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ABSTRACT

Simulation in media with multiple interacting continua is often challenging due to
distinct properties of the continua, multiple scales and high contrast. Thus, some type of
model reduction is required. One of the approaches is a multi-continuum technique, where
every process in each continuum is modeled separately and an interaction term is added.
Direct numerical simulation in multiscale multi-continuum media is very expensive as
it requires a large number of degrees of freedom to completely resolve the micro-scale
variation. In this work, we present efficient upscaling and model reduction methods for
multiscale dual-continuum systems.

We first consider the numerical homogenization of a multiscale dual-continuum system
where the interaction terms between the continua are scaled as O(1/€%) where ¢ is the
microscopic scale. Computing the effective coefficients of the homogenized equations
can be expensive because one needs to solve local cell problems for a large number of
macroscopic points. We develop a hierarchical approach for solving these cell problems
at a dense network of macroscopic points with an essentially optimal computation cost.
The method employs the fact that neighboring representative volume elements (RVEs)
share similar features; and effective properties of the neighboring RVEs are close to each
other. The hierarchical approach reduces computation cost by using different levels of
resolution for cell problems at different macroscopic points. Solutions of the cell problems
which are solved with a higher level of resolution are employed to correct the solutions at
neighboring macroscopic points that are computed by approximation spaces with a lower
level of resolution.

We then consider the case where the interaction terms of the dual-continuum system

are scaled as O(1/¢). We derive the homogenized problem that is a dual-continuum sys-
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tem which contains features that are not in the original two scale problem. In particular,
the homogenized dual-continuum system contains extra convection terms and negative
interaction coefficients while the interaction coefficient between the continua in the orig-
inal two scale system obtains both positive and negative values. We prove rigorously
the homogenization convergence and homogenization convergence rate. Homogenization
of dual-continuum system of this type has not been considered before. We present the
numerical examples for computing effective coefficients using hierarchical finite element
methods.

We assume the above mentioned homogenized equation still possess some degree of
multiscale and high contrast features caused by channels in the media. This motivates us
to develop the generalized multiscale finite element method (GMsFEM) for an upscaled
multiscale dual-continuum equations with general convection and interaction terms. GMs-
FEM systematically generates either uncoupled or coupled multiscale basis, via establish-
ing local snapshots and spectral decomposition in the snapshot space. Then the global
problem is solved in the constructed multiscale space with a reduced dimensional struc-
ture. Convergence analysis of the proposed GMsFEM is accompanied with the numerical

results, which support the theoretical results.
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1. INTRODUCTION

Fluid flow simulation was early known to be based on the concept of porous medium
as a single continuum. However, in nature, a porous medium (as stratum or fissured rock)
may possess some degree of fracturing. This hence motivated the notion of dual continua,
or more generally, multi-continua (see [1], for instance), thanks to mean characteristics
(porosity, permeability, pressure, ...) of the media and flow. For example (see [1]), a dual-
continuum background can consist of a matrix (first continuum) and a system of naturally
connected fractures (second continuum). In such heterogeneous media, the simulation of
flow is hard, mainly because of the distinct properties of continua, multiple scales and
high contrast and it requires some model reduction techniques. In multi-continuum ap-
proach, [1, 2, 3,4, 5, 6] the equations for each continuum are written separately with some
interaction terms (exchange terms) that represent interrelations between the continua.

In many scientific problems involving multi-continuum media, each continuum pos-
sesses multiscale feature. Direct numerical simulation in multiscale multi-continuum me-
dia is very expensive as it requires a large number of degrees of freedom to completely re-
solve the fine-scale features. For this reason, some type of upscaling or multiscale method
is needed to average or capture the micro-scale effect on the macro-scales. In this work,
we study efficient upscaling and model reduction methods for multiscale dual-continuum
systems.

When there is a scale separation and the coefficients of the multiscale equations are
periodic or locally periodic, the equations can be approximated by the corresponding ho-
mogenized equations whose coefficients do not vary rapidly. The theory of homogeniza-
tion has a long and successful history. We mention only those now classical references

Bensoussan et al. [7], Bakhvalov and Panasenko [8] and Jikov et al. [9]. However, for



multiscale multi-continuum systems, there has been very little literature. The homoge-
nization of these systems can result in very interesting effective phenomena that are not
often seen in homogenization literature.

Homogenization of multiscale multicontinuum systems have not been paid much at-
tention. We contribute in this work the first rigorous results on homogenization of a two
scale two continuum system where the interaction between the continua is scaled as 1/¢?
where ¢ represents the microscopic scale of the medium. We derive the homogenized
problem from the two-scale asymptotic expansion [7, 8, 9]. We show that for this scale of
the interaction term, we obtain the same limit for both continua. Other scaling regimes of
this term give rise to other limiting behaviours which will be studied in our forthcoming
publications. The effective coefficients of the homogenized equation are established via
the solutions of cell problems which are systems of equations of a similar form as the two
continuum system. Since the two scale coefficients depend on both macro- and micro-
scale variables, a different set of cell equations needs to be solved at each macroscopic
point. The number of equations to be solved is thus very large. Solving them using the
same fine mesh at every macroscopic point is extremely expensive.

One of the main contributions of the dissertation is the development of a hierarchical
approach to solve these cell problems to obtain the effective coefficients for the multi-
continuum system for a large number of macroscopic points, using an optimal number
of degrees of freedom, without sacrificing the accuracy. It solves cell problems for a
dense hierarchical network of macroscopic points with different levels of resolution. The
problems at those points belonging to a lower level in the hierarchy are solved with a higher
level of accuracy. For the solution at a macroscopic point at a higher level in the hierarchy
which is obtained with a lower level of accuracy, we use solutions at nearby macroscopic
points that are solved with a higher level of accuracy to correct the error. We show that this

hierarchical FE approach obtains the same level of accuracy at every macroscopic point as



that obtained when every cell problem is solved with the highest level of resolution (we
will refer to this as the full reference solve below), but uses only an essentially optimal
number of degrees of freedom that is equal to that required to solve only one cell problem
at the finest level of resolution (apart from a possible logarithmic factor).

In the second part of the dissertation, we study the homogenization of the two-scale
dual-continuum system with the interaction terms scaled as (’)(%) where e represents the
micro-scale. We show that the homogenized equation for this case is very interesting and
complicated. The homogenized dual-continuum system consists of convection continuum
interacting terms which do not appear in the original two-scale system. Furthermore,
the homogenized dual-continuum system has negative interaction coefficients while the
interaction coefficients of the original two scale system can have both positive and negative
values. The phenomenon of the convection term in the homogenization limit has been
discovered before, e.g. in Allaire and Piatnitski [10] when homogenization of a reaction-
diffusion equation with a large reaction term is studied. However, in [10], this term is due
to the dependence on the €2 microscopic time scale. In this work, we have a convection
term in the homogenized equation where the original multiscale equation is without this
microscopic time scale.

We provide a rigorous proof of homogenization convergence. The proof is new and
difficult because of the %—scale of the interaction terms in our system and the complicated
homogenization limit. We also derive a homogenization error under regularity conditions
for the solutions to the cell problems and the homogenized equation. Such a homogeniza-
tion error has never been derived for multiscale multi-continuum systems before.

Although the homogenization technique is effective for simulations in media with scale
separation or periodic structure, it is limited to the problems where the media of interest
locally has a few important modes. In order to overcome the limits of homogenization

technique as well as integrate the heterogeneity of the multicontinua and reduce the com-



putational cost, based on the multiscale finite element method (MSFEM) as in [11, 12],
the generalized multiscale finite element method (GMsSFEM) was developed ([13]). This
method allows one to systematically construct multiple multiscale basis functions, by
adding new degrees of freedom (basis functions) in each coarse block. These new basis
functions are calculated by constructing the local snapshots and performing local spectral
decomposition in the snapshot space. That is, the producing eigenfunctions can convey the
local characteristics to the global ones, via the multiscale basis functions in coarse grid.

The generalized multiscale finite element methods (GMsFEM) ([13]) has been suc-
cessfully applied to a number of multiscale multi-continuum problems. A recent example
is about shale gas transport in dual-continuum background consisting of organic and in-
organic materials ([14]). In this spirit, a third continuum can be added to dual continua
as an extension (see [15], for instance). More generally, flow simulation in heteroge-
neously varying multicontinua was investigated (see [6, 16, 17], for instance). Addition-
ally, there are various and active studies on new model reduction techniques including
constraint energy minimizing GMsFEM (CEM-GMsFEM) ([18, 19, 20]) and related nu-
merical methods for multi-continuum systems ([21]) including non-local multi-continuum
method (NLMC) ([22, 23, 24, 25]). These methods construct multiscale basis functions
solving well-designed local constrained energy minimization problems. The basis func-
tions of reduced system are related to the solutions on each continuum in each coarse
elements and these approaches effectively handle high-contrast as well as multiscale fea-
tures in multi-continuum media.

Herein, we develop the GMsFEM for an upscaled multiscale multi-continuum system.
We consider the special case where the multiple continua occur at many scales. Starting
from a microscopic scale, the multi-continua are upscaled via homogenization, to reach an
intermediate scale. At this stage, the multicontinua still possess some degree of multiscale.

Hence, they are then simulated by the GMsFEM, to arrive at coarse-grid (macroscopic)
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level. More specifically, being motivated my the homogenized equation derived in the
second part of the dissertation, we develop the GMsFEM for a multiscale upscaled dual-
continuum system with general convection and interaction terms. The GMsSFEM has never
been utilized for this type of upscaled dual-continuum equations.

The dissertation is organized as follows. In Chapter 2, we study the homogeniza-
tion and the hierarchical finite element algorithm for a multiscale dual-continuum system
where the interaction between the continua is scaled as 6% We outline the hierarchical fi-
nite element algorithm for solving the cell problems at all macroscopic points. We present
a rigorous error estimates and the numerical results. We rigorously prove the homoge-
nization convergence. In Chapter 3, We study the homogenization of a multiscale dual-
continuum system where the interaction term is scaled as % We perform the two scale
asymptotic expansion to derive the homogenized dual-continuum systems. We then state
the main results on the convergence of the solution of the multiscale multi-continuum sys-
tem to the solution of the homogenized multi-continuum system. We derive a corrector
and prove a homogenization error estimate. In Chapter 4, We utilize the GMsFEM for
an upscaled dual-continuum system derived in Chapter 3. We provide an overview of the
uncoupled and coupled GMsFEM. We derive convergence analysis, for both uncoupled
and coupled GMsFEM. Then we present the numerical results. Finally, the appendix in
the end of the dissertation contains the proofs of the existence and uniqueness of solutions
to both the original two scale system and the homogenized equations in Chapter 3.

Throughout the dissertation, by V, we denote the gradient with respect to = of a func-
tion that depends only on the variable x, or the variables = and ¢. By V,, we denote the
partial gradient with respect to = of a function that depends on z, ¢ and also other vari-
ables. Repeated indices indicate summation. The notation # denotes spaces of periodic

functions.



2. HIERARCHICAL MULTISCALE FINITE ELEMENT METHOD FOR
MULTI-CONTINUUM MEDIA

* The hierarchical finite element method has been developed to solve the cell problems
and compute the effective coefficients for multiscale equations. In [26], the method was
developed for the effective coefficients of deterministic two-scale Stokes-Darcy systems
in a slowly varying porous medium. In [27], they use the hierarchical algorithm for a two-
scale ergodic random homogenization problem without assuming microscopic periodicity.
In this chapter, we follow the framework of these papers, but we utilize the hierarchical
approach to compute homogenization coefficients for a two-scale dual-continuum system
where the interaction terms are scaled as (’)(}2) The interaction terms give the interesting

cell problems (2.4) in the form of a system of coupled equations.
2.1 Problem formulation
2.1.1 Homogenization of multi-continuum systems

In multi-continuum approaches, equations for each continuum are written separately.
We denote by u; the solution for ith continuum. In the general case where each con-
tinuum interacts with every other continuum, we have the following system of equations
introduced in [6]

ous(t, )

= div(k(2)Vus(t, ) + QS (us(t, x), ..., uSy(t,2)) + ¢;, in Q

where Q@ C R? is a domain (d = 2,3), ¢ are the multiscale permeability and C, are

the multiscale porosities, ¢; are the source terms, and the functions Q) of (uy, ..., uy) are

*This chapter was published in Journal of Computational and Applied Mathematics, 369: 112588, Jun
Sur Richard Park and Viet Ha Hoang, “Hierarchical multiscale finite element method for multi-continuum
media”, Copyright Elsevier (2019).



exchange terms (see [1, 2, 3, 4, 5]) that describe the interaction of continua; € represents
the microscopic scale of the local variation.

In this chapter, we consider a dual-continuum system. Let Y be the unit cube in R,
Let Cii(x,y), ki(x,y) (i = 1,2) be continuous functions on 2 x Y which are Y -periodic
with respect to i and ¢ be a function in L?(2). We assume further that there is a constant

¢ > 0suchthatforallz € Q,y €Y

Cii(l‘7y) Z ¢, ’{i(l‘ay) Z ¢, Q(Iay) Z C. (21)

We define the two scale coefficients as

x x
Cii(x) = Cii(x, 2)7 ri(x) = ki(w, .
We consider in this work the case where the interaction terms are scaled as O(1/€?); this

case has the most interesting cell problems in the form of a coupled system. We consider

the multiscale dual-continuum system

()P0 i () Vi (1) + Q0 2) — i (12) + »
52 0) D) i () V() + Q) (1) 51, 0)) + 0,

with the Dirichlet boundary condition (¢, z) = uS(t,z) = 0 for x € 0f), and with the
initial condition u$(0, z) = gy, u5(0,z) = g where g; and g, are in L*(€2). We consider

the following two-scale asymptotic expansion of u§ and us.

T T
"Lﬁ(t;x) = Ul(](t,x, E) + eun(t,x, E) + ... ,

z x
us(t, ) = ug(t, x, E) + eug (¢, x, E) 4o



where the functions wuy;(t, z, y) and uy; (¢, x, y) are periodic with respect to y. Performing

the two-scale asymptotic expansion, from (2.2) we obtain

O(uo + €uyy + - - N 1
Cu (10 681;11 ) = (div, +g divy)(k1(Va + ;Vy)(ulo +eun + -
1
+ G—QQ(Uzo + €Uz — uyp — €up + -+ ) + ¢,
O(ugo + €ty + - - - N 1
Cos (uz0 Eau;l ) _ (div, += divy)(ka(Va + Evy)(uzo + €ugy + - - -

1
+ E_QQ(U10+EU11 — Ugy — €Uy + -+ ) + ¢,

For the O(e?%) terms, we obtain,

divy(k1(z,y)Vyuio(t, 2, y)) + Q(x,y) (uz(t, z,y) — uio(t, 7,y)) = 0

diVy(Ii2<CL’,y)vyﬂqo(t,l’,y)) + Q(ZE, y)(ulo(ta l‘,y) - u20(t7‘ra y)) = 0.

From this, we have

—/ k1 Vytio - Vyuiody + / Q(ug0 — urg)urody =0
Y Y

—/ KoV yag - Vyugody + / Q(u19 — ugo)ugedy =0
Y Y

Adding these two equations, we obtain

/ /ilvyulo . Vyulody + / KlgvaQQ : Vyugody + / Q(u20 — U10)2dy =0.
Y Y Y

This implies V,u1g = 0, Vi ugg = 0. i.e. uy9 and uy are independent of y, and uy(2, x) =

ug(t, r) = up(t,z) as Q(z,y) > ¢ > 0Vz € Q,y € Y. For the O(¢™!) terms in (2.3),



we have,

divx(mvyulo) + divy(/ﬁVulo) + diVy(/ilvan) =+ Q(U/21 — 'LLH) = O

diVx(IQQVyUQO) + diVy(/ﬂZQVUQo) + divy(/izvlel) + Q('U,H — 'LL21) = 0

Since w1 and ug are independent of y, we have

divy(mvyun) + Q(Ugl — UH) = — diVy(/i1VUO)
diVy(ligvaQl) + Q(’LLH — u21) = — divy(/@Vuo)
Thus uy = 2N} and ug = % Nj where Ni(z,-) € H(Y)/R, and Ni(z,-) €

H,(Y)/R are solutions of the cell problem

divy (k1 (z,y) (e’ + V,N)) + Q(z,y) (N3 — Ni) =0
(2.4)

div, (ol y)( + V,N3)) + Q) (N} — Nj) = 0,

where €' is the ith unit vector in the standard basis of R%. For the O(¢°) terms in (2.3),

integrating over Y, one has

8u0
Ci1—dy
/Y 1ot

:/divx(/ﬁVuo)dij/divr(filvyun)dy—i-/Q(U22—U12)dy+/qdy,
Y Y Y Y

8u0
Coo—dy
/Y > ot

:/divx(/@Vuo)dij/divx(lﬁvyugl)dy—i—/Q(ulz—um)dy—l—/qdy.
Y Y Y Y

Adding these two equations, one obtains the homogenized equation

0
</ Cndy + / ngdy) T _ div(k]Vug) + div(k5Vug) —|—/ 2qdy in Q (2.5)
Y Y ot Y



where the z-dependent permeabilities are defined as

K1ij (I) = / K1 (x, y) ((52']' + M)d% Ko (q;) = / Ii2<:r, y) (52,], + 2( y) )dy
Y Y; v “on

(2.6)

We will show later that the matrix x7,;(7) + k3;; () is symmetric and positive definite. We

will also show that the initial condition for u is

(C11)g1(x) + (Ca2) g2 ()
(C11) + (Ca2)

up(0,2) = (2.7)

where (C;;) = fY Cii(y)dy for i = 1, 2. Equation (2.5) together with initial condtion (2.7)

has a unique solution (see, e.g., [28]).
2.1.2 Uniqueness of solution to the cell problem

We write the system (2.4) in the variational form as

/ k1 (z,y)VyNi(z,y) - Vyor(y)dy —/ Q(x,y) (N5 — N}) o1 (y)dy
Y Y

= —/ ki(z,y)e’ - Vyori(y)dy

Y (2.8)

| rale )V Vi) - Tty = [ Q)N = Naludy

= —Lmz(x,y)ei-vy¢z(y)dy

where ¢1, ¢y € Hj(Y). Let W be the space Hj,(Y) x Hj(Y)/(c,c),c € R. The space

W is equipped with the norm

(01, D)l = IVy1llL2vy + I Vy@allL2yy + |61 — @2l L2y

10



For z € Q, we define the bilinear form B(z;-,-) : W x W — R as

B(z; (01, ¢2), (¥1,12))
= /Y k1(2,y)Vyd1(y) - Vyhr (y)dy + /Y Ko (2, y)Vya(y) - Vya(y)dy

4 /Y Q. y) (D1 (2,y) — 22, 9)) (V1 (2, 9) — vl ))dy

for (¢1, o) € W and (¢1,19) € W. From (2.1), we deduce that the bilinear form B is
uniformly coercive and bounded with respect to x € €2, i.e. there are constants ¢; > 0 and

¢y > 0 such that

B(a; (¢1, 62), (61, ¢2)) = cal||(¢1, ¢2) ][,
B(; (61, ¢2), (Y1, ¢2)) < cal[[(¢1, d)l] - [[[ (41, )],

(2.9)

for all (¢, ¢2) € W and (¢1,102) € W. Adding the two equations in (2.8), we obtain

ka (@, 9)e - Vb (y)dy — / a(z, 9)e' - Vybaly)dy.

Y

Bl (NN, (01,0)) = — |

Y

Theorem 2.1.1. Problem (2.8) has a unique solution (N{, N) € W.

Proof. The conclusion follows from the boundedness and coerciveness of the bilinear form

B and the Lax-Milgram lemma. [

2.2 Hierarchical finite element algorithm

Computing effective coefficients x} () requires the solutions of the cell problems (2.4)
at many macroscopic points which can be very expensive. We develop in this section
the hierarchical FE method which computes the solution of the cell problems at a dense
network of macroscopic points using only an essentially optimal number of degrees of

freedom which is equal to that for solving one cell problem (apart from a multiplying

11



logarithmic factor). We assume that the coefficients are sufficiently smooth with respect

to the macroscopic variable z. We make the following assumption.

Assumption 2.2.1. There is a constant C' > 0 such that for all x, ' € (),

[k1 (2, ) = k1 (@, )L vy < Clz =27, [[Ra(2, ) = Ka(@', )| (vy < Clo — 2],

and ||Q(z,-) — Q(2', ) || (v) < Cla — ']

Remark. The main necessary condition for our proposed method to work is that the
two scale coefficients possess Lipschitz (or Holder) smoothness with respect to the macro-
scopic variable. However, this assumption is reasonable as the macroscopic properties of

the media normally vary smoothly.
2.2.1 Overview of hierarchical algorithm

We develop an efficient hierarchical finite element algorithm to solve the coupled cell
problem (2.4) numerically and to approximate the effective properties () in (2.6) for a
dense network of macroscopic points z € 2. We follow the algorithm introduced in [26].

We outline the algorithm as follows.

Step 1 : Build nested finite element spaces. We employ Galerkin FE to obtain an
approximation of the solution (N}, Ni) € W of (2.4) for each macroscopic point x € {2
using FE spaces of different levels of resolution. We assume that there exists a hierarchy
of FE spaces V, C V; C --- C Vi C H#(Y) where the integer index L denotes the
resolution level. We assume further the following approximation properties: for w &

HE(Y),
¢ei{}f IVy(w = &)l 2vy + 25w = @l r2vy < C27 w2 vy, (2.10)
L—1

where the constant C' is independent of L and /.
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Step 2 : Build a hierarchy of macrogrids. We solve the cell equations at different
macroscopic points x € {2 with different levels of accuracy. We use the solutions solved
with a higher accuracy level to correct the solutions obtained with a lower accuracy level.
We achieve this by solving the cell problems at different macroscopic points using differ-
ent FE spaces in the hierarchy in Step 1. This can be done by constructing a hierarchy
of macro-grid points. We construct a nested macro-grid, 7o C 71 C --- C T, C Q as
follows. First, we build an initial grid 7, with a proper grid spacing H, the maximal dis-
tance between neighboring nodes. We then inductively construct 7;, a refinement of 7;_1,
with grid spacing H2~!. Then, we define the hierarchy of macro-grids, {Sp, S1,- -+, S}
as So = 7o, S1 = T1\ S0, and for each [ > 1, we have

Si =T\ (U Sk>.

k<l

We call the nodes in the lowest level grid S; the anchor points. In this way, we obtain a
dense hierarchy of the macro-grids. That is, each point z € .S; has at least one point from
one of the previous levels, 2’ € J,_, Sk such that dist(z, ') < O(H27"). Figures 2.1 and
2.2 show an example of 3-level hierarchy of macrogrids 7;, S;, [ = 1,2, 3, constructed in

Q= 0,1].

