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ABSTRACT

Monte Carlo REINFORCE is used to design an algorithm to not only find the optimal deep

learning architecture but also the optimal set of features that can maximize the performance of the

said deep learning model. The algorithm is applied to the problem of predicting the onset of severe

sepsis (before 4 hours) and the results are compared with existing severe sepsis literature. Sepsis is

a life-threatening condition caused by the patient body’s extreme response to an infection, causing

tissue damage and multiple organ failures. MIMIC-III dataset, a publicly available medical dataset

is used for all the experiments. Apart from the 6 common vital sign measurements, the dataset also

contains 127 physiological and laboratory features to predict the onset of severe sepsis, mostly

observed in intensive care units (ICUs). Reinforcement learning is used to reduce the number of

features (from 133) without sacrificing peak model performance that uses all 133 features. Among

the discovered deep learning models, the CNN-LSTM model using 110 features achieves the best

performance: an AUC of 0.933 in predicting the onset of severe sepsis.
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H Sampled Hyperparameter Set

H∗ Optimal Hyperparameter Set

val_auc Child Network Validation AUC(ROC)

RA
k Reward by feature controller for kth Child Network

RH
k Reward by hyperparameter controller for kth Child Network

Gt Discounted Reward

b Mean of Rewards

θ Controller Weight Parameters

J(θ) Expected Cumulative Reward

∇θJ(θ) Gradient of Expected Cumulative Reward

ak,t Ouput from the tth Controller LSTM Cell from the kth cycle

sk−1,T State from the last Controller LSTM Cell from the kth cycle

λ Feature Selection Coefficient

| ~A| l1 norm of ~A

NAS Neural Architecture Search

ENAS Efficient Neural Architecture Search

EWS 2.0 Early Warning Systems 2.0

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION AND LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. SEVERE SEPSIS STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction to Severe Sepsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Description of Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Learning Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. DYNAMIC FEATURE SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 General Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Neural Architecture Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Dynamic Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Controller Design Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 NAS Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



3.2.2 Controller A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Controller B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Monte Carlo REINFORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Further Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

APPENDIX A. APPENDIX FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1 Controller A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1.1 Controller Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1.2 Controller Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.1.3 DataSet-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.1.4 DataSet-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 Controller B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2.1 Controller Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2.2 Controller Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2.3 DataSet-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2.4 DataSet-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2.5 DataSet-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.3 Hyperparameter Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.3.1 Hyperparameter Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.3.2 Controller Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.4 CNN-LSTM Child Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.4.1 Feature Selection (Controller A) + Hyperparameter Tuning + Dataset-I . . . . . . 45
A.4.2 Feature Selection (Controller A) + Hyperparameter Tuning + Dataset-II . . . . . 45
A.4.3 Feature Selection (Controller B) + Hyperparameter Tuning + Dataset-I . . . . . . 45
A.4.4 Feature Selection (Controller B) + Hyperparameter Tuning + Dataset-II . . . . . 45
A.4.5 Feature Selection (Controller B) + Hyperparameter Tuning + Dataset-III . . . . 45

APPENDIX B. COMPLETE FEATURE LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.1 Original Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.1.1 DataSet-I (6 features). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.1.2 DataSet-II (14 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.1.3 DataSet-III (133 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.2 Controller A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2.1 DataSet-I (4 / 6 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2.2 DataSet-II (9 / 14 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.3 Controller B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



B.3.1 DataSet-I (4 / 6 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.3.2 DataSet-II (9 / 14 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.3.3 DataSet-III (110 / 133 features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



LIST OF FIGURES

FIGURE Page

2.1 The CNN-LSTM model. The numbers next to each layer indicate the shape of its
output tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Neural Architecture Search using Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 A simplified model of NAS [1] controller sampling a child network architecture.
Each lstm cell outputs the parameters of a single layer building the neural network
layer by layer sequentially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Dynamic Feature Selection cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Hyperparameter Tuning cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 An example of feature vector ~A sampled by the feature controller (on the left), ~A
is a binary vector 1 indicates the particular feature is selected and 0 indicates the
particular feature is removed. An example of H hyperparameter sampled by the
hyperparameter controller (on the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Controller Design A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Controller Design B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.1 Controller ’A’ design for 6 features. The design is similar for 14 features. . . . . . . . . . . . . 37

A.2 Reward plot for Dynamic Feature Selection using Dataset-I (4/6 features) for Con-
troller A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.3 Reward plot for Hyperparameter Selection using Dataset-I (4/6 features). . . . . . . . . . . . . 38

A.4 Reward plot for Dynamic Feature Selection using Dataset-II (9/14 features) for
Controller A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.5 Reward plot for Hyperparameter Selection using Dataset-II (9/14 features). . . . . . . . . . . 39

A.6 Controller ’B’ design for 6 features. The design is similar for 14 and 133 features. . . 40

A.7 Reward plot for Dynamic Feature Selection using Dataset-I (4/6 features) for Con-
troller B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.8 Reward plot for Hyperparameter Selection using Dataset-I (4/6 features). . . . . . . . . . . . . 41

x



A.9 Reward plot for Dynamic Feature Selection using Dataset-I (9/14 features) for
Controller B.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.10 Reward plot for Hyperparameter Selection using Dataset-I (9/14 features). . . . . . . . . . . . 42

A.11 Reward plot for Dynamic Feature Selection using Dataset-I (110/133 features) for
Controller B.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.12 Reward plot for Hyperparameter Selection using Dataset-I (110/133 features). . . . . . . . 43

A.13 Hyperparameter Controller Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



LIST OF TABLES

TABLE Page

2.1 Demographic features in the studied cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Performance comparison of different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Some prediction performance on severe sepsis reported in the literature . . . . . . . . . . . . . . 12

2.4 Results based on Demographics evaluated on our 20% reserved test data (491 sam-
ples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Sepsis data input feature dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Controller A & B Results for Dataset-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Controller A & B Results for Dataset-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Controller A & B Results for Dataset-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Features vs performance on Severe Sepsis reported in the literature . . . . . . . . . . . . . . . . . . . 28

3.6 Features selected ( ~A∗) by Controller A and B. See the Appendix for more details
on features selected by each controller for the given dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xii



1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

In the past few years, we saw many advancements in the field of AutoML and Neural Architec-

tural Search (NAS) that can dynamically design deep neural networks without human intervention.

In this thesis, we propse to build a reinforcement model that can dynamically choose the optimal

feature space for the deep learning network. There are numerous instances where biomedical and

financial models involve a large feature space and its often the case that not all these features are

required by the model itself. Removing these less important features can save valuable time and

resources in building and maintaining these deep learning models. Take for example in hospitals,

for detecting or diagnosing a disease numerous patient vitals may be collected over time, if we

can identify the the right subset of features we can reduce the cost and time required to come to a

conclusion on the patient’s condition.

Our motivation for dynamic feature selection comes from our research on severe sepsis predic-

tion, a well known medical problem. Severe Sepsis is estimated to affect about 750,000 people and

causes about 200,000 deaths in the United States alone every year. The abundance of electronic

health records (EHR) makes it possible to predict severe sepsis in patients based on real-world

evidence when appropriate machine learning models are developed. But its not yet established the

optimal set of features required to make a good severe sepsis prediction in patients. In this paper,

we aim to develop a reinforcement framework to reduce the features required by severe sepsis

models by identifying the best subset from the possible feature space. Collecting fewer patient

vitals (medical features) increases the chances of early accurate diagnoses, as our sepsis prediction

model will require fewer features to perform well.

1.2 Literature Review

Feature selection is a crucial preprocessing step in traditional machine learning. It involves the

process of selecting a subset of most relevant or important features in order to reduce the dimension
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of data. Additionally, it also provides a means to understand the data better and improve model

performance at the same time. The art of feature selection is mostly tied to domain knowledge, it

is imperative that the person building the machine learning model has in-depth knowledge of the

problem domain. However, researchers have come up with solutions for feature selection because

having such constraints will limit the use of machine learning as a statistical tool. Historically,

feature selection has been performed using filters, wrappers, and embedded approaches [2]. A

common method to measure feature importance is through the random forest model in [3] using

random forest permutation importance. [4] studied in detail how features affect model accuracies

by proposing a permutation-based model-free version of feature importance called model reliance.

