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ABSTRACT

The interplay of algebra and combinatorics is fruitful in both fields: combinatorics provides

algebraic structures with tractable realizations, while algebra underpins combinatorial objects with

a rigorous framework. Pioneered by Hochster and Stanley, interest in combinatorial commuta-

tive algebra has grown rapidly, often including techniques from simplicial topology and convex

geometry.

This thesis presents two main results that combine commutative algebra and combinatorics.

The first result considers the Cohen–Macaulayness of a lattice ideal and its associated toric ideal.

Despite the deep algebraic connection between these two ideals, we produce infinitely many ex-

amples, in every codimension, of pairs where one of these ideals is Cohen–Macaulay but the other

is not.

The second result describes the free resolution of the ground field over the quotient ring by a

specific type of lattice ideal, that defining a rational normal 2-scroll. This chapter also includes a

computation of the Betti numbers of the ground field when resolved over the ring coming from an

arbitrary rational normal k-scroll.
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1. INTRODUCTION AND BACKGROUND

1.1 Introduction

Combinatorial commutative algebra uses combinatorial tools to answer questions in algebra.

Often, algebraic questions are broad and abstract, and a combinatorial realization gives a tangible

way to study algebraic objects and properties.

One central object of study in commutative algebra is the minimal free resolution of a module.

We give a rigorous definition in Definition 1.2.12, but provide an overview and two introductory

examples here. For a module M with generators m1, . . . ,mr over a ring A, we can ask what

the relations among these generators are. We can write this down explicitly by mapping a free

module F0 of rank r onto M that takes the ith basis element of F to mi ∈ M . The relations

among the generators of M , called the syzygies, are given by the kernel K0 of our surjective map

f0 : F0 →M .

This kernel K0 is in its own right an A-module, with generators k1, . . . , ks. These generators

have relations among each other, so we can map a rank s free module F1 onto K0 in F0 by taking

the ith basis element of F1 to ki. The relations among the generators of K0 are given in the kernel

K1 of f1 : F1 → F0.

The kernel K1 of the map F1 → F0 is also an A-module, generated by some `1, . . . , `t. To

find the relations among the `i we map an A-module F2 of rank t onto K1 in F1 by taking the ith

basis element of F2 to `i. The relations among the generators of K1 are given in the kernel K2 of

f2 : F2 → F1.

Now, rinse and repeat: this process can be continued! At each step, we uncover relations among

the generators of the module we map onto, which themselves represent relations of a module we

map onto, which themselves represent relations... And so on.

We can see that this is an exact sequence, that is, the image of each map is the kernel of the

next. Furthermore, if we fix a basis for our free modules, these relations are then encoded as the
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columns of the matrices we use to represent the maps. We will give both a schematic and a concrete

example.

· · · −→ F2


relations among the

relations among the

generators of M


−−−−−−−−−−−−−−−−→ F1

relations among the

generators of M


−−−−−−−−−−−−−−−−→ F0

a system of

generators of M


−−−−−−−−−−−−−→M

This process, so far loosely defined, benefits from an imposition of minimality; we do not want

to repeat generators or relations. Unfortunately, for a general module, the cardinality of a minimal

generating set is not well-defined. Take, for example, the ideal 〈4, 6〉 = 〈2〉 in the integers, but the

generators 4 and 6 are both necessary to generate the ideal. However, over a ring with a unique

maximal ideal m, the cardinality of a minimal set of generators is well-defined. A strange-looking

condition, that each entry of the matrix representing the ∂i is contained in m, ensures that we

simultaneously minimize the ranks of the Fi, making the idea of a minimal free resolution precise.

Even more miraculously, this resolution turns out to be unique up to chain isomorphism, a true

invariant of our module M .

Example 1.1.1. Take the module I = 〈xy − z2, z2w,w3〉 in S = C[x, y, z, w]. Because I has 3

minimal generators, our first free module F0 will be S3. The map f0 : F0 → I is

f0 =

[
xy − z2 z2w w3

]
.

If we use m1,m2,m3 to denote xy − z2, z2w, and w3 respectively, then the minimal relations

among the generators of I are

0 = −z2wm1 +(xy − z2)m2

0 = −w3m1 −w2m2 +xym3

0 = −w2m2 +z2m3

All other relations among the mi are combinations of those written above. Therefore, if we use

2



e1, e2, e3 as the basis for F0 = S3, then the kernel K0 = ker(f0) is generated by

k1 = −z2w e1 +(xy − z2) e2

k2 = −w3 e1 −w2 e2 +xy e3

k3 = −w2 e2 +z2 e3

This kernel K0 is generated by 3 elements, so F1 = S3. The map f1 : S3 → S3 takes the basis

of F1 and maps it onto K0, so

f1 =


−z2w −w3 0

(xy − z2) −w2 −w2

0 xy z2

 .

We can see that the columns of f1 each correspond to a relation among the generators of I .

The generators of the kernel K1 = ker(f1) have only one relation

0 = w2 k1 − z2 k2 + xy k3.

Therefore, if we use ε1, ε2, ε3 for the basis of F1 = S3, a basis for the kernel K1 = ker(f1) is

given by

`1 = w2 ε1 − z2 ε2 + xy ε3.

This kernel K1 is generated by one element, so F2 = S1 and the map f2 : S → S3 is

f2 =


w2

−z2

xy

 .

The kernel of f2 is zero, i.e. `1 has no non-trivial relations. Therefore F3 and all subsequent Fi

are 0.

3



Sewing this all together, the minimal free resolution of I as an S-module is

0→ S
f2−→ S3 f1−→ S3 f0−→ I → 0.

The zero at the end is often added so that every spot in our sequence is exact, that is, the kernel of

each map is the image of the next.

Example 1.1.1 is finite in the sense that Fi = 0 for i ≥ 3. The fact that this iterative mapping

onto kernels peters out is a priori not guaranteed by the construction, and is, in fact, rarely the

case. It is only because I is a module over the polynomial ring S that this termination occurs. For

modules over general rings, resolutions are typically infinite, even in very simplistic examples.

Example 1.1.2. Let A = k[x]/〈x2〉. The minimal free resolution of k = A/〈x〉 as an A-module is

· · · ·x−→ A
·x−→ A

·x−→ A
·x−→ A→ k→ 0.

This infinite length, along with the frequent failure of techniques used for S-modules, makes

finding explicit minimal free resolutions over more general rings much more difficult. Chapter 3,

however, presents explicitly the minimal free resolution for the ground field k over a family of

rings coming from rational normal scrolls.

Besides giving a full presentation of the module and its relations, many of algebraic properties

can be understood from a minimal free resolution. Chapter 2 focuses on the Cohen–Macaulay

property, while Chapter 3 focuses on the Koszul property, both defined in subsection 1.2.3. The

Cohen–Macaulay property is often used as a baseline algebraic “niceness” qualifier; in the words

of Hochster, “life is really worth living” in a Cohen–Macaulay ring [Hoc78, p.887].

The context that we explore these properties is that of lattice and toric ideals, defined in sub-

section 1.2.2. These binomial ideals have deep combinatorial properties, often allowing us to

understand algebraic aspects like the Cohen–Macaulay property from an associated combinatorial

object.

4



We will give two examples previewing the constructions from Chapters 2 and 3.

1.1.1 Preview of Chapter 2

Consider the rank 2 lattice L in Z4 generated by the columns of the matrix



14 1

0 −5

−16 1

2 3


.

To a lattice in Zn, one can associate a binomial lattice ideal IL = 〈xa − xb | a − b ∈ L 〉 ⊆

C[x1, . . . , xn]. For our lattice L , the lattice ideal is simply

IL = 〈x14
1 x4 − x16

3 , x1x3x
3
4 − x5

2〉.

Note that there are some “holes” in our lattice, that is, there are elements u in L where not all

rational multiples of u are in L , despite having integer entries. For example, (7, 0,−8, 1) is not in

L , though 2(7, 0,−8, 1) = (14, 0,−16, 2) is in L . With this in mind, we define the saturation of

L , L sat = {u |mu ∈ L for some m ∈ N}. This saturated lattice is generated by the columns of

the matrix



1 2

2 −3

−2 −1

−1 2


.

The corresponding lattice ideal for L sat is

IL sat = 〈x1x3x
3
4 − x5

2, x1x
2
2 − x2

3x4, x
2
1x

2
4 − x3

2x3, x
3
1x4 − x2x

3
3, x

4
1x2 − x5

3〉.

5



The ideal IL sat is prime, while IL is not. In fact, IL sat is a minimal prime of IL , so there is

a strong algebraic connection between the two. One can check, perhaps in the computer algebra

system Macaulay2 [GS], that IL is Cohen–Macaulay, while IL sat is not.

However, this is not always the case. Consider the lattice L generated by the columns of



−1 6

1 7

12 −7

−12 −6


.

The saturation of L , the lattice L sat, is generated by the columns of



1 2

1 3

−2 1

0 −6


.

The corresponding lattice ideals are

IL = 〈x6
1x

7
2 − x7

3x
6
4, x

7
1x

6
2x

6
4 − x1

39, x2x
12
3 − x1x

12
4 , x

5
1x

8
2x

5
3 − x18

4 〉

and

IL sat = 〈x1x2 − x2
3, x

2
1x

3
2x3 − x6

4〉.

One can check that IL sat is prime and Cohen–Macaulay, while IL is neither. This pair of pairs

show that there is no way to deduce the whether one of IL , IL sat is Cohen–Macaulay just by

checking if the other is Cohen–Macaulay, at least when our lattice has rank 2. Chapter 2 gives a

method for constructing such pairs L and L sat of rank 2, then building on those small examples

to create examples of every rank. The methods invoke the combinatorics of lattice ideals to give

criteria for being Cohen–Macaulay.

6



1.1.2 Preview of Chapter 3

Minimal free resolutions have enjoyed a rich history of study. The most common setting is

resolutions over the polynomial ring. Though still not entirely understood, this is the most tractable

environment, not least because Theorem 1.2.21 guarantees that a minimal free resolution over the

polynomial ring must have Fi = 0 for large enough i.

Minimal free resolutions over other rings, even quotient rings of the polynomial ring, fail to

satisfy Hilbert’s Syzygy Theorem miserably, and, consequently, the resolutions do not terminate.

This is coupled with an often exponential growth in the ranks of each of the free modules, making

these resolutions almost impossible to wrangle.

However, in the case when the ring is a quotient of the polynomial ring by a specific type of

lattice ideal, one arising from a rational normal 2-scroll, the resolution is presented in Chapter 3.

The resolution is shockingly structured, allowing us to write it out explicitly.

We illustrate our results in an example. Consider R = k[x1, . . . , x6]/I , where I is the ideal of

2× 2 minors of the matrix  x1 x2 x4 x5

x2 x3 x5 x6

 .
We can also check that I is the lattice ideal corresponding to the saturated lattice in Z6 generated

by the columns of the matrix 

1 1 0

−2 −1 2

1 0 −2

0 −1 −1

0 1 0

0 0 1


.

The ideal I gives the defining equations of the rational normal scroll S(2, 2), an algebraic variety

defined fully in Definition 3.0.1. In this case, the minimal free resolution of the ground field k over

7



R is

· · · → R64·3i−3 ∂i−→ · · · ∂4−→ R64 ∂3−→ R21 ∂2−→ R6 [x1 x2 ··· x6]−−−−−−−→ R→ k→ 0

The matrices giving the differentials ∂i are highly structured. Throughout this work, we adopt

the following notations: 0p×q denotes a zero matrix of size p × q; where it causes no confusion,

zero blocks or entries of a matrix are indicated by 0 or simply left empty; 1` is the ` × ` identity

matrix; direct sum of matrices denotes concatenation of blocks along the main diagonal (with

off-diagonalblocks equal to zero). With these conventions,

∂2 =


ϕ0

x4

ϕ0

x4

x4 x5 x6

ϕ0

−x1 −x2 −x3

ϕ0

−x3

−x3



where ϕ0 =

[
x2 x3 x5 x6

−x1 −x2 −x4 −x5

]
;

∂3 =



ϕ⊕41

x4 · 18

−x3 · 18

−ϕ0

−ϕ0

−ϕ0

−ϕ0



where

ϕ1 =


x2 x3 x5 x6 x4 0 0 0 0 0 0 0

−x1 −x2 −x4 −x5 0 x4 x5 x6 0 0 0 0

0 0 0 0 −x1 −x2 −x3 0 x2 x3 x5 x6

0 0 0 0 0 0 0 −x3 −x1 −x2 −x4 −x5

; and for i ≥ 4,
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∂i =

 ϕ⊕4i−2

x4 · 18·3i−3

−x3 · 18·3i−3

−ϕ⊕4i−3



where

ϕ2 =



ϕ1
x1 x2 x4 x5

0 0 0 0

−x2 −x3 −x5 −x6

x1 x2 x4 x5 −x2 −x3 −x5 −x6

x1 x2 x4 x5 −x2 −x3 −x5 −x6

x1 x2 x4 x5

0 0 0 0

ϕ1

−x2 −x3 −x5 −x6


and ϕi = ϕi−1

⊕
ϕ⊕3
i−2

⊕
ϕi−1 for i ≥ 3.

Chapter 3 gives the general construction for these resolutions, as well as a computation for the

ranks of the free modules in a slightly more general case, where the ambient ring is the quotient by

the defining ideal of a rational normal k-scroll.
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1.2 Background

Throughout this work, assume all rings are commutative rings with unity. We adopt the con-

vention that k is a field and S = k[x1, . . . , xn] is the polynomial ring over k with n indetermi-

nates. In this setting, we will use multinomial notation, that is, for an integer vector u ∈ Nn,

we use xu to denote the monomial xu1xu2 · · · xuN . We include 0 in the natural numbers, that is,

N = {0, 1, 2, . . .} and use [n] to denote the set {1, . . . , n}. Foundational material on modules can

be found in [Hun80] and [DF04], while the material on Gröbner bases can be found in [CLO15].

1.2.1 Gradings and Free Resolutions

Definition 1.2.1. Let G be an abelian monoid. If we can decompose a ring A into abelian groups

in the following way

A =
⊕
g∈G

Ag satisfying AgAh ⊆ Ag+h for all g, h ∈ G,

we say A is a graded, or G-graded, ring. If an element a ∈ Ag, we say a is homogeneous of degree

a and write degG(a) = g, or just deg(a) = g if G is clear from context. If I is an ideal of A

generated by homogeneous elements, we call I a homogeneous ideal.

