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ABSTRACT 

 

Cotton Root Rot (CRR) is a severe cotton disease in Texas and the southwestern 

U.S. It kills cotton and other dicotyledonous plants so quickly that the death of the plant 

may be the first observable symptom. CRR cannot be cured within season, but spraying 

flutriafol fungicide next to the seed during planting controls the disease effectively. A 

previous study indicated that CRR typically reoccurs at the same location in fields, so 

historical location information can guide the grower on where to apply the fungicide 

more efficiently and to minimize environmental risk. Manned aircraft remote sensing 

has been proven capable of providing CRR location distribution information. 

Because image data from manned aircraft tend to be expensive and have low 

spatial resolution compared to images from unmanned aerial vehicles (UAVs), three 

studies were undertaken to develop the capability of UAV remote sensing to determine 

CRR location in cotton fields so that fungicide can be applied in a precise manner. Study 

I was conducted to explore the possibility of using the UAV based remote sensing data 

to delineate CRR-infested areas and generate a prescription map. The result 

demonstrated that UAV remote sensing can be used effectively for this purpose, and can 

significantly reduce the amount of fungicide applied. 

Study II was conducted to develop methods to improve the image processing 

methods used to identify CRR in UAV remote sensing data in an effort to take advantage 

of their inherently high spatial resolution. Conventional classification methods used with 

manned-aircraft data do not work well on UAV data, because the higher resolution 
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results in additional classes of image pixels like bare soil and shadows between crop 

rows. In this study, two new regional classification methods were developed which can 

accurately and automatically identify CRR-infested areas with high-resolution UAV 

remote sensing data. The results demonstrated that the new proposed methods are 

superior for CRR detection in UAV images compared to conventional classification 

methods. 

Study III was an attempt to make further use of the high resolution of UAV data 

by creating a plant-by-plant level CRR identification method. The desire is to make 

fungicide application as precise as possible, even potentially at the level of individual 

plants, so as to minimize the amount applied, saving cost and reducing environmental 

risk. The results of this study illustrated that the plant-by-plant image classification 

method can identify individual plants and determine whether they are infected or not 

with high accuracy.  

All of these studies were funded by Cotton Incorporated, Cooperative Research 

Agreement number 16-233. 
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NOMENCLATURE 

 

AGL Above ground level 

CH Chase 

C-U combined-unsupervised 

𝐺𝑖  total number of pixels classified as Class i in ground-truth data 

i class number 

KM k-means 

𝑘 kappa coefficient 

MD minimum distance 

MHD Mahalanobis distance,  

ML maximum likelihood,  

N total number of pixels 

PA proposed automatic 

PBP plant-by-plant 

𝑃𝑖  total number of pixels classified as Class i in the predicted data 

S supervised 

SH School House 

𝑡𝑖,𝑖 correctly classified number of pixels in Class i 

U unsupervised 

WP West poncho 
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1. INTRODUCTION  

1.1. Background 

Cotton is a shrub plant of the genus Gossypium belonging to the family 

Malvaceae that originally grew in the subtropics and tropical regions of the Americas, 

India, China, etc. In its reproductive stage, flowers appear on the plant and then wilt, and 

a small green capsule called the cotton boll remains where a flower was situated. Cotton 

seeds are produced inside the cotton boll. As the boll matures, small fibers begin to 

protrude from the surface of the seed. These white fibers gradually fill the boll, which 

opens when fully mature, leaving the cotton fiber to dry in the air. The fiber, en masse, is 

a very important raw material for producing cloth for garments, carpet, and other knit 

goods. The use of cotton fabric can be dated to 5000 BC. Since that time, cotton has 

promoted the progress of human civilization and greatly influenced the culture. 

The U.S. is one of the top cotton-producing countries in the world and is the 

largest cotton exporting country. According to the final 2017 USDA crop estimates 

(2017-18),  the U.S. produced 20.92 million 480-lb bales, ranking 3rd after India and 

China (Figure 1.1). The production value of U.S. cotton was 7.22 billion in that year [1]. 
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Figure 1.1 Cotton production by country worldwide in 2017/2018 in 1,000 metric 

tons [2] (referred from USDA-NASS 

https://downloads.usda.library.cornell.edu/usda-

esmis/files/kp78gg36g/4q77fw02f/hx11xk098/cotton.pdf) 

 

The state of Texas is located in the so-called “Cotton belt” of the U.S., which is 

known for its high production of cotton from the 18th to the 20th century. From the 2017 

USDA-NASS (National Agricultural Statistics Service) report [1].  of Texas agriculture 

overview, the state of Texas produced 9.523 million bales of cotton, ranking 1st in the 

U.S. in 2017 [1]. This amount is approximately 44.4 % of U.S. cotton production; 

Georgia produced 2.23 million bales, ranking second (Figure 1.2). Texas’s cotton 

production amounted to around 3.40 billion U.S. dollars that year. In sum, cotton is a 

very important commercial crop in the U.S. as well as in the state of Texas.  
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Figure 1.2 Leading 10 U.S. states for cotton production in 2017 in 1,000 bales [2] 

(referred from USDA-NASS https://downloads.usda.library.cornell.edu/usda-

esmis/files/k3569432s/f4752k06n/th83m180b/CropProdSu-01-12-2018.pdf) 

 

One of the greatest obstacles to cotton production in Texas is a disease called 

cotton root rot (CRR) or Texas root rot, which is caused by the soil-borne fungus 

Phymatotrichopsis omnivora, and is a very destructive plant disease throughout the 

southwestern region of the U.S. It was first observed in 19th century by Pammel [3]. 

CRR has been studied extensively and was first observed in Arizona in September 1928 

[4].  Annual losses associated with CRR have been reported to be as high as $29 million 

in Texas [5]. 
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The Phymatotrichopsis fungus is thermophilic and more common in alkaline 

soils (PH:7.2-8.5) and high moisture environments. When ammonium salts have been 

used as a crop nitrogen source in the solution, the growth of the fungus has been notably 

restricted, because both the mycelial and sclerotial stages of the fungus were killed by 

short exposure to the gas [6]. Most of the infected plants were dicotyledonous. 

The fungus is a soil-borne organism, not restricted to living roots, but having 

independent means of over-wintering and spreading. It spreads through root contact 

between plants and growth of mycelia in the soil [7].   

The sclerotia can survive in soil up to 7 feet deep for many years. In suitable 

environmental conditions, the sclerotia germinate and eventually contact the roots of the 

plants [5]. 

The fungus usually kills the plant within ten days [8] of infection. If the disease 

occurs at the early stage of growth, the plants will die before bearing fruit. Otherwise, 

the disease will reduce the cotton yield and lower the quality of the lint. Based on the 

observations, the area of cotton infected with CRR increased 10%-50% from the border 

of the initial infected area through the season (Aug to Sept.). Control practices have been 

neither economical nor effective (Ron Smith, 2004). However, since CRR occurs in 

roughly the same field locations each year, zones of infection can be predicted.  

It is impossible to get adequate information about the extent of CRR infection 

from the ground because of the large size of infected areas and their irregular shapes. 

Therefore, remote sensing (RS) technology has been applied to CRR detection research 

[9]. Multispectral and hyperspectral imaging have both been used to distinguish infected 



 

5 

 

areas from non-infected areas, but 3-band multispectral images work well and thus 

appear to be appropriate because they are less expensive and more widely available [9].  

1.2. Literature Review 

1.2.1. Aerial and satellite remote sensing (RS) may be options for detection 

In agricultural fields, RS may involve aerial or satellite images. RS data 

including visible, near-infrared (NIR), and shortwave infrared (SWIR) have been studied 

widely to understand many crop phenomena [10]. 

Aerial RS has been used to estimate crop yield. Read et al. used remote sensing 

to study the relationship between potential cotton yield and soil properties [11]. The 

experiment was conducted on a 104-acre dryland field in east-central Mississippi with an 

annual average of 1422 mm precipitation. The field was in a soybean-cotton rotation, 

with 50,000 seed/acre seeding rates in the cotton-growing seasons of 2001 and 2002. 

Multispectral images were obtained from two third-party companies in June 2001 and 

June 2002. The manned aircraft surveyed at 3650-m altitude and achieved 2 m2 /pixel 

spatial resolution in 2001. The aircraft carried a 3-band multispectral camera that was 

sensitive to green (540 ± 20 nm), red (695 ± 20 nm), and NIR (840 ± 20 nm) band 

reflectance. A better resolution 0.5 m2 /pixel was obtained at 1824 m altitude in 2002. 

The camera system was also sensitive to green (550 ± 5 nm ), red (650 ± 5 nm ), and 

NIR (850 ± 10 nm ). NDVI maps, derived from the multispectral images, indicated a 

strong relationship between plant growth and lint yield. Yang and Everitt (2012) also 

used a hyperspectral system to help estimate crop yield variation[12]. The charge-

coupled device (CCD) camera collected spectral data containing 102 usable bands from 
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457.2 nm to 921.7 nm bandwidth with a 3.63 nm interval. Two-band and three-band 

hyperspectral vegetation indices (VIs) were derived from the hyperspectral image data to 

characterize crop variation. The results indicated VIs derived from a green and NIR 

combination, and a NIR and red edge combination performed better than traditional a 

red and NIR combination on yield prediction.  

Research has also indicated that RS is able to monitor weed infestations. Sui et 

al. developed a ground-based proximal weed mapping sensing system, and RS was used 

to test the system[13]. The study was conducted on the 13-ha cotton field at Stoneville, 

Mississippi. The image was collected by a 3rd party company (Geodata Inc.) at 1300-m 

altitude. The camera system included red (450nm), green (550nm), red (650nm), and 

NIR (850nm) bands with 0.5m spatial resolution. The image was mosaicked in Erdas 

imagine software. NDVI maps were generated from multispectral image data. The 

research not only demonstrated that crop canopies and weeds between rows have a 

strong relationship to RS images, but also indicated that RS could detect the differences 

from different land covers. The ability to distinguish between cotton and weed is 

sufficient for distinguishing between healthy cotton and CRR-infested cotton. 

Aerial and satellite RS have also been used to assess cotton. Gogineni and 

Thomasson used satellite and airborne remote sensing data with a cotton growth model 

[10]. Landsat 7 satellite data consisting of blue, green, red, and NIR bands with 30 m 

spatial resolution were used. Aerial images were obtained biweekly from May 12th to 

September 15th with a multispectral sensor sensitive to blue, green, red, and NIR bands 

and had 0.5m spatial resolution per pixel. The multispectral images were georectified, 



 

7 

 

and NDVI maps were derived from them. The NDVI maps were used as a proxy for 

plant height in a cotton yield prediction model. With feeding RS derived plant height 

information, the yield prediction model got improvement. Yang (2011) used a 3-CCD 

camera composite color-infrared (CIR) system to survey 105-ha, and 55-ha center-pivot 

irrigated cotton fields in Corpus Christi, TX. The ground resolution of the aerial images 

was 0.2 to 0.3 m/pixels. The results indicated that aerial CIR RS data can monitor the 

status of cotton crops in the field and was more efficient and reliable than ground-based 

reflectance data on assessing cotton defoliation and regrowth control. 

Aerial and satellite RS have previously been used to detect disease in the field. 

Chen (2007) used Landsat satellite data to detect take-all disease in wheat, which causes 

considerable wheat yield decreases in China. The chlorophyll level of infested plants 

affects the spectral reflectance. Compare to the spectral reflectance curve of healthy 

wheat, the reflectance of NIR decreases, and then no ‘red edge’ is evident in the spectral 

curve, and the reflectance peak in the NIR will disappear. The result indicated that the 

NDVI derived from RS image is able to detect the root disease. One of the symptoms of 

take-all disease is stunting and yellow leaves, which is similar to CRR. Calderon used 

high resolution airborne multispectral (450, 490, 530, 570, 670 and 800 nm), 

hyperspectral (260 bands at 1.85 nm/pixel), and thermal RS (8–12 μm) to early detect 

Verticillium wilt (VW) of olive, which like CRR is also caused by a soil-borne fungus 

[14]. It indicates that physiological hyperspectral indices and canopy temperatures are 

more related to physiological stress caused by VW, while structure indices such as 

NDVI were more related to structural damage caused by VW. Apan et al. used Hyperion 
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satellite hyperspectral imagery to detect the orange rust disease in sugarcane [15]. The 

visible near-infrared based indices such as Structure-Insensitive Pigment Index (SIPI) 

have significant separability for orange rust disease infected sugarcane.  

In addition to foliar pathogen diseases, some root diseases are also able to be 

detected with RS. Fletcher et al. used CIR (NIR, red, green) airborne digital imagery 

taken from 3.7m AGL height to detect Phytophthora root rot infection of citrus trees, 

which leads canopy defoliation, leaf yellowing, and twig dieback [16]. Cook et al. used 

airborne CIR video to detect Phymatotrichum root rot (PRR) and the root-knot nematode 

of kenaf. The result indicates the NIR band had the potential to identify and monitor the 

progression of PRR [17]. 

It is clear that aerial and satellite remote sensing has been widely studied for uses 

in agricultural production. The VIs derived from spectral imagery is useful for yield 

estimation, crop status monitoring, and field management. Most satellite images used in 

agricultural studies have from 5 to 30m/pixel resolution. Many are available free of 

charge, and historical data may be easily acquired. On the other hand, satellite remote 

sensing is limited by temporal resolution and cloud coverage. There is a risk that clouds 

may obscure the satellite’s view when it is taking images over a certain area. Satellite 

images also commonly have low temporal resolution, and image collection frequency is 

reduced whenever cloud cover impairs image collection on a particular day. Aerial RS 

makes an excellent compensation on this. Imagery collected with aerial RS can be 

obtained the weather permits anytime, and cloud cover often does not obscure aerial RS, 
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but it does create problems with shadows in the images. Aerial RS data can be from 0.2 

to 2.0 m/pixel resolution, depending on flight altitude.  

Image errors can be caused by numerous problems, including those introduced 

during the mosaicking of the images or the attitude of aircraft during flight [10]. Green, 

red, NIR, and red edge are popular spectral bands used in agricultural study. The VIs 

derived from combinations of these spectral bands are commonly used in agriculture. 

Plant height, leaf-area index (LAI), and evapotranspiration (ET), also can be developed 

from RS data.  

 

1.2.2. CRR has been documented with remote sensing 

Taubenhaus et al. were the first to report using remote sensing for the study of 

cotton root rot. An infected cotton field was photographed from an airplane with a 

handheld camera [18]. The aircraft flew between 10:00 A.M. and 3:00 P.M. local time at 

250 to 500 ft altitude. A commercially available black and white (B&W) panchromatic 

film camera was used. The results indicated that ground-based photographs were 

challenging to use for monitoring damage from cotton root rot, but aerial photographs 

could provide views of cotton root rot infection over a large area.  

Nixon et al. introduced CIR film photography to the tasks of documenting the 

distribution of cotton root rot infection and detecting the effect of chemical treatment for 

root rot [19]. The film was sensitive to NIR, visible light, and UV light. Four CIR photos 

were shown in the results. All of the photos were captured from an airplane between 

11:30 A.M. and 3:00 P.M. local time. The flying above ground level (AGL) heights used 
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were 15000, 2000, 800, and 500 ft. All the images could be used to delineate cotton root 

rot well. A multispectral video image of cotton root rot was evaluated in 1987 [20]. They 

used for cameras that are sensitive from 400nm to 1500nm waveband at 900m and 

1800m altitude height. The result indicated that Infrared and red band images showed 

the infested area better than the green band. The infrared band also showed an infested 

area better than the red band image. However, the reflectance of infrared may be 

impacted by exposing more shadows and soil, which were caused by drooping of 

foliage. 

Yang et al. began to consider the possibility of precision application of fungicide 

to mitigate CRR only in the infected zones of a field [21]. They used remote sensing to 

observe cotton root rot disease on a 105-ha center-pivot irrigated cotton field and a 39-ha 

rainfed cotton field located near Corpus Christi, TX. An 8-bit 3-CCD digital camera 

system was used. This camera system could observe the crop in green (555-565 nm), 

red (625-635 nm), and NIR (845-857 nm) bands. A single-engine manned aircraft 

carried the sensor at 3000m altitude and surveyed the field between noon and 2:00 P.M. 

local time. The ground resolution was 1.3m/pixel. Raw images were geographically 

registered and rectified, and then assessed with ERDAS IMAGINE software. As a result 

of the larger reflectance difference between healthy and infected plants in the red band 

relative to the green band, Yang pointed out that the red band performed better than the 

green in cotton root rot detection. Overall, the CIR images could easily distinguish the 

CRR infested area from the healthy cotton area. An unsupervised 2-class classification 

was made based on aerial images. The results indicated that highly accurate CRR 
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detection could be achieved with aerial remote sensing in the absence of other biotic and 

abiotic factors. It has been reported that CRR can spread at a speed of 1.5 to 9 m per 

season [7].  Thus, when Yang et al. developed preseason fungicide-application maps 

based on remote-sensing data from a prior year, they added a buffer area around the 

CRR zones in the field. 

Yang et al. used remote sensing to map cotton root rot again in 2015 [22]. They 

used a sensor system composed of four individual charge-coupled device (CCD) digital 

cameras with a PC. Each camera was able to provide 12-bit image data with 2048 x 2048 

pixels corresponding to sensing blue (430-470mm), green (530-570mm), red (630-

670mm), and near-infrared (810-850mm) bands. The image data were collected from a 

single-engine airplane at 3050m altitude. The ground resolution was 0.9 m/pixel.  

Yang et al. used three imaging systems in this study. Besides a 2-camera system 

(RGB, NIR), they also used the 3-camera (G, R, NIR) and 4-camera (R, G, B, NIR) 

imaging systems mentioned above to capture the multispectral images at 3050 m AGL 

altitude height from a single-engine aircraft [23]. All captured images were resampled 

into 1m resolution. An NDVI ISODATA classification map was derived from the 1.0 to 

1.3 m ground resolution images. A 3 to 12 m distance buffer area proved to be 

appropriate based on this level of resolution. Two classification maps of two dates were 

overlaid to detect changes. The results indicated that CRR occurred in the same general 

area, even after ten years. This finding illustrates that historical remote sensing data can 

be helpful in predicting the CRR infection area.  
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Hyperspectral RS could be used for CRR detection. In 2010, Yang et al. 

compared airborne hyperspectral to multispectral imagery for mapping CRR. A 97.7-ha 

semicircular field and a 54.5-ha circular field located near Edroy, TX, were studied [9]. 

The camera system used for multispectral data collection was the same as described 

above in the Yang 2005 study. A SuperVGA Sensicam digital CCD camera was used to 

capture the 12-bit depth hyperspectral image data in 128-bands (457 – 922 nm). Yang et 

al. (2011) used the same hyperspectral camera to collect data in Corpus Christi, TX, in 

2001 and 2002 [24]. The systems were carried by manned aircraft flying between 11:30 

A.M. and 2:30 P.M. local time under sunny conditions. The multispectral images had 0.2 

to 1.2 m/pixel spatial resolution, while the hyperspectral images had 2.4m/pixel 

resolution. Results indicated that both multispectral and hyperspectral remote sensing 

could be used to delineate CRR. Yang found multispectral remote sensing was more 

suitable for CRR detection because of its lower cost and more convenient processing. 

