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ABSTRACT 

 

Nonlinear effects become more important in predicting the motions of a wave energy 

structure (WES), which is subject to large (relative to its dimensions) motion amplitudes. 

To model the WES more accurately, a time-domain program (SIMDYN) is further 

developed. In particular, SIMDYN’s “blended” option improves the linear option by 

accounting for not only the nonlinearity of important external forces but also the 

nonlinearity due to large body rotations (i.e., inertia forces). To reveal the significance of 

these nonlinear effects, forced motion analysis are performed. The simulation results from 

SIMDYN under the blended option are examined by model test correlations, which has 

seldom been done before for a WES.  

Besides that, the other important discrepancy in WES modelling: viscous damping is 

studied. By applying an advanced system identification technique, Reverse-Multiple Input 

Single Output (R-MISO), to model tests of a WES under random waves, viscous damping 

of a realistic (typical catenary moored) system is studied. Based on the comparisons 

between the frequency dependent transfer functions from the simulations and those from 

the model tests, reasonable linear or quadratic damping have been extracted. In a sense, 

this methodology can become a powerful alternative in damping corrections for WES 

under random sea states. 

Compared to other quantities of interest which have been extensively studied in typical 

design practice, the dynamic stability has not been investigated adequately. The Melnikov 

function model and the Markov process model are two efficient approaches providing 
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quantitative predictions of capsizing. In the last part, to predict the pitchpoling risks of a 

moored floating cylinder representing a generic WES under random excitation, the two 

methods has been explored. Using the Melnikov approach, the rate of phase space flux 

was evaluated to quantify the dynamic stability. This approach is compared with the 

Markov approach, which evaluates the mean first escape rate to quantify the vessel’s 

dynamic stability. The two methods are investigated systematically by varying important 

parameters, which include the linear and quadratic damping, the mooring systems and the 

sea states.  
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1. INTRODUCTION  

 

Wave energy is a promising renewable energy resource, and it is distributed 

extensively in coastal areas (Astariz and Iglesias 2015). According to the Bureau of Ocean 

Energy Management, the recoverable wave energy in the U.S. is capable of powering more 

than 100 million homes. In terms of energy density, the wave power is of a higher order 

of magnitude compared to solar and wind power. In addition, the electricity supply from 

wave energy can be forecast days in advance and it is available all day and night 

(Columbia Power Technologies 2017). 

Many wave energy structures (WESs) were designed to convert wave energy to 

electricity (Falnes, 2002; Drew et al., 2009; Lópeza et al., 2013). Typical wave energy 

structure (WES) includes oscillating water columns (OWC), attenuators, point absorbers 

(PA), oscillating wave surge converters (OWSC), submerged pressure differential devices 

(SPD) etc. (Falcão 2010). While some WESs are fixed onto the shore or the seabed, many 

are floating (see Figure 1.1) or submerged structures. It is worth noting that a WES may 

be any structure in the wave energy conversion system. In the dissertation, the floating 

power system (FPS) used in the model test correlations is a necessary unit in the wave 

energy conversion system, but the FPS itself is not a wave energy converter (WEC). That 

is the reason why the more general term wave energy structure or “WES” is used to refer 

to it. 
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Figure 1.1 Floating wave energy structure (OWC) 
 

Floating systems positioned by mooring lines is the typical form of many wave 

energy structures. For instance, in the department of energy sponsored competition for the 

wave energy devices (namely, "wave energy prize"), the most successful design (namely, 

AquaHarmonics) is of the point absorber form (see Figure 1.2).  

 

 

Figure 1.2 AquaHarmonics, reprinted (Water Power Technologies Office, 2016) 



  

3 

 

 

As wave passes by, AquaHarmonics rises and falls on the waves and spins 

generator through a tether (Water Power Technologies Office, 2016). In fact, the point 

absorber (PA) is also one of the most mainstream WEC types (Shami et al., 2018). The 

largest U.S. wave energy device manufacturer, Ocean Power Technologies, also launched 

a point absorber as its flagship product. Therefore, this dissertation categorizes the most 

common/general form of WES as: 

 Geometry: typical floating body 

 Motions: free floating with six degrees of freedom 

 Positioning: (traditional) mooring system 

The concurrent status of WESs has been reviewed in the Extreme Conditions 

Modelling Workshop (ECMW) when experts from industry and universities gathered in 

Golden, Colorado (Coe et al., 2014). It was summarized that most WESs operates in two 

modes: the "normal" mode when the wave energy is converted into electricity (Korde and 

Ringwood, 2016); and the "survival" mode when large amplitude motions/loads are 

induced (Coe et al., 2014). Design optimizations, including the implementation of control 

algorithms (Korde and Ringwood, 2016), mainly aim at improving the output in the 

normal mode. On the other hand, the reliability and the cost of WESs depend largely on 

the survival mode. 

It’s worth noting that this dissertation does not consider the power take off 

problem. The power take off (i.e. generator) works in the power conversion chain (PCC), 

which is also subject to harsh sea states (e.g. large relative motion between the PTO’s 
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stator and slider). Currently the survival strategy of many WESs is to either “lock” the 

PCC or allow "freewheeling" to reduce motions/loads for this sensitive component (Coe 

et al., 2014). Life extending controls (LECs) that can help reduce the PCC forces, are also 

developed for WECs. However, the "natural" status for PCC is still either "locked" or 

"freewheeling". When the PCC is locked, the WEC moves as a rigid body (six degree of 

freedom at most). When the PCC is freewheeling, then the stator (usually positioned by 

the mooring system) moves as a rigid body, the slider yields an additional degree of 

freedom. It can noticed that design details are needed for accurately modelling the PCC, 

so its influences will be considered in future studies. 

As for the environmental variables (wave, wind and current) in the study, 

according to the ECMW (Coe et al., 2014), wave loads (due to regular and irregular waves) 

are the dominant element for WES’s survival scenarios; wind is generally a marginal 

component (except for WESs with large areas above the water line, like OWCs); current 

exerts additional drag force in certain direction. As current practices of modelling for 

WESs are usually limited to the wave loading (e.g. Yu et al., 2015, Yu 2017), this 

dissertation will not consider the wind and current loading. 

1.1. Background and the Research Scope Overview 

Accurate numerical modelling is critical to both normal mode and survival mode. 

Numerical modelling is anything but new in traditional naval architecture and offshore 

engineering practices (Pastoor, 2002; Dietz, 2004; Reed and Beck, 2017). However, for 

WESs, concurrent numerical modelling was first reviewed comprehensively by experts 

from the relevant industry, universities, and national laboratories in the ECMW (Coe et 
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al., 2014). The ECMW concluded that more research in the numerical modelling area is 

necessary, because wave energy structures are different from traditional ships and offshore 

structures in two aspects. 

The first significant problem pointed out by the ECMW is that WESs are usually 

subject to larger motion amplitudes (relative to their dimensions), therefore nonlinear 

effects become more important. To select the best pathway to develop the most appropriate 

modelling tool, existing hydrodynamic modelling methods are listed in Table 1.1. 

Generally, the cost and time involved in application of a modelling method (see Table 1.1) 

increases with its fidelity (Yu 2017). They were used comprehensively to take advantage 

of either their efficient turnaround time or high fidelity.  

 

Table 1.1 List of hydrodynamic modelling methods 
 Hydrodynamics Software 

1 Morison’s Equation (DNV 2010) N/A 

2 
Linear time (frequency) domain 

potential flow (ANSYS Inc. 2011) 

AQWA (ANSYS Inc. 2011), 

WAMIT (WAMIT Inc. 2013), 

Nemoh (Penalba et al., 2017) 

3 
Blended time domain potential flow 

(Reed and Beck 2017) 

WEC-Sim (NREL and Sandia 

2014), SIMDYN (Somayajula 

and Falzarano 2015) 

4 
Nonlinear time domain potential flow 

(Stern et al., 2008) 
Aegir (Stern et al., 2008) 
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Table 1.2 Continued 
 Hydrodynamics Software 

5 

Computation Fluid Dynamics (RANS 

(Yu et al., 2015), SPH (Yeylaghi et al., 

2015), LES (Sagaut 2006) 

STAR-CCM+ (CD-adapco 

2014), OpenFoam (OpenFOAM 

Ltd. 2019) 

6 
Model tests (Lawson et al., 2015) 

(Physical modelling) 
N/A 

 

The linear time-domain potential flow method (ANSYS Inc. 2011) is the most 

common method for the analysis of offshore structures (e.g., semisubmersibles). Inverse 

Fourier transforms are conducted on the linear frequency domain hydrodynamic analysis 

results to conveniently generate time series (e.g., the Froude-Krylov force time series). 

Model test correlations of WES responses with the linear time-domain programs have 

been performed by many researchers (e.g., Lawson et al., 2015). Though this is a basic 

and very efficient method, it does not address the nonlinear effects, which are important 

when waves and motion amplitudes are relatively large. 

The blended time-domain method usually accounts for the nonlinearity in the 

Froude-Krylov forces, hydrostatic forces, and the equations of motion (inertia forces), 

while the remaining forces are computed using either linear or nonlinear modelling (Reed 

and Beck 2017). The blended method has been applied to simulate ship motions by many 

researchers (Umeda et al., 2012, Belenky et al., 2003, Chen 2002). Wave Energy 

Converter SIMulator (WEC-Sim), developed by the Sandia National Laboratory and the 
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National Renewable Energy Laboratory, incorporates the blended method option (Lawson 

et al., 2014), but it has not been compared with model test results of a WES. 

The nonlinear time-domain potential flow method solves the fluid flow problem 

using the fully nonlinear free-surface boundary conditions instead of the linearized free-

surface boundary conditions used in the linear and blended time-domain methods (Beck 

and Reed 2001). These nonlinear modelling approaches have been reviewed in past 

research (Penalba et al., 2017). But this method is calculationally intensive (i.e. it usually 

takes an order of magnitude more runtime than the blended time-domain method). 

Computational fluid dynamics (CFD) methods overcome the discrepancies of 

many of the other methods based upon the assumptions of the potential flow theory (by 

including fluid viscosity); they are also used to simulate WESs. CFD methods include 

Reynolds-averaged Navier-Stokes (e.g., Yu et al., 2015), smoothed-particle 

hydrodynamics (e.g. Yeylaghi et al., 2015), and large eddy simulation (e.g., Sagaut 2006). 

These CFD methods are capable of capturing the full range of phenomena in extreme 

waves (see Ransley et al., 2017). Therefore, CFD methods are more accurate than the 

previously described methods, but the computational time is significantly longer than even 

the nonlinear time-domain method.  

The blended time-domain method has been selected to model the WES motions 

under the assumption that it can address the nonlinear forces in a time-efficient manner. 

The previous research in the Marine Dynamic Laboratory (MDL) at Texas A&M 

University (where my research is conducted) has formed a foundation for such a tool: the 

frequency domain program MDL-HYDROD (Guha, 2016; Liu and Falzarano, 2017) and 
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time domain program SIMDYN (Somayajula and Falzarano, 2015). SIMDYN were 

originally developed to simulate the ship motion, usually those simulations consist of 

limited degrees of freedom (e.g. sway, heave and roll only). In this study, SIMDYN was 

improved so that it can account for the nonlinear effects of a WES with regards to Froude-

Krylov forces, hydrostatic forces, and inertia forces. In addition, by coupling with the 

open-source Mooring Analysis Program, MAP++ (MAP++ Documentation 2019) and 

implementing other forces (e.g. slowly varying wave drift forces) when necessary, 

SIMDYN has become capable of accurately and efficiently simulating WES motions, 

which are six degrees of freedom.  

Physical modelling/model tests are considered as the “gold standard” in 

hydrodynamics. Experimental study has been conducted on typical WESs such as the 

oscillating water column (e.g., Elhanafi et al., 2017), the point absorber (e.g., Sirnivas et 

al., 2016), and the oscillating surge wave energy converter (e.g., Ruehl et al., 2016). The 

model test correlations in these studies have examined and improved simulation tools in 

different ways. In this dissertation, the accuracy of the program was verified by correlating 

the simulations with open access model test results. These model tests were conducted on 

a floating power system (FPS) by the Beaufort Research and Hydraulics and Maritime 

Research Centre (HMRC). Designed to provide power and connection to the grid (Bosma 

et al., 2014), the FPS did not generate electricity in the model tests. This makes it a perfect 

benchmark model for the study herein.  

With the improved modelling tool in hand, the remaining uncertainty lies mainly 

in the viscous damping. Actually, this is exactly what the ECMW pointed out as the other 
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aspect (the first aspect being the nonlinear effects) in which wave energy structures are 

different from traditional ships and offshore structures: WESs have much smaller scales, 

resulting in smaller Reynolds numbers, therefore accurately modeling viscous damping is 

more significant. Viscous damping is a “grey” area for modelling tools based on the 

potential flow theory and usually needs to be corrected manually. The viscous damping 

corrections can be achieved through empirical methods (Falzarano et al., 2015) or through 

free decay tests (Sirnivas et al., 2016; Handschel et al., 2015). However, WESs are 

relatively novel design, so the empirical equations for ship shaped hulls may not be 

applicable to the typical WES geometries. On the other hand, accessible WES model tests 

data are inadequate and limited. For example, for the FPS, a free decay test result was not 

available. 

As an alternative, the viscous damping can be evaluated through the previously 

developed system identification technique (Somayajula and Falzarano, 2016). It can 

directly deal with cases under random sea states, which are the most common situations, 

as the actual sea states in nature are random. System identification is not just the choice 

when other alternatives are absent, it is superior to other methods in that it reveals the 

variation of transfer functions with frequency, which cannot easily be done otherwise.  

Popular system identification techniques include Restoring Force Surface (RFS) 

(Masri et al., 1987), Nonlinear Auto-Regressive Moving Average with eXogenous inputs 

(NARMAX, see Leontaritis and Billings 1985), Hilbert transform (Feldman 1994) and 

Reverse-Multiple Input Single Output (R-MISO, see Bendat and Palo 1989, Bendat 1990, 

Palo et al. 1998, Bendat and Piersol 2011). Somayajula and Falzarano (2016) have 
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reviewed and discussed the advantages and limitations of these methods when applied to 

marine structures. The Marine Dynamics Laboratory (MDL) has studied the application 

of the R-MISO technique in naval architecture and ocean engineering problems (Falzarano 

et al., 2004, Somayajula and Falzarano 2016, Somayajula and Falzarano 2017).  

The dimensions and geometry of the FPS are similar to a point absorber type WEC, 

which is believed to be the most typical WEC form. Therefore, the model test results of 

the FPS has been used to explore the applicability of the system identification method in 

this dissertation. The FPS has been tested in irregular (random) waves that were 

determined according to the sea state records of Galway Bay in Ireland. The wave time 

series measured in the model test were input to SIMDYN to make an “apples-to-apples” 

comparison between the simulated motions and the measured motions. All the model tests 

data are open access from Beaufort Research and HMRC based in Cork, Ireland (Bosma 

et al., 2014). As the system identification method is general, it is expected to be applicable 

to many other WESs. 

With the two problems in WES modelling (nonlinear effects and viscous damping) 

better addressed, many quantities of interest (QOI) can be studied. The common QOIs 

(DNV, 2010) are: motions (e.g. roll and pitch are important to the dynamic stability); local 

loads (e.g. the connecting structure between the controller module and the main frame is 

subject to shearing stress due to the local lateral accelerations); mooring loads (e.g. tension 

and offset). Though the local accelerations and the mooring loads (are the most common 

QOIs) can also be studied, usually extensive time domain simulations are required, which 

makes it similar to traditional design practice. Compared with those QOIs analyzed 



  

11 

 

extensively in the typical global performance analysis (frequency domain and time 

domain), the dynamic stability (capsizing dynamically) is given relatively less attention 

(Haslum et al., 1999). 

When it comes to the stability issue, while the static stability of larger floating 

structures like semi-submersibles/spars has been regulated by the various classification 

societies, their dynamic stability is usually of less concerned about (Koo et al., 2004, Mao 

and Yang 2016). As any emerging type of structure with smaller dimensions, a wave 

energy converter may experience more severe dynamic instabilities (Tarrant and Meskell 

2016, Giorgi and Ringwood 2018, Gomes et al., 2017, Palm et al., 2018, Kurniawan et al., 

2019) than traditional offshore structures because WESs usually sustain larger motion 

amplitudes (relative to their dimensions). Actually, several model tests of point absorber 

type WECs (Payne et al., 2008, Sheng et al., 2012, Gomes et al., 2012) have observed 

instability phenomenon, which can induce unexpected roll/pitch capsizing. 

As for a wave energy converter, the “head seas” situation (as shown in Figure 1.3) 

is usually of most concerned, since WESs have no forward speed. In the head seas, the 

first concern, is for its dynamic stability. That is the possibility of pitchpoling due to the 

direct wave excitation, though the parametric excitation may also lead to instability. Of all 

the existing WES designs, many are floating bodies and are of the cylindrical geometries 

(e.g. Wang and Falzarano 2017, Wang et al., 2017). Mooring systems are designed to 

maintain the position of WESs. In this study, the most common WES form, a moored 

floating cylindrical geometry, is used as a generic model. Figure 1.3 depicts a generic 
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point absorber type wave energy converter, for which the modelling and analysis are 

representative of the majority of WES designs. 

 

 

Figure 1.3 Generic wave energy structure 
 

Time domain analysis (see e.g. Somayajula and Falzarano 2015, Wang et al., 2020, 

Tarrant and Meskell 2016) seems to be a natural method for capsizing risk assessment. 

