
ASYMMETRIC ROBOT MOTION DESIGN FOR PURSUIT-EVASION GAMES

A Thesis

by

AUSTIN LANCE LUNDGREN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Dylan Shell
Committee Members, Theodora Chaspari

Suman Chakravorty
Head of Department, Scott Schaefer

August 2020

Major Subject: Computer Engineering

Copyright 2020 Austin Lance Lundgren



ABSTRACT

Symmetric turning control is the typical design choice for most machines. However, historical

examples of asymmetric machine design, as well as examples of asymmetry in nature, suggest that

asymmetric turning may be a potential advantage in adversarial applications. For instance, aircraft

of World Wars I and II were plagued by asymmetric turning controls as a result of gyroscopic

forces from the rotating engine. Pilots of the time actually believed this to be a feature, not a

bug, suggesting that the asymmetric turning improved strategic evasion and pursuit during battle.

As autonomous robots become increasingly critical in military operations, it is imperative that we

endow them with strategic designs for better performance. We seek to understand if asymmetric

turning is an advantageous design.

Using Karaman and Frazzoli’s sample-based algorithm for pursuit-evasion games, software

simulates robot motion planning in an asymmetric Dubins state space to observe how asymmetric

turning influences agent success. We demonstrate mathematically that the Dubins interval path

solutions are applicable to asymmetric Dubins vehicles, as both are utilized within the simulation.

The Open Motion Planning Library (OMPL) is leveraged to implement the pursuit-evasion game

algorithm. To simulate asymmetric action, agents are assigned varying degrees of asymmetric

turning constraints, such that as one turn sharpens, the other broadens. Agents then compete in a

pursuit-evasion game. Pursuit-evasion games are simulated across a range of asymmetric turning

match-ups and agent starting positions.

Results show that pursuer success increases as its asymmetry increases. Evader success re-

mains constant, regardless of asymmetric turning influence. Furthermore, the advantages of asym-

metric turning can be further augmented when considered in conjunction with relative agent start-

ing position. The results of this research inform more intelligent machine design strategies for

vehicles in dynamic spaces.

ii



ACKNOWLEDGMENTS

Special thank you to Professor Shell for his boundless guidance and encouragement, whose

mentorship made this project a joy.

Thank you to my committee members, Professor Chaspari and Professor Chakravorty.

Thank you to Texas A&M University and the Department of Computer Science and Engineer-

ing.

And thank you to my family. Though they could not always relate to the problem, they always

listened.

iii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Dylan Shell (advisor)

and Professor Theodora Chaspari of the Department of Computer Science and Engineering, and

Professor Suman Chakravorty of the Department of Aerospace Engineering.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

No outside financial support was garnered for the duration of this project.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Asymmetric Designs in Nature and Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Sampling-Based Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Pursuit-Evasion Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Dubins Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

III. COMPATIBILITY OF DUBINS INTERVAL AND ASYMMETRIC PATH SOLUTIONS 12

IV. PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

V. EXPERIMENTAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 GamePlan Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Overview of the Open Motion Planning Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Planner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Dubins Asymmetric State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Path Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

VI. RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 The Influence of Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Agent Relative Positioning Influences Asymmetric Effectiveness . . . . . . . . . . . . . . . . . . . . . 41

VII.CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



LIST OF FIGURES

FIGURE Page

2.1 Right-Straight-Left (RSL) Dubins path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Right-Straight-Right (RSR) Dubins path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Left-Right-Left (LRL) Dubins path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Class ownership diagram for the Open Motion Planning Library . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Experiment starting positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Game setup with evader on left side of the pursuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Pursuit-evasion game with symmetric agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Evader win rates across all turn permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 Pursuer win rates across all turn permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 Asymmetric agent win rates against symmetric opponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.6 Pursuit-evasion game with sharply asymmetric pursuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 Pursuit-evastion game with sharply asymmetric evader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.8 Game setup with evader on right side of the pursuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.9 Agent win rates for asymmetric pursuer against symmetric evader, left versus right
starting position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.10 Agent win rates for asymmetric evader against symmetric pursuer, left versus right
starting position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.11 Game setup with pursuer and evader directly in front of eachother . . . . . . . . . . . . . . . . . . . . 45

6.12 Agent win rates for pursuer directly in front of goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.13 Pursuer advantage against different evader start positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



I. INTRODUCTION

Asymmetric aircraft designs throughout history demonstrate that asymmetric machine design

offers potential strategic advantages. Historical precedence suggests that motion asymmetries can

be exploited for improved maneuvering through hostile space [1]. Similarly, some animals have

evolved asymmetric traits to better adapt to predator-prey relationships [2] [3]. Interest in strategic

autonomous path planning for adversarial scenarios has increased as robots and autonomous ve-

hicles become more commonplace in military operations, trade, and transportation. Asymmetric

turning design may offer a competitive edge hitherto unused.

Symmetry is the current standard. Quadcopter drones, for instance, are symmetrical along two

axes. This design is intended for stability and easy directional shifts [4]. While aircraft of World

Wars I and II featured asymmetrical turning controls as a result of rotary engine torque [1], mod-

ern engineering has aimed to overcome this, implementing design features such as counter-rotating

propellers [5]. But should asymmetrical design be deserving of the push back? Accounts of the

World War I aircraft, the Sopwith Camel, suggest otherwise. The Sopwith Camel had incredible

turn agility to the left, and a slower turn to the right, as a result of gyroscopic forces from the

rotating engine torque. While novice pilots considered this a weakness, experienced pilots consid-

ered this a feature [6]. This inspires our research question, does asymmetric turning design affect

performance?

The scope of our study focuses on autonomous robot path planning in adversarial conditions.

To demonstrate that asymmetric turning yields more strategic paths to a goal, or more advantageous

evasions from an opponent, would suggest that asymmetric turning controls are a useful feature

to consider in robot machine design. Military strategy and autonomous vehicle path planning can

benefit from this research. Should asymmetry prove advantageous, military robots caught in ad-

versarial airspace might leverage asymmetry to out-maneuver opponents if design decisions were

made to do so. In traffic situations, autonomous cars might utilize asymmetry to avoid collision

with surrounding traffic.

1



An agent demonstrates improved performance with asymmetric turning if it outperforms its

opponent more often than with symmetrical controls. We measure this by observing the win-loss-

draw frequencies for different pursuit-evasion game scenarios. Before entertaining asymmetry as

an advantage, we seek to understand if it has a measurable effect on performance. To observe some

change in an agent’s win-loss-draw frequency when asymmetry is introduced proves that asymmet-

ric controls change the competitive advantage for an agent in some way. Should the win frequency

of an agent improve as its controls become increasingly asymmetric, then we can conclude that

asymmetry is a benefit for that agent. If loss frequency increases as controls become increas-

ingly asymmetric, then we can conclude that asymmetry is a handicap. Furthermore, knowledge

is gleaned from changes in path characteristics. For example, observing how turns, evasions, and

maneuvers are executed by an agent offers further insight into the influence of asymmetry.

Applying these measures of success, our research demonstrates that asymmetry has an effect

on agent performance and that the effect is beneficial, or at worst neutral, to the outcome. We

illustrate this by observing three game scenarios. The first models an evading craft crossing a

channel with an intercepting craft approaching from the right. The second simulation mimics the

first, except with the craft approaching from the left. The third scenario simulates a pursuing craft

approaching the evader head on. These scenarios demonstrate the general trends of asymmetry

influence, and also highlight how relative direction of the opponent impacts choice of asymmetric

controls.

The thesis is outlined as follows: Chapter II provides commentary on background research,

including precedents of asymmetry in nature and machines, the choice for sampling-based mo-

tion planning, descriptions of pursuit-evasion games, and an explanation of the Dubins vehicle

model employed in this project. Chapter III contains a mathematical discussion on the compati-

bility of the optimal Dubins interval and Dubins asymmetric path solutions. Chapter IV presents

the problem domain, explaining the scope of the project and its implications. Chapter V outlines

the methodology, detailing the construction of the software algorithms used, and specifying ex-

2



perimental methods. Chapter VI presents the results. Chapter VII discusses results and further

study.

3



II. LITERATURE REVIEW

To answer the guiding question, does asymmetric turning design affect performance, we survey

literature over a range of topics, including asymmetric design, sampling-based motion planning,

pursuit-evasion game theory, and Dubins vehicle motion constraints. In the sections below, we be-

gin by providing analysis on established examples of asymmetry in machines and nature. Our ex-

periment employs sampling-based motion planning, and so we explore the benefits of this planning

strategy, and how it is most effective for simulating pursuit-evasion games. Next, we summarize

pursuit-evasion game theory, and provide commentary on existing pursuit-evasion game research

for autonomous robots. Lastly, we discuss the Dubins vehicle, which is the motion model we apply

to the robots in simulation.