Satellite remote sensing has also proven useful in detecting CRR. Song et al. 

used a 10m resolution Sentinel-2A multispectral instrument (MSI) images [25]. These 

images contain 13 bands, including visible, NIR, and SWIR. They used blue, green, red, 

and NIR image bands and conducted ISODATA unsupervised classification was used to 

analyze the data. They were able to detect CRR for large zones of the disease. However, 

the method sometimes misclassified zones of CRR as non-CRR and small healthy zones 

surrounded by CRR because of the low image resolution. Wu et al. also used Sentinel-2 

data to monitor the progression of CRR within the season [26]. The result indicates that 

NDVI is a useful index for monitoring the progression of CRR. 
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Previous research has indicated that airborne and high-resolution satellite 

multispectral imagery can be used successfully to detect CRR infected areas in both 

dryland and irrigated fields. However, the ground spatial resolution of these data is 

generally from 1 to 10 m, not high enough to enable plant by plant-level mapping. The 

flying height of the sensor platform affects the image resolution. The higher required 

altitudes for these platforms, thus, degrade the resolution. No literature is currently 

available about low-altitude RS, such as with a UAV, for CRR delineation. 

 Yang et al. used the four-camera multispectral imaging system mentioned above 

to monitor CRR as it progressed in a field. This study revealed that multispectral 

imagery, along with unsupervised classification is useful for monitoring CRR infection 

in the field [27].  

Wu et al. used Sentinel-2 satellite data to monitor the progression of CRR within 

the season [26]. They used a fusion method called improved spatial and temporal data 

fusion approach (ISTDFA) to combine the 250-m Moderate Resolution Imaging 

Spectroradiometer (MODIS) NDVI image and the 10-m Sentinel-2 NDVI image to 

generate time series map and improve the spatial and temporal resolution of the data. 

The result indicated that the ISTDFA had a good correlation coefficient on combining 

the time series MODIS and Sentinel-2 NDVI data. 

Yang et al. used multispectral remote sensing to monitor CRR infection and the 

effects of fungicide treatment [8]. Three camera systems were used in this study. A 

three-camera imaging system collected green (555-565 nm), red (625-635 nm), 

NIR (845-857 nm) band images. A four-camera imaging system covered blue (430-470 
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nm), green (530-570 nm), red (630-670 nm), and NIR (810-850 nm) bands. And a two-

camera imaging system included blue, green, and red bands with an additional 720nm 

long-pass filter to obtain a NIR band. All images were collected at 3048 m AGL altitude 

height with 1.0-1.3m ground resolution. At this resolution, multispectral remote sensing 

is able to monitor CRR infection as well as fungicide treatment applications. Topguard 

(flutriafol) fungicide sprayed at 2.34 L/ha (full rate) proved efficient on CRR. Reduced 

rate to 1.46 L/ha (2/3 full rate) didn’t work efficiently as the full rate. Compared to the 

dryland field, the response of fungicide was more consistent in the irrigated field. 

 

1.2.3. Various imaging and analysis techniques have been used to map CRR 

NDVI and the NIR band have been used to produce estimated field maps of plant 

height, leaf area index and yield, offering a potentially attractive mid-season 

management tool for site-specific farming in dryland cotton [11]. For yield estimation, 

Vegetation indices (VIs) based on NIR and red-edge band combinations or NIR and 

green band combinations have sometimes shown better performance than the traditional 

red and NIR combination. Normalized difference vegetation index (NDVI) is very 

commonly used in remote sensing for agricultural applications.  

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
                                                       (1) 

NDVI integrated over time has shown significant correlations with lint yield [13]. 

Classification is a statistical method to organize data into different classes based 

on features of the data. In remote sensing, two main classification categories are 

supervised and unsupervised. In 2005, Yang used an unsupervised 2-zone clustering 
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method to classify aerial images. Yang et al. (2014) applied the Iterative Self-Organizing 

Data Analysis Technique (ISODATA) as an unsupervised classification method on 

multispectral images to generate 9-class and 16-class images to detect CRR [8]. In 2016, 

Yang et al. used the ISODATA unsupervised classification on NDVI maps to generate 

2-zone images to detect CRR [23]. In 2015, unsupervised ISODATA was applied on 

both multispectral images and NDVI maps to generate 2-class CRR infection images. 

Supervised classification such as Support Vector Machine (SVM), Mahalanobis 

distance, minimum distance, maximum likelihood, neural network, and Spectral Angle 

Mapper (SAM) were also compared. The results indicated that all eight classification 

methods could achieve good results, and unsupervised classification applied to 

multispectral images was accurate at detecting CRR [22]. In 2017, Song et al. also used 

the ISODATA unsupervised classification to assess the Sentinel-2A satellite data to 

detect CRR. And the results turned out that the classification had high overall accuracy. 

But the coarse spatial resolution of the Sentinel-2A satellite data made some small CRR 

areas and non-infested areas misclassified [25].  

Change detection is a term for common methods of monitoring changes in a 

specified area over time. Yang et al. (2016) used change detection to assess the progress 

of CRR between 2001 and 2011 were compared [23]. The results indicated that CRR 

tends to show up in the same general areas across many years. If one were to take into 

account the potential expansion of the disease when developing fungicide prescription 

maps, a buffer area could be applied around the infection area. 
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1.2.4. Variable-rate application of fungicide has been made based on prescription 

maps 

Variable-rate technology (VRT) can automatically adjust spray rates of 

agricultural inputs based on crop needs at a particular location. It can reduce labor and 

cost on spraying by saving unnecessary spraying, but it requires a fairly high precision 

positioning system such as GPS [28]. Yang (2014) et al. used VRT on CRR treatment 

[8]. Zero or full rate fungicide was applied when the sprayer drove into non-infested and 

infested areas, respectively.  Considering the possibility of expansion of a CRR infection 

area, a buffer zone around infested areas needs to be used in creating prescription maps. 

The distance of the buffer zone is decided based on image resolution and equipment size 

and precision capability. Buffer zone distances from 0 to 10 m were assessed. A five-

meter buffer area was appropriate in relation to the 1m ground resolution of the imagery. 

 

1.2.5. UAVs can provide high-resolution imagery  

Low altitude remote sensing (LARS) is able to provide images with higher 

spatial resolution, which can provide more information for agricultural production. Since 

unmanned aerial vehicles (UAVs) were introduced into agricultural remote sensing, the 

spatial resolution is improved along with temporal resolution [29] (Figure 1.3), since 

UAVs can be flown the weather permits anytime. Piloted aircraft are a conventional way 

to acquire canopy imagery. They can typically carry large and heavy equipment such as 
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sophisticated sensors and cameras. Piloted aircraft applications need an automatic image 

triggering system. Compared to manned aircraft, UAVs have a limited payload capacity. 

However, they can fly lower and slower than manned aircraft. The above-ground height 

is commonly 20 to 100 meters. As a result, it is able to obtain higher spatial resolution. 

In addition, UAV flights cost less than traditional manned aircraft remote sensing.  

 

 

 

Figure 1.3 The height of sensor will affect the collected imagery resolution 

 

Huang et al. (2016) used UAV remote sensing for crop production management. 

An X8 octocopter rotary-wing UAV with a GoPro HERO3+ camera was used. The UAV 

was able to carry an 800 g payload and fly for 15 min. The resolution was 2.7cm/pixel at 
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45 m AGL. Five hundred fifty images were captured to study soybean injury in response 

to different doses of dicamba herbicide. Sixty images were selected for mosaicking. 

NDVI could not be calculated because the camera had no NIR band. Normalized 

difference photosynthetic vigor ratio (NDPVR) was thus derived and used to estimate 

soybean yield. The relationship between NDPVR and estimated soybean yield is as high 

as 0.96 R2. 

Zhou et al. used UAV RS to predict rice yield [30]. A multi-rotor MK-

Oktokopter was used. The maximum payload was 2.5 kg. An RGB commercial camera 

and six-band multispectral camera were used. The multispectral camera was sensitive to 

490, 550, 680, 720, 800, and 900 nm bands, which correspond to blue, green, red, red 

edge, and two NIR bands. The multispectral images were collected at 100m AGL, while 

the RGB images were captured at 50m AGL. The experiment was conducted between 

10:00 A.M. and 2:00 P.M. local time. The VIs, including NDVI and VARI, had a good 

relationship with LAI, which is useful for yield prediction. The 720nm red edge and the 

800 nm NIR bands were more effective in predicting yield for grain. Both the 

multispectral and RGB images are reliable for rice growth and yield estimation. But the 

VIs derived from multispectral images had higher correlate with grain yield than VIs 

derived from RGB images. 

Albetis et al. used a fixed-wing UAV based RS to detect grape disease in a 

vineyard [31]. A MicaSense RedEdge camera was used to capture images at 120 m AGL 

with 85% forward overlap and 70% side overlap. The resolution was 8cm/pixel. Radial 

basis function (RBF) SVM classifier was used to differentiate diseased from non-
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diseased areas. Bare soil, shadow, inter-row vegetation and, grape vegetation was 

classified. The classification accuracies were achieved from 0.97 to 0.99 in four 

vineyards. The biophysical parameters (BP), the spectral band (SB), and VIs were 

compared. VIs worked the best on disease discrimination, and BP came next. SB did the 

worst on disease separability.  

Romero et al. also applied UAV RS in a vineyard [32]. A DJI Phantom 3 rotary-

wing UAV carried a SEQUOIA multispectral sensor to capture images at 30m AGL, 

achieving 4cm/pixel resolution. The images contained green, red, red edge, and NIR 

bands. Pix4D software was used to calculate VIs, and Qgis software was used for 

geometric correction. An artificial neural network (ANN) was used for estimating water 

potential. 

UAVs can be categorized as a rotary-wing or fixed-wing. Rotary UAVs are more 

common because they are usually cheaper and easier to use. They also don’t have strict 

requirements for longer launching and more open space of landing locations, but the 

coverage area is limited by flying speed and battery life. They have a more stable in-air 

flight and slower speed and thus are able to generate higher quality mosaicked images. 

Rotary wing UAVs are used more commonly in relatively small areas of study, such as 

vineyards. On the other hand, fixed-wing UAVs can cover a larger area because of their 

higher flying speeds. They are able to cover 60-100 acres area without switching 

batteries depending on weather conditions. They are more suitable for larger fields with 

open space. They usually require more landing space as well. 
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The use of UAVs leads to higher resolution (cm-level) imagery. High resolution 

can make plant level image analysis, such as object-based classification possible.  

Superpixel is an algorithm that segments images into pieces based on shape, 

color, texture, etc. Each piece can be called a superpixel. In essence, the Superpixel 

method converts images from pixel-level to district-level and thus belongs to the image 

segmentation processing category. Superpixel will keep the main features of aggregated 

pixels and lead the number of processing nodes to decrease sharply. As a result, it can 

significantly improve the image processing speed.  

Sultani et al. used Superpixel to detect objects in pavement images. Different 

shaped objects such as patches, manhole covers, and markers could be detected 

efficiently with the Superpixel algorithm [33]. They used Superpixel first to divide the 

images into many small segments. The features like the histogram of oriented gradients 

(HOG), co-occurrence matrix (COOC), intensity histogram (IH), and mean intensity 

(MI) of each superpixel were calculated. HOG and COOC are the texture and shape 

characteristics, while IH and MI are the intensity variations of each superpixel. Then, 

SVM was used to generate classification based on each feature. 

Superpixel has also been used to detect disease in Agriculture. Zhang et al. used 

Superpixel associated with the k-means clustering method to recognized plant disease 

from diseased leaf [34,35]. In 2017, Zhang et al. developed a new method based on the 

Superpixel algorithm to detect cucumber diseases. The leaf images were divided into 

superpixels, then applied expectation maximization (EM) to estimate the maximum 

likelihood and obtain the lesion image. After feature extraction, SVM was used to detect 
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the disease. The result indicated that the proposed method has the highest recognition 

rate and fastest processing speed among the comparison. In 2018, Zhang et al. proposed 

a new leaf recognition method based on Superpixel, K-means, and pyramid of 

histograms of orientation gradients (PHOG) algorithms. The RGB leaf image was 

divided into segments first by using the Superpixel algorithm. Then K-means clustering 

was applied to show the lesion section of leaf. PHOG features were extracted and used 

to recognize the disease. Three apple and three cucumber leaf diseases were used to 

assess the method. The result indicated that the proposed method is effective and 

achieved the highest recognition rate among the comparison most of the time. 

 

1.3. Objectives 

According to the literature review, remote sensing for CRR has already been conducted 

based on satellite and manned aircraft platforms. The prescription map can be generated 

from a remote sensing image whose ground resolution is as high as 1 m/pixel. However, 

no study has used UAV as a platform to detect CRR and generate high precision 

prescription maps based on high-resolution UAV imagery data. 

UAV  based remote sensing provides high-resolution imagery data for CRR. Successful 

utilize of UAV remote sensing could potentially move a massive further step on 

precision agriculture. No research has treated CRR in plant-level. 

The objective of this study was to (1) demonstrate that UAV image data can be used to 

build cotton root rot prescription maps with the conventional classification method, (2) 

propose new regional classification methods that more suitable to UAV image data for 
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CRR detection, and (3) proposed plant-by-plant level CRR detection and classification 

methods to identify CRR in the field. 



 

23 

 

2. UAV REMOTE SENSING TO DELINEATE COTTON ROOT ROT  

 

Abstract. Cotton root rot (CRR) is a persistent soil-borne fungal disease that is 

devastating to cotton crops in certain fields, predominantly in Texas (TX). Research has 

shown that CRR can be prevented or mitigated by applying fungicide during planting, 

but fungicide application is expensive. The potentially infected area within a field has 

been shown to be predictable, so it is possible to apply the fungicide only at locations 

where CRR exists, thus minimizing the amount of fungicide applied across the field. 

Previous studies have shown that remote sensing from manned aircraft is an effective 

means of delineating CRR-infected field areas. In 2015, an unmanned aerial vehicle 

(UAV) was used to collect high-resolution remote-sensing images in Thrall, TX, in a 

field known to be infected with CRR. In 2017, the fungicide was applied based on a 

prescription map derived from data of 2015. The results show that the prescription map 

helped to reduce 89.1% of the fungicide applied in the field and potentially saved a cost 

of $690 USD on fungicide application. 

Acknowledgments:  We thank Lantian Shangguan, Xiwei Wang, and Roy Graves for 

helping in data collection.  

 

2.1. Introduction 

Cotton root rot (CRR) is a destructive plant disease in the southwestern U.S. that 

was observed as early as the 19th century [3,4]. CRR is caused by the soil-borne fungus, 

Phymatotrichopsis omnivora, which is thermophilic and thrives in alkaline soils (pH: 
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7.2–8.5). The fungus spreads through root contact between plants and the growth of 

mycelia in the soil [7], usually killing a cotton plant within ten days of infection [27] 

(Figure 2.1). If the disease occurs at an early stage of growth, the plant will die before 

bearing fruit. If it occurs after flowering, yield and lint quality will be reduced as the 

plant ceases fruiting processes. The area of CRR infection in a field can exceed 50% as it 

expands during the growing season [8]. Early attempts to control CRR were neither 

economical nor effective [36], but flutriafol fungicide was recently found to protect 

cotton plants if applied before infection, at either planting or an early growth stage. 

Uniformly applying fungicide to disease-infested fields has become common practice to 

prevent CRR [37,38]. However, the disease is not homogeneously distributed in fields 

[37], but it tends to occur at the same field positions each year, so historical positions of 

CRR incidence can be used to precisely apply fungicide in subsequent years. Variable-

rate technology (VRT) is commonly used in fertilizer and fungicide application[37–41], 

as it can automatically adjust the application rates of agricultural inputs based on crop 

needs at a particular location, reducing cost by eliminating the unnecessary application 

of a product. Yang et al. used VRT on fungicide application during planting to control 

CRR, applying the full rate in known CRR-infested areas and zero in non-infested areas 

[8].  
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Figure 2.1 The CRR-infected cotton plants were killed and became wilt and brown. 

 

Remotely sensed images have proven to be useful in distinguishing CRR-infested 

from healthy field areas in both dryland and irrigated fields [21], providing a record of 

CRR field positions. The goal of remote sensing for CRR is basically to map dying and 

dead plants in an infested field, late in the season when the disease is at its full extent. 

While both multispectral and hyperspectral images have been used successfully in this 

task, differentiating dead or dying cotton plants from live ones is readily accomplished 

with color-infrared (CIR) or even visible (RGB) images, so three-band multispectral 

imagery is appropriate because RGB and CIR cameras are relatively inexpensive, 

uncomplicated to use, and widely available [9]. 

Remote sensing has been studied widely as a means of understanding various 

crop phenomena. In the past, remote sensing was conducted with cameras or other 

sensors on either manned aircraft or satellites. Satellite images tend to have lower spatial 



 

26 

 

resolution than aerial images but can be readily acquired, commonly for a reasonable 

cost, at a known orbital frequency. However, cloudy conditions may obscure the area of 

interest when the satellite is overhead. Aerial images, on the other hand, tend to have 

higher resolution and flexibility in the timing of image acquisition, but they may be more 

difficult or expensive to acquire.  

Most research on remote sensing for CRR detection has been conducted with 

manned aircraft. Taubenhaus et al. were the first to report using remote sensing for the 

study of cotton root rot, photographing an infested cotton field from an aircraft with a 

handheld camera [18]. Nixon et al. introduced CIR photography to document the 

distribution of CRR infection and determine the effect of chemical treatment to mitigate 

it [19]. Multispectral video imagery of CRR was evaluated as early as 1987 [20]. Yang 

et al. used remote sensing with global positioning system (GPS) technology to precisely 

map cotton root rot by 2015 [22].  Late-season remote sensing in cotton has also been 

used to evaluate the effectiveness of defoliation and regrowth control strategies [24].  

While the literature indicates that remotely sensed multispectral images can be 

used successfully to detect CRR-infested areas in cotton fields, the resolution of those 

images has not been high enough to support highly precise fungicide applications. 

Typically, CRR zones have been delineated in the images, and buffer strips have been 

applied around those zones during prescription map development to ensure that small 

CRR areas are not missed when the fungicide is applied. The thickness of the buffer strip 

is determined based on image resolution and equipment size and capability for precision 

application. Buffer strip thicknesses from 0 to 10 m have been evaluated, and a 5-m 
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buffer area has been shown to be appropriate in relation to 1-m image resolution [8]. As 

precision agriculture advances, however, delineating CRR at a finer scale, even the 

plant-by-plant level, becomes desirable in order to prevent fungicide application in areas 

where it is not needed. Unmanned aerial vehicles (UAVs) have recently become an 

increasingly viable tool for high-resolution remote sensing that could enable the creation 

of prescription maps for highly precise fungicide application. While a great deal of 

research has recently been conducted with UAVs in agriculture, no prior research has 

shown that UAV-based remote sensing can be used to generate a prescription map for 

CRR fungicide application. 

Using remote sensing to develop a prescription map for fungicide application requires 

classification of a field into CRR-infested and non-infested areas. A major consideration 

in classification of remotely sensed images is noisy image data. Vignetting and 

bidirectional reflectance distribution function (BRDF) can cause certain portions of an 

image to erroneously appear darker or lighter than other portions [42], complicating the 

task of image classification. UAV remote sensing compounds these difficulties. To create 

an overall image of a large field, typical in cotton production, many UAV images must 

typically be mosaicked together. Mosaicking UAV images with vignetting and BRDF can 

lead to striping noise. However, image-processing techniques like principal component 

analysis (PCA) can reduce the effect of noise in an image [43,44]. 

