00 1.51 

  

Cervidae Pudu mephistophiles 
      

1.51 0.01    
USNM 282141 M 35.63 23.73 1.50 

  

   
USNM 309045 F 36.70 24.17 1.52 
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ZMB_Mam 54389 F 37.15 24.71 1.50 

  

   
ZMB_Mam 61582 F 36.74 24.13 1.52 

  

Cervidae Pudu puda 
      

1.48 0.02    
USNM 580352 F 41.27 27.29 1.51 

  

   
USNM 582443 F 41.91 28.37 1.48 

  

   
USNM 582917 F 40.64 27.63 1.47 

  

   
ZMB_Mam 9152 M 42.76 29.00 1.47 

  

Cervidae Rangifer tarandus 
      

1.47 0.03    
NHM 1855.5.14.2 (702.w.) U 101.26 69.58 1.46 

  

   
NHM 1881.9.28.2 (702.j.) U 91.21 61.72 1.48 

  

   
NHM 1956.4.13.1 (702.g.) U 92.18 63.02 1.46 

  

   
USNM 241581 M 98.82 64.59 1.53 

  

   
USNM 282815 M 90.96 63.05 1.44 

  

Cervidae Rucervus duvaucelii 
      

1.46 0.01    
NHM 1884.4.14.2 F 106.16 72.13 1.47 

  

   
NHM 694.h. U 110.84 76.98 1.44 

  

   
USNM 151606 M 121.82 83.11 1.47 

  

   
USNM 258616 M 110.72 76.34 1.45 

  

Cervidae Rucervus eldii 
      

1.47 0.03    
USNM 260832 M 87.82 58.95 1.49 

  

   
USNM 545015 M 105.02 72.92 1.44 

  

   
USNM 588355 F 86.25 58.60 1.47 

  

Cervidae Rucervus schomburgki 
      

1.54 --    
ZMB_Mam 16032 M 108.78 70.85 1.54 

  

Cervidae Rusa alfredi 
      

1.54 0.00    
ZMB_Mam 32014 F 68.17 44.40 1.54 

  

   
ZMB_Mam 73526 U 72.52 47.22 1.54 

  

Cervidae Rusa marianna 
      

1.48 --    
ZMB_Mam 8993 M 70.01 47.23 1.48 

  

Cervidae Rusa timorensis 
      

1.48 0.01    
USNM 199847 F 89.05 60.22 1.48 

  

   
USNM 256784 F 81.94 55.05 1.49 

  

   
USNM 538456 F 84.76 57.38 1.48 

  

Cervidae Rusa unicolor 
      

1.52 0.03    
NHM 1868.12.29.8. (699y2) U 125.68 81.56 1.54 

  

   
USNM 151859 F 119.67 80.42 1.49 

  

   
USNM 240479 M 126.72 82.91 1.53 
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ZMB_Mam 14696 M 119.52 80.11 1.49 

  

   
ZMB_Mam 83436 U 119.50 77.63 1.54 

  

Giraffidae Giraffa camelopardalis 
      

1.56 0.03    
OM 2275 M 201.02 127.45 1.58 

  

   
OM 2277 U 190.05 123.04 1.54 

  

   
OM 2278 F 207.50 136.71 1.52 

  

   
OM 2736 U 215.00 136.71 1.57 

  

   
OM 6103 U 190.94 119.92 1.59 

  

   
OM 7008 U 206.33 133.62 1.54 

  

   
ZMB_Mam 11853 M 181.00 114.18 1.59 

  

   
ZMB_Mam 48440 U 181.50 116.13 1.56 

  

   
ZMB_Mam 66393 M 216.00 143.47 1.51 

  

Giraffidae Okapia johnstoni 
      

1.61 0.02    
DMNS 6441 U 124.80 77.20 1.62 

  

   
DMNS 6839 U 118.70 72.09 1.65 

  

   
DMNS 16380 U 125.47 79.10 1.59 

  

   
DMNS 17874 U 121.71 76.52 1.59 

  

   
OM 2282 F 118.18 73.10 1.62 

  

   
ZMB_Mam 62086 M 120.93 74.52 1.62 

  

   
ZMB_Mam 70325 M 118.18 73.42 1.61 

  

Hippopotamidae Hexaprotodon liberiensis 
      

1.74 0.03    
NHM 1914.6.21._.1 U 101.72 59.30 1.72 

  

   
NHM 1937.11.20.1 U 96.16 55.83 1.72 

  

   
NHM 1967.3.20.1 U 96.69 55.22 1.75 

  

   
ZMB_Mam 77240 M 90.95 50.92 1.79 

  

   
ZMB_Mam 77270 F 92.34 53.88 1.71 

  

Hippopotamidae Hippopotamus amphibius 
      

1.57 0.03    
DMNS 14995 U 187.50 118.38 1.58 

  

   
OM 2197 F 185.07 116.38 1.59 

  

   
OM 2198 F 183.71 120.20 1.53 

  

   
ZMB_Mam 44221 F 176.20 110.74 1.59 

  

Moschidae Moschus berezovskii 
      

1.53 0.01    
USNM 259381 M 46.51 30.20 1.54 

  

   
USNM 259384 F 46.43 30.27 1.53 

  

   
USNM 268878 M 44.84 29.43 1.52 

  

Moschidae Moschus moschiferus 
      

1.50 0.04    
NHM 45.1.12.449 (676.c.) U 48.79 31.71 1.54 

  



 

 

1
6
5 

   
ZMB_Mam 51830 M 52.57 35.77 1.47 

  

   
ZMB_Mam 62079 F 53.04 35.75 1.48 

  

Suidae Babyrousa babyrussa 
      

1.57 0.05    
DMNS 7871 U 80.34 52.74 1.52 

  

   
NHM 718 U 67.77 43.45 1.56 

  

   
ZMB_Mam 1969 M 70.07 42.74 1.64 

  

   
ZMB_Mam 38829 U 79.79 51.73 1.54 

  

Suidae Hylochoerus meinertzhageni 
      

1.53 0.03    
OM 2143 M 110.76 73.36 1.51 

  

   
OM 3557 U 98.47 62.63 1.57 

  

   
OM 6274 M 102.80 68.56 1.50 

  

   
ZMB_Mam 83342 F 104.87 68.86 1.52 

  

Suidae Phacochoerus aethiopicus 
      

1.58 0.02    
OM 3313 U 79.73 51.37 1.55 

  

   
OM 3324 M 75.55 47.08 1.60 

  

   
OM 3546 F 70.71 44.94 1.57 

  

   
OM 7605 M 77.66 49.81 1.56 

  

   
OM 7712 U 71.66 45.01 1.59 

  

Suidae Phacochoerus africanus 
      

1.57 0.04    
DMNS 11994 U 80.69 52.93 1.52 

  

   
USNM 21632 M 80.92 50.33 1.61 

  

   
USNM 161939 F 73.90 46.44 1.59 

  

   
USNM 162966 M 81.05 52.29 1.55 

  