However, as it is very time consuming (Somayajula et al., 2019), time domain analysis is 

by its very nature inefficient in design. An alternative to time domain simulation is the 

Melnikov approach (Melnikov, 1963). It was initially applied by several researchers (e.g. 

Guckenheimer and Holmes 1984, Wiggins 2003) to analyze the nonlinear dynamics of 

mechanical oscillators. Falzarano (1990) was one of the first researchers to apply the 

Melnikov approach to study ship capsizing excited by regular beam seas. Frey and Simiu 

(1993) as well as Hsieh et al. (1994) extended this approach to systems under random 
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excitation by showing that the outflowing phase space flux from the safe region is related 

to the area enclosed by the non-negative Melnikov function. Therefore, an attempt will be 

made to apply the Melnikov approach to analyze the pitchpoling of a generic WES (with 

mooring). 

The stability of the WES can alternatively be analyzed using the stochastic 

averaging method (see e.g. Su and Falzarano 2013). The system is averaged over the 

period of the unperturbed solution so that the energy of the system can be approximated 

as a Markov process (this approach is called the Markov approach). The mean first passage 

(failure) time of a Markov process can be numerically found by solving a set of differential 

equations. Using this approach, researchers have analyzed ship rolling under either 

random direct excitation (Su 2012, Su and Falzarano 2013) in beam seas or random 

parametric excitation in head seas (Somayajula and Falzarano 2019, Somayajula et al., 

2019). The Markov approach generally has shown good agreement with the Melnikov 

approach on the ship rolling problem, although different parameters influence the 

comparison (Su, 2012, Somayajula 2017). It will be attempted as another method to 

analyze the pitchpoling of a generic WES (with mooring). 

The dissertation is organized as follows. Section 2 covers the improvement of a 

blended time domain program for the motion predictions of a wave energy structure, 

benchmarked with model test results. Section 3 explores the application of system 

identification technique in model tests correlations of a realistic wave energy structure 

under random sea states, which can be used to correct the viscous damping. Section 4 

studies the pitchpoling vulnerability of a typical wave energy structure geometry based on 
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Melnikov and Markov approaches. Section 5 summarizes the conclusions and discusses 

about future research directions. The format of the dissertation closely follows what has 

already been described in three journal papers (section 2: Wang et al. 2020b, published 

with Journal of Marine Science and Engineering; section 3: Wang et al. 2020a, published 

with Applied Ocean Research; section 4: a manuscript authored by Wang and Falzarano, 

submitted to Ships and Offshore Structures is in the final stages of review and acceptance).
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2. DEVELOPMENT OF A BLENDED TIME-DOMAIN PROGRAM FOR 

PREDICTING THE MOTIONS OF A WAVE ENERGY STRUCTURE1 

 

2.1. Introduction 

In designing a WES, predicting the motions is important and other quantities (e.g. 

mooring loads) are usually closely correlated with the motions. The significant problem 

in WES modelling (pointed out by the ECMW) is that WESs are usually subject to larger 

motion amplitudes (relative to their dimensions), therefore nonlinear effects become more 

important. After comparing existing hydrodynamic modelling methods, it’s observed that 

the blended time domain method can be a time-efficient approach to address the nonlinear 

effects (although not all of them, though). This section discusses the development of such 

a time domain program (SIMDYN) capable of modelling realistic WES (six-degree of 

freedom, with an attached mooring system) while accounting for nonlinear effects. 

SIMDYN was originally developed to simulate time domain ship motions (non-

linearly). Usually those simulations involve roll motion only. Sometimes those 

simulations will couple with limited degrees of freedom (e.g. sway, heave and roll only). 

The author first added an interface to allow SIMDYN to couple with the open-source 

Mooring Analysis Program, MAP++ (MAP++ Documentation 2019). After implementing 

other forces as necessary (e.g. the drift forces), SIMDYN became capable of simulating 

                                                 

*Reprinted with permission from “Development of a blended time-domain program for 
predicting the motions of a wave energy structure” by Wang et al., 2020. J. Mar. Sci. Eng. 8(1), 1, 
Copyright [2020] by Hao Wang. 
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the WES motions, which have six degrees of freedom. “Other forces” include slowly 

varying wave drift forces and Morison element forces etc.  

More importantly, SIMDYN was improved so that it can more accurately account 

for the nonlinear effects in Froude-Krylov forces, hydrostatic forces, and inertia forces. 

Available open source model test data has enabled us to examine and improve the accuracy 

of the simulation program. In 2014, the Beaufort Research and Hydraulics and Maritime 

Research Centre (HMRC) conducted model tests on a floating power system (FPS). The 

FPS was used in the model test correlation because suitable (and accessible) model test 

data was very limited. In fact, the geometry and dimensions of the floating power system 

are similar to a point absorber. Designed to provide power and connection to the grid 

(Bosma et al., 2014), the FPS is a necessary unit in wave energy conversion, but it is not 

a wave energy converter (WEC). That is the reason why the more general term “WES” is 

used to refer to it. 

The FPS did not generate electricity in the model tests, thus reducing uncertainty 

and making it a perfect benchmark model for the study herein. Therefore, the motions of 

the FPS under the sea states tested in the experiments were simulated in SIMDYN to verify 

the accuracy of the program. Since the blended time domain method and the program are 

general they should be applicable to different types of WESs (e.g. the oscillating water 

column, the point absorber). The rest of the section is organized as follows. Subsection 

2.2 gives the mathematical model of SIMDYN, including formulating the nonlinear 

equations of motion and the external forces. Subsection 2.3 discusses the nonlinear effects 

of Froude-Krylov and hydrostatic forces through a series of forced motion analyses. 
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Subsection 2.4 details the nonlinear inertia forces due to a large-angle of rotations and 

discusses their significance. Subsection 2.5 presents the model test correlations with the 

simulations for the regular wave cases. Subsection 2.6 is the discussion about the results. 

2.2. Mathematical Model Description 

2.2.1. Coordinate systems 

To describe rigid body motions conveniently, two right-handed coordinate systems 

were used. The global coordinate system (GCS) is fixed to the earth (see Figure 2.1); a 

point in the GCS is 𝒙 = (𝑥, 𝑦, 𝑧). The local coordinate system (LCS) translates and rotates 

with the rigid body; a point in the LCS is 𝒙ᇱ = (𝑥ᇱ, 𝑦ᇱ, 𝑧ᇱ). 

 

 

Figure 2.1 Generic wave energy structure 
 

The vector 𝝃 = (𝜉ଵ, 𝜉ଶ, 𝜉ଷ) represents the translation from the GCS origin (0,0,0) 

at the calm water line to the LCS origin (𝜉ଵ, 𝜉ଶ, 𝜉ଷ). The rotation vector 𝜶 = (𝜉ସ, 𝜉ହ, 𝜉଺) 
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consists of the Euler angles between the GCS and the LCS. The coordinates in the LCS, 

𝒙ᇱ, are related to the coordinates in the GCS, 𝒙, through rotation matrix 𝑅: 

𝑥ᇱ = 𝑅(𝑥 − 𝜉),      𝑅 = ൥

𝑐ହ𝑐଺ (𝑐ସ𝑠଺ + 𝑠ସ𝑠ହ𝑐଺) (𝑠ସ𝑐଺ − 𝑐ସ𝑠ହ𝑐଺)

−𝑐ହ𝑠଺ (𝑐ସ𝑐଺ − 𝑠ସ𝑠ହ𝑠଺) (𝑠ସ𝑐଺ + 𝑐ସ𝑠ହ𝑠଺)
𝑠ହ −𝑠ସ𝑐ହ 𝑐ସ𝑐ହ

൩          (2.1) 

In equation 2.1, 𝑐௜ represents 𝑐𝑜𝑠(𝜉௜), and 𝑠௜ represents 𝑠𝑖𝑛(𝜉௜). In SIMDYN, the 

order of rotation used was roll first, then pitch, and then yaw. This is the convention 

specified by Ogilvie (1983). The angular velocity in the GCS is 𝝎 = 𝑅்𝝎ᇱ, where 𝝎ᇱ is 

the angular velocity in the LCS. In the matrix form, the angular velocity is: 

 𝝎 = ൥

1 0 𝑠ହ

0 𝑐ସ 𝑠ସ𝑐ହ

0 𝑠ସ 𝑐ସ𝑐ହ

൩ ൝

𝛼ଵ̇

𝛼ଶ̇

𝛼ଷ̇

ൡ = 𝑄𝜶̇     𝝎ᇱ = ൥

𝑐ହ𝑐଺ 𝑠଺ 0
−𝑐ହ𝑠଺ 𝑐଺ 0

𝑠ହ 0 1
൩ ൝

𝛼ଵ̇

𝛼ଶ̇

𝛼ଷ̇

ൡ = 𝑃𝜶̇      (2.2) 

2.2.2. Governing equations  

The blended time-domain method is based on the nonlinear equations of motion. 

The exact equations of motion are as (Somayajula and Falzarano 2015): 

ቊ
𝑚 ቂ𝝃̈ + 𝝎̇ × (𝒙𝑮 − 𝝃) + 𝝎 × [𝝎 × (𝒙𝑮 − 𝝃)]ቃ = 𝑭

𝐼𝝎̇ᇱ + 𝝎ᇱ × 𝐼𝝎ᇱ = 𝑅[𝑴 − 𝒙𝑮 × 𝑭]                            
                      (2.3) 

Where 𝑚 is the mass, and 𝐼 is the mass moment of inertia with respect to the center 

of gravity. 𝝃̇  is the time derivative and 𝝃̈  is the second time derivative. The force in 

equation 2.3 is applied at the center of gravity of the rigid body. The moment in equation 

2.3 is referred to the center of gravity of the rigid body in the LCS. The left sides of 

equation 2.3 are the inertia forces. The right sides of equation 2.3 are external forces 𝑭 

(force at center of gravity, in the GCS) and moments 𝑴 (moment with respect to the LCS 

origin, in the GCS): 
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[𝑭, 𝑴]𝑻 = 𝑭𝑭𝑲 + 𝑭𝒅𝒊𝒇 + 𝑭𝒓𝒂𝒅 + 𝑭𝒗𝒊𝒔 + 𝑭𝒉𝒚𝒅 + 𝑭𝒎𝒐𝒓 + 𝑭𝒎𝒆 + 𝑭𝑷𝑻𝑶 + 𝑭𝒔𝒗   (2.4) 

WEC-Sim is a specific wave energy converter simulator developed by the Sandia 

National Laboratory and the National Renewable Energy Laboratory (WEC-Sim 

Documentation, 2019). Compared to WEC-Sim, SIMDYN includes an additional force: 

i.e., the slowly varying drift forces 𝑭𝒔𝒗 (used under the linear time domain option). The 

other forces are Froude-Krylov forces (𝑭𝑭𝑲), diffraction forces (𝑭𝒅𝒊𝒇), radiation forces 

(𝑭𝒓𝒂𝒅), viscous forces (𝑭𝒗𝒊𝒔), hydrostatic forces (𝑭𝒉𝒚𝒅), forces from the mooring system 

(𝑭𝒎𝒐𝒓), Morison element forces (𝑭𝒎𝒆), and power take-off (PTO) forces (𝑭𝑷𝑻𝑶).  

Equation 2.4 includes the power take-off term to demonstrate the program 

completely. However, in the simulations performed, the PTO modelling is not used. This 

is because the floating power system in the model tests had no PTO, which helps reduce 

the difficulty of model test correlations. The viscous forces, radiation forces, diffraction 

forces, and Morison forces can be calculated in the usual way adopted by any time domain 

program (e.g., ANSYS Inc. 2011).   

 

Table 2.1 Comparison of time domain programs 
Code Name AQWA WaveDyn WEC-Sim SIMDYN 

Developer ANSYS Inc. DNV GL SNL & NREL MDL 

Froude-

Krylov 

Linear, 

Nonlinear 

Linear, 

Nonlinear 

Linear, 

Nonlinear 

Linear, 

Nonlinear 

Hydrostatics 
Linear, 

Nonlinear 

Linear, 

Nonlinear 

Linear, 

Nonlinear 

Linear, 

Nonlinear 
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Table 2.2 Continued 
Code Name AQWA WaveDyn WEC-Sim SIMDYN 

Inertia Forces Linear Linear Linear Nonlinear 

Drift Forces Full QTF N/A N/A Full QTF 

License Commercial Commercial Open-Source Research 

 

Table 2.1 compares several programs on how the important forces are calculated. 

Compared to other programs, the nonlinear inertia forces are not applied in other programs 

shown in Table 2.1. The drift forces are not applied in other programs except in the 

commercial software AQWA. 

2.2.3. Mooring forces/moments 

Mooring in SIMDYN is modeled by coupling with the open-source quasi-static 

Mooring Analysis Program (MAP++). MAP++ ignores the inertia forces of the mooring 

lines and the fluid drag forces on the mooring lines (Masciola et al., 2013). Figure 2.2 

shows how MAP++ is coupled with SIMDYN. 

 

 

Figure 2.2 Coupling of SIMDYN and MAP++ 
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(𝐹௠௫,௜ ,  𝐹௠௬,௜ , 𝐹௠௭,௜)  denotes the instantaneous fairlead translation forces of 

mooring line number 𝑖. The fairlead position of mooring line number 𝑖, (𝑥௠,௜ ,  𝑦௠,௜ ,  𝑧௠,௜), 

is projected from the origin of the body coordinate system, (𝜉ଵ, 𝜉ଶ, 𝜉ଷ). 

2.2.4. Slowly varying drift forces/moments 

Slowly varying drift forces will affect WES responses under irregular waves. 

Therefore, when the (linear) time domain option is used, SIMDYN calculates the drift 

forces. In this study, the quadratic transfer functions were output from the Marine 

Dynamic Laboratory’s frequency domain hydrodynamic analysis program, MDL-

HYDROD. Details on how quadratic transfer functions (QTFs) are evaluated can be found 

in previous work (Somayajula and Falzarano, 2017; Xie et al., 2019). Figure 2.3 show the 

(difference frequency) quadratic transfer functions for surge and pitch. 

 

 

(a) Surge QTF 

Figure 2.3 (a) Surge QTF; (b) pitch QTF 
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(b) pitch QTF 

Figure 2.4 Continued 

If the random incident wave is decomposed as: 

𝜂 = ෍ 𝑎௜ 𝑐𝑜𝑠(𝜔௜𝑡 + 𝜖௜)

ேி

௜ୀଵ

                                                 (2.5) 

The corresponding slowly varying wave drift force are (see ANSYS Inc. 2011): 

𝐹௦௩(𝑡) = ෍ ෍[𝑎௜𝑎௝𝑃௜௝
ି

ேி

௝ୀଵ

ேி

௜ୀଵ

𝑐𝑜𝑠(−𝜔ି𝑡 + 𝜖ି) + 𝑎௜𝑎௝𝑄௜௝
ି 𝑠𝑖𝑛(−𝜔ି𝑡 + 𝜖ି)]   (2.6) 

𝑎௜, 𝑎௝ are the amplitude of the wave components with the frequency  𝜔௜ and 𝜔௝ 

and the phase 𝜖௜  and 𝜖௝ . 𝜔ି = 𝜔௜ − 𝜔௝ , 𝜖ି = 𝜖௜ − 𝜖௝ . 𝑁𝐹 is the number of frequencies 

used to define the frequency range. 𝑃௜௝
ି  are the in-phase components of the quadratic 

transfer function for the difference frequency 𝜔ି. 𝑄௜௝
ି  are the out-of-phase components 

of the quadratic transfer function for difference frequency 𝜔ି . The sum frequency 
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components in the drift forces are neglected in equation because their contributions are 

usually much smaller than the difference frequency components. 

2.2.5. Viscous forces/moments 

There are two terms related to viscous drag: 𝑭𝒗𝒊𝒔 and 𝑭𝒎𝒆. Either of them can be 

used in SIMDYN. The viscous forces 𝑭𝒗𝒊𝒔  can be calculated using the linearized 

(equivalent) damping coefficient 𝐵௘௤: 

𝐹௩௜௦ = −𝐵௘௤𝜉ఫ̇(𝑡)                                                        (2.7) 

Alternatively, the viscous forces can be modeled in the quadratic form of: 

𝐹஽ = −
1

2
𝐶ௗ௩𝜉ఫ̇(𝑡)ห𝜉ఫ̇(𝑡)ห                                                 (2.8) 

𝐶ௗ௩  are the quadratic damping coefficients and 𝜉ఫ̇  is the jth degree of freedom 

velocity. The drag coefficients should be determined by model tests correlations (e.g. free 

decay tests) or empirical formula. Practically, the user should input the degrees of freedom 

to which the damping values apply as well as the corresponding damping values. For 

example: 

*external_damping 4 1 4E4    a linear viscous rolling damping of 4×104 Ns/m is 

applied. 

*quadratic_damping 1 2 2E3  a quadratic viscous surge damping of 2×103 

Ns2/m2 is applied. 