Remote sensing has proven useful for detecting CRR and enabling the generation 

of prescription maps for fungicide applications, but the cost needs to be low compared to 

the economic gains from reducing fungicide applications. UAV remote sensing may 



 

28 

 

provide image data for high-resolution CRR detection and prescription map 

development at a reasonable cost, but the images’ high resolution and the required 

mosaicking may introduce noise issues that make accurate classification difficult. The 

goal of this study was to demonstrate that UAV remote sensing data can be used to 

develop a high-quality fungicide prescription map for CRR. Specific objectives included 

(1) developing methods for generating prescription maps from UAV remote sensing 

data, (2) applying a UAV-based prescription map on an actual farm, and (3) evaluating 

the prescription map in terms of effectiveness and economic benefit. 

 

2.2. Materials and Methods 

2.2.1. Study site 

This study was conducted on a 33.7-ha (83.3-ac) dryland field (Figure 2.2) near 

Thrall, Texas, with a history of growing cotton in rotation with corn and a history of 

CRR. The field was planted with cotton in 2015 and 2017, and the plan was to develop a 

prescription map from 2015 UAV data and use it to apply fungicide at the 2017 planting.  
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Figure 2.2 The study field is (a) located in Williams County, Texas, (the Texas 

county map is from Mapsof.net http://mapsof.net/texas/texas-county-map[45]), 

named (b) “West Poncho.” 

 

2.2.2. Multispectral image acquisition and ground truth 

On August 22, 2015, a cloud-free day, image data were acquired between 10:00 

and 15:00 local time with a multispectral camera (1 J3 model, Nikon Corp., Minato City, 

Tokyo, Japan; Figure 2.3c) modified from RGB to provide CIR images. The specific 

spectral bands were green at roughly 500 to 560 nm, red at 570 to 640 nm, and near-

infrared (NIR) at 680 to 760 nm. This sensor was carried by a fixed-wing UAV 

(Lancaster model, PrecisionHawk Corp., Raleigh, NC, USA; Figure 2.3a). The sensor 

collected 4608 × 3072 pixels per image band, giving 3.67-cm/pixel resolution when 

flown at 120 m above ground level (AGL). The camera was set to autoexposure for the 

flight mission, and the overlap was set to 70% in forward and sideward directions in the 

mission-planning software.  
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On August 20, 2017, a cloud-free day, image data were again acquired between 

10:00 and 15:00 local time with a five-band multispectral camera (RedEdge model, 

Micasense Corp., Seattle, WA, USA; Figure 2.3d) carried by a different fixed-wing 

UAV (Mapper model, Tuffwing LLC, Boerne, TX, USA; Figure 2.3b). The camera 

collected 1280 × 960 pixels per image band, giving 7.64-cm/pixel resolution when flown 

at 120 m AGL. The specific spectral bands were blue at roughly 475 to 500 nm, green at 

550 to 565 nm, red at 665 to 675 nm, red edge at 715 to 725 nm, and NIR at 825 to 860 

nm. This camera was also set to autoexposure for the flight mission, and overlap was set 

to 80% in the forward direction and 70% in the sideward direction in the mission-

planning software.  

On both flight dates, dead plants in apparent patches of CRR were sampled, and 

evidence of CRR fungus was found on the roots of the plants. Around twenty infected 

plants were checked in the field each year. These infected plants all had symptoms of 

CRR including white fungal growth on the main root (Figure 2.4). The fungus was 

verified as Phymatotrichopsis omnivora in the laboratory. 
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Figure 2.3 The (a) Precision Hawk unmanned aerial vehicle (UAV) platform with 

(c) a Nikon 1 J3 sensor was used in 2015, and the (b) Tuffwing Mapper with 

Micasense sensors were used in the 2017 data collection. 
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Figure 2.4 Phymatotrichopsis omnivora fungal organism (marked with the red 

circle) was found on a ground-truth dead plant in the field in 2015. 

 

2.2.3. Image Pre-processing and Prescription Map Development 

The 2015 images were mosaicked with photogrammetry software (Pix4D 

Mapper package, Pix4D Corp., Lausanne, Switzerland). The high resolution of the UAV 

images resulted in some unwanted data classes such as bare ground between planting 

rows and plant shadows, which made it difficult to directly conduct a two-class 

classification into healthy and CRR-infested zones. Thus, the image was resampled at 

1.0 m/pixel after mosaicking to achieve a resolution similar to that of manned aircraft 

images. Principal components analysis (PCA) was then applied in image-processing 

software (ENVI package, Harris Geospatial Solutions Inc., Boulder, CO, USA) to the 

resampled mosaic to the remove striping noise that was caused mainly by BRDF. To 
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generate a CRR prescription map, the data were processed with the following additional 

procedures (Figure 2.5). 

 

 

Figure 2.5 The procedure to develop a prescription map in ENVI and ArcMap. GIS, 

Geographic Information System; PCA, principal component analysis. 

 

The maximum likelihood classifier was applied to the third principal-component 

image also in ENVI image-processing software. This supervised classifier requires the 

user to select and label training data [46] to differentiate CRR-infested regions from 

healthy regions. Ten similar-size regions for both classes, uniformly distributed across the 

field and approximately 20,000 pixels in total, were manually selected as training data, 

and the software calculated a classification rule based on these training data. The 

classification was then executed based on the classification rule. A binary vector map was 
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then generated in geographic information system (GIS) software (ArcMap package, ESRI 

Corp., Redlands, CA, USA) based on the classification results. Manual manipulation of 

the size of CRR-infested zones was necessary at a few locations to avoid the influence of 

known non-CRR causes of bare-soil pixels such as mis-seeding during planting. Such 

misclassified CRR-infested zones were changed to healthy regions based on ground 

observations and the spectral and shape features of the zone. For example, CRR zones 

typically have some amorphous or circular shape, so a long thin rectangular patch of bare 

soil could be taken as a mis-seeded area and rejected as a CRR zone.  

Current spray applicators used in conjunction with cotton planters cannot achieve 

sub-meter resolution, so very small (< 1.0 × 1.0 m2) areas classified as CRR-infested 

were marked as zero-fungicide treatment areas in the prescription map. On the larger 

infested areas, it is conceivable that they may expand to form an even larger infested 

area in subsequent years, so a 5.0-m buffer strip, the appropriate buffer thickness 

indicated by Yang et al.[23], was added around all larger CRR-infested areas. The final 

classification, generated as a binary raster map, was converted into a shapefile (vector 

map) in the GIS software, and the CRR application area was roughly 1.9 ha (4.6 ac), 

about 5.5% of the field. A classification (Figure 2.6a) was generated as a binary raster 

map and then converted into a vector map (Figure 2.6b).  



 

35 

 

 

Figure 2.6 (a) A two-class classification raster map was converted to a (b) vector 

prescription map generated from the data of 2015 and applied to the fungicide 

spraying of 2017. 

 

2.2.4. Prescription Map Application 

The prescription map was loaded into a Trimble Field-IQ spray control system 

(Trimble, Sunnyvale, CA) on a Case IH Magnum 210 tractor (CNH Industrial Corp., 

Racine, WI, USA). The tractor pulled a Case IH 1230 Early Riser 12-row planter during 

planting, and that planter came equipped with a spray system. A customized hydraulic 

pulse-width modulation (PWM) valve was added to control the spraying (Figure 2.7). 

The fungicide (Topguard Terra brand, FMC Agricultural Solutions, Philadelphia, PA, 

USA) was applied in the row along with the seed, and the application was controlled 

automatically based on the prescription map generated from the 2015 image data. The 

rate of flutriafol applied to CRR-infested areas was 0.24 L per 0.405 ha (8,0 fl oz/ ac) 

mixed with water and sprayed at rate of 23 L of liquid solution per 0.405 ha (6.0 gal/ac). 
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A spray rate of zero was assigned to non-infested areas. The sprayer-control system 

controlled the sprayer on the planter as two six-row sections. When one planter section 

moved into a zone classified as CRR-infested, the nozzles on that section began spraying 

fungicide at the full rate. The nozzles stopped spraying when the planter section exited 

the CRR-infested zone.  

 

Figure 2.7 CASE IH 1230 12-row Early Riser planter used in the experiment. 

 

2.2.5. Performance evaluation of fungicide application with the UAV-based 

prescription map  

To evaluate the performance of the 2017 fungicide application, which was based 

on a prescription map generated from UAV image data collected in 2015, image data 

were collected near the end of the 2017 growing season. The 2017 images were 

mosaicked in the same way as with the 2015 image data, but two additional quality-

control measures were performed on the 2017 data. First, eight ground control points 
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(GCPs) were used in 2017 to improve the geographical accuracy of the mosaicked 

image. The GCPs were placed in the field at the four corners and four midpoints of each 

side. The geographic coordinates of each GCP centroid were collected with a 

Geoexplorer 6000 (Trimble, Sunnyvale, CA) GNSS receiver and used as references for 

georectification during mosaicking; the user selected corresponding points on the image 

mosaic and entered the coordinates into the mosaicking software. Second, a set of three 

radiometric-calibration reference tiles of light gray (≈45% reflectance), medium gray 

(≈20% reflectance), and dark gray (≈3% reflectance) were placed next to one of the 

GCPs. The actual reflectance spectra of the tiles were collected soon after the flight 

mission with a portable handheld spectroradiometer PSR+ 3500 (Spectral Evolution, 

Haverhill, MA) and used in mosaicking processing to radiometrically calibrate the 

mosaicked image. A relationship between the digital number (DN) in the image and 

reflectance was established with the calibration references, and the image mosaic was 

converted to a reflectance image with an empirical linear model. To develop ground 

truth data on the distribution of CRR for the performance evaluation, the CRR-infested 

areas were delineated manually in the same way as was done with the 2015 data. The 

locations of infested regions in 2015 were rechecked on the 2017 image to determine 

whether the CRR showed up again. The locations of the specific infested areas, as well 

as percent CRR coverage, were compared between 2015 and 2017. 
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2.2.6. Economic analysis 

There are three scenarios for dealing with a CRR-infested field: no treatment, 

treating the entire field with fungicide, and treating the field with fungicide according to 

a prescription map. Comparisons need to be made among the costs associated with these 

three treatment scenarios on a production-size farm: (1) the cost of loss in revenue due to 

CRR, (2) the cost of fungicide applied to the field, and (3) the cost of developing a 

prescription map and precisely applying fungicide. These costs were modeled for the 

three treatment scenarios based on actual data and a few reasonable assumptions. The 

field under study yielded 243 kg per 0.405 ha (536 lb/ac) in 2017, and the price of cotton 

fiber is $1.66 USD/kg ($0.755 USD/lb). The cost of the fungicide is $29.65 USD/ha 

($12 USD/ac). The control system and hydraulic PWM valve cost approximately $5,000 

USD. For image collection, a commercially available rotary-wing UAV with a modified 

multispectral camera could cost $1,600 USD. Software for image analysis (Pix4D 

Mapper and ArcMap) costs approximately $3,600 USD, but less expensive software 

might be available. The cost of labor for an operator to perform image analysis is hard to 

estimate, but a reasonable assumption for an experienced person of $30 USD/h was 

made. Roughly 8.0 h were required to generate this 82-ac prescription map, including 

image mosaicking and classification, as well as prescription map conversion. However, 

it was estimated that an experienced operator performing these tasks regularly could 

develop the prescription map for a field in roughly 4.0 h, and this time should be 

adequate also for a much larger field. The cost of image analysis could potentially be 

reduced in the future through automation of image classification[47] and other tasks 
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performed with software. The overall cost for the three treatment scenarios was modeled 

based on these data and plotted to indicate the optimal treatment scenario for production 

farms of various sizes and numbers of fields and with different yields and proportions of 

CRR infestation. 

 

2.3. Results and Discussion 

2.3.1. Prescription map development 

Based on observations of the 2015 image data as validated by the ground-truth data, it was 

clear that two large CRR-infested areas were located in the southern half of the field. One 

was on the western side (Spot A) and the other on the eastern side (Spot B) (Figure 2.8a). 

The removal of striping noise along the UAV flight path in the mosaic by way of PCA can 

be seen in Figure 2.8b, which shows that the stripes in the original 2015 image mosaic 

(Figure 2.8a) are not observed in the third principal component image (Figure 2.8b). The 

original mosaic clearly has erroneous “lines” running in two directions (see red arrows), 

which resulted from the fact that two flight missions with different flight directions were 

used to collect the images that made up this mosaic. 
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Figure 2.8 (a) Original multispectral image mosaic from 2015, with Spots A and B 

highlighting the location of CRR-infested areas. The striping noises can be observed 

from the direction of red arrows. (b) PCA band 3 of the 2015 multispectral image. 

The striping noises shown in (a) is disappeared. 

 

2.3.2. Prescription map application 

When the classified 2015 image of the field was compared to the classified 2017 

image of the field, it was clear that a large majority (89%) of the CRR-infested area in 

2015 was non-infested in 2017. The overall proportion of CRR-infested area in the field 

dropped from 5.52% in 2015 to 0.55% in 2017 (Table 2.1). These results suggest that 

fungicide application, with the UAV-based prescription map as a guide, mitigated the 

CRR, but the extent of CRR infestation varies from year to year and is commonly less in 

drier years. The precipitation in the 2017 growing season (May to August) was 495 mm, 

which was more than the 439 mm of the 2015 growing season.  That the weather 
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facilitated CRR development in this area in 2017  was also supported by the CRR levels 

in two adjacent fields, about 2.14 out of 12.50 ha (17.3%) in one field and 0.34 out of 

1.54 ha (23.4%) in the other. However, there are no observations of these other fields in 

2015 to compare with the study field. 

 

Table 2.1 Root rot-infected area and occupied percentage of the field in 2015 and 

2017. 

 2015     2017 

Field area (acres) 83.32 82.31 

Root rot infected area (acres) 4.60 0.45 

Infected percentage (%) 5.52 0.55 

 

Figure 2.9 shows in detail how the two main CRR-infestation zones in the study 

field (spots A and B from Figure 2.8) changed from 2015 to 2017.  Almost all of the 

CRR-infested areas in 2015 did not show symptoms in 2017. Both zones were clearly 

much smaller overall in 2017. The fungicide apparently protected the cotton plants in 

those zones from CRR or postponed the infection, giving the plants time to produce 

some yield. Ideally, a clear-cut demonstration of the benefit of a prescription map would 

be done within the same year and the same field.  One approach to accomplishing this in 

future work would be placement of a non-treated area within the center of a CRR 

infestation zone. However, the circumstances of the experiment reported here – moist 

weather in 2017 which promotes CRR and high infestation levels in adjacent fields – 
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strongly suggest the precision-applied fungicide was the principal reason for the great 

reduction in infestation between 2015 and 2017. 

 

 

Figure 2.9 Fungicide spaying according to a prescription map reduced the infected 

area by 2017. 

 

2.3.3. Economic analysis 

The 2017 yield of the dryland field under study was approximately 242 kg per 

0.405 ha (533 lb/ac). Assuming no CRR, the yield would have been roughly 243 kg per 

0.405 ha (536 lb/ac). The average cotton price in 2017 was about $0.755 USD per 0.45 

kg (per 1.0 lb). Thus about $402 USD of cotton was produced per 0.405 ha (per 1.0 ac) 

in the healthy zones. Theoretically, this 33.3 ha (82.3 ac) field could have produced 
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$33,304 USD (19,899.6 kg) of cotton if there had been no CRR. However, 1.9 ha (4.60 

ac) of the field was classified as having CRR infection in 2015, which could have caused 

a $1,862 USD loss in 2017 if no treatment had taken place, reducing the revenue to 

$31,433 USD. The full rate of 237 mL per 0.405 ha (8 fl oz/ac) of flutriafol spray would 

cost about $30 USD per ha ($12 USD per ac) for the product alone; if the fungicide were 

applied to the entire 33.3 ha, it would cost $987 USD. With adequate fungicide 

treatment, it could be expected that no yield loss would be caused by CRR; thus, the 

total revenue from the cotton yield would be $32,318 USD from that field, which is $885 

USD higher than with no treatment ($31,433 USD). The actual application area in 2017 

was 3.9 ha (9.6 ac) including the 5-m added buffer thickness, so the actual fungicide cost 

was $115 USD. Therefore, the total revenue would have been $33,007 USD, the highest 

revenue among all scenarios, not considering the equipment cost of the VRT sprayer 

(Table 2.2). 

 

Table 2.2 The detailed revenue comparison in 2017 between three scenarios in the 

studied field without considering the cost of equipment. NT= No treatment 

(calculated data), EF= Applied the fungicide to the entire field (calculated data), 

PM= Applied the fungicide based on the prescription map (actual data). 

 

 

Treatment area 

(ac) 

Cost of fungicide 

(USD) 

Loss of cotton 

(USD) 

Revenue 

(USD) 

NT 0 0 1,861.53 31,443.33 

EF 82.23 986.76 0 32,318.10 

PM 9.6 115.2 182.08 33,007.58 
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When comparing the three scenarios for dealing with a CRR-infested field, the 

treatment that achieved the highest revenue varied according to CRR-infested proportion 

of the farm, total field area, the number of fields on the farm, and yield (Figure 2.10). 

Assuming the farm has five separate cotton fields with a moderate-to-low yield (243 kg 

per 0.405 ha), when the CRR proportion is less than roughly 3%, applying no fungicide 

is superior to applying fungicide to the entire field (Figure 2.10a, 2.10b). Otherwise, 

applying to the entire field is better than no treatment. When the total area of the farm is 

larger than roughly 400 ha, applying fungicide with a prescription map appears to be 

preferable. In general terms, applying fungicide with a prescription map becomes more 

preferable as total field area increases (Figure 2.10a). For a farm with 25 smaller fields, 

the prescription map becomes more preferable when the overall farm is larger than 

roughly 560 ha, because the smaller individual field sizes mean more cost associated 

with image analysis. The larger the size of the individual fields on a cotton farm, the 

more preferable a prescription map. 
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Figure 2.10 The treatments achieved the highest revenue (USD in thousands) based 

on the combination of CRR proportion of the field (%) and the field area (ha). (a) 

Five separated fields summed 2,000 ha area with moderate-to-low yield (243 kg per 

0.405 ha); (b) Twenty-five separated fields summed 2,000 ha area with moderate-

to-low yield (243 kg per 0.405 ha); (c) Five separated fields summed 2,000 ha area 

with moderate-to-high yield (486 kg per 0.405 ha); (d) Twenty-five separated fields 

summed 2,000 ha area with moderate-to-high yield (486 kg per 0.405 ha). NT, no 

treatment; EF, apply the fungicide to the entire field; PM, apply the fungicide with 

a prescription map. 

 

Assuming the farm has moderate-to-high yield (486 kg per 0.405 ha) on five 

separate cotton fields, applying fungicide to the entire field is superior to applying no 

fungicide when the CRR proportion is greater than roughly 1.5%, (Figure 2.10c, 2.10d). 
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Once the total area of the farm is larger than roughly 390 ha, applying fungicide with a 

prescription map is the preferred option. For a farm that has 25 fields, the prescription 

map is preferred when the overall field area is larger than roughly 550 ha. Increased 

yield means that no fungicide treatment is less likely to be an acceptable option for a 

CRR-infested field. This is true because it would be better to apply fungicide instead of 

accepting cotton loss when the yield is high. 