Step 3 : Calculating the correction term. We relate the nested FE spaces and the
hierarchy of macrogrids for our algorithm. We first solve the cell problems at anchor
points using the standard Galerkin FE with FE space V;. That is, for the points in the
coarsest macro-grid Sy, we solve the cell problems with the finest mesh. More precisely,

we find Ni(z,-), Ni(z,-) € Vy, such that

ki(x,y)e’ - Vybi(y)dy — / ka(z,y)e" - Vyda(y)dy

Y

Bl (N, 3) (v, 02)) = — [

Y
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(@) To () Th (©) T2

Figure 2.1: 3-level nested macrogrids

(@) So (b) S1 (c) Sy

Figure 2.2: 3-level hierarchy of macrogrids

for all ¢1, o € V. Proceeding inductively, for z € S; (I = 1,---, L), we choose the
points {x1, 22, -+ ,2,} € (U, Sr) so that the distance between 2 and each point in
{2y, 29, ,m,} is O(H27"). This is possible from the assumption for the hierarchy of

macroscopic points above. We define the /-th macro-grid interpolation by
le(Nllc) = Z Clef:(xj’ )5
j=1

where the coefficients c¢; satisfy > 7, ¢; = 1 (k = 1,2). We refer to the I-th macro-grid

interpolation of Galerkin approximations as I (N}) = > ¢;Ni(x;,-). We solve the
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following problem: Find Ni (z, ), Ni‘(z,-) € V., such as

B(w; (N{", N3). (61, 02))

= —ch/y(’fl(%y) — k(25,9))VyNi(z;,y) - Vi (y)dy

=300 [ o) = s ) Tynw)dy

n N @2.11)
~S ¢ /Y (ka(, ) — ol )V Ni(y, ) - Vybaly)dy
=1

B ch /},(“z(xay) — ha(25,9))e’ - Vyda(y)dy

+3 0 /Y Q1) — Q) (Vi) — Nilzs, 9))(éa(y) — boly))dy,

for all ¢y, ¢ € Vy_;. Note that right-hand side data is all known since we have al-
ready computed {]\7 Hxj,) %1 inductively using finer mesh spaces at macro-grid points
in (U, ., Srr). We let

Ni(w,) = Ni“(x,) + IF(N}), (2.12)

be the FE approximation for N} (z,-) where k = 1,2. A main goal of this chapter is to
prove that the approximation (2.12) for N{(x, -) has the same order of accuracy compared
to the approximation we obtain by solving (2.8) using the finest FE space V), at all macro-
scopic points. We also prove that we reduce the computation cost with the approximation

(2.12) to the optimal level.

Remark. In the following, for simplicity, we use a simple 1-point interpolation to com-

pute the correction term (N°, Ni°). More precisely, for z € .S; we choose 2’ € (|, < 5r)
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such that dist(z, 2') < O(H27"). We let
III(ND = N]i(.%/, ')7 k=12
be the macro-grid interpolation. The FE approximation is

Ni(z,-) = N} (z,) + Nj(2',), k=1,2.

Remark. Note that as the level [ goes higher, we use coarser FE spaces for the correspond-
ing finer macro grids. This balance guarantees that although we use coarser FE spaces, the

FE error is still optimal, but with much less computation cost.
2.2.2 Error estimates

We require that the coefficients x; and () satisfy Assumption 2.2.1 and (2.1). We prove
that the hierarchical method achieves the same order of accuracy as the full solve. For
simplicity, we consider 1-point interpolation for our proof; the proof for the general case

is similar.

Lemma 2.2.1. There exists a positive number C' such that |||(N{(x,-), Ni(z,))||| < C

forall x € Q.

Proof. From (2.8), we obtain

B(x; (Nf(.%, )’Né(gjj ))’ (N{(Qj’ )>N5 Z, )))

=—/ ki(z,y)e’ - VyNi(z,y)dy — | wa(w,y)e’ - V,Ni(z,y)dy.
Y
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Using the uniform coercivity of the bilinear form B(z; -, -) with respect to =, we get

ClINT (), Ny(a, DT < (VN1 (@, ) z2ry + 1V Na ()l z2r)

for C' > 0. From this we get the conclusion. ]

Let Ni°(z,-) = Ni(z,-) — Ni(2',-). We have that (N{“(z,-), Ni°(z,-)) € W satisfies

B(z; (N, N, (¢1, ¢2))

= [ (kaeg) = ki )N ) - Vo) @13
~ [ ) = e ) V()
~ | (i) = el ) VN 9) - V)l 214
~ | ) = wala ) V()
+ [ (@' 9) = Qe ) (NI 9) = N ) n(0) — enlhy 215)

V (o1, ¢2) € W.

Proposition 2.2.2. There exists C' > 0 such that
IINT (), Ny (z, )] < Clae = | (2.16)

forx € Tr.
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Proof. From (2.15), for (¢, ¢2) = (Ni(z,-), Ni°(z,-)) € W we have

B(a; (N7, N3, (N1, N;))

= —/Y(nl($,y) — k(2 y))VyNi (2, y) - VN (2, y)dy
_/Y(,ﬁ(x,y) — k(2 y)e - VNI (2, y)dy

— /Y(K;Q(x,y) — ka(2',y))Vy Ny (2, y) - VyNéc(x, y)dy
_Lw@w_mﬂmaVWﬂmMy

+ /Y(Q(l‘/7y) - Q(xvy))(N{(l‘/?y) - Ng(‘T,:y))(Nfc(xvy) - Néc(xvy»dy

As V,Ni(«/,-) and V,Ni(2/, -) are uniformly bounded in L?(Y") with respect to z € Q) by

Lemma 2.2.1. From Assumption 2.2.1we have

II(NT (@, ), Ny (e, )P

< Cla = 2|V N (@, )2y + [V N3 (@, I z2ery + 11N (2,) = Ni* (@, )l 12v))-

Thus

(N (2, ), Ni“(z, )]|| < Clx — 2| (2.17)

where the constant C' is independent of x. [

Lemma 2.2.3. There is a positive constant C' such that
12y Ni (@, lz2ery + 1Ay N ()l 2vy < C (2.18)

forall x € Q.
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Proof. We rewrite cell problem (2.4) as
“1Any + Vyky - Vny + divy("flei) +Q(z,y)(N; — Nj) =0

K/QAyNé + Vylig . VyNé + diVy(KQGi) + Q(xa y)(N} - N;) = 0.

Rearranging these equations, we have,

AyN} = (vy’ﬁ : Vny + divy(’flei) + Q(xv y)(Né - Nf))

1
R1

AyNzi = (Vy@ ) VyN2i + diVy(@ei) + Q(x, y)<N1i - Nﬁ))

_ L

)
By the uniform boundedness of |||(N{(x,-), Ni(z,-))||| with respect to z and Lemma
2.2.1, we deduce that ||A,N{(z,-)||r2(yy and ||AyNi(x,-)||12(y) are uniformly bounded
forall x € €. ]

Lemma 2.2.4. There exists a positive constant C such that
12, N7 (2, Nlzzevy < Cla =2/, ||AyN3 (2, )| z2v) < Cla = |

forall x € Ty.

Proof. From (2.15), we have

"il(xa y)AleiC<x7 y) + Vylil(l’, y) ’ vnyc(‘rv y) - —Q(l’, y>(N2zC(x7 y) - Nlic<x7 y))
= Vy(ri(z,y) — k(@ y)) - VyNi(@' ) = (k@ y) — ke’ 9)) A Ni (2, y)

—divy(ri(z,y) — K(@' y)e’) + Q' y) — Qz, 1)) (N3(2',y) — Ni(a', y)),
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Ra(w,y) Ay N3 (2, y) + Vyra(w,y) - VN3 (2,y) = =Q(z, y) (N} (2, y) — N3 (2,9))
— Vy(ka(2,y) — ka2’ ) - VyN3(@',y) — (ka(,y) — rala’,y)) Ay No(2', y)
— divy(k2(7,y) — w2(2’, y)e’) + (Qa', y) — Qa, ) (N (', y) — Na(a', y)).
Therefore,
BN (a,) = A=V (9) - VN () = QUavy) (N5 (2. 9) — Ni(a.)
— Vy(ri(2,y) — mi(2',y) - VyNi (@', y) = (mi (2, y) — ka2, 9) Ay Ni(2', y)

o diVy(FLl(QZ, y) - Kl(x/7y)€i> + (Q(x/7y) - Q(Q?, y))(N§($/,y) - Nli('rlv y))},

iC 1 ic iC iC
AyNQZ ((L’,y) = I{_Q{_vy"i2(x7y) ' vyNz (xvy) - Q(‘x7y)(N1 (‘Tay> - N2 (:E,y))
— Vy(ka(z,y) — ra(a’,y)) - VyN3 (@', y) — (k2(z,y) — ko2, y)) Ay Na(2', y)
— divy(ka(z, y) — ka(2',y)e") + (Q(2', y) — Q(z, ) (Ni(2',y) — Ni(2',y))}.
From Lemma 2.2.1 and Proposition 2.2.2, we have

1Ay N1 (@, I z2e), 18y N3 (@, )22y < Clo —a].

for some constant C' > 0. L]

We choose (Ni°, Ni%) € W such that

/ (NI 4 Ni%Vy = 0.
Y

‘We then have

Lemma 2.2.5. There is a positive constant C such that ||Ni(z,-)||r2¢v) < Clz — 2/| and

||N5 (=, N2y < Cle — 2| forall x € T
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Proof. We note that

2([NT 122y + 1IN; T220y) = 1N+ N3 Moy +INT = Ny [y (219)

Since [, (N{°+ Ni°)dy = 0, by Poincare inequality, and (2.17), the following inequalities
hold.

INT® 4+ N3l r2vy < ClIVy(NT + No 2y < CUIVy N r2vy + [V N3 | 220v))

< Clz — 2|
And then by (2.19),
2([NT 122y + 1IN () < Clo — 2.

]

Proposition 2.2.6. There is a constant C' > 0 such that ||N{‘||g2yy < Clz — /| and

N2y < Cla — &' forall x € Ty

Proof. Let w C R? be a domain such that Y C w. Let ¢ € C5°(w) be such that ¢ = 1 in

Y. We have

A, (ONI) = AypNi“ + 2V - VNI° + pA,Ni“.

Since pNi“ = 0 on dw, applying elliptic regularity, we have

N N2y < NONT [l m2w) < [Ay@NT® +2V,y6 - VNT° + ¢A,N{[|12(.  (2:20)
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By Proposition 2.2.2, Lemmas 2.2.4 and 2.2.5, and the Y -periodicity of Ni,

N1 (@, Mlz2ey < Cla = &' IV Ny (2, )l 1200) < Clo = 2| 1A, N (2, )| r2w)

< Clz — 1|

for all z € 7. Then from (2.20), ||N{°||p2(yy < Clo — 2/|. Similarly, || N5|| g2y <
Clz — 2’| for C > 0. O

We consider the problem: Find Ni“(z,y) € V;_; and N (z,y) € V,_; such that

B(x; (]WC, ]@C), (¢1,P2))

= [ (kales) = i@ )N ) - V(o) @21)

- [ ala) = e ) V()

- /Y (ka(z,y) — Ka(2',y))Vy Ny (2',y) - Vyoa(y)dy (2.22)

~ | i) = el ) V(o)

+ [ (Q9) = Qe (Vi) = Nyt ) (6a(0) — ealw)dy. 223)
for all ¢, € V;_; and ¢, € V;_;. This is the FE approximation of (2.15). We then have

the following result.

Lemma 2.2.7. There is a positive constant C° such that

[(Ni(z, ) — Ni(, ), Ni“(, ) — Ni‘(a, ))]|| < CO27F.
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Proof. It follows from Cea’s Lemma, Proposition 2.2.6 and (2.10) that
(N = N7 NG = NI < C27 D (INT [y + INS ([ r2))
<02 E D)y — o) < 0027,
[

Proposition 2.2.8. There is a constant ¢; > 0 which only depends on the level S; of v € Ty,
such that

|H(Nf($, ) - N{(xv )7N21<x7 ) - N21<x7 ))H| < Cl27L-

Proof. We will prove the proposition by induction. The conclusion holds for [ = 0. We

assume that for all 2/ € Sy where I’ <1 — 1.

I(Ni(a!, ) = Ni(a,-), Ni(@',-) = NG/, DIl < era27™ (2.24)
From (2.11) and (2.23), we have

B(x; (Ni*(2,-) — N (2, ), N (x,) — Ni (2,)), (1, 62))
_ / (ka(,y) — ra(a, )V, (N (', ) — Ni(, 9)) - Vbt (9)dy
- /Y (k) — (' )V (R(', ) — Ni(' y)) - Vya(y)dy

+ /Y(Q(rv’,y) — Q(z,y))(Ni(2',y) — Ni(z',y)) — (Ni(2,y) — Na(z',)))
(D1(y) — d2(y))dy

for all p; € V;_; and ¢ € V_;. From Assumption 2.2.1 and the induction hypothesis,
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we have

IOV () = N1 (), NG () = N (I < yea2770 0 (229)
where v > 0 is independent of x and [. By Lemma 2.2.7 and (2.25),

(N1 (e, ) = N{ (), N5 (2, ) = N§ ()]

< NN (z, ) = N§ (,), Ni‘(,-) = N§ (,))]]]

B _, - _, (2.26)
< %2~k +vcl_12_L_l.
Using Ni(z,y) = Ni“(z,y) + Ni(z', ), We have
|H(N11(33’, ) - le(ﬂf, )7 N2Z<x> ) - N2Z<x> ))lH < 012_L7
where
= Vcl_12_l + g+ C°. (2.27)
O

Theorem 2.2.9. Under Assumption 2.2.1 and the uniform boundedness of k;(x,y) and
Q(x,y), there is a positive constant C, which depends only on the functions k1, ko and Q)

so that,

I1(Nf(x, ) = Ni(z,), N3(z,-) = Ni(,-))[[| < C.127" (2.28)

forx € 5.
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Proof. We let [ be an integer independent of L such that 127! < % for [ > [. And let

C, = max { max {%}, 200}, (2.29)

o<iI<i

where C" and ¢; are the constants in Lemma 2.2.7 and Proposition 2.2.8. Now we prove

II(N{(z,-) = Ni(x,-), Ny(z,-) = Ni(z,)||| < C.127* (2.30)

by induction. From (2.29), this holds for all [ < [. Suppose that (2.30) holds for all I’ < [.

Then from (2.27), we obtain
1
a<(((l-1)C,+ —770* +—=) = C\.l. (2.31)

]

Theorem 2.2.10. The total number of degrees of freedom required to solve (2.8) for all
pointsin Sy, Sy, -+, Sy is O((L + 1)29L) for the hierarchical solve while it is O((2%F)?)
in the full solve where cell problems are solved with the finest mesh level at all macrogrid

points.

Proof. Since the number of macroscopic points in S; is O(2%), and the space Vy_; is of
dimension O(2%*~D), the total number of degrees of freedom for solving (2.8) for all
points in Sy is O(24)O(24F-D) = O(2%L). Therefore, the total number of degrees of

freedom required to solve (2.8) for all points in Sy, Sy, - -+ , S is O((L + 1)2%L). O

2.3 Numerical example

In this section, we apply the hierarchical finite element algorithm to a numerical ex-

ample for computing the effective coefficients of a multiscale multi-continuum system at
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a dense network of macrogrid points. To show the accuracy of the algorithm, we compare
the results to the approximations to the effective coefficients obtained from solving the cell

problems using the finest meshes at all macroscopic points.
2.3.1 Numerical Implementation

We let Q = [0,1]? be the macroscopic domain and Y = [0, 1]? be the unit cell. We

consider the locally periodic coefficients

k1(T1, Y1, Y2) = (2 — axy) cos(2my ) sin(27ys) + 3
Ko(T1,Y1,Y2) = (2 — axy) sin(27yy ) cos(2mys) + 3

Q(z1,y1,92) = (1 + axy) sin(27y, ) sin(27y2) + 3

where the constant a is chosen below. We use 4 square meshes in [0, 1] to construct
a nested sequence of FE spaces, {V3_;}?_, so that the mesh size of each space is h; =
2. 274 for | = 0,1,2,3. Since k1, K2 and Q are independent of x5, we only consider
1-dimensional macrogrids in [0, 1]. The nested macrogrids {7;}%, C [0,1] and the sub-
sequent macrogrid hierarchy, {S;}?_, are constructed as follows. We first let 7o = Sy =
{0, %, 1}. Considering that our macrogrids have grid spacing H2~! for [ = 0, 1, 2, 3, where

H = % in this case, we have following hierarchy of macrogrids.

1 13 1357 1 3 5 7 9 111315
So = 10,51}, 81 = { S Sy= )y o D }

e SO A e ST TAR TAR TAR TAR TAR TR T

Figure 2.3 indicates how these macrogrids and the approximation spaces are related in
numerical implementation.

We implement the algorithm as follows. For 2’ € Sy = {0, 3,1}, we solve (2.8) for

Ni(z',-), Ni(a',-) € Vs, for all ¢y, ¢y € V3 by the standard Galerkin FEM. We then use

a simple 1-point interpolation to compute the correction terms. That is, for z € S; we

26



h=1/16, x=1{0, %, 1},

h=1/8, x={1/4, 3/4}

h=13%, x={1/8,3/8,5/8, 7/8}

h=1,
L ‘ L ‘ l x={1/16,3/16,5/16,7/16,9/16,

11/16,13/16,15/16}

Figure 2.3: The hierarchy of one dimensional macrogrids and corresponding mesh size
of FE spaces for 1-pt interpolation method. The lines indicates correction relations. The
squares indicate the points at which the solutions are corrected with the lower level solu-
tions and used once more to correct upper level solutions.
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choose 2’ € (|J,.; Sk) such that |z’ — | < 27". We let the Ith macrogrid interpolation be

IZSC(NI::) = le:(xlv ), (k=1,2).
We find Ni“(z, y) and Ni (z,y) in V;_; such that

Lml(w,y)vyﬁfc(x>y)-Vy¢1(y)dy—/}/Q(x,y)(i\_féc(m,y)—J\_ffc(m,y))@(y)dy
z—/ym(x,y)vny(x’,y)~Vy¢1(y)dy—/ym(x7y)e"~Vy¢1(y)dy
+£Q@MWW@—MW@M@@

(2.32)

and

/Ymg(x,y)VyNéc(%y)-Vy¢2(y)dy—/YQ(x7y)(Nfc(x7y) — N3 (2, ))éa(y)dy
:‘ﬂwwwwﬂuwwwwww—ﬂ@wwwvmmm/
+ [ Qe )i )~ i )t

(2.33)

for Vo1, ¢ € Vi,_;. We let
Ni(z,) = Ni(a, ) + Ni(z, ), (k=1,2)

be the approximation to N} (z,-). We continue inductively. For example, for z = % € S,
we compute N{(L,-), Ni(3,) using the standard Galerkin FEM. Then for 2 € S, we

find the correction terms ]\_ffc(%, ), Ngc(g, -) € Vi1 that satisfy (2.32) and (2.33), where
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T = % And we let the solutions at x = % be

.3 1 3

We continue this procedure based on Figure 2.3.

Tables 3.1 and 2.2 indicate x7;; and k3,; obtained by both the hierarchical solve and
the full solve where the finest mesh is used for all cell problems, at each x; and the relative
errors between them, where relative errors are calculated by W with obvious
notations for a = 1 and a = 0.1 respectively. The results show clearly that the effec-
tive coefficients obtained from the hierarchical algorithm are very closed to the reference
effective coefficients. We can see from the tables that relatively large errors occur at the
highest level macroscopic points where more than one layer of corrections is performed,
i.e. the corrector itself is corrected by the solution at a macroscopic point belonging to a
lower level. We note that the error for the case a = 0.1 is much smaller as the change of x;
in x is much smaller. That is, large Lipschitz constants in Assumption 2.2.1 tend to result
in large errors. The results in Tables 3.1 and 2.2 are obtained when only one corrector
point is employed. If we use more corrector points, the error can be reduced significantly.
In Table 2.3 we show the relative errors, in comparison to the coefficients obtained from
the full solve where the finest mesh is used for all the cell problems, for the effective
coefficients obtained from the hierarchical solve for the two cases where one-point and

two-point interpolations are used. The table shows that the result can be improved by

employing two-point interpolation.
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1 ‘ “Tn(‘xl) ‘ ’{311@1)
Full | Hierarchical | Errors (%) Full | Hierarchical | Errors (%)

0 | 2.8211 2.8211 0.0000 2.8304 2.8304 0.0000
1—16 2.8333 2.8267 0.2312 2.8413 2.8397 0.0582
% 2.8448 2.8408 0.1414 2.8518 2.8491 0.0968
1—36 2.8559 2.8593 0.1184 2.8619 2.8624 0.0159
%1 2.8664 2.8641 0.0803 2.8716 2.8707 0.0322
1% 2.8765 2.8690 0.2605 2.8809 2.8787 0.0764
% 2.8860 2.8887 0.0933 2.8898 2.8919 0.0712
1—76 2.8952 2.8998 0.1608 2.8983 2.8995 0.0390
% 2.9038 2.9038 0.0000 2.9065 2.9065 0.0000
1% 2.9120 2.9078 0.1450 2.9143 2.9133 0.0349
% 2.9199 2.9178 0.0706 2.9217 2.9201 0.0564
% 2.9273 2.9319 0.1572 2.9288 2.9303 0.0496
% 2.9343 2.9351 0.0288 2.9355 2.9361 0.0180
}—2 2.9409 2.9383 0.0857 2.9419 2.9416 0.0093
% 2.9471 2.9485 0.0476 2.9479 2.9492 0.0414
}—2 2.9530 2.9558 0.0979 2.9536 2.9543 0.0229
1 | 2.9584 2.9584 0.0000 2.9598 2.9590 0.0000

Table 2.1: a = 1, the effective coefficients x3;;(x1) and k3, (1) computed by full mesh
reference and hierarchical solve along with percentage relative errors between those.

2.4 Proof of homogenization convergence

In this section, we prove rigorously the homogenization convergence, i.e. the conver-
gence of the solution of the two-scale equation (2.2) to the solution of the homogenized

equation (2.5). Throughout this section, we denote the spaces L*(2) and H} () as H and

V respectively. We recall the two-scale multi-continuum system

€
Cll

€
C22

ouf(t, x)

ous(t, x)
ot
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1 ‘ ’{Tn(‘xl) ‘ ’{311@1)
Full | Hierarchical | Errors (%) | Full | Hierarchical | Errors (%)

0 | 2.8210 2.8211 0.0000 2.8304 2.8304 0.0000
1—16 2.8224 2.8217 0.0241 2.8315 2.8314 0.0061
% 2.8236 2.8231 0.0161 2.8326 2.8323 0.0107
1—36 2.8248 2.8252 0.0125 2.8337 2.8338 0.0020
%1 2.8261 2.8257 0.0112 2.8348 2.8347 0.0040
% 2.8273 2.8263 0.0347 2.8359 2.8356 0.0099
% 2.8285 2.8289 0.0154 2.8370 2.8373 0.0103
1—76 2.8297 2.8303 0.0232 2.8381 2.8383 0.0059
% 2.8309 2.8309 0.0000 2.8392 2.8392 0.0000
1% 2.8321 2.8314 0.0230 2.8403 2.8401 0.0058
g 2.8333 2.8328 0.0150 2.8413 2.8410 0.0101
% 2.8345 2.8354 0.0327 2.8424 2.8427 0.0095
% 2.8356 2.8359 0.0100 2.8435 2.8436 0.0037
}—2 2.8368 2.8364 0.0125 2.8445 2.8445 0.0019
% 2.8380 2.8384 0.0144 2.8456 2.8459 0.0098
}—2 2.8391 2.8398 0.0222 2.8466 2.8468 0.0056
1 | 2.8403 2.8403 0.0000 2.8477 2.8477 0.0000

Table 2.2: a = .1, the effective coefficients x3,,(x1) and x%,,(x;) computed by full mesh
reference and hierarchical solve along with percentage relative errors between those.
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1-pt interpolation 2-pt interpolation

Relative Errors (%) Relative Errors (%)

* *
K111 Ko11

0.2312 | 0.0582
0.1414 | 0.0968
0.1184 | 0.0159
0.0803 | 0.0322
0.2605 | 0.0764
0.0933 | 0.0712
0.1608 | 0.0390
0.1450 | 0.0349
0.0706 | 0.0564
0.1572 | 0.0496
0.0288 | 0.0180
0.0857 | 0.0093
0.0476 | 0.0414
0.0979 | 0.0229

]
,_.