Though this definition is for anyG, the most commonly seen examples use the familiar monoids

N, Z, Nn, or Zn.

Remark. Often multiple gradings can exist for the same ring. The polynomial ring S in n variables

can be graded both byN and byNn. If you set Sd to be the k-vector space of homogeneous degree

d polynomials, i.e. consider deg(xi) = 1, this gives an N-grading. If you set Su to be the k-vector

space spanned by the monomial xu, i.e. consider deg(xi) = ei where ei is the length n vector with

a 1 in the ith spot and 0’s everywhere else, this gives an Nn-grading.

A graded ring may mimic the behavior of a local ring in the following sense.

Definition 1.2.2. An N-graded ring A is called graded local if A has a unique homogeneous

maximal ideal. As in the notation for a local ring, we call this maximal ideal m.
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In particular, the N-graded polynomial ring is graded local. Throughout this work, definitions

and results stated for local rings hold for graded local rings (and in particular S).

There is a corresponding notion of a graded module when working with graded rings.

Definition 1.2.3. Let A =
⊕
g∈G

Ag be a graded ring. If we can decompose an R-module M in the

following way

M =
⊕
g∈G

Mg satisfying Ag ·Mh ⊆Mg+h for all g, h ∈ G,

we say M is a graded module. The Mg are called the graded components, or graded pieces, of M.

These gradings extend to maps between graded modules.

Definition 1.2.4. Let A be a G-graded ring. An A-module homomorphism f : M → N is called

a graded map (or homogeneous map) of degree g if f(Mh) ⊆ Ng+h.

Given a map between graded modules, it is often convenient if it preserves degree. We can

force this by introducing a shift to the graded components of M by some g ∈ G, which we denote

by M(g).

Definition 1.2.5. Let M be a graded module. The module M(g), called the gth twist of M , is the

graded module that is isomorphic to M and has graded components M(g)h = Mg+h.

Example 1.2.6. Consider the ring C[x] as graded by N and the map of graded C[x]-modules

C[x] → C[x] that takes f to x2f . This map takes elements in C[x]i to elements in C[x]i+2, an

unfortunate consequence of multiplying by a degree 2 element. If we would like the map to go

between components of the same degree, we can introduce an articial twist and consider it as a

map C[x](−2) → C[x]. Now the map takes the ith graded component C[x](−2)i = C[x]i−2 to

the ith graded component C[x]i.

With these twists, we can define the graded analogue of free modules.
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Definition 1.2.7. Let A be a graded ring. An A-module M is a graded free module if M is the

direct sum of modules A(g) for various g ∈ G.

With this language of grading in hand, we take a moment to discuss gradings in the polynomial

setting.

The most common gradings of S are by N or by Nn, as discussed in Remark 1.2.1. These

gradings, besides being extremely natural, offer many desirable qualities that may not carry over

to an arbitrary grading.

Each grading of S by an abelian group G comes with its degree map, which can be considered

as a map deg : Zn → G where deg(ei) = degG(xi). We will call the kernel of this map K.

Theorem 1.2.8. [MS05, Theorem 8.6] The following conditions are equivalent for a polynomial

ring S graded by an abelian group G.

1. The only polynomials of degree 0 are constants, i.e. S0 = k.

2. For all g ∈ G, the k-vector space Sg is finite dimensional.

3. For all finitely generated graded S-modules M and all g ∈ G, the k-vector space Mg is

finite dimensional.

4. The only nonnegative element in K is 0, i.e. K ∩Nn = 0.

Definition 1.2.9. If any of the equivalent conditions of Definition 1.2.8 hold for a torsion-free

abelian group G, then we call the grading of S by G positive.

With a decomposition of a modules into its graded components, we may be interested in the

relative sizes of the graded components of M . Though the following definitions can be extended

to all positive gradings of S (and indeed to other graded rings), we will limit ourselves to the most

basic context, that when S is graded by N.
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Definition 1.2.10. Let M be a finitely generated graded module over S considered with the N

grading. For a nonnegative integer d, the Hilbert function of M

HM : N→ N (1.1)

d 7→ dimkMd (1.2)

returns the dimension of the graded component Md as a k-vector space. If we arrange this data in

a formal power series, we call it the Hilbert series of M , denoted HilbM(t) =
∑
d≥0

HM(d)td.

Example 1.2.11. Take M = S. Then HS(d) is the number of monomials in n variables of degree

d. A quick combinatorial computation shows that this is
(
n+d−1
d−1

)
. Therefore the Hilbert series is

HilbM(t) =
∑
d≥0

(
n+ d− 1

d− 1

)
td =

1

(1− t)n
.

Though the Hilbert series captures much of the structure of the module and its graded compo-

nents, it is difficult to see how these pieces fit together. An alternate display of the module structure

is given by a minimal free resolution, sketched out in the introduction.

Definition 1.2.12. For any ring A and A-module M , a projective resolution of M is a chain com-

plex

F• : · · · ∂i+1−−→ Fi
∂i−→ · · · ∂2−→ F1

∂1−→ F0
∂0−→M → 0,

where each Fi is a projective module and F• is exact, that is, ker ∂i = Im ∂i−1 for every i ≥ 1 and

Im ∂0 = M . If each Fi is, in fact, free, we call F• a free resolution.

In the case where (A,m) is a (graded) local ring, the idea of projective and free modules

coincide. We say F• is minimal if ∂kFk ⊆ mFk−1. In the case where A is a graded ring, we say F•

is graded if the Fi are graded free modules, and the ∂i are homogoneous maps of degree 0.

There are certainly many different projective or free resolutions of a given module M . For a

given resolution F•, we can describe its length, and in turn use this to define an invariant of our

module M that roughly captures “how far” a module is from being projective.
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Definition 1.2.13. The length of a resolutionF• is sup{i |Fi 6= 0}. For a moduleM , the projective

dimension of M is

pdA(M) := min{r | r = length of a projective resolution of M}.

If M has no finite-length projective resolutions, we say pdA(M) =∞.

The criterion for minimality simply means that any matrix representing the ∂i has entries in m.

The choice of the word “minimal” for this definition comes from the following fact.

Lemma 1.2.14. A free resolution F• is minimal if and only if, for each i, a basis of Fi−1 maps onto

a minimal set of generators for coker ∂i = Fi−1/ Im ∂i.

The proof utilizes Nakayama’s Lemma (see, for example, [Eis95, Lemma 19.4]).

While there exist many free resolutions of M , minimal free resolutions are unique to M , up

to chain isomorphism. The uniqueness of the minimal free resolution allows us to define the

following invariant.

Definition 1.2.15. For a minimal free resolution F• of M , the Betti numbers βAi (M) of M are the

ranks of the free modules Fi. In the case where F• is a graded minimal free resolution, then we can

write each of the free modules as Fi =
⊕
g∈G

A(−g)βi,g . We call the βi,g the graded Betti numbers.

Note that βi(M) =
∑
g∈G

βi,g(M). Furthermore, pdA(M) = max{r | βr 6= 0}.

Example 1.2.16. Let I = 〈xy − z2, xw + zw, z4〉 ⊆ k[x, y, z, w] = S. Then S/I has the minimal

graded free resolution

F• : 0→ S2(−7)
∂3−→

S(−4)

⊕

S3(−6)

∂2−→

S2(−2)

⊕

S(−4)

∂1−→ S
∂0−→ S/I → 0,
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where ∂0 is the usual quotient map and the remaining maps are

∂1 =

[
xy − z2 xw + zw z4

]
;

∂2 =


−xw − zw −z4 0 z3w

xy − z2 0 −z4 −yz3

0 xy − z2 xw + zw yw + zw

 ;

and ∂3 =



0 z3

−w 0

y −y − z

−z x+ z


.

From the resolution, we see that the graded Betti numbers are

β0,0 = 1;

β1,2 = 2 and β1,4 = 1;

β2,4 = 1 and β2,6 = 3;

and β3,7 = 2

The coarser Betti numbers are simply

β0 = 1; β1 = 3; β2 = 4; and β3 = 2.

The Hilbert series and minimal free resolution of an S-module are not independent of each

other, and, in fact, fit together in the following way.

Theorem 1.2.17. [EH12, Proposition 4.27] For a finitely generated S-module M considered with

the N-grading, the Hilbert series of M and the graded Betti numbers of M are related by the
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following equality:

HilbM(t) =
Q(t)

(1− t)n
with Q(t) =

∑
i≥0

(−1)i

(∑
j≥0

βi,jt
j

)
.

Example 1.2.18. We demonstrate with the ideal from Example 1.2.16. The Hilbert series of S/I

in this case is

HilbS/I(t) =
1− (2t2 + t4) + (t4 + 3t6)− (2t7)

(1− t)4
,

which simplifies to

HilbS/I(t) =
1− 2t2 + 3t6 − 2t7

(1− t)4
.

Both the Hilbert series and Betti numbers of an ideal I ⊆ S are closely tied to the same

invariants for its initial ideal in≺(I) under some monomial order ≺. The Hilbert function are

preserved under initial degeneration, while the Betti numbers for the initial ideal serve as an upper

bound on the Betti numbers of the ideal. These statements are given precise formulation in the

following two propositions.

Proposition 1.2.19. (cf. [EH12, Proposition 4.29]) The Hilbert series of S/I is the same as the

Hilbert series of S/ in≺(I), that is,

HilbS/I(t) = HilbS/ in≺(I)(t)

This follows from the fact that the Hilbert functions of both quotient rings are the same: the

monomials that form a basis for a given degree are the same in both S/I and S/ in≺(I).

Proposition 1.2.20. (cf. [EH12, Theorem 6.8] Let I ⊆ J ⊆ S be homogeneous ideals in S. Then

β
S/I
i,j (S/J) ≤ β

S/ in I
i,j (S/ in J).

In particular, if I = 0, then

βSi,j(S/J) ≤ βSi,j(S/ in J).
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The bare definitions of minimal free resolutions do not imply any sort of controlled behavior,

not in the Betti numbers and not in the differentials ∂i. However, in the particular case that we

consider modules over the polynomial ring S, the following theorem ensures a particular finiteness.

Theorem 1.2.21 (Hilbert’s Syzygy Theorem). Every finitely generated module M over S has a

free resolution where Fi = 0 for i > n.

Hilbert’s Syzygy Theorem is very far from true for general rings, as seen in Example 1.1.2.

Because they directly reflect a module’s internal structure, the innards of a minimal free resolu-

tions are as varied and complicated as the modules they resolve. Free resolutions over polynomial

rings have been the focus of intense study: there are various approaches to producing minimal free

resolutions over S that vary from the combinatorial to the computational. Over more general rings,

however, free resolutions are typically infinite, and are consequently harder to work with. On top

of their infinite length, Betti numbers become very large; for example, a result of Avramov [Avr98]

guarantees that, if R is not a complete intersection (see Definition 1.2.44), the Betti numbers of

the field k as an R-module grow exponentially. Despite these challenges, a particular family of

infinite minimal free resolutions is presented Chapter 3.

1.2.2 Lattice and Toric Ideals

Definition 1.2.22. Let L ≤ Z
n be a lattice, that is, a subgroup of Zn. The lattice ideal corre-

sponding to L is

IL := 〈xa − xb | a, b ∈ Nn and a− b ∈ L 〉 ⊂ k[x].

For u ∈ Zn, write u = u+ − u−, where u+, u− ∈ Nn are defined via (u+)i =

 ui ui ≥ 0

0 ui < 0
.

It is not hard to check that

IL = 〈xu+ − xu− |u ∈ L 〉.
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For B ∈ Zn×m of full rank m, we set ZB to be the sublattice of Zn generated over Z by the

columns of B. By construction, ZB is a rank m lattice. Without loss of generality, we may assume

that B contains no zero rows, for if a row of B is zero, the lattice ZB can be naturally embedded

in Zn−1. This gives the following algebraic implication for IL .

Theorem 1.2.23. [ES96, Corollary 2.2] The codimension of a lattice ideal IL equals the rank of

L .

We assume throughout that we work with a positive lattice L , meaning that L ∩Nn = {0}.

This positivity condition ensures that IL is homogeneous with respect to some Z-grading of k[x]

for which the values deg(xi) are positive integers. This places certain stipulations on the matrix B.

Definition 1.2.24. A matrix B is mixed if every column contains a strictly positive and strictly

negative entry.

Remark. For a positive lattice ZB, the matrix B must be mixed.

Definition 1.2.25. The saturation of a lattice L ⊂ Zn is L sat := {u ∈ Zn |m·u ∈ L for some m ∈

N}. We say that L is saturated if L = L sat.

By [ES96, Corollary 2.2], if k is algebraically closed, then IL is prime if and only if L is

saturated. (Lattice ideals corresponding to saturated lattices are always prime, it is the converse of

this assertion that requires the base field assumption.) We remark that a lattice L is positive if and

only if L sat is positive.

Remark. If a lattice L is given as the Z-span of some B ∈ Z
n×m of full rank m, then L is

saturated if and only if the gcd of all m×m minors of B is 1 (see [FS96]).

Lattice ideals corresponding to saturated lattices are known as toric ideals. Toric ideals have

the following equivalent definition.

Definition 1.2.26. Given a collection A = {α1, . . . , αn} ⊆ Nd, consider it as both a configuration

of n points in Rd and the d × n matrix with ith column αi. To avoid pathologies, assume d ≤ n

and rankA = d. This configuration A induces a map between polynomial rings:
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ϕA : k[x1, . . . , xn]→ k[t1, . . . , td]

xi 7→ tαi

If we extend this map, we see it takes a monomial xu to ϕA(xu) = tAu. The toric ideal IA

associated to A is the kernel of ϕA. The toric ring, or semigroup ring, R associated to A is the

image of the map ϕA, which may also be viewed as

R = k[tα1 , tα2 , . . . , tαn ] ∼= k[x1, . . . , xn]/IA.