Considering a similarly yielding farm of roughly 800-ha (2,000-ac) with 5% 

CRR-infested area in 2017, if no treatment were applied, the total revenue would have 

been roughly $769,000 USD. If the entire field were treated with fungicide, the revenue 

would have increased to about $785,000 USD. If the field were treated with a 

prescription map, the revenue would have increased to about $797,000 USD, about 

$12,000 USD (1.5%) greater than for treating the entire field and about $28,000 USD 

(3.6%) greater than for no treatment. 

As noted previously, in addition to UAVs, manned aircraft have proven useful 

for generating prescription maps for CRR treatment[27]. This type of imagery could be 

provided by companies who collect aerial images and charge by the hour or by the area 

covered. However, the cost of image acquisition would likely be high compared to UAV 

imagery. This option was not considered here partly because the focus was on UAVs but 

also because modeling the cost would have been complicated by the small size of the 

market and the variation in offerings. High-resolution satellite images have also been 

used to detect CRR, but free satellite imagery such as Landsat has too coarse resolution 

to generate a useful prescription map, and 1-m resolution imagery may be too costly 
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because of mandatory minimum areas needed for purchase. In addition, the image 

quality and even availability of satellite data is easily affected by cloudiness, making its 

utility uncertain. Thus, UAV imagery appears to be an excellent choice for developing 

prescription maps for fungicide application in CRR-infested cotton fields. 

 

2.4. Conclusion 

In this study, remote sensing with UAV-based multispectral imagery was shown 

to be able to detect CRR. A method for using UAV images to develop a fungicide 

prescription map for CRR was successfully developed. An actual UAV-based 

prescription map was tested and found to be effective at mitigating CRR, reducing by 

89% the amount of fungicide sprayed in the field under study, while the CRR area was 

reduced from 5.52 to 0.55% of the field. VRT application adds cost to the operation of 

applying fungicide, but the relatively small one-time investment could be overcome 

fairly easily in one season on an 800-ha (2000-ac) farm with 5% CRR infestation. In the 

33.3-ha cotton field under study in this research, the UAV-based prescription map with 

VRT fungicide application resulted in a savings of $690 USD. For further economic 

analysis, a model was developed to estimate the marginal benefits of treating CRR-

infested fields on a farm with a history of CRR. The model considered the CRR-infested 

proportion of the farm, the overall farm size, the number of fields, and the yield. The 

model indicated that it is generally better to treat a CRR-infested field rather than 

leaving it without treatment, and application based on a prescription map is more 
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preferable as the size of the farm goes up, the number of fields in the farm goes down, 

and the yield goes up.  



  

*Wang, T., Thomasson, J.A., Yang, C., Isakeit, T. and Nichols, R.L., 2020. Automatic Classification of 

Cotton Root Rot Disease Based on UAV Remote Sensing. Remote Sensing, 12(8), p.1310. 
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3. AUTOMATIC CLASSIFICATION OF COTTON ROOT ROT DISEASE BASED ON 

UAV REMOTE SENSING* 

 

Abstract: Cotton root rot (CRR) is a persistent soilborne fungal disease that is devastating to 

cotton in the southwestern U.S. and Mexico. Research has shown that CRR can be prevented 

or at least mitigated by applying a fungicide at planting, but the fungicide should be applied 

precisely to minimize the quantity of product used and the treatment cost. The CRR-infested 

areas within a field are consistent from year to year, so it is possible to apply the fungicide only 

at locations where CRR is manifest, thus minimizing the amount of fungicide applied across 

the field. Previous studies have shown that remote sensing (RS) from manned aircraft is an 

effective means of delineating CRR-infested field areas. Applying various classification 

methods to moderate-resolution (1.0 m/pixel) RS images has recently become the conventional 

way to delineate CRR-infested areas. In this research, an unmanned aerial vehicle (UAV) was 

used to collect high-resolution RS images in three Texas fields known to be infested with CRR. 

Supervised, unsupervised, and combined unsupervised classification methods were evaluated 

for differentiating CRR from healthy zones of cotton plants. Two new automated classification 

methods that take advantage of the high resolution inherent in UAV RS images were also 

evaluated. The results indicated that the new automated methods were up to 8.89% better than 
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conventional classification methods in overall accuracy. One of these new methods, an 

automated method combining k-means segmentation and morphological opening and closing, 

provided the best results, with overall accuracy of 88.5% and the lowest errors of omission 

(11.44%) and commission (16.13%) of all methods considered. 

Acknowledgments:  We thank Cody Bagnall, Lantian Shangguan, Xiongzhe Han, Xiwei 

Wang, and Roy Graves for helping in data collection. We thank Ryan M. Collett for helping in 

selection of survey fields.  

 

3.1. Introduction 

Cotton root rot (CRR), caused by the fungus Phymatotrichopsis omnivora, is a major 

disease problem for cotton production in Texas and the southwestern U.S. It was first observed 

in the 19th century, and it kills cotton and other dicots by preventing water and nutrients from 

being transported from roots to the rest of the plant [3]. An infected plant dies so quickly that 

the death of the plant is often the first observable symptom. The fungus tends to occur in 

specific portions of fields and thrives in warm, moist, and alkaline (7.2–8.5) soil environments. 

The fungus spreads, commonly in circular patterns, through root contact between plants and 

the growth of mycelia in the soil [7]. Once infected, a plant usually dies within ten days [8]. If 

the disease occurs in the early stage of growth, the plant will die before bearing any fruit. If it 

occurs late enough to allow plants to flower, the disease will reduce the yield and lint quality. 
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CRR-infested areas in a field can expand to more than 50% of an entire field area during the 

season [8]. Until recently, control practices were neither economical nor effective [36]. 

However, a fungicide, flutriafol, known commercially as Topguard Terra (FMC Agricultural 

Solutions, Philadelphia, PA), was proven effective for CRR [22,48–50]. To apply the fungicide 

most efficiently, the CRR-infested areas must be identified. Because the CRR fungus is long-

lived and colonizes specific areas of a field, the disease typically occurs at the same locations 

over many years, so future infested locations can be assumed to be consistent with historical 

position data. Multispectral and hyperspectral remote sensing (RS) have been used to 

accurately distinguish infested areas from non-infested areas. Three-band multispectral is 

widely available and thus a good candidate for practical application [9]. 

RS is appropriate for identifying CRR zones because of its efficiency over large areas 

[51]. Taubenhaus et al. used RS for this purpose as early as the 1920s [18], photographing an 

infested cotton field from an airplane with a handheld camera. Nixon et al. introduced color-

infrared (CIR) photography as early as the 1970s, documenting the distribution of CRR 

infection and detecting the effect of chemical treatment for CRR [19]. Multispectral video 

imagery of CRR was evaluated as early as 1987 [20]. Yang et al. later used this technique 

along with a high-precision global positioning system (GPS) receiver to map CRR [21]. Their 

research indicated that this method could be used to delineate the CRR-infested areas in both 

dryland and irrigated fields. Song et al. (2018) proved that Sentinel-2A satellite images, which 
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have a multispectral spatial resolution of 10 m, could be used to detect CRR [25]. Unmanned 

aerial vehicles (UAVs) can fly at a lower above-ground level (AGL) than manned aircraft and 

satellites, so UAVs can supply imagery with higher resolution. However, there is scant 

literature about research on UAV-based RS for CRR delineation. 

On the other hand, RS with UAVs has increased in agricultural research in recent years 

and has been considered for yield prediction, production management, disease detection, etc. 

[24,30–32,52–58]. For example, Huang et al. used a rotary-wing UAV with an RGB camera to 

derive the normalized difference photosynthetic vigor ratio (NDPVR) index to estimate 

soybean yield [53]. Zhou et al. used a rotary-wing UAV with RGB and other multispectral 

cameras to generate normalized difference vegetation index (NDVI) and visible 

atmospherically resistant index (VARI) in an effort aimed at yield prediction in grain [30]. This 

research also indicated that the red edge and near-infrared (NIR) bands were effective in 

predicting yield. Albetis et al. used a fixed-wing UAV with a multispectral camera to detect 

grape disease in a vineyard [31]. Images were captured at 120 m AGL with 85% forward 

overlap and 70% side overlap. A radial basis function (RBF) support vector machine (SVM) 

classifier was used to differentiate diseased from non-diseased areas. The overall classification 

accuracy ranged from 97% to 99%. Su et al. found that wheat yellow rust disease could be 

detected with UAV-based spectral data and vegetation indices. The red and NIR bands 

performed best at separating infected from non-infected plants [59]. Mattupalli et al. used a 
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fixed-wing UAV at 120 m AGL to carry an RGB camera to detect Phymatotrichopsis root rot 

(PRR) in alfalfa [54]. The images were downgraded to a resolution of 0.10 m prior to 

supervised classification with a maximum likelihood classifier, which achieved an overall 

accuracy of 90% to 96%. 

It is clear that UAVs are useful as RS platforms for various agronomic uses including 

disease detection. Furthermore, application equipment for crop protection inputs is undergoing 

continuous advances in the level of precision. It is thus desirable to exploit the extremely high 

resolution (e.g., 2-cm) afforded by UAV RS by classifying the images to produce prescription 

maps for (e.g.,) fungicides to mitigate CRR, possibly even at the level of single plants. 

However, this type of map creation commonly requires two-class image classification, and 

conventional classifications use lower-resolution image data to achieve this. In lower-

resolution images, aggregated pixels do not represent reflectance information from unique 

objects on the ground. Pixels in a live plant zone will likely include live plants and shadows 

and soil, whereas pixels in a dead plant zone will include dead plants and shadows and a 

greater amount of soil. These aggregated pixels give a general response that enables two-class 

classification between live plant zones and dead plant zones. The high resolution of UAV 

images means many of the pixels consist of one unique object type. These differences in 

detailed information content between image resolutions were quantified by Matese et al., who 

compared NDVI values among satellite data, manned-aircraft data, and UAV data. They 
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reported NDVI ranges of 0.02, 0.04, and 0.08, respectively, making clear the higher variability 

and thus information content in the UAV data[60]. The increase in non-aggregated pixels leads 

to a larger number of data categories, presenting difficulties in classifying images directly into 

two classes like CRR and healthy. It must also be noted that CRR in cotton presents particular 

challenges for high-resolution imagery that are not present in some other crops like alfalfa. For 

example, alfalfa tends to be planted in closely spaced (e.g., 19 to 20 cm) rows and thus presents 

a full canopy in early growth stages, so issues related to more than two classes (e.g., including 

healthy plants, diseased plants, sunlit soil between rows, and shaded soil between rows) may 

not be evident in alfalfa when they are evident in cotton, which is commonly planted with 76 to 

102 cm row spacings. Images from UAVs can be resampled to a lower resolution to give an 

aggregated-pixel response (e.g., Mattupalli et al. resampled UAV data to 0.1 m [54]), but doing 

so can defeat the purpose of creating a highly detailed prescription map that can take full 

advantage of the utility of extremely high-resolution UAV data. Thus, classification methods 

need to be developed to accurately classify the larger number of pixel categories in high-

resolution CRR images. 

Various classification methods [61–69] have been widely used in RS image analysis 

[46,70–73]. Huang et al. noted that supervised classification is commonly used but is time-

consuming and costly because of human involvement in training data selection [74]. They 

proposed an automatic selection method to classify land cover, but thresholds between classes 
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still had to be determined manually. Yang et al. evaluated several conventional classification 

methods for mapping CRR from manned-aircraft images having been resampled to a 1.0-m 

resolution. Two of the classifications were unsupervised: ISODATA on four-band (blue, green, 

red, and NIR) multispectral data, and ISODATA on NDVI. Six additional classifications of 

multispectral data were supervised: minimum distance, Mahalanobis distance, maximum 

likelihood, SVM, spectral angle mapper, and neural network. They found that both supervised 

and unsupervised classification methods were effective, but the supervised methods were 

generally more accurate [22]. The unsupervised classifications involved from two to twenty 

classes, and those with higher numbers of classes were more accurate, the optimal numbers of 

classes being 17 and 19 for two different fields. Even though the two-class unsupervised 

methods did not require manual selection of training data, the more accurate unsupervised 

methods with more than two classes did require an extra procedure involving class 

combination based on human expertise. Ideally, accurate unsupervised methods requiring no 

human intervention could be used. However, in differentiating CRR-infected plants from 

healthy plants in multispectral RS images, the CRR and healthy datapoints (pixels) have 

varying degrees of two-class separability in multi-dimensional (e.g., green, red, and NIR) 

space. Ideally, a clear margin (i.e., defined pixel value) between the two classes would exist, 

but this is generally not the case. On the other hand, with the SVM classifier, a “soft margin” 

(i.e., a permissible range for the pixel value) can be constructed by establishing a tolerance 
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level for misclassification, a so-called penalty factor, which can be adjusted to improve the 

overall classification. The soft margin exemplifies the advantages of supervised methods in 

classifying data strictly based on spectral responses. It is desirable to find a way to combine the 

automated nature of unsupervised methods with the more accurate nature of supervised 

methods. 

Furthermore, non-seeded areas of the field caused by planter malfunctions are difficult 

to differentiate from CRR areas by classifications based simply on spectral responses, because 

the bare soil in those areas gives a similar spectral response to that of CRR areas where dead 

plants and soil make up a combined response, with soil commonly being predominant. The fact 

that these non-seeded areas have a known rectangular shape is helpful, however. It is 

conceivable to automate procedures in conjunction with classification that takes local shape 

into account. 

Considering the advantages of high-resolution UAV images and the attendant 

difficulties of classifying CRR in cotton as well as the need for simple and rapid data 

processing, it is desirable to (a) incorporate the additional information available in high-

resolution UAV images into improved classification methods, and (b) develop automated 

methods of image classification. The specific objectives were thus to (1) develop automated 

classification methods to detect CRR at high resolution from UAV imagery, and (2) compare 

the proposed automated classification methods to conventional unsupervised and supervised 
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classification methods for CRR detection that require resampling of UAV RS imagery to a 

lower resolution. 

 

3.2. Materials and Methods  

3.2.1. Study sites 

This study was conducted on three dryland fields (Figure 3.1) near Thrall, Texas, with a 

history of cotton in rotation with corn and a history of CRR: Chase field (“CH”; 

30°35'28.46"N, 97°17'33.03"W, 12.5 ha), West Poncho field (“WP”; 30°35'47.07"N, 

97°17'45.77"W, 32.9 ha), and School House field (“SH”; 30°35'38.88"N, 97°17'30.16"W, 12.7 

ha). 
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Figure 3.1The study was conducted at (a) a farm in Williamson County, Texas [45]; (b) 

The ’Chase’ field (CH for short) (Scale 1:10000); (c) The ‘West Poncho’ field (WP for 

short) (Scale 1:15000); and (d) The School House field (SH for short) (Scale 1:6000) 

 

3.2.2. Data collection  

On Aug. 20, 2017, image data were acquired with a RedEdge camera (Micasense, 

Seattle, WA, USA) (Figure 3.2) carried by a Tuffwing Mapper fixed-wing UAV platform 

(Tuffwing LLC, Boerne, TX, USA) (Figure 3.3) flying at 120 m AGL. The camera collected 

images with 1280 x 960 pixels at 7.64 cm/pixel resolution in five bands: blue (475-500 nm), 
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green (550-565 nm), red (665-675 nm), red edge (715-725 nm), and NIR (825-860 nm). The 

images were taken between 11:00 and 13:00 local time on a cloud-free day, with fixed 

exposure settings that had been experimentally determined to be optimal for the crop, location, 

date, and time of day. The manual exposure settings were 0.44, 0.44, 0.44, 1.00, and 0.44 

milliseconds, and gain settings were 1x, 1x, 2x, 2x, 2x, respectively for Blue, Green, Red, NIR 

and Rededge bands.  

 

Figure 3.2 MicaSense RedEdge camera. It has five separate imaging sensors with specific 

optical filters to provide five spectral bands. The weight is 150g and the size is 12.1 cm x 

6.6 cm x 4.6 cm (4.8” x 2.6” x 1.8”), so it is designed well for use on small UAVs. 

 

Figure 3.3 Fixed-wing UAV “TuffWing UAV Mapper.” The aircraft body is made of 

expanded polypropylene (EPP) foam with reinforcing carbon fiber spars, so it is strong 

with low mass to maximize flight time. Including the Micasense RedEdge camera, the 

weight is about 2kg, and the wingspan is 1218cm. At the manufacturer-reported flying 

endurance of 40 min, the Tuffwing can cover 275 acres at 100 m AGL. 
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3.2.3. Data processing 

With the AGL and camera used, a 0.95-ha area was covered with each image. The 

overlap percentages used for UAV surveys were 80% forward-lap and 70% side-lap. Raw 

images were saved in tiff format with GPS and inertial measurement unit (IMU) data stored in 

metadata. Image mosaicking was performed in Pix4D software (Lausanne, Switzerland). When 

the ground control point (GCP) information was used in processing the mosaic, three to six 

overlapping images per location were tied, which is varied on the distance between GCPs and 

the edge of the mosaic. All these procedures were conducted in Pix4D. The point cloud density 

is in the “High” option with the minimum number of matches of 3. The 3D textured mesh was 

generated with the default option “Medium Resolution”. 

A Trimble Geoexplorer 6000 (Trimble, Sunnyvale, CA) GPS receiver was used to 

measure the coordinates at the center of ground control points (GCPs) in order to geo-reference 

the images. Geo-referencing was also performed in Pix4D, and the centers of the GCPs in each 

raw image were manually identified and linked to the corresponding ground truth GPS 

coordinates. 

Three radiometric calibration references were used: light gray (≈ 45% reflectance), 

medium gray (≈ 20% reflectance), and dark gray (≈ 3% reflectance). The reflectance spectra of 

the calibration references were collected on the day of flight with a portable spectroradiometer 

(PSR+ 3500 High-Resolution Full Range Portable Spectroradiometer, Spectral Evolution, 
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Haverhill, MA). On each calibration reference, the reflectance spectra of five points (one close 

to each corner and one at the center) were collected and averaged. A linear relationship 

between digital number (DN) values and reflectance was derived for each image band (Figure 

3.4). Based on these relationships, each image mosaic was converted to reflectance in ENVI 

software (Harris Geospatial Solutions, Boulder, CO). Then the UAV mosaics were resampled 

at 1.0-m resolution for use by the conventional classifiers. 

 

Figure 3.4 The linear relationships between DN value and reflectance of the calibration 

tiles in the MicaSense camera’s five spectral bands. 

 

3.2.4. Classifications 

Unsupervised and supervised methods were used to classify image data into two classes 

that indicated healthy and CRR-infested areas. The data used by each classifier in generating a 

classification result were only the green, red, and NIR bands from the MicaSense camera. This 

selection was based on three reasons. First of all, Yang et al. compared 3-band multispectral 

data (green, red, NIR) to hyperspectral data (475 to 845nm) for CRR detection [9]. The 

spectral range of the hyperspectral data included the bandwidth range of the red edge. The 

results indicated both multispectral and hyperspectral images could similarly accurately 
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distinguish the CRR-infested area, giving convincing evidence that CIR data (green, red, NIR) 

are sufficient to detect CRR. Second, in work preliminary to the research discussed herein, two 

performance comparisons based on the SVM classifier with different sets of training data were 

made among groups of all five bands (B, G, R, NIR, red edge), four bands (G, R, NIR, red 

edge), CIR (G, R, NIR), and RGB. Results indicated that CIR performed the best of all the 

groupings. Accuracies averaged 82.0 % for five bands, 83.0% for four bands, 84.2% for CIR, 

and 77.2% for RGB. Finally, CIR cameras are in fairly common use, while five-band 

multispectral cameras are not, and a commonly applicable solution was desired. All the 

conventional classifications thus were generated based on CIR data, and the images were 

resampled to 1.0-m resolution. 