Researchers in [5] leveraged a variety of random forest to select the optimal subset of features

that minimizes cost, where each feature is assigned an acquisition cost. [6] used Bayesian mul-

tiple instance learning algorithms to automatically choose relevant features from a larger feature

pool. In [7], the authors have used reinforcement learning for selecting the best features. They

have modeled this as a Markov Decision Process (MDP) problem where the states are all possible

subsets of the features, actions are adding new features to the states, and the reward is the increase

or decrease in model accuracy after training using the selected features. The value of the states are

learned using a temporal difference approach and the best actions are determined using a criterion

called Average of Rewards (AOR). The performance is not only better than other feature selection

algorithms, but it was recorded that this method has a faster execution time. In another paper [8],

the authors use imitation learning for dynamic feature selection to achieve high accuracy using

fewer features. They use the complete feature set to train a model and then use fewer features on

the test set to achieve similar generalization accuracy given each feature acquisition comes with a

cost.

In the past, feature engineering used to take at most precedence when it comes to building ma-

chine learning models but recent advancements in neural networks have completely changed that

process. Neural Networks are considered universal approximators and that makes them excellent

feature extractors. This desirable property in neural networks has made researchers focus more on
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designing these networks for a specific task. Now building complex neural networks have always

been a challenging engineering problem that involves long hours of network design and hyper-

parameter tuning. But in recent years, researchers have found success in automating the process

of network architecture design. The success of neural architecture search meant that researchers

were now able to automatically generate networks that convincingly outperform human-designed

networks. Successful attempts from [1, 9, 10] paved the way for research in automating neural

network design. They modeled Neural Architecture Search (NAS) as a search problem to dis-

cover state-of-the-art networks (for CIFAR-10 and ImageNet) using reinforcement learning and

evolutionary algorithms. Bayesian Optimization is generally used for model selection for hyper-

parameter tuning but in [11], a Gaussian process-based Bayesian Optimization framework was

developed for NAS. [12] proposed a new method to efficiently learn the structure of convolutional

neural networks using sequential model-based optimization (SMBO) strategy. However, the above-

mentioned research attempts often required large computing resources and infrastructure that made

NAS inaccessible to an average researcher. More recent efforts were put into making NAS more

efficient in terms of reducing the number of model evaluations thereby decreasing the total memory

and compute time. One such attempt is by sharing parameters across evaluated models from the

search space as described in [13, 14]. Most of the above described are limited to macro or chain-

structured architecture search (single chained neural network layers). Progress has been made in

not only in the field of macro search but also micro search where a NAS is performed at the cell

level (eg: Gated Recurrents Units, Long short-term memory cells) and then further optimization

is done on a macro level as described in [15]. NAS is usually considered to be a search space

problems on a discrete domain until more recently where optimization is done through gradient

descent without reinforcement learning as proposed in [16].

We discuss NAS here because our work shares elements similar to the ones discussed above. In

this thesis, we are going to treat feature selection as a reinforcement learning problem taking cues

from NAS and applying this to the task of optimal feature selection for severe sepsis prediction.
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1.3 Thesis Overview

This thesis is organized into 2 main chapters: In Chapter 2 we discuss severe sepsis causes,

past work done on severs sepsis, the data set used for this work (MIMICS-III) and finally, present

our insights involved in designing an efficient deep learning model for severe sepsis prediction. In

Chapter 3 we address the problem of large feature space used for severe sepsis prediction, we shall

discuss the working components of neural architecture search and reinforcement learning, develop

an automated learning framework for feature selection and share its results. Chapter 4 concludes

the thesis and proposes recommendations for future work.
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2. SEVERE SEPSIS STUDY

Sepsis is a life threatening condition caused due to the over reaction of the immune system

to an infection. This causes inflammation through out the body leading to increased heart rate,

high body temperature and fever. Severe sepsis starts when the patient experiences organ failures

coupled with fever and delirium (disturbed mental state). When severe sepsis is left untreated for an

extended period of time, the patient goes into a septic shock that affects the cardiovascular system

possibly leading to death. The goal is to develop a deep learning model that can predict the onset

of severe sepsis before a 4 hour period. Taking proactive measures before a 4 hour period avoids

life threatening complications and aids speedy recovery. This chapter is dedicated to building a

deep learning model for severe sepsis prediction using the openly available MIMIC-III dataset.

2.1 Introduction to Severe Sepsis

Severe Sepsis (sepsis associated with at least one new organ dysfunction) is estimated to affect

about 750,000 people and causes about 200,000 deaths in the United States alone every year. Over

the past few decades, with better understanding of pathophysiology, many changes have been made

to the definition of sepsis. Earlier, the conditions for sepsis is recognized by 2 or more of systemic

inflammatory response syndrome (SIRS) criteria, namely tachycardia (heart rate > 90 beats/min),

tachypnea (respiratory rate> 20 breaths/min), fever or hypothermia (temperature> 38 or< 36 C),

and leukocytosis or leukopenia (white blood cells > 1,200/mm3, < 4,000/mm3 or bandemia ≥ 10

%) [17]. But there are certain limitations to SIRS guidelines. For example, a pregnant woman or a

healthy human being after an intense cardio activity could satisfy more than 2 SIRS criteria [18].

Due to failures of sepsis-1 [19], The International Consensus Conference (2001) introduced sepsis-

2 with additional diagnostic standards. Under sepsis-2, a patient needs to meet at least 2 SIRS

criteria with suspected infection to be classified as sepsis patient. Later on, a new definition under

sepsis-3 in 2016 was formed, which define sepsis as a life-threatening organ dysfunction caused by

dysregulated host response to infection [20]. Sepsis-3 adopted the quick Sequential Organ Failure
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Assessment (qSOFA) [20] and SOFA due its ease of calculation and high specificity as its scoring

system over the SIRS criteria. There are controversial discussions regarding the applicability of

sepsis-2 and sepsis-3, but recent studies show sepsis-3 has higher specificity [21]. Several other

scoring systems were also introduced to address the issue of early sepsis identification, e.g., the

Modified Early Warning Score (MEWS) [22] and National Early Warning Score (NEWS) [23].

The abundance of electronic health records (EHR) makes it possible to further push the sensi-

tivity and specificity based on real-world evidence when appropriate machine learning models are

developed. In this chapter, we explore various machine learning and deep learning models that can

convincingly outperform conventional sepsis scoring systems. The main area of focus is to predict

the onset of severe sepsis, since its associated mortality rates are very high (between 20%-30%

[24]). As severe sepsis cases are mostly observed in ICU [25], early identification of severe sepsis

in patients can dramatically reduce the chances of going into septic shock, hence increasing the

odds of survival and recovery.

There have been a number of works studying the predictions of sepsis onsets. The standard

techniques involve the practice of continuously sampling data from electronic health records of

the patient to generate early warning scores for prediction of sepsis and sepsis shock. The most

common scoring systems include SIRS, SOFA [26], qSOFA [20], MEWS [27], NEWS [28], etc.

However, these scores are considered to give more insights into the deteriorating condition of

the patient and cannot be used directly for sepsis diagnosis. Various machine learning and deep

learning techniques have been used, including SVM[29], HMM[30], gradient boosted trees[31],

DNN [32] and LSTMs [33], which achieve AUCs between 0.8 and 0.92 for sepsis and septic shock

predictions. Note that the existing results focus mainly on general sepsis/septic shock, instead of

severe sepsis.