2.1 Asymmetric Designs in Nature and Machines

Asymmetric design has demonstrated performance advantages within both nature and ma-

chines. Morphs of the freshwater fish Perissodus Microlepis possess left-sloping mouths, offering

predatory advantage when attacking the right side of their victims.1 Perissodus Microlepis fish

possessing increased mouth asymmetry have higher predation success due to the tactical advan-

tages the trait offers [2]. Consider also the male Fiddler Crab, which develops one pincer to be

significantly larger than the other. Asymmetric claws endow male Fiddler Crabs an advantage

in male-male, inter-species mating competitions [3]. The asymmetry of male Fiddler crabs also

extends to the morphological design of their legs [7]. Interestingly, this mobility asymmetry actu-

ally handicaps the crab in predator evasion scenarios [3], demonstrating the double-sided nature of

asymmetric design.

As in nature, asymmetric machine designs have also yielded performance improvements. A

renowned World War I Aircraft, the Sopwith Camel had a considerably more reactive left-turn

than right-turn, caused by its spinning rotary engine. Because of this, pilots demonstrated a strong

1Some have right-sloping mouths, with a preference for attacking the left side of victims.

4



preference for left turns, even when the left turn angle would exceed the right turn angle. The

arc length for a right turn was perceived to be too costly otherwise [8]. This ingenious quirk in

design proved beneficial in battle, particularly against the German Fokker Dr I plane. To offset the

asymmetry of the Sopwith Camel, Fokker pilots were actually encouraged to utilize right handed

turns in evasive maneuvers [1]. Pilots’ capitalization on the asymmetric operation of the aircraft

highlights how motion strategies are shaped by asymmetric design. While not always as eccentric

or utilized as with the Sopwith Camel, many aircraft of World Wars I and II tended to behave

asymmetrically for similar reasons, favoring turns to one side over the other. The Blohm and Voss

BV 141 aircraft was considered unorthodox because of the asymmetrical body design, which was

used as a means to counter this asymmetric drift caused by engine torque [9].

2.2 Sampling-Based Motion Planning

A robot’s current state defines its current condition. For our discussion, the robot’s state mainly

refers to its position and orientation, (x, y, θ) within its operating space. The set of all possible

robot states is the state space. The task of autonomous robot motion planning is to find a cost-

minimal path from the start state to the goal state. Within the space of operation, the robot’s

environmental and kinematic constraints impose numerous complexities on this problem. The

two most studied motion planning approaches are Combinatorial Motion Planning and Sampling-

Based Motion Planning [10].

Combinatorial approaches are considered exact and complete, such that the algorithms of this

class will definitively find a problem solution, or no solution exists [11] [10]. Combinatorial al-

gorithms decompose the space into geometric cells. The shortest paths across each cell are deter-

mined and linked together to attain the optimal path across the space [10]. Though combinatorial

algorithms can provide a complete and exact solution, they are not the best suited for a dynamic

obstacle space. One shortcoming is the issue of mixed cells. If a cell straddles both an obstacle and

free area of the space, it is considered mixed. If an algorithm accepts the mixed cell as valid, the

returned solution may be unsound. If the cell is rejected as being in the way of an obstacle, the re-

turned solution may be incomplete. This can be overcome by shrinking cell size and also adjusting

5



cell geometry to more properly align with obstacles [11]. However, moving obstacles, such as a

pursuing vehicle, dynamically interrupt what is considered free versus invalid motion space. This

necessitates an iterative re-planning strategy that updates with every change to the obstacle space.

Such algorithms are considered resolution complete, meaning that their completeness is dependent

on the density of cells that subdivide the space.

Explicit instantiation of obstacles and space constraints can be avoided with sampling-based

planners. Sampling-based planners explore the space by iteratively sampling available motions

and constructing graphs between valid positions. Sampling-based planners make use of validity

checking functions to avoid collisions with obstacles. The validity checking function removes from

consideration samples which are invalid. The planning algorithm can therefore operate indepen-

dently from knowledge of the space constraints [10].

The Rapidly-exploring Random Tree (RRT) algorithm is one such sampling-based motion

planner. RRT constructs a graph data structure of random samples of agent configurations across

the state space. The space of invalid states does not have to be explicitly represented. Given an

initial state xinit, the random tree is generated as follows: a random state, xrand is sampled from

the space. An input u is determined that will connect xrand to the nearest neighboring node in the

existing tree, xnear. Next, u is evaluated to ensure that the new motion passes validity constraints

of the space. Finally, if the motion is valid, the newly sampled state is added to the tree [12].

RRT is considered rapidly exploring because of its utilization of the nearest neighbors feature.

It is biased towards un-visited regions of the state space because the Voronoi regions of a tree node

(that is, a region of the state space such that all points in that region are closest to that tree node),

are largest in unexplored space. These larger Voronoi regions are more probable to be sampled,

and thus vertices with larger Voronoi regions are more likely to expand [12].

RRT* improves on the Rapidly-exploring Random Tree algorithm by ensuring an asymptotic

convergence to the optimal solution. This function is achieved by re-evaluating total path cost of

the tree for a newly added node. As in RRT, a state is randomly sampled in the space, and a nearest

neighbor node to that newly sampled node is identified. In RRT*, the new edge is connected

6



not necessarily to the absolute nearest neighbor, but to the node which results in the minimum

accumulated cost from xstart to xnew. The neighborhood of vertices around xnew are also evaluated

to determine if existing path costs can be improved by passing through xnew, and rewired for

optimization accordingly [13]. This rewiring feature and consideration for accumulated path costs

is what allows RRT* trees to converge to the optimal solution, unlike RRT.

The sampling-based nature of RRT* ensures the necessary flexibility for a dynamic pursuit-

evasion environment. Valid paths for each agent are influenced by the other’s motions. For in-

stance, if the evader wants to strategically avoid capture, it must recognize states near the pursuer

as invalid, but the validity of these states is constantly shifting with the movement of the pursuer.

Sample-based planning better accommodates this propagation of uncertainty in state validity than

combinatorial approaches.

2.3 Pursuit-Evasion Games

The mathematics and theory of Pursuit-Evasion problems have a wide array of real-world ap-

plications. 18th Century Mathematician Pierre Bouguer was concerned with determining a func-

tion for the line of pursuit, the curved path a pursuing navy vessel must take such that its velocity

vector is always pointed directly toward the evading ship [14]. Other worthwhile scenarios in-

clude a plane crossing a channel while trying to avoid an orthogonally approaching missile, or a

vessel guarding a base from an oncoming enemy. With the introduction of autonomous vehicles,

the theory of pursuit-evasion games becomes particularly pertinent for military or traffic collision

avoidance applications.

While details of the game setup and rules vary across different game classes, a pursuit-evasion

game is a pursuing agent attempting to capture an evading agent. One form of this is the Man-Lion

game. In the Man-Lion game, a pursuing lion agent tries to capture an evading man agent. Both

agents are set in a closed arena, always knowledgeable of each other’s position, and take turns to

move. The lion wins the game if it successfully captures the man. Some versions of the game

include multiple lions and obstacles [15]. Other pursuit-evasion games are sensing based. Rather

7



than agents having constant knowledge of each other’s location, they are only identified to each

other when within a distance threshold [16].

For our research, the pursuit-evasion game is designed as follows: The evading agent (evader)

executes paths towards a stationary goal point on one side of the space. The pursuing agent (pur-

suer) moves through the space attempting to intercept the evader. While not an intrinsic require-

ment of pursuit-evasion games, both agents plan their paths before execution, which ensures both

agents are operating strategically. The evader wins the game if it reaches its goal point without

being intercepted by the pursuer. The pursuer wins the game if it successfully catches the evader

before the evader reaches the goal.

We employed a sampling-based algorithm for solving this class of pursuit-evasion games, as

described in [17]. This algorithm is an extension of the RRT* path planning algorithm. All the

same RRT* procedures are followed for general path planning with one additional condition: sam-

pled nodes considered near capture are removed from the evader’s tree. As the evader grows its

tree, it removes all nodes that it imagines the pursuer may reach more quickly. This removal of

nodes that are close to capture provides the necessary evasive action mechanism for the evader to

play a strategic game.

The dynamic planning necessary for evasive maneuvers, given the uncertainty of the pursuer’s

motions, suits sampling-based motion planning to pursuit-evasion games particularly well. Ex-

act algorithms based on Dynamic Programming principles have also been proposed for solving

pursuit-evasion games, but suffer from extremely limited tractability to only low-dimensional con-

figuration spaces [18]. The sampling-based algorithm utilized in [17] and this research provides a

probabilistically complete solution, and is also more scalable.

2.4 Dubins Vehicles

Standard vehicles, such as planes, cars, and boats, are not designed to translate immediately

perpendicular to their forward trajectory vector. This means that, if your car is facing North, and

you want to reposition it ten feet to the East, you have to steer the car to face East before you can

start driving East. The kinematic constraints of vehicles require them to turn through an arc to

8



reach a position on a perpendicular axis. A Dubins vehicle models these constraints. A standard

Dubins vehicle meets the following conditions [19]:

• The vehicle moves in the (x, y) plane.

• The vehicle can only move forward.

• The vehicle has constant speed.

• The vehicle has a minimum turning radius rmin.