The semigroup in question is the semigroup NA. This formulation of a toric ideal makes it

clear that the ideal IA is prime, as the quotient by IA is an integral domain. The ideal IA is a

prime binomial ideal, and, in particular, can be written as IA = 〈xu − xv | Au = Av〉. From

this expression, we can see that a toric ideal equivalent to a saturated lattice ideal: in particular,

IL = IA when L = kerA.

Because IA = 〈xu − xv | Au = Av〉, we can see that IA is always homogeneous with respect

to the grading deg(xi) = αi. The ideal IA is also homogeneous with respect to the usual grading

deg(xi) = 1 if the αi lie on a common affine hyperplane in Rd [CLS11, Theorem 2.1.4], in which

case IA defines a projective variety. Toric varieties are a well-loved object in algebraic geometry

and an active research area both in their own right and in conjunction with many other mathematical

fields such as polytopes and polyhedra, combinatorics, commutative algebra, symplectic geometry,

and topology; various texts in the last forty years describe these varieties [CLS11, Ewa96, Ful93,

Mic18, Oda88, Stu96] as a cohesive subject, though interest in these objects from individual angles

predates this perspective. The discrete geometry of the configuration A and the poset structure of

the semigroupNA often inform the algebraic properties of S/IA, giving multiple access points for

understanding these rings.
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Example 1.2.27. Take n = 4 and consider

A =

 1 1 1 1

0 1 2 3

 .
The map from Definition 1.2.26 is the map ϕA : k[x1, . . . , x4]→ k[t1, t2] where

x1 7→ t1; x2 7→ t1t2; x3 7→ t1t
2
2; and x4 7→ t1t

3
2.

The corresponding toric ideal is

IA = 〈x1x3 − x2
2, x2x4 − x2

3, x1x4 − x2x3〉.

The corresponding lattice ideal comes from the rank 2 lattice L ≤ Z4

kerA = L = Z



1 0

−2 1

1 −2

0 1


.

Because L is saturated, the lattice ideal and the toric ideal are equal, i.e. IL = IA.

We can spot the two columns of B appearing in the exponents for the first two generators of

IL . Note that the set {xu+ −xu− |u is a column of B} is not sufficient to generate the entire ideal,

as 〈x1x3 − x2
2, x2x4 − x2

3〉 ( IL .

There is a strong relationship between the lattice ideals IL and IL sat , namely, IL sat is a minimal

prime of IL . Furthermore, if k is algebraically closed, every associated prime of IL is isomor-

phic to IL sat by a rescaling of the variables [ES96, Corollary 2.2]. On the other hand, toric ideals

are better understood than lattice ideals. For instance, there is a combinatorial/topological crite-

rion [TH86] to decide when a quotient by a toric ideal is Cohen–Macaulay (see Definition 1.2.40),
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but there is no such characterization of the Cohen–Macaulay property for lattice ideals currently

available in the literature, beyond certain special cases [PS98b, PS98a, Sab11, Eto99]. At the root

of most of these results is a topological method for computing the graded Betti numbers of a lat-

tice ideal as the ranks of the homology groups of certain simplicial complexes (see Lemma 2.2.2);

however, these simplicial complexes are not easily controlled in general.

1.2.3 Algebraic Properties of Ideals and Resolutions

Many algebraic properties have interpretations from the perspective of minimal free resolu-

tions. This section will, in particular, define what it means for a ring to be Cohen–Macaulay or

Koszul, and formulate these definitions in terms of minimal free resolutions. These definitions can

be found in greater detail in [Eis95], [Mat89], [BH93], and [EH12].

The Cohen–Macualay property occupies a central place in commutative algebra. Cohen–

Macaulay rings form a broad class of rings that includes various interesting examples, but remains

fairly well-understood. In the “onion” of desirable algebraic properties, the Cohen–Macaulay

property is the outer skin.

Definition 1.2.28. For a Noetherian ringA and anA-moduleM , a sequence of elements (a1, . . . , ar)

in A is called a regular sequence for M (or an M -sequence) if ai is a non-zero divisor on

M/〈a1, . . . , ai−1〉M for each i and M/〈a1, . . . , ar〉M is not 0.

Definition 1.2.29. If IM 6= M , the depth of the ideal I on the module M is the maximum length

of a maximal M -sequence of elements in I . For this, we write depth(I,M). If (A,m) is a local

ring, we use depth(M) to denote the maximum length of a maximal M -sequence of elements in

m, that is, depth(M) = depth(m,M). In particular, if we consider A as a module over itself, we

write depth(A) = depth(m, A).

One can prove that these M -sequences all have the same length (see [Eis95, Theorem 17.4]),

so depth is a well-defined invariant.

Definition 1.2.30. The Krull dimension of a ring A (often simply called the dimension), denoted

dimA, is the supremum of lengths r of chains of prime ideals P0 ( P1 ( P2 ( . . . ( Pr in A.
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The Krull dimension of an ideal I ( R, denoted dim I , is the Krull dimension of A/I .

Definition 1.2.31. The codimension of a prime ideal I ( A, denoted codim(I), or often called the

height of I , is the supremum of lengths r of chains of prime ideals P0 ( P1 ( . . . ( Pr = I . In

the case that I is not prime, then the codimension of I is the minimum of the codimensions of the

primes containing I .

Example 1.2.32. The dimension of the polynomial ring S in n variables has dimension dimS = n.

One example of a length n chain of primes in S is

〈0〉 ( 〈x1〉 ( 〈x1, x2〉 ( . . . ( 〈x1, . . . , xn〉.

Krull dimension can also be defined in terms of the Hilbert series, in particular when we are

working with modules over the N-graded polynomial ring S.

Proposition 1.2.33. [BH93, Corollary 4.4.14] Let M be a graded S-module with Hilbert series

written as HilbM(t) =
p(t)

(1− t)d
with p(1) 6= 0. The Krull dimension of M is equal to d.

Example 1.2.34. The polynomial ring S has Hilbert series HS(t) = 1
(1−t)n . Therefore S has Krull

dimension n.

Example 1.2.35. Take M to be S/I as in Example 1.2.18. The Hilbert series of S/I is

HilbS/I(t) =
1− 2t2 + 3t6 − 2t7

(1− t)4
.

Both the numerator and denominator are divisible by (1 − t)2, so we can further reduce this to

write the Hilbert series of S/I as

HilbS/I(t) =
−1 + 2t+ t2 + t4 − 2t5

(1− t)2
.

From this we can see that the Krull dimension of S/I is 2.
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Though intuitive, it is not quite correct to simply assume that codim I = dimA − dim I .

However, this will be true in the cases considered in this work.

Remark. If A is a domain that is finitely generated over a field and I ( A is an ideal, then it is true

that codim I = dimA−dim I . In particular, for ideals in the polynomial ring S in n variables, the

codimension is codim I = n− dim I . See the introduction of Chapter 9 (page 226) in [Eis95] for

a discussion of this fact and an example where the equality does not hold.

The definition for Krull dimension and codimension extend to A-modules via a special ideal

connected to M .

Definition 1.2.36. The annihilator of M in A is the ideal AnnA(M) := {a ∈ A | aM = 0}. If the

ring A is clear from context, we simply write Ann(M).

Definition 1.2.37. The Krull dimension of an A-module M is defined as the dimension of the

quotient of A by Ann(M).

This definition of dimension does introduce an awkward ambiguity in the case when M is an

ideal in A, and these two numbers can be quite different. For example, if A is a domain, then

Ann(M) = 0, so dim(M) = dim(A/0) = dimA, whereas dimA/I could be many things. We

establish the convention that, when we write dim I , we always mean dimA/I , not dimA/Ann(I).

Both depth and codimension seem to give some notion of algebro-geometric “size.” These

notions coincide when our object is Cohen–Macaulay.

Definition 1.2.38. Let A be a Noetherian ring such that depth(m) = codim(m) for every maximal

ideal in A.

This definition can be restated in terms of localizations.

Proposition 1.2.39. [Eis95, Proposition 18.8] A Noetherian ring A is Cohen–Macaulay if and

only if the localization Am is Cohen–Macaulay for every maximal ideal m in A.

When A is a local ring, this criterion reduces to a single check and can be extended to A-

modules. The following is the most commonly seen definition of Cohen–Macaulay.
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Definition 1.2.40. Let (A,m) be a Noetherian local ring and M be a finitely generated A-module.

We call M Cohen–Macaulay if the equality depth(M) = dim(M) holds. In particular, the ring

A Cohen–Macaulay if it is Cohen–Macaulay as a module over itself. We call an ideal I Cohen–

Macaulay if A/I is Cohen–Macaulay as an A-module.

Despite its terse and algebraic definition, the Cohen–Macaulay property has many equivalent

formulations, particularly when considering modules over a polynomial ring S. However, in the

case that A is a quotient of a Noetherian local ring, the Auslander–Buchsbaum formula gives a

characterization of A in terms of its projective dimension and the depth of its parent ring. The

formula is, in fact, true for more general modules over a Noetherian local ring, but this formulation

shall suffice for our purposes.

Theorem 1.2.41. (Auslander–Buchsbaum formula) If A = Q/I , where Q is a Noetherian local

ring, then depthQ(A) = depth(Q)− pdQ(A).

In particular, we can use this formula when A is a quotient of the polynomial ring by an ideal.

Therefore, we have a string of equalities relating the various depths and various dimensions of quo-

tient rings of S that we can use to reformulate the criterion for a ring S/I to be Cohen–Macaulay.

(We must also assume that S has a positive N-grading; this will be the case in all subsequent

material.)

Proposition 1.2.42. A quotient ring R = S/I is a Cohen–Macaulay S-module if pdS(R) =

codim I .

Proof. By Theorem 1.2.41, pdS(R) = depthS − depthR. By the hypothesis, then codim I =

depthS− depthR. Because S is a domain, codim I = n− dimR. We also know that depthS =

n. Therefore n − dimR = n − depthR, and so dimR = depthR, and thus R is Cohen–

Macaulay.

Example 1.2.43. The S-module S/I given in Example 1.2.16 is not Cohen–Macaulay, as its codi-

mension is 2, but its minimal free resolution has length 3.
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Though there are many examples of rings that are Cohen–Macaulay, we will only pause to

identify two: complete intersections and normal semigroup rings.

A general description of complete intersections would take us farther afield than necessary, so

we shall limit our scope to quotient rings of the polynomial ring.

Definition 1.2.44. An S-moduleR is a complete intersection if it can be written asR = S/I where

I is generated by a regular sequence in S. If I is an ideal in S generated by a regular S-sequence,

we may call I itself a complete intersection.

The following is true for all complete intersections.

Theorem 1.2.45. [BH93, Section 2.3] If R is a complete intersection, then R is Cohen–Macaulay.

Chapter 2 explores the relationship between lattice and toric ideals and when they are (or

are not) Cohen–Macaulay. This chapter will use heavily that complete intersections are Cohen–

Macaulay.

The characterization for semigroup rings to be Cohen–Macaulay is combinatorial and depends

on the normality of the underlying semigroup NA.

Definition 1.2.46. A semigroup NA is normal if NA = ZA ∩R+A.

Morally, this means that our semigroup does not have gaps. Though unassuming, this property

turns out to be exactly what we need.

Theorem 1.2.47. [Hoc72, Theorem 1] Let NA be a normal semigroup. Then the semigroup ring

associated to A is Cohen–Macaulay.

Theorem 1.2.47 is the criterion we will use in Chapter 3 to determine if a semigroup ring is

Cohen–Macaulay.

Until this point, the definitions proposed have focused on regular sequences and prime ideals,

eventually culminating in a definition of the Cohen–Macaulay property that can be associated to

the length of a minimal free resolution by Proposition 1.2.42. We might also be interested in
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algebraic properties that can be understood by considering the maps in a minimal free resolutions.

We now turn our attention to the Koszul property. Though we will be focusing on the commutative

case, the definition of Koszul extends to non-commutative algebras.

Let A =
⊕
i≥0

Ai be a standard graded k-algebra, and let βAi (k) be the ith Betti number of k as

an A-module.

Definition 1.2.48. The Poincaré series PA(t) is the formal power series with βAi (k) as the coeffi-

cient of ti, i.e. PA(t) =
∑
i≥0

βAi (k) · ti.

When A is a Koszul ring, there is a strong relationship between the Poincaré series and the

Hilbert series. The following result can be taken as a definition.

Theorem 1.2.49. (cf. [Frö99, Definition-Theorem 1]) A graded algebra A is Koszul if and only if

the following equivalent conditions are satisfied.

1. The minimal graded A-resolution of k is linear, that is, the degree of each map in the reso-

lution is 1.

2. The Hilbert series and the Poincaré series of A satisfy the equality HilbA(−t)PA(t) = 1.

An equivalent formulation for condition 1 of Theorem 1.2.49 is that βAi,j(k) = 0 when i 6= j.

Remark. A Koszul algebra must be defined by exactly quadratic relations.

This comes from the minimal graded resolution of k. Let us denote this resolution

· · · ∂2−→ F1
∂1−→ F0

∂0−→ k→ 0.

The columns of ∂0 are the minimal generators of A and the columns of ∂1 are the relations on

the generators. Because all entries in both maps are degree 1, their composition ∂0∂1 is quadratic,

and it is precisely in this composition that we have the defining relations among the minimal

generators.

Koszul algebras are independently interesting to many mathematicians, boasting a variety of

introductions and surveys [CDNR13, Con14, Frö99, Pri70, PP05]. Though well-studied, there are
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many open questions about their characterization. One such conjecture about the Koszul property

of toric rings is given below.

Conjecture 1.2.50. (Bøgvad’s Conjecture [MP15, Conjecture 8.19] [Stu96, Conjecture 13.9]) The

toric ring of a smooth projectively normal toric variety is Koszul.

The Koszul property has received much attention in combinatorial settings. An early re-

sult [Frö75] states that if R = k[x1, . . . , xn]/I , where I is generated by monomials of degree

two, then R is Koszul. By Proposition 1.2.20 and Condition 1 of Theorem 1.2.49, if R =

k[x1, . . . , xn]/J where J has a quadratic initial ideal, then R is Koszul. For semigroup rings,

a characterization of the Koszul property is an open problem, see [Pee07] for a survey of known

results on resolutions over semigroup rings.