This work focuses on predicting the onset of severe sepsis before a 4-hr period. We present a

new deep learning model based on CNN-LSTM, and compare it to machine learning techniques

including Adaboost, Xgboost, Random Forests and multiple deep learning models. Beside 6 com-

mon vital sign measurements, our model also uses 127 physiological and laboratory features to-
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gether with demographic information to predict the onset of severe sepsis. The features are mostly

observed in intensive care units (ICUs), which match the cohort of this study: the MIMIC-III

dataset for patients admitted in ICUs. Among the compared techniques, the deep learning model

we present achieved the best performance: an AUC of 0.936 with a 95% confidence interval be-

tween 0.931 and 0.941.

2.2 Description of Dataset

The dataset used for sepsis prediction is constructed from the publicly available MIMIC-III

database that comprises of health records linked to approximately 40,000 patients admitted to the

intensive care units of the Beth Israel Deaconess Medical Center (BIDMS, Boston, MA) between

the years 2001 and 2012. The MIMIC-III database comprises of clinical patient data such as vital

sign measurements, demographics, lab test results, doctors notes and bedside medical reports.

Individual patient’s consent was waived by the Institutional Review Boards of BIDMS and the

Massachusetts Institute of Technology (MIT) because the data records in MIMIC-III is anonymized

to comply with the Health Insurance Portability and Accountability Act (HIPAA) standards [34].

In this thesis, we chose to use patient’s demographics, vital signs, laboratory test, and physiological

measurements from MIMIC-III dataset.

2.2.1 Data Extraction

Patients identified with severe sepsis ICD-9 code 995.92 were selected for the study, and the

onset time was defined by the time when the patient’s SIRS≥ 2 and at least one organ dysfunction

symptoms occurred at the same time, signs for which are discussed below:

• Urine output <0.5 mL/kg, over 2 hours, prior to organ dysfunction after fluid resuscitation

• Creatinine > 2 mg/dL without renal insufficiency or chronic dialysis

• Bilirubin > 2 mg/dL without having liver disease or cirrhosis

• Platelet count < 100 000 µL

• International normalised ratio > 1.5
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Table 2.1: Demographic features in the studied cohort

Demographic Characteristics Attributes Count
Gender FEMALE 1425 (58.0%)

MALE 1028 (42.0%)
Age 16.91 - 30.67 139 (5.67%)

30.67 - 44.33 241 (9.82%)
44.33 - 58.00 463 (18.87%)
58.00 - 71.67 654 (26.66%)
71.67 - 85.33 657 (26.78%)
85.33 - 99.00 299 (12.19%)

Ethnicity ASIAN 57 (2.32%)
BLACK 205 (8.35%)
HISPANIC 75 (3.05%)
WHITE 1803 (73.5%)
OTHER 313 (21.7%)

• Arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2)< 200 in addition to pneu-

monia, or <2 50 with acute kidney injury but without pneumonia.

Based on the above conditions, we selected 432 severe sepsis patients (the cases) and randomly

selected another 2021 patients without any sepsis ICD-9 code (the controls)

2.2.2 Data Preprocessing

The features are based on the studies in [35]. After removing the features with insufficient

data, the final 3 datasets contains ’n’ (n ∈ {6, 14, 133}) variables per patient shown in Table 3.1,

each of which is preprocessed as: vital sign measurement channels 5 hours, 6 hours and 7 hours,

respectively, prior to onset; the difference in values between the current hour and the prior hour;

and the difference in values between the prior hour and the hour before it. Those five values for

each vital sign are concatenated into a causal feature vector x (with 5 values from each of the ’n’

measurement channels). Hence each of the patient record contains (’n’ vital measurements) × (5

features) = (’n’ x 5 non-sequential features) corresponding to a single patient. The label for the

vector is the sepsis onset label ∈ {0,1}.

Due to the sparse nature of the dataset, Min-Max scaling is used to normalize the features. All
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the models are trained with 80% and 20% train-test split respectively. For sequential models (e.g.,

LSTM, CNN-LSTM, etc.), each patient record is converted to a timesteps × feature matrix. This

is done by removing the hourly differences and then reshaping the corresponding row into a 3 ×

’n’ (timesteps × feature) matrix.

2.3 Learning Method

After the initial data extraction from the MIMIC-III database, the number of data samples

are reduced drastically. Deep learning models are generally data hungry. So to make sure the

performance estimate is less biased, k-fold validation was used to reduce variance by averaging

over k different folds. All the models are trained with 5-fold stratified cross-validation. After

cross-validation the model is again trained using the complete training set and evaluated on the

25% test split. All models are trained with early stopping criteria on validation loss, even in the

cross-validation process. Both average validation accuracy and average validation ROC curve

(AUC) were calculated during training and validation; however importance is given to AUC as a

metric for evaluating the models.

For this prediction task, we experimented with multiple deep learning models and conventional

machine learning models including Random Forest, Adaboost and XgBoost. All the models are

trained using the same methodology as described earlier. We chose ensemble based learning al-

gorithms that combine individual weak classifiers to form a single strong classifier similar to Ran-

dom Forests, Adaboost, etc. The ensemble models accept an input feature vector of size 1×677

(including demographic features). All the ensemble models are trained using 100 estimators (weak

classifiers). In addition, we experimented with deep learning models including DNNs (dense neu-

ral networks), CNNs and LSTMs. The hyperparameters for all the models in this experiment is

tuned for maximum performance.

Because of the nature of the dataset, sequential models like RNN-LSTM [36] were also con-

sidered, which can memorize time dependencies across different features. The CNN and LSTM

models take an input vector of (3×133) (timesteps × feature) matrix whereas the DNNs use a

flattened 399-dimensional input vector (1×399).
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Figure 2.1: The CNN-LSTM model. The numbers next to each layer indicate the shape of its
output tensor.

The best performing classifier uses a CNN-LSTM architecture, which is presented in Figure

2.1. From the 3×133 input features, the 2 convolutional layers (of kernel size 1×133 and 1×64

respectively) generate highly discriminative features [37]. Each convolutional layers is followed

by a batch normalization layer. The 2 subsequent LSTM layers capture the temporal correlation of

the features. Their outputs, together with the 13 demographic features as shown in Table 2.1, are

transformed by the dense layers to obtain the final prediction.

2.3.1 Evaluation Metrics

Area under the receiver operating characteristics curve (AUROC) is generally the metric used

for evaluating binary classification tasks such as the one described in this study, especially in a

clinical setting. AUC (short for AUROC) is a better metric over accuracy as it provides more

insights when there is a class imbalance in the dataset. However there are cases when the AUC

curve gets too optimistic if the dataset gets heavily skewed towards true negative cases. For this

study we are primarily going to stick with AUC metric because several sepsis literature studies in
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Table 2.2: Performance comparison of different models

Model VAL AUC TRAIN AUC TEST AUC
CNN-LSTM (ours) 0.99065 1.0 0.96542
LSTM 0.98055 0.99705 0.94162
CNN 0.98312 0.99853 0.89698
DNN 0.95464 0.98431 0.93158
AdaBoost 0.97227 1.0 0.86413
Xboost 0.97963 1.0 0.87999
RandomForest 0.98586 0.95472 0.73549

the past has chosen this metric over the others.

2.4 Experimental Evaluation

The experimental results are summarized in Table 2.2. It can be seen that the deep learning

models outperforms the conventional machine learning models. The DNN model with AUC of

0.93 compares favourably to the previous best results on severe sepsis prediction [31]. The CNNs

did not yield favourable results possibly due to the relatively small size of our dataset. LSTM

slightly outperforms the CNN and DNN models with an AUC of 0.94, due to its utilization of

temporal correlation. However, the LSTM layers have many cells and are hard to train optimally

given the limited size of the dataset. The CNN-LSTM model addresses this challenge, where the

convolutional layers generate useful features and reduce the sizes of the LSTM layers [33, 38].

The optimized CNN-LSTM model achieves the best performance with an AUC of 0.965.