)
,_.

* *
K111 Ro11

0.0072 | 0.0022
0.0091 | 0.0030

0.099 0.0026
0.0068 | 0.0013
0.0080 | 0.0021
0.0061 | 0.0020
0.0042 | 0.0013
0.0026 | 0.0008
0.0031 | 0.0011
0.0033 | 0.0009
0.0021 | 0.0004
0.0026 | 0.0007
0.0020 | 0.0007
0.0014 | 0.0004

oo 5|0 R~ ol 5ot = 5w ool 5[]
ol 5|0 B~ 0wl 5ot = 5w ool 5[]

—_
[
—_
[

|5 001N 5] oo 5|
55 oot~ 5155 160 5]

=
2]

Table 2.3: Percentage relative errors between full mesh reference solve and hierarchical
solve when a = 1.
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We have the following theorem.

Lemma 2.4.1. The solution (uf,, u,) of (2.34) and (2.35) are uniformly bounded in L>°(0,T'; H)

and L*(0, T; V).

Proof. Multiplying ¢, and ¢, € V'to (2.34) and (2.35) respectively and integrating over

(), one has

ous 1
[ et Gtonds+ [ wivui-Vondo— [ 5005~ wyindo = [ qorde
Q¢ Q

S 1 (2.36)
/ 25 (bgdx—l—/kagVu; - Vodr — / —Q(u] — uy)podr = / qood.
0c¢€ Q

Summing these equations, we get

/c;18“1< ) i +//£1Vu1() ngldx—/ QN (u(t) — us (1)) drda
/ cgza(;( P odar + / REVUS(1) - Vadi — / L0 () — s (#)odz (2.37)

- /Q A(H)brds + / 4()adda

Vo1, g2 € V. Substituting u§ and 5 into ¢ and ¢- in (2.37) respectively, we have

/Q c;la“(;t() <(t)dz + / c;za“a?f) < (t)dzx + /Q KV (t) - Vs (£)da
—I—/QRSVug(t)-Vug(t)dx—i-E—Q/QQE(UE@_ui(t))de:/Qqui<t)+/ﬂqug<t)dx~
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Integrating this equation over (0, 7), we get

/C lu$ (7, 2)|?dx + = /C |us, (T, )| dx—l—/ /I<L1VU1 Vuidzdt

—|—/ //i%Vug.Vuédxdt—i——Q/ /Qg(ug—ui)dedt
0 JQ e Jo Ja
T T 1 1

:/ /quidwdt—i—/ /qugdxdt—l-—/Cfﬂui((),x)ﬁdw—l——/C§2|u§(0,x)]2dx.
o Ja 0o Jao 2 Jq 2 Jq

(2.38)

Therefore,

1 € € 1 € €
§/C1l|ul(77$)|2d$+§/Cz2|u2(7'a$)|2dx
Q 0

+/ //iiVui-Vuidxdt+/ /ﬁEVug-Vugdxdt
_2/ /\q[ dxdt—l——/ /|u1\ drdt + = / /|q| dxdt
—|——/ /|u2| dxdt+/|C ||ug (0, z 2dx+/|C ||u$(0, ) |*dx.

Using the uniform boundedness from below of C; and C,, we have
c||u§(7,)||§{+c||u§(7',)||§{+/ //iiVui-Vuidxle—/ /m%Vu%-Vugdxdt
0o Jo 0o Jao
<o+ 1/Tu () Bt + — /Tn S(t, ) 3.
1=+ — ui(t, - — u
>~ 12 25 0 1\" H 25 0 2 H

Choosing ¢ sufficiently large, we deduce that u$ and u5 are uniformly bounded in L>°(0, T'; H)

and L2(0,T; V). O

Note that because of the 5th term of equation (2.38), lin% uy = lin% us. Thus, there exist
€E—r €e—r

subsequences of u§ and 5, which we still denote by u§ and v , and u( such that
uf,uy — ug in L*(0,T;V).
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Recall that (N}, Ni) € W is the solution of cell problem.

div, (k1 (2, y)(e' + V,Ni(z,9))) + Q(z,y)(N3(z,y) — Ni(z,y)) = 0

diVy<I€2(ZE,y)(€i + vyNé(xay») + Q(l’,y)(NiL(l’,y) - Ng(l’,y)) = 0.

(2.39)

We assume that N{ and N are sufficiently smooth with respect to both x and y. Let

wi(z) =& + Ni(z,2) and wy(z) = & + Ni(z, 2). We define w{ and w§ as

wi(z) = ew(x, %), ws () = ews(x, %)

Assuming that 1, k2, Ni and N2 are sufficiently smooth, for all 41, 1) € V we have

- / div($ (2) Vos§ () )iy () da — 12 / Q(#)(ws(x) — wi(x))ihr () d
_ 1/dwy(,ﬁ(x e+ V,Ni(, ) (2)de
-1 | @ DN D) - Nl Dinla)da
%L&mengw—mmu

)(e' + V,Ni(z, —)))wl(:v)dx (2.40)

div, (k1 (2,

”\IH mIH

)VolNi(z, —))wl( )dx

:—e/ﬂdlvm(/ﬁ( S)V.Ni(z, —))¢1( )dx
div, (k1 (2,

J,
/Q divy (k1 (z,

(€ + Vi, D) (a)da

ml& ml%%

)VaNi(z, ))wl(x)dfc
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and

- / div (xS (2) V() (z)dz — 12 / Q(z)(wilz) — wa(2))yn(z)dz
zl/mm@mmvw<»mmm
-+ | Qi ) = Ni(o D))ala)ds
.fﬁmwmméwxzwfmwmm

div, (ko(z,

(' + Y, Nj(a, 2)eba(w)d @41

ml& mlé%

)V Ni(x, ))%(x)dx
:‘34“““( VN3, =) () da

/Q div, (s,
/Q div, (k2 (2,

due to (2.39). Let ¢1(z) = ¢(x)ws(x), pa(x) = ¢(x)ws(x) where ¢ € C(2) in (2.36),

we have

)(€' + V,Ny(a, —)))%(x)dx

ml& ml&

)ValNy(x, —)Wz( )dx

/CH (% pwidx +/C22 Y gwada:—l—//fqui'V(gbwi)dx—i—/Q@Vu;~V(¢w§)da:

1
+ GQW?WWW—@sz/W@M+/W@M
Q€ Q Q

(2.42)
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Let 91 () and 15 (z) in (2.40) and (2.41) be ¢u  and ¢uj respectively. We have

/ r{Vwi - V(ou)dz + / ks Vws - V(pus)dx +/ %Qﬁ(wi — wy)(u] — ug)pdx
Q Q Q€
= — /dlvx(ml( Z)V.Nj(x, ))gbuidm

Q

div, (1 (2, =) (¢ + V, N (@, =) du da

div, (k1 (z, =)V, N (z, —))d)ul a:—e/ div, (ka(z, )V Nj(x, —))(bu2dac

Q

ml& ml& mIH

div, (ko(z,

:\@\o\

)(e" + V,Ni(z, )))gbu;da:—/ﬂdlvy(@( Z)V.Ni(x, ))gbugda:

(2.43)

Let € C§°(0,7). We multiply (2.42) and (2.43) by ¢ and intergrate over (0,7) with

respect to t. After subtracting the resulting equations by each other, we obtain
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/ / L% ¢ww§dxdt+ / / KV - VowSdadt
/ / 1Vwi - Voujpdzdt + / / o qs;z)w;dxdt
gy
o
/

T
qqﬁwiwdxdth/ /Qquwgzbdxdt
/ v, (k1(-, =) (€ + VN (-, -€)))puspdadt

T

€

div, (k1 (- V Ni(, )gbuiwdxdt

K
ks Vus - Vowshdrdt — / / ks Vws - Vousipdxdt
Q o Ja
I
[
(2.44)
di

+ divy(k )V Ni(-, )gbuiwdxdt

0 Q

T
/ /dlvgC Ka(- V Na(, ))¢u§wdxdt
0

Q
+/
0

" / / divy(@(',é)VxNg('>é)¢U§¢d$dt-

T
/ divy(ka(-, =) (€' + V,Ni(., ')))dmgwdmt

Q

We have the following lemma.

Lemma 2.4.2. The functions fOT (t)u§(z,t)dt and fOT (t)us(z, t)dt converge strongly
in H to fOTw(t)uo(x,t)dt.

Proof This is the standard result in Jikov et al. [9]. As u{ is uniformly bounded
in L*(0,T;V), fOT (t)u§(z,t)dt is uniformly bounded in V' when ¢ — 0. Thus we
can extract a subsequence which converges weakly in V' and strongly in H. As for all

¢ € G5 (%),

/Q /0 ) (t)u(z, t)p(x)dtdx — /Q /0 Tw(t)uo(x,t)¢(x)dtdx,
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the limit is [, (t)uo(x, t)dt.
We have

/ / 1 Y ledxdt /QCfl (/OTui%—lfdt> puwid.

As Cf, converges weakly to [, Cy1(z,y)dy in H, fo u§ 22.dt converges weakly to

fo g2 o 9% dtin V, we have

lim / / Ha(;“fgmm;dxdt /0 ' /Q ( /Y Cu(z,y)d )uoa—%xidxdt
[ L) B

‘We note that

ki (z)Vwi(x) = Kk(x,

k5 (x)Vws(x) = ko(z,

)((e + V,Ni(z,~)) + eV, Ni(x,

).
).

)((e +V NZ(

ml&ml&
ml&ml%&
AR a8

)) + evazi(x>

Also, note that due to Y -periodicity of x and N, we have

ri(z, =) (€' + V,Ni(z,

) /Y (2, 4) (€ + YV, Ni(z,y))dy

mlH ml&z
ml& mIH

Ko(z,

e+ VN, D) = | i )(e+ 9N )dy in I

We observe that x; + eN{ — x; strongly in H and [, q¢widz — [, gpz;dx since widp —
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x;¢ in H. Passing to the limit in (2.44), we obtain from Lemma 2.4.2,

/OT/Q (/Y Cndy> —¢¢J: dxdt+11m/ /Fcqul YV opx;dadt
T ot vt Govtiar [ [ ([ caty) v

T T
+ 1ir%/ / ksVus - Voyx,drdt — / / / ko€’ + V,N3)dy - Vopugdadt
€E— 0 Q
T .
= 2/ /qu@/m dmlt—{—hm/ /dlvx k(s =) (e + V,Ni(, )))gbwuidzdt

+1im/ /dwx Ko, =) (e 4+ YV, Ni(-, ')))¢¢u;dxdt.

e—0

(2.45)

Let ¢; and ¢, in (2.36) be ¢x; where ¢ € C°(Q2). Adding the two equations, we have

/ / 175y CWW dxdt+/ / 25, gbi/m:ldmdt%—/ //{1Vu1 V(¢ )bdzdt
+/0 /QKZVUZ'V(QS%)det:z/O /Qqcbwidxdt.

Passing to the limit, we obtain

/T/ </ Clldy) %¢¢xidxdt+/T/ (/ CQQdy) %wazd it

+hm/ //@1Vu1 ¢:Ul)z/)dxdt+hm/ /KJQVUQ V(px)pdadt — (2.46)

9 /0 /Q o(6w: dadt.
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Using (2.45) and (2.46), one obtains

li_I)I%/T/ k1Vug - e%zﬁdacdt%—hm/ /KJZVUZ e' ppdrdt
/ / (/ ki(e' +V N’)dy) - Vopugdxdt
/ / (/ Ko(e' +V N’)dy) - Vougdzdt

—lir%/ /dlvgC k1 (z, =) (e + V,Ni(z, )))qbwuld:vdt

- lim/ / div, (ks (x, g)(ei + V,Ni(z, z)))gbz/)ugdxdt.
=0 Jq Q € €

Since k1, Ko, Nf and Ng are independent of ¢, by Lemma 2.4.2, we have

T
lirrol/ /KIVUI e%qﬁdwdt%—hm/ /KQVUQ e' ppdwdt
€E—> 0

/ / (/ ki€ +V Nz)dy> - Vrpugdadt
/ / (/ ka(e +V N’)dy) - Vnpugdadt
/ div

A

(/ ki(e' +V N’)dy) PYugdrdt

I
/le (/ Ko(e' +V Nl)dy) oYugdxdt.

Therefore, we have

T , T .

11_1)% i (/Q kiVuj - e’¢d:c) Wdt + ll_r}(l) ; (/Q ksVus - ezcbd:c) wdt
T

= / ( / ( / m1(6i+Vny)dy> -Vuoqbdx) Pt
0 o \Jy
T

+/ (/ (/ Ko(e' + VyNé)dy) -Vuogbdm) Wpdt
0 o \Jy
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From this, we deduce

PL% {/ //-@1 V¢¢dmdt+/ //{2 )Vus(x) - ngz/zdxdt}

:P_% [/ /ﬁiVUi-ei—iwdxdt—i-/o /ng . }
/ /</ ka (2, ) +%fj’y))dy) ng( )(fzwd dt
[t 00)

For consistency with formula (2.6), we note the following result.

(2.47)

Lemma 2.4.3. [, wyd + [y K2 gyi = [y m1 1(Iyd + Jy k2 xy)d

Proof. From the cell problem, we have

/ k1 (e 4 VN -V, Nidy + / ko(e' 4+ V, N3 -V, Nidy
Y Y
+ / k1 (e 4 V,NY) -V, Nidy +/ ko(e' + V,Ni) - V,Nidy = 0
Y Y
/ /fl(ej + Vny) . Vleidy —I—/ /ig(ej + VyNg) . Vleidy
Y Y

+ / k1 (e + V,NY) -V, Nidy + / ko(ed + V,N§) - V,Nidy = 0.
Y Y

Thus,

ON{ i i j

K1 dy+ | ke(e' + Vy,Ny) - V,Nidy
Y Yi Y

ONJ

d

" Ay Y

3]\/" A A ,
=/ dy+/ ra(e! + V,N3) -V, Nidy
ay] Y

+ / kr (el 4+ VN -V, Nidy + /
Y Y (2.48)

. , , ON:
—|—/ ki(e? + V,N7) - VyNgdij/ Ko ———2dy.
% y Oy
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Now we show

/ ko(e' + VN2 -V, Nidy + / k(e 4+ VN -V, Nidy
Y Y

:/mg(ej+VyN§)-Vnydy+/ k1(e? + V,N{) -V, Nidy.
Y

Y

From the cell problem, we know that

/Ym(ei + VyNé) : Vnydy + /Y ’il<€i + Vny) ’ VyNgdy
— /YQ(N;' — N3)N{ + Q(Nj — N{)Njdy

= /YQ(Nfo — N3NY + N3N — NiNj)dy

— /YQ(N{ — NJ)N{ + Q(N] — N{)Nidy

- / ko(ed + V,NJ) - V,Nidy + / w1 (e + V,Ni) - V,Nidy.
Y Y

Thus, by (2.48) and (2.49), we have the result.

(2.49)

O

Theorem 2.4.4. Assume that the solution N{ and N of cell problem (2.8) belong to

C%*(Q,C2%(Y)) and the coefficients 1, and ko belong to C*(Q, CY(Y)). The limit func-

tion ug of the sequences uj, us is the unique solution of the homogenized equation (2.5)

with the initial condition (2.7).

Proof. Note that from the equation (2.34), we obtain

/ / s O it + / / KEVUS - Vodrbdt + / / 2y 9 byt
+ /0 /Q KEVUS - Vodrdt = 2 /0 /Q qodzdt.

forall ¢ € C3°(Q2) and ¢ € C§°((0,7)). Passing to the limit, from (2.47), Lemmas 2.4.2
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and 2.4.3, we have

/oT /Q{(/Y Crdy) + (/Y C22dy)}%¢dwdt
= /0 ' /Q div (k] Vug)pdrpdt + /0 ' /Q div (k5 Vug)pdxpdt + /0 ' /Q 2qodribdt,

where

We now show the initial condition. Adding (2.34) and (2.35), we have

. Ousy

ou§
Ce et § 22 8

— div(k]Vui) — div(k5Vus) = 2q.

943 is bounded in

As u§ and u§ are bounded in L?(0,T; V'), we deduce that C§ i 4 C22 5t

1175t

L*(0,T;V"). Let ¥(t, z) € C(0,T; V), ie. ¥(0,z) = (T, z) = 0. We have

ou$ ous . . o
/ / I 8751 Coo 82 / / C nug +Cs 2u2) 5 —dzdt
0
- _/ / ((Cu1) + <C22>)U0—dxdt :/ / ((C11) + (Ca2)) ﬂ@Ddxdt
o Ja ot o Ja

This shows that the weak limit of C§; % + C5,%2 in L2(0, T; V') is ({C11) + (Caz)) 2.

Now we choose ¢ € C>(0,7T; V) so that ¢(T,x) = 0. Then
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r ou ous
| [+ enlyvasar
/ / Cryuy + 22“2 ¢d$dt+/ (C11U1(0 x)+C§2u§(0,x))¢(0,x)dx

o
— —/0 /Q (Cr1) + <C22> uoadmdt + /Q (<C11>g1 + <CQ2>92)¢(0,x)dx.

On the other hand

r . Oug . Ug
/O /Q (ch—=+ 5 +022 at wd dt — / / ((Cu1) + (Ca2)) —twd:cdt.

_/0 /Q(<Cll> + (C22) uoaa—zfdxdt—k/g ((Cn> + <sz>)uo(0,x)w(0,m)dx.

This shows that ((C11)+(Ca2) ) uo(0, ) = (C11)g1(2)+(Ca2)g2(). i.e. the initial condition

of ug 18
(Ci1)g1(7) + (Ca2) g2()

uol0,2) = (Ci1) + (Ca2)

(2.50)

]
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3. HOMOGENIZATION OF A MULTISCALE MULTI-CONTINUUM SYSTEM

In this chapter, we study the homogenization of a multiscale dual-continuum system
where the interaction terms are scaled as O(%) We first derive an interesting homogeniza-
tion equation using two-scale asymptotic expansion. Then we provide a rigorous proof of
the homogenization convergence and convergence rate which are stated in Theorems 3.1.1

and 3.1.2.
3.1 Problem formulation

3.1.1 Two scale multicontinuum problem

Let  be a bounded domain in R?%. Let Y be a unit cube in R?. Let Q(z,v), Cii(,y)
and k;(z,y) (i = 1, 2) be continuous functions on {2 x Y which are Y -periodic with respect

to y. We assume that

/ Q(z,y)dy = 0. (3.1)
Y

Let T > 0. Let ¢ be a function in L*((0,T) x ). Let ¢ > 0 be a small quantity
that represents the microscopic scale the coefficients depend on. We define the two scale

coefficients as

i T T

Ce(x) = C”(.’E, Z)a 'L‘f(‘r) = /ﬂi(xa E)a i = 1727 and Qe(m) = Q(iE, E) (3.2)

22
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Let H denote the space L?(2) and V' denote the space H;(£2). We consider the following

dual-continuum system.

()80 i )V (1) + Q@) (1, 2) i 1,2)) g, €
i) 20D i)Vt (1) + Q) 01 2) (1, 2)) . €

(3.3)

with the Dirichlet boundary condition (¢, z) = uS(t,x) = 0 for x € 9f, and with the
initial condition u{(0, z) = g1(z), u5(0, ) = g2(x) where g; and g, are in H. We assume

there exist positive constants C', x such that
Cii(z,y) > C, ki(r,y) > k. (3.4

Remark. Throughout this chapter, we assume fY Q(z,y)dy = 0. This assumption makes
the presentation clearer and more concise. However, in realistic models, we have Q(z, y) >
0. One can handle this case under following assumption: Q(z,y) = 1Q*(z,y) + Q(x),

where

Q*(z,y) = Q(z,y) /Q x,y)dy and Q(z /Q z,y)d (3.5)

Obviously, now we have [, Q*(x, y)dy = 0. The term Q(z) will contribute to the homog-

enized equation and Q*(x, y) will play the role of Q(z, y) in this chapter.

In the weak form, equations (3.3) are of the form

ou 1
[ G [ v Ve =+ [ Qs —upndo = [ qonde
€Ja Q

3.6)
1
/622 2 podx + / kSVus - Vodr — — / Q(u] — ug)podr = / qopod.
075 € Jo Q
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for all ¢; and ¢, in C§°(Q). We use L*(0,T; X), L>=(0,T; X) to represent the Bochner

T 1/2
ol oy = ( [ el dt) |

vl zoc0,7x) = sup [Jv]lx,
0<t<T

space with the norm

where (X, || - || x) is a Banach space. Also, we define
H'(0,T;X) :={ve L*0,T;X) : w € L*(0,T;X)} .

We will prove in the appendix that system (3.3) has a unique solution (uf,u$) €

L*(0,T; V)N HY0,T; V') x L*(0,T;V) N H'(0,T; V") which satisfies
|2 0mvy + il vy + gl 2wy + [udllmoryy <€ BT

for a constant C' > 0 independent of e.
3.1.2 Homogenization of multi-continuum system

We study homogenization of this multi-continuum system by using the standard two

scale asymptotic expansion. We consider the two scale asymptotic expansion of u§ and u§

T T
ui(t, .CI?) = Um(t, xz, _) + Eull(tama _) + -
¢ € (3.8)
€ X T
uy(t, r) = ugo(t, , E) + eun (t, z, ;) 4+
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where the functions uy;(¢, x,y) and ug;(t, z,y) are Y-periodic with respect to y. From
(3.3), we have

O(uyo + €ugg +--+)
ot

. 1. 1
=(div, +E div,) (k1 (Ve + gvy)(ulo +eupp+---))

Cll

1
+ EQ(U20+€U21 — U9 — €U + ...)_{_q’

3.9
C 6(u20+eu21+---) ( )
22 BT
1 1
:(lex —|—E diVy)(FLQ(Vm + Evy>(u20 + €uUgy + - - - ))
1
+ EQ(UIO + Uiy — Uz — €U + ) +q.
Collecting the ¢~2 terms, we obtain
divy("'il (iL‘, Z/)Vyulo(t> xz, y)) =0
(3.10)

diVy(/-i2<£L‘, y)vyuZO(t> z, y)) =0.

From this, we deduce u¢ and s are independent of 3. Collecting the ¢! terms we obtain

diVy</£1VU10) + diVy</€1Vyu11) -+ Q<u20 — ulO) =0 (3 11)

diVy</€2VUQO) + divy(ﬁgvy’LQl) =+ Q(um — 'LL20) =0.