In many cases of rings that are known to be Koszul, the resolution of the residue field is not

explicitly known. For semigroup rings, we are aware only of resolutions over the rings associated

to rational normal curves [GHP08]. In fact, [GHP08] gives the minimal free resolution for any

monomial ideal in this case. In a similar vein, Section 3 discusses the resolution of the field k over

a generalization of the rational normal, the rational normal 2-scroll.

1.2.4 Simplicial Complexes

Though simplicial complexes are combinatorial and topological by nature, there are many con-

structions that use them to glean information about algebraic objects. The material from this sub-

section can all be found in [Sta96]. [MS05, Section 1] also gives an overview of this material.

Definition 1.2.51. A simplicial complex ∆ on vertices [n] is a collection of subsets of [n] that is

closed under taking subsets, that is, if F ∈ ∆ and G ⊆ F , then G ∈ ∆. The elements of ∆ are

called faces and the dimension of a face F is dimF = |F | + 1. In this case, F is called an i-face

of ∆. The dimension of ∆ is max{dimF |F ∈ ∆}.

Because ∆ is closed under taking subsets, it is often expressed by a list of its maximal faces. It

is often convenient to represent a simplicial complex graphically and study the underlying topology

of this realization.
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Example 1.2.52. The set

∆ = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {2, 3, 4}}

is a simplicial complex. It is easier to simply record the maximal faces (with respect to inclusion),

so we can write ∆ = {{1, 2}, {1, 3}, {2, 3, 4}, {4, 5}}.

The simplicial complex ∆ has dimension 2. Figure 1.1 gives the pictorial representation of ∆.

1

2

3

4
5

Figure 1.1: The simplicial complex ∆ from Example 1.2.52.

One assignment of a simplicial complex to an algebraic structure comes from Stanley–Reisner

theory. In particular, this theory provides a correspondence between simplicial complexes and

squarefree monomial ideals.

Definition 1.2.53. The Stanley–Reisner ideal of a simplicial complex ∆ is the squarefree mono-

mial ideal

I∆ = 〈xF |F /∈ ∆〉

generated by the non-faces of ∆. The quotient ring S/I∆ is called the Stanley–Reisner ring of ∆

and is often denoted k[∆].

This correspondence is, in fact, a bijection.

Example 1.2.54. For the simplicial complex ∆ from Example 1.2.52, the corresponding Stanley–
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Reisner ideal is

I∆ = 〈x1x4, x1x4, x2x5, x3x5, x1x2x3〉.

Note that it suffices to take the minimal non-faces of ∆ to generate I∆.

While this correspondence reveals many algebraic aspects of k[∆], the one used in Section 3 is

the formulation of the Hilbert function of k[∆] from the combinatorial data of ∆.

Theorem 1.2.55. The Hilbert series of a Stanley–Reisner ring k[∆] of dimension k can be given

in terms of the face numbers of the corresponding simplicial complex ∆, that is,

Hilbk[∆](t) =
1

(1− t)k+1

k+1∑
d=0

fd−1t
d(1− t)k+1−d,

where fd is the number of d-dimensional faces of ∆.

Example 1.2.56. For the Stanley–Reisner ring k[∆], where ∆ is the 2-dimensional simplicial

complex ∆ from Example 1.2.52, the fd are

f−1 = 1; f0 = 5; f1 = 6; and f2 = 1.

Therefore the Hilbert function of k[∆] = S/I∆ is

Hilbk[∆](t) =
1

(1− t)3
[1(1− t)3 + 5t(1− t)2 + 6t2(1− t) + 1t3].

After simplifying, we see that

Hilbk[∆](t) =
1 + 2t− t2 − t3

(1− t)3
.

Recall that, from Proposition 1.2.19, the Hilbert series of an ideal and its initial ideal are the

same, so if we are examining an ideal I whose initial ideal is squarefree, we can obtain the Hilbert

series of S/I from the Hilbert series of S/ in≺(I), which in turn can be obtained from its simplicial
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realization.

Remark. If the squarefree monomial ideal I∆ is generated by monomials of degree 2, then k[∆] is

a Koszul ring by [Frö75]. In terms of the simplicial complex ∆, this implies, for every T ⊆ [n],

if every pair of elements from T is in ∆, then T is also in ∆. Such a simplicial complex is often

called a flag complex, or a clique complex.

We finish by considering two constructions that are used to make arbitrary rank examples in

Chapter 2: the join and suspension of simplicial complexes.

Definition 1.2.57. The join of two simplicial complexes ∆ and ∆′ is the simplicial complex on the

union of their vertices that has faces F ∪ F ′ where F is a face of ∆ and F ′ is a face of ∆′. If ∆′

is the zero-dimensional simplicial complex with two vertices, then ∆ ? ∆′ is the suspension of ∆,

denoted Σ∆.

In terms of reduced homology, it is known that

H̃j+1(Σ∆;k) ∼= H̃j(∆;k) for j ≥ −1. (1.3)

Example 1.2.58. Let ∆ = {{1, 2}, {2, 3}, {3, 4}, {1, 4}} and ∆′ = {{5, 6}}. Then the join of ∆

and ∆′ is

∆ ?∆′ = {{1, 2, 5, 6}, {2, 3, 5, 6}, {3, 4, 5, 6}, {1, 4, 5, 6}}

and, if we call the two new vertices 7 and 8, the suspension of ∆ is

Σ∆ = {{1, 2, 7}, {2, 3, 7}, {3, 4, 7}, {1, 4, 7}, {1, 2, 8}, {2, 3, 8}, {3, 4, 8}, {1, 4, 8}}.

Pictures for ∆, ∆′, ∆ ?∆′, and Σ∆ are given in Figure 1.2. Note that Σ∆ has hollow interior,

whereas ∆ ?∆′ is solid.
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Figure 1.2: Clockwise from the upper left: the simplicial complexes ∆, ∆′, ∆ ?∆′, and Σ∆ from
Example 1.2.58.
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2. COUNTEREXAMPLES FOR COHEN–MACAULAYNESS OF LATTICE IDEALS ∗

Let n > 2 be an integer.

In this chapter, we construct, for each codimension m ≥ 2, infinitely many matrices B for

which one of IZB, IZBsat is Cohen–Macaulay (in fact, a complete intersection), but the other one

is not. This means that the most obvious place to look for a criterion for the Cohen–Macaulay

property for lattice ideals, namely the associated toric ideals, does not directly yield positive results.

2.1 Lattice Ideals in Codimension 2

In this section we study lattice ideals in codimension 2. We recall results from [PS98b] that

characterize when such ideals are (not) Cohen–Macaulay, and use them to construct examples.

Let L ⊂ Zn be a rank m lattice, and let B = [bij] be an integer n×m matrix whose columns

are a Z-basis of L .

Recall that an integer matrix is mixed if every column contains a strictly positive and a strictly

negative entry. We emphasize that matrices B corresponding to Z-generators of positive lattices

are mixed. A particular type of mixed matrix is described below, as well as its algebraic reflection

in lattice ideals.

Definition 2.1.1. An integer matrix is dominating if it contains no square mixed submatrices.

Theorem 2.1.2. [FS96, Theorem 2.9] Let L ⊂ Z
n be a rank m lattice. The lattice ideal IL

is a complete intersection if and only if L = ZB for some dominating matrix B. In this case,

IL = 〈xu+ − xu− | u is a column of B〉.

This theorem can be restated combinatorially using the following gadget.

Definition 2.1.3. If L = ZB, use bi to denote the ith row of B. The collection

GB := {b1, . . . , bn} ⊆ Zm is called a Gale diagram of L .

∗Parts of this chapter are reprinted with permission from [Lyu88]: “Counterexamples for Cohen–Macaulayness
of Lattice Ideals” by Laura Felicia Matusevich and Aleksandra Sobieska, 2018. Communications in Algebra, 47:6,
2494-2502. Copyright 2019 by Taylor & Francis Group, LLC.
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Any Z-basis for L yields a Gale diagram, which means that Gale diagrams are unique up to

the action of GLm(Z). This elementary combinatorial object gives some insight to the nature of

IL : in the codimension 2 case, Gale diagrams can be used to restate Theorem 2.1.2 and also to

give a characterization for when a lattice ideal is Cohen–Macaulay.

Definition 2.1.4. A Gale diagram GB is imbalanced if bi1 = 0 or bi2 ≥ 0 for each i = 1, . . . , n.

Theorem 2.1.5. [PS98b, Lemma 3.1, Proposition 4.1] Let L ⊂ Zn be a rank 2 lattice.

1. The lattice ideal IL is a complete intersection if and only if L has an imbalanced Gale

diagram GB. In this case, IL = 〈xu+ − xu− | u is a column of B〉.

2. The lattice ideal IL is not Cohen–Macaulay if and only if it has a Gale diagram GB which

intersects each of the four open quadrants of R2.

Because stretching or skewing a lattice ZB corresponds to multiplying B by a nonsingular

2 × 2 integer matrix, it is natural to wonder how such an action transforms GZB and how this

is reflected in the corresponding lattice ideal. We illustrate below how multiplication of B by a

nonsingular 2×2 integer matrix can change a non-Cohen–Macaulay IZB to a complete intersection

and vice-versa.

Proposition 2.1.6. For any 4 × 2 matrix B such that GB touches all four open quadrants of R2

(so that IZB is not Cohen–Macaulay), there exists a nonsingular 2× 2 integer matrix M such that

GBM is imbalanced (so that IZBM is a complete intersection).

Proof. Let b1, . . . , b4 be the rows of B = [bij] and assume that bi lies in the ith open quadrant of

R
2.

If both sets {b1, b3}, {b2, b4} are linearly dependent, let M =
[ −b12 −b22

b11 b21

]
. Since b1 and b2 are

linearly independent, det(M) 6= 0. But every row of BM contains a zero entry, so the correspond-

ing Gale diagram GBM is imbalanced.

Now assume that {b1, b3} are linearly independent. Then the cone of nonnegative combinations

of b1 and b3 contains either the second or the fourth quadrant of R2. Suppose that it contains the

33



b1

b2

b3

b4

v

Figure 2.1: A non-Cohen–Macaulay Gale diagram with new quadrants shaded.

fourth quadrant. Then we can find v = (v1, v2) ∈ Z2 lying in the fourth quadrant of R2 such that

the angles between v and b1, and between v and b3 are both less than π/2, so that b1 · v ≥ 0 and

b3 · v ≥ 0. Since they lie in the same quadrant, b4 · v ≥ 0. Now let M =
[

b22 v1
−b21 v2

]
. Since v

lies in the fourth quadrant, and (b22,−b21) lies in the first, they are linearly independent, and so

det(M) 6= 0. By construction, GBM is imbalanced. See Figure 2.1 for a pictorial illustration of

this argument.

Example 2.1.7. To illustrate Proposition 2.1.6, consider the following example, shown pictorially

in Figure 2.1. Take

B =



3 1

−8 4

−2 −3

7 −2


.
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The Gale diagram shows that the corresponding lattice ideal IZB is non-Cohen–Macaulay by

Theorem 2.1.5. By the construction in Proposition 2.1.6, we can take v = (2,−2) and M =4 2

8 −2

, so that

BM =



20 4

0 −24

−32 2

12 18


.

The Gale diagram of BM is imbalanced, so the ideal IZBM is a complete intersection.

In the next proposition, we determine which imbalanced Gale diagrams can be transformed

into Gale diagrams of non-Cohen–Macaulay lattice ideals.

Definition 2.1.8. If b ∈ R2 r {0}, the ray spanned by b is defined to be {tb | t ∈ R, t ≥ 0}.

If B ∈ Zn×2, we consider the collection of rays spanned by the rows of B, and associate this

collection to the Gale diagram GB. Since we assume all rows of B are nonzero, none of these rays

is a point.

Proposition 2.1.9. Let B be an n × 2-matrix such that GB is imbalanced. There exists a nonsin-

gular 2× 2 integer matrix M such that GBM meets the four open quadrants of R2 (which implies

that IZBM is not Cohen–Macaulay) if and only if GB spans more than three rays.

Proof. Note that if M is a nonsingular 2 × 2 integer matrix, then GB and GBM span the same

number of rays. If GBM meets the four open quadrants of R2, it spans at least four rays, and

therefore, so does GB.

Now assume that GB spans more than three rays. We first consider the case where GB is

contained in the coordinate axes. Then GB must span all four half axes. Using M =
[

1 −1
1 1

]
, we

see that GBM meets the four open quadrants of R2.

Now consider the case where our imbalanced GB is not contained in the coordinate axes (and
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spans at least four rays). Then, since ZB ∩Nn = 0, we have that both the first and second open

quadrants of R2 contain elements of GB, and there is some bj where bj1 = 0 and bj2 < 0.

Consider the rightmost and leftmost elements of GB, that is, the vectors with the smallest

positive and largest negative slopes. Denote them ba = (ba1, ba2) and bd = (bd1, bd2) respectively.

Alternatively, we can characterize this by

arccos(ba1/|ba|) < arccos(bi1/|bi|) < arccos(bd1/|bd|)

for all i such that bi lies in the upper half plane.

Since GB spans at least four rays, there exists bc = (bc1, bc2) ∈ GB between ba and bd, where

we formalize “between" to mean that arccos(ba1/|ba|) < arccos(bc1/|bc|) < arccos(bd1/|bd|). As

this is moderately unappealing, the reader may choose to simply visualize starting at the positive x-

axis and sweeping counter-clockwise, and declaring a vector between two others if they encounter

it after the first vector but before the second.

Now choose s = (s1, s2) ∈ Z2 between ba and bc and t = (t1, t2) ∈ Z2 between bc and bd. We

may assume that s1 > 0 and t1 < 0. Note that s2, t2 > 0.

The matrix

M =

−s2 t2

s1 −t1


is nonsingular, since s and t are linearly independent (they belong to adjacent quadrants of R2).

As stated previously, GB contains at least one element whose first entry is zero, and whose

second entry is negative. Our construction yields the following sign pattern:



ba1 ba2

bc1 bc2

bd1 bd2

0 bj2


M =



− +

+ +

+ −

− −


.
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We conclude that the Gale diagram GBM has an arrangement of vectors in all four open quadrants

of R2, so IZBM is not Cohen–Macaulay. Figure 2.2 illustrates this argument.

bd

bc

ba

bj

t

s

Figure 2.2: An imbalanced Gale diagram with new quadrants shaded. (Reprinted with permission
from [MS19]).