Suidae Potamochoerus porcus 
      

1.60 0.06    
OM 2107 U 77.37 48.21 1.60 

  

   
OM 3338 M 79.69 47.96 1.66 

  

   
OM 8417 U 73.08 45.57 1.60 

  

   
USNM 164542 M 76.44 46.11 1.66 

  

   
USNM 259174 F 70.73 44.56 1.59 

  

   
ZMB_Mam 1966 U 65.18 43.25 1.51 

  

Suidae Sus barbatus 
      

1.49 0.04    
USNM 151849 M 96.59 66.76 1.45 

  

   
ZMB_Mam 69566 U 73.24 48.56 1.51 

  

   
ZMB_Mam 69899 M 96.44 64.01 1.51 

  

Suidae Sus salvanius 
      

1.60 0.03    
NHM 805.01 M 35.50 22.29 1.59 

  

   
NHM 805.02 F 34.69 22.28 1.56 
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NHM 1981.97 U 35.56 21.87 1.63 

  

   
NHM 1936.6-11.1 M 36.49 22.73 1.61 

  

Suidae Sus verrucosus 
      

1.51 --    
ZMB_Mam 7975 U 79.66 52.62 1.51 

  

Tayassuidae Pecari tajacu 
      

1.59 0.03    
DMNS 2554 U 47.95 30.58 1.57 

  

   
USNM A 1076 U 49.70 30.84 1.61 

  

Tayassuidae Tayassu pecari 
      

1.56 0.04    
USNM 105081 M 60.51 38.07 1.59 

  

   
USNM 257318 U 59.86 39.19 1.53 

  

Tragulidae Hyemoschus aquaticus 
      

1.60 0.05    
NHM 1846.11.19.10 (680.c) U 45.43 27.55 1.65 

  

   
NHM 1965.8.26.2 F 50.26 32.28 1.56 

  

   
ZMB_Mam 103235 M 44.39 27.85 1.59 

  

Tragulidae Moschiola meminna 
      

1.59 0.00    
NHM 76.216 F 27.28 17.20 1.59 

  

   
NHM 76.217 M 27.91 17.53 1.59 

  

Tragulidae Tragulus javanicus 
      

1.57 0.05    
NHM 1361.a. F 24.90 16.41 1.52 

  

   
NHM 1860.3.18.29 (853.h) F 24.97 15.56 1.60 

  

   
NHM 1879.5.23.8 (1361.c.) F 25.55 16.04 1.59 

  

Tragulidae Tragulus kanchil 
      

1.54 0.02    
NHM 67.165 F 25.58 16.69 1.53 

  

   
USNM A 49461 M 24.42 16.03 1.52 

  

   
USNM A 49462 F 25.70 16.44 1.56 

  

Tragulidae Tragulus napu 
      

1.59 0.04    
NHM 1961.4.26.1 U 33.95 20.71 1.64 

  

   
USNM 317286 M 29.83 19.23 1.55 

  

   
USNM A 49605 F 30.56 18.95 1.61 

  

   
USNM A 49871 M 34.18 21.74 1.57 
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Code 

#all maps were made in ArcMap 

#links to data sources are provided 

#data available on request 

 

#set working directory and install required packages 

install.packages(c("sp", "raster", "rgdal", "pracma", "DescTools", 

"ggplot2", "qdap", "plyr")) 

library(sp) 

library(raster) 

library(rgdal) 

library(pracma) 

library(DescTools) 

library(ggplot2) 

library(qdap) 

library(plyr) 

 

#for categorical variables, mode is used to predict maximum likelihood 

value 

getmode <- function(v) { 

  uniqv <- unique(v) 

  uniqv[which.max(tabulate(match(v, uniqv)))] 

} 

 

################prepare data################ 

#traits 

data <- read.csv("DATA_CALC_ARTIO.csv", header = T, na = ".") 

data$C_1 <- as.numeric(data$C_1) 

data$C_Jarch <- as.numeric(data$C_Jarch) 

data$C_GR <- (data$C_1)/(data$C_Jarch) 

 

binomial <- data.frame(genus = data$genus, species = data$species) 

data$binomial <- paste(binomial$genus, binomial$species, sep = " ") 

traits <- aggregate(data[ , 10], list(data$family, data$binomial), 

mean, na.rm = TRUE) 

traits_n <- aggregate(data[ , 10], list(data$binomial), sd, na.rm = 

TRUE) 

traits <- merge(traits, traits_n, by.x = "Group.2", by.y = "Group.1") 

traits_n <- aggregate(data[ , 11], list(data$binomial), length) 

traits <- merge(traits, traits_n, by.x = "Group.2", by.y = "Group.1" ) 

colnames(traits)[colnames(traits)==c("Group.2", "Group.1", "x.x", 

"x.y", "x")] <- c("MSWbinom", "family","C_GR", "stdev", "n") 

rownames(traits) <- traits$MSWbinom 

 

#points 

#points are from https://pollylab.indiana.edu/data/index.html 

#environmental variables extract in ArcMap to points 

#mean annual temperature and annual precipitation from 

https://climatedataguide.ucar.edu/climate-data/global-land-

precipitation-and-temperature-willmott-matsuura-university-delaware 

#elevation from www.ngdc.noaa.gov/mgg/topo/globe.html 

#Matthews' vegetation cover from http://daac.ornl.gov 
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#Bailey's ecoregions from www.unep-wcmc.org/resources-and-data/baileys-

ecoregions-of-the-world 

 

points <- read.csv("allpointsdata_noANT.csv") 

points$BIO1 <- as.numeric(points$BIO1) 

points$BIO12 <- as.numeric(points$BIO12) 

points$Elevation <- as.numeric(points$Elevation) 

 

#species ranges 

#range maps available from IUCN (www.iucnredlist.org) 

#ranges are limited to Order = Artiodactyla; Presence = 1, Extant; 

Origin = 1, Native or 2, Reintroduced 

mammals <- shapefile("terrmamm_ung.shp") 

geography <- subset(mammals, presence == "1") 

geography <- subset(geography, origin == "1" | origin == "2") 

 

#convert sampling points to spatial points 

sp <- SpatialPoints(points[ , 2:3], proj4string = 

CRS(proj4string(geography))) 

 

#sample species at each sampling locality 

o <- over(sp, geography, returnList = T) 

 

#calculate sample size at each point 

richness <- unlist(lapply(o, function(x) length(traits[x$MSWbinom, 

"C_GR"]))) 

 

#calculate sample size at each point with traits 

count <- unlist(lapply(o, function(x) sum(!is.na(traits[x$binomial, 

"C_GR"])))) 

 

#summarize traits for community level distributions using mean and 

standard deviation 

ecometric_gearratio <- unlist(lapply(o, function(x) 

mean(traits[x$MSWbinom, "C_GR"], na.rm = T))) 

sd_ecometric_gearratio <- unlist(lapply(o, function(x) 

sd(traits[x$MSWbinom, "C_GR"], na.rm = T))) 

 

#add values to points data 

points$richness <- richness 

points$count <- count 

points$ecometric_mean <- ecometric_gearratio 

points$ecometric_sd <- sd_ecometric_gearratio 

 