Dubins vehicles are named after Lester Dubins, who solved the minimum path problem for a

vehicle moving between two (x, y, θ) points [20]. The shortest path for a Dubins vehicle is called

a Dubins curve. Dubins proved that there are only six possible path shapes, each of which are a

combination of three segment types. A Dubins path consists of Left (L), Right (R), and Straight

(S) path segments. A left or right segment indicates a steering control in that direction, and a

straight path is a translation that maintains the same velocity vector orientation angle. The shortest

path between any two (x, y, θ) points for a Dubins vehicle will be one of the following segment

combinations: RSL (Figure 2.1), RSR (Figure 2.2), LRL (Figure 2.3), RLR, LSL, LSR, or a subset

thereof.

Figure 2.1: Right-Straight-Left (RSL) Dubins path. Reprinted with permission from [21].

9



Figure 2.2: Right-Straight-Right (RSR) Dubins path. Reprinted with permission from [22].

Figure 2.3: Left-Right-Left (LRL) Dubins path. Reprinted with permission from [23].

An asymmetric Dubins vehicle follows the same constraints, but now with differing rmin for

left and right turns. In this case, the shortest path will still be one of the six standard cases,

however the minimal path solution under asymmetric conditions may be a different solution than

under symmetric conditions for the same start-endpoint pair, as shown in [24].

Applying Dubins vehicles within a pursuit-evasion game presents additional complexities sur-

rounding angle of approach. In the standard Dubins path planning, the goal point has a specific

orientation of rotation that must be met. To avoid capture within pursuit-evasion games, agents

must often whiz past goal points and return at a more advantageous moment later in the game.

Given the dynamic nature of the path planning constraints, it becomes impractical to apply strict

goal arrival orientations. Rather, agents need to be allowed to approach the goal point from any

direction.

10



The interval Dubins case describes a Dubins vehicle which is allowed an interval of arrival

orientations at the goal point. It is necessary to introduce this path planning case when an agent

approaches the goal point to expand degrees of motion freedom necessary for success. Solutions

for the shortest paths with a range of allowable goal arrival angles is presented in [25]. We demon-

strate the compatibility of the asymmetric and interval cases in the following chapter.

11



III. COMPATIBILITY OF DUBINS INTERVAL AND ASYMMETRIC PATH SOLUTIONS

Combining the Dubins interval and Dubins asymmetric cases has, to our knowledge, not been

previously studied. Here, we show mathematically that our algorithm’s incorporation of solutions

from [24] and [25] is sound. This chapter proves the following proposition:

Proposition 1: The optimal path between two points with defined departure angle θ0 at starting

position and terminal angle θf ∈ [0, 2π] at final position is of the form LS, RS, LR, RL, LRL, RLR,

or a subset thereof, for a Dubins vehicle with differing left/right turn radii ρ and ϱ.

The optimal path problem for an asymmetric Dubins vehicle with an arrival angle interval

of 360◦ is characterized as follows: we want to minimize the total length of the vehicle path from

initial position (x0, y0, θ0) to final position (xf , yf , θf ), where x and y are 2D Cartesian coordinates,

and θ is the angle of orientation. The arrival orientation θf ∈ [0, 2π]. Let u(t) be the vehicle control

input at time t. The differential system of equations for Dubins vehicle motion is

ẋ = cos θ, ẏ = sin θ, θ̇ = u(t) (3.1)

For the asymmetric case, u(t) ∈ [−1/ρ, 1/ϱ], where ρ is minimum turn radius to the right and ϱ is

minimum turn radius to the left.

Let Λ = (λx(t), λy(t), λθ(t)) be the adjoint variables associated with p(t) = (x(t), y(t), θ(t)).

Then, the Hamiltonian equation for this system is:

H(Λ, p, u) = e+ λx cos(θ) + λy sin(θ) + λθu (3.2)

12



and the adjoint variable differential equations are:

λ̇x = 0,

λ̇y = 0,

λ̇θ = λx sin(θ)− λy cos(θ).

(3.3)

As demonstrated in [26], we can transform the Hamiltonian equation as follows for easier

interpretation. Let λx = ψ cos(ϕ), λy = ψ sin(ϕ), where ψ =
√
λ2x + λ2y and tan(ϕ) = λy/λx. We

can then rewrite the Hamiltonian equation and adjoint variable equations as:

H(Λ(t), p(t), u(t)) = e+ ψ cos(θ − ϕ) + λθu (3.4)

λ̇θ = ψ sin(θ − ϕ) (3.5)

By Pontryagin’s Minimum Principle, when executing the optimal action trajectory u∗(t),

H(Λ(t), p(t), u∗(t)) ≡ 0, (3.6)

and

e ∈ {0, 1} (3.7)

for all t > 0. Additionally,

u∗(t) = argmin
u
{H(Λ(t), p(t), u(t))}. (3.8)

Equation 3.8 states that the Hamiltonian is minimized at u(t) = u∗(t). In order to satisfy

equations 3.6 and 3.7 for an optimal control along any optimal path,

ψ cos(θ − ϕ) ≤ 0 and λθu ≤ 0. (3.9)

13



The following three lemmas are presented in [25] and [26] assuming symmetrical turning. It is

shown here that these lemmas are also true when turning is asymmetrical.

Lemma 1: λθ = 0 at all path inflection points and at all points along straight (S) path segments.

Proof : First we will prove that λθ = 0 for all points along a straight path segment. ∂H
∂u

= λθ.

Pontryagin’s minimum principle states that the adjoint vector Λ must be nonzero. In the case that

∂H
∂u
≡ 0, we recognize that it is therefore impossible for ψ = 0, because otherwise e = 0 by virtue

of equation 3.4, and Λ = 0.

Eliminating the possibility that ψ = 0, let’s consider the case that ψ ̸= 0. Consider equation

3.5. If λ̇θ = 0, then it must be that θ = ψ or θ = ψ + π, and the path is a line segment with ϕ as

the direction. Because λθ is continuous, this argument extends to saying that λθ = 0 at inflection

points between straight segments and curved segments.

For inflection points between two curved segments, we recognize the θ̇ will change sign. There-

fore, λθ must also change sign by equation 3.9 and 3.1.

Lemma 2: For any optimal path, λθ−λxy+λyx = k where k is a constant. Furthermore, all line

segments and inflection points for an optimal path lie on the same straight line.

Proof : Plugging in the definitions from equations 3.1 and 3.3, we see that λ̇θ − λxẏ + λyẋ =

(λx sin(θ)− λy cos(θ))− λx(sin(θ))− λy(cos(θ)) = 0. Integrating this expression with respect to

time, we have λθ − λxy + λyx = k.

If λθ = 0, then λyx − λxy = k. Rearranging this, we more clearly see it is the equation for a

line, y = λy

λx
x− k.

Lemma 3: Any curved optimal path between two inflection points where λθ = 0 turns through

> π radians.

Proof : Let t1 and t2 represent the times corresponding to the two inflection points. Consider if

path arc angle were≤ π. λθ = 0 at all inflection by lemma 1, so λθ(t1) = λθ(t2) = 0. By equation

14



3.4 and 3.6,

cos(θ(t1)− ϕ) = cos(θ(t2)− ϕ) = −e/ψ (3.10)

Along any curved path, sign(θ̇) is constant. Therefore, sign(λθ) is also constant by virtue of

equation 3.9 and 3.1. So, λθ achieves a minimum or maximum somewhere along the arc. Let this

extremum be noted as t3, and equation 3.5 gives us

λ̇θ(t3) = ψ sin(θ(t3)− ϕ) = 0. (3.11)

Equation 3.11 tells us that either sin(θ(t3) − ϕ) = 0, or that ψ = 0. Equation 3.10 becomes

undefined if ψ = 0, so it must be that sin(θ(t3) − ϕ) = 0. Furthermore, sin(θ(t3) − ϕ) = 0 when

cos(θ(t3)− ϕ) = 1 or −1.

We know it is the case that cos(θ(t3) − ϕ) = −1 by considering the following: equation 3.10

indicates that cos(θ − ϕ) has the same sign at t1 and t2. Because we have assumed that the arc

angle will be ≤ π, then cos(θ − ϕ) will also have the same sign at t3. Both e and ψ are positive by

definition, so therefore the sign(cos(θ − ϕ)) = −1 all along the arc, and cos(θ(t3)− ϕ) = −1.

Substituting −1 for cos(θ(t3)− ϕ) into equation 3.4, we have

e− ψ + λθ(t3)u(t3) = 0. (3.12)

Remembering that both e and ψ must be ≥ 0 by definition, then it must also be true that

e− ψ + λθu ≤ e− ψ. (3.13)

Then,

0 ≤ e− ψ =⇒ e

ψ
≥ 1. (3.14)

Equation 3.10 implies that e/ψ = 1, and so e = ψ.

15



Now, from equation 3.12, it must be that:

λθ(t3)u(t3) = 0. (3.15)

Because |u∗(t3)| > 0, then λθ(t3) = 0. Using equation 3.5,

ψ sin(θ − ϕ) = k (3.16)

where k is a constant, and

θ = arcsin(
k

ψ
) + ϕ, (3.17)

which is also a constant. Because θ is constant, this path must be line segment, and not an arc.