 

3.2.4.1. Conventional classification 

The green, red, and NIR bands from the MicaSense camera were used as input to the 

classifiers, and the associated CIR images were used for visual evaluation of the classification 

methods. These images covered 5.68-ha, 0.42-ha, and 0.34-ha portions of the CH, SH, and WP 

fields, respectively (Figure 3.5). The 1.0-m resampled data were used with all the conventional 

classification methods, because standard operating procedure for this type of remote-sensing 

analysis involves resampled data. 
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All the conventional classifications were conducted in ENVI. Each image was 

processed individually with corresponding classification methods. One unsupervised 

classification method was used to classify the image data directly into two classes, and three 

unsupervised methods were used to classify the image data into three, five, or ten classes that 

were then combined into two classes based on user judgment. 

K-means clustering is an unsupervised classification method that does not require 

labeled training data. It can classify the data based on the similarity of data in multidimensional 

space. The user specifies the number of clusters to be generated based on knowledge of the 

application; e.g., if only CRR and healthy regions were evident, only two clusters would be 

specified. Initially, “seeds” are generated in the data space randomly to serve as initial cluster 

centroids. Individual data are classified into the category associated with the closest cluster 

centroid. Then the centroids are recalculated based on the data in the new classes. The data are 

relabeled into a new class based on the updated centroid position. Iteration of these steps 

continues until the centroids no longer move significantly according to specified stopping 

criteria. In this way, most of the healthy and CRR-infected cotton can be differentiated because 

of the big difference between their spectral responses. 

The k-means clustering method was applied to each image to generate two-class, three-

class, five-class, and ten-class classification. The two-class classification was regarded as 

unsupervised classification, while the others were regarded as semi-supervised because class 
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combinations were based on human expertise. In the three-class classification, Classes 1 and 2 

were combined as the healthy class, and Class 3 was assigned as the CRR class. In the five-

class classification, Classes 1 through 3 were combined as the healthy class, and Classes 4 and 

5 were combined as the CRR class. In the ten-class classifications, Classes 1 through 6 were 

combined as the healthy class, and Classes 7 through 10 were combined as the CRR class. 

Additionally, four supervised classification methods were used to classify the image 

data directly into two classes, and all used the same training regions of interest (ROIs). In each 

field, about 20,000 to 40,000 pixels (about 0.5% to 1.0% of an entire field) were selected for 

each class. The training data were uniformly distributed across the fields. Different 

classification rules were calculated from the training data for each supervised classification 

method. The classifications were then generated based on these rules. The unsupervised 

methods were all based on k-means classification, while the supervised methods included 

support vector machine (SVM), minimum distance, maximum likelihood, and Mahalanobis 

distance. 
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Figure 3.5 Multispectral CIR images for (a) ‘Chase’ field (Scale 1:3000), (b) ‘School 

house’ field (Scale 1:1550), and (c) ‘West poncho’ field (Scale 1:2110). 

 

3.2.4.2. An improved semi-supervised classifier based on k-means and SVM 

Unsupervised clustering methods such as the k-means method can classify data without 

human intervention but tend to compromise on accuracy. On the other hand, supervised 

classification methods like SVM, do not classify the data automatically but tend to be more 

accurate. It was noted previously that SVM was used to differentiate disease in RS images 

[20]. SVM has proven capable of classifying CRR accurately with 1.0-m resolution images 

[22], but it requires training data typically selected by a human operator. It was proposed to use 

k-means to automatically select training data that would subsequently be used by SVM for 

complete image classification. 

The idea behind combining k-means clustering with SVM was to classify pixels into 

CRR and healthy classes automatically while maintaining relatively high accuracy. Figure 3.6 
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makes it clear that CRR and healthy cotton generally have strong differences in reflectance. 

However, large numbers of pixels on the boundaries are not easily separable. Once clusters are 

generated, many pixels are located between the two cluster centroids, and there is overlap 

among the pixels. Visualization of sampled data of CRR and healthy cotton plants indicates 

that the data are not linearly separable either in two dimensions or three dimensions (green, 

red, and NIR). Unsupervised clustering such as k-means separates the data with a flat plane 

equidistant from cluster centroids and can cause large amounts of misclassification. Unlike k-

means, which is a so-called hard classifier in that it has no tunable parameters, SVM with the 

RBF kernel trick can generally classify image data based on labeled training data and a flexible 

classification rule involving the influence distance of training data and the aforementioned 

penalty factor. The RBF kernel trick can map the raw dataset into a higher dimensional space 

for separating the data more easily, and thus make the SVM classification more accurate.   

 

Figure 3.6 The relationships between bands in a sampled dataset along with k-means 

cluster centroids. 

 

The method of combining k-means and SVM processes (KMSVM) is able to label 

clusters of data points automatically based on the human experience built into the code that 
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CRR pixels have lower reflectance overall. The workflow of KMSVM is shown in Figure 3.7. 

The k-means algorithm was used to automatically select initial training data from the original 

high-resolution image mosaics, because the high-resolution data should have many more non-

mixed pixels, enabling more precise placement of the plane between the cluster centroids. 

Two-class k-means clustering was thus applied to the raw ortho-mosaicked image as the first 

step of pre-processing to locate the distribution of CRR and healthy plants. The CRR-infected 

plants were assigned a digital number (DN) of 0, and the healthy plants were assigned a DN of 

255. Another step was required to optimize the training data, because the ideal training data 

selected by the k-means algorithm must contain as much as possible of the unique features of 

the corresponding class and must avoid the features of the other classes. Therefore, simple 

linear iterative clustering (SLIC) Superpixel segmentation was then applied to optimize the 

training data based on probability associated with the size and shape of small zones 

(superpixels) in the images corresponding to the expectations for individual cotton plants 

(Figure 3.8). The SLIC Superpixel segmentation method was applied with a minimum 

superpixel compactness of 300 to the binary k-means classification data. The seeding rate for 

the SLIC Superpixel algorithm was based on the expected size of an individual cotton plant 

based on row width and spacing of cotton seeds. The SLIC Superpixel segmentation algorithm 

divided the binary image into hundreds of superpixels, calculated the mean value of DN in 

each superpixel, and reassigned the mean value as the new DN of each superpixel. A new DN 
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value larger than 243 meant the segment contained more than 95% pixels labeled as healthy in 

the training dataset. On the other hand, DN values smaller than 12 meant 95% of the classified 

infested area in the segment was labeled as CRR in the training dataset. After this step, 

superpixels were assigned as either CRR or healthy in order to train the SVM classifier. The 

RBF SVM algorithm was then used on the resampled 1.0-m data to execute the final 

classification.   

 

Figure 3.7 The workflow of the proposed k-means support vector machine (KMSVM) 

method. KMSVM makes use of unsupervised clustering and the superpixel algorithm to 

select training data for SVM classification 
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Figure 3.8 A k-means classification (a) was converted to a super-pixel image (b) by using 

the simple linear iterative clustering segmentation method (Scale 1:700). 

 

3.2.4.3. An improved classification based on k-means segmentation 

The k-means segmentation (KMSEG) algorithm was based on k-means clustering and 

morphological processes. The addition of morphological processes was expected to mitigate 

misclassifications associated with non-seeded areas resulting from a planter malfunction. These 

areas are commonly misclassified as CRR zones, but their rectangular shape can be exploited 

to better classify them. The workflow of KMSVM is shown in Figure 3.9. The images were 

first classified with k-means, and then dilation and erosion were applied to the k-means 

classification result in order to segment larger CRR zones. UAV RS provides high-resolution 

image data, but more irrelevant data like pixels of bare soil between planting rows are 

introduced (Figure 3.10). Once the two-class k-means classification was generated based on a 

UAV high-resolution image mosaic, the bare soil between planting rows was classified as 
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CRR. In conventional classification approaches, to avoid the effects of bare soil between 

planting rows, the image resolution is downgraded so that the pixels of plants and gaps 

between rows are aggregated. A shortcoming of this process is that a large amount of 

information is lost with the decreasing image resolution, especially at the boundaries between 

infected and uninfected regions.  The KMSEG method generates the classification directly on 

the original high-resolution image mosaics and then smooths the classification result through a 

morphological closing process. A 3x3 filter was used for dilation in the healthy cotton class to 

fill the gaps between rows. Then erosion of the healthy cotton class was conducted with the 

same size filter to shrink the class and neutralize the influence of dilation at the boundaries 

between CRR and healthy cotton regions. This morphological closing procedure aims to 

remove small or narrow bare soil areas. Five iterations each of dilation and erosion were used 

to ensure boundaries between classes were not affected. Finally, a morphological opening, 

erosion followed by dilation, was conducted in the same number of iterations, which cleaned 

the small healthy areas inside of infected areas.  
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Figure 3.9 The workflow of the proposed k-means segmentation (KMSEG) method. 

KMSEG makes use of unsupervised clustering and morphological image processing 

methods to classify the image. 

 

 

Figure 3.10 The cotton root rot (CRR) infested cotton shown in color-infrared composites 

with different resolutions: (a) 0.076 m/pixel; and (b) 1 m/pixel (Scale 1:200). 
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3.2.5. Accuracy assessment 

Accuracy assessment is an indispensable procedure of image classification [75,76]. A 

ground-truth map was used to assess the accuracy of classifications. The ground-truth map was 

drawn manually according to collected GPS coordinates and the following protocols: 

a) A region with more than 10 adjacent cotton plants infected with CRR was marked as 

a CRR-infested region. 

b) In a CRR-infested area, a region with more than 10 adjacent healthy cotton plants 

was regarded as a non-infested area. 

A digitizer and graphic pad were used in this procedure. An expert in RS and plant 

pathology used experience and judgment to delineate infested areas. The generated map was 

classified into two values, ‘0’ (healthy) and ‘1’ (CRR) (Figure 3.11). 

The classifications derived from the various classifiers were also converted to a binary 

map to test their accuracy against the human expert classification. As in the ground-truth map, 

the healthy area is represented by ‘0’ and the infested area is represented by ‘1’. When the two 

maps were overlaid, the intersecting (i.e., correctly classified) parts were assigned a value of 

‘1’are, while the non-intersecting (i.e., misclassified) parts were assigned a value of ‘0’. 
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Figure 3.11 The ground-truth map of Chase field was used for accuracy assessment 

(Scale 1:2800) 

 

To assess the accuracy of classifications, the confusion matrix including agreement, 

omission error, commission error, and overall accuracy was generated. An error of omission 

represents pixels that belong to a class but are not classified into that class. For instance, the 

omission of CRR means CRR infested areas fail to be classified as CRR. This error is termed 

producer’s accuracy. Error of commission represents pixels which belong to one class but are 

classified into another class. For example, the commission error of CRR means healthy cotton 

plants are classified as CRR. This error is termed user’s accuracy. 

For an accurate classification, both omission and commission errors should be at a low 

level. A high omission error of the CRR-infested class means that a large number of CRR-

infested areas are classified healthy. Contrarily, a high commission error of the infested class 

means many healthy plants are misclassified as CRR-infected plants. Compared with the 
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omission of the CRR-infested class, the commission of the CRR-infested class is more 

tolerable, because the CRR-infested area may extend or shrink year by year, and slight over-

application of fungicide is more likely to guarantee an effective treatment result.  

 

3.3. Results 

3.3.1. The newly proposed classification methods 

Thirty confusion matrices corresponding to the ten classifiers and the three cotton fields 

(CH, WP, and SH) were developed and compared. Tables 3.1 and 3.2 are detailed examples of 

the confusion matrix for KMSVM and KMSEG in the CH field. The results from all 30 

confusion matrices are summarized in Table 3.3. KMSVM had consistent performance in all 

three fields. The overall accuracies for KMSVM in the CH, WP, and SH fields were 90.69%, 

84.47%, and 88.15%, respectively. Table 3.1 shows that 12,528,215 pixels in CH were 

evaluated in the accuracy assessment. Exactly 684,758 pixels (24.09%) of healthy plants were 

overclassified into the CRR-infested class. Additionally, 481,191 pixels (18.24%) of CRR-

infected plants failed to be detected. Finally, 9,205,114 pixels of healthy plants and 2,157,162 

pixels of infected plants were correctly classified with an overall accuracy of 90.69% and a 

kappa coefficient of 0.7277, indicating substantial agreement (0.61-0.80) with the true 

data[77,78]. The KMSVM classification results are at about the same accuracy level as the 

supervised classifications (Table 3.3). 



  

75 

 

Table 3.1 A confusion matrix of k-means SVM regional classification for Chase field 

Overall accuracy 90.69%     

Kappa Coefficient 0.7277     

 Class types determined from the 

reference source (Ground-truth) 

 Commission Omission 

Class 

types 

determine

d from 

classified 

map 

 Infested 

plants 

Healthy 

plants 

Totals   

Infested 

plants 

2157162 684748 2841910  24.09%  18.24% 

Healthy 

plants 

481191 9205114 9686305  4.97%  6.92% 

 Totals 2638353 9889862 12528215   

The same dataset was used to evaluate the KMSEG method (Table 3.2). KMSEG had 

better performance than KMSVM in overall accuracy, kappa coefficient, error of commission 

and error of omission. For the CH field, the overall accuracy (92.63%) was as good as those for 

the supervised classifications (Tables 3.1 and 3.3), and the commission error (17.65%) and 

omission error (17.29%) were relatively low.  

 

Table 3.2 Confusion matrix of k-means segmentation regional classification for Chase 

field 

Overall accuracy 92.63%     

Kappa Coefficient 0.7786     

 Class types determined from 

reference source (Ground-truth) 

 Commission Omission 

Class 

types 

determine

d from 

classified 

map 

 Infested 

plants 

Healthy 

plants 

Totals   

Infested 

plants 

2182161 467623 2649784  17.65%  17.29% 

Healthy 

plants 

456192 

 

9422239 9878431  4.62%  4.73% 

 Totals 2638353 9889862 12528215   
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Table 3.3 The summarized results of accuracy comparison between unsupervised, combined-unsupervised, supervised classifications, and proposed automatic regional classifications. Three cotton fields 

were used to evaluate the methods of classification between healthy and cotton root rot (CRR) infested field areas. 

Note: U stands for unsupervised, C-U stands for combined-supervised, S stands 

for supervised, PA stands for proposed automatic. (α=0.05, Duncan test)
  Overall Accuracy Kappa Coefficient 

  CH WP SH Mean Std. Dev. CH WP SH Mean Std. Dev. 

U 2-class k-means 78.60% 78.76% 81.44% 79.60% 
a
 1.60% 0.5106 0.4527 0.6162 0.5265 

A
 0.0829 

C-U 

3 to 2-class k-means 88.89% 87.26% 79.45% 85.20% 
ab

 5.05% 0.6868 0.5751 0.5392 0.6004
 A

 0.0770 

5 to 2-class k-means 88.67% 88.81% 83.49% 86.99%
 ab

 3.03% 0.6085 0.5293 0.6452 0.5943
 A

 0.0592 

10 to 2-class k-means 90.97% 88.01% 81.14% 86.71%
 ab

 5.04% 0.6986 0.5885 0.5911 0.6261
 A

 0.0628 

S 

SVM 92.02% 78.66% 87.48% 86.05%
ab

 6.79% 0.7587 0.4481 0.7345 0.6471
 A

 0.1728 

Minimum distance 88.12% 86.14% 82.79% 85.68%
ab

 2.69% 0.6753 0.5604 0.6346 0.6234
 A

 0.0583 

Maximum likelihood 91.71% 77.92% 87.65% 85.76%
ab

 7.09% 0.7498 0.4419 0.7422 0.6446
 A

 0.1756 

Mahalanobis distance 89.60% 87.13% 86.27% 87.67%
ab

 1.73% 0.7076 0.5764 0.7144 0.6661
 A

 0.0778 

PA 
KMSVM 90.69% 84.47% 88.15% 87.77%

ab
 3.13% 0.7277 0.6048 0.7494 0.6940

 A
 0.0780 

KMSEG 92.62% 85.80% 87.06% 88.49%
b
 3.63% 0.7786 0.6428 0.7379 0.7198

 A
 0.0697 

  Error of Commission (CRR class) Error of Omission (CRR class) 

  CH WP SH Mean Std. Dev. CH WP SH Mean Std. Dev. 

U 2-class k-means 50.43% 56.88% 27.16% 44.82%
a
 15.63% 7.84% 14.10% 18.00% 13.31%

 A
 5.13% 

C-U 

3 to 2-class k-means 30.04% 40.17% 17.43% 29.21%
ab

 11.39% 17.22% 28.28% 41.43% 28.98%
 BCD

 12.12% 

5 to 2-class k-means 14.26% 24.23% 19.36% 19.28%
ab

 4.99% 44.58% 51.63% 25.30% 40.50%
 D

 13.63% 

10 to 2-class k-means 10.85% 37.51% 21.20% 23.19%
ab

 13.44% 34.95% 29.83% 30.73% 31.84%
 CD

 2.73% 

S 

SVM 18.50% 57.07% 16.18% 30.58%
ab

 22.97% 19.66% 15.04% 16.69% 17.13%
 AB

 2.34% 

Minimum distance 32.90% 43.70% 22.15% 32.92%
ab

 10.78% 14.48% 24.71% 23.19% 20.79%
 ABC

 5.52% 

Maximum likelihood 19.38% 57.88% 18.53% 31.93%
ab

 22.48% 20.17% 13.23% 12.39% 15.26%
 AB

 4.27% 

Mahalanobis distance 28.74% 40.79% 20.73% 30.09%
ab

 10.10% 15.18% 26.86% 13.25% 18.43%
 ABC

 7.36% 

PA 
KMSVM 24.09% 32.34% 9.26% 21.90%

ab
 11.70% 18.24% 25.17% 9.97% 17.79%

 ABC
 7.61% 

KMSEG 17.64% 7.46% 23.30% 16.13%
b
 8.03% 17.29% 11.95% 5.09% 11.44%

 A
 6.12% 
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3.3.2. Comparison between newly proposed and conventional classification methods 

The conventional unsupervised and supervised classification methods were compared 

with the newly proposed methods (Table 3.3). The two-class k-means clustering method was 

able to generate CRR distribution maps automatically, similar to KMSVM and KMSEG from 

an automation perspective. However, the average accuracy of 79.60% and the average kappa 

coefficient of 0.5265 were lower than those for KMSVM (87.77% and 0.6940) and KMSEG 

(88.49% and 0. 7198). The error of omission of 13.31% was acceptable, but the error of 

commission was 44.82%, indicating that nearly half of the estimated CRR area was over-

classified. The two proposed methods performed significantly better than two-class k-means (α 

= 0.05) in terms of commission error. However, the omission errors were similar between two-

class k-means and the two proposed methods. 