#group the trait distributions into 25 x 25 trait bins 

#take the range 

mhyp <- range(ecometric_gearratio, na.rm = T) 

sdhyp <- range(sd_ecometric_gearratio, na.rm = T) 

#get the break points for sd and mean 

mbrks <- seq(mhyp[1]-0.001, mhyp[2]+0.001, diff(mhyp)/25) 

sdbrks <- seq(sdhyp[1]-0.001, sdhyp[2]+0.001, diff(sdhyp)/25) 

#assign bin codes 

mbc <- .bincode(ecometric_gearratio, breaks = mbrks) 

sdbc <- .bincode(sd_ecometric_gearratio, breaks = sdbrks) 
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##limit communities to those with 3 or more species 

mbc[count < 3] <- NA  

sdbc[count < 3] <- NA 

cutoff <- 3 

 

################normalize data################ 

points$richness3 <- points$richness ^ (1/3) 

points$LogPrecip <- log(points$BIO12 + 1) 

points$TempCube <- (points$BIO1/10) ^ 3 

points$elev3 <- points$Elevation ^ (1/3) 

 

################correlations################ 

#family and gear ratio 

anova_phylo <- aov(C_GR ~ family, data = traits) 

anova_phylo 

summary(anova_phylo) 

#calculate R2 

0.1900/(0.1900 + 0.2116) 

 

#richness and gear ratio 

reg_rich <- lm(ecometric_mean ~ richness3, data = points) 

reg_rich 

summary(reg_rich) 

cor_rich <- cor.test(points$richness3, points$ecometric_mean, method = 

"pearson") 

cor_rich 

 

#precipitation and gear ratio 

reg_precip <- lm(ecometric_mean ~ LogPrecip, data = points) 

reg_precip 

summary(reg_precip) 

cor_precip <- cor.test(points$LogPrecip, points$ecometric_mean, method 

= "pearson") 

cor_precip 

 

#temperature and gear ratio 

reg_temp <- lm(ecometric_mean ~ TempCube, data = points) 

reg_temp 

summary(reg_temp) 

cor_temp <- cor.test(points$TempCube, points$ecometric_mean, method = 

"pearson") 

cor_temp 

 

#elevation and gear ratio 

reg_elev <- lm(ecometric_mean ~ elev3, data = points) 

reg_elev 

summary(reg_elev) 

cor_elev <- cor.test(points$elev3, points$ecometric_mean, method = 

"pearson", use = "complete.obs") 

cor_elev 

 

#ecoregion division and gear ratio 

anova_eco <- aov(ecometric_mean ~ DIV_DESC, data = points) 
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anova_eco 

summary(anova_eco) 

#calculate R2 

24.76/(24.76 + 15.97) 

 

#vegetation cover and gear ratio 

anova_veg <- aov(ecometric_mean ~ VegName, data = points) 

anova_veg 

summary(anova_veg) 

#calculate R2 

23.52/(23.52 + 17.29) 

 

################Figure 3.3################ 

#Figure 3.3A 

traits$MSWbinom <- factor(traits$MSWbinom, levels = 

traits$MSWbinom[order(traits$C_GR)]) 

rankorderspecies <- ggplot(traits, aes(x = MSWbinom, y = C_GR)) + 

  geom_hline(yintercept = mean(traits$C_GR, na.rm = T), linetype = 

"dashed", color = "black") + 

  geom_hline(yintercept = mean(traits$C_GR, na.rm = T) - 

sd(traits$C_GR), linetype = "solid", color = "black") + 

  geom_hline(yintercept = mean(traits$C_GR, na.rm = T) + 

sd(traits$C_GR), linetype = "solid", color = "black") + 

  geom_segment(aes(xend = MSWbinom, yend = 1.3)) + 

  geom_point(aes(x = MSWbinom, y = C_GR), color = "black", pch = 16, 

cex = 2) + 

  labs(x = "Species", y = "Calcaneal Gear Ratio") + 

  scale_y_continuous(expand = c(0, 0), limits = c(1.3, 1.9), breaks = 

c(1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9)) + 

  theme(axis.line = element_line(color = "black"),  

        panel.background = element_rect(color = "black", fill = NA),  

        panel.grid = element_blank(), 

        axis.text.y = element_text(color = "black", size = 10), 

        axis.text.x = element_text(color = "black", angle = 90, size = 

8, hjust = 1, vjust = 0.25), axis.title = element_text(color = "black", 

size = 14)) 

rankorderspecies 

 

#Figure 3.3B 

familymean <- aggregate(data[ , 10], list(data$family), mean, na.rm = 

TRUE) 

familymean <- familymean[order(familymean$x), ] 

traits$family <- factor(traits$family, levels = c("Antilocapridae", 

"Bovidae", "Cervidae", "Moschidae", "Suidae", "Tayassuidae", 

"Tragulidae", "Giraffidae", "Camelidae", "Hippopotamidae")) 

plot(traits$family, traits$C_GR, ylim = c(1.3, 1.8), range = 0, las = 

2, cex.axis = 0.7, col = "gray", ylab = "Gear Ratio", xlab = "Family") 

 

################precipitation################ 

#calculate the data for the precipitation raster 

obj <- array(NA, dim = c(25, 25)) 

for (i in 1:25) { 

  for (j in 1:25) { 

    dat <- points$LogPrecip[which(mbc == i & sdbc == j)] 
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    obj[26 - j, i] <- mean(dat, na.rm = T) 

  } 

} 

 

#make raster for gear ratio and precipitation 

r <- raster(extent(0, 25, 0, 25), resolution = 1) 

#set the values to the obj 

r <- setValues(r, obj) 

 

#plot raster as ecometric space 

par(bg = NA) 

plot(0:25, 0:25, type = "n", xlim = c(0, 25), ylim = c(0, 25), xaxs = 

"i", yaxs = "i", asp = 1, axes = F, xlab = " ", ylab = " ", cex.lab = 

1.5) 

rect(0, 0, 25, 25, lwd = 3) 

lines(x = c(8.3, 8.3), y = c(0, 25)) 

lines(x = c(16.6, 16.6), y = c(0, 25)) 

lines(x = c(0, 25), y = c(8.3, 8.3)) 

lines(x = c(0, 25), y = c(16.6, 16.6)) 

plot(r, col = colorRampPalette(c("brown", "tan", "yellow", "green", 

"darkgreen"))(round((maxValue(r) - minValue(r)) * 5)), add = T) 

title(ylab = "Standard Deviation", line = -6, cex.lab = 1.5) 

axis(side = 2, at = c(0.0, 8.3, 16.6, 25), labels = c(0, 0.035, 0.070, 

0.105), line = -9) 

title(xlab = "Mean", line = 2, cex.lab = 1.5) 

axis(side = 1, at = c(0, 8.3, 16.6, 25), labels = c(1.42, 1.48, 1.53, 

1.59)) 

mtext("Precipitation", side = 4, line = -4, cex = 1.5) 

 