2.3. Nonlinear Froude-Krylov and Hydrostatic Forces 

2.3.1. Formulation of nonlinear Froude-Krylov and hydrostatic forces 
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In the blended time domain method, the Froude-Krylov forces are calculated by 

integrating the nonlinear dynamic pressure over the instantaneous wetted surface of the 

rigid body (Penalba et al., 2017). In this way, the method accounts for the effects of the 

instantaneous body motions and the instantaneous incident wave. Linear incident wave 

potential at point (𝑥, 𝑦, 𝑧) in the GCS due to a unidirectional irregular sea incident at 

counterclockwise angle 𝛽 to the body’s longitudinal axis is given by the following: 

𝜙ூ = ෍ −

ேி

௜ୀଵ

𝐻௜𝑔

2𝜔௜
∙

𝑐𝑜𝑠ℎ[𝑘௜(ℎ + 𝑧𝑤)]

𝑐𝑜𝑠ℎ(𝑘௜ℎ)
𝑠𝑖𝑛 [𝑘௜(𝑥𝑐𝑜𝑠𝛽 + 𝑦𝑠𝑖𝑛𝛽) − 𝜔௜𝑡]         (2.9) 

For the wave frequency component 𝑖, 𝐻௜ is the wave height, 𝜔௜ is the frequency, 

𝑘௜  is the wave number, ℎ  is the water depth, and 𝑁𝐹  is the total number of wave 

frequencies. The linear incident wave potential is not defined for the points above the 

mean water line(𝒛 = 0). SIMDYN employs Wheeler stretching (1970) to extrapolate the 

incident and hydrostatic pressure profiles to provide an expression for pressure inside the 

incident wave crest (OrcaFlex Documentation 2019, Giorgi and Ringwood 2019).  

The Wheeler stretching is a usual way of extrapolating the incident wave pressure 

above the mean water level in calculating the nonlinear Froude-Krylov forces. Its accuracy 

has been benchmarked for ships (Du et al. 2009) and for wave energy converters (Giorgi 

and Ringwood 2017) and is assumed to be appropriate in this study. Mathematically, this 

can be considered as scaling the z-coordinate to compute pressure up to instantaneous free 

surface elevation 𝜂  (measured from the calm water plane) due to the incident wave 

(OrcaFlex Documentation 2019, Giorgi and Ringwood 2019). Vertical coordinate 𝒛 is 

modified to 𝑧𝑤 through Wheeler stretching: 
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𝑧𝑤 =
ℎ

ℎ + 𝜂(𝑡, 𝑥, 𝑦)
[𝑧 − 𝜂(𝑡, 𝑥, 𝑦)]                                    (2.10) 

Dynamic pressure 𝑝 is as follows: 

𝑝(𝑡, 𝑥, 𝑦, 𝑧𝑤) = −𝜌
𝜕𝜙ூ

𝜕𝑡
(𝑡, 𝑥, 𝑦, 𝑧𝑤) −

𝜌

2
|𝛻𝜙ூ(𝑡, 𝑥, 𝑦, 𝑧𝑤)|ଶ                 (2.11) 

The dynamic pressure −
ఘ

ଶ
|∇𝜙ூ(𝑡, 𝑥, 𝑦, 𝑧𝑤)|ଶ is also nonlinear. The surface panels 

of the rigid body satisfying condition 𝒛 ≤ 𝜂(𝑡, 𝑥, 𝑦) form instantaneous wetted panels 𝑃஻. 

The Froude-Krylov forces/moments are as follows: 

𝑭𝑭𝑲 = ඵ 𝑝(𝑡, 𝑥, 𝑦, 𝑧𝑤) ∙ 𝒏𝑑𝑆
 

௉ಳ

,     𝑴𝑭𝑲 = ඵ 𝑝(𝑡, 𝑥, 𝑦, 𝑧𝑤) ∙ (𝒙 × 𝒏)𝑑𝑆
 

௉ಳ

   (2.12) 

𝒏 is the normal vector of the panel, and 𝒙 is the position vector of the wetted panel 

centroid (in the GCS). SIMDYN integrates the results of a pre-processed potential 

problem solved under linear conditions 

Similar to the Froude-Krylov forces, the blended time domain method calculates 

the hydrostatic forces and moments by integrating the hydrostatic pressure over the 

instantaneous wetted surface area (Lawson et al., 2014): 

⎩
⎪
⎨

⎪
⎧ 𝑭𝒉𝒚𝒅 = −𝑚𝑔𝒌෡ + ඵ −𝜌𝑔𝒛 ∙ 𝒏𝑑𝑆

 

௉ಳ

                         

𝑴𝒉𝒚𝒅 = −𝒙𝑮 × ൫𝑚𝑔𝒌෡൯ + ඵ −𝜌𝑔𝒛 ∙ (𝒙 × 𝒏)𝑑𝑆
 

௉ಳ

                      (2.13) 

Where −𝑚𝑔𝒌෡ is the rigid body weight vector, and 𝑃஻ are the instantaneous wetted 

panels satisfying 𝒛 ≤ 𝜂(𝑡, 𝑥, 𝑦). Note that the hydrostatic pressure, −𝜌𝑔𝒛, is calculated 

using the actual vertical coordinate 𝑧 instead of 𝑧𝑤. In this way, equations 2.12 and 2.13 

satisfy the dynamic free-surface boundary condition.  
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2.3.2. Nonlinear effects of Froude-Krylov and hydrostatic forces 

 

 

Figure 2.5 Geometry of a floating power system 

 

This subsection presents the nonlinear effects through the forced motion tests. The 

forced motion tests are important because: 

 The forced motion tests shows the effect of different forcing corresponding to the 

same motions. Therefore, in an implicit way, they indicate the motion (as the final 

result) differences between the linear and the blended method; 

 The forced motion test is a control-variable test. It eliminates the effects of other 

forces, which makes the effect from each force component clearer. 

 Any simulation tool comes with limitations. The forced motion test can disable 

modules not robust enough and not very relevant (for example, the mooring 

module is not the focus of this study); 

The geometry used in these tests is the floating power system as plotted in Figure 

2.4. The forced motion tests refer to a series of SIMDYN simulations that use the specified 

(forced) motion time series to study a force component (e.g., Froude-Krylov). In these 

tests, SIMDYN generates the same incident wave for the linear time domain simulation 
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and the blended time domain simulation. This practice ensures that the body motions and 

wave elevations in the two types of simulations at any time instant are identical. The only 

variable in the forced motion tests is the method (linear or nonlinear) of calculating the 

Froude-Krylov and hydrostatic forces.  

It should be noted that in this study, the mesh on the FPS geometry is not remeshed 

at each time step. A panel is either fully submerged or fully emerged by whether the 

instantaneous centroid of the panel is above/below the free surface. In this case, the mesh 

number is enough for the output to be stable: more panels significantly increases the 

computational time without noticeable accuracy improvements. The integration could be 

improved by re-meshing the geometry in every time step, as conducted by Jang and Kim 

(2019, 2020). 

The body motions (from the linear time-domain simulation) under a regular wave 

of 𝐻 = 1𝑚, 𝑇 = 7.0𝑠 are recorded as the reference motions (𝑀1) and the forced motions 

were set at five times the reference motions (5 × 𝑀1). The study used a (large-amplitude) 

regular wave of 𝐻 = 5𝑚, 𝑇 = 7.0𝑠, Note that the motions in the forced motion tests were 

not simulated but were specified (as input). This is a quite extreme  condition (large wave 

and motions) for the FPS; therefore, nonlinear effects could be observed clearly.  

Figure 2.5 compares the Froude-Krylov and hydrostatic heave forces (when 𝐻 =

5𝑚, 𝑇 = 7.0𝑠, motions 5 × 𝑀1).  
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(a)  Froude-Krylov 

 
(b) hydrostatic 

Figure 2.6 Heave forces: (a) Froude-Krylov; (b) hydrostatic 
 

In Figure 2.5, the hydrostatic heave forces using the two methods are very close, 

while the Froude-Krylov heave forces show slight differences. 
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(a) Froude-Krylov 

 
(b) hydrostatic 

Figure 2.7 Pitch moments: (a) Froude-Krylov;  (b) hydrostatic 
 

Figure 2.6 compares the Froude-Krylov and hydrostatic pitch moments (when 𝐻 =

5𝑚, 𝑇 = 7.0𝑠, motions 5 × 𝑀1). The Froude-Krylov and hydrostatic pitch moments show 
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significant relevance to the nonlinear effects: as the wave and motion amplitude increase, 

the heave force and pitch moment become more and more relevant to the nonlinear effects.  

Figure 2.7 compares different sets of assumption applied in the nonlinear method 

(upper) with the linear method (lower). The model in the two methods are subject to the 

same regular wave of 𝐻 = 2.0𝑚, 𝑇 = 6.0𝑠. 

 

 

Figure 2.8 FPS modelling (upper: blended; lower: linear) 

 

From Figure 2.7, the following can be found: 

1. The instantaneous rotations of the structure are not addressed in the linear 

modelling, so the wetted surfaces and the corresponding pressures are different. 

2. The instantaneous rotations of the structure are not addressed in the linear 

modelling, so the normal direction variation of each panel is not captured. 

3. The translational motions of the structure are not captured in the linear method, so 

the wetted surfaces and the corresponding pressures are different. Note that the 
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surge and sway influence the relative phase of the incident wave, so they also 

contribute to the differences. 

2.4. Nonlinear Inertia Forces  

2.4.1. Derivations of the nonlinear inertia forces 

For an irregular wave, the radiation forces are as follows (Cummins 1962): 

{𝑭𝒓𝒂𝒅} = −[𝐴(∞)]൛𝝃̈ൟ − න [ℎ(𝜏)]{
ஶ

଴

𝝃̇(𝑡 − 𝜏)}𝑑𝜏                          (2.14) 

[𝐴(∞)] is the 6 × 6 added mass matrix at infinite frequency. It can be written as 

following: 

[𝐴(∞)]  = ቈ
𝐴ଵଵ

ଷ×ଷ 𝐴ଵଶ
ଷ×ଷ

𝐴ଶଵ
ଷ×ଷ 𝐴ଶଶ

ଷ×ଷ቉                                               (2.15) 

𝐴ଵଵ
ଷ×ଷ , 𝐴ଵଶ

ଷ×ଷ , 𝐴ଶଵ
ଷ×ଷ, and 𝐴ଶଶ

ଷ×ଷ  represent the four 3 × 3 blocks of the 6 × 6 added 

mass matrix [𝐴(∞)], and [ℎ(𝜏)] is the 6 × 6 retardation function matrix corresponding to 

the frequency-dependent radiation damping. Note that in the blended time domain method, 

acceleration term −[𝐴(∞)]൛𝝃̈ൟ  in equation 2.14 should be moved to the left side of 

equation 2.3. The equations of motion become the following: 

ቊ
𝑚{𝝃̈ + 𝝎̇ × (𝒙𝑮 − 𝝃) + 𝝎 × [𝝎 × (𝒙𝑮 − 𝝃)]} + 𝐴ଵଵ

ଷ×ଷ𝝃̈ + 𝐴ଵଶ
ଷ×ଷ𝜶̈ = 𝑭

𝐼𝝎̇ᇱ + 𝝎ᇱ × 𝐼𝝎ᇱ + 𝐴ଶଵ
ଷ×ଷ𝝃̈ + 𝐴ଶଶ

ଷ×ଷ𝜶̈ = 𝑅[𝑴 − 𝒙𝑮 × 𝑭]                           
 (2.16) 

Angular velocities 𝜔ᇱ and 𝜔 defined in equation 2.2 can be expressed in matrix 

form as shown below: 

𝝎 = 𝑄𝜶 ,̇ 𝝎ᇱ = 𝑃𝜶̇                                              (2.17) 

Differentiating equation 2.17 with respect to time, the angular accelerations are 

achieved (𝜔̇ᇱ in the LCS, 𝜔̇ in the GCS): 
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𝝎̇ = 𝑄𝜶̈ + 𝑄̇𝜶,̇ 𝝎̇ᇱ = 𝑃𝜶̈ + 𝑃̇𝜶̇                                   (2.18) 

Substituting equations 2.17 and 2.18 into equation 2.3 and rearranging to keep only 

the terms containing acceleration on the left side: 

𝑚𝝃̈ + 𝐴ଵଵ
ଷ×ଷ𝝃̈ + 𝑚𝑄𝜶̈ × (𝒙𝑮 − 𝝃) + 𝐴ଵଶ

ଷ×ଷ𝜶̈

= 𝑭 − 𝑚𝑄̇𝜶̇ × (𝒙𝑮 − 𝝃) − 𝑚𝝎 × [𝝎 × (𝒙𝑮 − 𝝃)]                               (2.19) 

Substituting equations 2.17 to 2.19 into equation 2.16, yields the following: 

𝐼𝑃𝜶̈ + 𝐼𝑃̇𝜶̇+𝐴ଶଵ
ଷ×ଷ𝝃̈                                                                              

+𝐴ଶଶ
ଷ×ଷ𝜶̈ + 𝑃𝜶̇ × 𝐼𝑃𝜶̇ =                                                                               

                                         𝑅𝑴 −  𝑚𝑅𝒙𝑮 × ൫𝑄𝜶̈ + 𝑄̇𝜶̇൯ × (𝒙𝑮 − 𝝃)

                                                        −𝑅{𝑚𝒙𝑮 × 𝝃̈ + 𝑚𝒙𝑮 × 𝑄𝜶̇ × [𝑄𝜶̇ × (𝒙𝑮 − 𝝃)]}

                           −𝑅{𝐴ଵଵ
ଷ×ଷ𝒙𝑮 × 𝝃̈ + 𝐴ଵଶ

ଷ×ଷ𝒙𝑮 × 𝜶̈}

 (2.20) 

Equations 2.19 and 2.20 are rearranged into the matrix form. Let 𝑣  denote a 

generic vector. Cross multiplication 𝑥ீ × 𝑣 can be written in the matrix form: 

𝒙𝑮 × 𝒗 = ൥

0 −𝑥ீଷ 𝑥ீଶ

𝑥ீଷ 0 −𝑥ீଵ

−𝑥ீଶ 𝑥ீଵ 0
൩ ൝

𝑣ଵ

𝑣ଶ

𝑣ଷ

ൡ = 𝐿ଵ(𝒙𝑮)𝒗                (2.21) 

Similarly, cross multiplication 𝒗 × (𝒙𝑮 − 𝝃) can be written in the matrix form: 

𝒗 × (𝒙𝑮 − 𝝃) = ቎

0 𝑥ீଷ − 𝜉ଷ −(𝑥ீଶ − 𝜉ଶ)

−(𝑥ீଷ − 𝜉ଷ) 0 𝑥ீଵ − 𝜉ଵ

𝑥ீଶ − 𝜉ଶ −(𝑥ீଵ − 𝜉ଵ) 0
቏ ൝

𝑣ଵ

𝑣ଶ

𝑣ଷ

ൡ

= 𝐿ଶ(𝒙𝑮 − 𝝃)𝒗                                                                                              (2.22) 

Using equation 2.22, 2.19 can be written as follows: 

𝑚𝝃̈ + 𝐴ଵଵ
ଷ×ଷ𝝃̈ + 𝑚𝐿ଶ(𝒙𝑮 − 𝝃)𝑄𝜶̈ + 𝐴ଵଶ

ଷ×ଷ𝜶̈

= 𝑭 − 𝑚𝐿ଶ(𝒙𝑮 − 𝝃)𝑄̇𝜶̇ − 𝑚𝝎 × [𝐿ଶ(𝒙𝑮 − 𝝃)𝝎]                                (2.23) 
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Substituting equations 2.21 and 2.22 into equation 2.20 and rearranging to keep 

only the terms containing acceleration on the left side results in the following: 

𝑚𝑅𝐿ଵ(𝒙𝑮)𝝃̈+𝑅𝐴ଵଵ
ଷ×ଷ𝐿ଵ(𝒙𝑮)𝝃̈ + 𝐴ଶଵ

ଷ×ଷ𝝃̈ + 𝐼𝑃𝜶̈ + 𝑚𝑅𝐿ଵ(𝒙𝑮)𝐿ଶ(𝒙𝑮 − 𝝃)𝑄𝜶̈

+𝐴ଶଶ
ଷ×ଷ𝜶̈ + 𝑅𝐴ଵଶ

ଷ×ଷ𝐿ଵ(𝒙𝑮)𝜶̈ = 𝑅𝑀 − 𝑚𝑅𝐿ଵ(𝒙𝑮)𝐿ଶ(𝒙𝑮 − 𝝃)𝑄̇𝜶̇

−𝑚𝑅{𝐿ଵ(𝒙𝑮)𝑄𝜶̇ × [𝐿ଶ(𝒙𝑮 − 𝝃)𝑄𝜶̇]} − 𝑃𝜶̇ × 𝐼𝑃𝜶̇ −  𝐼𝑃̇𝜶̇                              (2.24)

 

In the matrix form, equations 2.23 and 2.24 can be written as follows: 

ቈ
𝑚 + 𝐴ଵଵ

ଷ×ଷ       

𝑚𝑅𝐿ଵ(𝒙𝑮) + 𝑅𝐴ଵଵ
ଷ×ଷ𝐿ଵ(𝒙𝑮) + 𝐴ଶଵ

ଷ×ଷ                                     

𝑚𝐿ଶ(𝒙𝑮 − 𝝃)𝑄 + 𝐴ଵଶ
ଷ×ଷ

𝐼𝑃 + 𝑚𝑅𝐿ଵ(𝒙𝑮)𝐿ଶ(𝒙𝑮 − 𝝃)𝑄+𝐴ଶଶ
ଷ×ଷ + 𝑅𝐴ଵଶ

ଷ×ଷ𝐿ଵ(𝒙𝑮)
቉ ൜𝝃̈

𝜶̈
ൠ

                                    = ൜
𝑭

𝑅𝑀 − 𝑚𝑅𝐿ଵ(𝒙𝑮)𝐿ଶ(𝒙𝑮 − 𝝃)𝑄̇𝜶̇

                                    

   −𝑚𝐿ଶ(𝒙𝑮 − 𝝃)𝑄̇𝜶̇                        

             −𝑚𝑅{𝐿ଵ(𝒙𝑮)𝑄𝜶̇ × [𝐿ଶ(𝒙𝑮 − 𝝃)𝑄𝜶̇]}

      
   −𝑚𝝎 × [𝐿ଶ(𝒙𝑮 − 𝝃)𝝎]

−𝑃𝜶̇ × 𝐼𝑃𝜶̇ −  𝐼𝑃̇𝜶    ̇
ൠ                  

(2.25) 

Equation 2.25 is the nonlinear equation of motion used in SIMDYN. It is solved 

using the fourth-order Runge-Kutta method (Somayajula and Falzarano, 2015). 