The combined three-class, five-class, and 10-class k-means clustering methods 

achieved accuracies of 85.20%, 86.99%, and 86.71%, respectively, indicating that generating 

more classes for k-means clustering improved classification results and reduced the error of 

commission to the level of the proposed methods. However, the procedure of combining 

classes required human input and knowledge of relevant classes, making these methods less 

desirable than the proposed methods from the perspective of automation. Compared with the 

two-class k-means classification, the combined multi-class k-means classifications had better 

results in overall accuracy, kappa coefficient, and error of commission, but the differences 
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were not significant (α = 0.05). For the error of omission, the two-class k-means classification 

performed significantly better than the combined multi-class k-means classifications. 

The performance of the four supervised classifications was generally good. The overall 

accuracies for SVM, minimum distance, maximum likelihood, and Mahalanobis distance were 

86.05%, 85.68%, 85.76%, and 87.67%, respectively. The respective errors of commission were 

30.58%, 32.92%, 31,93%, and 30.09%, and the respective errors of omission were 17.13%, 

20.79%, 15.26%, and 18.43%. Compared with KMSVM and KMSEG, the supervised 

classification methods had similar performance in terms of accuracy and kappa coefficient. 

However, the errors of commission of the supervised classifications were almost twice those of 

the proposed methods. And the errors of omission were also higher than those of the proposed 

methods. Figure 3.12 shows the classification results of eight conventional and two proposed 

classifiers for the CH field. The CRR-infested zone is in dark gray, and the healthy zone is in 

light gray. Each classification in Figure 3.12 has a corresponding error map that shows the 

difference between the classification and the ground truth map. The omission error of CRR is 

in cyan and represents misdetection of CRR, while the commission error of CRR is in pink and 

represents overclassified CRR. The classification results of the CH field indicated that all the 

supervised classifications, especially SVM (Figure 3.12e), maximum likelihood (Figure 3.12g), 

and Mahalanobis distance (Figure 3.12h), had large commission errors (see stripes) at the 

northwest corner of the CH field where non-seeded areas were wrongly classified into CRR. 
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KMSVM (Figure 3.12i) also had a similar misclassification at the northwest corner of the CH 

field. 

A scatterplot of errors of commission versus errors of omission is shown in Figure 3.13. 

The shorter the distance from the classifier to the origin, the less overall error the classifier had. 

The error data points of the conventional classifiers fell roughly along a common curve, while 

the two proposed classification methods, which took advantage of the higher resolution of the 

UAV image mosaics, were much closer to the origin. 

 

 

 

 

 

 



  

80 

 

 

Figure 3.12 Classification results of (A) 2-class k-means, (B) combined 3-class k-means, 

(C) combined 5-class K-means, (D) combined 10-class k-means, (E) SVM, (F) Minimum 

distance, (G) Maximum likelihood, (H) Mahalanobis distance, (I) KMSVM, and (J) 

KMSEG. And corresponding error maps of (a) 2-class k-means, (b) combined 3-class k-

means, (c) combined 5-class k-means, (d) combined 10-class k-means, (e) SVM, (f) 

Minimum distance, (g) Maximum likelihood, (h) Mahalanobis distance, (i) KMSVM, and 

(j) KMSEG. (Scale 1:9000) 
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Figure 3.13 Error of commission versus error of omission for 10 classification methods. 

The errors of conventional classifications were distributed as a curved trend. The 

proposed methods KMSVM and KMSEG are superior and lie off the trend line 

 

3.4. Discussion 

An idealized goal of developing CRR detection methods is to enable the uploading of 

raw UAV images to a cloud server or farm computer for automatic image mosaicking and 

processing and then to convert the classified map to a prescription map as the final product. 

The prescription map would be loaded to the control system for the planter to apply fungicide 

automatically at planting. The entire process including image classification would ideally be 

automatic or at least semi-automatic. Although supervised classification and combined 
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unsupervised classification have good classification results, they all require human expertise, 

making it impossible to process the data automatically. On the other hand, unsupervised 

classification with the two proposed methods, KMSVM and KMSEG, meets the requirement 

of automation.  

A dataset containing roughly 584,000 pixels of data sampled from two different fields 

was used to analyze the features of CRR data. Statistical analysis of CRR and healthy sample 

data indicates that the DN values of both CRR and healthy cotton follow a bell-shaped 

distribution in green, red, and NIR bands (Figure 3.14). Assuming the distance between two 

cluster centroids is normalized to 100%, the data closer than 50, 33, and 25% to the closer 

centroid were considered in groups with respect to classification accuracy. The 50% group was 

correctly classified in the range of 42 to 58%. The 33% group was correctly classified in the 

range of 77 to 96%. Finally, the 25% group was correctly classified in the range of 85 to 100%. 

Selecting training data by using k-means classification directly may cause overfitting in 

classification. Selecting training data around the cluster centroid within 33% of the distance 

between two cluster centers could be a strategy to automatically select training data, but this 

may lead to underfitting. Therefore, SLIC Superpixel segmentation was introduced to improve 

the fit associated with the training data. The non-linear separable feature of the data is one of 

the reasons that the conventional unsupervised classifier was not able to directly achieve a 

good classification result. 
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Figure 3.14 Spectral value distribution of CRR-infested and healthy plants. 

 

Combined multi-class k-means methods were able to improve the accuracy of the 

classification compared to the two-class k-means methods. More classes could lead to higher 

accuracy theoretically, because the boundary effects could be reduced with the increasing 

number of classes. However, the decision criterion for class combination was subjective. 

Considering the combined five-class k-means classification as an example, combining Classes 

1 and 2 to the CRR class and Classes 3, 4 and 5 to the healthy class led to very similar 

accuracy as compared to combining Classes 1, 2 and 3 to CRR and Classes 4 and 5 to healthy. 

The first combination had high omission error, while the second combination had high 

commission error, indicating that Class 3 included both CRR and healthy areas. Rigid 

separation of classes caused inaccurate and subjective results. 

The conventional supervised classifications and KMSVM had difficulty distinguishing 

CRR-infected plants from non-seeded areas. The unsupervised methods also had a similar 

issue, but it was not as severe as with the supervised methods. This issue occurred because the 

spectral features of CRR plants and bare soil were similar. Using only spectral information led 
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to misclassification. However, KMSEG avoided this issue by making use of the morphology of 

how CRR presents itself in the field. CRR-infested areas are generally in circular or ring 

shapes [8], but non-seeded areas caused by planter mechanical failure are normally in strips 

with bare soil. Taking the CH field as an example, there is a seeding error at the northeast 

corner (Figure 3.12). The bare soil area caused by mis-seeding is long and narrow. The 

morphological closing transformation procedure in KMSEG tended to aggregate the strip-

shaped bare soil pixels (Figure 3.15). This is one reason why KMSEG achieved the lowest 

error of commission among all methods. 

 

Figure 3.15 The strip-shaped bare soil pixels were effectively removed using 

morphological closing transformation at northeast of CH field. The (a) k-means 

classification was applied (Scale 1:2000) (b) dilation of healthy cotton class followed by (c) 

erosion of healthy cotton class. 

 

An ideal classifier for detecting CRR should have not only good overall accuracy but 

should also keep the omission and commission errors of the CRR class as low as possible. 

Commission error indicates over-classification; i.e., larger commission error means more 

fungicide treatment area, which wastes fungicide and increases environmental risk. On the 

contrary, a large omission error causes the under-application of fungicide to infested areas, thus 
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reducing cotton yield and quality. In future studies, image classification should be optimized to 

minimize misclassified areas while reducing application costs.  

A principal benefit of using the high-resolution imagery of UAVs is that it may 

ultimately enable highly precise application of fungicide to protect cotton plants from CRR, 

but for this research it also enabled highly precise ground truth maps to be used for accuracy 

assessment. The classifications were evaluated based on all image pixels in a specific zone 

instead of randomly sampled points, making the result more robust. However, the pixels at a 

boundary of two classes could decrease the overall accuracy more easily in some scenarios 

(Figure 3.16). This phenomenon is known as the boundary effect, and while it could influence 

the absolute accuracy somewhat, it was not expected to affect the comparisons between 

classifiers. The results (Table 3.3) basically agreed with Yang’s research [22] in that the 

combined unsupervised classification methods were as good as the supervised classification 

methods. The maximum likelihood classifier was slightly better than Minimum distance in 

overall accuracy. The SVM had the best overall accuracy among all the supervised classifiers. 

But overall, the supervised classifiers all performed well and showed no major differences.  
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Figure 3.16 The pixels at the boundary of two classes could impact the accuracy. (a) The 

raw CIR image derived (Scale 1:200) (b) ground-truth image which could have boundary 

effect when compared to (c) real classification. 

 

Two morphological operations were used with the high-resolution data to account for 

shape in the proposed classification methods: opening and closing was used in KMSEG to 

eliminate non-seeded areas, and superpixel analysis was used in KMSVM to enable specific 

focus on cotton plants.  While these spatially focused operations can potentially account for the 

different look of other causes of plant death and wilt, the image analysis done here assumes 

CRR to be the major cause of wilted and dead plants, based on historical knowledge that CRR 

is in the field, and sampling of individual plants verifies it, along with the commonly round 

patterns in the field. 

The particular innovations were fully automated classifiers, classifiers that perform well 

with high-resolution UAV data, and the inclusion of spatial information in the classifiers.  We 

believe the proposed classification methods can be useful in other disease and pest detection 

contexts.  However, it must be noted that the proposed methods were designed specifically for 
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use in CRR, in which in-season mitigation is not possible.  The goal with CRR is to allow the 

disease to take its course so the full-scale of the disease pattern can be measured.  Once the 

disease pattern is clearly delineated at high resolution, fungicide can be applied during planting 

with extreme precision to minimize cost and environmental risk.  

While a fixed-wing UAV was used in this work, rotary-wing UAVs are more common 

today, particularly in research applications.  We used a fixed-wing aircraft because we desire to 

develop a data-collection and classification system that may be potentially practical on-farm, 

and thus covering large fields quickly is critical.  Because fixed-wing aircraft generate lift from 

forward speed, they are more efficient at staying in the air over large areas and can cover a 

100-acre field in a typical 20-minute flight, including adequate overlap for the orthomosaicking 

process.  

 

3.5. Conclusions 

This study compared multiple conventional classifiers and proposed two improved 

automatic classifiers, KMSVM and KMSEG, to classify CRR-infected and healthy plants in 

cotton fields. KMSVM is a self-labeling machine learning classifier, while KMSEG 

emphasizes morphological processes, and both of these were used in a way that took advantage 

of the high resolution inherent in UAV images.  All the classifiers were evaluated based on two 

criteria, automation and accuracy. The two proposed methods performed better in terms of 
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accuracy than the conventional classifiers and could be implemented automatically. In 

particular, the KMSEG classifier had the best performance in terms of overall accuracy 

(88.39%), Kappa coefficient (0.7198), error of commission (16.13%), and error of omission 

(11.44%). The two-class unsupervised classification had the lowest overall accuracy (79.60%) 

and the highest error of commission (44.82%), but it had the advantage in automation over the 

supervised classifications. The combined multi-class unsupervised classifications and 

supervised classifications had relatively good accuracy (85.2 to 87.67%) but required human 

intervention. Overall, the proposed methods proved superior in classifying high-resolution 

UAV images into healthy and diseased areas at roughly the level of a single plant.  
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4. A PLANT-BY-PLANT COTTON ROOT ROT IDENTIFICATION METHOD BASED ON 

UAV REMOTE SENSING 

 

Abstract: Cotton root rot (CRR), caused by the fungus Phymatotrichopsis omnivora, is a 

destructive cotton disease that mainly affects the crop in Texas. Flutriafol fungicide applied at 

or soon after planting has been proven effective at protecting cotton plants from being infected 

by CRR. Previous research has indicated that CRR will reoccur in the same regions of a field 

as in past years. CRR-infected plants can be detected with aerial remote sensing (RS). As 

unmanned aerial vehicles (UAVs) have been introduced into agricultural RS, the spatial 

resolution of farm images has increased significantly, making plant-by-plant (PBP) CRR 

classification possible. An unsupervised classification algorithm, PBP, based on the Superpixel 

concept, was developed to delineate CRR-infested areas at roughly the single-plant level. Five-

band multispectral data were collected with a UAV to test these methods. The results indicated 

that the single-plant level classification achieved overall accuracy as high as 95.94%. 

Compared to regional classifications, PBP classification performed better in overall accuracy, 

Kappa coefficient, errors of commission, and errors of omission. The single-plant fungicide 

application was also effective in preventing CRR. 



  

90 

 

Acknowledgments:  We thank Cody Bagnall, Lantian Shangguan, Xiongzhe Han, Xiwei 

Wang, and Roy Graves for helping in data collection. We thank Ryan M. Collett for helping in 

selection of survey fields. 

 

4.1. Introduction 

The United States (U.S.) produced 20.9 million 218-kg (480-lb) bales of cotton in the 

2017-2018 season with a production value of $7.2 billion (USD), ranking 3rd after India and 

China, and it is the largest cotton-exporting country in the world [1]. The state of Texas 

produced 9.5 million bales, approximately 44 % of U.S. cotton production, ranking 1st in the 

U.S. [1]. While Texas is by far the largest producing state, a major obstacle to cotton 

production in Texas is a disease called cotton root rot (CRR) or Texas root rot. The disease is 

caused by the soilborne fungus, Phymatotrichopsis omnivora, a destructive plant disease 

throughout the southwestern U.S. The first documented study of CRR was in the 19th century 

by Pammel [3]. The disease rots the root, disrupting the vascular system and preventing water 

and nutrients from being transported from the roots to the rest of the plant, eventually killing 

the plant. An infected cotton plant usually dies within ten days. If the disease develops in an 

early stage of growth, the plants will die before bearing fruit. If it develops after flowering, the 

disease will reduce yield and lower the quality of the cotton lint by stopping transport of 

nutrients to the maturing bolls.  
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The fungus spreads within a field by direct root contact between plants and the growth 

of its mycelia through the soil [79]. Infested field areas are commonly circular in shape [8], 

providing an indication of the cause of plant death. One study reported that the overall area of 

plants infected with CRR in a particular field increased from 10 to 50% from August to 

September [8], during a later growth stage of the crop. Until the recent advent of soil-applied 

flutriafol fungicide, several control practices (e.g. crop rotation, soil fumigation, host 

resistance) were tested but found to be either not economical or not effective [8]. Because CRR 

generally occurs at the same place in a field from year to year, its position can be mapped, 

allowing for targeted spot treatments of flutriafol fungicide. Both multispectral and 

hyperspectral imagery can distinguish infected areas accurately, but three-band multispectral is 

a preferred technique, being effective, less expensive, more widely available, and simpler to 

use than hyperspectral [9]. 

The large sizes of typical cotton fields make it impractical to map CRR position from 

ground-based platforms. Remote sensing, on the other hand, can provide such data quickly and 

relatively inexpensively, and it is thus an important technology for practical CRR sensing [9]. 

Visible, near-infrared (NIR), and thermal remote sensing data have been studied widely with 

aerial and satellite platforms to understand many crop phenomena [80]. Biotic and abiotic 

stresses, including insects, pathogens, weeds, drought, and nutrition deficiencies have been 

widely studied with remote sensing [81–86], in addition to applications such as yield prediction 
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and general crop management [17,60,87,88]. In cotton, remote sensing has been used to 

evaluate the effectiveness of defoliation and regrowth control strategies [24] as well as in other 

applications.  

Remote sensing has also been used to map CRR in cotton fields dating back to 1929 

[18]. Nixon et al. later introduced color-infrared (CIR) technology to document the distribution 

of CRR infestation and to detect the effect of chemical treatment for CRR [19]. Multispectral 

video imagery of CRR was evaluated and reported as early as 1987 [20], and Yang et al. 

reported using manned-aircraft based remote sensing and high precision global positioning 

system (GPS) technology to map CRR in 2015 [22].  

Satellite images typically have relatively low resolution but can be acquired 

periodically at a reasonable cost. However, there is a risk that clouds may cover the view when 

the images are taken. Aerial images commonly have higher spatial resolution that may be 

advantageous as well as some flexibility in timing, but the cost of acquisition is relatively high 

[10]. Previous research indicates that airborne and satellite multispectral imagery data can be 

used to successfully detect the CRR-infested area in both dryland and irrigated fields 

[21,25,89,90]. The resolution of such imagery limits CRR mapping to field zones, but 

unmanned aerial vehicles (UAVs) have recently emerged as remote-sensing tools that provide 

resolution high enough to potentially enable even single-plant level prescription map creation. 

Compared to manned aircraft, UAVs have a limited payload capacity, but they can fly lower 
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and slower than manned aircraft. The above-ground level (AGL) with UAVs is commonly 20 

to 120 m, providing for spatial resolution at the cm level. The temporal resolution of UAVs is 

commonly improved as well [29] because UAVs can be flown anytime the weather permits. In 

addition, UAV flights generally cost less than traditional manned aircraft remote sensing.  

Rotary-wing UAVs are much more common than fixed-wing UAVs for agricultural 

remote sensing. Rotary-wing UAVs are slower and more stable in flight and thus are able to 

generate higher-quality mosaicked images. However, the slower flying speed also generally 

leads to smaller coverage area. On the other hand, fixed-wing UAVs flying at the legally 

allowable limit of 120 m AGL are commonly able to cover a 24 to 40 ha (60 to 100 acre) area 

on one battery charge (about 20 minutes), depending on the weather conditions. Therefore, 

fixed-wing UAVs appear to be well-suited to the large-area farming that is commonly seen in 

cotton production. 

UAV remote sensing has been increasingly used in agricultural research in recent years 

and has been considered for general production management, yield prediction, , and disease 

detection. [24,30–32,53,54,60]. RGB (red, green, and blue) and other multispectral sensors are 

commonly used, but the frequently used normalized difference vegetation index (NDVI) 

requires the NIR band. Without the NIR band, the normalized difference photosynthetic vigor 

ratio (NDPVR) and the visible atmospherically resistant index (VARI) can be calculated, and 

they have been used to estimate crop yield [30,53]. Both RGB and other multispectral images 
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have been used for rice growth and yield estimation. However, the vegetation indices (VIs) 

derived from multispectral images including NIR correlate better with grain yield than VIs 

derived from RGB images [30]. Albetis et al. used the support vector machine (SVM) classifier 

on UAV images to differentiate diseased from non-diseased areas of vineyards. Because of the 

high spatial resolution, they could distinguish grapevine vegetation from bare soil, shadow, and 

inter-row vegetation. A high classification accuracy of 97 to 99% was achieved in four 

vineyards [31]. Furthermore, artificial neural networks (ANNs) have been used to estimate 

water potential in vineyards based on UAV data [32]. While a great deal of recent agricultural 

research has involved UAV-based remote sensing, there is scant research about UAV-based 

remote sensing for the delineation of CRR. 

In general, classification procedures are a way to categorize data according to various 

characteristics. Classification in RS means categorizing or mapping an image into different 

classes depending on the features of the data such as tone, texture, pattern, etc. Unsupervised 

and supervised classification are common and differ according to whether human-guided 

training is involved in classifying the data.  