Therefore, our assumption that the curved path arc angle can be ≤ π does not hold, and the arc

angle of a curved segment must be > π.

Following the presentation of these three lemmas, let us return our consideration to proposition

1. For the interval [0, 2π], λθ(T ) = 0, where T is the time at which the vehicle arrives at the

destination point, as shown in [25]. Let us first consider λθ(0) ̸= 0. By lemma 1 and lemma 2, the

first segment in the path is a Left or Right curve (L or R), and the second segment in the path is

a straight line (S). If λθ(0) = 0, then an optimal path may be a single straight line segment from

lemma 2, or a series of curved segments each with arc angle greater than π for each curve from

lemma 3.

Therefore, the pursuit-evasion algorithm evaluates LS, RS, LR, and RL paths in addition to all

original Dubins path shapes, as discussed further in Chapter 5 and shown in algorithm 4. As shown

in [25], the symmetric Dubins case further bounds the optimal path shapes to only curve-straight

(CS) and curve-curve (CC) segment combinations. The proof of this relies on the condition that

three curve segments of length πR (whereR is the turn radius) cannot be an optimal path, as shown

in [25] and [27]. For an asymmetric Dubins vehicle, [24] applies an upper bound on the third curve

16



length of an optimal path greater than πR. We leave it as future work to show that the optimal path

may be further bounded to CC or CS shapes for an asymmetric Dubins vehicle.

17



IV. PROBLEM STATEMENT

Pilots of the Sopwith Camel aircraft reported that its asymmetric turning feature was a gen-

uine advantage when intelligently utilized [1]. We seek to better understand this phenomenon by

studying agent path planning strategies within a pursuit-evasion game. The competitive nature

of pursuit-evasion games allows us the opportunity to examine how different asymmetric turning

strategies fare against each other, and if any are more or less advantageous.

Asymmetric turning constraints are modeled by a turn budget. The turn budget value represents

the total units of turn radius an agent is allowed across its right and left directions. If a smaller

turn radius is given to the left, then a larger turn radius is required on the right, such that the total

of the right and left turn radii equals the turn budget. In a game scenario, both agents are given

the same turn budget. This ensures that they both maintain a comparable range of motion. This

model mimics the effects of asymmetric aircraft. In the case of the Sopwith Camel, the effects of

the engine torque sharpened left turns, but at the cost of broader right turns [1]. This cost trade

off between a sharp turn and broader turn makes the asymmetric case particularly interesting. At a

given juncture, the agent must consider if an agile evasive maneuver with its sharper turn is more

effective, even if it takes it away from the goal. On the other hand, is a broader turn in the correct

direction the better option, even if the agility cost risks capture? We will explore how having both

a broader and sharper turn can be useful.

Vehicles are simulated in a 2-dimensional plane. This is sufficient for modeling left-right turn

actions for cars, boats, and aircraft. Aircraft have additional axes of motion which could expand

the problem space further, such as rolling or pull up maneuvers. Left-right turning in 2D simplifies

the model space to observe more directly the effects of asymmetry as the binary choice between a

sharper or broader turn.

Pursuit-evasion provides a dynamic interaction space to observe asymmetric strategies. A pur-

suing agent pressures the evader to choose its turns wisely, as a choice of one turn versus the

other could place the evader suddenly at risk, or sweep it away from danger. Evaluating which

18



decisions lead to better outcomes allows us to understand how asymmetric turning can be uti-

lized by an agent, and reveal the strengths and weaknesses of the scheme. We focus specifically

on adversarial, pursuit-evasion games for this reason. However, we can glean knowledge about

non-adversarial path planning conditions as well. Our results observe the general path planning

characteristics of different asymmetry settings, the patterns of which are translatable to peaceful

navigation conditions.

To gauge the effectiveness of an agent’s strategy, we record the agent’s wins, losses, and draws

over a series of games under the same conditions. These game outcomes are then analyzed to

determine which agent demonstrated a statistically significant advantage for a given asymmetric

condition. The pursuit-evasion game variant used in this research employs a specific goal point for

the evader so that we can measure both the evader and pursuer’s success.

Space parameters include agent velocity, starting position, and planning time. To focus specif-

ically on asymmetric turning effects, velocity and planning time are held constant throughout all

experiments. Starting positions are varied intentionally in some experiments to explore how the

relative positions between agents influences which strategies are more effective.

We implement the sampling-based pursuit-evasion algorithm posed in [17]. Agents are mod-

eled as Dubins vehicles with asymmetric turning radii. Using the methods explained in [24], we

develop an asymmetric Dubins vehicle state space within which the pursuit-evasion game can op-

erate. Furthermore, we implement special Dubins interval cases outlined in [25] to allow agents to

reach the goal position from any orientation. All games are simulated in software.

19



V. EXPERIMENTAL METHODS

We designed a computer program to simulate sample-based pursuit-evasion games with vari-

able turn symmetry conditions. In addition to providing statistical data for simulated games, such

as agent win rates, the program also outputs animations and illustrations of the game paths taken

by each agent. The software was designed in C++ and run on a Linux machine with Ubuntu 18.04

operating system.

A single pursuit-evasion game is run as follows: input parameters are provided, such as start

position, velocity, and planning time. The pursuer takes the first turn, planning a path to intercept

the evader. During the pursuer planning phase, the pursuer also extends a tree of paths that it

imagines the evader will take. These paths are not necessarily the paths the evader will plan or

execute, but approximations that the pursuer predicts will happen. Once the planning time expires,

the pursuer selects the most optimal path motion to execute.

With both agents still in their starting positions, the evader plans its move. The evader generates

a tree of paths that will move it closer to its goal point. At the same time, the evader generates a

tree of paths it imagines the pursuer will execute. Based off of this believed pursuer tree, the evader

will eliminate nodes from its path that it considers too close to capture, as described in [17]. Once

planning time expires, the evader selects the most optimal path motion to enact.

After both agents have planned, they move to their next positions simultaneously. Goal check-

ing functions evaluate if the pursuer successfully intercepted the evader, or if the evader success-

fully reached the goal position. If neither agent achieved its goal, their positions are established as

their new start states to provide the planner, and the process repeats.

The following sections detail the code architecture used for the pursuit-evasion algorithm and

simulation software. Following that, we present an outline of experimental procedures, detailing

simulation parameters and game scenarios used.

20



5.1 GamePlan Module

The GamePlan module handles input parameters and calls to the planning algorithm. The

module has flexibility for a wide range of game scenario parameters. The input parameters for a

single pursuit-evasion game are:

• Plan Time: amount of time an agent has to plan its next motion.

• Velocity: The speed at which an agent moves. The evader and pursuer velocities are inde-

pendently defined. Each executed motion is considered a single unit of time, so this value is

equivalent to the distance an agent moves each turn.

• Turn Budget: The total amount of turn radius allotted to each agent. This budget is divided

between the right and left turn radii based on the asymmetry split parameter.

• Asymmetry Split: Defines how much of the turn radius budget is given to the right or left

turn radius. This is measured as percentage given to left turn radius. Consider a turn budget

of 10 units. An asymmetry split value of 0.6 indicates that the left turn radius will be 6 units

and the right turn radius will be 4 units. Asymmetry split is defined independently for the

evader and pursuer.

• Goal Bias: Percentage of motion samples for which the goal point is sampled.

• Start Position: Agent start position, provided as a coordinate (x, y, θ), where theta is the

angle of orientation.

• Goal: The stationary goal point that the evader is attempting to reach, provided as a coordi-

nate (x, y).

This module also executes the possible experiment routines, which include:

• run_single_trial: runs a single pursuit-evasion game for a given set of input parameters.

Outputs visualizations of the agent paths.

21



• calculate_asymmetric_influence: All input parameters are defined by the user except asym-

metry split. The program iteratively simulates pursuit-evasion games with a range of differ-

ent asymmetry match ups. Each asymmetry match up is repeated a number of trials, and win

rates for each match up are recorded for analysis. Outputs win rate statistics and visualiza-

tions of agent paths.

Users input the scenario parameters and select the experiment routine they wish to run. After

instantiating the game state space and planner objects, the GamePlan module will simulate the

game scenarios requested, and output experiment data.

5.2 Overview of the Open Motion Planning Library

The Open Motion Planning Library (OMPL) was leveraged as the foundational code base

for the pursuit-evasion planner [28]. OMPL is an open source code base, distributed by Rice

University, that contains code for standard robotics motion planners, including RRT*. The library’s

planners are originally designed to account for only a single agent. Therefore, the first step was to

expand on existing code structures to allow separate object tracking for two robots.

The OMPL Application Programming Interface (API) is illustrated in Figure 5.1. The Game-

Plan module is represented by the user code box. Because each agent has individual turn-symmetries,

this required that each agent have their own defined StateSpace and MotionValidator classes.

These classes, in particular the StateSpace class, define the available motions an agent can im-

plement. The StateSpace class describes all available states that the planner can sample, the dis-

tances between states, and agent properties at each state. The MotionValidator checks that paths

between states do not break kinematic or obstacle constraints. With these individual state spaces, a

SpaceInformation class was instantiated for each agent to manage their individual controls. The

SpaceInformation class is the central hub object processing foundational motion planner routines,

such as the parameters of the state space and validity of agent motion. The class includes essential

functions such as setting the state space type (such as SE2, SE3, or Dubins) and allocating states.