Example 2.1.10. To illustrate Proposition 2.1.9, consider the following example, shown pictorially

in Figure 2.2. Take

B =



3 1

2 4

−5 2

0 −7


.

The Gale diagram shows that the corresponding lattice ideal IZB is a complete intersection by

Theorem 2.1.5. Following the construction in Proposition 2.1.9, we can choose s = (3, 3) and

37



t = (−2, 4), so M =

 −3 4

3 2

 and

BM =



−6 14

6 16

21 −16

−21 −14


.

The Gale diagram of BM touches all open quadrants of R2, so the ideal IZBM is not Cohen–

Macaulay.

The main result in this section brings together Propositions 2.1.6 and 2.1.9.

Theorem 2.1.11. There are infinitely many examples of rank 2 non-saturated lattices L such that

one of IL , IL sat is a complete intersection, and the other one is not Cohen–Macaulay.

Proof. Note that there are infinitely many 4 × 2 integer matrices B with Gale diagram meeting

the four open quadrants of R2 and whose columns span a saturated lattice. Let M as in Propo-

sition 2.1.6. Define L ⊂ Z
4 to be the lattice spanned by the columns BM , so that L sat is the

lattice spanned by the columns of B. We see that IL is a complete intersection, while IL sat is not

Cohen–Macaulay.

Similarly, there are infinitely many B ∈ Zn×2 whose columns span a saturated lattice, and

whose Gale diagram is imbalanced and spans at least four rays. With M as in Proposition 2.1.9,

and L ⊂ Zn the lattice spanned by the columns of BM , we have that IL is not Cohen–Macaulay,

and IL sat is a complete intersection.

Example 2.1.12. We can check with the criterion from Remark 1.2.2 that the lattices ZB in exam-

ples 2.1.7 and 2.1.10 are both saturated. The constructed lattice ideals IZBM have corresponding

toric ideal IZBM sat = IZBsat = IZB. Therefore these are examples where the lattice ideal from

ZBM is a complete intersection but the toric ideal from ZB is not Cohen-Macaulay and vice

versa.
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2.2 Lattice Ideals in Codimension ≥ 3

The goal of this section is to generalize Theorem 2.1.11 to higher ranks. We begin by reviewing

relevant results on Betti numbers of lattice ideals.

Let B ∈ Zn×m of full rank m, and consider R = S/IZB, Γ = Z
n/ZB.

Definition 2.2.1. The congruence classes of Zn modulo Γ are called fibers.

The polynomial ring S is Γ-graded by setting deg(xu) to be the fiber of Γ containing u.

The ideal IZB is homogeneous with respect to this grading, and moreover the quotient R is

finely graded, meaning that its graded pieces have dimension at most one. If C is a fiber of

Γ, we denote the corresponding graded piece of R by RC . This grading gives a decomposition

TorSj (R,k) =
⊕
C∈Γ

TorSj (R,k)C . The multi-graded Betti number of R in degree C is βj,C =

βj,C(R) = dimk TorSj (R,k)C .

The Betti number βj,C can be computed using simplicial homology. For each fiber C of Γ,

define a simplicial complex ∆C on [n], where F ⊆ [n] is a face of ∆C if and only if C contains a

nonnegative vector a whose support contains F .

Lemma 2.2.2. [AH96, Lemma 4.1], [PS98b, Lemma 2.1] The multigraded Betti number βj+1,C(R)

equals the rank of the j-th reduced homology group H̃j(∆C ;k) of the simplicial complex ∆C .

We recall from Proposition 1.2.42 that R is Cohen–Macaulay if and only if βj,C(R) = 0

whenever j > codimS(R).

Since the simplicial complex ∆C is defined using the nonnegative elements of the fiber C, we

consider only those elements when working with specific fibers.

Example 2.2.3. Consider the lattice ZB ⊂ Z
4 where B =

[
2 3 −1 −4

−1 3 5 −7

]T
. For the fiber

C = { (2, 6, 5, 0), (3, 3, 0, 7), (0, 3, 6, 4), (1, 0, 1, 11) }, the simplicial complex ∆C is

a hollow tetrahedron. By Lemma 2.2.2, we see that β3,C(R) = rankk H̃2(∆C ;k) = 1. Since R has

codimension 2, we conclude that R is not Cohen–Macaulay.
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In the previous example, the high syzygy constructed occurs in the fiber C containing (B1)+ +

(B2)+, where B1 and B2 are the columns of B. This turns out to be the case in general.

Proposition 2.2.4. Let B be an n × 2 integer matrix of rank 2 with columns B1 and B2 such that

GB meets the four open quadrants of R2. Let C◦ be the fiber of Zn/ZB containing (B1)+ +(B2)+.

Then β3,C◦(S/IZB) > 0.

Proof. Since GB meets the four open quadrants of R2, we may assume that for 1 ≤ i ≤ 4, the ith

row of B meets the ith quadrant of R2. For convenience, we write the submatrix of B consisting

of its first four rows as: 

t1 t2

y1 y2

z1 z2

w1 w2


with sign pattern



+ +

+ −

− +

− −


.

An element of C◦, different from (B1)+ + (B2)+, whose entries are all nonnegative can be

written as B
[
u

v

]
+ (B1)+ + (B2)+, where 0 6=

[
u

v

]
∈ Z2 is such that

B

u
v

+ (B1)+ + (B2)+ ≥ 0 coordinatewise. (2.1)

In particular, restricting to the first four rows of B, we have that

(u+ 1)t1 + (v + 1)t2 ≥ 0 (2.2)

(u+ 1)y1 + vy2 ≥ 0 (2.3)

uz1 + (v + 1)z2 ≥ 0 (2.4)

uw1 + vw2 ≥ 0 (2.5)

Because both w1, w2 < 0 and either u or v is nonzero, equation (2.5) implies that at least one of
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u, v < 0. Suppose then that u < 0. Since y1 > 0, we have (u+1)y1 ≤ 0, so (u+1)y1 +vy2 ≤ vy2.

By (2.3), we have vy2 ≥ 0. As y2 < 0, we see that v ≤ 0. If v = 0, equation (2.3) reduces to

(u + 1)y1 ≥ 0, so (u + 1)y1 = 0, which means that u = −1. Otherwise, v < 0, but then both

(u+ 1)t1, (v + 1)t2 ≤ 0, so by (2.2), (u+ 1)t1 = (v + 1)t2 = 0, and therefore u = v = −1.

The case where v < 0 is similar, leading to the possibilities u = 0, v = −1, and u = v = −1.

We conclude that the only coordinatewise nonnegative elements ofC◦ other than (B1)++(B2)+

are (B1)+ + (B2)−, (B1)− + (B2)+, and (B1)− + (B2)−, obtained by taking
[
u

v

]
equal to

[
0

−1

]
,[

−1

0

]
, and

[
−1

−1

]
, respectively. Consequently, the maximal faces of ∆C◦ are

{i | bi1 > 0 or bi2 > 0} ⊇ {1, 2, 3}, {i | bi1 > 0 or bi2 < 0} ⊇ {1, 2, 4},

{i | bi1 < 0 or bi2 > 0} ⊇ {1, 3, 4}, {i | bi1 < 0 or bi2 < 0} ⊇ {2, 3, 4}.

We see that ∆C◦ has a hollow tetrahedron as a deformation retract, and hence β3,C◦(k[x]/IZB) >

0.

We wish to construct examples of lattice ideals in codimension greater than 2 generalizing

Theorem 2.1.11. We do this using block matrices.

Suppose G is an n×m matrix of full rank of the form

G =



G1 0 0 0

0 G2 0 0

0 0
. . . 0

0 0 0 Gr


,

where each Gi is an ni ×mi-matrix and the columns of G form a basis for the lattice ZG.

Because of the block structure of G, ZG = ZG1 ⊕ ZG2 ⊕ · · · ⊕ ZGr. Any fiber C of Zn/ZG

has the form C = C1 × · · · × Cr, where Ci is a fiber of Zni/ZGi. In particular, C has coordinate-

wise positive (resp. nonnegative) elements of the form (α1, . . . , αr), where αi is a coordinatewise
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positive (resp. nonnegative) element of the fiber Ci ∈ Zni/ZGi. The resulting complex of supports

∆C is then ∆C1 ? ∆C2 ? · · · ? ∆Cr , where ? denotes the join of two simplicial complexes, as in

Definition 1.2.57.

Using block matrices, it is easy to construct non-Cohen–Macaulay lattice ideals of any codi-

mension m ≥ 2.

Proposition 2.2.5. Let B◦ ∈ Zn×2 such that GB◦ meets the four open quadrants ofR2 and let and

H =

[
1

−1

]
∈ Z2×1. For m > 2, let

B =



B◦ 0 0 0

0 H 0 0

0 0
. . . 0

0 0 0 H


∈ Z(n+2(m−2))×m.

Note that ZB is a positive lattice if and only if ZB◦ is a positive lattice. Set Γ = Z
n+2(m−2)/ZB.

If C is the fiber of Γ containing (B1)+ + (B2)+ + · · ·+ (Bm)+, then

βm+1,C(k[x1, . . . , xn+2(m−2)]/IZB) = 1.

Consequently IZB is not Cohen–Macaulay.

Proof. Let C◦ be the fiber in Zn/ZB◦ containing ((B◦)1)+ + ((B◦)2)+, and ∆◦ = ∆C◦ . By

Lemma 2.2.2 and Proposition 2.2.4, H̃2(∆◦;k) has rank at least 1.

Let C ′ be the fiber in Z2/ZH containing (1, 0). We see that C ′ = {(1, 0), (0, 1)}, and therefore

∆′ := ∆C′ is the zero dimensional simplicial complex with two vertices.

Then ∆C = ∆◦?∆′?· · ·?∆′ is a sequence of suspensions of ∆◦. Repeatedly applying (1.3), and

using that H̃2(∆◦;k) has rank at least 1, we see that H̃m(∆C ;k) has rank at least 1, and therefore

βm+1,C(k[x1, . . . , xn+2(m−2)]/IZB) ≥ 1.
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The property of being a complete intersection also behaves well with respect to block matrices

for lattice ideals. This is stated precisely as follows.

Lemma 2.2.6. LetB(1) ∈ Zn1×m1 andB(2) ∈ Zn2×m2 have rankm1 andm2 respectively. LetB =[
B(1) 0

0 B(2)

]
∈ Z(n1+n2)×(m1+m2). The binomials corresponding to the columns of B generate

IZB if and only if the binomials corresponding to the columns of B(i) generate IZB(i) for i = 1, 2.

Proof. For ease in the notation, we consider

IZB(1) ⊂ k[x1, . . . , xn1 ] = k[x] and IZB(2) ⊂ k[y1, . . . , yn2 ] = k[y]

so that IZB ⊂ k[x1, . . . , xn1 , y1, . . . , yn2 ] = k[x, y]. We also consider k[x],k[y] ⊂ k[x, y].

The lattice ideal IZB is generated by binomials xu+yv+ − xu−yv− for u ∈ ZB(1) ⊂ Z
n1 and

v ∈ ZB(2) ⊂ Zn2 . Note that xu+yv+ − xu−yv− = xu+(yv+ − yv−) + yv−(xu+ − xu−). This implies

that IZB = k[x, y] ·IZB(1) +k[x, y] ·IZB(2) . Moreover, IZB(1) = IZB∩k[x] and IZB(2) = IZB∩k[y].

Our statement follows from these relationships.

We now come to the main result in this article.

Theorem 2.2.7. Let m ≥ 2 be an integer. There are infinitely many examples of rank m non-

saturated lattices L such that one of IL , IL sat is a complete intersection, and the other one is not

Cohen–Macaulay.

Proof. When m = 2, this is Theorem 2.1.11. Let B◦ ∈ Zn×2 and H =

[
1

−1

]
∈ Z2×1. Suppose

now m > 2 and consider the matrix

B =



B◦ 0 0 0

0 H 0 0

0 0
. . . 0

0 0 0 H


∈ Z(n+2(m−2))×m,
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Let B◦ ∈ Z4×2 whose Gale diagram meets the four open quadrants of R2, and whose columns

span a saturated lattice (there are infinitely many such matrices). LetM◦ be as in Proposition 2.1.6,

and consider the nonsingular matrix

M =



M◦ 0 0 0

0 1 0 0

0 0
. . . 0

0 0 0 1


∈ Zm×m. (2.6)

Then we have

BM =



B◦M◦ 0 0 0

0 H 0 0

0 0
. . . 0

0 0 0 H


∈ Z(n+2(m−2))×m.

If L is the lattice spanned by the columns of BM , then L sat is the lattice spanned by the columns

ofB. By Lemma 2.2.6, IL is a complete intersection, and by Proposition 2.2.5, IL sat is not Cohen–

Macaulay.

Now let B◦ ∈ Zn×2 whose columns span a saturated lattice, and whose Gale diagram is im-

balanced and spans at least four rays (there are infinitely many such matrices). Let M◦ be as

in Proposition 2.1.9, and construct M using (2.6). If L is the lattice spanned by the columns

of BM , then L sat is the lattice spanned by the columns of B. By Proposition 2.2.5 IL is not

Cohen–Macaulay, and by Lemma 2.2.6 IL sat is a complete intersection.
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3. FREE RESOLUTIONS OVER SCROLLS ∗

In this chapter, we consider the next class of examples after rational normal curves, namely

rational normal scrolls. We compute the Betti numbers of the residue field (Theorem 3.1.1), and

for 2-scrolls, we give its minimal free resolution (Theorem 3.2.2).

Notation: We work in n =
k∑
i=1

mi variables, and denote the polynomial ring by S = k[xi,j | 1 ≤

i ≤ k, 1 ≤ j ≤ mi].

Definition 3.0.1. The rational normal k-scroll S(m1 − 1,m2 − 1, . . . ,mk − 1) is the variety in

P
n−1 defined by the ideal I2(M) of 2× 2 minors of the 2× (n− k) matrix

M =

 x1,1 . . . x1,m1−1 x2,1 . . . x2,m2−1 . . . . . . xk,1 . . . xk,mk−1

x1,2 . . . x1,m1 x2,2 . . . x2,m2 . . . . . . xk,2 . . . xk,mk

 . (3.1)

Throughout, we often forego writing “rational normal" and call S(m1−1,m2−1, . . . ,mk−1)

a k-scroll and S(m− 1, n−m− 1) a scroll.