To compare the results to existing results on severe sepsis onset prediction, we list some major

works in Table 2.3. The work [29] used non-linear SVM, achieving an AUC of 0.78 with sensitivity

of 0.94 and specificity of 0.63. The Insight model in [31] used a gradient boosted tree model with

1000 estimators, achieving an AUC of 0.85 with sensitivity of 0.80 and specificity of 0.84. The

EWS 2.0 model in [39] used random forest classifiers with 587 features, including demographics,

vital signs, and laboratory results. It achieved an AUC of 0.88 with sensitivity of 0.26 and speci-

ficity of 0.98. Although it would not be strictly fair to compare our results to the existing ones

due to the difference in datasets, our model does demonstrate its clear strengths. To measure the
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Table 2.3: Some prediction performance on severe sepsis reported in the literature

Model Data Source Method AUC SEN SPE
EWS 2.0 [39] UPenn. Health System Random Forest 0.88 0.26 0.98
Insight [31] UCSF + MIMIC-III GBM 0.85 0.80 0.84
PCA + SVM [29] The Prince of Wales Hospital SVM 0.78 0.94 0.63
CNN-LSTM (ours) MIMIC-III Deep Neural Net 0.94 0.77 0.95

robustness of the model, it is trained 50 times and its average performance is measured. The model

achieved an average AUC of 0.936 (95% CI 0.931 0.941), with sensitivity of 0.77 and specificity

of 0.95.

To understand how the model performs on different demographics, the detailed results are

presented for 491 patients in Table 2.4. Three demographics are considered: gender, ethnicity,

and age. In the table, TN, TP, FP and FN represent ’true negative’, ’true positive’, ’false positive’

and ’false negative’, respectively. And SEN, SPE and ACC represent ’sensitivity’, ’specificity’ and

’accuracy’, respectively. It can be seen that overall, for each demographic measure, the prediction

performance is well balanced for its different subgroups. That is, the sepsis onset prediction model

accommodates both good performance and good diversity.

2.5 Conclusion

In this chapter we proposed a deep learning network for severe sepsis prediction that outper-

forms machine learning models from past severe sepsis literature. However, we do acknowledge

the limitation of this work for the inclusion of a single site data and the limited sample size (par-

tially due to the focus on the severe sepsis patients for this study). For future research, we can

explore transfer learning techniques to combat potentially biased modeling common for deep learn-

ing models when they are applied to unseen data from different hospitals, and develop more robust

models that do not necessarily require continuous collection of patient data in real time. Collecting

over 133 unique features to monitor a single patient over a period of time is tedious hence in the

next chapter we will primarily focus on reducing the number of unique features used by our deep

learning model.
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Table 2.4: Results based on Demographics evaluated on our 20% reserved test data (491 samples)

Characteristics Attributes TN TP FP FN SEN SPE ACC
Gender FEMALE 177 23 9 8 0.72 0.96 0.92

MALE 207 43 11 13 0.8 0.94 0.91
TOTAL 384 66 20 21

Ethnicity ASIAN 13 1 2 1 0.33 0.93 0.82
BLACK 35 4 2 1 0.67 0.97 0.93
HISPANIC 12 0 0 0 nan 1.0 1.0
WHITE 276 55 14 12 0.8 0.96 0.93
OTHER 48 6 2 7 0.75 0.87 0.86
TOTAL 384 66 20 21

Age 16.92 - 30.67 32 1 0 0 1.0 1.0 1.0
30.67 - 44.33 41 4 3 0 0.57 1.0 0.94
44.33 - 58.00 64 9 1 7 0.9 0.9 0.9
58.00 - 71.67 94 22 6 7 0.79 0.93 0.9
71.67 - 85.33 110 22 7 5 0.76 0.96 0.92
85.33 - 99.00 43 8 3 2 0.73 0.96 0.91
TOTAL 384 66 20 21
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3. DYNAMIC FEATURE SELECTION

In the previous chapter, we have discussed how we use all 133 features from electronic health

records to build a novel deep learning model that improves the performance of severe sepsis onset

predictions. The model takes advantage of time dependencies between the features (of 4 hrs before

onset) to achieve state-of-the-art performance. When synthesized carefully, the vital signs from

severe sepsis patience contains temporal-spatial patterns that offer better discriminative power than

previous methodologies.

Most of the predictions models in sepsis literature (discussed in the previous chapter) uses

features anywhere between 6 and 30. On the other hand, this study uses 133 features to achieve

significantly higher performance using deep learning. In a real-world scenario, it might not be

viable for hospitals to continuously monitor 133 features. In this chapter, we implement a rein-

forcement learning framework to select the most optimal set of features (from 133) required for

severe sepsis diagnosis.

3.1 General Working

Now we shall discuss how Neural Architecture Search (NAS) works and how it relates to our

research in this thesis. This section gives you a holistic view of the working of a simple Neural

Architecture Search (NAS) framework and its components followed by our research on Dynamic

Feature Selection & Hyperparameter Tuning.

3.1.1 Neural Architecture Search

The first attempt to develop a NAS framework was described in [1], the authors used a con-

troller network for sampling architectures and a child network for evaluating the suggested archi-

tecture against a validation dataset. The validation accuracy is fed back to the controller as a reward

signal R, which is used to update the controller’s parameters θ using a policy gradient approach

shown in Figure 3.1.

Similarily in [10], the authors use Q-learning with experience replay and epsilon greedy strat-
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Figure 3.1: Neural Architecture Search using Reinforcement Learning

egy to generate CNN architecture using validation accuracy from the selected child network. Con-

troller agents in [1, 10] generates only single chained neural network models. Since the severe

sepsis prediction discussed in the previous chapter is a time-series problem, the main focus is on

designing single chained networks (1D convolution and recurrent networks) for the child model.

We have given more emphasis on choosing the right features using dynamic feature selection. We

have taken cues from [1, 10] in designing the controllers in this research.

3.1.2 Dynamic Feature Selection

So far we have briefly discussed the NAS cycle and how the NAS controller builds a child

network model. We cannot directly apply the NAS methodology because building a Neural net-

work and selecting appropriate features are not the same. In this research we articulate 2 main

cycles 1) Dynamic Feature Selection 2) Hyperparameter Tuning as shown Figure 3.3 and 3.4 re-

spectively. In the feature selection cycle our objective is to find the optimal set of features ~A∗ and

then subsequently use it for Hyperparameter Tuning to find optimal parameters H∗.

In Figure 3.3 we have the feature selection controller (a LSTM based deep neural network) that

samples a feature vector ~A. This feature vector ~A decides which set of features are selected. The

dataset is modified such that only the selected features are used to train the baseline child network
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Figure 3.2: A simplified model of NAS [1] controller sampling a child network architecture. Each
lstm cell outputs the parameters of a single layer building the neural network layer by layer se-
quentially.

Figure 3.3: Dynamic Feature Selection cycle.
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model. In feature selection, our child network model (in our experiment we use a variation of the

CNN-LSTM model we discussed for severe sepsis prediction) is fixed. The reward signal sent

to the feature selection controller is a function of the validation accuracy from the baseline child

network model. The cycle stops when the feature controller converges to an optimal set of features

~A∗.

Figure 3.4: Hyperparameter Tuning cycle.

After obtaining the optimal feature vector ~A∗, its essential to further tune the child network

model by using features selected in ~A∗. The second cycle for Hyperparameter Tuning follows the

same strategy as in the feature selection cycle except that instead of choosing features we proceed

to find the optimal hyperparameter H∗ for the child network as shown in Figure 3.4. See the

appendix for the different hyperparameter attributes used for tuning the child network. Figure 3.5

gives an example of ~A andH used in this research. Since we got an overall picture into the working

of our research methodology, the upcoming sections describes in detail the controller design and

learning algorithm used for the experiments.
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Figure 3.5: An example of feature vector ~A sampled by the feature controller (on the left), ~A is
a binary vector 1 indicates the particular feature is selected and 0 indicates the particular feature
is removed. An example of H hyperparameter sampled by the hyperparameter controller (on the
right).