Therefore,

8 (t
un(t,z,9) ZNZ Q) 4 MG )l ) — )

(3.12)
8 (¢
Uz (t,z,y) ZNZ U20 Qun(t, 2) + Ma(z, y)(uro(t, ) — ugo(t, ),

’L
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where Ni(z,y), Ni(x,y) (i = 1,...,d), My(x,y) and My(z,y), as functions of y are the

solutions of the following cell problems respectively.

divy (k1 (2, y)(e' + V,Ni(z,7))) = 0
diVy<l€1(ZE, y)VyMl(x,y)) + Q(ZE, y) - 0

div, (ka(a,y) (¢! + ¥, Ni(z,y))) = 0

(3.13)

divy(ka(z,y)V,Ma(z,y)) + Q(z,y) =0

with the periodic boundary condition, where ¢’ is the ith standard basis vector of R?,
Problems (3.13 (a),(c)) have a unique solution in H#(Y) /R; problems (3.13 (b),(d)) have

a unique solution since fY Q(x,y)dy = 0. Collecting the ¢ terms, we have,

0
CH gtlo = diVx</€1VU10) —+ diVy(/ilvqu)
+ div, (k1 Vyurr) + divy (k1 Vyuia) + Q(u2 — u11) + ¢

o (3.14)
CQQ atzo == diV$<I€2VU20) + diVy(/igvlel)

+ div, (ke Vyugr) + divy (ke Vyuss) + Q(u11 — u2r) + ¢.

Integrating with respect to y over Y and using (3.12), we have

0 o :
(/ Clldy> % = d1v(f<cqu10) + div <(/ IilvyMldy) (Ugo - U10)>
Y Y

0 N
+ ([ @mtan G2 - ([ entan G2 - [ Q0 + Madytum — 1) +

0 o :
(/ C22dy> % = le(IQQVUQO) + div <(/ IigvyMgdy) (um — UQ()))
Y Y
0

+ ([ v G = ([ aviay)

Ouag
82@'

) _ /Y Q(M; + My)dy(usp — uzo) + g

(3.15)
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where

iy (2) = / () (8 + Sy
’ Y Oyi (3.16)

K () = /Y/fg(:):,y)(dij 22

We note that x7;;(7) and k3;;(z) are standard homogenized coefficients for elliptic prob-
lems [7]. They are symmetric and positive definite ([7]). We will show in Section 3.2 that

the initial conditions for ug, u9eg are

u10(0, ) = g1(x), u20(0, ) = go(). (3.17)

In the appendix, we show that the homogenized problem (3.15) with these initial condi-
tions has a unique solution.

Remark. The case where the continuum interacting term is scaled as 1/¢ considered in
this chapter has the most interesting homogenization limit, in comparison to other scalings,
e.g. the 1/¢? scale case considered in [29]. It can be shown that the continuum interacting
coefficient — fy Q(M; + My)dy in (3.15) is always negative while the interaction coeffi-
cient %Q in the two-scale problem can be both positive and negative due to Assumption
(3.1). The homogenized equation (3.15) has convection terms, which is different from the
original equation (3.3).

We have the following homogenization results.

Theorem 3.1.1. Assume that the solution N and Ni (i = 1,...,d) of cell problem (3.13
(a),(c)) belong to C*(Q, C*(Y')) and the coefficients k1 and ky belong to C*(Q, C1(Y)).
The sequence (u§,u$) of the solutions to (3.3) converges weakly to (uyg, usg)

in L*(0,T; V) x L*(0, T; V), where (u19, ug) is the solution of the homogenized equations

(3.15) with initial conditions (3.17).
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Since [, Q(z,y)dy = 0, there is a vector function Q(z,y) which is periodic with
respect to y such that Q(z, y) = div, Q(z, y) (see [9], section 1.1). We have the following

result on homogenization convergence rate.

Theorem 3.1.2. Assume r1, ks € CHQ; C(Y)),
U0, U20 € C([Ov T]) CQ(Q)) mcl([()?T]v Ol(Q>>’ le7 My € Cl(Qa Cl(}_/»’ (t=1,... 7d:
k=1,2), Q€ C*(Q;CHY))2 Then we have

. . 1
||VU§ — Vuyo — Vyun(', * E)HLQ(O,T;H) + ||VU§ — Vg — Vyum(', ) E)HLQ(O,T;H) < ce?

(3.18)

where the constant c is independent of e.

We prove Theorems 3.1.1 and 3.1.2 in Sections 3 and 4 respectively.
3.2 Proof of homogenization convergence

In this section, we prove Theorem 3.1.1 on homogenization convergence for the solu-
tion of the two scale multi-continuum system (3.3). From (3.7), there exists a subsequence

of (uf, u), which we still denote by (u$, u$) , u19 and ugg such that

u§ — ugg, us — ugg in L*(0,T;V). (3.19)

We show that (uyg, ug) satisfies the homogenized problem (3.15). Recall Ni, Ni, M,
and M, in H#(Y) as functions of y are the solutions of the cell problems (3.13). Fixing

1=1,...,d, we consider

wS(x) = z; + eNj(z, z) and ws(z) = z; + eNy(x, E). (3.20)
€ €
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Under regularity conditions for k1, #9, Ni and N, we have

— div(K () Vo ()
= —divy(m (2, D) (e + VN, 1) - edivy (e, DTN D) G20

= diva(ka (e, Z) (e + V, Nz, 2)) = divy (s (, ) Vo (2, 2))
and

— div(r5(2)Vws())
1

= ——div, (o, 2) (' + V, i, 2)) — ediva (o, 2)VoNj(z, =) (3:22)
— divy(Ra(e, 2) (¢ + 7, Ny, 2)) = divy (ra(, =) Vo Ny, 2)).
Let ¢ € C5°(£2). From (3.6), we have

/Cflaa Pw Eda:+/ k;Vui-V(pw])dz— / —Q(us u§)¢w§dx:/q¢w§dx, (3.23)
Q
and
a 6 6 € € €
Csy o —2pwsdr+ KQVUQ V(pws)dx— Q —us)pwsdr = Qqqﬁwzdx. (3.24)

Multiplying (3.21) and (3.22) by ¢u§ and ¢u$ respectively and integrate over 2 we have

//{inf - V(pui)dx = /dlvx(/ﬁ( Z)V.Nj(x, ))gbuidx
Q Q
/levx(m(x =)(e' + V,Ni(z, )))(ﬁuidx—/gdlvy(m( )V Ni(z, —))(buldx

(3.25)
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and

/ ks Vws - V(ous)dr = /dlvx(li2< )V Ni(x, ))gzﬁu;dx

Q Q

— / divy (ke (z, %)(ei + V,Ni(z, %)))gbu;dx - / div, (ko (z, )V Ni(x, ))qbu;da:
Q 0

(3.26)

Let € C§°(0,T). Subtracting (3.25), (3.26) from (3.23) and (3.24) respectively, we

obtain

/ / 5 ¢¢w1dxdt+ / / KV U - VowShdadt

- / Q;Q%ué—ui)qﬁwwdxdt— / / KV - (Vous)ydadt
-

o
o

/ qowitdxdt + € / / dwx m v Ni(z, )) puStpdrdt  (3.27)
JREA G TERR A E ;>>) puspdudt

dlvy K (w v Ni(z, )) duspdrdt

and

T
/ / 228(% ¢¢W2d9€dt+/ /F&gvuz Vwsipdxdt
0

- / ' Qe( C — ) pwibdadt — / / KAV - (Vous)hdadt

/ / qowShdadt + ¢ / / dwx @ v Ni(z, )) oushdedt  (3.28)
+ / / aiv, ( @(m,—)(ewaNg(x,;))) pusbdadt

/ / dlvy o (0 f )V, Ni(z, )) duspdudt.

We have the following lemma.
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Lemma 3.2.1. The functions fOT (t)ui(t, z)dt and fOT (t)us(t, z)dt converge strongly

in H to fOT Y(t)uo(t, z)dt and fOT Y (t)usg(t, x)dt respectively, for 1 € C°(0,T).

Proof This 1s the standard result in Jikov et al. [9]. As u§ is uniformly bounded
in L(0,T; V), we have that fOT (t)u$(t, r)dt is uniformly bounded in V. Thus we can

extract a subsequence which converges weakly in V' and strongly in H. As for all ¢ €

Coo (%),

// tyui(t, z)op(x)dtdr — /Q/OTz/J(t)ulg(t,:c)<b(a:)dtda:,

the limit is [, ¥ (¢)u10(t, )dt. O
We have

€ € T an €
/ / T 8 wwldxdt /QCH (/0 uladt> pwidz.

Note that Cf, converges weakly to [, C1(z,y)dy in H, and fo ug W . dt converges strongly

to [\ u192%dt in H. Thus

T
lim/ /Cnaulqbwwfdxdt— —/ / (/ Cii(z,y)d >u106_¢¢xidxdt
e—0 a 0 Q
T
:/ / (/ Cu(z,y)d ) aulowx ddt.
0o Ja

Note that we have

K () Vwi(z) = ki@, =) ((€ + VyNi(z, =) + eVoNi(z, =),

).

(3.29)

K5 () Vwy(z) = ka(z, =) ((e" + VyNj(z, =) + €V, Nj(z,

mlel&
ml&ml&
a8 a8
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Also, note that due to Y-periodicity of x and N?, we have

o, D)+ VN D) = [ waeo)(e o+ VLN )i,

., ) Y (3.30)

HQ($7_>(€i+VyN§($7E)) - / 52(x>y)(ei+vyN2i<x7y))dy in H.
Y

€

Passing to the limit in (3.27), (3.28), we obtain from Lemma 3.2.1,

/ / (/ Cndy> Ou lod)w dxdt—/ / </ k(e + V NZ)dy) Vdbusodrdt
+lim ( / / KV - VopwSdadt — - / / O (u —u;)gzswwdxdt)
/ / gbzibdadt + / / div ( / kel + V,N) y) durodadt

(3.31)

and

/OT/Q (/chdy) qu Jdadt — / / </ Ka(el +V N%)dy)  V dhugodadt
+£igré (/ / ksVus - Voyhwsdrdt — —/ / Q(u] — u§)¢w§¢dwdt)
/ /q¢xlwdxdt+/ /le (/ Ko(e' +V N’)dy) Quagpdrdt.

(3.32)

Letting ¢; and ¢, in (3.6) be ¢zx; for ¢ € CF°(Q2), we get

/ / 175 Wa: drdt + / / KSVUS - V(o npdadt
— /0 /Q Q°(us, — us)pYa;drdt = /0 /Q qdpadadt.

(3.33)
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Passing to the limit when € — 0, we obtain

IAVER R

o (/T EACRC / | @tus = wovndaar)
T

:/0 /QCJQS%ZZJdQSdt.

Subtracting (3.34) from (3.31), one obtains

/ / (/ m(e +V Nz)dy) - Vopuyodadt
= </ / IV - € ovdrd / / Q“(uf = uf)Ni(z, )cbwdxdt)
/ / (/ e+ v Nl)dy) ¥ (urod)dadt.

Using Lemma 3.2.1, we get

/ / (/ ki(e' +V Nz)dy> VY husgdadt
_11_{%/0 /Q/iiVui - el ppdadt — /OT/Q (/Y QN{'dy> (s — wro)Ptbddt

T ' |
- _/ / / ki(e' + VyNy)dy - V(uod)vdedt.
0 QJY
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From this, we have

T
lim / KV - el gnpdadt
e—0

(/ ki(e' +V N’)dy) - Vopuypdrdt

[
+/T/Q (/}/,ﬂl(eijuvyj\f})dy) Y (urod)ioddt
J

0

R / T (/ QNfdy) (u0 — wr0) Ptpdwdt
/ / (/ e +V NZ)dy) - Vuyo¢tpdwdt
" /0 /Q (/y FaVy M- eidy> (u20 — w10)Ptpdudt,

where we use (3.13 (a),(b)) for the last term of (3.37). Similarly,

(3.37)

T
li_r:%/ /f-;;Vu; - el prpdadt

/ / (/ Ko(e' +V Nl)dy) - Vuggpdxpdt (3.38)
+/ / (/ HQVyMQ . €Zdy) (UIO — UQQ)QbQ/Jd%dt

0o Ja \Jy

From (3.37), one obtains

T
lim/ //{iVUi - Vodadt

e—0

L) vt
+/O /Q</YmvyM1.eidy) (UZO_UIO)aaﬁdet
— /OT /Szgfvulo.v¢¢dxdt+ /OT /Q < /Y ,ﬁvyMldy> Vb (ugo — uro)dadt,

(3.39)
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where we have used the standard result on the symmetry of the homogenized coefficient

k7 defined in (3.16) (see, e.g., [7]). Similarly, we deduce

T
lim/ /KEVUS -Vohdzdt
Q

e—0 0

T T
= / / K5 Vugg - Vhdadt +/ / </ /igvyMgdy> - Voub(urg — ugg)dzdt,
0 Ja 0o Jo \Jy

(3.40)

where k3 is defined in (3.16). We define v; and 75 as

’}/i(x) = 6M1(£7 %)7 ’7(25(‘1.) = EMZ('xa %) (341)

Under the smoothness conditions for «;, M, we have

4M@@Wﬁww>immM< VM (e, 7)) = ediv(m (2, 2) VM, 2)

€ € €

— div, (k (z, )V M (z, E)) div, (k1 (z, )V M (z, %))

(3.42)

Letting ¢ () = ¢(x)v{(x) where ¢ € C5°(£2) in (3.6), we obtain

ou 1
/qll M+/QWvawM—/—@@—ﬁwﬁm:/mwm
ot Q € Q

(3.43)
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Let ¢» € C§°((0,7T)). From (3.42) we have

[ [avtsiwopo =~ [ [ o Do

—i—e/o /Qdivx (/ﬁl(x,Z)VIMl(x,E))¢(x)u§w(t)dxdt
+ / / div, ( m(z,;)vym@:,;>)¢<x>uw<t>da:dt
/ / div, (1 ( v M(z, f))qs(x)u;w(t)dxdt.

Adding (3.43) and (3.44), we have

/ / ot i v / / R Vuy - V(ri)ydedt

T
- [ [ et - u)erivdadt + / [ divtesri)ousudsa
o Ja € 0o Ja

_ / ' | aontvdade — / ' | @t Dyouvdzd

/ /dlvx K1z V M (x, —))gbul@/dedt
/ / div, (ky(z f )V, Mi(z, ))mwdmt

/ /dlvy ri(x V M (x, ))gf)uiibdxdt.

We note that on the left hand side of (3.45),

T T
/ / k{Vus - V(o )wdzdt +/ / div(k] V7)) puidrdt =
o Ja 0o Jo

T T
/ / k1Vui - Voyidadt — / / k171 - Vouidzdt.
o Jao 0o Ja
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Passing (3.45) to the limit, using Lemma 3.2.1, one obtains

/ / (/ ha(2, y)VyM(2. y>dy> Vo (x)urot(t)dzdt
_/ / (/ Q@ y)Mi(z,y dy) (u20 — wi0)P(z)(t)dzdt

— i / / Oz, 5) bl () dardt (3.46)

e—0 €

/ / div < / Fa (2, y)Vy M (2, y)dy> o(x)ui0v (t)dxdt
/ / ( / divy (k1 (2, y) Vo Mi(z, y))dy> & (x)urot) (t)dzdt.

Due to periodicity, the last term on the right hand side equals 0. We thus have

113%6/0 /Q z, uSpla dxdt:/oT/Q (/YQMldy> (o — wro)ppddt
- /0 /Q ( /Y mvyMldy) -V (puo)pdzdt + /O ' /Q ( /Y lﬁvyMldy)  Voughdrdt
- /0 ' /Q ( /Y QMldy> (uso — wro)prpdzdt — /0 ' /Q ( /Y mVyMldy> - Vugprpdrdt.

(3.47)

Similarly, we obtain

11_13%6/ /Q —uso(z)(t)dxdt
:/0 /Q</YQM2dy> (ulo—u20)¢wdxdt—/OT/Q (/Y@VyMgdy> - Vuggppdadt.

(3.48)
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Thus

lim / / Oz, 5)(us — o () (t)dudt

1
Al
<L

gAY iy

+/0T/Q( /ﬁe v Mldy) au%d Wt

(

()

()

(/ Q M1 + Mg)dy) (u20 — U10)¢¢d.’lfdt
/<;2V Mgdy> V’U/Q()(ﬁd}dxdt—.—/ / </ K/lvyMld’y) : Vuwgbwd:l:dt

8’&20

Ko€! -V, Msd )
—
/OT
5

/ Q M1 + M2 dy) (UQO — U10)¢wdxdt

aUQO

ox;

_|_

@V N \V4 Mgdy)

mv NI .V Mldy) 68;0 ddadt

(3.49)

where we have used cell problems (3.13 (a),(c)). Using cell problems (3.13 (b),(d)), we

have

11336//62
!
Al

— uf)ppdadt

/ Q M1 + M2 dy) <u20 — U10)¢¢dxdt

it
)z [ [ ()

(3.50)

We are now ready to prove Theorem 3.1.1.
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Proof of Theorem 3.1.1
From (3 6)

/ / o N dt+/ /nlvul ngwdxdt——/ /Q ¢ uS)pdrdt
= /0 /Q qdvdudt.

(3.51)

forall ¢ € C§°(2) and ¢ € C§°((0,T)). Passing to the limit, from (3.39), (3.50), Lemma
3.2.1, we have

/ //Cudy “’qwd dt
+ / / Ki Vg - Vtbdrdt + /T /Q ( /Y ,ﬂvyMldy) V(s — gy
L i) Gz - ([ i) o) v
/ / ( / Q(M, + My) dy) (20 — tw10) $upcddt = / / Jovdudt

(3.52)

Similarly, we derive

/OT/Q/ Cmdy%cbd bt
+ /0 /Q K5V sz - Vodadt + /0 ! /Q ( /Y ,i2vyM2dy) V(o — tuzo )t
B /T/Q ((/Y N fdy) a(;; - ( /Y QN%dy) ‘95;) dudadt
+/OT/Q (/Y QUM +Mz)dy) (w10 — uzo)ptodadt. = /OT/qu)wdxdt,

(3.53)
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where

* aNJ x, N aN] z,
Ry () = / k1 (2, y)(0i + M)d% Ky () = / Ka(x,y) (0 + ONs (., y) )dy.
Y 8:{/1 v ayz

(3.54)

We now prove the initial condition of uyg, usg. From (3.3) and Theorem A.0.1, we de-

duce that C§; 8t1 is bounded in L*(0,7; V). Similarly, Cs, gt is bounded in L*(0, T; V).

Let ¢(t,z) € C3°(0,T; V), ie. ¥(0,2) = (T, x) = 0. As ¢ — 0, we have

T T T
/ / Haaulz/)dxdt:— / / Cfluiaa—zfdxdt% _ / / (CH)uma—wdxdt
0 0 Q
/ / () 8u10¢dxdt

where () denotes the integral average over Y. Note that we used Lemma 3.2.1. This

(3.55)

shows that the weak limit of Cfl% in L2(0, T V") is (C11)242. Now we choose ¢ €

C>(0,T;V) sothat (T, z) = 0. Then

/ I 8 / /Cflula dxdt—i—/CHul ,x)dx
9 (3.56)

— —/ /<611>U10—¢d$dt+/<C11>g11/1<0,23)d23

o Ja ot Q
On the other hand
8”10
/ / g wdxdt—>/ /Cn Ydxdt

(3.57)

_ /0 /Q <c11>uloaa—fdmdt+ /Q (Car)atno (0, )05 (0, 7).

This shows that (Cy1)u10(0, 2) = (C11)g1 (). i.e. the initial condition of g is u10(0, ) =

g1(z). Similarly, we have initial condition u (0, x) = go(z).
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3.3 Homogenization error

We prove Theorem 3.1.2 in this section. Let

x x
uly (8, 2) = wyo(t, ) + euq (¢, z, Z)’ uSy (¢, 1) = ugo(t, ) + eugy (¢, z, z) (3.58)
Using (3.12) we have

div (w1 (2) Vs, (¢, 7)) + %QE(JJ)(U&(@ ) — g (t, )

: 0
=div(k]Vuio) + ediv(k] Vyurp) + div(s]V, Ny (2, Tyt

;)
1
+ le(Klv Ml( c )(u20 — Ulo)) + —QE(UQQ — Ul())
i T 3u20 i T 8u10 p { E _
+ Q(Nj(x, e) oz, — Ni(z, (—:) 8961-) Q (My(, 6)+M1(377 6))(“10 Us)
= div(k$ V) + e div(w§Vu) + div(s$ V,Ni(z, %)%12?)
+ div(k5V, M (z, %)(u20 — wip)) + div(Q(z, =) (us — u10))

T x Ousyg . x Ouyg

— div,(Q(z, E)(Uzo —uy)) + Q(z, —)(NZ(

Q. ) (Ma(ar, 7)o+ My, 7)) (a0 — o)
— div(kS V) + € div (kS Vou ) + div(s$V,Ni(z, %)%‘))
+ div(k5V, M (z, %)(u20 — 1)) + div(Q(x, %)(u20 — u1p))
 div, (e, D) — ) — div( | Q) )
x . Ougy ., Ouig

+div( | Qa,y)dy(um — ) + Qe DN, G - NG, HF)

Q. )Myl 7)o+ M, 7)) (o — ).
(3.59)
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We let F'(t, x,y) be defined as

8u10 (t, x)

F(t,l‘,y) = /{1(:L‘7y)vu10(t,$) + R1($,y)vny($,y) 0L

+ ri(x, y) Vy Mi(z, y) (us(t, ) — uio(t, 2))
+ Q(z, y)(u20(t, x) — wio(t, @) — /Y Q(, y)dy(uz(t, x) — uio(t, x)) (3.60)

| Auo(t,
— (/ ki(z,y)dyVui(t,z) + | ki(z,y)V,Ni(z, y)dyw
Y Y €

+/Ym(w,y)VyMl(x,y)dy(qu(t,x) —mo(t»x)))

We let

Gt 2,y) = — diva(Q(z, y)(uzo — wio)) + div ( /Y Q. y)dy(uzo — uro))

+ Q) (Vi) 22— Ni(a,9) 1) 4 Q) (M) + M) s )

(o
- ([ e naG® - [ etwoniennGe)

- /YQ(wv y)(Ma(z,y) + My (2, y))(wo — uz0)dy.

(3.61)

Note that from (3.13), we deduce div, F/(¢, z,y) = 0. Further, we have [, F;(t,z,y)dy =
0,7 =1,...,d. From the hypothesis of the theorem, F;(t, z,y) € C(0,T;C*(Q; C(Y))).
Thus, from p.6 of [9], there are functions a;;(t, z,y) € C(0,T; C*(Q; C*(Y))) such that

0
Oéz'j = —Oéji and F,(t, Z, y) = —Oéz'j<t, x, y), (362)
dy;
fori,7 =1,...,d. From this, we have
x d x 0 x
E(t,x,z) = 6@0&@'@,1‘,2) - Ea—ijéij(t,I7z), (363)
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where % is the total partial derivative with respect to x; of a function of ¢ and x. Then
J

for any ¢(z) € V, we have

x, 0
0

d 0
— /Q (e%azj(t,x i) — €8$ a;;(t, x)) e o(z)dz

J

a2¢ 0
B _6/ @it 2, (9%8@ / 89(;] )8x1¢($)dm

x,. 0
/a a;(t )a%gb(x)d.