The Superpixel algorithm segments images into many multi-pixel pieces (superpixels) 

based on shape, color, texture, etc. In essence, the Superpixel method converts images from 

pixel-level to district-level, and thus belongs to the image segmentation category in image 

processing. The Superpixel algorithm keeps the main features of the aggregated pixels, 
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resulting in a sharp reduction in the number of data-containing units. As a result, it improves 

the image processing speed significantly. Sultani et al. used the Superpixel algorithm to detect 

objects in pavement images [33]. Different shaped objects such as patches, maintenance hole 

covers, and markers could be detected efficiently. After dividing the images into many small 

segments, features like histogram of oriented gradients (HOG), co-occurrence matrix (COOC), 

intensity histogram (IH), and mean intensity (MI) of each superpixel were calculated. HOG 

and COOC are texture and shape characteristics, while IH and MI are spectral intensity 

variations. Then, SVM was used to generate classifications based on each feature. The 

Superpixel algorithm has also been used to detect disease in agricultural crops. Zhang et al. 

developed a new method based on the Superpixel algorithm to detect cucumber diseases 

[34,35]. Leaf images were divided into superpixels, and then the expectation maximization 

(EM) method was applied to obtain lesion images. After feature extraction, SVM was used to 

detect the disease. The result indicated that the proposed method had the highest recognition 

rate and fastest processing speed compared to four other methods that have been used for 

cucumber disease recognition. Zhang et al. later proposed a new leaf recognition method based 

on the Superpixel algorithm, k-means, and pyramid of histograms of orientation gradients 

(PHOG) algorithms [34,35]. First, the RGB leaf image was divided into segments with the 

Superpixel algorithm. Then, k-means clustering was applied to segment the lesion section of 

the leaf. PHOG features were extracted and used to recognize the disease. Three apple and 
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three cucumber leaf diseases were used to assess the method. The result indicated that the 

proposed method was effective and usually achieved the highest recognition rate compared to 

other methods that had been used for cucumber disease recognition. 

Conventional CRR identification methods developed for 1-m resolution aerial images 

can only detect the CRR-infested area at the regional level, leading to the application of a large 

amount of fungicide to field areas that do not need it. UAV remote sensing makes high-

resolution data collection possible, meaning that fungicide treatments could conceivably be 

applied at the level of individual plants. To take advantage of these high-resolution data, a 

novel high-precision CRR identification method is proposed to enable high-precision CRR 

detection and treatment. The objectives of this research were thus to (1) develop and evaluate a 

plant-by-plant (PBP) CRR detection and classification method; (2) compare the PBP 

classification method to common regional classification methods; and (3) examine the 

effectiveness of PBP fungicide treatment to validate the necessity for the method. 

4.2. Materials and Methods 

4.2.1. Study sites 

This study involved five selected regions in four dryland cotton fields (Figure 4.1) in 

central Texas, USA, near the town of Thrall: Chase section 1 (CH1), Chase section 2 (CH2), 

West Poncho (WP), School House (SH), and a field for a plot test (PL) to examine the 
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effectiveness of various fungicide treatments.  All of these fields and regions have a history of 

CRR infestation. 

    
Figure 4.1 The study was conducted on Stiles farm located in Williamson County, central 

Texas. The five areas of field experiments were marked on the map. 

4.2.2. Data collection 

A fixed-wing UAV (Tuffwing Mapper, Tuffwing LLC, Boerne, TX, USA; Figure 4.2a) 

was used to acquire image data of all the fields and regions on a cloud-free day, August 20, 

2017. This UAV is equipped by the manufacturer with a global navigation satellite system 

(GNSS) receiver and an inertial measurement unit (IMU). A multispectral camera (RedEdge, 

Micasense, Seattle, WA, USA; Figure 4.2b) mounted on the UAV collected images at 120-m 

above ground level (AGL). The images had a pixel resolution of 7.64 cm and contained five 

spectral bands: blue (≈475 to 500 nm), green (≈550 to 565 nm), red (≈665 to 675 nm), red edge 

(≈715 to 725 nm), and NIR (≈825 to 860 nm). The images were taken between 11:00 and 

13:00 local time with an optimized fixed-exposure. Eight ground control points (GCPs) were 

used during each flight to improve the geographical accuracy of the mosaicked image of each 
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field area. The GCPs were placed in each field at the four corners and four midpoints of each 

side. Ground-truth data were collected on August 25, 2017, and involved using a GPS receiver 

to record boundary locations of some CRR zones (Figure 4.3). A total of about 20 plants from 

these zones were removed and evaluated for the presence of the fungus on the roots in order to 

validate the presence of CRR in the zone.  

 

Figure 4.2 The images were captured from (a) a fixed-wing UAV “TuffWing UAV 

Mapper” with (b) MicaSense RedEdge camera. 
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Figure 4.3 A portion of ground-truth data collected on Aug 25, 2017. Totally 627 ground-

truth data points (in red) were recorded to delineate the boundary of some CRR-infested 

zones. 

 

4.2.3. Data preprocessing 

A 0.95-ha area was covered in each image with the AGL and camera used. An 80% 

forward overlap and 70% side overlap flight plan was used for image acquisition. The raw 

images were collected in tiff format with data from the GNSS receiver and IMU stored as 

image metadata. Image mosaicking was conducted with Pix4D software (Pix4D S.A, 

Lausanne, Switzerland). A Geoexplorer 6000 (Trimble, Sunnyvale, CA) GNSS receiver was 

used in the fields to collect the coordinates of the GCP centroids for geo-referencing of the 

images, also conducted in Pix4D. The centers of the GCPs in each raw image were manually 
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linked to the corresponding ground-truth GNSS coordinates during the geo-referencing 

process. 

 

Figure 4.4 PSR+ 3500 Spectroradiometer was used to collect reflectance information. 

 

Three spectrally flat reference tiles were used for radiometric calibration: dark gray 

(≈3% reflectance) medium gray (≈20% reflectance), and light gray (≈45% reflectance). The 

actual reflectance spectra of the calibration tiles were collected with a portable 

spectroradiometer (Figure 4.4) (PSR+ 3500, Spectral Evolution, Haverhill, MA). A linear 

relationship between known reflectance and image-pixel digital numbers (DNs) was 

established for each band. All DN images were converted to reflectance images in ENVI 

software (Harris geospatial solution, Boulder, CO) based on these relationships. 
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4.2.4. Regional classification 

Previous studies have used regional classification for CRR detection [8,9,22,23,25,91]. 

In a related prior study involving UAV remote sensing of CRR [92], each CRR-infested zone 

was identified as a region of plants rather than individual plants. The image data were 

classified into healthy and CRR-infested regions with unsupervised, semi-supervised, and 

supervised classification methods. The unsupervised and semi-supervised methods were based 

on k-means clustering and included one two-class method (unsupervised) and three multi-class 

(3, 5, and 10 classes) methods that combined more classes to form two classes based on user 

knowledge and judgment (semi-supervised). The supervised methods, which required selection 

of training data by a human operator, were two-class methods and included support vector 

machine (SVM), minimum distance (MD), maximum likelihood (ML), and Mahalanobis 

distance (MHD) classifiers. The CIR images of four of the five regions described above (the 

other region in the current study was used for a fungicide application test as described below) 

were used to evaluate the classification methods by comparing their overall accuracies, errors 

of omission and commission, and kappa coefficients. These images covered 5.68-ha, 0.15-ha, 

0.42-ha, and 0.34-ha of field regions CH1, CH2, SH, and WP, respectively (Figure 4.5). In the 

current study, the regional classification results from the related prior study were used for 

comparison with plant-by-plant classification. 
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Figure 4.5 Multispectral color-infrared (CIR) images for (a) Region ‘CH1’ (Scale 1:3000), 

(b) Region ‘CH2’ (Scale 1:2000), (c) Region ‘WP’ (Scale 1:2400), and (d) Region ‘SH’ 

(Scale 1:3800). The regions were shown in different scales for a better visualization of 

details. 

 

4.2.5. Plant-by-plant classification 

The high spatial resolution of UAV RS images makes it possible to detect CRR 

infection at a plant-by-plant (PBP) level of precision. The 7.64-cm resolution in the current 

study provides for roughly 120 pixels per plant zone at full canopy cover, assuming 76-cm (30-

in.) row spacing and average seeding distance of 12 cm (4.6 in.) at 45,000 seed per 0.405 ha 

(1.0 ac.). This number of pixels per plant should be adequate for identifying specific features to 

enable discrimination of plants based on spectral and spatial information. A new PBP 

classification method was thus proposed and based on Superpixel and k-means algorithms. 

This combination of algorithms was selected because the Superpixel algorithm, used 

appropriately, should have the capability to identify single plant zones, and k-means has been 

demonstrated to distinguish CRR-infected from healthy plants. 
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The simple linear iterative clustering (SLIC) Superpixel algorithm [93,94] is based on 

visual color converted to the three-dimensional (3D) spherical CIE-Lab color space. CIE-Lab 

expresses colors in numeric terms and deals with the issue that colorimetric distance in 

measurements does not correspond with the color difference perceived by humans. In this 

study, CIR images were used based on the fact that healthy plants are more easily visually 

differentiated from unhealthy plants with CIR instead of visual color images. In CIR images, 

the image spectral bands are converted from green to blue, red to green, and NIR to red for 

visual display. Other researchers have used NIR to enhance the SLIC Superpixel algorithm 

results based on RGB [95], but in this study the SLIC Superpixel algorithm was used on the 

RGB-channel outputs of the CIR images, so CIR was directly converted to an artificial CIE-

Lab by way of a CIR-based XYZ color space.  

Figure 4.6 is the flowchart of the PBP classification algorithm. The SLIC Superpixel 

algorithm was first applied to a CIR image, and a number (k) of superpixel “seeds” were then 

generated and distributed uniformly across the image. The imported image was then divided 

into superpixels (small, rather homogenous, areas in the image) based on spectral and shape 

information around each “seed.” The mean of the DN values within each superpixel was 

calculated and assigned to the superpixel so that it had a single DN value. The number (k) of 

superpixels was user-determined and provided to the algorithm based on the field planting rate; 

i.e., the number of superpixels was expected to be similar to the number of cotton plants in the 
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image, multiplied by a scaling factor to account for bare soil areas in the image. K-means 

clustering was applied to the superpixel image to achieve a two-class regional classification, 

with “1” and “0” to represent CRR and healthy zones, respectively. At the same time, planting 

rows were detected by calculating the gradient of the raw image. A binary plant row image was 

generated, with “0” and “1” representing plant rows and the gaps between them, respectively. 

The centroids of each superpixel were identified and marked as potential cotton plant 

centroids, with “1” and “0” representing cotton plant and bare soil, respectively. The centroids 

of superpixels located in the CRR zone (as determined by k-means) and the planting row were 

regarded as locations of CRR-infected plants. The centroids of superpixels located in healthy 

zones and within the planting row were regarded as locations of healthy plants. 

The classifier logic was applied to all image pixels and can be expressed with the 

following equation: 

 

𝐶 =  {

0| 𝑆𝑛 ∩ 𝑃𝑛 = 1,  Z𝑛 = 0
1| 𝑆𝑛 ∩ 𝑃𝑛 = 1,  Z𝑛 = 1

    2| 𝑜𝑡ℎ𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠                  
                                        (1) 

 

where Z𝑛 is the regional classification based on k-means, in which value “0” = healthy 

zone, and value “1” = CRR zone; 𝑆𝑛 is the status of superpixel centroid location or not 

superpixel centroid location, in which value “0” = not superpixel centroid location, and value 
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“1” = superpixel centroid location; 𝑃𝑛 is the status of planting row or gap between rows, in 

which value “0” = gap, and value “1” = row; and 𝐶 =  {ψ|ψ: ℝ → {0,1,2}} is an overall class 

containing all pixel classes. 

While C = 0, the superpixel centroid location is marked as an individual healthy cotton 

plant. While C = 1, the superpixel centroid location is marked as a CRR-infected plant. C = 2 

represents no superpixel centroid at this location, no matter whether the pixel is classified as 

healthy or infested. 
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Figure 4.6 Flow chart of unsupervised plant-by-plant (PBP) classification algorithm. 

CRR= cotton root rot; SLIC= simple linear iterative clustering. 
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4.2.6. Accuracy assessment 

Accuracy assessment involves specific means of evaluating the performance of 

classifications [75,76]. A ground-truth map was drawn manually on the original high-

resolution UAV images. In this process, the ground-truth data collected on Aug 25, 2017, were 

used as a visual reference when applying the following protocol. Zones in the field with more 

than approximately ten immediately adjacent infected plants were categorized as CRR-infested 

zones. In larger CRR-infested zones, more than ten immediately adjacent healthy plants were 

categorized as healthy zones. The regional classification maps were resampled to the higher 

resolution of the ground-truth map and compared to it on a pixel-by-pixel basis. This method is 

common for accuracy assessment of raster-based classification maps. On the other hand, the 

PBP classification maps, which were vector point maps, were compared to the ground-truth 

map at only the locations of the superpixel centroids; i.e., the classification of a superpixel was 

compared to the pixel at its centroid location on the ground-truth map. This method was 

selected to enable comparison to the ground-truth map at the plant level instead of the pixel 

level. It should be noted that the number of comparisons between a regional classification and 

the ground-truth map was much higher than the number for PBP classification. However, the 

methods used are considered reasonable for the type of data being evaluated; e.g., the regional 
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classification maps did not have adequate resolution for plant-level comparison. Confusion 

matrices were developed based on the individual comparisons within these zones (Table 4.1).  

 

Table 4.1 Confusion matrix to evaluate classification methods. 

 Class types determined from reference source 

(Ground-truth) 

 

Class types 

determined 

from classified 

map 

 Healthy plant Infested plant Totals 

Healthy plant A B A+B 

Infested plant C D C+D 

 Totals A+C B+D A+B+C+D 

 

The kappa coefficient, which indicates the agreement between the “predicted” and 

“true” values, was calculated from the derived confusion matrices and the following formula 

𝑘 =
𝑁 ∑ 𝑡𝑖,𝑖−∑ (𝐺𝑖𝑃𝑖)𝑛

𝑖=1
𝑛
𝑖=1

𝑁2−∑ (𝐺𝑖𝑃𝑖)𝑛
𝑖=1

                                                     (2) 

where N is the total number of pixels; i is the class number; 𝑡𝑖,𝑖 is the correctly 

classified number of pixels in Class i; 𝐺𝑖 is the total number of pixels classified as Class i in 

ground-truth data; and 𝑃𝑖 is the total number of pixels classified as Class i in the predicted data. 

 

Figure 4.7 The interpretation of the Kappa coefficient 
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A kappa value of 1 indicates that the classification has perfect agreement with the true 

value, and a value of 0 indicates no agreement between the classification and ground truth 

(Figure 4.7). The errors of commission, representing a measure of false-positives, and errors of 

omission, representing a measure of false-negatives, were also calculated to evaluate the 

classifiers.  Regional classification methods including k-means, SVM, MD, ML, and MHD 

were compared to the PBP classification method based on overall classification accuracy, the 

kappa coefficient, and errors of commission and omission. 

 

4.2.7. Test of PBP fungicide treatment in field  

An in-furrow, at-planting spray application is the most common way to apply the 

Topguard Terra (FMC Agricultural Solutions, Philadelphia, PA) fungicide (flutriafol) that is 

licensed for treatment of CRR. The continuous application of the fungicide over the top of 

seeds as they are planted treats not only soil close to the seed, but also a length of soil between 

seeds that may not need treatment. This process may result in applying more product than 

necessary, so it is important to determine whether applying the fungicide to individual seeds or 

plants is effective. To test whether PBP fungicide treatment is effective in protecting cotton 

plants from CRR infection, a stem-drench treatment – also proven in research trials to be an 

effective application method – was used in place of the at-planting application method. 

Specifically, the fungicide spray solution was applied to the stem of the cotton plant and a 
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small amount of soil surrounding the stem. An 18.3-m × 30.5-m (60-ft × 100-ft) test plot in 

field region PL was used to conduct this experiment.  

Four treatments were applied: (1) a conventional at-planting treatment of in-furrow 

continuous spray over the top of planted seeds, applied with a tractor-pulled planter; (2) a 

stem-drench continuous spray, applied manually with a backpack sprayer; (3) a stem-drench 

pulsed spray on individual plants, applied manually with a backpack sprayer; and (4) a no-

fungicide control. The experiment had 24 rows (Figure 4.8) of 100 ft (30.48 m) in length, with 

an adjacent pair of rows receiving a treatment, and three replications per treatment, arranged in 

a randomized complete block design. For the two continuous-spray treatments, Topguard Terra 

was applied at 0.675 g active ingredient in 216 mL per 30.5 m (100 ft) of row length. This rate 

is equivalent to the labeled application rate of 237 mL (8 fluid oz.) formulation in 37.9 L (10 

gal.) of water applied to 0.405 ha (1.0 ac.). 

 

Figure 4.8 Plot design for testing the effectiveness of fungicide on plant-by-plant 

treatment. Note: IF Machine C = in-furrow machinery continuous spray, SD manual C = 

stem-drench manual continuous spray, and SD Manual P = stem-drench manual pulsed 

spray. 
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Figure 4.9 (a) A Case IH 1230 planter was used for in-furrow application; and (b)  a CO2 

–pressurized backpack sprayer was used for manual treatments. 

    

A CASE IH 1230 12-row Early Riser planter (Case Corp., Wisconsin, USA) with 76.2 

cm (30-inch) row spacing was used for seeding of all treatments and the application of the in-

furrow fungicide treatment (Figure 4.9a). The seeding rate of Phytogen 490 cotton seed was 

roughly 45,000 per 0.405 ha (1.0 ac.). For the manual continuous-spray and pulsed stem-

drench treatments, a pressurized CO2 backpack sprayer was used (Figure 4.9b) with a pressure 

of 241 kPa (35.0 psi). Plots were planted and the in-furrow treatment was applied at planting 

on May 10, 2018. The soil temperature was 34 ℃ (94 ℉). 
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The manual continuous and pulsed stem-drench spray treatments were applied when the 

cotton plants were at the four true leaf growth stage, on June 6, 2018. Spray was applied close 

to the stems at a height of 2 to 3 cm above the ground. With the pulse treatment, the volume of 

water containing the fungicide applied to the rows varied depending upon plant stand and 

spacing, with an average of 268 mL per 30.5 m (100 ft) of row; the application range was 160 

to 450 mL. In other words, 1.67 mL of flutriafol (active ingredient) was used on average per 

30.5-m-length of cotton plant row, and the actual flutriafol application range was 1.00 to 2.80 

mL. For comparison, in-furrow planting consumed 1.68 mL flutriafol per 30.5-length of row. 

The experiment was repeated in 2019 with a reduction in fungicide application rate. An 

average of 122 mL of fungicide (0.67 mL flutriafol) was used per row for stem drench pulse 

spray treatment in 2019 (range: 60 mL to 130mL). 

 

4.3. Results 

4.3.1. Plant-by-plant classification 

One example (Region CH2) of the progression of the image processing results from 

each step in the PBP classification method is shown in Figure 4.10. The raw image (Figure 

4.10a) gradient was calculated to identify the planting rows (Figure 4.10b). SLIC Superpixel 

segmentation was applied to the gradient map to determine possible locations of individual 

plants (Figure 4.10c). The original pixels of the raw image were aggregated into larger 
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superpixels (Figure 4.10d) to identify individual plant locations. The k-means algorithm was 

applied to the superpixels to generate a two-class regional classification (Figure 4.10e). The 

final result of PBP classification is shown in Figure 4.10f, in which each individual healthy 

plant is marked with a yellow point, and each CRR-infected plant is marked with a blue point. 