3.2 Controller Design Insights

The most important aspect of this research is the controller design since it models the rela-

tionships between features in case of dynamic feature selection or dependencies between neural

network layers in the case of NAS. For this research we have experimented with 2 different con-

troller agents 1) Controller A & 2) Controller B. These controllers are similar to the ones used

in NAS but it is redesigned to make it suitable for the task of dynamic feature selection and hy-

perparameter tuning. Controller B is just an enhanced version of controller A. To understand the

decisions we made to design the controllers it is essential to know how the NAS controller [1] is

designed.

3.2.1 NAS Controller

In 3.1.1 we briefly discussed the NAS cycle and its working. In this section, we describe how

the NAS controller spawns the child network. NAS uses an LSTM network to generate its child

network models as shown in Figure (3). The controller takes an empty embedding (random tensor)
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as its input at each controller epoch (or cycle) and samples a child network model dictated by

the decisions made by the lstm cells. In a single chained neural network model each Nth layer is

dependent on the previous N-1 layers. In any neural network model the first layer is always the

input layer, hence the first lstm cell in a NAS controller is always fed a random tensor (because

the input layer is not conditioned on any previous layers). The following sections describes how

the controllers are designed to specifically model the task of feature selection and hyperparameter

tuning.

3.2.2 Controller A

This controller design is inspired from the ENAS [15] and NAS [1] LSTM controllers. The

NAS controller is designed such that the nth LSTM cell, outputs parameters of the nth layer. And

each nth layer is dependent on the previous 1 to n−1 layers of the child model. Hence, the Monte

Carlo policy gradient is formulated in a similar way as given below:

Figure 3.6: Controller Design A

In (3.1), ak,t is dependent on ak,t−1:k,1 as explained above. But that’s not the case for features

as it is not necessary that nth feature is dependent on previous 1 to n − 1 features. It is possible

that the first feature might be dependent on the nth feature or vice versa. To model this behavior in

this controller (Equation 3.9) the state & output of the last LSTM cell is fed as the input state to the
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controller in the next epoch, in contrast to NAS & ENAS controllers where an empty embedding

is fed in every epoch. By doing so we are actually introducing a dependency for the first few

features based on the states of all the features from the previous epoch. In this way, the controller

will be able to decide whether it should give importance to the first few sets of features in the next

epoch. Additionally, introducing the state variable also stabilized the controller training leading to

an elegant convergence. The controller architecture and design are shown in the appendix below.

∇θJ(θ) ≈
1

m

m∑
k=1

T∑
t=1

∇θlogP (ak,t|ak,t−1:k,1; θ)(Rk − b) (3.1)

3.2.3 Controller B

Controller design discussed in section 3.2.2 is suitable for data-sets that contain 30-50 unique

features. Selecting an optimal subset of features when there are more than 100 unique features

becomes more tedious. And a single state vector sk−1 is not sufficient to encode the dependen-

cies between 100 features. In such a situation we have proposed to use the hidden state from all

the LSTM cells (each lstm cell corresponds to a single feature) to provide better context to the

controller if a particular feature needs to be selected (see Figure(4)). The results from both the

controller A & B are discussed in section 3.5

3.3 Monte Carlo REINFORCE

In this section, we introduce reinforcement learning and the Monte Carlo REINFORCE algo-

rithm that is used to train the controllers. Reinforcement learning is one of the major paradigms

in machine learning (along with supervised learning and unsupervised learning). It involves an

agent that tries to maximize its cumulative reward through a set of actions in an unknown complex

environment. The aim of the agent is to learn an optimal strategy from experiences interacting

with the environment. Formally, reinforcement learning is modeled as a Markov Decision Process

that consists of an agent that can belong to a state s from many states S in an environment and can

choose to take an action from a set of defined actions A. The probability of transitioning from state

s to another state s′ under action a is given by the transition probability P (s′|s, a) and the reward
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Figure 3.7: Controller Design B.

function is defined by R(s′, s) after transition to state s′ from state s under action a.

Reinforcement algorithms can be classified mainly into two types: model-based learning and

model-free learning. Model-based algorithms learn the transition probability implicitly from action-

state pairs. However, for systems with large action-state spaces model-based learning becomes

infeasible. On the other hand, model-free algorithms learn by sampling action-state pairs through

trial and error. Model-free learning doesn’t directly depend on the dynamics of the environment

(transition probability and reward function) making them suitable for reinforcement learning prob-

lems with large action-state spaces.

In this thesis, we pose the problem of dynamic feature selection as a model-free reinforcement

learning task. We adopt Monte Carlo REINFORCE as the reinforcement learning strategy. Monte

Carlo REINFORCE is a policy gradient method that seeks to find the optimal policy directly. The

policy π is defined as deterministic (π(s) = a) or stochastic mapping (π(a|s) = Pπ[A = a|S = s])

from state s to an action a. In a policy gradient algorithm, the policy is often modeled as a function

of parameter θ as πθ(a|s). The reward function is calculated based on this policy πθ(a|s). The goal

of the policy gradient algorithm is to maximize the expected reward J(θ) by optimizing θ for a
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given total reward function r(τ) associated to the trajectory τ (or episode) by following the policy

π as defined below:

J(θ) = Eπ[r(τ)] (3.2)

We optimize θ to maximize J(θ) using gradient ascent update rule:

θt+1 = θt + α∇θJ(θt)) (3.3)

Now the gradient of expectation ∇Eπ[r(τ)] can be written as ∇
∫
π(τ)r(τ)dτ . By expanding this

expectation we get
∫
π(τ)∇ log π(τ)r(τ)dτ . Hence we can rewrite the expected reward as:

∇Eπ[r(τ)] = Eπ[∇ log π(τ)r(τ)] (3.4)

where π(τ) is a product of transistion probabilities p(st+1, rt+1|st, at) and policy π(at|st) over time

period T . Additionally we also subsitute r(τ) for Gt. In reinforcement learning the current reward

is not dependent on past states, instead we try to take the future discounted rewards Gt that we

might receive when we take an action from a given state st. Gt is defined as:

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (3.5)

We discussed previously that REINFORCE is a model-free learning algorithm, by using the Williams

(1992) rule we can rewrite Equation (3.4) as:

∇Eπ[r(τ)] = Eπ[(
T∑
t=1

Gt∇ log π(at|st))] (3.6)

By directly applying the REINFORCE Williams rule, we were able to get rid of the environment

dynamics (deriving and proving Williams rule is not trivial and is beyond the scope of this work).

Now computing the raw gradient using the scaling factor Gt directly is unreliable because of high

variance. To reduce the variance we introduce a baseline b (b can be a function of current state st,
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etc. depends on the problem statement) in Equation (3.6):

∇J(θ) = ∇Eπ[r(τ)] = Eπ[(
T∑
t=1

(Gt − b)∇ log π(at|st))] (3.7)

Adding this bias provides stability by reducing variance and at the same time doesn’t change the

unbiased nature of the gradient estimator. The complete Monte Carlo REINFORCE procedure is

given below:

Algorithm 1: REINFORCE Algorithm
Function REINFORCE (τ , θ)

for t = 1, 2, ..., T do

Estimate the discounted return Gt from trajectory τ

θ ← θ + αγt(Gt − b)∇ log π(at|st)

In [1], the authors used the Monte Carlo REINFORCE algorithm to train the controller given

by Equation (3.7). The expectation is replaced by taking large samples and substitute Rk directly

as Gt (generally REINFORCE algorithm is updated over an episode after generating a trajectory

τ from policy πθ but in NAS an episode generates only a single trajectory with reward R) hence

Equation (3.7) is modified to:

∇θJ(θ) ≈
1

m

m∑
k=1

T∑
t=1

∇θ logP (at | a(t−1):1; θ)(Rk − b) (3.8)

Where a1:T is the list of actions for designing a child network, m is the number of different child

networks sampled by the controller in one batch and T is the number of hyperparameters of a neural

network (eg. activation function, filter size, kernel size) to design a child network. As we discussed

previously directly using a scaled factorRk leads to high variance, a baseline b (exponential moving
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average ofRk) is used to reduce the variance of this unbiased gradient estimator. In the next section,

we formulate the Monte Carlo REINFORCE algorithm to fit our methodology.