As [, G(t,z,y)dy = 0, there exists a vector function G € C(0,T; C*(; C*(Y'))) which

(3.64)

is Y-periodic with respect to y such that div, G = G. Thus for any ¢(x) € V, we have

/QG(t,a:,%)(bdx:/deyg( f)apd:c
:e/divg(t,x,f)qﬁdx—e/gdlvxg( )¢dx (3.65)

/ G(t,x, %) - Vo — ¢ /Q div, G(t, 7, 2)pdr.

From (3.58), we have

ou ou
i k)~ [ endy 500

ce (3.66)

V/
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where c is independent of ¢. From (3.59), (3.64), (3.65) and (3.66), we have

H (Cflag? () = div(st (@) Tt ) = £ (1 (1) — u;(t)))

(/ Cudyaulo — div(k]Vugo(t)) — div (/levyMldy(uzo(t) — Um(t)))

_([/QN;dy%‘ZO() /QNZ ‘?;;10 /Q M1+M2)dy(u20()—u10(t)))

V/
< ce
(3.67)
Let 7¢ € D(£2) be such that
7(z) =0 if d(z,00) <e, 7(x)=1 if d(z,00) > 2¢, €|VT(z)| < C,
where C' is independent of . We define the functions
€ € T € € T
wiy(t, x) = uro(t, ) + er(x)un (¢, x, E)’ wyy (8, ) = ug(t, x) + er(x)un (¢, x, z)
(3.68)
Using the smoothness asumptions of the theorem, we have
V(uy (8, z) — wiy (E, 7))
x x x
= —eV71(2)uiy(t, x, E) +e(1 —7%(2))Vyun (t, z, Z) + (1 — 7(2))Vyui (t, o, Z)’
V(Ugl(t, l’) - w;l(t7 .T))
. x x . x
= —eVT(x)um (t,x 6) +e(1 — 7(x)) Vauo (¢, z, ;) + (1 — 7%(2))Vyua (1, z, ;)
(3.69)
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It follows from (3.69) that

3 € € 1
[uiy (8) — win (Ol ) < ce?, [ug (t) — wh (D)) < ce? (3.70)

where the constant ¢ is independent of ¢. From (3.70), we have

- oado+ [ KVt (t.2) — wiy(t.0) - Volo)ds

Q

- / div, O, T)((uy (1, 2) — iy () — (s (1,2) — iy (¢, )))a)

< o [ttt )

+ flugy () - Wi(t)HHl(Q)
(@)
€ € l
Tl (1) — wm(t)um(m) 161y < ce 16y
(3.71)

for all ¢ € V', where ¢ > 0 is independent of ¢. Then we obtain

(ent) ) — aiv(us ()9 ,0) Q)0 — s 0,0)) )

= (e ™R i (o) Vs (1,0) ~ 2Q i) — wis(t))

V/

(3.72)

69



From (3.3), (3.15), (3.67) and (3.72), we obtain

(e 582 — aiv(us (0 0,0) - Q@) 0,2) i ,2))

- (e — aiv(eg (0)9is (1) - Q@i ) — i .0)))

ot
V/
< cez
(3.73)
where c is independent of ¢. Similarly,
ous(t, x . . I . .
‘ (Caso) 50T — aiv(us()us0,0) - 2@ )i ) — 50,2))
awe t’ T : € € 1 € € €
~ (el 22T — aiv(us) Vi) - Qi) - i 0,0)))
V/
< ceé.
(3.74)

Let A > 0. Let 05(¢, ) = uS(t, z)e ™™, Of (¢, 2) = w§ (t,z)e > for i = 1, 2. From (3.73)

and (3.74), we deduce
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€ a € € € ~ € ~E
/Cn 815( —wiy) (0] — @fy)dr + /Q Ky (VU1 - VWH) : (vul — Vi, )dr
/622 ot Uy — Wy ) (g — Wy )dx + /Q Ka (Vu§ - vw;l) (Vi — Vg, )dx
VU’I VW%) - (VU; - VW§1)) ((ﬂi —wiy) — (ﬂ; - dJ;l))d‘r

2,2y
e (3.75)
$ ~€ ~€E ~€ € € € €

/ Q(x Z - Vai,) — (Vg — Vwm)) ((Ul —wiy) — (uy — Wm))dm

As ug(ta x) = ﬂ;(t, x>e>\t7 wz‘61<t7 $) = @§l<t7 x)ekt

€ a ~ € ~ € ~ € ~E € ~ € ~ € € ~ € ~E
/Clla (a] — i) (] — wiy)dz + A/ Ciy(ug — W11)2d$ + /Q Ky Vag — VW11|2d$
/6228 wsy ) (a5 — w5, dx+)\/C22 s — A§1)2d37+//£§|Vﬁ5 — Vs, 2dx
Q
~2 [ QD) (Vi = Vaty) = (Vi = V) (65 - 41,) = (3 — &5))) o
: Z ~€ ~ € ~€ ~ € 2
- levx Az, E)((Ul — i) — (U5 — W21)) dr

< ce ez ([|ag (1) — &5, (Dllv + llas(t) — @ (Dllv)-

(3.76)
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Integrating over [0, T'| we get

%/CM%GU—@l m&+A/‘/q1* &%, ) 2dxdt
/(/mwm Vs Pddt + - /@ﬂﬂ)—@%ﬂf@ﬁ
+A/‘/@wg—@fww+/ /@W%—V@ﬁMﬁ
0 Q 0 Q
T
x ~€ ~ € € ~E ~€ ~E
- 2/ / Q(xv _) : ((VU1 - an) - (VUQ VWQl)) (( Wu) - (UQ - w?l)))dzdt
/t/m% a%— (a5 — &5,) — (a5 — @5,)) dedt
(/ i (6) — a5, ()l + |l ()—w21()||vdt)

/ /Cf1 5 (0) — &, (0))?dxdt + - / /CSQ (05(0) — @5, (0))*dadt

(3.77)

By Cauchy Schwartz and Young’s inequalities, using the boundedness of Q(x,y), one

obtains

1 T
5 [ Caas(m) — n () pdodesn [ [ eintas - o, )Pdua
Q 0 Q

r 1
+/l/ﬁWﬁ—V@f@ﬂi/@ﬂmﬂ—&NHYMﬁ
Q

T
44/)/@2* %IMﬁ+/‘/@N@—V@fMﬁ
0 Q

——(||Vas5(t) — Vi, (¢ 1+ [|Vas(t) — Vg (0|72

S 190 = Vi Ol o + 19350 = Va6 Oloran) e
€ ~E A€ M E ~€

_i(Hul(t) - Wn(t)H%?(o,T;H) + |[d5(t) — w21(t)||%2(0,T;H)>

t) — @il(t)H%Q(O,TH) + [[a5(t) — s (¢ )||L2 OTH))

0
gceé(</T||ai—an||%/dt : / [COREC0D

+3 | Catio) —an o)+ 5 / Cs(i5(0) — 5(0)
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where the constant 2_15 > (0 can be chosen to be smaller than « in (3.4). Choosing A large

enough, we obtain from (3.4),

ex([[ay(T) — 3y (T + ellag(T) — @, (T)[

+[Vig = Vo[22 + Vg — Vb |20 .r.m)

(3.79)
1 ~€ ~€ 1 ~€ ~ €
< cz(e2||Vag — vW11||L2(0,T;H) + ez [|Vaug — v0‘121||L2(0,T;H)
+ [1a5(0) — &5, (0)|[7 + [185(0) — @5, (0)|[%)-
Thus
S (T') — wiy (T)|[3 + us(T) — wsy (T
+ [[Vug — vwil”%/?(O,T;H) + [[Vus — VWSIH%Q(O,T;H)
cs 1 ) ) . ) ) (3.80)
< 5(62 [ Vug — vW11||L2(0,T;H) + e2||Vuh — Vuf21||L2(0,T;H)
+ [|ug (0) — w§y (0)[7 + [Jus(0) — ws, (0)][).
Since u$(0) = u0(0) = gi(x), we deduce that
T T
i (0) — wi(0) = uf(0) — uip(0) — ey (0,2, =) = —eTuin (0,2, —). (3.81)
€ €

As uy(t,r,y) € C[0,T] x Q x Y), we have |[u$(0) — w$,(0)||g < ce. From this we

obtain
1
| |Vui — wal | |L2(0,T;H) + ||VU§ — ngl | |L2(O,T;H) S ce?. (382)
From (3.70), we have

1
HVUi - Vuil||L2(07T;H) + HVU; - Vu§1’|L2(O,T;H) S ce?, (383)
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The conclusion follows. [l
3.4 Numerical example

In this section, we apply hierarchical finite element algorithm to a numerical example
for a multi-continuum system with highly oscillatory coefficients. We will utilize our
algorithm to numerically approximate the effective coefficients for macroscopic points.
To show the accuracy of the algorithm, we will compare the results to the approximations
to the effective coefficients obtained from full reference solve that uses the finest meshes

at all macroscopic points.
3.4.1 Numerical Implementation

We let Q = [0,1]? be the macroscopic domain and Y = [0, 1]? be the unit cell. We

suppose that we are given

k1(21,91,y2) = (2 — axy) cos(2myy ) sin(27ys) + 3
Kao(T1,Y1,Y2) = (2 — axy) sin(27yy ) cos(2mys) + 3 (3.84)

Q(x1,y1,y2) = (1 + azy) sin(2my; ) sin(27ys)

We use 4 square meshes in [0, 1]? to construct a nested sequence of FE spaces, {Vs_;}7_,
so that the mesh size of each space is h; = 21(2_4) for [ = 0,1,2,3. Since k1, ko and )
are independent of x5, we only consider 1-dimensional macrogrids in [0, 1]. We develop
the nested macrogrids {7;}%, C [0,1] and the subsequent macrogrid hierarchy, {S;};_,.
We first let 7o = So = {0, 3, 1}. Considering that our macrogrids have grid spacing /2~

for! =0,1,2,3, where H = % in this case, we have following hierarchy of macrogrids.

1 13 1357 1 3 5 7 9 11 13 15
So={0-1}. 8 ={-°1 8 ==V g (2> ° L = - 27
0 {’2’ b S {4’4}’ 2 {8’8’8’8}’ 3 {16’16’16’16’16’16’16’16}

(3.85)
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1-pt interpolation

Relative Errors (%)

8
~

Kin Q*

0.2356 | 5.2251
0.1469 | 1.9858
0.1172 | 3.8566
0.0849 | 0.7521
0.2680 | 4.9487
0.0965 | 1.4295
0.1633 | 3.8556
0.1473 | 3.5702
0.0730 | 1.1951
0.1605 | 3.6592
0.0302 | 0.3319
0.0860 | 2.7865
0.0490 | 0.9929
0.0992 | 2.9284

Blo ol 5|5 s iw 5|2 wlon 5o 5|~ ol Gt s i= 5w ool 5]

Table 3.1: 1-pt and 2-pt interpolation : Percentage relative errors between full mesh refer-

ence solve and hierarchical solve when a = 1.

Figure 2.3 indicates how these macrogrids and the approximation spaces are related in nu-
merical implementation. Table 3.1, 2.2 indicate x},; and (Q* obtained by both hierarchical

and full solve at each x; and relative errors between them, where Q* = fY Q(M;+ My)dy

and relative errors are calculated by

loo‘n}ull _K‘Zierl

75

2-pt interpolation

8
-

Relative Errors (%)

K11 Q"

ol 5|0 G|~ 0l 5o s = 5w ool 5[

—_
—

EEIEY NN

—
@]

0.0076 | 0.0710
0.0097 | 0.0991
0.0105 | 0.1016
0.0073 | 0.0782
0.0085 | 0.0808
0.0066 | 0.0651
0.0044 | 0.0376
0.0027 | 0.0221
0.0033 | 0.0353
0.0036 | 0.0348
0.0023 | 0.0307
0.0028 | 0.0267
0.0021 | 0.0224
0.0015 | 0.0098

with obvious notations.
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(a) Q*, a = 1, 1 point-interpolation
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(b) Q*, a =1, 2 point-interpolation

Figure 3.1: hierarchical solve “-o0-" vs. full mesh solve “-”
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4. MULTISCALE SIMULATION FOR UPSCALED MULTI-CONTINUUM
FLOWS

* The generalized multiscale finite element methods (GMsFEM) ([30],[13]) is a mul-
tiscale model reduction technique for solving problems with multiscale and high contrast.
The GMSFEM uses a coarse grid and constructs a local reduced-order model for each
coarse region. The main idea is to systematically select important degrees of freedom for
the solution in each coarse block. This is achieved by constructing local snapshot spaces
and selecting multiscale basis functions. Snapshot spaces are constructed by solving local
problems subject to proper boundary conditions. The multiscale basis functions are ob-
tained by well-designed local spectral problems. In this chapter we utilize the GMsFEM

for solving the upscaled multiscale dual-continuum system derived in Chapter 3.
4.1 Function spaces

Let €2 be our computational domain in R?. The spaces of functions, vector fields in
R?, and 2 x 2 matrix fields defined over () are respectively denoted by italic capitals (e.g.,
L?(Q)), boldface Roman capitals (e.g., V'), and special Roman capitals (e.g., S).

Consider the space V := H}(Q) = W,?(Q). Its dual space (also called the adjoint
space), which consists of continuous linear functionals on H}(€2), is denoted by H (),
and the value of a functional f € H'(2) at a point v € H}(1?) is denoted by the inner
product (f,v).

The Sobolev norm || - HW&’Q(Q) is of the form

2
lollwaz = (10132 + IV oll3a)

*This chapter was published in Journal of Computational and Applied Mathematics, 374: 112782, Park,
Jun Sur Richard, et al, “Multiscale simulations for upscaled multi-continuum flows”, Copyright Elsevier
(2020).
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Here, |Vv||z2@) = |||Vv]||L2), where |Vv| denotes the Euclidean norm of the 2-
component vector-valued function Vv; and for v = (v1,v2), [|[VV||r2) == [||VV]|lL20) ;
where | V| denotes the Frobenius norm of the 2 x 2 matrix Vv. We recall that the Frobe-
nius norm on IL?((?) is defined by | X |? := X - X = (X' X).

The dual norm to || - [| g1 () 18 || - || #-1(q), that is,

, U
1l = sup (ol
vEHE(Q) HU||H3(Q)

For every 1 < r < oo, we use L"(0,7"; X) to represent the Bochner space with the

norm
T 1r
fwllzors = [ oliat) <+
0
lwl[z=@rx) = sup |lw|x < +oo,
0<t<T
where (X, || - || x) is a Banach space. Also, we define

H'(0,T;X):={ve L*0,T;X) : ov e L*0,T;X)} .

To shorten notation, we denote the space for w(-,t) = (ui(-,t),us(-,t)) by V. =

V xV =HNQ) x H}(Q), where t € [0,T],T > 0.
4.2 Problem formulation

In [29, 31], Park and Hoang have studied homogenization of multi-continuum systems
(see [1, 2, 3,4, 5, 6], for instance). Specially, in [31], homogenization was developed for

a two-scale dual-continuum system

e (@) 25 i () Vs (@, 1)) + Q@) (1) — i, 1)) + i
EME?Z; 0 ] (4.1)
) "2 iy ) Vs, 1) Q) ) — 1))+ o
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where z € Q C R?, f1, fo € L*(Q), € represents the microscopic scale of the local
variation, and the interaction terms are scaled as O(e™!). Let Y be a unit cube in R?. The

coefficients C¢

i

k$ and Q¢ are defined as

xTr

Ci.(z) = Ci <a) f) k(@) = Ky (:;; %) and Q%(x) = Q (;L- ?) =12 (4.2)

where C;;(x, y), k;(x,y) and Q(x, y) are Y -periodic functions from 2 xY". The following

homogenized equations of the system (4.1) were derived in [31]:

0 o )
(/ Cll dy) g;o — dlv(HIVul,O) + div |:</ lilvyMl dy) (U270 — U170):|
Y Y
2
. 8UQ 0 ; aul 0
N2 Vo N )
+¢Z:1: K/YQ 2dy) O (/YQ 1dy> O }
— (/ Q(M; + My) dy) (ugp —u10) + fi1,
Y
0 o .
(/ ngdy> gi,o = div(k3Vugp) + div [(/ KoV y My dy) (U1 — u270):|
Y Y
2
i 8U170 _ i 6u270
t2 K/YQNldy) or, (/YQN?dy> o, ]

_ (/Y Q(M, + M) dy) (u1,0 — u20) + fa,

4.3)

where x% and k% are symmetric and positive definite, f; and f, are in L*(§2). The coeffi-

cients / k;VyM; dy and / QN ; dy (where 7, 7 = 1, 2) can be either positive or negative,
Y Y

and (— / Q(M; + Ms) dy) is uniformly negative in €). These homogenized equations
Y
still possess some degree of multiscale. This motivates our research (herein) on numerical

multiscale simulation for a dual-continuum system with general convection and reaction
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terms:

Cn(w)w — dlv(m(m)Vul(w,t)) + bl(az) : V(ul(w,t) — U,Q(ill, t))
+ Q@) (ua(z, 1) —ug(w, 1)) = filz),

Ous(x,t) 44)
CQz(m)T’ — diV(K,Q(m)VUQ(w,t)) + bg(ﬂ)) . V(Ug(m,t) — ul(ac, t))

in 2 x (0,7), with the Dirichlet boundary condition u; () = us(x) = 0 on 92 x (0,7,
and with suitable initial conditions (when ¢t = 0,7), given f(x) = (fi(x), fo(x)) €
L?(2). We will show later that (4.4) has a unique solution under certain conditions. One
of the main difficulties as well as contributions of this work is that in (4.4), we use different
()1 and ) rather than the same () in (4.3). Note that C§°(€2) is dense in V. The variational

form of (4.4) is as follows: Find u = (u1,us) € V such that

/QCH%@ dx+/Q/£1(a:)Vu1V¢1 dl’+/s‘)b1<a))V(U1—UQ)¢1 dx
+/Q1($)(U1—U2)¢1dl’:/f1¢1d967
@ 5 @ (4.5)
/Qcma—;gbgdx+/ﬂ@(m)vw-V¢2dx+/ﬂb2(m)-V(ug—ul)@dx
- do = d
+/QQ2($)(U2 u1) Py dz /Qf2¢2 T,

for all ¢ = (¢1,¢2) € V, for ae. t € (0,7). Before studying this problem, we first

consider the following interesting static dual-continuum system:

— div(ki () Vuy(x)) + bi(x) - V(ur(x) — uz(z)) + Qu(x) (ur(x) — ua(x)) = fi(zx),
— div(ka(x)Vuz(z)) + ba(x) - V(ug(x) — ur(x)) + Q2(x)(ua(x) — ur(x)) = fa(x),
(4.6)
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in €2, with the Dirichlet boundary condition u;(x) = us(x) = 0 on 02, where ;(x) and
Ko(x) are permeability coefficients in high contrast media, provided f(x) = (fi(x), f2(x))
€ L*(Q).

For later use, we define

bi + by b_bl_b2

Q1+ Qe Q1 — Q2
2 2 N ’

5 Qo= —F5—, 4.7)

b, =
2

Qs

in variable x .

Throughout this section, we assume the following.

Assumption 4.2.1. There are some positive constants C,C, b, Q and &,  such that C >

Cii > C, |bi| <,

Qil < Q, k> k; > k(i = 1,2), and we further assume that 1 > 5/\/5,

b > ‘ba| and |QS| > |Qa|

The system (4.6) can be written in the variational form

/Q 1 (2) Vs () - Voo () da + / by - V(un () — us(e)) 1 () da
+ [ Q@)@ - ue)o@ = [ Ao @),

(4.8)
+ / Qa(x) (uz () — ur(x))da() dz = / fa(®) P2 () dz
Q 0
for all ¢1(x), ¢o(x) € V. We define a norm || - ||, on the space V' as
1 2 1 2 %
(w1, u2)|a = () ki Vg @ + ’ K3 Vs Lz(g)) - (4.9)
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We define a bilinear form b(-,-) : V. x V.— R as

b((u1, usz), (v1,v7)) :/

k1Vuy - Vo do + / kaVug - Vg dx
Q

Q
+ / by - V(uy — ug)vy do + / by - V(ug — uy)ve dx (4.10)
Q Q

+/§2Q1(u1—ug)vldx+/ﬂQ2<U2—U1)02d$-

4.2.1 Existence and uniqueness of weak solutions

In this section, we will show that each of the systems (4.8) and (4.5) has a unique

solution under certain conditions.
Lemma 4.2.1. Under Assumption 4.2.1, there are some positive constants K, o and C,,

such that for all uw = (uy,us), v = (v1,v2) € V, we have

b((ur, uz2), (v1,v2)) < Cyf[ulla [[v]]a, (4.11)

a

b((ur, uz), (u1,us)) + Kllul[72(0) = ol lull7 . (4.12)

Proof. First, we prove (4.11). Note that

b |ty 7y
< : . : )
((, wa), (01, 02)) < ; ‘ T ) ‘ Y )
;o2 ) IERE (4.13)
=SS | Al + @30 D il sl e
VE = 4 L3(Q) — <
=1 j=1 =1 j=1
By the Poincaré inequality, there exits a positive constant C,,(€2) such that
o |3
HUZ'HLQ(Q) S CpvaiHLz(Q) S \/E ’ R V’Ui 12 s (414)
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forall v; € HJ(Q), i = 1,2. Thus, we get

1 1
ki Vu; ki Vo

b((u1, ug), (v1,v2)) < Z ’

L2(Q) ‘

l_)O 2 2
ey

= =1 j=1

- =1 j=1
< (14 5 20 ) |
(22

From (4.15), we obtain the boundedness of b(-, -) as in (4.11).

1
ki Vu;

L2(Q) )

1

1
kZVu; 2V, (4.15)

K

12(Q) ‘ 12(Q)

1
2 2
L2(©) )

1
2 2
L2(Q) ) '

1
2 \V4

1
2 \V/
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To prove (4.12), we first note that

k1Vuy - Vuy do + / koVus - Vug do
Q

b((uy, ug), (ug, us)) :/

Q

+ / by - V(uy — ug)uy do +/ by - V(ug — up)ug dx
Q Q

+ /QQ1(U1 — ug)uy do + /Q Q2(u2 — u1)up da

N R A
Z ’K?vuz = "i? 7 u 2
; ) \/E;; 2(Q)H J||L(Q)
2 2
_QZZHui||L2(Q)||UjHL2(Q)
=1 j=1
Lo b S ([t | 2

|
2o | Qi
ML
—_
B
Y
P

=2

_|_
=
=
S
Py

=2
N——

i=1 j=1
2 1 2 [_) 2 1 2
= ‘ ki Vi > (‘ ki Vu; + HWH%%Q))
— L2Q) k4= L3(Q)
2
=20 ||uill72(q
i=1
B 2 ) 92 B 2
(1= ) S et - (L 30) Sl
( ﬁ)Z o~z 729) 2wl
(4.16)
Thus, we deduce that
2 2 A 5
b((ur, uz), (w1, u2)) + K; ||U¢H%2(Q) > Ozizl ) Kk Vu, e (4.17)
b - b .
where K = — 4+ 2@ and 1 — — > a > 0 by Assumption 4.2.1. Hence, (4.12)
VE VE
holds. =
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The following assumption is made for later use.