###example: to calculate the value in a trait bin, use the edge values 

of a rectangle 

#train bin formula is (left, bottom, right, top) 

#example is modern Kakamega Forest Reserve 

#use density estimate for value of precipitation 

rect(14, 8, 15, 9, lwd = 4, border = "black") 

dat <- points$LogPrecip[which(mbc == 15 & sdbc == 9)] 

mod <- density(dat, bw = 1) 

modmax <- mod$x[which.max(mod$y)] 

modmax 

 

#calculate maximum likelihood for all bins 

modmax <- array(NA, dim = length(points[ , 1]))  

mod <- list() 

for (i in 1:length(points[ , 1])) { 

  if(!(is.na(mbc[i]) | is.na(sdbc[i]))) { 

    dat <- round(points$LogPrecip[which(mbc == mbc[i] & sdbc == 

sdbc[i])]) 

    mod[[i]] <- density(dat[!is.na(dat)], bw = 1) 

    modmax[i] <- mod[[i]]$x[which.max(mod[[i]]$y)] 

  } 

} 

 

#calculate precipitation anomaly 

#observed precipitation - predicted precipitation 



 

172 

anom_precip <- points$LogPrecip - modmax 

points$precipanom <- anom_precip 

min(anom_precip, na.rm = T) 

max(anom_precip, na.rm = T) 

mean(anom_precip, na.rm = T) 

 

################ecoregion division################ 

points$ECO <- as.numeric(points$DIV_DESC) 

points$ECOdom <- as.numeric(points$DOM_DESC) 

 

#code colors associated with each domain and division 

#range subtracts 1 to remove NA 

#dom1 = dry, dom2 = humid temperate, dom3 = humid tropical, dom4 = 

polar 

ecoregion_range <- length(unique(points$ECO)) - 1 

dom1 <- points[which(points$ECOdom == 1), ] 

dom1_range <- length(unique(dom1$ECO)) 

color1 <- colorRampPalette(c("brown", 

“tan"))(dom1_range)[as.factor(dom1$ECO)] 

dom2 <- points[which(points$ECOdom == 2), ] 

dom2_range <- length(unique(dom2$ECO)) 

color2 <- colorRampPalette(c("darkblue", 

"lightblue"))(dom2_range)[as.factor(dom2$ECO)] 

dom3 <- points[which(points$ECOdom == 3), ] 

dom3_range <- length(unique(dom3$ECO)) 

color3 <- colorRampPalette(c("darkgreen", 

"lightgreen"))(dom3_range)[as.factor(dom3$ECO)] 

dom4 <- points[which(points$ECOdom == 4), ] 

dom4_range <- length(unique(dom4$ECO)) 

color4 <- colorRampPalette(c("purple", 

"lavender"))(dom4_range)[as.factor(dom4$ECO)] 

 

a <- c(unique(dom1$ECO), unique(dom2$ECO), unique(dom3$ECO), 

unique(dom4$ECO)) 

b <- c(unique(color1), unique(color2), unique(color3), unique(color4)) 

d <- as.data.frame(cbind(a, b)) 

d$b <- as.character(d$b) 

points$color <- "NA" 

points$color <- lookup(as.factor(points$ECO), d$a, d$b) 

points$color <- as.character(points$color) 

 

#sort colors 

#25:27 = ECO, ECOdom, color 

e <- points[ , c(25:27)] 

e <- unique(e[ , 1:3]) 

e <- na.omit(e) 

e <- e[order(e$ECO), ] 

 

#calculate the data for the ecoregion division raster 

obj <- array(NA, dim = c(25, 25)) 

for (i in 1:25) { 

  for (j in 1:25) { 

    dat <- points$ECO[which(mbc == i & sdbc == j)] 

    obj[26 - j, i] <- getmode(dat) 
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  } 

} 

 

#make raster for gear ratio and ecoregion division 

r <- raster(extent(0, 25, 0, 25), resolution = 1) 

#set the values to the obj 

r <- setValues(r, obj) 

 

#plot raster as ecometric space 

par(bg = NA) 

plot(0:25, 0:25, type = "n", xlim = c(0, 25), ylim = c(0, 25), xaxs = 

"i", yaxs = "i", asp = 1, axes = F, xlab = " ", ylab = " ", cex.lab = 

1.5) 

rect(0, 0, 25, 25, lwd = 3) 

lines(x = c(8.3, 8.3), y = c(0, 25)) 

lines(x = c(16.6, 16.6), y = c(0, 25)) 

lines(x = c(0, 25), y = c(8.3, 8.3)) 

lines(x = c(0, 25), y = c(16.6, 16.6)) 

plot(r, col = e$color[obj = e$ECO], add = T) 

title(ylab = "Standard Deviation", line = -6, cex.lab = 1.5) 

axis(side = 2, at = c(0.0, 8.3, 16.6, 25), labels = c(0.0, 0.035, 

0.070, 0.105), line = -9) 

title(xlab = "Mean", line = 2, cex.lab = 1.5) 

axis(side = 1, at = c(0, 8.3, 16.6, 25), labels = c(1.42, 1.48, 1.53, 

1.59)) 

mtext("Ecoregion", side = 4, line = -4, cex = 1.5) 

 

###example: to calculate the value in a trait bin, use the edge values 

of a rectangle 

#train bin formula is (left, bottom, right, top) 

#example is modern Kakamega Forest Reserve 

#use density estimate for value of ecoregion division 

rect(14, 8, 15, 9, lwd = 4, border = "black") 

dat <- points$ECO[which(mbc == 15 & sdbc == 9)] 

mod <- getmode(dat[!is.na(dat)]) 

unique(points$DIV_DESC[which(points$ECO == mod)]) 

 

#calculate most likely ecoregion division for all bins using mode 

modmax <- array(NA, dim = length(points[ , 1]))  

mod <- list() 

for (i in 1:length(points[ , 1])) { 

  if(!(is.na(mbc[i]) | is.na(sdbc[i]))) { 

    dat <- points$ECO[which(mbc == mbc[i] & sdbc == sdbc[i])] 

    mod[[i]] <- getmode(dat[!is.na(dat)]) 

    modmax[i] <- mod[[i]] 

  } 

} 

 

#calculate ecoregion division anomaly 

#observed ecoregion division - predicted ecoregion division 

#with categorical variable, 0 = correct prediction, !0 = incorrect 

prediction 

anom_ecodiv <- points$ECO - modmax 

points$ecoanomaly <- anom_ecodiv 
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m <- points[count > 2, ] 

n <- points[which(points$ecoanomaly != "NA"), ] 

k <- n[which(n$ecoanomaly == 0), ] 

correct <- ((dim(k)[1])/(dim(n)[1])) * 100 

correct 

incorrect <- 100 - correct 

incorrect 

 