When k = 1, S(n − 1) is a rational normal curve, that is, the variety defined by 2 × 2 the

minors of the matrix  x1 x2 . . . xn−1

x2 x3 . . . xn

 .
As we mentioned in the introduction, the rings that are studied in this chapter are Koszul.

Theorem 3.0.2. For M as in (3.1), R = S/I2(M) is a Koszul ring.

Proof. By [BHV94, Theorem 2.2], a sufficient condition for a quotient k[x1, . . . , xn]/I to be

Koszul is the existence of a homogeneous quadratic Gröbner basis for I . It follows that R is

Koszul, since the 2 × 2 minors of M form a Gröbner basis for I2(M) with respect to a reverse

lexicographic ordering (see [KPU09, Lemma 2.2]).
∗Parts of this chapter are reprinted with permission from [MS20]: “Toward Free Resolutions Over Scrolls” by

Laura Felicia Matusevich and Aleksandra Sobieska, 2020. Proceedings of the American Mathematical Society, to
appear. Copyright 2020 by American Mathematical Society.
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Furthermore, rational normal k-scrolls are projective toric varieties. Therefore their defining

ideal I2(M) can be realized as a toric ideal IA [Pet08, Lemma 2.1], where A is the (k + 1) × n

matrix

A =



1 · · · · · · 1 0 · · · · · · 0 0 · · · · · · 0 0 · · · · · · 0

0 · · · · · · 0 1 · · · · · · 1 0 · · · · · · 0 0 · · · · · · 0

...
...

...
...

0 · · · · · · 0 0 · · · · · · 0 0 · · · · · · 0 1 · · · · · · 1

0 1 · · · m1 − 1 0 1 · · · m2 − 1 · · · · · · 0 1 · · · mk − 1


,

(3.2)

so that R = S/I2(M) is a semigroup ring.

Example 3.0.3. The rational normal 2-scroll S(3, 2) can be defined as the ideal of minors I2(M)

of

M =

 x1,1 x1,2 x1,3 x2,1 x2,2

x1,2 x1,3 x1,4 x2,2 x2,3


and as the toric ideal IA defined by

A =


1 1 1 1 0 0 0

0 0 0 0 1 1 1

0 1 2 3 0 1 2

 .

By either approach, the ideal defining S(3, 2) is

〈x1,1x1,3 − x2
1,2, x1,1x1,4 − x1,2x1,3, x1,1x2,2 − x1,2x2,1, x1,1x2,3 − x1,2x2,2 x1,2x1,4 − x2

1,3,

x1,2x2,2 − x1,3x2,1, x1,2x2,3 − x1,3x2,2 x1,3x2,2 − x1,4x2,1 x1,3x2,3 − x1,4x2,2 x2,1x2,3 − x2
2,2〉.

Throughout this chapter, we will occasionally commit the minor sin of identifying a scroll S

with its defining ideal I2(M) with its coordinate ring R.
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3.1 Betti Numbers of k over k-scrolls

Our first main theorem gives the Betti numbers of the field k over R = S/I2(M), where M is

as in 3.1.

Theorem 3.1.1. Let I2(M) define the rational normal k-scroll S(m1 − 1, . . . ,mk − 1). If R =

S/I2(M), then the ith Betti number of k as an R-module is

βRi (k) =
i∑

j=0

(
k + 1

j

)
(n− k − 1)i−j

In particular βRk+r(k) = (n− k − 1)r−1(n− k)k+1 for r ≥ 1.

Because R is Koszul, Theorem 1.2.49 implies that we can obtain the Poincaré series of R by

inverting its Hilbert series. Since Hilbert series are preserved under Gröbner degeneration, it is

enough to compute the Hilbert series of S/ in≺(I2(M)) for ≺ a monomial order in S. This task is

easiest if we are fortunate enough that our ideal has a squarefree initial ideal. The next result states

that this is indeed the case for scrolls.

Theorem 3.1.2. Let ≺ be the lexicographic monomial order on S given by x1,1 � x1,2 � . . . �

x1,m1 � x2,1 � . . . � xk,mk
, then

in≺(I2(M)) = 〈xi,jxi,` | |j − `| ≥ 2〉+ 〈xi,jxr,s | 1 ≤ i < r ≤ k, 1 ≤ j < mi, 1 < s ≤ mr〉,

(3.3)

that is, in≺(I2(M)) is generated by the products of variables on the main diagonals of M . In

particular, in≺(I2(M)) is a squarefree monomial ideal.

Example 3.1.3. The initial ideal for I2(M) as in Example 3.0.3 is in≺(I2(M)) = 〈x1,1x1,3, x1,1x1,4,

x1,1x2,2, x1,1x2,3, x1,2x1,4, x1,2x2,2, x1,2x2,3, x1,3x2,2, x1,3x2,3, x2,1x2,3〉.

Denote by D the ideal on the right hand side of (3.3). To prove Theorem 3.1.2, we begin by

pinpointing which monomials are not in D.
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Lemma 3.1.4. Suppose xu /∈ D.

a) If there exists i such that xu contains two variables with first index i with nonzero exponents,

then u is of the form

u = (0 . . . 0 a1|0 . . . 0 a2| . . . |0 . . . 0 ai−1|0 . . . 0 ai,` ai,`+1 0 . . . 0|ai+1 0 . . . 0| . . . |ak 0 . . . 0)

b) Otherwise, u is of the form

u = (0 . . . 0 a1|0 . . . 0 a2| . . . |0 . . . 0 ai−1|ai 0 . . . 0|ai+1 0 . . . 0| . . . |ak 0 . . . 0)

Proof. The lemma follows from these observations.

i) If xu contains the variables xi,j, xi,` with j < ` both with nonzero exponent, then ` = j + 1.

Consequently, xu cannot contain 3 variables from the same block with nonzero exponent.

ii) If xu contains variables xi,j, xr,s with i < r and j < mi, both with nonzero exponent, then

s = 1.

The following result is used to show that D is equal to in≺ I2(M).

Proposition 3.1.5. LetA be as in (3.2) (so that I2(M) = IA). If xu /∈ D, xu � xv, andAu = Av,

then u = v.

Proof. In Lemma 3.1.4, case b) is a special case of a) where ` = 1 and ai,`+1 = 0, so we may

assume u satisfies case a). We also assume u 6= 0, and write v = (b1,1, b1,2, . . . , bk,mk
).

Suppose a1 6= 0. Since xu � xv, the monomial xv cannot contain any variable greater than

x1,m1 . Then, as Au = Av, xu and xv must contain the same power of x1,m1 . The same argument

implies that xu and xv contain the same powers of all variables up to and including xi−1,mi−1
.
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Now again, since xu � xv lexicographically, ai,` ≥ bi,` and bi,0 = . . . = bi,`−1 = 0. As Au =

Av, we have ai,` + ai,`+1 = bi,` + bi,`+1 + . . . + bi,mi
. But if ai,` > bi,`, then (Au)k+1 > (Av)k+1.

This implies that ai,` = bi,`, and similarly ai,`+1 = bi,`+1, so bi,t = 0 for t ≥ `+ 2.

To finish the proof, note that (Au)k+1 = (m1−1)a1+. . .+(mi−1−1)ai−1+(`−1)ai,`+`ai,`+1 =

(m1 − 1)b1,m1 + . . .+ (mi−1 − 1)bi−1,mi−1
+ (`− 1)bi,` + `bi,`+1. Because Au = Av, this implies

that bj,t = 0 for j > i and t > 1. Again, using Au = Av, we conclude that bj,1 = aj for all

j > i.

We are ready to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Since I2(M) isA-homogeneous, its initial ideal is generated by the initial

forms of A-homogeneous elements of I2(M). If P ∈ I2(M) is A-homogeneous and in≺ P /∈

D, then P has one term by Proposition 3.1.5. But since I2(M) is a toric ideal, it contains no

monomials, so that such a P cannot belong to I2(M). We conclude that if P is A-homogeneous

and P ∈ I2(M), then in≺ P ∈ D.

With a squarefree initial ideal in hand, we now turn to Stanley–Reisner theory. Let ∆ be the

simplicial complex on the vertex set {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ mi} whose Stanley–Reisner

ideal is D = in≺ I2(M). By definition, this means that D is generated by monomials whose index

sets correspond to nonfaces of ∆. It follows from Lemma 3.1.4 that ∆ is the simplicial complex

whose maximal faces are

{(1,m1), (2,m2), . . . , (i,mi−1), (i, j), (i, j + 1), (i+ 1, 1), . . . , (k, 1)}

for 1 ≤ i ≤ k, 1 ≤ j ≤ mi − 1, (3.4)

in particular, ∆ is pure of dimension k. Figure 3.1 illustrates this simplicial complex in an example.

Recall from Theorem 1.2.55 that the Hilbert series of a Stanley–Reisner ring can be given in

terms of the face numbers of the corresponding simplicial complex by

HilbS/D(t) =
1

(1− t)k+1

k+1∑
d=0

fd−1t
d(1− t)k+1−d,
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(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3)

Figure 3.1: The simplicial complex ∆ for S(3, 2).
Reprinted with permission from [MS20].

where fd is the number of d-dimensional faces of ∆. We now compute these face numbers for our

simplicial complex ∆.

Proposition 3.1.6. If ∆ is the simplicial complex whose Stanley–Reisner ideal is D, then fd =(
k
d

)
n− d

(
k+1
d+1

)
for d ≥ −1. In particular, the face numbers of ∆ depend only on k and n, and not

on m1, . . . ,mk.

Proof. We prove this by induction on k. Note that, by construction, f0 = n, regardless of the value

of k.

If k = 1, ∆ has f1 = n−1 one-dimensional faces, namely {(1, i), (1, i+1)} for i = 1, . . . , n−1

(cf [PRS98, Theorem 3.9]).

For the inductive step, let ∆ be the complex associated to S(m1−1, . . . ,mk−1) and ∆′ be the

complex associated to S(m1− 1, . . . ,mk+1− 1). The complex ∆ is naturally a subcomplex of ∆′.

We assume that fd(∆) =
(
k
d

)
(m1 + . . . + mk) − d

(
k+1
d+1

)
. Using the description of the facets of ∆

from (3.4) (and the corresponding description for the facets of ∆′) we see that the d-dimensional

faces of ∆′ are:

• fd(∆) d-dimensional faces of ∆,

• fd−1(∆) faces of the form τ ∪ {(k + 1, 1)}, where τ is a (d− 1)-dimensional face of ∆,

•
(
k
d

)
(mk+1 − 1) faces with d vertices from the set {(i,mi) | 1 ≤ i ≤ k} and one vertex from

{(k + 1, j) | 2 ≤ j ≤ mk+1}, and

•
(
k
d−1

)
(mk+1 − 1) faces with d − 1 vertices from {(i,mi) | 1 ≤ i ≤ k} union an element of

{{(k + 1, j), (k + 1, j + 1)} | 1 ≤ j ≤ mk+1 − 1}.
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Adding these together and applying the inductive hypothesis yields fd(∆′) =
(
k+1
d

)
(m1 + . . .+

mk+1)− d
(
k+2
d+2

)
, as we wanted.

The following result gives the Hilbert series of R; the proof is a straightforward, if hefty,

bullying of binomial coefficients.

Proposition 3.1.7. The Hilbert series of R is HilbR(t) = HilbS/D(t) = 1+(n−k−1)t
(1−t)k+1

Remark. For those familiar with the machinery, there is alternate way to compute the Hilbert series

of R. It is known that the Eagon-Northcott complex is a minimal free resolution for arbitrary k-

scrolls (see [CJ97] or [Eis05, Corollary A2.62]), which reveals that the Betti numbers of S/I2(M)

over S are β0,0 = 1 and βi,i+1 = i
(
n−k
i+1

)
for i ≥ 1. The Hilbert series of R must then be

HilbR(t) =

n−k∑
i=0

(−1)i−1(i− 1)
(
n−k
i

)
ti

(1− t)n
,

which simplifies to the same Hilbert series as that in Proposition 3.1.7.

We are finally ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. SinceR is a Koszul ring, it follows from Proposition 3.1.7 that the Poincaré

series of R is

PR(t) =
1

HilbR(−t)
=

(1 + t)k+1

1− (n− k − 1)t
=
∞∑
i=0

[
i∑

j=0

(
k + 1

j

)
(n− k − 1)i−j

]
ti.

For the last equality, we use (1 + t)k+1 =
k+1∑
i=0

(
k+1
i

)
ti and

1

1− (n− k − 1)t
=
∞∑
i=0

(n − k − 1)iti.

We conclude that βRi (k) =
i∑

j=0

(
k+1
j

)
(n− k− 1)i−j . The special formula for βk+r(k) follows from

the simplification of this sum when
(
k+1
j

)
becomes 0.

3.2 The Resolution of k for k = 2

One of the difficulties when dealing with infinite free resolutions and unbounded Betti numbers

is to give an explicit presentation for the differentials. In the case k = 2, the combinatorics of the
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ring R ensure a strong block structure that makes giving explicit matrices achievable.

Notation. In the case k = 2, we write S(m − 1, n −m − 1) instead of S(m1 − 1,m2 − 1), and

forego double indexing to replace x1,j by xj and x2,j by xm+j . Finally, we denote p = n−m.

With this new notation, the matrix (3.1) is replaced by the 2× (n− 2) matrix

M =

 x1 x2 . . . xm−1 xm+1 xm+2 . . . xn−1

x2 x3 . . . xm xm+2 xm+3 . . . xn

 ,
and the ideal I2(M) is the toric ideal IA associated to the 3× n matrix

A =


1 1 1 . . . 1 0 0 . . . 0

0 0 0 . . . 0 1 1 . . . 1

0 1 2 . . . m− 1 0 1 . . . p− 1

 .

Example 3.2.1. This abbreviated notation rewrites the matrix M from Example 3.0.3 as

M =

 x1 x2 x3 x5 x6

x2 x3 x4 x6 x7

 .
Our ultimate goal is to construct the minimal free resolution of k as an R-module. Our point

of departure is the short exact sequence

0→ 〈x1, . . . , xm〉 ∩ 〈xm+1, . . . , xn〉 → 〈x1, . . . , xm〉 ⊕ 〈xm+1, . . . , xn〉 → 〈x1, . . . , xn〉 → 0.