KC
Assumption 4.2.2. We assume that o« > ——=  where C,, K and « are from the proof of
K

Lemma 4.2.1.
We now present the main results of this section under Assumptions 4.2.1 and 4.2.2.

Lemma 4.2.2. Under Assumption 4.2.1 and 4.2.2, we have

b((ur, uz), (ur,uz)) = Cel[ull7 (4.18)

for some constant C,. > 0.

Proof. From (4.17) in the proof of Lemma 4.2.1 and the Poincaré inequality (4.14), we

obtain

KCyn 1 |2 200 1 g2
b((us, ua), (us, |wivu] | zad|wivad| @9
() o)) + =2 DVl o) 2 @ iVl o @19)
Then, it follows that
b((u1, uz), (ur, ug)) > Cel|ul[3 (4.20)
C, .
where C. = o — > () by Assumption 4.2.2. [

JE

Theorem 4.2.3. Under Assumption 4.2.1 and 4.2.2, we have a unique solution of the

problem (4.8) with respect to || - ||,

Proof. The theorem directly results from Lemmas 4.2.1, 4.2.2 and the Lax-Milgram The-

orem. L]

Also for later use, note that under Assumption 4.2.1 and 4.2.2, the following assump-

tions are satisfied.
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Assumption 4.2.3. There exist constants C, Cy > 0 such that

b((u, uz), (v1,v2)) < Chf|ulla [[v]la,

4.21)
b((u1, uz), (ur, uz)) > Collulfz
forallu = (uy,uz), v = (vy,v9) € V.
Theorem 4.2.4. Under Assumption 4.2.1, the problem (4.5) has a unique solution.
Proof. We refer to [28, 31] and Lemma 4.2.1 for the proof. [

4.2.2 Fine-scale finite element discretization

We provide finite element approximation of the solutions to (4.8) and (4.5). Let V}, =
ViE x V2=V, x Vj,(C V), a Cartesian product space, be the first-order Galerkin finite
element basis space, with respect to the fine grid 7. That is, in this chapter, V}! = V}, is a
conforming finite element space of each continuum ¢ (for ¢ = 1,2) on 7p,.

We first consider the proposed static case (4.6), that is, solving the following problem

for uy, = (up1, up2) (€ V3):

/Qm(m)vuh,l(w)-vqsl( )dx+/b1( ) - V(upi(x) — upp(x)) 1 () do

+ [ Q@) wal@)o@)do = [ fi)oa

/ KJQ(Q:)VU}Z’Q(w) . ngg(a:) dZL’ —|— / bg(ﬂ?) . V(Uh’g(w) — uh,1($>>¢2(ﬂ3) dl‘
Q Q
+L%@Mm@—MMWM@M=LM@M@M

(4.22)

for all (¢1, p2) € V.

Lemma 4.2.5. Assuming u € H?(Q2), we have

vlél‘g lu —vlls < Ca(R)h[|ullg2@),
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where K > k; (as in Assumption 4.2.1 for i1 =1, 2).

Proof. The proof is quite standard by the defintion (4.9) of norm || - ||, and the Bramble-
Hilbert Lemma. [

Let (u,v)2(q) ::/

Q
We consider the adjoint problem of (4.8) : Find w € V that satisfies

uyvg do + / uguy dz, where uw = (ug, ug), v = (vy,v9) € V.
Q

b(v,w) = (f,v)r2q), forallveV. (4.23)

Theorem 4.2.6. Assume that each of the problem (4.8) and its corresponding adjoint prob-
lem has a unique solution in V.. We further assume that the solution w = (wy,ws) € V

of the above adjoint problem (4.23) satisfies

|wlm2) < CrlFllz2@) (4.24)

forall f = (f1, f2) € L*(Q). Let w € V be the solution of (4.8). Then, there are positive
constants hy and C' such that for all h < hg, the problem (4.22) has a unique solution

wp, = (Up1,unz2) € V), that satisfies
u —upl|la < C inf |lu—wvl,, (4.25)
veV,

where we may take C = 2C, [, with Cy, and o from Lemma 4.2.1.

Proof. The Theorem is proved based on the procedure in [32]. From Lemma 4.2.1, we get

ollu — up|? < b(u — up,u — up) + Kl|lu — uh||2Lz(Q) ; (4.26)

where K and « are as in the proof of Lemma 4.2.1. From (4.22), for any v € V,, we
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always have b(u — u, v) = 0. Thus,

b(u — up,u —up) + Kl|lu — Uh||?:2(9)
=b(u — up, u — v) + Kl|u - ’Ufh||2Lz(Q) (4.27)

< Cyllu — unlla [ = vlla + Kllu — w12

where the last inequality follows from (4.11). Let w € V be the solution to the problem
(4.23) with f = u — uy, thatis, b(v, w) = (u — uy, v) [2(q) for all v € V. Then, for any

wy, € 'V}, we obtain

|lu — uhH%g(Q) = (u —wup, v — up)r2) = b(u — up, w) = b(u — up, w — wy)
< Collw = uplla ||w — whlla .

(4.28)

By Lemma 4.2.5 for ||w — wy]|,, (4.28) becomes

l|u — uh||f:2(9) < GyCahl|u — uplo ||wl] g2 (0)
(4.29)

< CyCACRM||u — uplla ||u — unl|L20) »

where the last inequality follows from assumption (4.24). Simplifying (4.29), we get

|w — wp| 20y < CoCaCRrA||u — uplla .- (4.30)

From this inequality and (4.27), we derive from (4.26) that

ollu — |l < Cllu = unlla [[u = vlle + K(C,CACRA) | — upllz. (43D
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For h < hg, where hg = ——————, we obtain
V2KC,C4Cr
20,
||u—uh||a§7b||u—v||a, (4.32)

for all v € V), and the desired result (4.25) follows. The proof of uniqueness of the

solution to (4.22) is quite straightforward ([32]). L]

We now investigate the dynamic case, that is, the variational problem (4.5) of (4.4) for

wp, = (Un,1,un2) € Vi

0
/ CH Uh,1 ¢1 dx + / ml(az)Vth . V¢1 dx + / b1 (:B) . V(th — uh,2)¢1 dx
Q ot Q Q

+ / Q1(x)(up1 — up2)pr do = / fiprdzx,
Q 0 (4.33)

ou
/ CQQ 8};72 ¢2 dx —+ / /‘iQ(.’L’)VUh’Q . V¢2 dx + / bg(w) . V(uhz — Uh71)¢2 dx
Q Q Q

+/52Q2(w)(uh,2—uh,1)¢2dx:/Qf2¢2dx’

for all (¢1, o) € Vi, and ae. t € (0,7T). We define the following bilinear forms in V' x V':

c((ug, uz), (v1,v2)) :/Cllulvl dx—l—/nguQvgdx,
Q Q

a((uq, uz), (v1,v2)) :/

Q

(4.34)

/<;1Vu1 : Vm dz + / /iQVUQ . VUQ dz .
Q

Let us hence define the norms ||u||? = c(u,u) = (u,u).and ||u||? = a(u,u) = (u,u), .
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Lemma 4.2.7. Under Assumption 4.2.3, we have

T
(-, T) — un(- T)| 2 +/ o — g2 dt
0

T —_
< C inf (/ o(w —u)
weVy 0

2 T
at [ o —ull d+ (- 0) —u(-,o>||3) |
a | ;

(4.35)

where u and wy, satisfy (4.5) and (4.33), respectively.

Proof. The proof is based on [15, 6]. From the systems (4.5), (4.33), c as in (4.34) and b

as in (4.10), we get

. (8(u — up)

v ,v) +b(u — up,v) =0, (4.36)

forallv € V},.
Given w € Vj, let v = w — uy, € V. For the constants C', C; > 0 in Assumption

4.2.3, from (4.36), we obtain

1 d
5w — w2+ s o —
Olw —
ot
Sc(w,w—uh)—l—b(zp—uh,w—uh)
B — ) 4.37)
=c| —————w—uy | +b(w—u,w—uy)
ot
olw—u
<[ w—w) |+ i o~ i,
olw—u
<[22 o - e+ o =l o - wl,

where the last inequality follows from the Cauchy-Schwarz inequality.

Applying Young’s inequality for the right hand side of the last inequality of (4.37), we
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get

1 d
Ly w4 Cy [l — w2
2 dt (4.38)
<1 M L H wl? + 2 w2
=9 ot h flla
Hence,
1 d 1 C
w2 & o~ + S o —
1 fow - C _— (4.39)
-2 ot 30, a’

Multiplying both sides of (4.39) by multiplicative integrating factor e/ (- = ¢~ we

obtain

1 d _ _ . C
3 (G o= wll) e = o= wl) e oo~

9 (4.40)
C2
+ o Hw—uHi) :

T
Taking / - dt both sides of (4.40), we get
0

3wl D) = wn(DE et [ et G w2 at
0

4
1 r 1|o(w—u)||®> C?

< Z . 0) — . 2 i I e S 4 1 —ull? )

< 3 IoC.0) w0+ [ <2H | e )

(4.41)
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Note that e=? < e7t < 1, Vt € [0, T). Let

ma {1 012}
X Q<o
M- 2730,

(e eTTey)
min ¢ —,
2 4

Therefore,

T
|Whﬂ—w@ﬂ%+£“w—wﬁw

() 2

We define the initial value wy (-, 0) such that c(u(-,0),v) = c(up(-,0),v), so ||u(-,0) —

Ow — ) (4.42)

ot

C

T
dt+/ lw — ], df+Hw('70)—uh(-,0)H§> :
0

up(+,0)||. = 0 for all v € V. By triangle inequality, we thus have
lw(:,0) —un(-, 0)[|c < [[w(-,0) —u(-, 0)]. (4.43)
From (4.42) and (4.43), we obtain

T
. 7) = un( DI+ [ e
0
< 2(w(-T) — wn(- )P + [w(T) — u(-. )2
T 2 r 2
[ =l [ =l an @44)
O(w —u) |
a |

+2/’WU—MEM+2Mww3m—umoma
0

T
< oM dt+2M/ lw — w|® dt + 2/[w(-, T) — u(-, T)| 2
0

T
0
T
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To simplify the above inequality, we note that

ey

2

T
<r |
c 0

2

dt. (4.45)

C

o(w —u)

ot ot

Indeed, let

Then,
To(w—u T olw —u
e [ 255 2) [ 250
! O(w — u) /T O(w — u)
< | lzlle || = @=llzlle [ |7 -
< [l | 25 =l [
Thus,
To(w — u)
2]l < — || at. (4.47)
0 C

Now, by Holder’s inequality for the right hand side of (4.47), we get

T 2 T
\VWS(/ -1&>§T /
0 c 0

which is (4.45).

O(w — u)
ot

o(w —u)
ot

2
dt> ,

Therefore, from (4.46), we get

lw(,T) —u, D)z = |z + (w(,0) —u(-,0)]Z
< 2||z2 + 2[[w(-, 0) — u(-, 0)]]2

SQT/OT Ow —u)

2
2/lw(-,0) —u(-,0)||*.
5 ||t 2llw(-0) —u(,0)[

C
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Finally, there exists C' > 0 such that (4.44) becomes

T
(-, T) — wn(- T2 + / e — g2

g0</OT

and (4.35) follows. ]

S — ) (4.48)

ot

2 T
dt+/ Hw_qu dt—i—Hw(,O)—u(,O)H?) )
c 0

Let us define additional bilinear forms before proceeding to the next section. For

u = (u1,us) € V, using notation from (4.7), the problem (4.5) can be written as

/ Cn%vl dz + / k1Vuy - Vo dx

Q ot Q

+ / bs - V(uy — ug)vy do + / b, - V(u; — ug)vy do
Q Q

+ / Qs(u1 — ug)vr dz + / Qa(uy — ug)vy do = / fividzx,
Q Q Q

o (4.49)
/ 622—2?]2 dx + / HQVUQ : VUQ dx
Q ot Q
+ / bs - V(ug — up)veda — / b, - V(uy — uq)vg d
Q Q

+/QQS(u2—ul)vgdx—/QQa(ug—ul)v2dx:/Qfgvgdx.
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Also, we define the following bilinear formsin V' x V:

(). (v1,02) = |

by - V(uy — ug)vy do + / by - V(uy — up)vade,
Q

Q

q((u1, uz), (v1,v2)) :/QQl(Ul—UQ)Ul dx‘i‘/QQz(UQ—Ul)Uzdl’a
qs((ur, u2), (v1,v2)) :/QQS(U1—U2)U1 d$+/§2Qs(U2—U1)U2d$7
Ga((u1, u2), (v1,v2)) :/QQa(ul—uQ)vldx—/QQa(uQ—m)vgdw,

aQs((ulv u2)7 ('Ulj UQ)) - a((ulv u2)7 (U1>U2)) + QS((ula UQ)? (U17U2)) )

b((u1, u2), (v1,v2)) = a((uy, uz), (v1,v2)) + B((u1, uz), (v1,v2)) + q((u1, uz), (v1,v2)) .
(4.50)

Here,

agj)(ui, v;) = / kiVu; - Vo da,
w;

() (4.51)

(j)(ul, v1) + a5’ (ug, v2),

a(j)((uhw% (v1,v2)) = a

aéﬁi((ul, uz), (v1,v2)) = a(j)((uh uz), (v1,v2)) + qgﬂ((ul, uz), (v1,v2)),

where uy, ug, v1,v9 € Hj(wj) = V(w;). Note that ¢s(u,v) = ¢s(v,u). We define the

norm ||u||a,, = aq,(u,u).
4.3 Overview of the GMSFEM

We refer the readers to [13] for the details of the GMSFEM, and [33, 6] for a brief
overview of the GMsSFEM. Broadly speaking, solving Eq. (4.6) on a fine grid using the
standard FEM method is very expensive (due to heterogeneous coefficients). If we use
coarse grid with the FEM, the solution is not accurate because of the loss of some impor-
tant local information. Thus, we utilize the GMsSFEM, where local problems are solved in

each coarse neighborhood, to systematically construct multiscale basis functions contain-
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ing local heterogenity information. More specifically, by first solving local snapshot and
local eigenvalue problems, we then deduce a so-called multiscale space as global offline
space Vi, (consisting of multiscale basis functions). Hence, for all v = (vy,v3) € Vi,

the GMSFEM solution tys = (Ums 1, Ums 2) (€ Vins) is defined via the following system:

0 ms
/ Cll Y 711}1 dx + / K1 (:B)Vums 1° Vl)l dx + / b1 (CE) . V(ums 1 — ums72)111 dzx
0 ot 0 7 Q 7

+ / Q1(x) (Ums1 — Ums2)v1 dr = / fivyda,
Q Q

0 ms
/ Cao Y "2112 dz +/ Ko () Vs, - Vg da + / ba(x) - V(tmso — Ums1)ve dx
Q at Q ) Q 9 9

+ / Qg(m)(umsg — Ums’l)vg dr = / fQUQ dz.
Q Q

(4.52)

4.3.1 Coarse and fine grids

First, let 7 be a coarse grid, with grid size H. In TH, each coarse block can be
denoted by K;. A refinement of 7 is called a fine grid 7, with grid size h (< H).
We denote by N the total number of coarse blocks, and N, the total number of interior
vertices of 7. Let {x;}}Y, be the set of all vertices in 7. The jth coarse neighborhood
is defined by

wi=J{KieT" : z; e K}, (4.53)

Next, we will present the definitions of the uncoupled multiscale basis functions (un-
coupled GMsFEM) and the coupled multiscale basis functions (coupled GMsFEM). For
each case, based on the above general procedure, we first generate a local snapshot space
for each coarse neighborhood w;, then solve an appropriate local spectral problem defined
on the snapshot space, to establish a multiscale (offline) space. There are several choices

of snapshot spaces (see [13, 33], for instance). In this work, for each case, its snapshot
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space is a set of harmonic basis functions (to be specified in the next subsections), which
are solutions for the corresponding harmonic extension problem. Note that the snapshot

functions and the basis functions are time-independent.
4.3.2 Uncoupled GMSFEM

As in [33], let V}/(w;) = Vj(w;) be a fine-scale FEM space, which is the restriction
in w; the conforming space Vhi = V}, (introduced in Section 4.2.2), for the ith continuum
(¢ = 1,2). Let J,(w;) be the set of all nodes of the fine grid 7, belonging to dw;. We
denote by .J; the cardinality of .J,(w;).

For the case of uncoupled GMsFEM, multiscale basis functions will be established
for each ¢th continuum separately, by taking into account only the permeability x; and
neglecting the transfer functions.

More specifically, on each coarse neighborhood wj;, for each ith continuum, we first

find the kth snapshot function gbgz’map € Vj,(w;) such that

- div(/ingzS,(iz’S"ap) =0 inwj, (454

(4),snap
ng,m. = 5k,i on 8wj s

where ¢y, ; is a discrete delta function such that

Spa(x]) =

for all a:{ in Jh(wj) , 1 < k < J;. The solutions of this problem (4.54) are called harmonic

basis functions. Then, the local snapshot space on w; for the ith continuum is defined as

Vi (w;) = span{qa,g{g’“ap 1<k <J}, (4.55)

snap
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where J; is the cardinality of .J,(w;) as above.
To construct local multiscale basis functions on w; corresponding to the 7th continuum
(2 = 1, 2), we now solve local spectral problems: Find the eigenfunctions ,(j A% (w;)

i snap

and eigenvalues /\,(j 2 € R such that

)

O, v) = KD (W ). (430

for all v; in V! (wj), where s\ is defined as follows ([33, 6]):

snap 7

sgj)(ui,vi):/ K

J

N’u
<Z |vXj,i|2> wv; A, 4.57)

j=1

where each Y ; is a standard multiscale finite element basis function for the coarse node
x; (that is, with linear boundary conditions for cell problems) in the ¢th continuum, and
{ Xj,i}j-v;ﬁ is a set of partition of unity functions (for coarse grid) supported in the intersec-

tion of w; and the ith continuum. More specifically, based on [34],
— diV(KJiVXjJ) =0inK € Wy ,

(4.58)
Xji = X?,Z on 8[(, VK € wj ,

where each X?,i is a standard linear (and continuous) partition of unity function, and note
that x9, = 0 on Ow; .

After sorting the eigenvalues )\,(j Z (for k = 1,2,---) from (4.56) in ascending order,
we choose the first corresponding L; eigenfunctions from (4.56), and still denote them by
G .. ’ ¢(j)

i [, At the last step, the kth multiscale basis function for the ith continuum on

the coarse neighborhood wj is defined by

I = ) (4.59)
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where 1 <k < Lj, and {x;,}; Mo is from (4.58).

We define the local auxiliary offline multiscale space V. (w;) for the coarse neighbor-
hood w; corresponding to the ith continuum, using the first L; multiscale basis functions
as follows:

Vins (W) = Span{ 1<k < L]-} . (4.60)

Then, the global offline space for the :th continuum is
Z =g (j)vms y A
panq ™ |1<j< N, 1<k<Lj.

The multiscale space Vi, can be taken as the global offline space: Vi, = V1 x V4.
4.3.3 Coupled GMsFEM

In the coupled GMsFEM, the multiscale basis functions will be created by first solving
a coupled problem for snapshot space, then applying a spectral decomposition.

Note that for the case of coupled GMsSFEM, the interaction terms (), and ()5 from (4.5)
will be taken into account. For eigenvalue problem, the operator should be symmetric.
Therefore, we wish to only consider the dominant symmetric part (), (of ¢); and ()2) and
ignore (), from (4.49), which is equivalent to (4.5). In order to do so, we will utilize
Assumption 4.2.1 (that is, |bs| > |b,| and |Q4| > |Q,|) and Lemma 4.4.8 in Section 4.4.

More specifically, we find the snapshot functions ,(j L <gz§k e s gzﬁmmp)

Vi(w;) = Vi(w;) x Vi(w;) (the spaces are from Subsections 4.2.2 and 4.3.2) such that

i (s To) + 0 (A4 - 077) =0 incs,

i () 4 0, (A7 - ) 0 s G40
,(ii’snap = 0y, ondw;,
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where each 6y, is defined as

5k,r<wl> = 5k(:cl)er, r = 1, 2, (462)

in which {e, |r = 1,2} is a standard basis in R*, 1 < k < J;. The solutions of this
problem (4.61) are called harmonic basis functions. Then, the local snapshot space is
defined as

Vaplws) = span { @)™ [1 <k < Jj, 1 <7 <2} (4.63)

Next, local eigenvalue problems are solved, to construct local multiscale basis func-
tions. That is, we find the eigenfunctions @b,(cj ) = ( ,(ji, w,(f%> € Vinap(w;) and eigenvalues
/\,(Cj ) € R such that

agz ( ,gj),v) = )\,(cj)s(j) ( ,@,v) , (4.64)
forall v € Vipyp (wj), where sU) is defined as follows ([33, 6]):

2

2 N,
59 (u,v) = Z sgj)(ui,vz-) = Z/ Ki (Z |vXj,i|2) w;v; d (4.65)
i=1 /i j=1

=1

in which {Xm-}jy:“l is from (4.58).

After arranging the eigenvalues /\,(Cj ) (for k =1,2,---) from (4.64) in ascending order,
we take the first corresponding L; eigenfunctions from (4.64), and still denote them by
¢§j ), cee (L]J) At the final step, we define the Ath multiscale basis functions for the

coarse region w; by

™= 061 e 1) (4.66)

where 1 < k < L, and {x;; ;V:vl is from (4.58).

The local auxiliary offline multiscale space V,s(w;) is defined by using the first L;
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multiscale basis functions as follows:
Vins(wj) = span{ ,(Cj)’ms | 1<k< Lj} ) (4.67)
Then, the multiscale space V},s can be taken as the global offline space:

Ny
Vi = 3 Vin()) = span {lpl(gj),ms [1<j<N,,1<k< Lj} .
j=1

4.4 Convergence Analysis (GMsFEM)

In this section, we show convergence analysis for both uncoupled and coupled GMs-
FEM. First, best (a-priori) error estimate is provided, for our semi-discrete problem. We
will compare the difference between the reference weak solution u € V' defined in (4.5)
and the multiscale solution u,s € Vi, defined in (4.52), by using the projection error of u

onto V¢ in various norms.

Lemma 4.4.1. Under Assumption 4.2.3, for u and w. defined in (4.5) and (4.52), re-
spectively, where Vi is constructed via the uncoupled GMsFEM, we have the following

result:

T
|W@T%wm¢ﬂwﬁ+/|m—ummw
0

T
< (C inf (/
wEVms 0

o(w —u)
ot

2 T
s [ o =l d+ . 0) — ut0)]2)
c 0

(4.68)

Proof. The proof is similar to that of Lemma 4.2.7. 0

In the spirit of this Lemma, based on [6], to complete the convergence proof for our

proposed approach, we will find an appropriate function w in the multiscale space Vi,
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then estimate the error w — u (the so-called projection error of w onto V) in various
norms on the right hand side of (4.68). More specifically, we will define an approximation
Ugnap € Vinap (called snapshot projection) of w in the snapshot space (which is the set of
all snapshot functions). We can express w — © = W — Ugpap + Usnap — W, Where the last
term gy, — u corresponds to an irreducible error of our method, and can be assumed to be
very small by utilizing a large enough collection of snapshot functions. It hence suffices
to only estimate w — g,y by choosing a suitable function w € V.