2.4.2. Nonlinear effects of the inertia force  

This subsection presents the nonlinear effects of the inertia force (see Giorgi, and 

Ringwood, 2019; Tarrant and Meskell, 2016) through forced motion tests on the FPS 

geometry shown in Figure 2.4. In equation 2.16, all the nonlinear terms are related to 

rotations. Note that equation 2.16 includes the inertia forces due to the added masses on 

the left sides. Equation 2.16 can be rewritten as follows: 

൝
𝑭 = 𝑚 ቂ𝝃̈ + 𝝎̇ × (𝒙𝑮 − 𝝃) + 𝝎 × [𝝎 × (𝒙𝑮 − 𝝃)]ቃ + 𝐴ଵଵ

ଷ×ଷ𝝃̈ + 𝐴ଵଶ
ଷ×ଷ𝜶̈

𝑴 = 𝑅்൫𝐼𝝎̇ᇱ + 𝝎ᇱ × 𝐼𝝎ᇱ + 𝐴ଶଵ
ଷ×ଷ𝝃̈ + 𝐴ଶଶ

ଷ×ଷ𝜶̈൯ + 𝒙𝑮 × 𝑭                         
    (2.26) 
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Using equation 2.26, nonlinear inertia forces 𝑭 and moments 𝑴 can be calculated. 

Note that in the linear time-domain method, the motions and rotations are assumed small: 

𝒙𝑮 ≈ 𝑥ீ
ᇱ  , 𝝎 ≈ 𝝎ᇱ ≈ 𝜶̇, 𝝎̇ ≈ 𝝎̇ᇱ ≈ 𝜶̈                                     (2.27) 

𝑥ீ
ᇱ  are the coordinates of the center of gravity in the LCS, which is constant. 

Taking these assumptions to remove the nonlinear terms in equation 2.25, the following 

is obtain: 

ቈ
𝑚 + 𝐴ଵଵ

ଷ×ଷ 𝑚𝐿ଶ(𝑥ீ
ᇱ ) + 𝐴ଵଶ

ଷ×ଷ

𝑚𝐿ଵ(𝑥ீ
ᇱ ) + 𝐴ଶଵ

ଷ×ଷ 𝐼 + 𝑚𝐿ଵ(𝑥ீ
ᇱ )𝐿ଶ(𝑥ீ

ᇱ ) + 𝐴ଶଶ
ଷ×ଷ቉ ൜𝝃̈

𝜶̈
ൠ = ቄ

𝑭
𝑴

ቅ       (2.28) 

Note that the terms containing 𝐿ଵ(𝒙𝑮
ᇱ ) and 𝐿ଶ(𝒙𝑮

ᇱ ) convert momentum of inertia 

from the center of gravity to the origin of the LCS in the linear model, (0, 0, 0). This is the 

typical linear equation of motion. From equation 2.28, the linear inertia forces and 

moments can be calculated.  

Using equations 2.26 and 2.28, the inertia forces in the forced motion tests (i.e., 

the time series of the motions, velocities, and accelerations are given) can be obtained. 

Note that the moments are given in the GCS from equations 2.26 and 2.28; therefore, the 

inertia moments from the blended time domain method should be transformed to the 

instantaneous origin of the body coordinate system, (𝜉ଵ, 𝜉ଶ, 𝜉ଷ), to be compared with those 

from the linear time-domain method.  

In the forced motion tests, the translational motions were set to zero to reveal the 

nonlinear effects due to the rotation. The second set of forced motions of the FPS are quite 

mild, referred to as 𝑀2  (see Figure 2.8). 𝑀2  is specified to show the inertia force 



  

35 

 

differences (between the two options), so the relative phases of the rotations are not 

necessarily realistic. 

 

 

Figure 2.9 Reference forced motions 𝑀2 
 

The inertia forces corresponding to 10 times the reference motions, 10 × 𝑀2, are 

plotted in Figure 2.9. The surge and sway forces from the two methods are slightly 

different, indicating that the nonlinearity due to rotation is not significant for these rotation 

amplitudes.  

The heave force from the blended model looks very different from the linear 

model, but bear in mind that when the actual heave motion is in place, the contribution 

from the heave motion itself is much greater (>1,000 times) than that from the rotations. 

 

R
o

ta
tio

ns
 [d

eg
]



  

36 

 

 

Figure 2.10 Translation inertia forces corresponding to forced motion 10 × 𝑀2 

 

Under the forced rotations, 10 × 𝑀2, the differences in roll and pitch moments 

between the linear model and the blended model are noticeable (see Figure 2.10). The 

significant difference of the yaw moments indicates that for yaw, in this case, the linear 

model is no longer valid. 
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Figure 2.11 Rotation inertia moments corresponding to forced motions 10 ×
𝑀2 

 

The blended results contain higher (mostly double) frequency components in 

sway, heave, yaw and roll. They are the superharmonic components contributed by the 

nonlinear terms in the equation of motion. For example, in a case with zero yaw 

accelerations (an axisymmetric buoy), the combination of roll and pitch rotations will 

provide a nonlinear contribution to the yaw inertial forces using the nonlinear model. 

2.5. Model Test Correlations 

2.5.1. Model test setup and inputs 
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The blended time-domain program SIMDYN was examined using correlations 

with a series of 1:25-scale model tests (Bosma et al., 2014) performed by Beaufort 

Research/HMRC in Ireland. In these model tests, the incident wave headings included 0°, 

30°, and 60°. The 0° wave heading test was selected as it consists of more sea states. The 

0° wave test configuration is shown in Figure 2.11.  

 

 

Figure 2.12 0° wave test by Bosma et al. (2014), adapted with permission 
 

The 0° wave heading tests consisted of 34 regular wave cases. Some cases were 

skipped given indications of incomplete measurements or unexpectedly large roll and yaw 

measurements (which should not be the case, as the configuration is symmetric about the 

x-axis). The unexpectedly large roll and yaw measurements may be partially attributed to 

parametric instabilities, which many WECs suffer from (see Tarrant and Meskell 2016, 
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Babarit et al., 2009, Giorgi, and Ringwood 2018, Kurniawan et al., 2019, Palm et al., 2018, 

Gomes et al., 2017, Orszaghova et al., 2019). These dynamic instabilities deserve 

systematic studies in the future. The correlated sea states are plotted in Figure 2.12. 

 

 

Figure 2.13 Correlated sea states 

 

MDL-HYDROD performed the frequency domain analysis. The added masses, the 

radiation dampings, the diffraction forces, and the QTFs necessary for the blended time-

domain analysis were obtained. More details about MDL- HYDROD can be found in 

previous work (Guha 2016, Liu and Falzarano 2017).  
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(a) floating power system tested by Bosma et al. (2014), reprinted with permission 

 

(b) floating power system (panel model) analyzed by the Marine Dynamic 
Laboratory 

Figure 2.14 Floating power system models: (a) floating power system tested in 
the wave basin (photo by the Beaufort Research/HMRC, with permission); (b) 
floating power system (panel model) analyzed by the Marine Dynamic 
Laboratory 

 

Figure 2.13 (a) shows the 1:25-scale FPS model used in the wave basin (Bosma et 

al., 2014). The FPS panel model in Figure 2.13 (b) was used in SIMDYN (for integration 
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of instantaneous pressure). The FPS has octagon cross section with decreasing cross 

section area below the calm water line. It consisted of 2,396 panels and the wetted surface 

was not re-meshed during the simulations. A panel is either fully submerged or fully 

emerged (by determining whether the instantaneous centroid of the panel is above/below 

the free surface). The FPS is positioned by a 3-leg catenary mooring system with 120-

degree azimuth difference between each mooring leg. 

Table 2.2 lists the inputs used in the model test correlations. VCG is the vertical 

center of gravity and it is measured from the calm water plane (instead of from the bottom 

of the body). Kxx, Kyy and Kzz are the gyration radius, around the center of gravity. EA is 

the mooring element axial stiffness. 

 

Table 2.3 Floating power system information 
Characteristic Value Characteristic Value 

Mass M (kg) 11,337.9 Anchor Ver. Position (m) –25.0 

Length Lpp (m) 5.00 Anchor Hor. Position (m) 65.0 

Breadth B (m) 5.00 Mooring Line Length (m) 75.0 

Height D (m) 2.25 Mass/Unit Length (kg/m) 28.438 

VCG (m) 0.64 Mooring Line Diameter (m) 0.15 

Kxx (m) 1.386 Added Mass Coefficient 1.0 

Kyy (m) 1.386 Trans. Drag Coefficient 1.0 

Kzz (m) 1.821 Longi. Drag Coefficient 0.025 

Draft T (m) 0.75 EA (N/m) 1.0 × 108 
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Table 2.4 Continued 
Characteristic Value Characteristic Value 

Water Depth h (m) 25.0 Maximum Tension (kN) 100.0 

Fairlead Ver. Position (m) –0.75 Number of Mooring Lines 3 

Fairlead Hor. Position (m) 1.5 Line Azimuth Difference (°) 120 

 

2.5.2. Correlations of the regular wave cases 

The FPS geometry and mooring system configuration were symmetric about the 

x-axis, so relatively small sway, roll, and yaw motions were expected. The dominant 

surge, heave, and pitch motions from the time-domain (the linear and the blended) analysis 

were compared with the model test results.  

34 cases were analyzed successfully with reasonable time series patterns. Typical 

cases are of the form similar to sinusoidal time history (as plotted in Figure 2.14 and Figure 

2.15). From the plots, both the linear model and the blended model yield reasonable 

comparisons with the model tests (for surge and pitch). Motion amplitudes from the 

blended option look closer (than the linear model) to those from the model test. The heave 

plots were omitted because the simulated heaves were very close to the model test (with 

noticeable difference). 
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(a) surge 

 

(b) pitch 

Figure 2.15 Motion comparisons for H = 1.0 m, T = 7.0 s: (a) surge; (b) pitch 
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(a) surge 

 

(b) pitch 

Figure 2.16 Motion comparisons for H = 3.0 m, T = 9.0 s: (a) surge; (b) pitch  
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For the motion time series (longer than 10 min), their standard deviations represent 

the motion magnitudes. Therefore, the simulation errors are as follows: 

𝐸𝑟𝑟𝑜𝑟 = (𝑠𝑡𝑑௦௜௠ − 𝑠𝑡𝑑௘௫௣) 𝑠𝑡𝑑௘௫௣⁄ × 100%                                (2.29) 

𝑠𝑡𝑑௦௜௠  and 𝑠𝑡𝑑௘௫௣  are the standard deviations from the simulations and 

experiments, respectively. Figure 2.16 compares the errors for surge, heave, and pitch. 

 

 

(a) surge 

Figure 2.17 Regular wave case errors: (a) surge; (b) heave; (c) pitch 
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(b) heave 

 

(c) pitch 

Figure 2.18 Continued 
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Figure 2.16 compares the errors for surge, heave, and pitch. The range [–10%, 

15%] bounds 95% of the error dots, meaning that both the linear model and the blended 

model were found to yield an acceptable error level. While the heave errors from the two 

model are similar, the blended model was found to yield lower surge and pitch errors 

compared with the linear model. The statistics in Table 2.3 also reflect this. 

 

Table 2.5 Comparisons of error for regular wave cases (34 cases) 
 Item Surge Heave Pitch 

Mean 
Linear –4.0% 2.0% 8.2% 

Blended 0.0% 1.6% 1.9% 

Mean of 

Abs 

Linear 4.8% 2.6% 8.3% 

Blended 2.9% 2.6% 3.5% 

 

As listed in Table 2.3, the mean errors of the 34 regular wave cases using the 

blended method are consistently lower than the mean errors from the linear method for 

surge, heave, and pitch (consistently).  

In the case that the large positive errors cancelled out the large negative errors 

(meaning the mean errors did not represent the actual error levels), mean absolute errors 

are listed in Table 2.3 to reflect the level of error in another way. The mean absolute errors 

from the blended model also were shown to be lower than the mean absolute errors from 

the linear model, except for heave (which was very close).  
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Table 2.3 indicates that the blended time-domain method has a considerable 

advantage in accuracy. The advantage of the blended method can be credited to its 

capability to account for the nonlinearity in Froude-Krylov, hydrostatic, and inertia forces. 

Depending on the computer’s CPU capability, the absolute calculation time of the 

two methods are subject to change. However, the relative speed is meaningful. For a 

simulation of 3 minute in real time, using step of 0.1s, there should be 1800 steps (number 

of steps should be the criteria here as the step itself is flexible). Under this setting, the 

blended method spends 19 times simulation time of that spent by the linear method.  

Some factors will influence the relative speed (e.g. the panel number, inclusion of 

the drift forces, ramp time setting etc.). While the algorithm of the linear SIMDYN is quite 

mature, the algorithm of the blended SIMDYN has room for more optimization. In 

general, a fair estimation is that blended time domain method is about 10 times (order of 

magnitude) slower than the linear time domain method. Please recall that the next higher 

fidelity model (nonlinear time domain method) is about 102 times (order of magnitude) 

slower than the linear time domain method (see Yu 2017): 

Although in this subsection, using the two modelling approaches, the model test 

correlations show no significant differences, this happens when the linear results are 

already fairly close to the model test results, leaving limited room for improvement. Under 

more severe sea states, the improvements using the blended method are likely to be more 

significant.  

An uncertainty that needs to be pointed out is the mooring modelling. Sensitivities 

of the motion predictions to the mooring modelling (quasi-static or dynamic) have been 
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studied by Hall and Goupee (2015) and Yang et al. (2012). While the motion predictions 

under regular waves are shown to be not sensitive to the mooring modelling in the cases 

studied, it’s necessary to enhance the time domain program by coupling with the dynamic 

mooring program in the future studies. 

For all the regular wave cases, the general trend of the response amplitude ratio 

(blended/linear) (including surge, heave, and pitch) is plotted in Figure 2.17. 

 

 

(a) Blended/linear 

Figure 2.19 Response ratio: (a) Blended/linear; (b) Blended/experimental 
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(b) Blended/experimental 

Figure 2.20 Continued 

 

From Figure 2.17 (a), it can be observed that when the wave amplitude and motion 

amplitude are small, the blended method and the linear method are statistically very close. 

As the wave and motion amplitude increase, the results from the linear method exceed the 

results from the blended method. The gradual loss of accuracy of the linear assumptions 

with the increase of wave and motion amplitude leads to overprediction of the motions 

from the linear method. In addition, Figure 2.17 (b) indicates that the accuracy of the blend 

method is quite consistent as the wave height changes. 

2.6. Discussions 

In this section, the blended time domain method was implemented to predict WES 
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instantaneous pressure on the wetted panels of the floating structures. The method also 

accounts for nonlinearity in the equations of motion (i.e., inertia forces) due to rotations 

of the rigid body. Correlations with the model test results indicate that the blended time 

domain method is more accurate than the widely used linear time domain method as it 

reduces the error of the motion responses.  

This study discussed the nonlinear effects of Froude-Krylov, hydrostatic, and 

inertia forces. The (forced) motion time series were input to the both the linear model and 

the blended model to compare the corresponding Froude-Krylov, hydrostatic, and inertia 

forces. As in the forced motion tests, the method used (linear or blended) was the only 

variable, so the differences between the two methods under certain motion and wave 

amplitudes could be compared. In general, the gap between the blended method and the 

linear method widens as the motion amplitude and wave amplitude increases. While the 

model tests compares generally well with both the linear and blended time domain 

methods under the examined sea states, it can be reasonably deduced from the forced 

motion test results that under larger wave amplitudes, the advantages of the blended 

method may increase substantially.  

In this work, a floating power system (FPS) was used in model test correlations. 

The FPS’s geometry was selected from very limited suitable model test data accessible to 

us. Though not an actual wave energy converter, the FPS is of dimensions and geometry 

similar to the typical point absorber type wave energy converter. At this stage, the focus 

of this study is to make sure that the motion predictions from the numerical modelling are 

accurate (and robust). Even with an actual WEC, for examining the modelling method 
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under different sea states, it is preferable that the power take-off is deactivated. Therefore, 

as far as simulation is concerned, the floating power system similar to the point absorber. 

Actually, the improvements of SIMDYN and the confidences/benchmarks gained in this 

study are the foundation for further study.  
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3. APPLICATION OF SYSTEM IDENTIFICATION TECHNIQUE IN MODEL TEST 

CORRELATIONS FOR A FLOATING POWER SYSTEM 2 

 

3.1. Reverse Multiple Input Single Output Method 

Viscous damping is a “grey” area of uncertainty for modelling tools based on the 

potential flow theory. Viscous damping plays such an important role in simulating the 

motions accurately and that is why it needs to be correctly estimated. For typical ships and 

offshore platforms, the viscous damping corrections can be achieved through empirical 

methods or through free decay tests. As WESs are relatively novel design, the empirical 

ship shaped equations for the typical geometry may not be applicable. On the other hand, 

sometimes the model tests for WESs are inadequate: for the FPS, the free decay test was 

not available. Moreover, free decay tests are only capable of determining the model scale 

damping the natural frequency. As an alternative method, the viscous damping can be 

evaluated through the system identification technique. It can directly deal with cases under 

random sea states, which is the most common situations as the actual sea states are random.  