The ProblemDefinition class manages start and goal states, defines what the planner solu-

tion looks like, and monitors if a planner solution has been found. For a pursuit-evasion game,

22



Figure 5.1: Class ownership diagram for the Open Motion Planning Library. Each major class is
described. A→ B means that object B owns object A. Reprinted from [29].

the addition of a second agent constitutes additional definitions of game termination conditions.

Therefore, the ProblemDefinition class was expanded to manage separate evader and pursuer win

conditions. Functions were created to define a pursuer start state, evader start state, pursuer goal

state and evader goal state. Separating out the definition of these states then allowed the Planner

class to feasibly monitor each agent’s starting and win condition independently.

5.3 Planner

The Planner class is where the pursuit-evasion algorithm is implemented. The Planner class

runs the pursuit-evasion game and returns the solution. With RRT* as the basis for planning, we

extended the RRT* planner available in OMPL to include the additional pursuit-evasion functions

described in [17]. The planner algorithm is described in Algorithm 1. This follows closely with the

pseudocode outlined in [17], except that variable names have been adjusted to follow nomenclature

in this discussion, such as the use of the plan_time parameter.

23



Algorithm 1: Planner Algorithm
Ve ← (ze,start);Ee ← 0;
Ve ← (zp,start);Ep ← 0;
while time < plan_time do

Ge ← (Ve, Ee);Gp ← (Vp, Ep);
ze,rand ← Samplee();
(Ve, Ee, ze,new)← Extende(Ge, ze,rand);
if ze,new ̸= NULL then

Zp,near ← NearCapturee(Gp, ze,new, Vp);
for all zp,near ∈ Zp,near do

if time(zp,start, zp,near) ≤ time(ze,new, ze,start)) then
Remove(Ge, ze,new);

zp,rand ← Samplep();
(Vp, Ep, zp,new)← Extendp(Gp, zp,rand);
if zp,new ̸= NULL then

Ze,near ← NearCapturep(Ge, zp,new, Ve);
for all ze,near ∈ Ze,near do

if time(zp,start, zp,new) ≤ time(ze,near, ze,start)) then
Remove(Ge, ze,near);

return Ge, Gp

After trees are generated using Algorithm 1, we determine which path will achieve the goal

motion with the least cost. This is done using Algorithm 2. The bestGoalMotion function takes

as input the agent’s goal position and the tree G, then outputs the leaf node that most closely

achieves the goal. If any of the nodes in the tree are in the goal position, these are saved in the

goalMotionVect vector. These motions are then compared to determine the least cost path option

between them. If there are no nodes that achieve the goal, then approxGoalMotion is returned,

representing the node that is the closest distance to the goal. The program traces the end node back

to the starting position to generate the agent’s optimal path for that turn. The original OMPL code

included a version of this algorithm for RRT* path planning. It was generalized to work for both

the evader and pursuer trees.

Unlike the evader, which is path planning towards a static goal, the pursuer’s goal is dynamic.

Therefore, it is to the pursuer’s advantage to sometimes select a path towards a projected goal point.

If the pursuer always plans towards the evader’s current position, it is handicapped by being one

24



Algorithm 2: bestGoalPath(G, goal_position)
zgoal ← goal_position; goalMotionV ect← ∅;
bestGoalMotion← ∅; bestCost← ∅;
approxGoalMotion← ∅; distanceFromGoal←∞;
approxDist← 0;
for all V ∈ G do

if V = zgoal then
goalMotionV ect← V

if !bestGoalMotion and goalMotionVect ̸= ∅ then
bestGoalMotion = goalMotionV ect.front();
bestCost = bestGoalMotion.cost();

else
for motion ∈ goalMotionV ect do

if motion.cost() < bestCost then
bestGoalMotion = motion;
bestCost = bestGoalMotion.cost();

if goalMotionV ect = ∅ and distanceFromGoal < approxDist then
approxDist = distanceFromGoal;
approxGoalMotion = V ;

if bestGoalMotion then
return bestGoalMotion;

else
return approxGoalMotion;

step behind the evader. To address this, an α parameter is applied to the pursuer’s choice of goal

motion. This operation is illustrated in Algorithm 3. The value for α is generated from a uniform

distribution. Fifty percent of the time, the pursuer will choose to move towards the evader’s current

position. The rest of the time, the pursuer will move towards the evader’s predicted motion.

Algorithm 3: Pursuer Alpha Parameter
α = generateRandomVal();
if α < 0.5 then

GoalMotionpursuer = bestGoalPath(Gp, GoalMotionevader);
else

GoalMotionpursuer = bestGoalPath(Gp, ze,start);

25



Both the pursuer and evader agents run identical copies of the planner object. The tree returned

for the opposing agent is what the planning agent uses as its imagined opponent path. In this way,

both agents plan under the assumption of an optimally strategic opponent.

5.4 Dubins Asymmetric State Space

OMPL includes a standard Dubins State Space that determines motions according to the stan-

dard Dubins vehicle described in [20]. For asymmetric vehicles, this state space required reworking

to allow variable turn radius to the left and right side.

The state space space inherits the foundational attributes and functions of an SE2StateSpace so

that basic concepts like (x, y θ) coordinates and space boundaries are maintained. The Dubins state

space overrides the distance() function to return Dubins distances. When the state space is queried

for the distance between two states, the DubinsStateSpace evaluates the Dubins path options (LSL,

RSR, LSR, RSL, RLR, LRL), and returns the shortest path distance of the six possibilities. Addi-

tionally, the nature of pursuit-evasion games necessitates that the goal point be approached from

any angle. Overly limiting the goal orientation severely handicaps an agent’s ability to path plan

towards the goal in the dynamic environment. Therefore, if the end point of a given path is equal to

the goal, we return the shortest path to the Dubins interval cases [25], with the arrival orientation

interval set to 360 degrees. The Dubins distance operations are illustrated in Algorithm 4. If the

final path state zend is equivalent to the goal state, then we test the interval Dubins path options in

addition to the standard options to determine the shortest path.

5.5 Path Visualization

Paths were visualized using Python’s matplotlib library [30]. The pursuit-evasion game al-

gorithm outputs ascii text files containing each sampled motion in a path, as well as interpolated

points between the sampled motions to visualize Dubins curves. The NumPy library was used to

sort, analyze, and manage data for plotting [31]. We analyzed both animations and static visual-

izations of the complete paths taken by the pursuer and evader agents for select games.

26



Algorithm 4: DubinsDistance
tmp← ∅; path← ∅;
pathSet← [RSR,LSL,LSR,RSL,RLR,LRL];
len,minlength←∞ ;
for path ∈ pathSet do

tmp← path;
len← tmp.length();
if len < minLength then

minLength = len;
path = tmp;

if zend = goal then
pathSet← [LR,RL,RS, LS];
for path ∈ pathSet do

tmp← path;
len← tmp.length();
if len < minLength then

minLength = len;
path = tmp;

5.6 Experimental Procedure

We executed the pursuit-evasion game algorithm across a range of agent asymmetry settings

and examined how performance was affected. The main metric of performance improvement used

was game win rate, which is the proportion of games won by a particular agent for a given pa-

rameter input set. Win rate results were modeled as Bernoulli distribution samples for statistical

analysis.

In our first experiment, we examined the scope of asymmetry permutations. In this experiment,

the simulation was run with a discrete series of asymmetry_split value pairs, 0.1 to 0.9. For a given

simulation, each agent was assigned an asymmetry_split value, and the simulation run 250 times.

Every combination of asymmetry_split value pair was tested in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9}. Win rates for evader and pursuer were recorded for each permutation, and plotted

in a 3D bar graph to examine trends. Visualizations of select games were also generated from

this experiment to examine qualitative characteristics about executed paths. With the exception of

27



asymmetry_split, all other game parameters were held constant during these trials. The following

game parameters were used:

• Plan Time: 0.01 seconds

• Velocity, Evader: 40 distance units

• Velocity, Pursuer: 40 distance units

• Turn Budget: 30 distance units

• Goal bias: 10%

• Space Dimensions: 200 distance units × 200 distance units

Next, we studied how agent start orientation influences the asymmetry strategy. In the first

trial, the evader was positioned to the left of the pursuer at the start of the game. In the second

trial, the evader was positioned to the right of the pursuer at the start of the game. In the third trial,

the two agents faced each other directly. Figure 5.2 illustrates these game setups. Games were run

1000 times per asymmetry permutation. We compared results from both trials to examine if the

most effective asymmetry strategy shifted based on relative agent position.

28



100 50 0 50 100
100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Pursuer
100 50 0 50 100

100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Pursuer

100 50 0 50 100
100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Pursuer

Figure 5.2: Experiment starting positions.

29



VI. RESULTS

In this chapter, we present data and experimental results that show the following:

1. The introduction of asymmetric turning has an affect on pursuit-evasion game outcome.

2. The pursuer gains the most advantage when given asymmetric turning, whereas the evader

has minimal performance improvement.