################ecoregion domain################ 

#code is for predictions only 

#calculate most likely ecoregion domain for all bins using mode 

modmax <- array(NA, dim = length(points[ , 1]))  

mod <- list() 

for (i in 1:length(points[ , 1])) { 

  if(!(is.na(mbc[i]) | is.na(sdbc[i]))) { 

    dat <- points$ECOdom[which(mbc == mbc[i] & sdbc == sdbc[i])] 

    mod[[i]] <- getmode(dat[!is.na(dat)]) 

    modmax[i] <- mod[[i]] 

  } 

} 

 

#calculate ecoregion domain anomaly 

#observed ecoregion domain - predicted ecoregion domain 

#with categorical variable, 0 = correct prediction, !0 = incorrect 

prediction 

anom_ecodom <- points$ECOdom - modmax ##observed - predicted 

points$ecoanomalydom <- anom_ecodom 

m <- points[count > 2, ] #limit to comm. with data 3+ species 

n <- points[which(points$ecoanomalydom != "NA"), ] 

k <- n[which(n$ecoanomalydom == 0), ] 

correct <- ((dim(k)[1])/(dim(n)[1])) * 100 

correct 

incorrect <- 100 - correct 

incorrect 

 

################vegetation cover################ 

points$veg <- as.numeric(points$VegName, na.rm = T) 

 

#code colors associated with vegetation classes 

#range subtracts 1 to remove NA 

#veg1 = evergreen, veg2 = deciduous, veg3 = desert, veg4 = arctic, veg5 

= grassland 

veg_range <- length(unique(points$veg)) - 1 #remove NA 

veg1 <- points[which(points$VegSimple == 1), ] 

veg1_range <- length(unique(veg1$veg)) 

color1 <- colorRampPalette(c("darkblue", 

"lightblue"))(veg1_range)[as.factor(veg1$veg)] 

veg2 <- points[which(points$VegSimple == 2), ] 

veg2_range <- length(unique(veg2$veg)) 

color2 <- colorRampPalette(c("red", 

"pink"))(veg2_range)[as.factor(veg2$veg)] 

veg3 <- points[which(points$VegSimple == 3), ] 

veg3_range <- length(unique(veg3$veg)) 
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color3 <- colorRampPalette(c("sienna4", 

"tan"))(veg3_range)[as.factor(veg3$veg)] 

veg4 <- points[which(points$VegSimple == 4), ] 

veg4_range <- length(unique(veg4$veg)) 

color4 <- colorRampPalette(c("purple", 

"lavender"))(veg4_range)[as.factor(veg4$veg)] 

veg5 <- points[which(points$VegSimple == 5), ] 

veg5_range <- length(unique(veg5$veg)) 

color5 <- colorRampPalette(c("darkgreen", 

"lightgreen"))(veg5_range)[as.factor(veg5$veg)] 

 

a <- c(unique(veg1$veg), unique(veg2$veg), unique(veg3$veg), 

unique(veg4$veg), unique(veg5$veg)) 

b <- c(unique(color1), unique(color2), unique(color3), unique(color4), 

unique(color5)) 

d <- as.data.frame(cbind(a, b)) 

d$b <- as.character(d$b) 

points$color2 <- "NA" 

points$color2 <- lookup(as.factor(points$veg), d$a, d$b) 

points$color2 <- as.character(points$color2) 

 

#sort colors 

#30:31 = veg, color2 

e <- points[ , c(30:31)] 

e <- unique(e[ , 1:2]) 

e <- na.omit(e) 

e <- e[order(e$veg), ] 

 

#calculate the data for the vegetation cover raster 

obj <- array(NA, dim = c(25, 25)) 

for (i in 1:25) { 

  for (j in 1:25) { 

    dat <- points$veg[which(mbc == i & sdbc == j)] 

    obj[26 - j, i] <- getmode(dat) 

  } 

} 

 

#make raster for gear ratio and vegetation cover 

r <- raster(extent(0, 25, 0, 25), resolution = 1) 

#set the values to the obj 

r <- setValues(r, obj) 

 

#plot raster and highlight bin  

par(bg = NA) 

plot(0:25, 0:25, type = "n", xlim = c(0, 25), ylim = c(0, 25), xaxs = 

"i", yaxs = "i", asp = 1, axes = F, xlab = " ", ylab = " ", cex.lab = 

1.5) 

rect(0, 0, 25, 25, lwd = 3) 

lines(x = c(8.3, 8.3), y = c(0, 25)) 

lines(x = c(16.6, 16.6), y = c(0, 25)) 

lines(x = c(0, 25), y = c(8.3, 8.3)) 

lines(x = c(0, 25), y = c(16.6, 16.6)) 

plot(r, col = e$color[obj = e$veg], add = T) 

title(ylab = "Standard Deviation", line = -6, cex.lab = 1.5) 
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axis(side = 2, at = c(0.0, 8.3, 16.6, 25), labels = c(0.0, 0.035, 

0.070, 0.105), line = -9) 

title(xlab = "Mean", line = 2, cex.lab = 1.5) 

axis(side = 1, at = c(0, 8.3, 16.6, 25), labels = c(1.42, 1.48, 1.53, 

1.59)) 

mtext("Vegetation Cover", side = 4, line = -4, cex = 1.5) 

 

###example: to calculate the value in a trait bin, use the edge values 

of a rectangle 

#train bin formula is (left, bottom, right, top) 

#example is modern Kakamega Forest Reserve 

#use density estimate for value of vegetation cover 

rect(14, 8, 15, 9, lwd = 4, border = "black") 

dat <- points$veg[which(mbc == 15 & sdbc == 9)] 

mod <- getmode(dat[!is.na(dat)]) 

unique(points$VegName[which(points$veg == mod)]) 

 

#calculate most likely vegetation cover for all bins using mode 

modmax <- array(NA, dim = length(points[ , 1]))  

mod <- list() 

for (i in 1:length(points[ , 1])) { 

  if (!(is.na(mbc[i]) | is.na(sdbc[i]))) { 

    dat <- points$veg[which(mbc == mbc[i] & sdbc == sdbc[i])] 

    mod[[i]] <- getmode(dat[!is.na(dat)]) 

    modmax[i] <- mod[[i]] 

  } 

} 

 

#calculate ecoregion division anomaly 

#observed ecoregion division - predicted ecoregion division 

#with categorical variable, 0 = correct prediction, !0 = incorrect 

prediction 

anom_veg <- points$veg - modmax 

points$veganom <- anom_veg 

m <- points[which(points$count > 2), ] 

n <- m[which(m$veganom != "NA"), ] 

k <- n[which(n$veganom == 0), ] 

correct <- ((dim(k)[1])/(dim(n)[1])) * 100 

correct 

incorrect <- 100 - correct 

incorrect 

 

################vegetation cover - 5 classes################ 

#code is for predictions only 

points$VegSimple <- as.numeric(points$VegSimple, na.rm = T) 

 

#calculate most likely ecoregion domain for all bins using mode 

modmax <- array(NA, dim = length(points[ , 1]))  

mod <- list() 

for (i in 1:length(points[ , 1])) { 

  if(!(is.na(mbc[i]) | is.na(sdbc[i]))) { 

    dat <- points$VegSimple[which(mbc == mbc[i] & sdbc == sdbc[i])] 

    mod[[i]] <- getmode(dat[!is.na(dat)]) 

    modmax[i] <- mod[[i]] 
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  } 

} 

 