3.4 Problem formulation

The algorithm design consists of 2 reinforcement agents - Feature selection controller & Hy-

perparameter search controller. Initially the optimal set of features are achieved by training the

feature selection controller via the Monte Carlo REINFORCE policy gradient. The optimal fea-

ture ~A∗ is used to search for the optimal deep learning hyperparameters H∗ for predicting severe

sepsis using the Hyperparameter search controller.

Monte Carlo REINFORCE specified in NAS[1] given by the equation (3.8). But in this case it

is slightly altered to take into account the nth LSTM state as given below:

∇θJ(θ) ≈
1

m

m∑
k=1

T∑
t=1

∇θlogP (ak,t|ak,t−1:k,1, sk−1,T ; θ)(RA
k − ba) (3.9)

where ba is:

ba =
1

n

m∑
k=1

RA
k (3.10)

In this reinforcement problem, the state sk−1,T is the output of the last lstm cell of the controller.

Action space ~A, is defined as the output generated by the policy controller given state sk−1,T . For

example, the dataset used here consists of 6 features, so the action space is a binary vector of

size 6. At every step, the controller generates a ~A which is used to select the features from the

dataset specified by the action vector. The selected features are then used to train a fixed baseline

child network (baseline CNN-LSTM network), the validation AUC (area under the curve) from the

child network is sent to the controller as the reward signal RA
k . Since we do not have a simulated

environment, the success of the agent largely depends on tuning the reward function to create

a feature space (less than the maximum feature space) to give an optimal validation AUC. The

reward function, in this case, is given by taking the summation of the validation AUC times 4 of

the last 5 epochs of the child model including the feature regularizer as defined below:
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RA
k =

n∑
i=n−5

(val_auc)4i −
| ~A|

dim| ~A|
(3.11)

The stochastic policy here is the probability of choosing a particular feature ai in ~A, sampled from

a Bernoulli distribution.

Once we converge to an optimal ~A∗, we use this information to run the hyperparameter search

using the Monte Carlo REINFORCE policy gradient for the child model given by equation below:

∇θJ(θ) ≈
1

m

m∑
k=1

T∑
t=1

∇θlogP (hk,t|hk,t−1:k,1, sk−1,T ; θ)(RH
k − bh) (3.12)

where bh is:

bh =
1

n

m∑
k=1

RH
k (3.13)

In the feature selection loop, we fixed a baseline child network but in the hyperparameter search

loop, our goal is to find the optimal set of parameters H for the child model by fixing ~A = ~A∗. The

controller is modeled the same way as we did above for the feature selection controller. Here the

reward RH
k is just a function of the validation AUC as we want to obtain a policy that gives H∗ for

the maximum performance (best validation AUC) defined as:

RH
k =

n∑
i=n−5

(val_auc)4i (3.14)

The stochastic policy here is the probability if you will choose a particular hyperparameter hi in

H , sampled by a Multinomial distribution.

3.5 Research Approach

After preprocessing the MIMIC-III dataset, we have 3 sets of data for testing purposes as

shown in Table 3.1. We follow the same algorithm as discussed previously for all the 3 datasets.

Features in all 3 datasets are reshaped from vectors into time-series features by removing the hourly

differences and folding them into timesteps of 3 hrs. For example, Dataset-I (from 30 features) is
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Algorithm 2: Algorithm Design
Function FindChildModel (features, search params)

while all ai is ≤ 0.9 or ≥ 0.1 in ~A do
Sample a feature vector ~A from feature selection controller;

Train baseline child model with ~A;

Train feature selection controller with RA
k ,
~A, sk−1;

while all max|~hi| is ≤ 0.8 in H do

Sample a set of hyperparameters H from hyperparameter controller;

Train sampled child model architecture H with ~A∗;

Train hyperparameter controller with RH
k , H, sk−1;

Table 3.1: Sepsis data input feature dimensions

Dataset-I Dataset-II Dataset-III
30 (6x5) features 70 (14x5) features 665 (133x5) features

transformed into 6 time-series features by removing hourly differences (12 features removed) and

folding the remaining 18 features into 3x6 (timesteps x features).

The goal is to find the optimal set of features needed for getting equivalent test results (that

uses all features) or better using only the selected optimal features. The results for each of three

datasets are summarized in Table 3.2, Table 3.3 and Table 3.4. For comparing results for Dataset-I

we used Insight [40] as the benchmark. Insight uses the exact same features as we used for this

experiment with Dataset-I. Using Dynamic feature selection and Hyperparameter search on CNN-

LSTM model, the number of features were reduced from 6 to 4 without no performance loss as

shown in Table 3.2. For Dataset-II (Table 3.3) and Dataset-III (Table 3.4), we are not aware of

any known severe sepsis literature that uses a feature set of 14 and 133 respectively. Hence as a

benchmark, just a Hyperparameter search is performed using the complete feature set in Dataset-II
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Table 3.2: Controller A & B Results for Dataset-I

Controller A Attribute Benchmark Controller A Controller B
Model Insight [40] CNN-LSTM CNN-LSTM
Features 6 4 4
Dataset UCSF + MIMIC-III MIMIC-III MIMIC-III
Result 0.85 0.85 0.85

Table 3.3: Controller A & B Results for Dataset-II

Attribute Benchmark Controller A Controller B
Model CNN-LSTM CNN-LSTM CNN-LSTM
Features 14 9 9
Dataset MIMIC-III MIMIC-III MIMIC-III
Result 0.85 0.88 0.86

and Dataset-III and compared it to results obtained by performing both Dynamic feature selection

(to select optimal features) and then Hyperparameter search using the optimal selected features. In

all the above experiments, the CNN-LSTM model was used as the child model.

It is evident from Table 3.2, Table 3.3 and Table 3.4 that the performance of deep learning

models trained with the optimal selected features are comparable to the performance of those

models that use the entire feature set. The average run time for finding the best CNN-LSTM model

including feature selection for Dataset-I (6 features) and Dataset-II (14 features) was around 400

controller epochs, and for Dataset-III (133 features) it took around 800 controller epochs. The

reward history plots for all training experiments are shown in the appendix below.

Table 2.3 from the previous chapter has been updated to Table 3.5, to show the number of

Table 3.4: Controller A & B Results for Dataset-III

Attribute Benchmark Controller A Controller B
Model CNN-LSTM CNN-LSTM CNN-LSTM
Features 133 - 110
Dataset MIMIC-III MIMIC-III MIMIC-III
Result 0.937 - 0.933
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Table 3.5: Features vs performance on Severe Sepsis reported in the literature

Model Num. of features Method AUC SEN SPE
EWS 2.0 [39] 587 Random Forest 0.88 0.26 0.98
Insight [31] 6 GBM 0.85 0.80 0.84
PCA + SVM [29] 6 SVM 0.78 0.94 0.63
CNN-LSTM (Original) 133 + 13(demographics) Deep Learning 0.94 0.77 0.95
CNN-LSTM (with Dyn.) 110 Deep Learning 0.93 0.76 0.94

features used by past results on severe sepsis prediction. Most of the models that exist in sepsis

literature use fewer features with few exceptions (EWS 2.0 [39]) for sepsis diagnosis and treatment.

[29] and [40] uses only 6 features for severe sepsis prediction and achieved AUC scores of 0.78 and

0.85. Again we need to remind ourselves that the set of features used in [29, 40, 39] are different.

To measure the robustness of the CNN-LSTM model that uses 110 features, it is trained 50 times

and then its average AUC performance is measured. The model achieves an average AUC of 0.933,

with a sensitivity of 0.76 and specificity of 0.94.