We will define w € Vj, as the projection of ugy,, onto the multiscale space V. In
particular, first, in the case of uncoupled GMSFEM, the snapshot projection U, (in Vipap)

of u can be represented by the set of ,(f Z) () from (4.56) as follows:

usnap(wa t) (usnap 1, usnap 2 Usnap,i Z Z dk i X] i ]E;{Z (ZD) . (469)

We define the local component of uY by

snap i

ull) Zd , o withul) low, = il - (4.70)

Then, the projection w of gy, in the multiscale space Vi, is defined as

L; L;
w(,t) = (wi,ws) . szm v d2(t) xi(@) o) (@),
7=1 k=1 7=1 k=1
“4.71)
where the collection of local multiscale basis functions { ,(jl s | 1<k<L; } is from
(4.59).

Second, in the case of coupled GMSFEM, the snapshot projection ., (in Vipap) of u
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can be represented by the set of 1p,(€j N(z) = ( ,Ef i(a:), w,(j%(cc)> from (4.64) as follows:

usnap<w> t) (usnap 1, usnap 2 usnap 7 Z Z dk y X] A ]E;{Z (ZD) . (472)

We define the local component of uY by

snap 7

ull) Zd o withull) low, = il - 4.73)

Then, the projection w of gy, in the multiscale space Vi, is defined as

L;j L
w(®, 1) = (wi,ws), sz,ﬂ % A3 () x5a(@) o) ().
Jj=1 k=1 j=1 k=1
(4.74)
where the collection of local multiscale basis functions {’gb,i ’ 1<k<L; } is from
(4.66).

Now, we present the main results of this section.
4.4.1 Uncoupled GMSFEM

Convergence analysis is presented for the uncoupled GMsFEM. We will compare the
difference between the reference weak solution u defined in (4.5) and the multiscale solu-

tion u,s defined in (4.52) from the uncoupled GMsFEM.

Lemma 4.4.2. For the uncoupled GMsFEM, if uw in (4.5) satisfies

/ k1Vu - Vo do + / koVug - Vg dx = / fivrdx + / fove dx | (4.75)
w w wj Qj

J J

103



forall v € V(w;), then we have

//flxil|Vu1|2dx+/ /€2X§72|Vu2|2d[17

J J

ch(/ i 2f2dx+/ niyvxj,iﬁu?dx).
‘VXJl‘ wj

J

(4.76)

Proof. We base on [6] for the proof. Take v; = (x7,)u; (fori = 1,2), we obtain

2 2
Z/ ki(Vu;) - V(X?ﬂz) dx = Z/ fz(X?z)uz dx .
i=1 Y% i=1 Y%

This leads to

X
Z/ ZX”|VUZ|2de—Z/ = —— ) J \/Fczuzvxﬂdx
7, 2

7

-2 Z [ 5060 (P s
X} I g
A I — (s )24
. 22/ o +2e;/wj )
]2
—i—eZ/ /iixii|Vui|2dx+EZ/ ki(u;Vxj)? dz
i=1 v i=1 7wj

where the last inequality follows from Young’s inequality. Let € = 1/2, and move the third
term on the right hand side to the left hand side of the above inequality. Then, for some

constant C' > 0, the desired inequality (4.76) holds. [
We finally have the following error estimate.

Theorem 4.4.3. Let u be the solution of (4.5), Usap and w be defined in (4.69) and (4.71),
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respectively. Then, we obtain the following result:
O(W — Ugnap)

T
I
C T
o

where A = rr;}in{A(ij?+1,i} -

2 T
dt—l—/ ||w_usnap||¢21dt+ l|w(-,0) _usnap('>0)||<2:
¢ 0

4.77
9 (4.77)

ot

IN

2 T
o [l 0 )
a 0

Proof. We base on [6, 15] for the proof of this Theorem. That is, our proof follows from

Lemmas 4.4.11, 4.4.12 and 4.4.13 at the end of this section.

4.4.2 Coupled GMSFEM

Convergence analysis is provided for the coupled GMsFEM. We will compare the dif-
ference between the reference weak solution u defined in (4.5) and the multiscale solution
U defined in (4.52) from the coupled GMsFEM.

We will utilize the notation from (4.50) and (4.51). Assume that there is some positive
constant @, such that |Q,| < Q,. Then, it is easy to show that

2Q,C2

K

(1 20,

K

Jatww) <o tww < (14252 o). @

where C,(€2) is from (4.14). We now have the following lemma.

2Q,C?
Lemma 4.4.4. Assume <1 — ¢ P > > 0. Then, there exist constants my, ms > 0 such
K
that
mya(u,u) < ag,(u,u) <mga(u,u). (4.79)

2Q,C?
K

Throughout this section, we always assume that (1 — ) > 0 holds. Recall that

ag,(u,v) = ag,(v,u).
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Lemma 4.4.5. Let K, o and C), be defined as in Lemma 4.2.1 and its proof.

2Q:C2\ !
b((ulaUQ)y (Ul,?}g)) S Ob<1 - K p) ||’U’HGQS

Vl]ag,
- _ (4.80)
2 20,C; - 2
b((u1,uz), (u1,u2)) + Kl|u[[72q) > al 1+ - |5y, -
forall (uy,us), (vi,v2) € V.
Proof. The result follows from Lemma 4.2.1 and (4.78). ]

The following assumption is for later theorem.

2@05)—1 _KG

VE

Assumption 4.4.1. We assume that o (1 + where K, o and C,, are

K

from the proof of Lemma 4.2.1.

Theorem 4.4.6. Under Assumptions 4.2.1 and 4.4.1, we have a unique solution of the

problem (4.8) with respect to || - ||a,. -

Proof. The result follows from Lemma 4.4.5, the Poincaré inequality and the Lax-Milgram

Theorem. [
Under Assumptions 4.2.1 and 4.4.1, the following assumptions are satisfied.

Assumption 4.4.2. There exists constants D1, Dy > 0 such that

b((ulau2)7 (Uva)) S DlHU’HaQS /U“aQs’

4.81)
b((’Ul,UQ), (va?)) Z DQHUHZQS s

forall u = (uy,us), v = (v1,v3) € V.
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Lemma 4.4.7. Under Assumption 4.4.2, in the coupled GMsFEM, for u and ug respec-

tively defined in (4.5) and (4.52), we have the following result:

T
(- T) — s T + / = w2, dt

T 2 T
. O(w — u) 2 2
Scwlenéms (/(; T . dt—i-/o‘ Hw—’U;HaQS dt—i—Hw(-,O)—u(-,O)Hc :
(4.82)
Proof. The proof is similar to that of Lemma 4.2.7. 0

We hence obtain the following convergence result, under weaker condition on the bi-

linear form b.

Lemma 4.4.8. Assume that there exist positive constants Qo D1 and Do such that Q| <

Q. and

Doz, < b((v1,v2), (v1,v2)) < Dil[wl[3 (4.83)

aQs

forall v = (vy,v9) € V. For uw and uyg respectively defined in (4.5) and (4.52) from the

coupled GMsFEM, the following result holds:

T
2
(s T) — s TP + / = w2,

T 2
< (C inf ( /
wWE Ving 0

T
+{AHVw—vmﬁmna

O(w — u)

T
2
- &+/Hw—m%ﬂt

c 0 (4.84)

T
200 [ 1w — e e+ - 0) - ums<-,o>uz) |
0

where b is from Assumption 4.2.1.
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Note that the constant C' in this Lemma can be different from the one in Lemma 4.4.7.

Proof. Recall that for all v = (vy,v9) € Vs, from (4.5) and (4.52), we have

c (W, v) +b(u — Uy, v) =0. (4.85)

Given w € Vp,, we let v = w — Uy € Vi Using notation from (4.50), and Young’s

inequality, we note that

/B(w —u,w — Ums) = 5((“’1 — Uy, Wy — Uz), (w1 — Ums,1, W2 — Ums,Q))

/ by - V(w1 —u1) — (we — ug)) (w1 — tUms) de

)

(4.86)
+ / b2 . V((w2 — UQ> — (’U)l — U/1))(w2 — ums,2) dx
Q
1 2 G 2
< —b||[Vw — V|2 + EHU’ — Unms]|72(0) »
C1
for some ¢; > 0. Also,
1= 2 d 2
Ga(W — U, W — Up) < d_lQa ||w — uHL2(Q) + ?Hw - umSHL?(Q) ) (4.87)
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for some d; > 0. Hence, for D, from (4.83), utilizing (4.85), we obtain

1d
5EHw—ums||z+DQ||’w—Ums”zQs
(W — U
= C (%7“’ _ums) +D2||w _ums||aQs
8 ms
SC( (watu >,w—’u,ms)+b(w_ums>w_ums)
aw_ums
= c(%,w —ums) + (W — Ung, W — Unms) + (W — Unmg, W — Ung)

+ Q(w — Uy, W — ums)

+ qa(w —u,w — ums)
o(w — u)
ot

S ‘

[w — U] + [Jw — u”aQS lw — umSHCLQS
C

1- C1

+ C—levw - VUH%Q(Q) + 5”“’ - umSHiQ(Q)
1 — 1

+ d—lQa |lw — w2 + 3““’ — Ums|[Z20) 5

(4.88)

where the last inequality follows from (4.86) and (4.87).
From the Poincaré inequality (4.14), there exists C,,, D > 0 such that
1211720y < CilIVZIT2q) < D22, - V2 € V C L*(Q). Thus, in the last inequality of

(4.88),
c1 + d1
2

D d
<012+ 1) H’LU

|lw — umSHQL2(Q) < - ums,’iQs :

We define the initial value wms(-, 0) such that c(u(+,0),v) = c(ums(+,0),v), so

l|w(-,0) — wms(+,0)||c = 0 for all v € V. Then, the rest of the proof is similar to that of
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Lemma 4.2.7. ]

Lemma 4.4.9. For the coupled GMsFEM, if u from (4.5) satisfies

/

J

/{1Vu1 : V’Ul dx—l—/

Wi

KQVUQ ‘VUQ dl’+QS<U, ’U) = / f1U1 dl‘+/ fQUQ d(L’, (489)
forallv € V(w;), we have

/ HlX?’v’UlP dz + / @X?|VU2‘2 do + gs((u1, u2), (X?,l Uy, X?,z uy))

J J

<C / 2d:1:—|—/ K|V -2u?dx>.
§:<wmwmﬂ' vl

J J

(4.90)

Proof. The proof of this Lemma readily follows from that of Lemma 4.4.2 and thanks to

[6]. ]

Theorem 4.4.10. Let u be the solution of (4.5), Usap and w be defined in (4.72) and

(4.74), respectively. Then, we have the following estimate:
O(W — Ugnap) 2

T
|

C T 2 T
< = dt—l—/ wl|l?2dt+[lu(-,0)]2. ],
L ], e ) i s o,

where Ny = nljjn{/\(LJ],)Jrl} .

T
a+/|m—mmm%&+wmm—mmmWﬁ
0

4.91
S (4.91)

ot

Proof. Following the proof in [6, 15], our proof is derived from Lemmas 4.4.11, 4.4.12
and 4.4.13. [

4.4.3 Lemmas for the main convergence results

In this part, we provide and prove some Lemmas that Theorems 4.4.3 and 4.4.10 di-

rectly follow from.
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Lemma 4.4.11. Let u, gy, w, Ay and Ay be defined in Theorems 4.4.3 and 4.4.10. For

the uncoupled GMsFEM, we have

T o(w — Usnap ) 2 c [T oul?
— | At < — — | dt. 4.92
/0 ot .M /0 ot ( )
For the coupled GMsFEM, we have
T 2
o(w — usnap) C ou
—_— || &t < — — dt. 4.93
/0 ot . Ay ot (4.93)

Proof. Based on [6, 15], we will first derive the proof for the case of uncoupled GMsFEM.

Note that
H 8umap ?
2 2
Z/ i (% - augnap,i) dz
=1 t
2 N, (4) ?
L (1) -
/ ZZ L e @) won

L3 (o ) (5 0
<ony [ (Ze) (5 55 o) -

k>L]'

2 Ny (4) (4)
) [ 5= 24 ¢ QO
=03 D s | X M@ Y =5 @)
i=1 j=1 k>L; k>L;

By the spectral problem (4.56) and the orthogonality of eigenfunctions {w,ﬁf 2 () }r, we
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have

. adu)(t) . adv)(t) .
DI RO D el )

. ad (1) .
Do @) Y (@)

k>L; k>L; (4.95)

1 M) adv)(t) .
<5 (Z—é;t HOD DR el G
; k k

Therefore, (4.94) becomes

ow Gumap

'__

ot ot

ou (4) au(j) '
snap,i snap,i
<C E jg 1 )\] Z» ( % ot . (4.96)

i=1 Lj+1

()

Since usnap ;

is the projection of u; in each w; by the definition (4.69), it follows that

az(j) (Ui,vi) — a(j) <u(]) . Uz‘> R \V/Uz € Vilap( )

i snap,i’

()

snap,i» We have

More specifically, let v; = u

0 (Wi uls ) = 0 (i)

) 2 '
( (4)
‘usglpﬂ a9 < HUZHag]) ‘uSﬁap’i o
Hence,
CLE 7 ( gz)ip wugzp Z> < a(j)(u“ ;). *97
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Similarly,

—~

(4) (4)
a(j) Gusnap,i ausnap,i < Cl»j) % %
E ot ot - o’ ot )
Thus, from (4.96), we get

2

O(W — Ugnap)
ot

2 N
“ 1 () 8ul 8ul
<C). NOR (at’ ot
=1 Lj+1,l

<——a (8_u 8_u)
o Ir]liin{)‘(Lj]-)+1 } ot’ ot (4.93)

mln{AL o H

For the case of coupled GMSFEM, recall that s@)(-,-) = S22 (. .). Applying the

=11

same arguments, we get

(W — Usny 2 & ady)(t) ody)(t)
oot o35 | 3 MO P, - D ey
i=1 j=1 k>L; k>L;

Lemma 4.4.12. Let u, Ugnap, w, A1 and Ay be defined in Theorems 4.4.3 and 4.4.10. For

the uncoupled GMsFEM, we have

T C T
/ 0 — g2t < —/ a2 it (4.99)
0 Al 0

For the coupled GMsFEM, we have

T ) C T )
/0 ||w _usnaP”aQS dt < A_2/0 Jully,,, dt. (4.100)
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Proof. This Lemma’s proof is based on [6, 15].

For the case of uncoupled GMsFEM, we define

) =3 dl ().

k?>L]'

By (4.71) and (4.69), we have

2
[ = Usnap [,

2
— Z/ ki |V (w; — usnap,i)|2 dz
i=1 Y&

2
Ny
(4) )
_Z/m p 1;€>ZLv(dk’i<t)XJ’z ’“> & 4.101)
N2

<3 [ ]9 ()

i=1 j=1
< 2N, ZZ(/ RZ|VXN| eij) dx—l—/ /fz|ng| ’Ve dx) )

=1 j=1 Wi wj

Note that

12 Ny 2
/ ki VXl eI da S/ Ki (Z VXl ’61('”
Wi wj j=1

From this, Lemma 4.4.2 and (4.54), there exists some positive constant D3 such that

12
/ K; |Xj,i|2 ‘Vez(])
wj

Therefore,

dxzsﬁ(ﬁ”,eﬁ )) :

212 , o
dz < D3/ Ki |VXM|2 ‘61(3) < DSSEJ) (egj),e§])> ‘
wj

|w — Ugngp | < D4ZZ ( e, E]))

=1 j=1
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(J

Finally, based on bilinearity of a; ) and sgj ) as well as the orthogonality of {wiz} %> and the

definition of the eigenprojection, for the case of uncoupled GMsFEM, as in (4.97), we get

) <e§j), €§j>>< LN 0) <e@, e(j)>§ 1 o (u(j) u(j)>

A — )\(]) % A 7 )\(]) 7 snap,t’ “’snap,t
LJ+17Z Lj—‘rl,i
1 G
7
NG a;”’ (uwiyu;) .
Lj+1y

Hence, the desired result (4.99) follows.

For the case of coupled GMsFEM, similar arguments are applied for

eV =>"a) )y ().

k>Lj

Lemma 4.4.13. Let u, Usap, w, A1 and Ay be defined in Theorems 4.4.3 and 4.4.10. For

the uncoupled GMsFEM, we have

(-, 0) = tsnap (-, O) I < 1= [l O - (4.102)
For the coupled GMsFEM, we have

J10(-0) =ty 0)12 < 02, (4.103)

Proof. For the case of uncoupled GMsSFEM, as in Lemma 4.4.12, we let

es) = > dil o)) (x).

k>Lj
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Then, following the proof of Lemma 4.4.12, we get

||w(’ O) - usnap('v O)Hi
2

= Z/ Cu |usnap,i('7 0) - wi('? 0)|2 dzx
i=1 7/
2 N, 2

= Z/sz ZXj,i 65{2
i=1 7 j=1

N, 2

> Xt
j=1

dx

c

(4.104)
=1 j=1
2 Ny .
< D6D7—ZZCL ( Usnap,i '7 )7u§3121p,i('70))
=1 j=1
<D6D7—ZZCL (-, 0))
=1 j5=1
¢ 2
Al HU( )Ha :
For the case of coupled GMsSFEM, similar arguments are utilized for
=2 40w (@)
k>Lj
[

4.5 Numerical results

In this section, we present numerical results for both coupled and uncoupled GMsFEM.
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Let Q = [0, 1], and consider the following problem:

%(m, t) — div(ki(x)Vuy (z,t) + bi(x) - V(uy (2, t) — us(x,t))
+ Ql(ul(mvt> - u2(w>t>) =1 )
Oy (4.105)
E(w, t) — div(ke(x)Vua(z, t)) + ba(x) - V(ug(x,t) — ui(x,t))
+ Qa(uz(z, t) —wi(z,t)) = 1,
where we let
bi(x) = 10 ((1 — cos(2mzy)) sin(27wxs), — sin(27zy ) (1 — cos(2mx3))),
(4.106)

bo(x) = 10 (—sin(27z1)(1 — cos(2mxs)), (1 — cos(2mzy)) sin(27xs)).

The above equations represent a model problem where we deal with fluid flow through
two continua. First, we note that the model is of mathematical interest as it is for a sys-
tem of equations with multiscale coefficients. The model problem can be derived from
upscaling of highly heterogeneous media using Representative Volume Element (RVE)
approach described in [35]. In that paper, the authors use sub RVE scale to formulate
a multi-continuum model at fine-grid scale, which is further upscaled. In this work, we
assume that the resulting multi-continuum model can have highly heterogeneous coeffi-
cients. For example, with respect to the second continuum, the first continuum has much
higher permeability fields in channels, which are much larger compared to RVE scales.
In general, our proposed approach can handle any variations of permeability fields x; and
k9. In this work, we consider some model problems. In the future, we plan to study more
realistic examples.

Figs. 4.1a and 4.1b indicate that the high-contrast permeability coefficients x; and ko

are used. We compare the fine-scale solutions with the multiscale ones, by computing
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relative errors in weighted L? norm and H' semi-norm. In particular, we use

100 [Jttms i = wngil |z, /llunllez, »
3 3

(4.107)
100 ||tms,i — uhz“H;/HuthHé g

where

[lual |z, :/ﬁiufdm, il 112, ://-ii|Vu,-|2dx,
Q Q

(forz =1, 2).

We denote by DO Fj,. the number of degrees of freedom (basis functions) for fine-
scale FEM. Tables 4.1, 4.2, 4.3 and 4.4 represent the errors obtained from the coupled and
uncoupled GMsFEM with various ¢); and (), (see Figs. 4.2a and 4.2b). From Tables 4.1
and 4.2, we observe that the coupled GMsSFEM has higher accuracy compared with the
uncoupled GMsFEM, when (), and (), are large and positive. Tables 4.3 and 4.4 show
that both of the coupled and uncoupled GMsFEM still have good convergence with some
negative ()1 and ()2. A fine-scale reference solution u; (obtained from the FEM) is plotted

Fig. 4.3a, while Fig. 4.3b represents solution u; obtained from the GMsFEM.

(a) 1(x). The value in each channel is 10%. (b) k2(x). The value in each channel is 100.

Figure 4.1: Permeability coefficients «; and x5 for numerical implementation.
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(a) FEM, u; as a fine-scale reference solu- (b) Coupled GMsSFEM, u; as a coarse-scale
tion, DO Fype = 32768. solution, dim(Vp,s) = 2700.

Figure 4.3: Solutions using the FEM and Coupled GMsFEM.

(a) Q(x). The value in each channel is 107. (b) Q(x). The value in each channel is 10.

Figure 4.2: Interaction coefficients (); and () for numerical implementation.

119



dim(Viys)

Uy

U2

H' Errors(%) | L* Errors(%)

H' Errors(%) | L* Errors(%)

1800
2700
3600
4500
5400
7200

11.619
6.994
6.129
5.214
3.726
2.253

1.162
0.449
0.335
0.223
0.117
0.045

10.246
6.811
5.832
4.768
3.532
2.186

1.173
0.456
0.340
0.228
0.120
0.047

Table 4.1: Coupled GMsSFEM, (); = Q)3 = Q, DO Fg,. = 32768.

dim(Vin,)

Uy

Uz

H' Errors(%) | L* Errors(%)

H' Errors(%) | L* Errors(%)

1800
2700
3600
4500
5400
7200

16.170
8.213
6.630
5.554
4.717
2712

2.987
1.020
0.756
0.544
0.435
0.237

17.450
9.976
8.637
7.490
6.776
5.065

2.998
1.026
0.760
0.547
0.438
0.239

Table 4.2: Uncoupled GMSFEM, Q; = Q5 = Q, DO Fjp. = 32768.

dim(Vins)

U

Uz

H' Errors(%) | L* Errors(%)

H' Errors(%) | L* Errors(%)

1800
2700
3600
4500
5400
7200

16.051
8.232
6.621
5.567
4.729
2.696

2.250
0.571
0.375
0.255
0.195
0.064

17.558
7.957
6.579
5.374
4.578
2.628

2.547
0.567
0.381
0.252
0.179
0.061

Table 4.3: Coupled GMSFEM, Q; = —10Q, Q> = —Q, DO Fype = 32768.
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dim(Vo) |1 a 1 Sy
H' Errors(%) | L? Errors(%) | H' Errors(%) | L* Errors(%)
1800 16.233 2.314 15.873 2.266
2700 8.213 0.581 7.951 0.566
3600 6.620 0.377 6.54 0.381
4500 5.563 0.258 5.371 0.252
5400 4.733 0.196 4.558 0.180
7200 2.693 0.064 2.626 0.061

Table 4.4: Uncoupled GMSFEM, Q; = —10Q, Q; = —Q, DO Fyye = 32768.
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5. CONCLUSIONS

In this dissertation, we developed an efficient algorithm for computing the effective co-
efficients of a coupled multiscale multi-continuum system where the interaction terms are
scaled as O(E%) We solved the cell problems using hierarchical finite element algorithm
and used the solutions to compute the effective coefficients. To establish the hierarchical
FE algorithm, we first constructed a dense hierarchy of macrogrids and the corresponding
nested FE spaces. Based on the hierarchy, we solve the cell problems using different res-
olution FE spaces at different macroscopic points. We use solutions solved with a higher
level of accuracy to correct solutions obtained with a lower level of accuracy at nearby
macroscopic points. We rigorously showed that this hierarchical FE method achieves the
same order of accuracy as the reference full solve where cell problems at every macro-
scopic point are solved with the highest level of accuracy, at a significantly reduced com-
putation cost, using an essentially optimal number of degrees of freedom. The algorithm
was implemented on macroscopic points in a one dimensional domain. The numerical
results strongly support the error estimates.