#calculate vegetation cover - 5 classes anomaly 

#observed vegetation class - predicted vegetation class 

#with categorical variable, 0 = correct prediction, !0 = incorrect 

prediction 

anom_veg5 <- points$VegSimple - modmax ##observed - predicted 

points$veg5anom <- anom_veg5 

m <- points[which(points$count > 2), ] 

n <- m[which(m$veg5anom != "NA"), ] 

k <- n[which(n$veg5anom == 0), ] 

correct <- ((dim(k)[1])/(dim(n)[1])) * 100 

correct 

incorrect <- 100 - correct 

incorrect 

 

#write.csv(points, file = "output_points.csv") 
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APPENDIX C 

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

 

Table C-1. Canis dirus measurements of TERA 450. Log-ratios are relative to 

Eucyon davisi following Tedford et al. (2009). 
Measurement Definition Térapa (mm) Log-ratio 

Left maxilla  

 JD  jugal depth 20.05 0.3479 

 LP4 length of P4 30.59 0.2900 

 WP4  width of P4 14.70 0.3899 

 LM1 length of M1 18.19 0.2212 

 WM1  width of M1 24.25 0.2731 

Left mandible 

 Lp3  length of p3 16.88 0.2261 

 Lp4  length of p4 20.86 0.2697 

 Wp4  width of p4 11.39 0.4004 

 Lm1 length of m1 37.88 0.3462 

 Wm1tr  width of m1 trigonid 15.33 0.3828 

 Wm1tl  width of m1 talonid 13.71 0.3425 
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Table C-2. Previous taxonomic assignments with sources and revised identifications 

presented here.  
Order Family Previous identifications Revised identifications 

    

Perissodactyla Equidae Equus1 Equus scotti 

  Equus excelsus2 Equus cf. E. scotti 

  Equus conversidens2 Equus sp. 

 Tapiridae Tapirus1 Not present 

Artiodactyla Tayassuidae cf. Platygonus1 Platygonus compressus 

 Camelidae Camelops-sized1 Camelops hesternus 

  Hemiauchenia-sized1 Palaeolama mirifica 

Carnivora Canidae Canis dirus1, 3 Canis dirus 

 Procyonidae Procyon1 Procyon lotor 

 Felidae Lynx rufus1 Lynx rufus 

   Smilodon cf. S. fatalis 

Note: 1 Mead et al. (2006), 2 Carranza-Castañeda and Roldán-Quintana (2007), 3 Hodnett et al. (2009). 
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Figure C-1. Statistical analyses of equid specimens. A, Principal component 

analysis of Equus second phalanx (TERA 319), which is identified as E. scotti with 

87.5% confidence. B, Quadratic discriminant analysis of Equus second phalanx 

(TERA 319), which is identified as E. scotti with 87.5% confidence. C, Principal 

component analysis of Equus metacarpal (TERA 313), which is identified as E. 

scotti with 100% confidence. D, Quadratic discriminant analysis of Equus 

metacarpal (TERA 313), which is identified as E. scotti with 100% confidence. 
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APPENDIX D 

SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

Table D-1. Rural-Urban Continuum Codes with population totals from the ACS 

2017 5-year estimate dataset (USDA ERS 2013b, USCB 2018). 
RUCC Metro 

designation 

County population Metro 

adjacent 

Number of 

counties 

Total 

population 

1 Metro Metro area of 1 million or more                                                                                                                                          -- 432 177,601,619 

2 Metro Metro area of 250,000 to 1 million                                                                                                                            -- 379 68,242,203 

3 Metro Metro area of fewer than 250,000                                                                                                            -- 356 29,067,253 

4 Non-metro Urban area of 20,000 or more                                                                                        Yes 214 13,549,273 

5 Non-metro Urban area of 20,000 or more  No 92 5,028,805 

6 Non-metro Urban area of 2,500 to 19,999  Yes 593 14,642,448 

7 Non-metro Urban area of 2,500 to 19,999  No 433 8,176,439 

8 Non-metro Completely rural or urban area with 

less than 2,500  

Yes 220 2,122,539 

9 Non-metro Completely rural or urban area with 

less than 2,500  

No 424 2,573,828 
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Table D-2. Poverty categories using by Jenks’ Natural Breaks of percentage of 

poverty. Maximum value is 56.7%. Poverty data and population values are from 

the US Census Bureau (USCB 2017). 
Poverty category Percentage of poverty Total population 

1 0 – 10.1 82,305,003 

2 10.2 – 14.1 95,747,420 

3 14.2 – 18.4 100,696,255 

4 18.5 – 23.5 28,811,267 

5 23.6 – 31.4 1,229,241 

6 > 31.5 1,172,384 
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Table D-3. Quantile breaks for maps in Figure 5.1A and Figures 5.1C-H. Break 

values are the maximum ILI value per 1000 km2 of each quantile. 
Quantile All NPS FSML ZOO MUS LIB BOT 

1 0.363 0.004 0.005 0.0061 0.012 0.102 0.013 

2 0.726 0.006 0.012 0.017 0.049 0.410 0.033 

3 1.57 0.009 0.021 0.029 0.089 1.02 0.062 

4 2.54 0.014 0.033 0.045 0.142 1.95 0.108 

5 3.99 0.022 0.061 0.064 0.240 3.17 0.187 

6 30.9 0.748 0.137 0.257 1.04 26.1 0.838 
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Table D-4. Mean, standard deviation, and standard error of ILI density for each 

type. Mean per 1000 km2 is displayed in Figure 5.1B. 
Type Mean Standard deviation Standard error 

ALL 6.48 6.54 0.046 

NPS 2.70 5.53 0.428 

FSML 4.51 4.59 0.220 

ZOO 6.16 6.51 0.303 

MUS 6.52 6.39 0.166 

LIB 6.53 6.56 0.051 

BOT 7.24 6.89 0.217 
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Table D-5. Standard deviation values for residuals for Figure 5.2A. Residuals are 

between log ILI density and the interaction of log population density and poverty 

percentage. 
Standard deviation Residuals 

< -2.5 -2.81 – -1.59 

-2.5 -1.59 – -0.922 

-1.5 -0.922 – -0.259 

-0.5 -0.259 – 0.404 

0.5 0.404 – 1.07 

> 1.5 1.07 – 2.20 
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Table D-6. Racial and ethnic groups in underserved counties for Figure 5.3D. 

Column names correspond to the three underserved groups of counties in Figure 

5.3: A, Counties that do not have ILIs; B, Counties with ILI residuals in the lowest 

0.5%; and C, Non-metro, not adjacent counties with urban populations over 20,000 

(RUCC 5). Population values are from the US Census Bureau (USCB 2018). 