 

Figure 4.10 The imagery results getting from each step of unsupervised PBP classification 

algorithm. each image indicated: (a) CIR raw image, (b) the location of planting row, (c) 

the position of each individual plant, (d) the result of Superpixel segmentation, (e) the 

regional distribution of CRR-infested areas, and (f) the final result of PBP classification. 

In (b), planting rows are shown in light grey, and bare soil is shown in black. In (e), 

healthy regions are shown in green, and CRR-infested regions are shown in red. In (f), 

each yellow dot represents a healthy cotton plant, and each blue dot represents and CRR-

infected plant. 
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The accuracy assessment of PBP classification showed that it is a highly accurate 

method of differentiating between healthy and CRR-infected plants at the individual-plant 

level. In Region CH2, the PBP classification had the highest overall accuracy of 95.94%, as 

well as the highest Kappa coefficient of 0.8617, which indicated very strong agreement 

between classification and ground-truth data (Table 4.2). Table 4.2 is the confusion matrix for 

PBP classification applied to Region CH2. Over 11,000 plants identified by the PBP algorithm 

in CH2 were evaluated, and about 82% of those were identified as healthy according to 

ground-truth data. About 13.1% of the healthy plants were misclassified as CRR-infected 

(overclassification), while about 9.5% of the actually CRR-infected plants were misclassified 

as healthy (underclassification).  

 

Table 4.2 Confusion matrix of PBP classification for Region CH1. 

 Class types determined from 

reference source (Ground-truth) 

 Commissi

on 

Omission 

Class 

types 

determine

d from 

classified 

map 

 Healthy 

plant 

Infected 

plant 

Totals   

Healthy 

plant 

8,963 186 9,149 186/9149 

2.03% 

268/9231 

2.9% 

Infected 

plant 

268 1,771 2,039 268/2039 

13.14% 

186/1957 

9.5% 

 Totals 9,231 1,957 11,188   
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The PBP classifications were also generated for CH1, WP, and SH. In CH1, the PBP 

algorithm achieved an overall accuracy of 93.5%, a kappa coefficient of 0.7848, an error of 

commission of 16.1%, and an error of omission of 18.6%. In SH, the PBP algorithm also had a 

high accuracy of 90.6% with a kappa coefficient of 0.7494. The errors of commission and 

omission were 12.2% and 8.5%, respectively. Compared to the other regions, WP had the 

lowest accuracy of 88.4%, but even this level would typically be acceptable for field 

application. The kappa coefficient, error of commission, and error of omission for WP were 

0.6048, 20.9%, and 26.8%, respectively. 

 

4.3.2. Comparison to regional classifications 

Thirty-six confusion matrices were generated from the results of the nine overall 

classification methods as applied to the four field regions. These confusion matrices are 

summarized in Table 4.3. The two-class k-means classifier identified CRR-infected cotton 

plants in the image automatically, but the overall accuracy averaged only 77.5%. The kappa 

coefficient of 0.491 also indicated relatively weak agreement between the classification and 

ground-truth data. The error of commission of 46% indicated that almost half the plants 

classified as CRR-infected were overclassified. Manually combining three-class, five-class, 

and ten-class k-means classifications improved the overall accuracy to 83.5%, 84.4%, and 

84.1%, respectively. The kappa coefficients also increased to 0.547, 0.552, and 0.576, 
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respectively, indicating moderate agreement between classification and ground truth. However, 

it must be noted that combining classes required expertise from and implementation by the 

user, meaning that the ideal of automated processing was not realized. 

Using supervised classifiers including SVM, MD, ML, and MHD increased the overall 

accuracy to 86.3%, 85.7%, 86.5%, and 87.7%, respectively. All of these classifiers performed 

significantly better ( = 0.05) than two-class k-means in overall accuracy. The kappa 

coefficients for these classifiers were 0.659, 0.636, 0.667, and 0.786, respectively. While 

supervised classifiers performed better than the unsupervised and semi-supervised classifiers, 

they did not perform as well as the PBP classifier, and it must be noted that these also need 

human intervention, specifically for selection of training data based on subjective judgment.  

The PBP classification method averaged 92.1% overall accuracy, by far the best among 

all classifiers considered. This accuracy level was significantly higher ( = 0.05) than that of 

the unsupervised and combined unsupervised classifiers. The average kappa coefficient was 

0.786, indicating strong agreement between the classifications and ground truth, and this value 

was significantly better ( = 0.05) than that of all the other classifiers considered. The average 

errors of commission and omission, 15.56% and 15.85%, were also the lowest in the overall 

comparison group.  



  

117 

 

Table 4.3 The accuracy comparison between unsupervised, combined-unsupervised, supervised classifications, and proposed automatic regional classifications. 

Note: U = unsupervised, S-S = semi-supervised, S = supervised, P = proposed method, 

KM = k-means, MD = minimum distance, ML = maximum likelihood, MHD = 

Mahalanobis distance, PBP = plant-by-plant. Letters a, b, and c in Column Mean 

indicate statistical different groups (α = 0.05, Duncan test).

   Overall Accuracy (%) Kappa Coefficient 

  CH1 CH2 WP SH Mean Std. Dev. CH1 CH2 WP SH Mean Std. Dev. 

U 2-class KM 78.60 71.11 78.76 81.44 77.48 a 4.42 0.5106 0.3826 0.4527 0.6162 0.4905 a 0.0988 

S-S 

3 to 2-class KM 88.89 78.28 87.26 79.45 83.47 ab 5.38 0.6868 0.3875 0.5751 0.5392 0.5471 ab 0.1236 

5 to 2-class KM 88.67 76.50 88.81 83.49 84.37 ab 5.80 0.6085 0.4232 0.5293 0.6452 0.5516 ab 0.0983 

10 to 2-class KM 90.97 76.36 88.01 81.14 84.12 ab 6.61 0.6986 0.4264 0.5885 0.5911 0.5762 ab 0.1122 

S 

SVM 92.02 87.04 78.66 87.48 86.30 bc 5.57 0.7587 0.6962 0.4481 0.7345 0.6594 ab 0.1432 

MD 88.12 85.65 86.14 82.79 85.68 bc 2.20 0.6753 0.6721 0.5604 0.6346 0.6356 ab 0.0534 

ML 91.71 88.55 77.92 87.65 86.46 bc 5.95 0.7498 0.7342 0.4419 0.7422 0.6670 ab 0.1502 

MHD 89.60 87.89 87.13 86.27 87.72 bc 1.42 0.7076 0.7238 0.5764 0.7144 0.6806 bc 0.0698 

P PBP 95.94 93.52 88.43 90.64 92.13 c 3.28 0.8617 0.7848 0.6048 0.7494 0.7855 c 0.0746 

     

   Errors of Commission (%) Errors of Omission (%) 

  CH1 CH2 WP SH Mean Std. Dev. CH1 CH2 WP SH Mean Std. Dev. 

U 2-class KM 50.43 49.89 56.88 27.16 46.09 a 13.01 7.84 26.72 14.10 18.00 16.67 a 7.90 

S-S 

3 to 2-class KM 30.04 26.46 40.17 17.43 28.53 ab 9.40 17.22 60.87 28.28 41.43 36.95 b 18.77 

5 to 2-class KM 14.26 40.18 24.23 19.36 24.51 ab 11.21 44.58 42.32 51.63 25.30 40.96 b 11.17 

10 to 2-class KM 10.85 40.83 37.51 21.20 27.60 ab 14.08 34.95 40.57 29.83 30.73 34.02 b 4.90 

S 

SVM 18.50 25.38 57.07 16.18 29.28 ab 18.93 19.66 16.21 15.04 16.69 16.90 a 1.97 

MD 32.90 29.17 43.70 22.15 31.98 ab 9.00 14.48 14.13 24.71 23.19 19.13 a 5.60 

ML 19.38 23.85 57.88 18.53 29.91 ab 18.79 20.17 11.92 13.23 12.39 14.43 a 3.87 

MHD 28.74 26.13 40.79 20.73 29.10 ab 8.48 15.18 9.91 26.86 13.25 16.30 a 7.37 

P PBP 13.14 16.06 20.88 12.16 15.56 b 3.91 9.5 18.59 26.80 8.51 15.85 a 8.60 
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A comparison chart of the errors of commission and omission is shown in Figure 

4.11. Theoretically, the ideal classifier, which has 100% accuracy and thus no errors of 

commission or omission, should be located at the origin of this coordinate system. The 

PBP classifier is the one closest to the origin by far, indicating that it clearly performed 

the best in terms of overall accuracy. It is worth noting here that in the aforementioned 

related prior study [92], two methods proposed to take advantage of the high resolution 

of UAV images, k-means plus support vector machine (KMSVM) and k-means 

segmentation (KMSEG), were evaluated with only regions CH1, WP and SH. The two 

methods had approximately 22% and 16% error of commission and 18% and 11% of 

error of omission, respectively. The KMSEG classifier, which is a fully automated 

regional classifier, generated similar results to the PBP classifier on a somewhat 

different data set. Both KMSEG and KMSVM are regional classifiers that were designed 

to take advantage of the morphological information available in high-resolution UAV 

images. Thus, like the PBP classifier, they were meant as improvements over traditional 

regional classifiers. The added advantage of the PBP classifier is that it is designed to 

classify individual plants, a tremendous advantage when subsequently applying 

fungicide on a PBP basis. 
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Figure 4.11 Comparison of the errors of commission and omission among 

classifiers. 

 

4.3.3. Test of method of fungicide application for CRR control 

In the study on fungicide application methods, the application of Topguard Terra 

generally reduced the incidence of CRR compared to the control (Table 4.4), as 

expected. The manually pulsed stem-drench treatment had the lowest plant mortality 

among the treatments, but the difference from the other two fungicide treatments was not 

significant. While in most years, the portion of the field (PL) used in this experiment 

eventually approaches 100% mortality from CRR, the dry weather in 2018, the first year 
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this study was conducted, resulted in low severity of CRR. Assuming a 5% significance 

level, there was no statistically significant difference among all the treatments. However, 

the pulsed stem-drench (i.e., PBP) treatment would be considered significantly better 

than the no-spray control treatment if a 15% level of significance were assumed. While 

this is an uncommonly weak significance level, it is reasonable to believe that all three 

methods of applying fungicide, including the PBP method, offered some protection 

against CRR. Because of even drier conditions in 2019 than 2018, no CRR development 

was observed during the experiment, so efficacy could not be assessed in 2019.  

Table 4.4 Effect of Topguard Terra application method on CRR (% mortality) in 

the 2018 experiment. 

Method* 

Replication 

1 

Replication 

2 

Replication 

3 Mean** 

No spray 4.79 0.32 7.69 4.27 a 

In-furrow  3.92 0.57 0.98 1.83 ab 

Stem Drench C  0.00 2.45 2.17 1.54 ab 

Stem Drench P  0.62 1.42 1.05 1.03 b 

* C= continuous application, P= pulse application **The different letters indicate 

statistically different groups (α = 0.15, Duncan test). 

 

4.4. Discussion 

In this study, the errors of commission represent the percentage of plants over-

classified into the CRR category. The errors of omission represent the percentage of 

CRR-infected plants misclassified as healthy plants. From an economics perspective, 

omission plays a more important role than commission for CRR detection, because over-

spraying of fungicide caused by over-classification would likely cost less than the loss of 

CRR-infected plants that could have been protected. The zones with weeds growing on 

bare soil, very possibly next to a dead cotton plant, contributed to the errors of omission. 
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While not necessarily as critical, it should be noted that the errors of commission were 

commonly observed at zones where bare soil was evident where there was no CRR-

infected plant. The mixed pixels of soil, plant leaves, and shadow of plants, which were 

commonly present at the boundaries between healthy and infested zones, also caused a 

large number of errors of commission and omission with the regional classifiers, because 

the mixed pixels do not represent the reflectance information from a single object.  

The homogenieity of the field could also affect the classification accuracy. 

Regions CH1 and CH2 were from the same cotton field, and the images of them were 

from the same flight mission. The patterns of planting and disease as well as the 

reflectance information were similar, and the lighting conditions were the same. The 

main difference between the regions was that CH2 was smaller than CH1. The results of 

classification in CH2 were better than in CH1 in most cases, especially for unsupervised 

classification. One reason is that unsupervised classification clusters data into different 

classes based on the “otherness” of data. Once the sample size becomes larger, more 

diverse data besides healthy and infected cotton are introduced into the field of view, 

such as a concrete road, power line, pond, or other objects. All of this “noise” can reduce 

the accuracy of classifiers. A prerequisite for an accurate automated classification is to 

have images consisting of only rows of cotton plants.  All the classifiers had relatively 

low accuracies on Region WP compared to the other three regions. It is possible this was 

because the planter experienced mis-seeding during planting, causing a narrow and long 

“dead zone” consisting mainly of bare soil. Manual manipulation can be used as 

postprocessing to correct the misclassification from mis-seeding, but it violates the intent 
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of automation in classification. Morphological image processing tools such as erosion 

and dilation could be introduced in the future to improve the performance of 

differentiating mis-seeding from cotton root rot while maintaining the automation of 

classification [92].  

Comparing regional and PBP classifications is challenging because regional 

classification is based on pixels while PBP classification is based on individual plants. 

To make the comparison even more convincing, the classifications should ideally be 

evaluated with the same protocols. Comparing pixel differences between all 

classifications (PBP and regional classifications) and the same ground-truth map is a fair 

way to evaluate and compare classifications, but it is not readily done when the 

classifiers produce different types of maps as results. The PBP classifier output a vector 

point map, whereas the regional classifiers output raster maps, so the comparisons to the 

ground-truth map had to be done with different methods appropriate to each form of 

data. 

In the comparison of fungicide application methods, the results should be 

validated by further study, as the disease pressure was low in both years due to dry 

weather conditions. However, the experiment did substantially support the concept of 

pulse application to reduce fungicide use.  In 2018, the manual application of the pulse 

spray method was inefficient and actually resulted in the application of a greater amount 

of fungicide than the continuous spray, but in 2019, an average of 43% less fungicide 

was used because of improvements in the application technique. If efficacy of the 
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fungicide holds up with that method and application rate, the overall concept of PBP 

detection, mapping, and fungicide application will be validated.  

Considering computational requirements, the PBP algorithm required more 

computing time than the regional classification methods, because segmenting and 

locating seed positions is computationally intensive. For the 0.15-ha CH2 image, about 

30 seconds. was required to generate the classification on a 2016 Macbook Pro computer 

with an Intel i7-6920HQ central processing unit (CPU) and Radeon Pro 460 graphic 

processing unit (GPU). The PBP classification algorithm is slower than other 

conventional regional classification methods, but it is still acceptably fast. While a larger 

field might require a few hours to complete the classification, these classifications do not 

need to be done in real time. Rather, they can be performed between growing seasons. 

As discussed previously, UAVs provide much higher resolution (decimeter level 

to centimeter-level) remote sensing data than manned aircraft or satellites (meter level). 

This study was intended to explore how to make use of the high-resolution data in CRR 

detection in the creation of PBP prescription maps. The application of fungicide at the 

PBP level is clearly possible from a technological standpoint. Wilkerson et al. tested a 

seed-specific in-furrow fungicide application system and found that the system could 

achieve as high as 95% accuracy for seed-specific treatment in cotton [96]. However, 

identifying, predicting, locating, and treating the disease at the PBP level are the 

obstacles to high-precision treatment of CRR, as well as other plant diseases. This study 

shows that CRR-infected plants in the current season can be individually identified with 

high accuracy, and PBP fungicide treatment appears to be effective in controlling CRR. 
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The remaining challenges to be investigated are (1) whether the precise location of 

individual CRR-infected plants is predictive for the following year, and (2) whether 

previously developed precision-spray technology [44] enables fungicide to be practically 

applied at these locations on a seed-by-seed basis. 

There is no evidence to suggest that CRR can be cured once a plant is infected; 

the fungicide must be applied prior to disease development. Thus PBP application of 

fungicide requires previous years’ data to predict CRR-infested areas in future years. 

The entire PBP classification process can be conducted automatically if an appropriate 

seeding rate is known beforehand. Management of other crop diseases that can be treated 

during the growing season could potentially benefit from this type of high-resolution 

classifier. 

 

4.5. Conclusion 

This study involved development and evaluation of a plant-by-plant (PBP) 

classifier that is able to detect CRR-infected plants at the single-plant level 

automatically. The PBP classifier is mainly based on the Superpixel segmentation and k-

means clustering algorithms. Compared to conventional regional classification methods, 

PBP achieved the highest overall accuracy of 92.1%, the highest kappa coefficient of 

0.786, the lowest errors of commission of 15.6%, and the second-lowest errors of 

omission of 15.9%. The PBP fungicide treatment in the field was also apparently 

effective in controlling CRR infection. These results generally validate the idea of plant-
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level CRR treatment and suggest the likelihood of major advances in high-resolution 

precision agriculture practices in the future.  
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5. CONCLUSIONS 

A motivation for this dissertation is that it is expected that a UAV can be flown, 

remote-sensing images collected, and data uploaded to a cloud service platform fairly 

easily and quickly. An automated algorithm could then identify the CRR location in the 

field of interest precisely and accurately. The fungicide could then be precisely and 

economically applied in subsequent years to avoid losses from CRR disease. 

UAV remote sensing bears great potential to collect high-resolution information 

on cotton fields. Diseases like CRR can be efficiently identified, monitored, and 

controlled with the help of UAV remote sensing. In this dissertation, it was first 

demonstrated that practical CRR fungicide prescription maps could be generated from 

UAV based remote sensing data. In 2017 the fungicide was applied based on the CRR-

infested locations identified in 2015. The CRR was effectively controlled by the 

fungicide prescription, and the precision application saved on the cost of fungicide as 

well as the yield loss caused by CRR. 

This dissertation also proposed new automatic regional CRR classification 

methods that make use of the high-resolution of UAV remote sensing data. It has 

become known that conventional classification methods often do not perform well on 

UAV remote sensing data, because the high-resolution of UAV remote sensing data 

introduces new classes of information that can reduce the classification accuracy. A 

proposed method called KMSVM (k-means and support vector machine) uses the 

concept of semi-supervised classification to identify the CRR-infested area automatically 

with a machine learning approach. Another proposed method, KMSEG (k-means and 
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morphology-based segmentation), uses morphological image processing to fulfill the 

task of CRR detection accurately and automatically. Both methods performed better than 

conventional regional techniques in a comprehensive comparison with ground-truth data. 

An additional novel classification method was proposed to take further advantage 

of high-resolution UAV data, such that fungicide could be applied at the plant-by-plant 

(PBP) level. This method was developed based on Superpixel segmentation and k-means 

clustering algorithms and can identify individual cotton plants and whether they are 

CRR-infected or not. A field test demonstrated that treating individual plants maintains 

the effectiveness of fungicide for protecting the cotton plant. 

 Based on the results of this dissertation, two remaining research questions to be 

addressed are as follows. (1) Can precision application technology be improved to apply 

fungicide at the PBP level to take advantage of the advanced image-processing methods? 

(2) Is the geographic stability of CRR zones in the field strong enough to allow for 

predicting CRR in future years and applying fungicide at the PBP level? While these 

questions remain, it is clear that UAV remote sensing can be used to (a) delineate CRR 

(and possibly other diseases) at high resolution, even to the level of individual plants, 

and (b) generate effective prescription maps for at-planting fungicide application to 

control CRR. 
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