3. Variability in scenario starting positions affect which asymmetric turning conditions are most

advantageous to the agents.

6.1 The Influence of Asymmetry

We begin by considering the game illustrated in Figure 6.1. Pursuit-evasion games with sym-

metrical turning for both agents are illustrated in Figure 6.2. All figures shown were generated

using our pursuit-evasion game algorithm. This game setup models an evading aircraft crossing a

channel, with a pursuing aircraft attempting to intercept the evader perpendicularly. We use this

particular game scenario as our benchmark scenario for analysis. This is a valuable game setup for

comparison for a few reasons. Firstly, it is modeled after a real life pursuit-evasion scenario: that

of a plane avoiding an intercepting craft. For instance, a plane crossing the English channel from

a base in Paris to a base in London, while avoiding an oncoming missile from the German bor-

der, would have a similar geometric setup. Secondly, the pursuer and evader begin on either side

of one another. Later demonstrations will illustrate how different starting sides influence trends.

Lastly, this particular scenario has the goal and start positions sufficiently spread out so as to easily

visualize path characteristics.

In all figures, blue represents the evader, red represents the pursuer, and the star is the evader’s

goal point. Triangles indicate the agent’s start and end positions. Numbered positions indicate the

sampled motions over time. For instance, both agents begin at their respective position 0. After

30



each has the opportunity to plan their next move, they synchronously move to their respective

position 1, and so on.

100 50 0 50 100
100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Pursuer

Figure 6.1: Game setup with evader on left side of the pursuer.

31



100 50 0 50 100
100

75

50

25

0

25

50

75

100

0

1

2

3

4

5

6

7 0

1

2

3

4

5

6

7

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

1

2

3

4

5

6
7

8
9

10 11

12
13

14

1516

17
18 0

1

2

34

5

6

7

8

9

1011

12
13

14

1516
17

18

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

1

2

34

5

6

7

8

9

1011 0

1

2

3

4

5
6

7

8

9

10

11

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(a) Symmetric pursuit-evasion game with evader win.

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0

12

3

45

0

1

2

3

4
5

6

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

1

2

3

4

01

23

4
5

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

12

3

0

1

2

3

4

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(b) Symmetric pursuit-evasion game with pursuer win.

Figure 6.2: Pursuit-evasion games with symmetric agents.

32



Next, we introduce asymmetric turning into the game. Figures 6.3 and 6.4 illustrate how win

rates for each agent differ across the complete range of turn symmetries. Evader and pursuer

turn symmetry values, notated along the x and y axes, are written as the percent change from

symmetrical turning. The transformation from right turn radius to turn symmetry value is

TurnSymmetry = (rright − rsym)/rsym × 100, (6.1)

where rright is the right turn radius and rsym is the radius value at which the turn budget is split

symmetrically between right and left turns. Similarly, the transformation from left turn radius to

turn symmetry value is

TurnSymmetry = (rsym − rleft)/rsym × 100, (6.2)

where rleft is the left turn radius. Both equation 6.1 and 6.2 are equivalent. A clear interpretation

is this: positive turn symmetry values indicate more turn radius provided to the right side (broader

right turn, sharper left turn), and negative turn symmetry values indicate more turn radius provided

to the left side (broader left turn, sharper right turn). Agents have equivalent left and right turn

radii when turn symmetry value is 0.0.

Upon observing Figures 6.3 and 6.4, notice that the surfaces are not flat. If the surfaces demon-

strated negligible change along the z-axis, that would suggest that asymmetric turning has neg-

ligible influence on agent performance. The convex shape of Figure 6.3 and concave shape of

Figure 6.4 demonstrate that asymmetry does in fact influence performance. This establishes our

first claim: the introduction of asymmetric turning has an effect on pursuit-evasion game outcome.

33



Pursuer Turn Symmetry (%)

80.0 60.0 40.0
20.0

0.0
-20.0

-40.0
-60.0

-80.0 Ev
ad

er 
Tu

rn 
Sy

mmetr
y (

%)

80.0
60.0

40.0
20.0

0.0
-20.0

-40.0
-60.0

-80.0

W
in

 R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Evader Win Rates

Figure 6.3: Evader win rates across all turn permutations. Left turns become sharper (right turns
become broader) as turn symmetry values become more positive. Right turns become sharper (left
turns become broader) as symmetry values become more negative. Turn radii are symmetrical at
0.0%.

34



Pursuer Turn Symmetry (%)

80.0 60.0 40.0
20.0

0.0
-20.0

-40.0
-60.0

-80.0 Ev
ad

er 
Tu

rn 
Sy

mmetr
y (

%)

80.0
60.0

40.0
20.0

0.0
-20.0

-40.0
-60.0

-80.0

W
in

 R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

Pursuer Win Rates

Figure 6.4: Pursuer win rates across all turn permutations. Left turns become sharper (right turns
become broader) as turn symmetry values become more positive. Right turns become sharper (left
turns become broader) as symmetry values become more negative. Turn radii are symmetrical at
0.0

35



Next, we notice that as we move across the pursuer turn symmetry axis of Figure 6.4, pursuer

win rates are higher on the outer edges of the surface and lower in the middle, indicating that as

pursuer asymmetry increases, pursuer win rates increase. Moving across the evader turn symmetry

axis, we do not see the same trend. Rather, for a given pursuer turn symmetry, the evader’s win

rates are relatively unchanged, regardless of evader turn symmetry.

Figure 6.5a illustrates the center cross section of Figures 6.3 and 6.4, in which a range of

evader turn symmetry conditions is illustrated for a symmetric pursuer. Evader win rates range

from 0.653± .015 to 0.733± .014, for a total spread of 0.08± .02.

Figure 6.5b is the perpendicular cross section to Figure 6.5a, in which a range of pursuer turn

symmetry settings is presented for a symmetric evader. This illustrates that the pursuer’s advantage

increases as it become more asymmetrical on either side. Pursuer win rates range 0.280± 0.014 to

0.539± 0.016, for a total spread of 0.259± .021. The difference in pursuer win rates across Figure

6.5b is larger than the difference in evader win rates across Figure 6.5a. This evidence supports the

second claim: the pursuer gains more advantage with asymmetry than the evader.

36



80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Evader Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pe

rc
en

ta
ge

 o
f w

in
s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Pursuer (+0.0%)

Pursuer Win
Evader Win
Draw

(a) Agent win rates for asymmetric evader against symmetric pursuer.

80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Pursuer Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f w
in

s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Evader (+0.0%)

Pursuer Win
Evader Win
Draw

(b) Agent win rates for asymmetric pursuer against symmetric evader.

Figure 6.5: Asymmetric agent win rates against symmetric opponents.

37



Examining how paths adapt as asymmetry is introduced further illuminates these trends. Figure

6.6a illustrates games in which the pursuer turn symmetry is 80%, which indicates a sharp left turn

and broad right turn ability. The pursuer shows exceptional favoritism for left turns over right

turns, occasionally going so far as to choose +180◦ loops to the left to avoid the cost of a right

turn. This mirrors behavior reported by Sopwith Camel pilots [8].

We see similar behavior in Figures 6.6b, but this time with the pursuer receiving a sharp right

turn. In this scenario, notice the pursuer becomes more effective once the evader moves to the

pursuer’s right hand side. The pursuer maintains costlier left hand turns early in the game, but

becomes more aggressive with right hand turns once the evader transitions to the other half of the

playing field.

Examples with evader asymmetry are shown in Figure 6.7a. The evader demonstrates similar

turn behavior as the pursuer, favoring the sharper turns. A possible reason asymmetry improves the

pursuer so much more than the evader is that the pursuer’s goal is dynamic, whereas the evader’s

goal is static. One characteristic of asymmetry is increased direction change agility. The pursuer

values this agility much more than the evader because the pursuer is more often needing to change

direction. The evader’s trajectory, on the other hand, trends in the same direction the entire game.

38



100 50 0 50 100
100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0
1

2

3

4

5

6
7 0

1

2
3

45

6

7

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(a) Pursuit-evasion game with pursuer symmetry at 80%.

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0

12

3

4
5

0

1

2

34

5

6

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

1

23

4

5

6

7 0

1

2

3
4

5

67

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(b) Pursuit-evasion game with pursuer symmetry at -80%.

Figure 6.6: Pursuit-evasion game with sharply asymmetric pursuer.

39



100 50 0 50 100
100

75

50

25

0

25

50

75

100

0
1

2

3

4

0

1

2

34
5

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

12

3

4
5

6

7

8 0

1

23

4

5

6

7

8

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(a) Pursuit-evasion game with evader symmetry at 80%.

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0
1

2

3

4

0

1

2

34

5

Pursuit Evasion Space

Goal Evader Path Pursuer Path
100 50 0 50 100

100

75

50

25

0

25

50

75

100

0

1

23

4

5

6

7 0

1

2

34

5

6

7

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(b) Pursuit-evasion game with evader symmetry at -80%.

Figure 6.7: Pursuit-evasion game with sharply asymmetric evader.