Group Population 

Population % 

Figure 5.3A 

Population % 

Figure 5.3B 

Population % 

Figure 5.3C 

US population 321,004,407 0.10 0.43 1.57 

American Indian and Alaska Native 2,098,763 0.95 1.00 5.26 

Asian 16,989,540 0.03 0.11 0.72 

Black or African American 39,445,495 0.08 0.39 0.92 

Hispanic or Latino 56,510,571 0.09 0.42 1.14 

Native Hawaiian and Other Pacific 

Islander 

515,522 0.05 0.79 6.50 

White 197,277,789 0.11 0.46 1.82 

Two or more races 7,451,295 0.05 0.25 0.62 

Other 715,432 0.09 0.56 2.17 
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Code 

#all maps were made in ArcMap using point data from R code 

#links to data sources are provided 

#data available on request 

 

#set working directory and install required packages 

install.packages(c("ggplot2", "plyr", "gridExtra", "BAMMtools", "ape", 

"spdep", "nlme", "MuMIn", "rcompanion")) 

library(ggplot2) 

library(plyr) 

library(gridExtra) 

library(BAMMtools) 

library(ape) 

library(spdep) 

library(nlme) 

library(MuMIn) 

library(rcompanion) 

 

################prepare ILI data################ 

#ILI data from the Museum Universe Data File 

(https://www.imls.gov/research-evaluation/data-collection/museum-data-

files),  

#the Public Library Survey’s Outlet Data File 

(https://www.imls.gov/research-evaluation/data-collection/public-

libraries-survey),  

#the National Park Service 

(https://data.doi.gov/dataset/administrative-boundaries-centroids-of-

national-park-system-units-9-30-2017), 

#the Organization of Biological Field Stations 

(https://www.obfs.org/directories#/), and  

#the National Association of Marine Laboratories 

(http://www.naml.org/members/directory.php) 

 

#kernel densities produced in ArcMap and extracted to points 

ILI <- read.csv("ili_points_data.csv", header = TRUE, stringsAsFactors 

= F) 

ILI$KernelD_bo[ILI$ILI_TYPE != "BOT"] <- NA 

ILI$KernelD_mu[ILI$ILI_TYPE != "MUS"] <- NA 

ILI$KernelD_li[ILI$ILI_TYPE != "LIB"] <- NA 

ILI$KernelD_za[ILI$ILI_TYPE != "ZAW"] <- NA 

ILI$KernelD_fs[ILI$ILI_TYPE != "FSML"] <- NA 

ILI$KernelD_np[ILI$ILI_TYPE != "NPS"] <- NA 

 

#transform kernel density by 1000 

ILI[ , 6:12] <- ILI[ , 6:12] * 1000 

 

#aggregate kernel density values for Figure 5.1B 

ilidens <- aggregate(ILI[ , 6], list(ILI$ILI_TYPE), mean, na.rm = TRUE) 

ilidens2 <- aggregate(ILI[ , 6], list(ILI$ILI_TYPE), sd, na.rm = TRUE) 

st.err <- function(x) {sd(x)/sqrt(length(x))} 

ilidens3 <- aggregate(ILI[ , 6], list(ILI$ILI_TYPE), st.err) 

ilidens <- merge(ilidens, ilidens2, by.x = "Group.1", by.y = "Group.1") 
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ilidens <- merge(ilidens, ilidens3, by.x = "Group.1", by.y = "Group.1") 

colnames(ilidens) <- c("type", "mean", "sd", "stderror") 

ilidens <- rbind(ilidens, "6th" = c("ALL", mean(ILI$KernelD_il), 

sd(ILI$KernelD_il), st.err(ILI$KernelD_il))) 

ilidens$mean <- as.numeric(ilidens$mean) 

ilidens$sd <- as.numeric(ilidens$sd) 

ilidens$stderror <- as.numeric(ilidens$stderror) 

 

######################Figure 5.1B###################### 

fill <- c('#CCCCFF', '#F0ECAA', '#E5D5F2', '#D7F0AF', '#FFE0E0', 

'#DCF5E9', '#FAE9D4') 

bars_ili <- ggplot(ilidens, aes(x = type, y = mean)) +  

  geom_bar(stat = "identity", fill = fill, color = "black", width = 

0.5) + 

  geom_errorbar(stat = "identity", ymin = ilidens$mean, ymax = 

ilidens$mean + ilidens$stderror,  color = "black", width = 0.5) + 

  labs(x = "ILI Types", y = "Mean ILI per 1000km2") + 

  scale_x_discrete(limits = c("ALL", "NPS", "FSML", "ZAW", "MUS", 

"LIB", "BOT")) + 

  scale_y_continuous(limits = c(0, 10), breaks = c(0, 2, 4, 6, 8, 10)) 

+ 

  theme(axis.line = element_line(color = "black"),  

        panel.background = element_rect(color = "black", fill = "NA"), 

        panel.grid = element_blank(), 

        axis.text = element_text(color = "black", size = 15), 

        axis.title = element_text(color = "black", size = 20)) 

bars_ili 

 

#anova of bar plot 

baranova <- aov(KernelD_il ~ ILI_TYPE, data = ILI) 

summary(baranova) 

 

################prepare county data################ 

#county data from the American Community Survey (ACS) 2017 5-year 

estimate dataset 

(https://data.census.gov/cedsci/table?q=population&hidePreview=false&ta

ble=DP05&tid=ACSDP5Y2017.DP05&lastDisplayedRow=33) 

#ILI count extracted to county in ArcMap 

county <- read.csv("county.csv", header = T) 

county <- county[order(county3$GEOID), ] 

county$SimpDens <- county$ILIcount/county$ALAND_km2 

county$Logsimpdens <- log(county$SimpDens) 

county$LogPopDens <- log(county$PopDenskm2) 

county <- county[-which(county$ILIcount == 0), ] 

 

################account for spatial autocorrelation################ 

#calculate a distance matrix for testing for spatial autocorrelation 

#to account for spatial autocorrelation between ILI density and 

population variables, use GLS models with correlation structure 

#five models are options - exponential, gaussian, spherical, linear, 

and rational quadratic 

 

#relationship between Log(ILI density) and Log(population density) 

modelsimppop <- gls(Logsimpdens ~ LogPopDens, data = county) 
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expo.autosimppop <- gls(Logsimpdens ~ LogPopDens, correlation = 

corExp(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

gauss.autosimppop <- gls(Logsimpdens ~ LogPopDens, correlation = 

corGaus(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

spher.autosimppop <- gls(Logsimpdens ~LogPopDens, correlation = 

corSpher(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

lin.autosimppop <- gls(Logsimpdens ~ LogPopDens, correlation = 

corLin(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

ratio.autosimppop <- gls(Logsimpdens ~ LogPopDens, correlation = 

corRatio(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

 

#AIC model selection 

model.sel(modelsimppop, expo.autosimppop, gauss.autosimppop, 

spher.autosimppop, lin.autosimppop, ratio.autosimppop) 

 

#here, rational quadratic correlation structure is the best fit 

#residuals can be used for further analyses 

plot(fitted(ratio.autosimppop), residuals(ratio.autosimppop)) 

abline(h = 0, lty = 3) 

summary(ratio.autosimppop) 