System identification is not just the choice when other alternatives are absent, it is 

superior to other methods in that it reveals the variation of transfer functions with 

frequency, which cannot be effectively done otherwise. Popular system identification 

techniques include Restoring Force Surface (RFS), Nonlinear Auto-Regressive Moving 

                                                 

*Reprinted with permission from “Application of system identification technique in efficient 
model test correlations for a floating power system” by Wang et al., 2020. Appl. Ocean Res. 98, 
102126, Copyright [2020] by Elsevier. 
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Average with eXogenous inputs (NARMAX), Hilbert transform and Reverse-Multiple 

Input Single Output (R-MISO). After reviewing the advantages and limitations of these 

techniques, R-MISO is found to be the most desirable method for marine structures. In 

this subsection, derivations of the Reverse Multiple Input Single Output (R-MISO) 

method follows the convention of Somayajula and Falzarano (2017). 

  

(a) m original inputs 𝑝௜(𝑡) 
and one output 𝑞(𝑡). 

 

(b) m conditioned inputs 
𝑝௜.(௜ିଵ)!(𝑡) and one output 
𝑞(𝑡). 

Figure 3.1 MISO model with unconditioned inputs and conditioned inputs 
 

Figure 3.1 (a) shows a multiple input single output (MISO) system, which consists 

of m inputs 𝑝௜(𝑡), 𝑖 = 1, 2, . . . , 𝑚 and one output 𝑞(𝑡). System identification identifies the 

transfer function from 𝑝௜ to 𝑞, 𝑉௜௤(𝜔), such that the noise 𝑛(𝑡) is minimized. The original 

inputs 𝑥௜(𝑡) can be converted into uncorrelated signals in Figure 3.1 (b) by conditioning 

an input with the previous inputs: 

𝑝௜(𝑡) = 𝑝௜:(௜ିଵ)!(𝑡) + 𝑝௜.(௜ିଵ)!(𝑡)                                         (3.1) 
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𝑝௜:(௜ିଵ)!  is the part of 𝑝௜  correlated with 𝑝ଵ , 𝑝ଶ ,…, 𝑝௜ିଵ  and 𝑝௜.(௜ିଵ)!  is the part 

uncorrelated with 𝑝ଵ, 𝑝ଶ,…, 𝑝௜ିଵ. 𝑊௜௝(𝜔) is the transfer function from 𝑝௜:(௜ିଵ)! to 𝑞. After 

taking Fourier transform of inputs, output and noise, the system can be expressed in the 

frequency domain: 

𝑄(𝜔) = ෍ 𝑊௜௤(

௠

௜ୀଵ

𝜔)𝑃௜.(௜ିଵ)!(𝜔) + 𝑁(𝜔)                                 (3.2) 

Multiply both sides by 
ଶ

்
𝑃௝.(௝ିଵ)!

∗  and get the expected value while T → ∞:  

𝑆௝௤.(௝ିଵ) = 𝑊௝௤𝑆௝௝.(௝ିଵ)!                                                   (3.3) 

In equation 3.3, "∗" denotes the complex conjugate and "𝐸" denotes the expected 

value. Each of the conditioned inputs 𝑃௜.(௜ିଵ)!(𝜔) and noise 𝑁(𝜔) are uncorrelated (zero 

cross spectra), and the conditioned inputs are internally uncorrelated. 𝑆௝௤.(௝ିଵ)  is the 

conditional cross spectrum density and 𝑆௝௝.(௝ିଵ) is the conditional auto spectrum density. 

Similar to 3.3, the transfer functions 𝑊௥௝(𝜔) between the conditioned inputs 𝑝௜.(௜ିଵ)! and 

one output 𝑞 are: 

𝑆௥௝.(௥ିଵ)! = 𝑊௥௝𝑆௥௥.(௥ିଵ)!                                                 (3.4) 

To be more general, for 𝑃௝(𝜔), if 𝑃௝.௥!(𝜔) represents the part of 𝑃௝(𝜔) that is 

uncorrelated with 𝑃ଵ, 𝑃ଶ, … , 𝑃௥, then: 

෍ 𝑊௜௝(

௥

௜ୀଵ

𝜔)𝑃௜.(௜ିଵ)!(𝜔) + 𝑃௝.௥!(𝜔) = ෍ 𝑊௜௝(

௥ିଵ

௜ୀଵ

𝜔)𝑃௜.(௜ିଵ)!(𝜔) + 𝑃௝.(௥ିଵ)!(𝜔)  (3.5) 

Taking the difference between the two sides of 3.5: 

𝑃௝.௥!(𝜔) = 𝑃௝.(௥ିଵ)!(𝜔) − 𝑊௥௝𝑃௥.(௥ିଵ)!                                      (3.6) 
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Multiply both sides by 
ଶ

்
𝑃௜.௥!

∗  and get the expected value under the limit T →∞: 

𝑆௜௝.௥! = 𝑆௜௝.(௥ିଵ)! −
𝑆௥௝.(௥ିଵ)!

𝑆௥௥.(௥ିଵ)!
𝑆௜௥.(௥ିଵ)!                                      (3.7) 

This is the recursion relation to calculate the conditioned cross spectrum 𝑆௜௝.௥!. 

3.1.1. Transfer function 

For the original (unconditioned) system, the frequency domain output 𝑄(𝜔) is: 

𝑄(𝜔) = ෍ 𝑉௜௤(

௠

௜ୀଵ

𝜔)𝑃௜(𝜔) + 𝑁(𝜔)                                    (3.8) 

Multiply 3.8 by 
ଶ

்
𝑃௝.(௝ିଵ)!

∗  and take the expected value while T →∞: 

𝑆௝௤.(௝ିଵ)! = ෍ 𝐻௜௤

௠

௜ୀ௝

𝑆௝௜.(௝ିଵ)!                                                       (3.9) 

Divide both sides by 𝑆௝௝.(௝ିଵ)! and substitute using 3.3 and 3.4: 

𝑊௜௤ = ෍ 𝑉௜௤

௠

௜ୀ௝

𝑊௝௜         𝑖 = 1, 2, . . . , 𝑚                                (3.10) 

Equation 3.10 can be used to calculate 𝑉௝௤ from 𝑊௝௤ by subtracting backwards: 

൞

𝑉௠௤ = 𝑊௠௤                                                                               

𝑉௝௤ = 𝑊௝௤ − ෍ 𝑊௝௜

௠

௜ୀ௝ାଵ

𝑉௜௤       𝑗 = 𝑚 − 1, 𝑚 − 2, … , 2, 1.
         (3.11) 

3.1.2. Partial coherence function 

With the conditioning approach, the partial coherence functions, 𝛾௜௤.(௜ିଵ)
ଶ , reveal 

the contribution of the conditioned inputs 𝑝௜.௜ିଵ to the output 𝑞: 
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𝛾௜௤.(௜ିଵ)
ଶ (𝜔) =

|𝑆௜௤.(௜ିଵ)(𝜔)|ଶ

𝑆௜௜.(௜ିଵ)(𝜔)𝑆௤௤(𝜔)
                                         (3.12) 

The sum of the first n (n ≤ m) partial coherence functions is the cumulative 

coherence function. The contribution from all the (m) inputs to the cumulative coherence 

function should always be less than equal to 1. 

3.2. Model Test Setup and Time Domain Analysis  

 

 

Figure 3.2 Floating Power System tested by Bosma et al. (2014), reprinted with 
permission  

 

The model tests of the floating power device (see Figure 3.2) were performed at 

Beaufort Research/HMRC, Ireland (Bosma et al., 2014). The floating power system is a 

necessary unit in the wave energy conversion system. It was selected because:  

(1) Fully public model test data of wave energy structures is rare and very valuable. 

The data used in this study is open access. All the necessary information for simulation is 

complete.  
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(2) The system identification method is general enough. Actually, the dimensions 

and geometry of the device are similar to a point absorber type wave energy converter 

(which is believed to be the most typical form). 

An additional advantage makes the selected model tests more attractive: 

(3) Many other open model test data of wave energy device measured the 

information of generated electricity (voltage, current) but the motion and time history (that 

is most relevant) is not accessible. This study intentionally selected the tests without power 

take off, which reduces uncertainties (the power take off is another nonlinear damping, 

which is difficult to be simulated accurately without more details). 

 

 

Figure 3.3 0° wave test by Bosma et al. (2014), adapted with permission 
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The 0-degree wave heading series are selected for verification of SIMDYN and R-

MISO analysis. The model test configuration (Bosma et al., 2014) is shown in Figure 3.3. 

The configuration (FPS geometry and mooring system configuration) is symmetric about 

the x axis.  

From the 1:25 scale model tests, the calibrated incident wave at the FPS positions, 

the motions of the FPS in six degrees of freedom, and the mooring line tensions at the 

three fairleads were measured by Beaufort Research/HMRC (Bosma et al., 2014). Wave 

was measured using two wire resistive type wave probes. The motion time series were 

output by the Qualisys track manager software. The mooring line forces were measured 

using Futek load cells.  

The 0-degree wave heading tests consisted of regular incident wave tests with 

wave height ranging from 1.0 m ~ 3.0 m and wave period ranging from 4.0 s ~ 17.5 s. In 

the regular wave cases, for surge, heave and pitch (the three dominant motions, the average 

error between SIMDYN and the model tests is -4.0%, 2.0% and 8.2%, respectively. The 

simulation errors are defined as follows: 

𝐸𝑟𝑟𝑜𝑟 = (𝑠𝑡𝑑௦௜௠ − 𝑠𝑡𝑑௘௫௣) 𝑠𝑡𝑑௘௫௣⁄ × 100%                            (3.13) 

𝑠𝑡𝑑௦௜௠  and 𝑠𝑡𝑑௘௫௣  are the standard deviations from the simulations and 

experiments, respectively. Considering these errors are before the damping correction is 

applied in the simulations, it means that SIMDYN yields relatively good accuracy in 

predicting the motions (for regular incident waves). There are 9 irregular (random wave) 

cases selected for system identification analysis. Detailed model test correlation will be 

demonstrated in the next subsection. 
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The time domain simulations were conducted with SIMDYN (Wang et al., 2020) 

using the linear option for the inertia forces, the Froude Krylov forces and the hydrostatic 

forces. The governing equation (see ANSYS Inc. 2011) is: 

[𝑀 + 𝑀𝐴(∞)]𝑥̈(𝑡) + 𝐾𝑥(𝑡) + න ℎ(𝑡 − 𝜏)𝑥̈(𝜏)
௧

଴

= 𝐹௘(𝑡)                (3.14) 

𝑀 is the mass matrix, 𝑀𝐴(∞) is the added mass matrix at infinite frequency;  

𝐾 is the hydrostatic stiffness; 

ℎ(𝑡) is the acceleration convolution integral function; 

𝐹௘(𝑡) are the total external forces. 𝐹௘(𝑡) includes Froude Krylov forces, scattering 

forces, mooring forces and slowly varying wave drift forces.  

 

 

Figure 3.4 Panel model of the FPS used in MDL-HYDROD 
 

The Froude Krylov forces and scattering forces are obtained from the in-house 

frequency domain hydrodynamics analysis program MDL-HYDROD (see Guha 2012; 

Liu and Falzarano, 2017). Figure 3.4 shows the panel model used in MDL-HYDROD. 
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The origin (0, 0, 0) to define six degrees of freedom body motion is located on the calm 

water level of the central axis. The 3-leg mooring system is modeled by coupling 

SIMDYN with the open-source Mooring Analysis Program (MAP++). The simulations 

and the experiments used the same mooring parameters (as listed in Table 2.2) to be as 

accurate as possible.  

For the irregular wave cases, the motion responses (surge, heave and pitch) are 

compared in Table 3.1. The comparisons of the motion responses are given by the ratio of 

the standard deviations from SIMDYN to those from the model tests. 

 

Table 3.1 Motion responses ratio (SIMDYN/model test) 
Sea state Hs Tp Surge Heave Pitch 

1 3.00 6.0 77.5% 101.8% 121.1% 

2 3.00 7.5 76.6% 102.8% 125.1% 

3 3.00 8.5 78.3% 102.7% 121.6% 

4 1.75 7.5 77.6% 101.2% 109.5% 

5 1.75 8.5 84.2% 100.9% 106.6% 

6 1.75 10.0 91.1% 101.0% 100.4% 

7 1.75 12.5 97.7% 101.2% 102.7% 

8 1.75 15.0 93.0% 101.9% 107.5% 

9 1.75 17.5 99.6% 102.1% 108.3% 

Average   86.2% 101.7% 111.4% 
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From Table 3.1, it can be found that the surge motion is about 13.8% lower than 

the model tests. This may be explained by the inevitable discrepancy in modelling the 

mooring system and that the surge motion is relatively more sensitive to the mooring 

modelling.  

The slowly varying wave drift forces may also account for part of the discrepancy. 

Even though the slowly varying wave drift forces are calculated using the full quadratic 

transfer function (QTF) evaluated by Xie et al. (2019) using Pinkster’s approximation (see 

Pinkster 1980), the drift forces remain to be examined further.  

Considering the uncertainties in the drift forces and mooring system modelling that 

significantly affect the surge motion more than the heave and the pitch, the surge motion 

will be studied but no damping or viscous drag correction will be implemented.  

In addition, since it can be observed that cases 1~3, cases 4~6 and cases 7~9 are 

similar in significant wave heights and standard deviations, they are put into 3 groups.  

3.3. Coherence Analysis  

The coherence analysis aims to reveal the most relevant input variables for a given 

degree of freedom. If the partial coherence function for an input variable is not significant 

(always smaller than 0.1 or greater than 0.1 in frequency range where the motion power 

spectrum density, PSD, is very small), it means that the contribution from that input 

variable may be removed from the R-MISO analysis. In this way, the partial coherence 

functions can help us determine which input variables are suitable for R-MISO. In actual 

practice, it seems that sometimes R-SISO is good enough (e.g. for the heave) in getting 

good correlation between simulations and model tests.  
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In addition, the cumulative coherence functions are plotted to show the goodness 

for coherence analysis (presenting how much percentage of the output variable is 

contributed by all the selected input variables combined). The motion power spectrum 

density (PSD) from the model tests is also plotted for the investigated degree of freedom. 

This is very helpful because the frequency range with little energy distribution (e.g. for 

pitch, frequency greater than 2.2 rad/s) is not important. 

From the mass matrix in calculating the motion RAO, it is known that the surge 

and the pitch is coupled (through the non-zero vertical center of gravity) while the heave 

due to fore and aft symmetry is relatively independent. Consequently, for surge: the input 

variables are surge motion 𝑥ଵ, quadratic surge velocity 𝑣ଵ|𝑣ଵ| and pitch motion 𝑥ହ while 

the output variable is surge diffraction (incident and scattering) excitation force (note that 

the drift force is not included in the R-MISO). Similarly, for the heave: the input variables 

are heave motion 𝑥ଷ and quadratic heave velocity 𝑣ଷ|𝑣ଷ| while the output variable is the 

heave diffraction (incident and scattering) excitation force. For pitch: the input variables 

are pitch motion 𝑥ହ, quadratic pitch velocity 𝑣ହ|𝑣ହ| and surge motion 𝑥ଵ while the output 

variable is the pitch diffraction (incident and scattering) excitation moment.  

3.3.1. Coherence function for surge  

Figure 3.5 and Figure 3.6 show the coherence analysis for the surge under sea state 

3 and sea state 7, respectively. They are quite representative of the coherence functions 

for surge. 
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Figure 3.5 Surge coherence analysis for sea state 3 
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Figure 3.6 Surge coherence analysis for sea state 7 
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not be captured well by the R-MISO technique at this moment. The R-SISO technique 

(the only input variable is the surge motion 𝑥ଵ) is therefore adopted for surge to help 

understand the linear damping in surge. 

3.3.2. Coherence function for heave 

Figure 3.7 and 3.8 show coherence analysis for the heave in sea state 3 and 9, 

respectively. They are quite representative of the coherence functions for the heave. 

 

Figure 3.7 Heave coherence analysis for sea state 3 
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Figure 3.8 Heave coherence analysis for sea state 9 
 

It can be found that the first input variable heave motion 𝑥ଷ contributes above 95% 

(the dominant effect) while the quadratic heave velocity 𝑣ଷ
ଶ contribution is small within 

important heave PSD range for the heave (0.4 rad/s ~ 1.6 rad/s). Therefore the transfer 

0 0.5 1 1.5 2 2.5 3

Frequency (rad/s)

0

0.2

0.4

0.6

0.8

1

P
a

rt
ia

l C
o

he
re

nc
e

Sea state: 9 Hs: 1.75m Tp: 17.5s

x3

v32

0 0.5 1 1.5 2 2.5 3

Frequency (rad/s)

0

0.2

0.4

0.6

0.8

1

C
um

u
la

tiv
e 

C
oh

er
en

ce

x3
all

0 0.5 1 1.5 2 2.5 3

Frequency (rad/s)

0

0.2

0.4

0.6

0.8

P
S

D
 (

m
2
)



  

68 

 

function analysis of the heave is performed using the R-SISO technique and the only input 

variable is the heave motion 𝑥ଷ. 

3.3.3. Coherence function for pitch  

Figure 3.9 and 3.10 show coherence analysis for the pitch in sea state 2 and 9, 

respectively. They are quite representative of the coherence functions for pitch. 

 

 

Figure 3.9 Pitch coherence analysis for sea state 2 
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Figure 3.10 Pitch coherence analysis for sea state 9 
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better. In the current R-MISO transfer function analysis for the pitch, the first input is the 

pitch motion 𝑥ହ and the other input is the quadratic pitch velocity 𝑣ହ|𝑣ହ|. 