Reducing the number of features from 133 to 110 is a step in the right direction. However,

collecting 110 features is still a daunting task. We can force the controller to choose even fewer

features by adjusting the value of λ. A value of λ set between (1, 1.5] should force the controller

to pick features more aggressively. To accomodate λ we modify Equation 3.11 to:

RA
k =

n∑
i=n−5

(val_auc)4i − λ(
| ~A|

dim| ~A|
) (3.15)

Optimal feature selection is a complicated task, in this thesis we would like to point to some

inconsistencies we faced when running the experiments. We designed 2 controllers for feature

selection - 1) Controller A and 2) Controller B. Even though Controller A and Controller B picked

an equal number of features for both Dataset-I and Dataset-II, the feature set (the action vector A∗)

chosen by each one of them are different as given in Table 3.6.

Dynamic feature selection with Controller B repeatedly converged to the same set of features

for Dataset-I and Dataset-II (because Controller B gets better context about the feature depen-
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Table 3.6: Features selected ( ~A∗) by Controller A and B. See the Appendix for more details on
features selected by each controller for the given dataset.

Data Controller A Controller B
DataSet-I [1 1 0 1 1 0] [1 1 0 0 1 1]
DataSet-II [0 0 1 1 1 1 0 1 0 1 1 1 1 0] [0 0 1 1 1 0 1 1 0 1 0 1 1 1]

dencies), as shown in Table 3.6. However, that wasn’t case for Controller A as there were small

deviations from the features selected when the experiment is run every single time. Unfortunately,

Controller B is also not consistent when performing dynamic selection using Dataset-III. This in-

consistency can be attributed to 2 main factors, one being that the dimensions of the feature set is

too high (133 feature) and second is the fact that there can exist 2 or more features that might be

highly correlated and the controller can choose only either one of them because of the constraints

set by the reward function Rk during feature selection. In an event where there are 2 correlated

features in a set, the controller picks the feature that gets sampled more frequently over the other.
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4. SUMMARY AND CONCLUSIONS

Reinforcement learning (MONTE Carlo REINFORCE) was used to optimize the feature space

as well as the hyperparameter space to discover deep learning models that perform equally well

or better when compared to models that use the complete set of features from the dataset. The

initial proposal was to perform a hyperparameter search H for every ~A sampled. But this process

seemed extremely slow and tedious. For Dataset-I (6 features) it took approximately 48 hours to

converge. Therefore a more viable solution was proposed to separate the reinforcements loops into

first dynamic feature selection using a baseline child model and then perform a hyperparameter

search using the optimal feature vector ~A∗ to find optimal hyperparameters H∗. This technique

was a good approximation to the previously thought out algorithm.

We performed dynamic feature selection and hyperparameter tuning for 3 different datasets

with 2 different controllers (A & B). The experiment brought down the total number of features

used in the severe sepsis prediction model (described in Chapter 2) from 133 to 110. Reducing the

features had little to no impact on the prediction performance.

4.1 Challenges

The ability to achieve consistent results if a researcher tries to replicate the experiment is known

as reproducibility. One of the main challenges we face in the field of deep reinforcement learning is

reproducibility. Most of these models are black boxes hence studying and replicating these models

become difficult because of the level of uncertainty involved. In this thesis, we have tried to address

the issues of optimal feature convergence and why certain features get picked over the other. The

evaluation metric used for the controller reward function is AUC (area under the curve). A small

change in misclassification can cause a significant change in AUC, as a result, the variance of the

reward function is high for the same set of sampled features by the controller. This also affected

the reproducibility of our research. Feature space can become large pretty quickly hence it is

important to scale the framework. Our initial codebase was in Keras, this significantly affected the
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performance of the algorithm. Moving it to PyTorch resulted in algorithms speed up by a factor of

3.

4.2 Further Study

In this thesis the architectures of the child model (CNN-LSTM) was fixed to a certain degree,

in future work we would like to find custom micro architectures [15] specific to the dataset in ques-

tion, this leads to the discovery of new deep learning models that use fewer features. Interpreting

deep learning models and relationships between features is an active field of study. We would

ideally like to find new dependencies between features previously unknown to human experts. In a

real-world, each unique feature comes with an associated cost, we cannot assume all features cost

the same. Dynamic cost-based feature selection is definitely a research problem we can explore

especially in the medical field where collecting more features exponentially increases the cost of

diagnosis or treatment.

In the future, we would like to work on reducing the time taken to find optimal controller policy

(exploring other policy gradient algorithms like Actor-Critic) and to experiment with additional

datasets to further validate our results.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Controller A

A.1.1 Controller Design

Figure A.1: Controller ’A’ design for 6 features. The design is similar for 14 features.

A.1.2 Controller Hyperparameters

Adam optimizer with learning rate = 0.001 and decay = 0.001. Each controller cycle (episode)

generates one sample and trained for 8 epochs.

37



A.1.3 DataSet-I

Figure A.2: Reward plot for Dynamic Feature Selection using Dataset-I (4/6 features) for Con-
troller A.

Figure A.3: Reward plot for Hyperparameter Selection using Dataset-I (4/6 features).

38



A.1.4 DataSet-II

Figure A.4: Reward plot for Dynamic Feature Selection using Dataset-II (9/14 features) for Con-
troller A.

Figure A.5: Reward plot for Hyperparameter Selection using Dataset-II (9/14 features).
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A.2 Controller B

A.2.1 Controller Design

Figure A.6: Controller ’B’ design for 6 features. The design is similar for 14 and 133 features.

A.2.2 Controller Hyperparameters

Adam optimizer with learning rate = 0.001 and decay = 0. Each controller cycle (episode)

generates one sample and trained for 5 epochs.
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A.2.3 DataSet-I

Figure A.7: Reward plot for Dynamic Feature Selection using Dataset-I (4/6 features) for Con-
troller B.

Figure A.8: Reward plot for Hyperparameter Selection using Dataset-I (4/6 features).
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A.2.4 DataSet-II

Figure A.9: Reward plot for Dynamic Feature Selection using Dataset-I (9/14 features) for Con-
troller B.

Figure A.10: Reward plot for Hyperparameter Selection using Dataset-I (9/14 features).
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A.2.5 DataSet-III

Figure A.11: Reward plot for Dynamic Feature Selection using Dataset-I (110/133 features) for
Controller B.

Figure A.12: Reward plot for Hyperparameter Selection using Dataset-I (110/133 features).
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A.3 Hyperparameter Controller

Figure A.13: Hyperparameter Controller Design.

A.3.1 Hyperparameter Search Space

• ’lstm units’ : [8,16,32]

• ’lstm units’ : [8,16,32],

• ’lstm layers’ : [2, 3, 4],

• ’lstm activation’ : [’relu’,’tanh’],

• ’cnn filter’: [32, 64],

• ’cnn kernel’: [1, 2, 3],

• ’cnn hidden layers’: [1, 2],

• ’dense layers’: [2, 3],

• ’dense units’: [8, 16, 32]

A.3.2 Controller Hyperparameters

Adam optimizer with learning rate = 0.001 and decay = 0.001. Each controller cycle (episode)

generates one sample and trained for 8 epochs.
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A.4 CNN-LSTM Child Model Parameters

A.4.1 Feature Selection (Controller A) + Hyperparameter Tuning + Dataset-I

1 CNN layer (filter size of 64, kernel size of 3) + 3 LSTM layers (32 hidden units + tanh

activation) + 3 Dense layers (16 hidden units)

A.4.2 Feature Selection (Controller A) + Hyperparameter Tuning + Dataset-II

2 CNN layer (filter size of 32, kernel size of 2) + 3 LSTM layers (16 hidden units + tanh

activation) + 3 Dense layers (16 hidden units)

A.4.3 Feature Selection (Controller B) + Hyperparameter Tuning + Dataset-I

1 CNN layer (filter size of 64, kernel size of 3) + 3 LSTM layers (32 hidden units + tanh

activation) + 3 Dense layers (16 hidden units)

A.4.4 Feature Selection (Controller B) + Hyperparameter Tuning + Dataset-II

1 CNN layer (filter size of 64, kernel size of 1) + 4 LSTM layers (32 hidden units + tanh

activation) + 2 Dense layers (32 hidden units)

A.4.5 Feature Selection (Controller B) + Hyperparameter Tuning + Dataset-III

1 CNN layer (filter size of 64, kernel size of 2) + 3 LSTM layers (32 hidden units + tanh

activation) + 3 Dense layers (16 hidden units)

45



APPENDIX B

COMPLETE FEATURE LIST

B.1 Original Feature Set

Original Feature Set contains the actual set of features available in DataSet-I, DataSet-II and

DataSet-III used in this research work. The features are listed in their original order.