 

#relationship between Log(ILI density) and poverty percentage 

#test the same correlation structures 

#rational quadratic is the best fit again 

#residuals can be used for further analyses 

modelsimppov <- gls(Logsimpdens ~ POVERTY_PERC, data = county) 

expo.autosimppov <- gls(Logsimpdens ~ POVERTY_PERC, correlation = 

corExp(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

gauss.autosimppov <- gls(Logsimpdens ~ POVERTY_PERC, correlation = 

corGaus(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

spher.autosimppov <- gls(Logsimpdens ~POVERTY_PERC, correlation = 

corSpher(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

lin.autosimppov <- gls(Logsimpdens ~ POVERTY_PERC, correlation = 

corLin(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

ratio.autosimppov <- gls(Logsimpdens ~ POVERTY_PERC, correlation = 

corRatio(form = ~centroid_long + centroid_lat, nugget = T), data = 

county) 

 

model.sel(modelsimppov, expo.autosimppov, gauss.autosimppov, 

spher.autosimppov, lin.autosimppov, ratio.autosimppov) 

 

plot(fitted(ratio.autosimppov), residuals(ratio.autosimppov)) 

abline(h = 0, lty = 3) 

summary(ratio.autosimppov) 
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#relationship between Log(ILI density) and Log(population density) * 

poverty percentage 

#test the same correlation structures 

#rational quadratic is the best fit again 

#residuals can be used for further analyses 

modelsimpboth <- gls(Logsimpdens ~ LogPopDens * POVERTY_PERC, data = 

county3) 

expo.autosimpboth <- gls(Logsimpdens ~ LogPopDens * POVERTY_PERC, 

correlation = corExp(form = ~centroid_long + centroid_lat, nugget = T), 

data = county) 

gauss.autosimpboth <- gls(Logsimpdens ~ LogPopDens * POVERTY_PERC, 

correlation = corGaus(form = ~centroid_long + centroid_lat, nugget = 

T), data = county) 

spher.autosimpboth <- gls(Logsimpdens ~ LogPopDens * POVERTY_PERC, 

correlation = corSpher(form = ~centroid_long + centroid_lat, nugget = 

T), data = county) 

lin.autosimpboth <- gls(Logsimpdens ~ LogPopDens * POVERTY_PERC, 

correlation = corLin(form = ~centroid_long + centroid_lat, nugget = T), 

data = county) 

ratio.autosimpboth <- gls(Logsimpdens ~ LogPopDens * POVERTY_PERC, 

correlation = corRatio(form = ~centroid_long + centroid_lat, nugget = 

T), data = county) 

 

model.sel(modelsimpboth, expo.autosimpboth, gauss.autosimpboth, 

spher.autosimpboth, lin.autosimpboth, ratio.autosimpboth)  

 

plot(fitted(ratio.autosimpboth), residuals(ratio.autosimpboth))  

abline(h = 0, lty = 3) 

summary(ratio.autosimpboth) 

 

#calculate pseudo-R2 values 

nagelkerke(ratio.autosimppop) 

nagelkerke(ratio.autosimppov) 

nagelkerke(ratio.autosimpboth) 

 

#add residuals to data table 

ratioresid <- county 

ratioresid$popresid <- ratio.autosimppop$residuals 

ratioresid$povresid <- ratio.autosimppov$residuals 

ratioresid$bothresid <- ratio.autosimpboth$residuals 

 

######################Figure 5.2B-C###################### 

#use interaction residuals (ratioresid$bothresid) 

 

#Figure 5.2B - bar plot of interaction residuals by RUCC 

#calculate mean, standard deviation, and standard error of residuals 

for each RUCC grouping 

mean_pop <- aggregate(ratioresid$bothresid, by = list(ratioresid$RUCC), 

mean, na.rm = TRUE) 

sd_pop <- aggregate(ratioresid$bothresid, by = list(ratioresid$RUCC), 

sd, na.rm = TRUE) 

sterr_pop <- aggregate(ratioresid$bothresid, by = 

list(ratioresid$RUCC), st.err) 

pop <- merge(mean_pop, sd_pop, by.x = "Group.1", by.y = "Group.1") 
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pop <- merge(pop, sterr_pop, by.x = "Group.1", by.y = "Group.1") 

names(pop) <- c("RUCode", "mean", "sd", "stderror") 

 

bars_pop <- ggplot(pop, aes(x = factor(RUCode), y = mean)) +  

  geom_bar(stat = "identity", fill = "gray", color = "black", width = 

0.7) + 

  labs(x = "Rural-Urban Codes", y = "ILI residuals") + 

  scale_y_continuous(limits = c(-0.5, 0.5)) + 

  geom_errorbar(stat = "identity", ymin = pop$mean - (pop$mean < 

0)*pop$stderror, ymax = pop$mean + (pop$mean > 0) * pop$stderror,  

color = "black", width = 0.7) + 

  geom_hline(yintercept = 0.0, linetype = "solid", color = "black") + 

  theme(axis.line = element_line(color = "black"),  

        panel.background = element_rect(color = "black", fill = NA),  

        panel.grid = element_blank(), 

        axis.text = element_text(color = "black", size = 15), 

        axis.title = element_text(color = "black", size = 20)) 

bars_pop 

 

#Figure 5.2C - bar plot of interaction residuals by poverty category 

#calculate mean, standard deviation, and standard error of residuals 

for each poverty category 

mean_pov <- aggregate(ratioresid$bothresid, by = 

list(ratioresid$povcat), mean, na.rm = TRUE) 

sd_pov <- aggregate(ratioresid$bothresid, by = list(ratioresid$povcat), 

sd, na.rm = TRUE) 

sterr_pov <- aggregate(ratioresid$bothresid, by = 

list(ratioresid$povcat), st.err) 

pov <- merge(mean_pov, sd_pov, by.x = "Group.1", by.y = "Group.1") 

pov <- merge(pov, sterr_pov, by.x = "Group.1", by.y = "Group.1") 

names(pov) <- c("PovCat", "mean", "sd", "stderror") 

 

bars_pov <- ggplot(pov, aes(x = factor(PovCat), y = mean)) +  

  geom_bar(stat = "identity", fill = "gray", color = "black", width = 

0.7) +   

  labs(x = "Poverty Category", y = "ILI residuals") + 

  scale_x_discrete(limits = c(1, 2, 3, 4, 5, 6)) + 

  scale_y_continuous(limits = c(-0.5, 0.5)) + 

  geom_errorbar(stat = "identity", ymin = pov$mean - (pov$mean < 

0)*pov$stderror, ymax = pov$mean + (pov$mean > 0) * pov$stderror,  

color = "black", width = 0.7) + 

  geom_hline(yintercept = 0.0, linetype = "solid", color = "black") + 

  theme(axis.line = element_line(color = "black"),  

        panel.background = element_rect(color = "black", fill = NA),  

        panel.grid = element_blank(), 

        axis.text = element_text(color = "black",size = 15), 

        axis.title = element_text(color = "black",size = 20)) 

bars_pov 