(3.5)

We construct free resolutions (F•(I1), ∂I1,i), (F•(I2), ∂I2,i), and (F•, ∂J,i) of the ideals I1 =

〈x1, . . . , xm〉, I2 = 〈xm+1, . . . , xn〉 and J = I1∩I2 respectively. We then combine these resolutions

via mapping cone to make a resolution of m = 〈x1, . . . , xn〉. Augmenting the resolution of m to be

a resolution of k = R/m results in a shift of one step, and minimality is assured by the previous
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Betti number computations. We obtain the resolution

F• : · · · ∂6−→ R(n−2)3(n−3)2 ∂5−→ R(n−2)3(n−3) ∂4−→ R(n−2)3 ∂3−→ Rn2−3n+3 ∂2−→ Rn ∂1−→ R
∂0−→ k→ 0.

3.2.1 The Differentials of F•

Our first objective is to explicitly describe the differentials ∂i of F•. These differentials are

induced by a mapping cone. More precisely,

∂1 = [x1 x2 · · · xn], ∂2 =

 ∂I1,1

∂I2,1

α0

 , ∂i+1 =


∂I1,i

∂I2,i

αi−1

0 −∂J,i−1

 for all i ≥ 2.

The maps α are the chain maps from F•(J) to F•(I1)⊕F•(I2), which are:

α0 =



xm+1 0 . . . 0

0
0 xm+1 . . . 0

0
. . . . . . 0

0 0 . . . xm+1 xm+2 xm+3 . . . xn

−x1 −x2 . . . −xm 0 0 · · · 0

0

−xm 0 · · · 0

0 −xm · · · 0

0
. . . . . . 0

0 0 · · · −xm



∈ Rn×(n−1)

αi =

 xm+1 · 1(m−1)(n−2)(n−3)i−1 0

0 −xm · 1(p−1)(n−2)(n−3)i−1

 ∈ R(n−2)2(n−3)i−1×(n−2)2(n−3)i−1

The constituent resolutions F•(I1), F•(I2), and F•(J) have highly structured differentials, the
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building blocks of which are now given:

ϕ0 =

 x2 x3 . . . xm xm+2 . . . xn

−x1 −x2 . . . −xm−1 −xm+1 . . . −xn−1

 ∈ R2×(n−2)

Φd =



ϕ0 01×(n−2) · · · · · · · · · 01×(n−2)

01×(n−2) ϕ0 01×(n−2) · · · · · · 01×(n−2)

... 01×(n−2) ϕ0 01×(n−2) · · · 01×(n−2)

...
... . . . . . . . . . ...

01×(n−2) · · · · · · · · · 01×(n−2) ϕ0


∈ Rd×(d−1)(n−2)

Note that Φd is very sparse and consists of block components, but is not a block diagonal matrix.

The structure of Φd is illustrated in Figure 3.2, with gray squares denoting non-zero entries, and

empty squares denoting 0. These nonzero ϕ0-blocks appear d− 1 times.

ϕ0
ϕ0

ϕ0

ϕ0
ϕ0

Figure 3.2: The structure of Φd.
Reprinted with permission from [MS20].

We denote by ui ∈ R(m−2)(n−2)×(n−2) and vi ∈ R(p−2)(n−2)×(n−2) the following matrices, which

are almost entirely composed of zeros save for a single row that equals the first row or second row

of M , respectively. More precisely,

ui =


0i(n−2)+m−1×n−2

x1 . . . xm−1 xm+1 . . . xn−1

0((m−i−2)(n−2)−m)×n−2

 vi =


0i(n−2)+m−2×n−2

−x2 . . . −xm −xm+2 . . . −xn

0(((p−i−2)(n−2))−m+1)×n−2

 .
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Despite the length of the exponents, these matrices are simple: ui is the (m−2)(n−2)×(n−2)

matrix with the top row of M in the (i(n− 2) +m)-th row, and vi is the (p− 2)(n− 2)× (n− 2)

matrix with the negative of the bottom row of M in the (i(n− 2) +m− 1)-st row.

Finally, we introduce the following notation:

ϕ1 =



Φm−1

xm+1 0 . . . 0

0
0 xm+1 . . . 0

0
. . . . . . 0

0 0 . . . xm+1 xm+2 xm+3 . . . xn

0

0

−x1 −x2 . . . −xm−1 −xm 0 · · · 0

0

0 −xm · · · 0

0
. . . . . . 0

0 0 · · · −xm

Φp−1



ϕ2 =


⊕
m−2

ϕ1 u0 u1 · · · um−3 0 0 0

0 −Φn−2 0

0 0 0 v0 v1 · · · vp−3

⊕
p−2

ϕ1


ϕi = ϕ

⊕(m−2)
i−1

⊕
ϕ
⊕(n−3)
i−2

⊕
ϕ
⊕(p−2)
i−1 for i ≥ 3

Note that ϕ1 is in R(n−2)×(n−2)(n−3), ϕ2 is in R(n−2)(n−3)×(n−2)(n−3)2 , and ϕi is in

R(n−2)(n−3)i−1×(n−2)(n−3)i .

The presentation for ϕ2 is perhaps deceiving; the brunt of the matrix is a direct sum of ϕ1’s. It

is only (most of) the middle (n − 3)(n − 2) columns that have additional entries above or below

the middle −Φn−2.

Using these ϕ’s, we construct resolutions of J , I1 and I2. The ideal J has resolution over R as

shown below:

F•(J) : · · ·
∂J,4−−→ R(n−2)2(n−3)2 ∂J,3−−→ R(n−2)2(n−3) ∂J,2−−→ R(n−2)2 ∂J,1−−→ Rn−1 ∂J,0−−→ J → 0
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where

∂J,0 =

[
x1xm+1 x2xm+1 . . . xmxm+1 xmxm+2 xmxm+3 . . . xmxn

]
∈ R1×(n−1)

∂J,1 = Φn−1 ∈ R(n−1)×(n−2)2

∂J,i = ϕ
⊕(n−2)
i−1 ∈ R(n−2)2(n−3)i−2×(n−2)2(n−3)i−1

for i ≥ 2

The ideal I1 has resolution over R as shown below:

F•(I1) : · · · → R(m−1)(n−2)(n−3)2 ∂I1,3−−→ R(m−1)(n−2)(n−3) ∂I1,2−−→ R(m−1)(n−2) ∂I1,1−−→ Rm ∂I1,0−−→ I1 → 0

where

∂I1,0 =

[
x1 x2 . . . xm

]
∈ R1×m ; ∂I1,1 = Φm ∈ Rm×(m−1)(n−2)

∂I1,i = ϕ
⊕(m−1)
i−1 ∈ R(m−1)(n−2)(n−3)i−2×(m−1)(n−2)(n−3)i−1

for i ≥ 2

The ideal I2 has resolution over R as shown below:

F•(I2) : · · · → R(p−1)(n−2)(n−3)2 ∂I2,3−−→ R(p−1)(n−2)(n−3) ∂I2,2−−→ R(p−1)(n−2) ∂I2,1−−→ Rp ∂I2,0−−→ I2 → 0

where

∂I2,0 =

[
xm+1 xm+2 . . . xn

]
∈ R1×p ; ∂I2,1 = Φp ∈ R(p)×(p−1)(n−2)

∂I2,i = ϕ
⊕(p−1)
i−1 ∈ R(p−1)(n−2)(n−3)i−2×(p−1)(n−2)(n−3)i−1

for i ≥ 2

Our main result is as follows.

Theorem 3.2.2. F• constructed above is the minimal free resolution of k over R.

3.2.2 Outline of the proof of Theorem 3.2.2

The remainder of this section is devoted to showing that F• is indeed the minimal free resolu-

tion of k over R. We now lay out the steps in this proof.

Most of the work goes to showing that F•(I1), F•(I2) and F•(J) are free resolutions of I1, I2
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and J respectively. The matrices considered in these three cases have very similar structure, and

the details in proving exactness are virtually identical. Thus, we give only the proof that F•(J) is

a resolution. Exactness of F•(J) is shown in Subsection 3.2.3, using ideas from [?].

What remains is to provide the map of complexes α : F•(J) → F•(I1) ⊕ F•(I2) lifting the

inclusion J → I1 ⊕ I2 from the short exact sequence (3.5). This is done in Subsection 3.2.4.

Once α is constructed, the mapping cone procedure ensures thatF• is exact, and thus a free res-

olution of k. That it is the minimal free resolution of k follows by inspection, or by Theorem 3.1.1.

3.2.3 F•(J) is exact

We need generators for J = 〈x1, . . . , xm〉 ∩ 〈xm+1, . . . , xn〉. Clearly,

J =

〈 x1xm+1, x1xm+2, . . . , x1xn,

x2xm+1, x2xm+2, . . . , x2xn,

...
...

...
...

xmxm+1 xmxm+2, . . . , xmxn

〉
.

However, many of these monomials are equal in R; in fact, xixj = xkx` if i + j = k + `, as

long as j 6= m and k 6= m + 1. This means that, in the above arrangement, all monomials on the

same skew-diagonal are the same, for example, x3xm+1 = x2xm+2 = x1xm+3. Consequently,

J = 〈x1xm+1, x2xm+1, . . . , xmxm+1, xmxm+2, xmxm+3, . . . , xmxn〉.

We start by checking that we are working with complexes.

Proposition 3.2.3. F•(J), F•(I1) and F•(I2) are complexes.

Proof. This is a straightforward, if tedious, calculation. A key observation is that ϕi ◦ ϕi+1 = 0

for all i. This follows, as each of these compositions has entries that are either 0 or binomials in

I2(M). Given the direct sum structure of the differentials, this is enough to show our proposed

differentials compose to zero.
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Our next goal is to show that F•(J) is exact. (The same argument, with minor modifications,

shows the same for F•(I1) and F•(I2).) We need some notation.

Definition 3.2.4. Let A be a Noetherian commutative ring. Let f : F → G be a map of free A-

modules, which is represented by a matrix with entries in A. The rank of f is the size of the largest

nonvanishing minor of this matrix. If f has rank r, we use I(f) to denote the ideal generated by

the r × r minors of (the matrix representing) f .

The following results are used to prove exactness.

Lemma 3.2.5. [Eis95, Lemma 20.10] Let A be a commutative Noetherian ring. A complex

F
f−→ G

g−→ H of free A-modules with I(f) = I(g) = A is exact iff rank f + rank g = rankG.

Lemma 3.2.6 (Sylvester’s Rank Inequality). If U and V are matrices with entries in a field, where

U is r × s and V is s× t, then

rankU + rankV − s ≤ rankUV.

By Lemma 3.2.5, it is important to know the ranks of the differentials of F•(J). Due to the

block structure, we must first address the matrices ϕi.

Proposition 3.2.7. The rank of Φd is d− 1 for all d ≥ 2 and the rank ϕi is (n− 3)i for all i ≥ 0.

Proof. Because R is a domain, dependences among rows of a matrix over R can be read off from

the vanishing of minors. In fact, the rank of a matrix over R equals the rank of that matrix over

the field of fractions of R. In this proof, we work over the field of fractions of R, which gives us

access to Lemma 3.2.6.

It is clear that rankϕ0 = 1, as all 2× 2 minors of ϕ0 are exactly the same as the minors of M ,

which belong to I2(M).

Next we must show that rankϕ1 = n − 3. We know that the rank of ϕ1 is at least n − 3, as

the minor of size n − 3 corresponding to rows 2, 3, . . . , n − 2 and columns 1, 1 + (n − 2), 1 +
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2(n − 2), . . . , 1 + (n − 4)(n − 2) equals (−1)n−3x1 6= 0. On the other hand, by Lemma 3.2.6,

rankϕ0 + rankϕ1− (n− 2) ≤ rank(ϕ0 ◦ϕ1) = 0, so rankϕ1 ≤ n− 3. Consequently rankϕ1 =

n− 3.

To compute rankϕ2, we consider the minor of size (n− 3)2 corresponding to rows {s+ t(n−

2) | 2 ≤ s ≤ n−2, 0 ≤ t ≤ n−4} and columns 1, (n−2)+1, 2(n−2)+1, . . . , ((n−3)2−1)(n−

2) + 1 which equals x(n−3)2

1 6= 0, so that rankϕ2 ≥ (n− 3)2. Again by Lemma 3.2.6 and because

ϕ1◦ϕ2 = 0, we know that rankϕ2 ≤ (n−2)(n−3)−rankϕ1 = (n−2)(n−3)−(n−3) = (n−3)2.

We conclude that rankϕ2 = (n− 3)2.

The rank computations for the remaining maps ϕi follow easily from the block structure:

rankϕi = (m − 2)(n − 3)i−1 + (n − 3)(n − 3)i−2 + (p − 2)(n − 3)i−1 = (n − 3)i for any

i ≥ 2.

In the case of Φd, we consider the minor corresponding to rows 2, 3, . . . , d and columns 1, 1 +

(n− 2), 1 + 2(n− 2), . . . , 1 + (d− 2)(n− 2) which equals (−1)d−1xd−1
1 , so that rank Φd ≥ d− 1.

On the other hand, because ϕ0 ◦ ϕ1 = 0, Φd ◦
⊕
d−1

ϕ1 = 0. Therefore rank Φd ≤ dp− 1)(n− 2)−

(d− 1) rankϕ1 = d− 1, and in fact rank Φd = d− 1.

The ranks of the differentials of F•(J) can be computed directly from Proposition 3.2.7.

Corollary 3.2.8. The ranks of the ∂J,i are:

1. rank ∂J,1 = n− 2

2. rank ∂J,2 = (n− 2)(n− 3)

3. rank ∂J,i = (n− 2)(n− 3)i−1 for all i ≥ 2

In order to apply Lemma 3.2.5, we need more information regarding the ideals of maximal

nonvanishing minors of the matrices involved.

Proposition 3.2.9. For i ∈ [n], we have xp−1
i ∈ I(Φp) and x(n−3)j

i ∈ I(ϕj) for all j ≥ 0.