The generic transfer function from the motion 𝑥௜ to the diffraction excitation 𝐹௜ is: 

𝐻௜௜(𝜔) = 𝐾௜௜ − 𝜔ଶ[𝑀 + 𝑀𝐴௜௜(𝜔)] + 𝑖𝜔[𝐷(𝜔) + 𝐷௔(𝜔)]                  (3.14) 

Besides the terms that have been declared in equation 3.13,  𝐷(𝜔) is the (linear) 

radiation damping, which corresponds to energy dissipation in the radiated waves (excited 

by the oscillation of the structure).  

𝐷௔(𝜔) is the additional linear damping due to viscous effects. The additional linear 

damping (and the additional quadratic damping) needs to be implemented because our 

(time domain) simulations are based on the potential flow theory. In the potential flow 

theory, viscosity of the fluid is not taken into consideration. 𝐷௔(𝜔) can be evaluated by 

several different methods (including free decay tests, system identifications). If no linear 

damping correction is made, 𝐷௔(𝜔) will be zero, which neglects the (linear) viscous 

effects.  

Before an oscillatory flow separates from the surface of the body, the viscous 

damping force can be modeled well as a linear function of velocity. After an oscillatory 

flow separates from the surface of the body, the viscous damping force can be modeled 

more reasonably as a quadratic function of velocity. 

The quadratic damping is also induced by viscosity. While the linear viscous 

damping is mainly attributed to the frictional force between the fluid and the submerged 

body (within the boundary layer), the quadratic damping is mainly induced by the flow 
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separation as well as the vortex shedding. Actually, the two forms of the viscous damping 

are usually used together to better approximate the real viscous effects. 

3.4. Transfer Function Analysis  

3.4.1. Transfer function for surge 

As discussed in subsection 3.3.1, R-SISO analysis is applied to the surge equation 

of motion. The surge transfer function shown in Figure 3.11 is typical for the 9 irregular 

sea states. In the R-SISO analysis, the input is the surge motion time series (from the 

experiments and from the SIMDYN simulations, respectively) while the output is the 

surge force time series. The derived system identification technique in subsection 3.1.1 is 

used to calculate the transfer function from the time series. 

 

 

Figure 3.11 Typical surge R-SISO results 
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In general, the transfer function for the wave frequency is modeled correctly. As 

much of the surge variance exists in the low frequency region that is closely related to the 

slowly varying surge drift force, modelling remains to be improved by better evaluation 

for the drift force.  

3.4.2. Transfer function for heave  

As discussed in subsection 3.3, R-SISO analysis is applied to the heave motion. 

Figure 3.12 shows the typical heave transfer functions. In general, R-SISO analysis shows 

that the heave motion is modeled very accurately without any damping correction. 

 

 

Figure 3.12 Sea state 5 heave transfer function from the R-SISO 
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Considering that the heave standard deviation difference between the model tests 

and the SIMDYN results are already within 0.9% (on an average 1.7% error only), it’s 

believed that additional damping correction is not necessary.  

Figure 3.13 is a typical heave time series comparison with the model test. The 

simulation program directly takes the calibrated wave time history at the FPS’s moored 

position (provided by the Beaufort Research/HMRC, Ireland) for the corresponding sea 

states. The calibrated waves are repeatable. Therefore, when the FPS is in place, the 

incident wave is identical to the calibrated wave. This confirms that for the heave the R-

SISO method is good enough. 

 

 

Figure 3.13 Sea state 5 heave correlation with model test 
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The R-MISO technique turns out to be more valuable for pitch in this study. The 

first transfer function between the pitch motion and the pitch moment is the equation 3.14 

while the second transfer function 𝑉௤ satisfies the equation 3.15 below (ANSYS Inc. 2011 

and Orcina Ltd. 2019): 

𝑉௤ ∙ (𝑣௜|𝑣௜|) = 𝐹௤                                                         (3.15) 

𝐹௤  is the quadratic damping force. 𝑉௤ , the second transfer function is usually 

determined from the model test. Recall that the typical formula for the drag force is: 

1

2
𝜌𝐶஽𝐴 ∙ (𝑣௜|𝑣௜|) = 𝐹௤                                                     (3.16) 

By comparing equation 3.15 with equation 3.16, it is reasonable to assume that the 

second transfer function 𝑉௤ (i.e. the quadratic damping) is a coefficient. 

Using the R-MISO technique, we can assess how much linear damping in the 

equation 3.14 and quadratic damping in the equation 3.15 that needs to be added into the 

simulation. Based on the transfer function, damping corrections can be made in the time 

domain simulations. 

Sea state 9 is a typical case that the linear damping needs to be compensated. The 

square of transfer function error is the indicator for deciding upon the damping corrections. 

The procedure is as follows (take sea state 9 as an example): 

(1) Perform the system identification analysis to get the transfer functions from the 

experiments and simulations; 

Figure 3.14 shows the pitch transfer function from R-MISO for sea state 9.  
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Figure 3.14 Sea state 1 pitch transfer function from R-MISO 
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minimizes the difference between 𝑉௦௜௠_௖ and 𝑉௘௫௣. Making this damping correction will 

best fit the transfer function in the simulation to the transfer function in the model test: 

 

 

Figure 3.15 Determining sea state 1 linear damping correction 
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Figure 3.16 shows the pitch transfer function from R-MISO after the damping 

correction. In general, the comparison improved over the frequency range 0.8 rad/s ~ 2.4 

rad/s (from the pitch PSD).  

 

 

Figure 3.16 Sea state 1 (after the linear damping correction) pitch transfer function  
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Figure 3.17 Verfying sea state 9 linear damping correction 
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Figure 3.18 Sea state 1 pitch time series comparison  
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Using similar method, the quadratic damping corrections can also be evaluated. 

Sea state 4 is a typical case where the quadratic damping needs to be compensated for. 

Figure 3.19 shows the second transfer function from R-MISO.  

 

 

Figure 3.19 Sea state 4 pitch second transfer function before correction 

 

Figure 3.20 shows how the optimal quadratic damping correction is determined 

for sea state 4. Based on Figure 3.20 and the equation 3.15, additional 3.5×104 𝑁 ∙

𝑚/(𝑟𝑎𝑑/𝑠)ଶ quadratic damping is estimated and is implemented into the time domain 

simulation. 

 

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Frequency (rad/s)

0

20

40

60

P
S

D
(d

eg
2
)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Frequency (rad/s)

0

2

4

6

8

se
co

nd
 tr

an
sf

er
 (

x 
to

 F
)

105 Sea state: 4 Hs: 1.75m Tp: 7.5s

RMISO exp
RMISO sim



  

80 

 

 

Figure 3.20 Determining sea state 4 quadratic damping correction 
 

 
Figure 3.21 Sea state 4 pitch second transfer functions after correction 
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Figure 3.21 shows the second transfer function (the corresponding input is the 

quadratic pitch velocity) from R-MISO after the damping correction. In general, the 

comparison improved over the frequency range 0.8 rad/s ~ 2.5 rad/s (from the pitch PSD).  

Figure 3.22 shows that any additional (on top of 3.5×104 𝑁 ∙ 𝑚/(𝑟𝑎𝑑/𝑠)ଶ that has 

been implemented in the simulation) quadratic damping correction is not necessary for sea 

state 4. This verifies that the quadratic damping correction 𝑉௤ is the optimal correction.  

 

 

Figure 3.22 Verfying sea state 4 quadratic damping correction 
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Figure 3.23 Sea state 4 pitch time series comparison  
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6   100.4% 100.4% 

7 1.0×104  102.7% 96.9% 

8  9.6×104 107.5% 101.8% 

9 2.1×104  108.3% 95.9% 

Average of 

absolute error     11.4% 2.3% 

 

The dimensional damping values can be better benchmarked after conversion to 

the non-dimensional damping ratio, which equals the dimensional damping divided by the 

critical damping, 𝐵ହହ௖. The pitch critical damping (for small angle) is: 

𝐵ହହ = 2ඥ(𝐼ହହ + 𝐴ହହ) ∙ 𝐶ହହ                                           (3.18) 

𝐶ହହ is the hydrostatic stiffness for pitch. The critical pitch damping value for this 

FPS is 2.025×105 N∙m/(rad/s). To provide a uniform percentage of 

When necessary, a quadratic viscous damping value derived from the irregular 

wave model tests can be linearized to an “equivalent viscous damping”, which is linear. If 

the stochastic linearization (Falzarano et al., 2015) is applied:  

𝐷௘ =
8

𝜋
𝑉௤ ∙ 𝑠𝑡𝑑_𝑣௜                                                    (3.19) 

 
𝐷௘  is the equivalent (linear) viscous damping. 𝑉௤  is the quadratic damping 

coefficient defined in equation 3.15. 𝑠𝑡𝑑_𝑣௜  is the standard deviation of the response 

(velocity). In this way, all damping corrections from system identification can be 

compared (as linear terms). Table 3.3 lists the pitch damping corrections (linear or 

quadratic) and the linearized (equivalent) damping values. 



  

84 

 

 

 
Table 3.3 Linearized pitch damping and the damping ratio 

Sea 

state 
Hs Tp 

Linear 

correction 

Quadratic 

correction 

Linearized 

values 

Damping 

ratio 

1 3 6 1.7×104  1.7×104 8.4% 

2 3 7.5  4.8×104 2.5×104 12.3% 

3 3 8.5  4.0×104 1.9×104 9.4% 

4 1.75 7.5  3.5×104 1.3×104 6.4% 

5 1.75 8.5 0.9×104  0.9×104 4.4% 

6 1.75 10    0.0% 

7 1.75 12.5 1.0×104  1.0×104 4.9% 

8 1.75 15  9.6×104 1.1×104 5.4% 

9 1.75 17.5 2.1×104  2.1×104 10.4% 

Average         1.4×104 6.9% 

 
 

It can be observed that all equivalent damping corrections are in the order of 104 

N∙m/(rad/s) and that they vary around the average level of 1.4×104 N∙m/(rad/s). The 

damping ratio is around 6.9% but in certain cases, it can get as high as 12.3%.  

Though there is no available pitch damping ratio data from a geometry close 

enough to this FPS, it can be benchmarked by previous pitch damping studies for different 

geometries (see Table 3.4 and Figure 3.24 below). 
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Table 3.4 Pitch damping ratio from different studies (no strakes) 
Geometry Function Damping Ratio Method Researcher 

Bare cylinder Spar 2% Free decay tests Haslum (2000) 

Multi-

cylinder 
Spar 1.9%~3.1% Free decay tests Li et al. (2011) 

Modified 

cylinder 
Spar 1.3%~4.9% Free decay tests 

Nallayarasu & 

Mathai (2017) 

Water-drop WEC 9.6%~10.0% 
Free decay tests, 

CFD 

Poguluri et al. 

(2019) 

Modified 

cylinder 
Spar 4.6%~11.3% 

Free decay tests, 

CFD 

Nallayarasu & 

Mathai (2016) 

 

 
Figure 3.24 Pitch damping ratio from different studies (no strakes) 
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It can be found that the pitch damping ratio from previous peer studies for different 

geometries varies within the range 1.3%~11.3% with an average of about 5.1%. This is a 

primary benchmark indicating that the damping ratio obtained for the FPS using the 

system identification method is quite reasonable. 

 

3.5. Discussions 

Coherence analysis through system identification provides a frequency domain 

perspective of the simulation. For this wave energy device, it reveals that the heave degree 

of freedom can be modeled well even without damping corrections as a single input (heave 

motion) single output (heave force) system. Both linear damping and quadratic damping 

contribute considerably to the pitch motion in the multiple inputs (pitch motion and 

quadratic pitch velocity) single output (pitch moment) system. Coherence analysis shows 

that the surge motion is more sensitive to the low frequency drift forces. Further 

improvements of the simulation program are needed to better carry out the R-MISO 

analysis on the surge motion. 

System identification has corrected the pitch damping effectively for various sea 

states in this study. Conventionally, the viscous damping can be estimated by: a) empirical 

formula: which gives (rough) estimates of the damping but the accuracy varies 

significantly; b) free decay tests: only provide the damping at the natural frequency; c) 

forced oscillation tests: they are generally limited to model scale and test facilities are very 

expensive. 
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In the model tests of the FPS (by Beaufort Research/HMRC), free decay tests or 

forced oscillation tests were not performed. There is no empirical formula appropriate for 

this geometry (as it is a relatively novel form of a floating device). System identification 

is not just the choice when other methods are nonapplicable, it (i.e. R-MISO in this study) 

is superior to other methods. It reveals the variation of transfer functions with frequency, 

which cannot effectively be done otherwise. It can directly deal with cases under random 

sea states, which is the most meaningful situations, as the actual sea states in nature are 

random.  

In fact, the viscous damping itself under different sea states varies considerably (in 

this study, the wave height ranges from 1.75 m to 3.0 m and peak period ranges from 6.0 

s to 17.5 s). Using Reverse-MISO, not only a constant additional quadratic damping at the 

natural frequency can be obtained such as from free decay tests (no incident wave 

involved) but that the effective (“effective” means that incident waves are  present, and it 

is therefore more realistic) damping can be obtained.  
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4. THE PITCH VULNERABILITY OF A TYPICAL WAVE ENERGY CONVERTER 

GEOMETRY BASED ON MELNIKOV AND MARKOV APPROACHES 

 

4.1. Generic Study Object 

While the performance under the “normal” operational mode largely determine 

whether the design is economically efficient, the performances under the “survival” mode 

largely determine whether the design is physically feasible. Important quantities for the 

"survival" mode include:  

• Local accelerations: may lead to structure failure and fatigue; 

• Mooring loads: may lead to mooring lines breakage; 

• Roll and pitch: may lead to capsizing. 

Compared with the local accelerations and the mooring loads, which are analyzed 

extensively in the typical global performance analysis, the dynamic stability is given 

relatively less attention. Actually, several model tests of point absorber type WECs (Payne 

et al., 2008; Sheng et al., 2012; Gomes et al., 2012) have observed instability phenomenon, 

which can induce unexpected roll/pitch capsizing. As for a WES, the “head seas” situation 

is usually what is of most concern, since WESs have no forward speed. In head seas, the 

first concern, as for its dynamic stability, is the pitchpoling due to the direct wave 

excitation. In this study, the most common WES form: a moored floating cylindrical 

geometry is used as a generic model, for which the modelling and analysis are 

representative of the majority of WES designs. 
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The content of the section is organized as follows. Subsection 4.1 describes the 

details of the generic hull form of the study: i.e., a floating cylindrical structure with 

alternative mooring systems. Subsection 4.2 discusses the application of the Melnikov 

approach to the hull form described in subsection 4.1. Subsection 4.3 discusses the 

application of the Markov approach to the hull form described in subsection 4.1. 

Subsection 4.4 compares the Melnikov approach and the Markov approach and compares 

their sensitivities to parameters (e.g. the damping).  

Table 4.1 shows the general dimensions of a generic floating cylinder. Its 

cylindrical geometry is selected based on the fact that majority of WECs are basically, 

cylindrical. The dimensional parameters are not determined according to any particular 

design, but determined to represent a generalized floating cylindrical WEC.  

 

Table 4.1 Floating cylinder information 
Characteristic Value 

Mass M (kg) 12554.6 

Length Lpp (m) 4.00 

Breadth B (m) 4.00 

Height D (m) 3.00 

VCG (m) from water line 0.20 

Kxx (m) 1.338 

Kyy (m) 1.338 

Kzz (m) 1.414 
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Draft T (m) 1.00 

Water Depth h (m) 20.0 

 

VCG is the vertical center of gravity and it is measured from the calm water plane. 

Kxx, Kyy and Kzz are the radii of gyration, around the center of gravity of the floating 

cylinder. Figure 4.1 (a) depicts the geometry of the floating cylinder defined in Table 4.1 

(note that a single mooring line is attached). Figure 4.1 (b) shows the original (without 

mooring and viscous damping) pitch response amplitude operator (RAO) calculated by 

the frequency domain hydrodynamic analysis program MDL-HYDROD (Guha, 2012). It 

can be observed that the natural frequency is around 1.13 rad/s. 