We analyzed the homogenization of a two-scale dual-continuum system. The coupled
exchange terms are scaled as O(%) This scale gives an interesting homogenization limit
which contains convection, coupled reaction terms with negative interaction coefficients
while the original two scale system does not contain these features. We proved rigorously
the homogenization convergence. We proved rigorously also the homogenization conver-
gence rate. These proofs of homogenization convergence and error are significantly more
complicated than those for the scaling O(E%) considered in Chapter 1 due to the com-
plicated form of the homogenized equation. The effective coefficients are approximated

implementing hierarchical algorithm introduced in Chapter 2.
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We proposed a generalized multiscale finite element method (GMsFEM), to speedily
and effectively solve an upscaled multiscale dual-continuum system motivated by the ho-
mogenized equation derived in Chapter 3. The GMsFEM systematically produces either
uncoupled or coupled multiscale basis functions (called uncoupled or coupled GMsFEM,
respectively). That is, multiscale basis functions are constructed for separately for each
solution (uncouple GMsSFEM), or jointly for the system (coupled GMsFEM). Our numer-
ical results show that the combination of the GMSFEM and dual-continuum approach is
able to compute solutions with high efficiency and accuracy, which are even higher when
the coupled multiscale basis functions are applied. In a future contribution, we will extend

this strategy to a dual-continuum system of homogenized nonlinear equations.
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APPENDIX A

EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

In this appendix, we present the proof of the existence and uniqueness of a weak so-
lution of (3.3) and (3.15). We recall that the spaces L*(2) and H}(f2) are denoted by
H and V respectively. We first note that for v € L?(0,7;V) N H'(0,T;V’), we have
u € C(0,7T; H) ([28], p-394). This will make sense of the initial conditions (A.2). Con-
sidering the fact that C§°(€2) is dense in V' and (3.6), we have the variational problem :

Find u§, us € L*(0,T; V) such that 24, %5 ¢ 12(0,T; V") and

T
/ / cs, aul ¢, x)¢ (t, 2)dadt + / / w5 (@) Vi (t, 7) - Vou(t, x)dadt
0 Q

! / / Q) (S (1, 2) — ws(t, 2))ba (1, 2)drdt — /0 ' /Q 461 (t, 2)ddt

. (A.1)
/ /C 8u2 (t x)¢ (t,z)dxdt +/ /ﬁé(x)Vug(t,x) - Vo(t, v)dxdt
/ /QE ui(t, x))pa(t, z)dzdt = / /q¢2 (t,x)dxdt
for all ¢y, o € L*(0,T;V), and
ui(0,2) = g1(x) € H and u5(0,2) = go2(x) € H. (A.2)

Note that as u§, u§ € C(0,T'; H), it is possible to use the pointwise values of them in H at

t = 0 to impose the initial conditions.
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Let W be the space V' x V. We define a bilinear forma : W x W — R as

a((ur(t), ua(t)), (vi(t), v2(1)))

= /Q/»@iVul(t) - Vo (t)dx + /Q kSVuy(t) - Vuo(t)dr + % /Q Q(up(t) — ua(t))vy (t)de

+ % /Q Q (ua(t) — uy (t))vo(t)dx.

(A.3)

Recall that since [, Q(z,y)dy = 0, there is a vector function Q(z,y) which is periodic

with respect to y such that Q(z,y) = div, Q(z, y). We have the following theorem.

Theorem A.0.1. Assume that the vector function Q(z,vy) is in C1(Q; C1(Y))2. Then the
sequences u§ and u$ satisfying (3.3) are uniformly bounded in L>(0,T; H) and L*(0,T; V).

Proof. As div Q(z,%) = div, Q(z,%) 4+ 1div, Q(x,%), Q(z,%) = edivQ(z,%) —

7€

ediv, Q(z, 7). Note that

[ @@~ ui)orde = ¢ [ Q%) V(a5 - uf)onds
Q Q €

. ) (A4)
— e [ Q%) Vs~ up)dr e [ div, O, D) (us — uyinde

for all ¢y, o € C5°(€2). Thus, from (3.6), we have

T a € T
/ /Cﬁ (;?Cbldl"dtﬂL/ /HiVui-Vc;Sldxdt
0 Ja 0 Ja

T T
=—/‘/Q@f%VW?wm%Mﬁ—/t/Q@ngM%—%MMt
0 Q € 0 JQ €

T . T
—/ /divx Az, —)(u§ — ui)gbldxdt—i—/ /quldxdt.
o Ja € 0o Ja

(A.S)
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" =Mt 5 =Xt 7 At
We let 4§ = uje ™, 45 = use™ and ¢; = ¢1e™". Then,

T a/\e T .
/O / L gblda:dt+>\/ /c;la;gbldxdwr/o /Q/fiVﬁi-quldxdt
T
—/ /Q(m,—)-V(ﬁg—ﬁi)gbldxdt—/ /Q(:c,f)-wl(a;—ai)dxdt
0 Jo € 0o Ja €
T T 5 T _
— / / div, Q(x, =) (S — )y dadt + / / qdre Mdxdt.
0o Ja € 0 JO

(A.6)

Similarly, we have

T e T T 5
/ / 59 ——2 bodadt + )\/ / C§2ﬂ§¢2dxdt + / / ko Vs - Vgodzdl
0 ot 0 o Ja
T " § T " 5
—/ / Q(z, —) - V(u] — u5)padxdt — / / Q(z, =) - Vo(u] — us)dxdt (AT)
o Ja € o Ja €
T " 3 T 5
—/ / div, Q(z, —=)(a] — u5)podxdt + / / qire Mdadt.
o Ja € 0o Ja

Let ¢, = ug, by = u5. Taking the sum of the above two equations we get

T aAe T aAe T
/ / T “dmdt+/ / 25 Aedwdt+/ /miVﬂi-Vﬁjdmdt
0
T
+/ /mgva;- dxdt+)\/ /c;1 7 dacdt+>\/ /052 05) 2 ddt
Q
0 0 N
:2/ /Q(a;,—)-V(ai—a;)(a;—ag)dzde/ /diV;E Q(x, 2)(a5 — i) dadt
0 JQ € o Ja €
T
+/ /qe"\t(ai—l—ﬁg)dxdt.
0 Q

(A.8)
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Thus,

1
2/Ci| UT, x)| dr + = /C§2| (T, )] d:p+/ /RIV ujdxdt
+/ /ﬁ%Vﬂg- dxdt+)\/ /Cf1 1 d:zcdt—l—)\/ /C;2 (4s) 2dxdt
o Jao
T
:2/ /Q(m,z)-V(ﬂi—ag)(ﬂi—ﬁg)dxdt—i—/ /divm Q(x,—)(ﬂi—ﬁg)dedt
0

/ /qe (4] + a5)dzdt + = /Cf1| (0, z)|*dr + = /C§2| 5(0, x)|*dx.

(A.9)

Since Q(z,y) € CY(Q;CY(Y))?, using Cauchy Schwartz and Young’s inequalities, we

have

[ [

(a] — us)(a] — us)dxdt

\

(A.10)
1
< E(HWHL? orv) T HU2HL2 OTV)) +5(HU1HL2 o,1;m) T HU2HL2 OTH))
Similarly,
/ | div. @ D) = ig)Pdedt < calil o + 165 o) AID
and
T
—At (e ~€ ~ ~e
| [ e+ ts)aade < o callit e + 18l r). (A1

Choosing ¢ and A sufficiently large, we deduce 4§ and u$, thus, u{ and u§ are uniformly

bounded in L>=(0,T; H) and L?(0,T; V). O

Lemma A.0.2. Assume Q(z,y) € L>®(Q x Y) and k;(x,y) € L=(Q2 X Y). There exists
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C > 0 such that

[NIE
S

(w1, u2), (v1,02)) < O(Ver| 4+ (Vo Br)* - (1[Fr By + [ Venl[3)* (A13)

for (uy,us), (v1,v9) € W. And there exists k > 0 such that

a((d1, 02), (01, 02)) + kllnllFr + klleal T = (| [Vorllz + [[Verll), (A.14)

for all 1,9, € V. Here, C' and k depend on e.

Proof. Tt is not difficult to show (A.13). Since Q € C(Q x Y'), we have

a<<u1a u2)7 (ula u2))

1
= / k1Vuy - Vuyder + / ksVug - Vugdr + - / Q(uy — ug)*dx (A.15)
Q Q Q

> KVl + [1Vuall) = kIl + lluellz)

for some £ > 0 depending on e. The last inequality follows from Cauchy-Schwarz and

Young’s inequalities. ]

Theorem A.0.3. Let Q(z,y), Cii(x,y) and ki(x,y) (i = 1,2) be in C(QAx Y. There exists

a unique solution for problem (A.1).

Proof. We follow the standard proof for parabolic equations in [28]. We note that u, u$

are weak solutions of (3.3) if for almost all ¢ € [0, 7|

/c 8“1 TNV dx—i—//fqul() Vérda + - /Q (t) — us(t ))gbldx—/gquﬁldx
/c;28 ”@d +//<;2Vu2() Vnda + /Q )—ul())@d:v—/qu)gdx

(A.16)
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for all ¢1,¢9 € V, u(0,2) = g1(z) € H and u§(0,z) = go(x) € H. Let {wy} be
an orthogonal basis of V' and an orthonormal basis of /. For fixed integer m > 0, we

consider functions

i (1) = D di (D, w5, (6) = ) s (o (A17)
k=1 k=1
where the coefficients d* ., d&  satisfy
dv (0) = / quopdz, di (0) = / Ggowpdx (A.18)
Q Q

and

1
/ ci, 3“”” oy i+ / KV (1) - Vg, d + - / Q (i () =t (1) i, v
Q Q

= / qu, dz
Q

S (t 1
/C;Q—aum( )wkZd:I: + / ko Vus,, () - Vwg,dx + — / Q°(us,, (t) — ul,, (t))wk,dz
Q ot Q € Jo

= / quy,dx
Q

(A.19)
a.e. on [0,T], where ki,ky = 1,2,...,m. This problem can be written as a system of
ODEs
m d m m
Z[Ml]k,%d’fm(t) + ) (A + Moludy, (t) = > [Moluds,, (t) = [ quidz
=l = (A.20)
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fork=1,2,...,m, where

[Mz]kl :/C’;wkwldx MQ kl = /kawldx ]kl —/R-Vwk-ledx. (A21)
Q

Since M, and M, are positive definite and symmetric Gram matrices, they are invertible.
Hence, (A.20) has unique solutions.
It can be shown that uS,, uS, , are uniformly bounded in both L*(0,T; V'), L>(0,T; H)

and C{, &gtm ,CSo Quy =2 are uniformly bounded in L?(0, T'; V') for all m. The proof is similar

to that of A.0.1 and 3.1.1.

From these results, we deduce that there exist functions ug, us, 77, 75 such that

ug,, = us in L*(0,T; V), C;% — pSin L2(0,T; V"), i=1,2. (A.22)

Let 1/11(25>,1/12(t) c CI[O,T] Wlth 1/)1(T) = 1/12<T) = 0 Let (blk = wlwk, qbgk = wgwk.
From (A.19) we get

r )
/ / 11 glm¢1kd$dt+/ /MVUlm V o1 dadt
0o Jo
—/ /Qe(uim—ugm)@kdmdt:/ /nglkdmdt
(A.23)
/ / 22 82m¢2kdxdt+/ //@Vu2m V pordxdt
2 / [ Qs s oot = / [ aouaar
€Jo Ja 0o Ja
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Since ¢(T") = 0, integrating by parts we obtain

/ / 1nu 1m glkd dt+/ /fﬁVulm V¢1kdl'dt
. / [ @, = s ordsa
€Jo Ja
T
:/ /C_I¢1kd:£dt+/Cfluim(O)qﬁlk(O)d:)j
T
- [ et T anar + / / VU, - Vaudadt
€Jo Ja
T
:/ /C]¢2kd$dt+/C§2u§m(0)¢2k(0)d:v
0o Jo Q

Note that uS,,(0) — g1, u$,,(0) = g2 in H as m — oo. Passing to the limit, m — oo, we

(A.24)

obtain

g € ea¢1k g € €
— Cllulwda:dt—l—/ /RIVM-VQSdedt
0o Ja o Ja
1 (7
+ —/ /Qe(ui — us)prpdadt
€Jo Ja
T
:/ /nglkdxdt—i-/Cflglgzﬁlk(O)dx
/ / CSyu fg%d dt + / / KSVUS - V opdadt
+ —/ /Qe(ug — u) pordadt
€Jo Ja
T
0o Jao Q

(A.25)
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We partially integrate the first terms of the equations in (A.25) and obtain

/ /CH T ¢1kda:dt+/Cnu1 Y1x(0 dx+/ /FLIVul V ¢y pdadt
/ /Q T — ug)oprdrdt = / / ¢1kdxdt+/c 19101%(0

/ /C22 T ¢2kd:cdt+/C62u2 )ar (0 da:+/ /@VuQ V pordadt

+E/o /QQE(U;:—Ui)@kd:Cdt:/O Aq¢2kdxdt+AC§2gg¢2k(O)dx

As this holds for all ¢, 19 € D((0,T)), it follows that

(A.26)

S(t 1
/Cfl—aul( )wkdx + / k{Vui(t) - Vwrdr + - / Q (ui(t) — us(t))wrdx = / qupdax,
Q Q Q

Q

/CSQaugt( ) wdx + / kSVus(t) - Vwgdz +%/ Q(us(t) — ui(t))wpdr = / quidx
Q Q

Q
(A.27)

a.e. on [0,T], and
/Cnu1 wk(O)dx:/Cflglwk(O)d:c, /C;zug(O)wk(O)daz:/C§2g2wk(0)dx
Q Q Q
(A.28)

for all k. Thus, from (A.27) and (A.28), we deduce

/ e, 250 g 1 [ rivui)- Vot + [ @0 - wsnondr = [ aonar
/C 8% ———¢adx +/H2VU2<> Vgodr + — /Q Uz )_Ul( ))¢2d$—/9¢2dx

(A.29)

ll’l

a.e. on [0,T], for all ¢1, ¢ € V' and C5us(0) = C§,g;, hence, u$(0) = g;. Thus, uf, u$ are

solutions of (A.1). We now show the uniqueness of the solutions. Assume u§, u$, vy, v§
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are two solution sets of (A.1). We let uj — v§ = 3, u§ — v§ = 5. Then from (A.1), we get

/ / cs, 851 ¢1(t z)dzdt + / / K (2)VOy(t, x) - Vo (¢, 2)dudt
! / / Q“(2) (81 (t, ) — 6ot )1 (¢, ) et — O,
/ / CS,(x 852 ¢2( )dzdt + / / kS () Vo (t, ) - Vot x)dadt

+1 / / Q(2)(Ba(t, @) — 01 (t,))a(t, ) drdt = 0
(A.30)

for all ¢y, by € L2(0,T; V). Letting 01 (t) = 01(t)e ™, do(t) = dy(t)e™, ¢y = ¢1eM and

by = Poe™, we have

T (A.31)

A /0 /Q C§262gz32dxdt+ /O a((él(t),ég(t)),(él(t),ég(t)))dt:0.

Letting le = SZ we have

1 . 1 . T .
—/C{l|61(T)|2dx+—/C§2|62(T)|2dx+>\/ /Cfﬂéﬁdmdt
2 Q 2 Q 0 Q

T r (A32)
+)\/ /652]52|2da:dt+/ a((51(), 62(8)), (51(£), Ga(t)))dt = 0.
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Note that 51(0) = 0. By Lemma A.0.2, choosing sufficiently large A\, we have

1

R 1 R T . R
3 | CllbimFar+ 5 [ clbaPds+a [ (RO + 11950

1 - 1 . r .
< —/Cflldl(T)Fder—/(352](52(T)|2dx+/\/ /c;l\él\2dxdt (A.33)
2 Ja 2 Jo 0 Ja

44/T/cy&RMﬁ+/@m@wm&@»ww»&w»ﬁ=0

This implies &, = d, = 0, thus, d; = d, = 0 a.e. on [0, 7] x Q. We deduce uS = v<, u§ =

(S U

Now we show the uniqueness of a solution of the homogenized system (3.15). The
homogenized problem (3.15) can be written in variational form. We find uyg, usy €

L*(0,T;V) such that 240 %420 ¢ [2(0, T; V') satisfying

T 0u10 T «
Clldy 8 qbldl'dt + /{1Vu10 . v¢1d$dt
o Ja \Jy t o Ja

T
+/ /(/ /41VyM1dy) : v¢1(U20 — Ulo)dl'dt
0 QJY
g i 8”10 i 8u20
+ /O /Q [( /Y QNldy)a—xi— ( /Y QNQdy)a—xi]gbldxdt (A.34)

- /OT /Q</Y Q(M; + Ma)dy)(uio — uzo)Prdzdt

T
_ / / g6 dudt,
0 Q
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T (9u20 T «
/ / / ngdy ) gf)gdl‘dt + / / KQVUQ() : nggdfbdt
o Ja \Jy t o Ja

T
‘|‘/ /(/ HQVyMQdy) . V¢2(U10 — Ugo)d.’lfdt
0 QJy

8u10

’ i oy Ougo i
+/0 /Q[(/Y Qde?/)a—mi— (/Y QNldy)a—mi]%dasdt (A.35)

_/OT/Q(/Y QM + M) dy)(uso — o) podwdt

T
= / / qpodadt,
0o Ja

for all ¢, o € L%(0,T; V). We define the bilinear form b : W x W — R by

b((u10(t), uzo(t)), (91(1), 2(1))) =

/ HTVUlO : V¢1dl’ + /(/ /ilvyMldy) : V¢1(U20 — U,lo)dQT
Q QJY

i 8’&10 i 8u20
+ 1] amian T = ([ @vsdn G210

- /(/ Q(M; + My)dy)(uio — ugo)prd (A.36)
QJy

+/ /{;VU/ZO . v¢2d$ + /(/ K/QVyMQdy) . V¢2(U10 — Ugo)dfl'
Q QJY
1 avian G2 - ([ @iy 5o
— /(/ Q(Ml + MQ)dy)<u20 — Ulo)qbgdl’.
Q JY

Lemma A.04. Assume Q,x; € C(Q;C(Y)), Ni, M; € C(Q;CH(Y)) for j = 1, 2

There exists C > 0 such that

[V
=

b(as, ), (01, 2)) < CIVunlly + V) - (Vo + [190al2)F (A3
for (uy,us), (v1,v2) € W. There exists k > 0 such that
b((u1,u2), (ur, u2)) + Kllu |l + klual [ = a|[Vual[f + [[Vual[3) (A.38)
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for all uy,us €V, for a constant o > 0.

Proof. We first show (A.37). We have

b((”h Ug), (’Ul, U2))

<cr(IVurlla - (IVoilla + 11901 - iz + 110l - Wzl + V]| - o]
Vsl - ol + Nl - ol + ozl - ol + Vsl - V0oL
+ 11Vl - Nuzllar + V0l - sl + [zl - ol + V] - ol
sl - Mol + sl - o] 1)

<der (|l + [Vualll + |y + sl ) ®

1
IVl + Vvl + (ol 7+ Hleall7)?

[NIES

<C([[VuillF + [[VuallF) 2 - ([[Vva| 3 + [Vl [7) 2
(A.39)

The last inequality follows from Poincare inequality. We now prove (A.38). As ] and 3

are positive definite, we have

b<<u17 u2>’ (uh UQ))

> o (||[Vur || + [[Vuell3) — c2(|Vulli - [l + [ Vua g - |Jusl g
I Vurllg - Nl lg 4+ [|Vuellg - udl g+ [Judl |z - ||z + el - [Ju]z
+ [ Vualla - (w2l [z + [[Vualla - |||z + [[Vuallg - |[ua||lz + [|Vurl|g - ||ual|a

+ ualla - w2l + ||zl - |[ual|)

> a1Vl + [[Vuallf) = (eal Va3 + 01l luallF + eal[Vuzl[f + d2lluzl ).
(A.40)

The last inequality follows from Young’s inequality, ab < g—z + # valid for all € > 0.
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Thus, we can choose ¢, €5 small enough and get the conclusion. O

Theorem A.0.5. Assume Q. r; € C(Q;C(Y)), NI, M; € C((;CHY)) for j =1, 2.

There exists a unique solution for problem (A.34).

Proof. The existence follows from Theorem 3.1.1. We only prove the uniqueness. Assume
(Ulo, Ugo), ('Ulo, Ugo) are two solutions of (A34) We let U1g — V19 = (51, Ugp — Voo — 52.

From (A.34), we obtain

T 6(51 T .
C11dy8—¢1d$dt + I€1V(51 . ngldxdt
0 Q Q
T
+/ /(/ nlvyMldy) : V¢1(52 — (51>dl’dt
0 QJY
T
+ / / [( / QNidy / QNZdy gzﬁldxdt
0 Q Y

- /T/(/ Q(My + M)dy) (61 — d2)¢1dzdl = 0,

T
/ //ngdy—¢2dxdt+/ /K§V52~V¢2dxdt
Q

+ /O /Q ( /Y ko VyMady) - V(61 — 02)dxdt

' i g 202 .06y
+/0 /Q[(/Y QNQd@/)axi - (/Y QNldy)8_xi]¢2dmdt

~ /OT/Q(/Y QM + Mo)dy) (65 — 61)oddt = 0

(A.41)

for all d)l, ¢2 c L2<0,T, V) Let 51<t) = (51(t)6_)‘t, Sg(t) = (52(t>€_>\t, le = (ﬁle)‘t and
b = e, We have
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T 881 . T .
o Jaly ot o Jaly
T . . T R R
+/ / "{{VC;I : V(bldxdt +/ /(/ lilvyMldy) : ngl(&g - (51)d1‘dt
/ / / QNidy) 851 / QNidy)
- / /(/ Q(M; + M2)dy)(51 - 52)é1d$dt =0,
0 QJY
T 852 . T s
o JalJy ot o Jaly
T . . T R R
+/ / K/SV(;Q : V(;Sgdxdt +/ /(/ :‘igvyMgdy) : V¢2(61 - 62)d(l]dt
/ / / QNidy) / QN’dy qbgdxdt

_ /O /g}(/y QUM + 1\42)dy)(52 - 51)<52dxdt —0.

hdxdt

(A.42)

We let ¢; = 5:. Since 51(0) = 0, adding above 2 equations, we have

//Cndy|51 |dl’+ //CQQdy|52< )l dx

-|-/O b((01(£), 02(t)), (01(2), b2(t)) )t =

Choosing A large enough, we have

1 A 1 A
- / / Cudy|(51(T>|2d[E + = / / ngdyl(SQ(T)FdlE
2 QJY 2 QJY

T (A.44)
+a/ IV (D)% + ||V 2(2)]|%)dt = 0,
0

by Lemma A.0.4. We deduce 51 = 32 = 0 thus 0 = 92 = 0. We have vy = vyg,
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U20 = V2.
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