40



6.2 Agent Relative Positioning Influences Asymmetric Effectiveness

This section will establish our third claim, that variability in scenario starting positions affect

which asymmetric turning conditions are most advantageous to the agents. Consider the game

scenario shown in Figure 6.8. The pursuer begins in the bottom left side of the space, rather than

the top right. This places the pursuer the same relative distance and geometry to the evader and the

evader’s goal, but now the evader is on the right hand side of the pursuer, rather than the left as in

Figure 6.1.

100 50 0 50 100
100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Pursuer

Figure 6.8: Game setup with evader on right side of the pursuer.

Figure 6.9 shows the agent win rates for an asymmetric pursuer against a symmetric evader.

Figure 6.9a are win rates for games in which the evader starts on the right hand side of the pursuer

(game setup as illustrated in Figure 6.8). Figure 6.9b are win rates for games in which the evader

is on the left hand side of the pursuer (game setup as illustrated in Figure 6.1). Notice that the

trends of these two graphs mirror each other. When the evader is on the right hand side of the

pursuer, the pursuer win rates for games with sharp left/broad right turns are larger than pursuer

41



win rates for games with sharp right/broad left turns. The inverse is true when the evader is on

the left hand side of the pursuer: pursuer win rates for games with sharp right/broad left turns

are larger than pursuer win rates for games with sharp left/broad right turns. We conclude from

this that the pursuer demonstrates a statistically significant improvement in performance when it is

given a broader turn in the direction of the evader’s relative start position.

80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Pursuer Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f w
in

s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Evader (+0.0%)

Pursuer Win
Evader Win
Draw

(a) Evader starting on right side of pursuer.

80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Pursuer Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f w
in

s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Evader (+0.0%)

Pursuer Win
Evader Win
Draw

(b) Evader starting on left side of pursuer.

Figure 6.9: Agent win rates for asymmetric pursuer against symmetric evader, left versus right
starting position.

42



Figure 6.10 shows the evader’s comparative trends against a symmetric pursuer. Though more

subtle than Figure 6.9, a similar phenomenon persists. Consider Figure 6.10b. Observing only

the win rates with positive evader turn symmetry values (the left half of the chart, including the

center), the values range from 0.653 ± .015 to 0.680 ± .015, and are therefore equivalent within

uncertainty. The games with negative evader turn symmetry (the right half of the chart) begin to

show a statistically significant improvement in the evader’s performance. The evader demonstrates

a statistically significant advantage with a sharp right/broad left turn symmetry when positioned

to the left of the pursuer. Figure 6.10a demonstrates the inverse. Evader win rates range from

0.682 ± .015 to 0.732 ± .014, for a total spread of .05 ± .021. Now, however, the evader has

a statistically significant advantage with positive turn symmetry (sharp left, broad right) when

starting on the right side of the pursuer. We can conclude, therefore, that the evader demonstrates

a slight improvement in performance when given a sharper turn in the direction of the pursuer’s

relative start position.

43



80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Evader Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f w
in

s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Pursuer (+0.0%)

Pursuer Win
Evader Win
Draw

(a) Evader starting on right side of pursuer.

80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Evader Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f w
in

s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Pursuer (+0.0%)

Pursuer Win
Evader Win
Draw

(b) Evader starting on left side of pursuer.

Figure 6.10: Agent win rates for asymmetric evader against symmetric pursuer, left versus right
starting position.

44



These trends level out when the evader and pursuer are positioned directly in front of each

other. Figure 6.11 illustrates a game setup in which the pursuer is directly between the evader and

the goal. The pursuer is the same distance away from the evader as in the previous game examples.

Figure 6.12 shows the pursuer and evader win rates. Neither the left nor right half of the graphs

shown in Figure 6.12 yield more of an agent advantage compared to the other.

100 50 0 50 100
100

75

50

25

0

25

50

75

100
Pursuit Evasion Space

Goal Evader Pursuer

Figure 6.11: Game setup with pursuer and evader directly in front of each other.

45



80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Evader Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pe

rc
en

ta
ge

 o
f w

in
s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Pursuer (+0.0%)

Pursuer Win
Evader Win
Draw

(a) Agent win rates for asymmetric evader against symmetric pursuer.

80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -80.0
Pursuer Turn Symmetry (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f w
in

s

Sharp Left, Broad Right Sharp Right, Broad Left

Win Ratios with Symmetric Evader (+0.0%)

Pursuer Win
Evader Win
Draw

(b) Agent win rates for asymmetric pursuer against symmetric evader.

Figure 6.12: Agent win rates for pursuer directly in front of goal.

46



This is a particularly interesting trend. The evader is able to most effectively utilize its sharp

turn side to outmaneuver the pursuer from its starting position. Consider that if the evader begins

on the right side of the pursuer, the pursuer’s trajectory will trend more to the right. The evader’s

sharp turns to the left allow it to zip around the pursuer’s right turn arcs most effectively, and vice

versa for when the evader begins on the left side. This phenomena is similar to Fokker Dr I pilots

utilizing right turns in evasive maneuvers to escape the slower right turns of the Sopwith Camel

[1].

Now consider the pursuer’s perspective. One could imagine that it would be more advantageous

to have the sharper turn towards the evader’s start position. With the sharper turn towards the

evader, the pursuer could more quickly angle itself in the evader’s direction for a straight path

to interception. Rather, the opposite is true. A broader turn in the direction of the evader’s start

position is more favorable. To explain this, consider Figure 6.13, which illustrates a pursuit-evasion

game from both presented starting positions. It is to the pursuer’s advantage to head to the middle

of the arena and cut the evader off there. If the pursuer begins heading directly to the evader’s

starting position from the get-go, the evader will already be well across the field by the time the

pursuer gets near evader’s position 0. By utilizing its broader turn at the start, the pursuer gently

slopes towards the evader, and maintains its trajectory towards where the evader is going to be,

rather than where it is. Once the evader crosses mid-field, the pursuer’s sharper turn now comes

into play. The pursuer can quickly shift directions using the sharper turn direction to capture the

evader, as demonstrated in turns 3 through 6 of Figure 6.13b and turns 3 through 5 of 6.13a. This

insight demonstrates how both the broad and sharp turning direction can be effectively utilized,

and thus illustrating the value of the asymmetric strategy. The broad turn direction is helpful for

the pursuer to gradually approach its target from a distance, and the sharp turn direction enables

the pursuer to swiftly strike from a close range.

47



100 50 0 50 100
100

75

50

25

0

25

50

75

100

0
1

2
3

4

0

1

2

3
4

5

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(a) Pursuer with -40% turn (sharp right, broad left), against symmetric evader.

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0

1

23
4

5

6

0

1

2
3

45
6

7

Pursuit Evasion Space

Goal Evader Path Pursuer Path

(b) Pursuer with 40% turn (sharp left, broad right), against symmetric evader.

Figure 6.13: Pursuer advantage against different evader start positions.

48



VII. CONCLUSION

Asymmetry has a non-negligible influence on agent performance. The degree of influence,

however, depends on whether we consider the pursuer or evader, as well as spatial configurations.

The pursuer most effectively capitalizes on asymmetric turning because its trajectory is more dy-

namic compared to the evader’s. The pursuer’s goal point is constantly changing over the course

of the game, which understandably handicaps the pursuer. Pursuer win rates when both agents

were symmetric tended to be only around 30 to 40%. Asymmetry offered the pursuer a consider-

ably more strategic set of motions, such that pursuer win rates improved to upwards of 50% when

asymmetric turning was at an extreme. We can learn from this that asymmetric turning is a valu-

able compensation for destination uncertainty. Both the broad and sharp turn are utilized to the

pursuer’s advantage at different moments in the game. It is this diversity of motion options which

makes asymmetric turning valuable when the destination is uncertain. The diversity of an agent’s

motion options is increased as asymmetry increases, giving the agent more tools to creatively plan

towards its path objective. Asymmetric turning should be considered for agents with dynamic

environments because it allows more diverse maneuverability.

When path planning towards a static goal, this diversity of motion is less useful, as demon-

strated by the evader’s consistent win rates, regardless of turn symmetry. Agents that are moving

relatively predictable, routine paths are not aided by asymmetry. A vehicle path planning to a des-

tination via highway, for instance, does not have much to gain from asymmetric turning, because

its turning capabilities are already established to handle its task, and there is little chance the ve-

hicle will face disruption from its current path. However, it is also valuable insight to realize that

asymmetric turning did not ever handicap the evader. It’s performance was consistent, regardless

of the turn symmetry. Perhaps, then, it is useful to consider asymmetric turning as a feature for

systems more generally, regardless of the dynamism of their task. In the event that the agent’s

goal may abruptly change, asymmetry can suddenly become a useful tool. Consider a surveillance

drone that routinely scouts the same area, but then on occasion must quickly change its destination

49



target to a hiding location to avoid being spotted. While the asymmetric turning feature may be

underutilized most of the time, there are moments where it suddenly becomes pivotal.