 

 

(a) Geometry of the floating cylinder 

Figure 4.1 Geometry of the floating cylinder 
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(b) Original pitch RAO of the floating cylinder 

Figure 4.2 Conitnued 
 

The influences from the mooring system are the fundamental differences between 

a positioned floating system and a ship. For the generic floating cylinder in this study, two 

common mooring systems are considered: i.e., a single line mooring system and a multiple 

(three) leg mooring system. Figure 4.2 shows the three alternative mooring configurations 

(a: no mooring; b: a single mooring leg; c: three mooring legs). The detailed information 

of these (sample) mooring systems is listed in Table 4.2. 
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(a) No mooring leg 

 

(b) Single mooring leg 

 

(c) 3 mooring legs 

Figure 4.3 Mooring system configurations 
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Table 4.2 Mooring system information 
Characteristic Value Characteristic Value 

Single mooring leg  3 mooring legs 

Fairlead Ver. Position (m) –1.0 Fairlead Ver. Position (m) –1.0 

Fairlead Hor. Position (m) 0.0 Fairlead Hor. Position (m) 2.0 

Anchor Ver. Position (m) –20.0 Anchor Ver. Position (m) –20.0 

Anchor Hor. Position (m) 0.0 Anchor Hor. Position (m) 65.0 

Mooring Line Length (m) 19.0 Mooring Line Length (m) 75.0 

Mass/Unit Length (kg/m) 28.4 Mass/Unit Length (kg/m) 28.4 

Mooring Line Diameter (m) 0.15 Mooring Line Diameter (m) 0.15 

Added Mass Coefficient 1.0 Added Mass Coefficient 1.0 

Trans. Drag Coefficient 1.0 Trans. Drag Coefficient 1.0 

Longi. Drag Coefficient 0.025 Longi. Drag Coefficient 0.025 

EA (N/m) 4.0× 105 EA (N/m) 1.0×108 

Maximum Tension (kN) 100.0 Maximum Tension (kN) 100.0 

Number of Mooring Lines 1 Number of Mooring Lines 3 

Line Azimuth Difference (°) 0 Line Azimuth Difference (°) 120 

 

The mooring system is modelled by implementing the open-source mooring 

program MAP++ into SIMDYN. Figure 4.3 shows how MAP++ works within SIMDYN. 
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Figure 4.4 Coupling of SIMDYN and MAP++ 
 

(𝐹௠௫,௜ , 𝐹௠௬,௜ , 𝐹௠௭,௜) denotes the instantaneous fairlead forces on the mooring line 

No. 𝑖  and 𝒙𝒎,𝒊  denotes the fairlead position of the mooring line No. 𝑖 . The fairlead 

positions under certain rotation angle are projected from the origin (𝜉ଵ, 𝜉ଶ, 𝜉ଷ) of the body 

coordinate system:  

𝒙𝒎,𝒊 = 𝝃 + 𝑅்𝑥௠,௜
ᇱ                                                                  (4.1) 

𝑥௠,௜
ᇱ  are the fairlead positions in the body coordinate system. For the rotational 

motions, the contributions from the mooring system can be represented by the mooring 

restoring arm. The quasi-static mooring modelling in MAP++ neglects the dynamics of 

the mooring lines (Masciola et al., 2013, Hall and Goupee 2015). Under this assumption, 

the mooring restoring curves can be calculated from the forced rotation tests. The forced 

rotation tests use the specified (forced) rotation time history to study the mooring moments 

at the specified rotation angles. Figure 4.4 shows the pitch motion time history and the 

mooring pitch moment time history in the forced rotation tests. The total mooring 

moments 𝑀௠௢௥ are calculated as: 
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𝑀௠௢௥ = ෍ 𝑥௠,௜ × 𝐹௠,௜

ே௅

௜ୀଵ

                                                            (4.2) 

 

 

Figure 4.5 Forced rotation tests  
 

The restoring arm (unit: m) is defined as the ratio between the restoring moment 

(unit: N∙m) to the displacement (unit: N). Therefore, the mooring restoring arm is: 

𝐿௠௢௥ = 𝑀௠௢௥/(𝑀𝑔)                                                            (4.3) 

Through the forced rotation tests in SIMDYN and MAP++, the mooring restoring 

arm can be approximated (see Figure 4.5). The mooring restoring arm (if applicable) will 

be added to the original (without the mooring system) restoring arm of the floating 

structure. 
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Figure 4.6 Mooring restoring arm  
 

The original restoring arm (the black line in Figure 4.6) comes from the hydrostatic 

moment and can be calculated using the various methods in traditional naval architecture. 

In Figure 4.6, the circle dot line represents the total restoring arm with the single line 

mooring system and the square dot line represents the total restoring arm with the 3-leg 

mooring system. 

 

Figure 4.7 Restoring arm of the floating cylinder 
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The total restoring arms can be fitted using the least square method using 

polynomials of different orders. In practice, the eleventh-order polynomial fitting yields 

the reasonable accuracy required (see Figure 4.7). The eleventh-order polynomial used to 

fit the restoring arms is: 

𝑅𝐴_𝑓𝑖𝑡(𝑥) = 𝐶ଵ ∙ 𝑥 + 𝐶ଷ ∙ 𝑥ଷ + 𝐶ହ ∙ 𝑥ହ + 𝐶଻ ∙ 𝑥଻ + 𝐶ଽ ∙ 𝑥ଽ + 𝐶ଵଵ ∙ 𝑥ଵଵ      (4.4) 

 

(a) No mooring leg 

(95% confidence bounds): 

C1 = 0.3108  (0.283, 0.339) 

C3 = 0.8476  (0.664, 1.031) 

C5 = -2.437  (-2.833, -2.042) 

C7 = 2.047  (1.681, 2.412) 

C9 = -0.7471  (-0.898, -0.597) 

C11 = 0.101  (0.0783, 0.124) 

 

 

(b)  single mooring leg (95% 

confidence bounds): 

C1 = 0.3125  (0.284, 0.341) 

C3 =  0.9344  (0.751, 1.118) 

C5 =  -2.461  (-2.857, -2.065) 

C7 =  2.048  (1.682, 2.414) 

C9 =  -0.7466 (-0.897, -0.596) 

C11 = 0.1009  (0.0782, 0.124) 

Figure 4.8 Curve fitting of the restoring arms 
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(c) three mooring legs 

(95% confidence bounds): 

C1 =  0.3896  (0.361, 0.418) 

C3 =  0.8383  (0.655, 1.022) 

C5 =  -2.436  (-2.832, -2.039) 

C7 =   2.046  (1.68, 2.413) 

C9 =  -0.7473 (-0.899, -0.596) 

C11 = 0.1011  (0.0782, 0.124) 

Figure 4.9 Continued 

The fitting coefficients obtained are required for both the Melnikov approach in 

subsection 4.2 and the Markov approach in subsection 4.3. 

4.2. The Melnikov Approach 

The Melnikov method was originally introduced for regular wave excitation 

(Falzarano, 1990) and subsequently extended to random excitation (Su 2012, Somayajula 

2017). Using this approach, capsizing can be related to an escaping trajectory from the 

safe region (of the phase space plane) to the unsafe region (of the phase space plane). 

Therefore, the phase flux rate can be used as a criterion for capsizing risks. The moored 

floating cylindrical system in this study is a new scenario for the Melnikov approach. It is 

different from the ship in that the mooring system contributes additional restoring arm and 

that the forward speed effects are no longer concerned. The following is the essential 

derivation of the Melnikov approach for the floating structure with its total restoring 

moment (arm) described by an 11th-order polynomial.  

The original, decoupled pitching equation is: 
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[𝐼ହହ + 𝐴ହହ(𝜔)]𝜉ହ̈ + 𝐵ହହ(𝜔)𝜉ହ̇ + 𝐵ହହ௤(𝜔)𝜉ହ̇ห𝜉ହ̇ห

+∆൫𝐶ଵ𝜉ହ + 𝐶ଷ𝜉ହ
ଷ + 𝐶ହ𝜉ହ

ହ + 𝐶଻𝜉ହ
଻ + 𝐶ଽ𝜉ହ

ଽ + 𝐶ଵଵ𝜉ହ
ଵଵ൯ = 𝑓ହ(𝑡)

          (4.5) 

𝜉ହ denotes the pitching angle. 𝐼ହହ and 𝐴ହହ(𝜔) denote the pitch moment of inertia 

and added moment of inertia, respectively. 𝐵ହହ(𝜔) and 𝐵ହହ௤(𝜔) denote the linear and 

quadratic damping, respectively. ∆  denotes the displacement. 𝐶ଵ  through 𝐶ଵଵ  are the 

coefficients for the pitch restoring moment (arm). 𝑓ହ(𝑡) is the external excitation force. 

Equation 4.5 can be non-dimensionalized to (Roberts, 1986): 

𝑥̈ + 𝑏ଵ𝑥̇ + 𝑏ଶ𝑥̇|𝑥̇| + ൬𝑥 +
𝐶ଷ

𝐶ଵ
𝑥ଷ +

𝐶ହ

𝐶ଵ
𝑥ହ +

𝐶଻

𝐶ଵ
𝑥଻ +

𝐶ଽ

𝐶ଵ
𝑥ଽ +

𝐶ଵଵ

𝐶ଵ
𝑥ଵଵ൰ = 𝐹ହ(𝜏) (4.6) 

Where the following non-dimensionalized coefficients are used: 

𝑥 = 𝜉ହ, 𝜏 = 𝜔௡𝑡, 𝜔 ௡ = ඨ
∆𝐶ଵ

𝐼ହହ + 𝐴ହହ(𝜔)
   

 𝑏ଵ =  
𝐵ହହ(𝜔)

∆𝐶ଵ
𝜔௡, 𝑏ଶ =  

𝐵ହହ

𝐼ହହ + 𝐴ହହ(𝜔)
, 𝐹ହ(𝜏) =

𝑓ହ(𝑡)

∆𝐶ଵ

                (4.7) 

Compared with the stiffness coefficients, the pitch damping coefficients are small 

(Haslum, 2000). Equation 4.6 can be rescaled using the perturbation parameter 𝜀, but that 

does not mean that the absolute amplitude of the excitation is small. For the convenience 

of perturbation analysis, 𝑏ଵ is set as 𝜀𝑏ଵఌ, 𝑏ଶ is set as 𝜀𝑏ଶఌ, 𝐹ହ is set as 𝜀𝐹ହఌ. Equation 4.6 

can be written in the state space format: 

⎩
⎨

⎧
𝑥̇(𝜏) = 𝑦(𝜏)                                                                                                                 

𝑦̇(𝜏) = −𝑥(𝜏) −
𝐶ଷ

𝐶ଵ
𝑥ଷ(𝜏) −

𝐶ହ

𝐶ଵ
𝑥ହ(𝜏) −

𝐶଻

𝐶ଵ
𝑥଻(𝜏) −

𝐶ଽ

𝐶ଵ
𝑥ଽ(𝜏) −

𝐶ଵଵ

𝐶ଵ
𝑥ଵଵ(𝜏)

+𝜀[−𝑏ଵఌ𝑦(𝜏)−𝑏ଶఌ𝑦(𝜏)|𝑦(𝜏)| + 𝐹ହఌ(𝜏)]                                              

 (4.8) 
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The solution for equation 4.8 can be given numerically. When no damping and no 

excitation is applied, 𝜀 = 0.  

 

 

Figure 4.10 Phase plane for undamped and unforced system 
 

Figure 4.8 shows the phase plane for an undamped and unforced system with the 

11-order restoring curve. The phase plane in Figure 4.8 is formed by a center at the origin 

and two saddles connected by heteroclinic orbits. The stable region is bounded by the 

dotted curve. If 𝑥଴(𝜏)  and 𝑦଴(𝜏)  denote the separatrices of the system in absence of 

damping or excitation, based on the definition by Wiggins (2003), the Melnikov function 

for the damped and forced system is:  

𝑀 + 𝑀෩(𝜏଴) = න 𝑦଴(𝜏)[−𝑏ଵఌ𝑦଴(𝜏)−𝑏ଶఌ𝑦଴(𝜏)|𝑦଴(𝜏)| + 𝐹ହఌ(𝜏 + 𝜏଴)]
ஶ

ିஶ

𝑑𝜏    (4.9) 
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𝑀 is the constant component of the Melnikov function, which corresponds to the 

damping contribution: 

𝑀 = න 𝑦଴(𝜏)[−𝑏ଵఌ𝑦଴(𝜏)−𝑏ଶఌ𝑦଴(𝜏)|𝑦଴(𝜏)|]
ஶ

ିஶ

𝑑𝜏                          (4.10) 

𝑀෩(𝜏଴) is the oscillating component of the Melnikov function, which corresponds 

to the excitation contribution.  

𝑀෩(𝜏଴) = න 𝑦଴(𝜏)𝐹ହఌ(𝜏 + 𝜏଴)
ஶ

ିஶ

𝑑𝜏 = න 𝑦଴(𝜏଴ − 𝜏)𝐹ହఌ(𝜏)
ஶ

ିஶ

𝑑𝜏       (4.11) 

The Melnikov function describes the phase space flux corresponding to a trajectory 

“escaping” from the safe region (bound) to the unsafe (unbounded-capsizing) region. The 

amount of phase space flux is related to the area of “lobes” formed where the safe region 

is inside the unsafe region (Jiang et al., 2000). According to Hsieh et al. (1994), the (two 

period average) rate of phase space flux is: 

𝛷 = 𝑙𝑖𝑚
்→ஶ

1

2𝑇
න 𝑀ା𝑑𝜏଴

்

ି்

                                              (4.12) 

𝛷  is the average rate of the phase space flux through both bounds of the 

heteroclinic orbits. 𝑀ା(𝜏଴) represents the positive part of the Melnikov function, which 

transfers the phase space out of the safe region. Figure 4.9 highlights the positive part of 

Melnikov function (shaded). When the Melnikov function is constantly negative, the 

stable manifold will always enclose the unstable manifold. Under this condition, if the 

system starts from inside of safe region, it will stay stable (inside the safe region). 
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Figure 4.11 Melnikov function time series 
 

Figure 4.10 shows two representative situations of the Melnikov function. When 

the excitation force is small (HS = 1.0m), the Melnikov function is below zero as shown 

in Figure 4.10 (a). This means that there is no phase space transport from the safe region. 

When the excitation force is higher (Hs = 3.0m), considerable phase transport flux is 

produced as shown in Figure 4.10 (b). Under this condition, even if the system starts from 

the safe region, it is subjected to significant probability of capsizing.  

 

M
(
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(a) HS=0.5m, Tp=7.0s 

 

(b) HS=3.0m, Tp=7.0s 

Figure 4.12 Time series of Melnikov function  
 

The Melnikov process assumes an ergodic and stationary Gaussian process. 

Therefore, the average phase space flux rate can be calculated as (Somayajula and 

Falzarano, 2019): 

M
(
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M
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𝛷 = 𝐸 ൤ቀ𝑀 + 𝑀෩(𝜏଴)ቁ
ା

൨ = න ൫𝑥 + 𝑀൯
ஶ

ିெ

𝑝(𝑥)𝑑𝑥                        (4.13) 

𝑝(𝑥) represents the probability density function of a standard Gaussian distrition 

and 𝑃(𝑥)  represents the cumulative distribution function of a standard Gaussian 

distribution: 

𝑝(𝑥) =
1

√2𝜋
𝑒ି

ଵ
ଶ

௫మ

                                                   (4.14) 

Figure 4.11 shows the variation of the phase space flux rate with significant wave 

height under different peak periods (𝑏ଵ = 0.02,  𝑏ଶ = 0.02).  

 

 

Figure 4.13 Variation of the phase space flux rate with HS 
 

It is quite natural that the probability of capsizing increases with the significant 

wave height. The “hardening” behavior of the phase space flux rate indicates considerable 

increase of capsizing risk as wave height increases.  
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Figure 4.12 shows the variation of the phase space flux rate with peak period under 

different significant wave heights (𝑏ଵ = 0.02,  𝑏ଶ = 0.02). The peak of the phase space 

flux rate appears around Tp ≈ 6.0s (the natural period of pitching is around 5.5s). 

 

Figure 4.14 Variation of the phase space flux rate with Tp 
 

Figure 4.13 shows the variation of the phase space flux rate with significant wave 

height under different linear damping coefficients (𝑇𝑝 = 7s,  𝑏ଶ = 0.02) . The linear 

damping coefficient has considerable effect of reducing the probability of capsizing. 
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Figure 4.15 Variation of the phase space flux rate under different 𝑏ଵ 
 

Figure 4.14 shows the variation of the phase space flux rate with significant wave 

height under different quadratic damping coefficients (𝑇𝑝 = 7s,  𝑏ଵ = 0.02).  

 

 

Figure 4.16 Variation of the phase space flux rate under different 𝑏ଶ 
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The quadratic damping coefficients yield similar (to the linear damping) effect of 

reducing the probability of capsizing.  

Figure 4.15 shows the variation of the phase space flux rate with significant wave 

height under different mooring systems (𝑇𝑝 = 7s, 𝑏ଵ = 0.02, 𝑏ଶ = 0.02). The addition of 

the mooring system does not seem to influence the probability of capsizing significantly. 

It seems that the Melnikov approach is not as sensitive to the restoring curves as the 

Markov approach, which will be shown in the next subsection. 

 

 

Figure 4.17 Variation of the phase space flux rate under different mooring systems 
 

4.3. The Markov Approach 

For decades, the Markov approach has been applied to the nonlinear oscillations 

(see e.g. Roberts, 1982; Roberts and Spanos, 1986; Roberts and Vasta, 2000; Roberts and 
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Vasta, 2001; Roberts and Vasta, 2002). Using the stochastic averaging of the system’s 

energy, the two dimensional (motion and velocity) pitching model is reduced to a one 

dimensional model of energy. This model can be approximated as a Markov process, for 

which the mean first time to capsize can be solved numerically by solving a Fokker Planck 

Equation (FPE). The approach works under the assumption that the wave spectrum is 

narrow-banded.  