B.1.1 DataSet-I (6 features)

Systolic Blood Pressure Abp Mean, Diastolic Blood Pressure Mean, Heart Rate, Body Tem-

perature, Respiratory Rate, SpO2 Peripheral.

B.1.2 DataSet-II (14 features)

Systolic Blood Pressure Abp Mean, Diastolic Blood Pressure Mean, Heart Rate, Body Tem-

perature, Respiratory Rate, SpO2 Peripheral, Albumin, Lymphocytes, Calcium Total, Magnesium,

Phosphate, PT, PTT, Serum Transferrin.

B.1.3 DataSet-III (133 features)

Gastric Gastric Tube, Stool Out Stool, Urine Out Incontinent, Chest Tube #1, Chest Tube #2,

OR EBL, Pre-Admission, Fresh Frozen Plasma, Lorazepam (Ativan), Calcium Gluconate, Mi-

dazolam (Versed), Phenylephrine, Furosemide (Lasix), Hydralazine, Norepinephrine, Magnesium

Sulfate, Nitroglycerin, Insulin-Regular, Morphine Sulfate, Potassium Chloride, Packed Red Blood

Cells, Gastric Meds, D5 1/2NS, LR, Solution, Sterile Water, Piggyback, OR Crystalloid Intake, OR

Cell Saver Intake, PO Intake, GT Flush, KCL (Bolus), Magnesium Sulfate (Bolus), Hematocrit,

Platelet Count, Hemoglobin, MCHC, MCH, MCV, Red Blood Cells, RDW, Chloride, Anion Gap,

Creatinine, Glucose, Magnesium, Calcium Total, Phosphate, INR (PT), PT, PTT, Lymphocytes,

Monocytes, Neutrophils, Basophils, Eosinophils, PH, Base Excess, Calculated Total CO2, PCO2,

Specific Gravity, Lactate, Alanine Aminotransferase (ALT), Asparate Aminotransferase (AST),

Alkaline Phosphatase, Albumin, Aspirin, Bisacodyl, Docusate Sodium, Humulin-R Insulin, Meto-
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prolol Tartrate, Pantoprazole, Arterial Blood Pressure Diastolic, Arterial Blood Pressure Mean,

Respiratory Rate, Alarms On, MinuteVolumeAlarm-Low, Peakinsp. Pressure, PEEPset, Minute

Volume, Tidal Volume (observed), Minute Volume Alarm-High, Mean Airway Pressure, Central

Venous Pressure, Respiratory Rate (Set), Pulmonary Artery Pressure Mean, O2Flow, Glucosefin-

gerstick, Heart Rate Alarm-Low, Pulmonary Artery Pressure Systolic, Tidal Volume (set), Pul-

monary Artery Pressure Diastolic, SpO2 DesatLimit, RespAlarm-High, Skin Care, white Blood

Cells Count Mean, Sodium Level Mean, Gcseyes, Serum Bicarbonate Level Mean, Systolic Blood

Pressure Abp Mean, Potassium Level Mean, Heart Rate, Serum Urea Nitrogen Level, Urinary

Output Sum, FiO2, Body Temperature, Bilirubin Level, Gcsmotor, Gcsverbal, PaO2, IE Ratio

Mean, Ph, Arterial Pressure Mean, Midazolam, Weight, SpO2 Peripheral, Epinephrine, Glucose,

Hgb, Propofol, Creatinine, Chloride, Fentanyl, Diastolic Blood Pressure Mean, Norepinephrine,

Dopamine, Height, Serum Transferrin, Platelet, Phenylephrine, Peep, Respiratory Rate, Total

Cholesterol.

B.2 Controller A

This section lists all the features selected (in order) by Controller A for the dynamic feature

selection task using DataSet-I and DataSet-II.

B.2.1 DataSet-I (4 / 6 features)

Systolic Blood Pressure Abp Mean, Diastolic Blood Pressure Mean, Body Temperature, Res-

piratory Rate.

B.2.2 DataSet-II (9 / 14 features)

Heart Rate, Body Temperature, Respiratory Rate, SpO2 Peripheral, Lymphocytes, Magnesium,

Phosphate, PT, PTT.

B.3 Controller B

This section lists all the features selected (in order) by Controller B for the dynamic feature

selection task using DataSet-I, DataSet-II and DataSet-III.
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B.3.1 DataSet-I (4 / 6 features)

Systolic Blood Pressure Abp Mean, Diastolic Blood Pressure Mean, Respiratory Rate, SpO2

Peripheral.

B.3.2 DataSet-II (9 / 14 features)

Heart Rate, Body Temperature, Respiratory Rate, Albumin, Lymphocytes, Magnesium, PT,

PTT, Serum Transferrin.

B.3.3 DataSet-III (110 / 133 features)

Gastric Gastric Tube, Stool Out Stool, Urine Out Incontinent, Chest Tube #1, Chest Tube

#2, OR EBL, Pre-Admission, Fresh Frozen Plasma, Lorazepam (Ativan), Calcium Gluconate,

Furosemide (Lasix), Hydralazine, Magnesium Sulfate, Nitroglycerin, Insulin-Regular, Morphine

Sulfate, Potassium Chloride, Packed Red Blood Cells, D5 1/2NS, LR, Solution, Sterile Water,

Piggyback, OR Crystalloid Intake, OR Cell Saver Intake, PO Intake, GT Flush, KCL (Bolus),

Hematocrit, Platelet Count, Hemoglobin, MCHC, MCH, MCV, Chloride, Anion Gap, Creati-

nine, Glucose, Magnesium, Calcium Total, Phosphate, INR (PT), PT, PTT, Lymphocytes, Mono-

cytes, Neutrophils, Basophils, Eosinophils, PH, Base Excess, PCO2, Specific Gravity, Lactate,

Asparate Aminotransferase (AST), Alkaline Phosphatase, Aspirin, Docusate Sodium, Humulin-

R Insulin, Metoprolol Tartrate, Pantoprazole, Arterial Blood Pressure Diastolic, Arterial Blood

Pressure Mean, Respiratory Rate, Alarms On, MinuteVolumeAlarm-Low, Peakinsp. Pressure,

PEEPset, Minute Volume, Tidal Volume (observed), Minute Volume Alarm-High, Mean Airway

Pressure, Central Venous Pressure, Respiratory Rate (Set), Pulmonary Artery Pressure Mean,

O2Flow, Glucosefingerstick, Heart Rate Alarm-Low, Pulmonary Artery Pressure Systolic, Tidal

Volume (set), SpO2 DesatLimit, RespAlarm-High, white Blood Cells Count Mean, Gcseyes, Serum

Bicarbonate Level Mean, Systolic Blood Pressure Abp Mean, Heart Rate, Serum Urea Nitrogen

Level, Urinary Output Sum, Body Temperature, Bilirubin Level, Gcsmotor, Gcsverbal, IE Ratio

Mean’,’Arterial Pressure Mean, Midazolam, SpO2 Peripheral, Epinephrine, Hgb, Propofol, Fen-

tanyl, Diastolic Blood Pressure Mean, Norepinephrine, Dopamine, Height, Serum Transferrin,

48



Platelet, Peep, Respiratory Rate, Total Cholesterol.
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