There are reasonable limitations too. As asymmetry increased, agents were choosing to loop

to their sharper turn side to avoid the cost of their broader turn, sometimes for relatively mundane

actions. A car on an open road may be able to technically path plan across the countryside with

an extremely sharp left turn and broad right turn, but it will often be making 270◦ loops to the left

in order to ultimately change direction to the right. From this insight, we come to understand that

asymmetric turning is limited by the constraints of the space and vehicle. Autonomous cars driving

on the highway are in a highly standardized path planning environment. The road is carefully

engineered with the expectation of a particular vehicle turning radius and speed. Asymmetry may

be an antidote for planning towards an unpredictable destination, but asymmetry itself creates

unpredictable behavior. Asymmetric turning is most effectively utilized in open environments, or

environments where the rules of motion are not strict, such that an agent has the freedom to move

creatively. Open airspace or waters are practical examples.

Future work should explore the scope of uncertainty that asymmetry can overcome. This re-

search discovered that asymmetric turning is an effective tool to compensate for uncertainty to-

wards a changing goal destination. Could it also compensate for other motion uncertainty? Exper-

imentation with different vehicles could also yield interesting insights into the practical principles

of implementing asymmetric turning. Studies with more specific space and vehicle constraints

should be done to guide explicit directions on implementing asymmetric turning into vehicles.

Furthermore, our study focused on asymmetric turning, but consideration for other asymmetric

controls can further our understanding of the value of asymmetry. Experimentation with other

types of pursuit-evasion games is also useful. Games which mimic aircraft dogfights, for instance,

in which agents play as both a pursuer and evader, could reveal further wisdom as to the role of

asymmetry in moment to moment game strategy.

Asymmetry is a valuable path planning tool with an observable effect on performance. In

pursuit-evasion games, asymmetry is an asset to the pursuer, which can leverage asymmetric turn-

50



ing to diversify its path planning strategy, and more effectively intercept the evader. The evader

is neither helped nor handicapped by asymmetric turning because of its comparatively static tra-

jectory. The effects of asymmetry are also influenced by relative agent position within the space.

Pilots of the Sopwith Camel were not wrong to value the aircraft’s asymmetric turning features.

Though the advantages are not immediately obvious, nor quite as expected, they are real and pow-

erful.

51



REFERENCES

[1] J. Guttman, Sopwith Camel. Oxford, UK: Osprey Publishing, October 2012.

[2] H. J. Lee, V. Heim, and A. Meyer, “Genetic and environmental effects on the morphological

asymmetry in the scale eating cichlid fish perissodus micolepis,” Ecology and Evolution,

vol. 5 (19), pp. 4277–4286, August 2015.

[3] J. M. Jodao and R. F. Oliveira, “Sex differences in predator evasion in the fiddler crab,”

Journal of Crustacean Biology, vol. 21 (4), pp. 948–953, April 2001.

[4] R. Allain, How Do Drones Fly? Wired, May 2017. https://www.wired.com/2017/

05/the-physics-of-drones/ (accessed March 09, 2020).

[5] Skybrary, Counter-Rotating Propellers. Flight Safety Foundation, July 2017. https:

//www.skybrary.aero/index.php/Counter-Rotating_Propellers

(accessed March 09, 2020).

[6] R. Jackson, Britain’s Greatest Aircraft. Barnsley, UK: Pen and Sword, September 2007.

[7] S. Takeda and M. Murai, “Asymmetry in male fiddler crabs is related to the basic pattern of

claw waving display,” The Biological Bulletin, vol. 184, pp. 203–208, 1993.

[8] P. Garrison, Calculated Sopwith Camel. Flying Magazine, April 2014. https:

//www.flyingmag.com/pilots-places/pilots-adventures-more/

calculated-sopwith-camel/ (accessed March 3, 2020).

[9] Blohm and Voss Bv 141 Tactical Reconnaissance Aircraft. Military Factory,

June 2019. https://www.militaryfactory.com/aircraft/detail.asp?

aircraft_id=781 (accessed March 03, 2020).

[10] S. M. Lavalle, Planning Algorithms. New York, NY, USA: Cambridge University Press,

2006.

52

https://www.wired.com/2017/05/the-physics-of-drones/
https://www.wired.com/2017/05/the-physics-of-drones/
https://www.skybrary.aero/index.php/Counter-Rotating_Propellers
https://www.skybrary.aero/index.php/Counter-Rotating_Propellers
https://www.flyingmag.com/pilots-places/pilots-adventures-more/calculated-sopwith-camel/
https://www.flyingmag.com/pilots-places/pilots-adventures-more/calculated-sopwith-camel/
https://www.flyingmag.com/pilots-places/pilots-adventures-more/calculated-sopwith-camel/
https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=781
https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=781


[11] S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach. New York, NY, USA:

Pearson, 2015.

[12] S. M. Lavalle, “Rapidly exploring random trees: A new tool for path planning,” Iowa State

Univ. Tech Rep, 1998.

[13] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal motion

planning,” arXiv:1005.0416v1, 2010.

[14] P. J. Nahin, Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton, NJ,

USA: Princeton University Press, July 2012.

[15] N. Noori and V. Isler, “The lion and man game on polyhedral surfaces with obstacles,” The-

oretical Computer Science, vol. 739, pp. 39–58, May 2018.

[16] S. Boparkikar, F. Bullo, and J. Hespanha, “On discrete-time pursuit-evasion games with sens-

ing limitations,” IEEE Transactions on Robotics, vol. 24 (6), December 2008.

[17] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for a class of pursuit-

evasion games,” Algorithmic Foundations of Robotics IX, 2011.

[18] V. Isler, D. Sun, and S. Sastry, “Roadmap based pursuit evasion and collision avoidance,”

Robotics: Science and Systems, 2005.

[19] A. T. Becker and S. Shahroki, Shortest Paths for Dubins Cars. Wolfram, December

2017. demonstrations.wolfram.com/ShortestPathForTheDubinsCar (ac-

cessed March 05, 2020).

[20] L. Dubins, “On curves of minimal length with a constraint on average curvature, and with

prescribed initial and terminal positions and tangents,” American Journal of Mathematics,

vol. 79, pp. 497–516, 1957.

[21] S. Alba, Dubins1. Wikimedia, February 2016. https://commons.wikimedia.org/

wiki/File:Dubins1.svg (accessed May 02, 2020).

53

demonstrations.wolfram.com/ShortestPathForTheDubinsCar
https://commons.wikimedia.org/wiki/File:Dubins1.svg
https://commons.wikimedia.org/wiki/File:Dubins1.svg


[22] S. Alba, Dubins2. Wikimedia, February 2016. https://commons.wikimedia.org/

wiki/File:Dubins2.svg (accessed May 02, 2020).

[23] S. Alba, Dubins3. Wikimedia, February 2016. https://commons.wikimedia.org/

wiki/File:Dubins3.svg (accessed May 02, 2020).

[24] E. Bakolas and P. Tsiotras, “The asymmetric sinistral/dextral markov-dubins problem,” Pro-

ceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009

28th Chinese Control Conference, December 2009.

[25] S. Manyam, S. Rathinam, D. Casbeer, and E. Garcia, “Shortest paths of bounded curvature

for the dubins interval problem,” arXiv:1507.06980v2, August 2015.

[26] J.-D. Boissonat, A. Cerezo, and J. Leblond, “Shortest paths of bounded curvature in the

plane,” Proceedings of the 1992 IEEE International Conference on Robotics and Automation,

May 1992.

[27] Z.-N. Bui, J.-D. Boissonat, P. Soueres, and J.-P. Laumond, “Shortest path synthesis for dubins

non-holonomic robot,” Proceedings of the 1994 IEEE International Conference on Robotics

and Automation, May 1994.

[28] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robotics

and Automation Magazine, vol. 19, pp. 72–82, 2012.

[29] Kavraki Lab, Rice University, Open Motion Planning Library: A Primer, July 2019. http:

//ompl.kavrakilab.org/OMPL_Primer.pdf (accessed May 02, 2020).

[30] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science and Engineer-

ing, vol. 9, pp. 90–95, 2007.

[31] T. E. Oliphant, A Guide to NumPy. USA: Trelgol Publishing, 2006.

54

https://commons.wikimedia.org/wiki/File:Dubins2.svg
https://commons.wikimedia.org/wiki/File:Dubins2.svg
https://commons.wikimedia.org/wiki/File:Dubins3.svg
https://commons.wikimedia.org/wiki/File:Dubins3.svg
http://ompl.kavrakilab.org/OMPL_Primer.pdf
http://ompl.kavrakilab.org/OMPL_Primer.pdf

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	LITERATURE REVIEW
	Asymmetric Designs in Nature and Machines
	Sampling-Based Motion Planning
	Pursuit-Evasion Games
	Dubins Vehicles

	COMPATIBILITY OF DUBINS INTERVAL AND ASYMMETRIC PATH SOLUTIONS
	PROBLEM STATEMENT
	EXPERIMENTAL METHODS
	GamePlan Module
	Overview of the Open Motion Planning Library
	Planner
	Dubins Asymmetric State Space
	Path Visualization
	Experimental Procedure

	RESULTS
	The Influence of Asymmetry
	Agent Relative Positioning Influences Asymmetric Effectiveness

	 CONCLUSION
	REFERENCES