Recall the non-dimensionalized equation 4.5 in the derivation of the Melnikov 

approach. Following the derivation (Su 2012) convention, a similar perturbation is 

conducted using 𝜀ଶ: 

𝑥̈(𝜏) + 𝜀ଶ𝑏ଵఌమ𝑥̇(𝜏) + 𝜀ଶ𝑏ଶఌమ𝑥̇(𝜏)|𝑥̇(𝜏)| + 𝑥(𝜏) +
𝐶ଷ

𝐶ଵ
𝑥ଷ(𝜏)            

+
𝐶ହ

𝐶ଵ
𝑥ହ(𝜏) +

𝐶଻

𝐶ଵ
𝑥଻(𝜏) +

𝐶ଽ

𝐶ଵ
𝑥ଽ(𝜏) +

𝐶ଵଵ

𝐶ଵ
𝑥ଵଵ(𝜏) = 𝜀𝐹ହఌ(𝜏)              

(4.15) 

The total energy for the system, 𝐸(𝜏), consists of two parts: the kinetic energy and 

the potential energy: 

𝐸(𝜏) =
𝑥̇ଶ

2
+ 𝑈(𝑥)                                                   (4.16) 

The potential energy, 𝑈(𝑥), can be obtained by integrating the restoring arm: 

𝑈(𝑥) = න(𝛿 +
𝐶ଷ

𝐶ଵ
𝛿ଷ

௫

଴

+
𝐶ହ

𝐶ଵ
𝛿ହ +

𝐶଻

𝐶ଵ
𝛿଻ +

𝐶ଽ

𝐶ଵ
𝛿ଽ +

𝐶ଵଵ

𝐶ଵ
𝛿ଵଵ)𝑑𝛿      (4.17) 

For the floating cylinder defined in Table 4.1, the stability (restoring arm) vanishes 

at 1.21 rad (69.3 degree, see Figure 4.7 (a)). Therefore, the initial energy ranges in [0, 

0.53]. Different initial energy corresponds to different angle of vanishing stability as 

shown in Figure 4.16.  
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Figure 4.18 Angle of vanishing stability versus the initial energy  
 

In the absence of excitation and damping, the total energy 𝐸(𝜏) is conserved. The 

total energy 𝐸(𝜏) and phase angle 𝜑(𝜏) satisfy: 

𝑠𝑔𝑛(𝑥)ඥ𝑈(𝑥) = √𝐸𝑐𝑜𝑠𝜑,        𝑥̇ = −√2𝐸𝑠𝑖𝑛𝜑                         (4.18) 

The Markov process of 𝐸(𝜏) can be described by a stochastic differential equation: 

𝑑𝐸(𝜏) = 𝑚(𝐸)𝑑𝑡 + ඥ𝐷(𝐸)𝑑𝐵                                       (4.19) 

𝑚(𝐸)  is the drift coefficient, 𝐷(𝐸)  is the diffusion coefficient. The drift 

coefficient and diffusion coefficient can be obtained as (Roberts and Vasta, 2000):  

𝑚(𝐸) = −𝜀ଶ𝛬ଵ(𝐸) +
1

2
𝜋 ෍(𝑠௡

ଶ + 𝑐௡
ଶ

ே೑

௡ୀଵ

)𝑆ிி(𝑛𝜔(𝐸଴))                  (4.20) 

𝐷(𝐸) = −2𝜋𝐸଴ ෍ 𝑠௡
ଶ

ே೑

௡ୀଵ

𝑆ிி(𝑛𝜔(𝐸଴))                                   (4.21) 
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𝛬ଵ(𝐸) is the dissipation term. 𝑆ிி is the power spectrum density of the excitation 

force 𝐹ହ(𝜏). 𝜔(𝐸଴) is the angular frequency corresponding to the period 𝑇(𝐸଴) of the 

unperturbed oscillation. 𝑁௙  is the number of Fourier coefficients used to expand the 

solution. Practically, the study used 𝑁௙ = 5, which achieved a reasonable approximation. 

𝑠௡ and 𝑐௡ are the Fourier coefficients to expand the solution for the phase angle 𝜑଴(𝜏), 

which satisfies: 

𝑠𝑖𝑛𝜑଴ = −
𝑦଴(𝜏)

ඥ2𝐸଴

= ෍ 𝑠௡ 𝑠𝑖𝑛[𝑛𝜔(𝐸଴)]

ே೑

௡ୀଵ

            

𝑐𝑜𝑠𝜑଴ =
𝑠𝑔𝑛(𝑥)ඥ𝑈(𝑥)

ඥ𝐸଴

= ෍ 𝑐௡cos [𝑛𝜔(𝐸଴)]

ே೑

௡ୀଵ

                      (4.22) 

 

 

Figure 4.19 Phase plane for undamped and unforced system 
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The separatrices of the unperturbed system without damping or excitation have 

been plotted as the dotted curves (starting with different initial energy 𝐸଴) in Figure 4.17. 

The Fourier expansion fitting for the phase angle 𝜑଴(𝜏) at 𝐸 = 0.53 is plotted in Figure 

4.18, showing that using 𝑁௙ = 5 is usually accurate enough. 

 

 

Figure 4.20 Fourier expansion fitting for the phase angles 
 

𝛬ଵ(𝐸) is obtained by averaging over the period 𝑇(𝐸଴) of the unperturbed system: 

𝛬ଵ(𝐸) =
2𝐸

𝑇(𝐸଴)
ර(𝑏ଵఌమ + 𝑏ଶఌమ|𝑦଴(𝜏)|)𝑠𝑖𝑛ଶ𝜑଴𝑑𝑡              

𝛬ଶ(𝐸) = −
1

𝑇(𝐸଴)
ර(𝑏ଵఌమ + 𝑏ଶఌమ|𝑦଴(𝜏)|)𝑠𝑖𝑛𝜑଴𝑐𝑜𝑠𝜑଴𝑑𝑡

           (4.23) 

The drift and diffusion coefficients obtained are plotted in Figure 4.19 through 

Figure 4.23. Parameters including the significant wave height, the peak period, the linear 

damping, the quadratic damping and the mooring system have been varied to demonstrate 
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their effects on the drift and diffusion coefficients. Neither the linear damping nor the 

quadratic damping will affect the diffusion coefficients.  

 

 
(a) Drift coefficient 

 
(b) Diffusion coefficient 

Figure 4.21 Drift and diffusion coefficients variation with Hs (Tp=7.0s, b1=0.02, 
b2=0.02) 
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(a) Drift coefficient 

  

(b) Diffusion coefficient 

Figure 4.22 Drift and diffusion coefficients variation with Tp (HS=3.0m, b1=0.02, 
b2=0.02) 
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Figure 4.23 Drift coefficients variation b1 (Hs=3.0m, Tp =7.0s, b2=0.02) 
 

 

Figure 4.24 Diffusion coefficients variation with b2 (HS=3.0m, Tp =7.0s, b1=0.02) 
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(a) Drift coefficient 

 

(b) Diffusion coefficient 

Figure 4.25 Drift and diffusion coefficients variation with mooring (HS=3.0m, 
Tp=7.0s, b1=0.02, b2=0.02) 
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As the total energy 𝐸(𝜏) is a Markov process, the mean first passage (to cross the 

stable boundary with the initial energy 𝐸଴ ) time, 𝑀ଵ(𝐸଴) , satisfies the generalized 

Pontryagin equation: 

1 + 𝑚(𝐸଴)
𝑑

𝑑𝐸଴
𝑀ଵ(𝐸଴) +

1

2
𝐷(𝐸଴)

𝑑ଶ

𝑑𝐸଴
ଶ 𝑀ଵ(𝐸଴) = 0               (4.24) 

In this study, equation 4.24 can be solved with two boundary conditions: 

ቐ

𝑀ଵ(𝐸௖) = 0                                     

𝑑𝑀ଵ(0)

𝑑𝐸଴
= −

1

𝜋𝑆ிி(𝜔௡)
                 

                         (4.25) 

𝐸ୡ is the maximum initial energy for the system to remain in the safe basin (i.e., 

the outer-most dotted curve in Figure 4.17. 𝐸ୡ  corresponds to immediate capsizing 

(𝑀ଵ(𝐸௖) = 0). 𝜔௡ represents the pitch natural frequency.  

 

 

Figure 4.26 The mean first passage time with initial energy (HS=3.0m, Tp=7.0s) 
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Equation 4.24 can be solved numerically using the shooting method. The variation 

of 𝑀ଵ and 𝑑𝑀ଵ(0)/𝑑𝐸଴ are plotted in Figure 4.24. The mean first passage time 𝑀ଵ decays 

with the initial energy 𝐸଴. The inverse of the mean first passage time is 1/𝑀ଵ(0), namely 

the mean first escape rate. For this case 1/𝑀ଵ(0) is 0.055, which can be compared with 

the phase space flux rate calculated by the Melnikov approach. 

 

 

Figure 4.27 Variation of the mean first escape rate with HS 
 

Figure 4.25 shows the variation of the mean first escape rate with significant wave 

height under different peak periods (𝑏ଵ = 0.02, 𝑏ଶ = 0.02). Compared with the results 

from the Melnikov approach, the results from the Markov approach yield similar 
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increasing trend (with the significant wave height) as well as the similar “increasing slope” 

pattern.  

Figure 4.26 shows the variation of the mean first escape rate with peak period 

under different significant wave heights (𝑏ଵ = 0.02, 𝑏ଶ = 0.02). The peak of the mean 

first escape rate is approximately Tp≈5.5s (the pitch natural period is around 5.5s). 

 

 

Figure 4.28 Variation of the mean first escape rate with Tp 
 

Figure 4.27 shows the variation of the mean first escape rate with significant wave 

height under different linear damping coefficients (𝑇𝑝 = 7s, 𝑏ଶ = 0.02). The results from 

the Markov approach seem to be less sensitive to the linear damping as compared with the 

Melnikov approach. 
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Figure 4.29 Variation of the mean first escape rate under different 𝑏ଵ 
 

Figure 4.28 shows the variation of the mean first escape rate with significant wave 

height under different quadratic damping coefficients (𝑇𝑝 = 7s,  𝑏ଵ = 0.02).  

 

Figure 4.30 Variation of the mean first escape rate under different 𝑏ଶ 
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The results from the Markov approach (in Figure 4.28) seem to be less sensitive to 

the quadratic damping compared with the Melnikov approach. 

 

Figure 4.31 Variation of the mean first escape rate under different mooring systems 
 

Figure 4.29 shows the variation of the mean first escape rate with significant wave 

height under different mooring systems (𝑇𝑝 = 7s,  𝑏ଵ = 0.02,  𝑏ଶ = 0.02) . The 

implementation of the mooring systems reduces the probability of capsizing, to different 

extent. Both the Melnikov results and the Markov results show that the specified single 

mooring leg system is not as helpful as the specified multiple (3) mooring leg system as 

for reducing the probability of pitchpoling. However, the Markov approach is obviously 

more sensitive than the Melnikov approach to the variation of the restoring curve. 

Observations from the previous comparison seem to show that the Markov 

approach is more sensitive to the sea state parameters (i.e. significant wave height and 
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peak period). It is also more sensitive (than the Melnikov approach) to the restoring curves, 

while it is less sensitive (than the Melnikov approach) to the damping coefficients. 

4.4. Comparison of Melnikov and Markov Approaches 

The Melnikov approach and the Markov approach are valid under different 

assumptions. As semi-analytical methods, they both provide efficient measurements of the 

capsizing probability. The phase space flux rate from the Melnikov approach and the mean 

first escape rate from the Markov approach both indicate how “fast” the system loses its 

stability. Figure 4.30 shows the comparison between the Melnikov and the Markov 

approach under different peak periods. Though the magnitude of the metrics from the two 

approaches are not always close, depending on the input parameters, the phase space flux 

rate and the mean first escape rate yield similar trends in these sensitivity studies.  

 

 

(a) Comparison of Melnikov and Markov approach  when Tp=5.5s 

Figure 4.32 Comparison of Melnikov and Markov approach under different peak 
periods 
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(b) Comparison of Melnikov and Markov approach  when Tp =10.0s 

Figure 4.33 Continued 
 

Since both approaches assume small damping for the perturbation analysis, the 

effects of linear and quadratic damping coefficients on their correlations are studied. 

Figure 4.31 shows the relationship between phase space flux rate and the mean escape rate 

under different linear damping coefficients 𝑏ଵ and nonlinear damping coefficients 𝑏ଶ. It 

can be found that the damping coefficients will affect the slope of the correlations 

considerably. Based on our previous analysis, the change in slope can be largely attributed 

to the fact that the Melnikov approach is relatively more sensitive to the damping 

coefficients. 
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(a) Varied linear damping 

 

(b) Varied quadratic damping 

Figure 4.34 Relationship between phase space flux rate and the mean escape rate 
under different damping coefficients 
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Though the two metrics are not directly correlated, it is reasonable to consider them 

as “loosely” correlated. Under appropriate conditions (Melnikov: relative small damping 

and excitation; Markov: relative small bandwidth of the response and damping), either 

approach should give similar results. The applicability of their corresponding assumptions 

may also explain their slightly different sensitivity to the peak period.  

Essentially, the Melnikov function considers the perturbations (which include the 

excitation and the damping) along the unperturbed heteroclinic boundary. A positive 

Melnikov function value means that the system is accumulating energy from the 

intersected heteroclinic boundary. On the other hand, the Markov approach solves the 

equation of the mean time for the system (starting from varied initial energy) to 

accumulate enough energy to exit the boundary of the safe region.  

 

 

Figure 4.35 A conceptual understanding of the two approaches 
 

E



  

125 

 

Figure 4.32 will help us understand conceptually (instead of quantitatively) the 

two approaches: the Markov approach measures the slope from the origin to the critical 

energy level, while the Melnikov approach measures the slope near/at the critical energy 

level.  
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5. CONCLUSIONS AND FUTURE EXTENSIONS 

 

5.1. Conclusions 

In the dissertation, the author explored various approaches to overcome the 

inadequacies/difficulties of the traditional methods (for typical ships and offshore 

platforms) in modelling the WES. As pointed out by the ECMW, the most important 

inadequacy/difficulty is associated with the nonlinear effects and viscous damping effects.  

Though inclusion of all nonlinear effects is too aggressive for this dissertation, it’s 

primarily important that the nonlinear effects in the equations of motion are addressed. In 

section 2, a simulation program, SIMDYN, was developed using both the linear and the 

blended time domain methods to predict the motions (six degrees of freedom) of the wave 

energy structure. The nonlinear Froude-Krylov and hydrostatic forces were implemented 

in SIMDYN. The (dominant) external forces can be calculated more accurately without 

costing much more calculation time. The nonlinear inertia effects were addressed, which 

were usually neglected in the time domain analysis. They may prove to be as important as 

the nonlinear effects from the external forces.  

The study also filled the gap in that the blended method has seldom been correlated 

with WES model tests. The comparisons between the simulations and the model tests were 

improved by the blended method. The survival mode as well as the working mode (under 

large sea states) modelling of the (point absorber type) WES will benefit from the blended 

time domain method’s more accurate motion predictions without increasing the 
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calculation time orders of magnitude of as would occur using a fully nonlinear time-

domain program or a CFD program. 

The other challenge pointed out by the ECMW is evaluating the important (more 

important for WES than for typical platforms) viscous damping values.  As empirical 

formula or free decay test for WES are usually unavailable, the author introduced the 

system identification method to overcome this problem. Section 3 presents the first 

application of the R-MISO system identification technique to the model test correlation of 

a wave energy structure (a non-ship-shape geometry) with realistic mooring 

configurations. Compared to previous studies, the increased complexity of our modelling 

(6 or 3 degrees of freedom with catenary mooring modelling) is a significant progress in 

application of the R-MISO system identification as an advanced analysis methodology. 

Using directly the model test results under random sea states (the realistic 

scenario), system identification can reveal the transfer function over the whole frequency 

range (instead of at just the natural frequency). A fitting between the transfer function 

from the model tests and the one from the simulations yields the reasonable viscous 

damping values. Implementing the damping correction obtained from the system 

identification method effectively improves the accuracy of the time domain simulations. 

It is shown that R-MISO can be applied to model test correlations of moored floating 

structures, which categorizes the majority of wave energy structures. 

While many quantities of interest (e.g. mooring loads) can be studied through 

typical engineering design practice, the dynamic stability (capsizing under random 

excitation) is relatively, overlooked. Actually, increasing instability occurrence observed 
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in WES model test indicates that the dynamic stability is equivalently important. In section 

4, two efficient semi-analytical approaches: the Melnikov approach and the Markov 

approach, were explored and compared to predict the pitchpoling probability of a generic 

moored floating cylinder (representative of the form of many WESs). Essentially, the 

Melnikov approach considers the perturbations along the unperturbed heteroclinic 

boundary and reveals how fast the system is accumulating energy from the intersected 

heteroclinic boundary. On the other hand, the Markov approach solves the equation of the 

mean time for the system (starting from varied initial energy) to accumulate enough 

energy to exit the boundary of the safe region.  

The influence of the parameters, including the sea states, damping and mooring 

systems on the capsizing probability predictions, was studied. The Markov approach is 

more sensitive (than the Melnikov approach) to the sea states and the restoring curves, 

while it is less sensitive (than the Melnikov approach) to the damping coefficients. Though 

the derivations of the Melnikov approach and the Markov approach have been established 

previously, they have never been applied to a (non-ship-shape) moored floating structure 

before. These efforts will prove to be effective in predicting the dynamic instability of the 

moored floating system and in turn reduce the capsizing risks. By avoiding the otherwise 

long simulating time, both approaches works efficiently in optimizing the primary designs 

of hull geometries and mooring systems. 

5.2. Future Recommendations 

In the future studies, the blended time domain program should be benchmarked by 

more model test results. Influences from the power take off (PTO) forces should be 
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modelled in SIMDYN in the next phase. Other appealing aspects of possible improvement 

include simulating the parametric roll and sway accurately (and correlating with the model 

test measurements) and upgrading the mooring modelling to dynamic modelling. Overall, 

the blended time domain program has provided a good platform. On top of its realistic 

modelling capability, studies of improved hydrodynamic control can be implemented. 

Future studies should also correlate the Melnikov approach and the Markov 

approach more closely to dynamically unstable occurrences observed in both model tests 

and in actual sea operations. On the other hand, the fast turnaround of the two semi-

analytical approaches should be fully utilized to obtain more insight in optimizing the 

design. Such an approach may also be applied in a regulatory framework for both national 

governments and a classification approach. 
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