Proof. Because we are considering the ideals generated by the minors, we can ignore signs in

our computations. It is clear that xi ∈ I(ϕ0) for all i ∈ [n]. To see that any xn−3
i ∈ I(ϕ1) for
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xn−3
i ∈ I(ϕ1) rows ri,1 columns ci,1

1 ≤ i ≤ m− 1 2, 3, . . . , n− 2 i+ j(n− 2) for 0 ≤ j ≤ n− 4
i = m 1, 2, . . . ,m− 2,

m, . . . , n− 2
(m− 1) + j(n− 2) for 0 ≤ j ≤ m− 3
`+ (m− 2)(n− 2) for m ≤ ` ≤ n− 2

i = m+ 1 1, 2, . . . ,m− 1,
m+ 1, . . . , n− 2

`+ (m− 2)(n− 2) for 1 ≤ ` ≤ m− 1
m+ j(n− 2) for m− 1 ≤ j ≤ n− 4

m+ 2 ≤ i ≤ n 1, 2, . . . , n− 3 i− 2 + j(n− 2) for 0 ≤ j ≤ n− 4

Table 3.1: Rows and columns giving variable powers in minors of ϕ1

x
(n−3)2

i ∈ I(ϕ2) rows ri,2 columns ci,2
1 ≤ i ≤ m− 1 s+t(n−2) for s ∈ ri,1

and 0 ≤ t ≤ n− 4
i+ j(n− 2) for 0 ≤ j ≤ (n− 4)(n− 2)

i = m s+t(n−2) for s ∈ ri,1
and 0 ≤ t ≤ n− 4
\(m− 1)(n− 2)
∪ (m− 2)(n− 1) + 1

a+j(n−2)(n−3) for a ∈ ci,1 and 0 ≤ j ≤ (n−4)
but j 6= m− 2
(m− 1) + `(n− 2) + (m− 2)(n− 2)(n− 3) for
0 ≤ ` ≤ n− 4

i = m+ 1 s+t(n−2) for s ∈ ri,1
and 0 ≤ t ≤ n− 4
\(m− 2)(n− 2) + 1
∪m+ (m− 2)(n− 2)

a+j(n−2)(n−3) for a ∈ ci,1 and 0 ≤ j ≤ (n−4)
but j 6= m− 2
m + `(n − 2) + (m − 2)(n − 2)(n − 3) for 0 ≤
` ≤ n− 4

m+ 2 ≤ i ≤ n s+t(n−2) for s ∈ ri,1
and 0 ≤ t ≤ n− 4

(i− 2) + j(n− 2) for 0 ≤ j ≤ (n− 4)(n− 2)

Table 3.2: Rows and columns giving variable powers in minors of ϕ2

any i ∈ [n], we can consider the minors corresponding to the rows ri,1 and columns ci,1 listed in

Table 3.1.

The proposed submatrices of ϕ1 whose rows and columns listed above are strictly triangular,

so the minors are easily computed.

We can give similar recipes for the appropriate minors in ϕ2, provided in Table 3.2.

The block structures of the successive ϕj’s combined with the previous two statements is

enough to see that x(n−3)j

i ∈ I(ϕj). Finally, use the minors whose columns and rows are given in

Table 3.3 to obtain xd−1
i ∈ I(Φd).
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xd−1
i ∈ I(Φd) rows columns

1 ≤ i ≤ m− 1 2, . . . , d i+ j(n− 2) for 0 ≤ j ≤ d− 2
i = m 1, . . . , d− 1 m− 1 + j(n− 2) for 0 ≤ j ≤ d− 2
i = m+ 1 2, . . . , d m+ j(n− 2) for 0 ≤ j ≤ d− 2
m+ 2 ≤ i ≤ n 1, . . . , d− 1 i− 2 + j(n− 2) for 0 ≤ j ≤ d− 2

Table 3.3: Rows and columns giving variable powers in minors of Φd

We are now ready to give the main result in this subsection.

Theorem 3.2.10. The complexes F•(J) , F•(I1) and F•(I2) are exact.

Proof. We only provide details for F•(J). We show that we have exactness after localizing at

any prime ideal of R, from which exactness over R follows. If q is any prime ideal in R, we

denote by ∂J,i,q the localized map induced by ∂J,i. The (unique) graded maximal ideal of R is

m = 〈x1, . . . , xn〉.

Corollary 3.2.8 provides the ranks of the maps ∂J,i over R. Because R is a domain, I(∂J,i)

contains exclusively non-zero divisors for all i. This means that, when localizing, the rank of ∂J,i

does not change. Furthermore, localization at any prime ideal q 6= m yields I(∂J,i,q) = Rq, because

each I(∂J,i) contains some power of every x`, by Proposition 3.2.9. By Lemma 3.2.5, this proves

that F•(J) is exact after localization at any prime ideal q 6= m.

We conclude that, if F•(J) has a nonzero homology module, it is only supported at the graded

maximal ideal m, and therefore has depth 0. Our goal now is to derive a contradiction.

We localize at m, and use Fi to denote the free Rm-modules appearing in the localization of

F•(J). Use Bi ⊆ Ci ⊆ Fi to denote the i-cycles and i-boundaries, and Hi = Ci/Bi. The ring

R is a semigroup ring corresponding to a saturated (normal) semigroup, and is therefore Cohen–

Macaulay by Hochster’s theorem. Since dimR = 3, it follows that Rm has depth 3. Consequently

all the free modules over Rm also have depth 3, in particular the Fi. Any submodules of the free

modules Fi must have depth at least 3, so we have depth(Ci) ≥ 3 and depth(Bi) ≥ 3. From the

exact sequence

0→ Bi → Ci → Hi → 0
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it follows that depth(Hi) ≥ min{depth(Ci), depth(Bi) − 1} (see [?, Corollary 18.6.a]), so that

depth(Hi) ≥ 2. This contradicts that depth(Hi) = 0.

Therefore localizations of F•(J) at all prime ideals (now including m) are exact, and conse-

quently F• is exact.

3.2.4 The Mapping Cone

We recall that we have an exact sequence

0→ J


1

−1


−−−−→ I1 ⊕ I2

[
1 1

]
−−−−→ m→ 0.

The relevant result for us is that, if we have resolutions of J and I1⊕ I2, the inclusion J → I1⊕ I2

can be lifted to a map of complexes between the corresponding resolutions, and the associated

mapping cone is a resolution of m. The definition of the mapping cone of a map of complexes is

given below; we refer to the appendix of [?] for more information.

Definition 3.2.11. If α : F → G is a map of complexes, and we write f, g for the differentials

of F and G respectively, then the mapping cone M(α) of α is the complex such that M(α)i+1 =

Fi ⊕Gi+1 where the differential ∂i+1 is shown:

Fi
−fi //

αi

!!

Fi−1⊕ ⊕
Gi+1

gi+1 // Gi

that is, ∂i+1(a, b) = (−fi(a), gi+1(b) + αi(a)).

We now construct the map of complexes that lifts the inclusion J → I1 ⊕ I2.
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Proposition 3.2.12. The map of complexes α : F•(J)→ F•(I1)⊕F•(I2) is given by

α0 =



xm+1 0 . . . 0

0
0 xm+1 . . . 0

0
. . . . . . 0

0 0 . . . xm+1 xm+2 xm+3 . . . xn

−x1 −x2 . . . −xm 0 0 · · · 0

0

−xm 0 · · · 0

0 −xm · · · 0

0
. . . . . . 0

0 0 · · · −xm



∈ Rn×(n−1)

αi =

 xm+1 ∗ 1(m−1)(n−2)(n−3)i−1 0

0 −xm ∗ 1(p−1)(n−2)(n−3)i−1

 ∈ R(n−2)2(n−3)i−1×(n−2)2(n−3)i−1 
for i ≥ 1

Proof. We first check that

 1

−1

 ∂J,0 = (∂I1,0 ⊕ ∂I2,0)α0. We compute both sides explicitly:

 1

−1

 ∂J,0 =

 1

−1

[x1xm+1 x2xm+1 . . . xmxm+1 xmxm+2 xmxm+3 . . . xmxn

]

=

 x1xm+1 x2xm+1 . . . xmxm+1 xmxm+2 xmxm+3 . . . xmxn

−x1xm+1 −x2xm+1 . . . −xmxm+1 −xmxm+2 −xmxm+3 . . . −xmxn
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and

(∂I1,0 ⊕ ∂I2,0)α0 =

=

x1 . . . xm 0 . . . 0

0 . . . 0 xm+1 . . . xn





xm+1 0 . . . 0

0
0 xm+1 . . . 0

0
. . . . . . 0

0 0 . . . xm+1 xm+2 xm+3 . . . xn

−x1 −x2 . . . −xm 0 0 · · · 0

0

−xm 0 · · · 0

0 −xm · · · 0

0
. . . . . . 0

0 0 · · · −xm


=

 x1xm+1 x2xm+1 . . . xmxm+1 xmxm+2 xmxm+3 . . . xmxn

−x1xm+1 −x2xm+1 . . . −xmxm+1 −xmxm+2 −xmxm+3 . . . −xmxn

 .
Now we can check if α0∂J,1 = (∂I1,1 ⊕ ∂I2,1)α1. Without further ado:

α0∂J,1 =

=



xm+1 0 . . . 0

0
0 xm+1 . . . 0

0
. . . . . . 0

0 0 . . . xm+1 xm+2 xm+3 . . . xn

−x1 −x2 . . . −xm 0 0 · · · 0

0

−xm 0 · · · 0

0 −xm · · · 0

0
. . . . . . 0

0 0 · · · −xm



Φn−1

= xm+1Φm ⊕ (−xm)Φp
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where xm+1ϕ0 appears m − 1 times and −xmϕ0 appears p − 1 times. However, because of the

diagonal structure of α1, this is clearly the same as (Φm ⊕ Φp)α1 = (∂I1,1 ⊕ ∂I2,1)α1.

For remaining i ≥ 2, ∂J,i = ∂I1,i ⊕ ∂I2,i, and all the αi are diagonal matrices, so the products

are easily verified to be equal.

Proof of Theorem 3.2.2. Since F•(J) is a resolution of J and F•(I1)⊕F•(I2) resolves I1⊕ I2, the

mapping cone of α : F•(J) → F•(I1) ⊕ F•(I2) is a resolution of m. Augmenting the resolution

to be a resolution of k = R/m results in a shift of one step, and so we finally have the resolu-

tion F•. Comparing the rank of the free modules in each step to the Betti numbers computed in

Theorem 3.1.1, we conclude that F• is not only exact, but minimal.
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4. SUMMARY AND CONCLUSIONS

Both chapters of this dissertation come to ultimately algebraic conclusions via combinatorial

tools. Chapter 2 uses the combinatorics of Gale diagrams and simplicial complexes to understand

homological properties of lattice ideals. Chapter 3 focuses on a specifically combinatorial ring,

the coordinate ring of rational normal scrolls, and leverages its internal combinatorics to obtain an

algebraic resolution.

The flavor of the results in Chapters 2 and 3 are somewhat antithetical. Chapter 2 proves

that, despite a deep algebraic connection between the two ideals, the Cohen–Macaulayness of

lattice ideals and their corresponding toric ideals have no bearing on one another, a strongly neg-

ative result. In particular, one cannot check for Cohen–Macaulayness of one by checking Cohen–

Macaulayness of the other. This was somewhat surprising, as the well-behaved nature of the toric

ideal led us to expect that, if a lattice ideal was Cohen–Macaulay, the corresponding lattice idea

would be Cohen–Macaulay as well.

This erroneous hypothesis was supported by early computations in the programming language

Macaulay2 [GS], which created 4 × 2 integer matrices B and tested the ideals IZB and IZBsat

for Cohen–Macaulayness. Most pairs were either both Cohen–Macaulay or neither ideal was, and

in cases where the two differed, the toric ideal was Cohen–Macaulay. However, after hundreds of

automated examples were checked, a pair of ideals emerged where the toric ideal was not Cohen–

Macaulay and the lattice ideal was. Despite this surprise, the goal was now clear, and, using Gale

diagrams, we were able to create and extend these counter-examples.

On the other hand, Chapter 3 tackles an infinite minimal free resolution, something that can

rarely be shown explicitly, and shows that completely characterizing the resolution is not only

feasible, but very finitely feasible. Despite the infinite nature of the resolution, the Betti numbers

and the differentials show a replicating structure that allows us to characterize them completely.

Furthermore, the differentials are fairly sparse and can be broken down into block components.

These blocks mimic the two-fold structure of the rational normal 2-scroll. However, it is not
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enough to simply paste two of the resolutions from [GHP08] for the rational normal curve together,

as the interaction between their equations must also make an appearance in the differentials. Unlike

Chapter 2, the results in Chapter 3 indicate that a deeper study of these algebraic objects may prove

fruitful.

Chapters 2 and 3 do share a similarity in their constructive nature. This explicit realization

of abstract algebraic objects is available to us because of the underlying combinatorics of both

cases, and is often not shared in more general algebraic results. Lattice ideals are at the heart of

both chapters and their connection to simplicial and convex geometry ensures that the often elusive

homological properties of a general ideal can be fully described.

4.1 Further Study

The nature of Chapter 2 shows that the Cohen–Macaulayness of a lattice ideal and the corre-

sponding toric ideal are unrelated, but one may wish to investigate other algebraic properties, such

as regularity and normality. It is possible that there is an implication in these cases. However,

showing again that these characteristics may fail to be related would be interesting in its own right.

One may also wish to limit oneself to a particular subclass of lattice ideals, perhaps those that are

Gorenstein, and see if an implication holds in this setting.

Chapter 3 inspires courage for tackling more free resolutions in the toric case. The obvious

generalization is finding the minimal free resolution of the rational normal k-scroll. Though res-

olutions of k over two of the classical examples of semigroup rings – those from rational normal

curves [GHP08] and rational normal 2-scrolls [MS20] – are known, I still seek an explicit resolu-

tion of k for semigroup rings from a general k-scroll. The stabilization of the Betti numbers and

repetitive nature of the differentials known from the finished cases are encouraging, but working

with examples for the k-scroll offers challenges: exponential growth in n of the Betti numbers

means that even the most atomic bits of the differentials are massive after just a few steps. This is

compounded by the need for larger n as k increases. Nonetheless, the highly structured nature of

the two known cases gives courage for computing the general case.
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